text
stringlengths
0
3.06M
meta
stringlengths
57
121
[GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s : R x✝ y : M a b : R h : a + b = 1 x : M ⊢ a • x + b • x = x [PROOFSTEP] rw [← add_smul, h, one_smul] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s : R x y : M ⊢ 2 • x = x + x [PROOFSTEP] rw [← one_add_one_eq_two, add_smul, one_smul] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M r s : R x✝ y : M inst✝¹ : AddCommMonoid M₂ inst✝ : SMul R M₂ f : M₂ →+ M hf : Injective ↑f smul : ∀ (c : R) (x : M₂), ↑f (c • x) = c • ↑f x src✝ : DistribMulAction R M₂ := Injective.distribMulAction f hf smul c₁ c₂ : R x : M₂ ⊢ ↑f ((c₁ + c₂) • x) = ↑f (c₁ • x + c₂ • x) [PROOFSTEP] simp only [smul, f.map_add, add_smul] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M r s : R x✝ y : M inst✝¹ : AddCommMonoid M₂ inst✝ : SMul R M₂ f : M₂ →+ M hf : Injective ↑f smul : ∀ (c : R) (x : M₂), ↑f (c • x) = c • ↑f x src✝ : DistribMulAction R M₂ := Injective.distribMulAction f hf smul x : M₂ ⊢ ↑f (0 • x) = ↑f 0 [PROOFSTEP] simp only [smul, zero_smul, f.map_zero] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M r s : R x✝ y : M inst✝¹ : AddCommMonoid M₂ inst✝ : SMul R M₂ f : M →+ M₂ hf : Surjective ↑f smul : ∀ (c : R) (x : M), ↑f (c • x) = c • ↑f x c₁ c₂ : R x : M₂ ⊢ (c₁ + c₂) • x = c₁ • x + c₂ • x [PROOFSTEP] rcases hf x with ⟨x, rfl⟩ [GOAL] case intro α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M r s : R x✝ y : M inst✝¹ : AddCommMonoid M₂ inst✝ : SMul R M₂ f : M →+ M₂ hf : Surjective ↑f smul : ∀ (c : R) (x : M), ↑f (c • x) = c • ↑f x c₁ c₂ : R x : M ⊢ (c₁ + c₂) • ↑f x = c₁ • ↑f x + c₂ • ↑f x [PROOFSTEP] simp only [add_smul, ← smul, ← f.map_add] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M r s : R x✝ y : M inst✝¹ : AddCommMonoid M₂ inst✝ : SMul R M₂ f : M →+ M₂ hf : Surjective ↑f smul : ∀ (c : R) (x : M), ↑f (c • x) = c • ↑f x x : M₂ ⊢ 0 • x = 0 [PROOFSTEP] rcases hf x with ⟨x, rfl⟩ [GOAL] case intro α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M r s : R x✝ y : M inst✝¹ : AddCommMonoid M₂ inst✝ : SMul R M₂ f : M →+ M₂ hf : Surjective ↑f smul : ∀ (c : R) (x : M), ↑f (c • x) = c • ↑f x x : M ⊢ 0 • ↑f x = 0 [PROOFSTEP] rw [← f.map_zero, ← smul, zero_smul] [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M✝ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁷ : Semiring R✝ inst✝⁶ : AddCommMonoid M✝ inst✝⁵ : Module R✝ M✝ r s : R✝ x✝ y : M✝ R : Type u_9 S : Type u_10 M : Type u_11 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Semiring S inst✝ : SMul S M f : R →+* S hf : Surjective ↑f hsmul : ∀ (c : R) (x : M), ↑f c • x = c • x src✝ : DistribMulAction S M := distribMulActionLeft (↑f) hf hsmul a b : R x : M ⊢ (↑f a + ↑f b) • x = ↑f a • x + ↑f b • x [PROOFSTEP] simp only [← f.map_add, hsmul, add_smul] [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M✝ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁷ : Semiring R✝ inst✝⁶ : AddCommMonoid M✝ inst✝⁵ : Module R✝ M✝ r s : R✝ x✝ y : M✝ R : Type u_9 S : Type u_10 M : Type u_11 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Semiring S inst✝ : SMul S M f : R →+* S hf : Surjective ↑f hsmul : ∀ (c : R) (x : M), ↑f c • x = c • x src✝ : DistribMulAction S M := distribMulActionLeft (↑f) hf hsmul x : M ⊢ 0 • x = 0 [PROOFSTEP] rw [← f.map_zero, hsmul, zero_smul] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M r✝ s✝ : R x✝ y : M inst✝ : Semiring S f : S →+* R src✝¹ : MulActionWithZero S M := MulActionWithZero.compHom M (RingHom.toMonoidWithZeroHom f) src✝ : DistribMulAction S M := DistribMulAction.compHom M ↑f r s : S x : M ⊢ ↑f (r + s) • x = ↑f r • x + ↑f s • x [PROOFSTEP] simp [add_smul] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r✝ s : R x y : M src✝ : R →* AddMonoid.End M := DistribMulAction.toAddMonoidEnd R M r : M ⊢ 0 • r = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r✝ s : R x✝ y✝ : M src✝ : R →* AddMonoid.End M := DistribMulAction.toAddMonoidEnd R M x y : R r : M ⊢ (x + y) • r = x • r + y • r [PROOFSTEP] simp [add_smul] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s : R x y : M zero_eq_one : 0 = 1 ⊢ x = 0 [PROOFSTEP] rw [← one_smul R x, ← zero_eq_one, zero_smul] [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R✝ inst✝³ : AddCommMonoid M inst✝² : Module R✝ M r✝ s : R✝ x y : M R : Type u_9 inst✝¹ : Ring R inst✝ : Module R M r : R m : M ⊢ r • m + (1 - r) • m = m [PROOFSTEP] rw [← add_smul, add_sub_cancel'_right, one_smul] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M a b : R h : a + b = 1 ⊢ a • x + b • y = b • y - b • x + (a • x + b • x) [PROOFSTEP] abel [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M a b : R h : a + b = 1 ⊢ a • x + b • y = b • y - b • x + (a • x + b • x) [PROOFSTEP] abel [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M a b : R h : a + b = 1 ⊢ b • y - b • x + (a • x + b • x) = b • (y - x) + x [PROOFSTEP] rw [smul_sub, Convex.combo_self h] [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S : Type u_4 M✝ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 R : Type u_9 inst✝¹ : Semiring R M : Type u_10 inst✝ : AddCommMonoid M P Q : Module R M w : ∀ (r : R) (m : M), r • m = r • m ⊢ P = Q [PROOFSTEP] ext [GOAL] case smul.h.h α : Type u_1 R✝ : Type u_2 k : Type u_3 S : Type u_4 M✝ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 R : Type u_9 inst✝¹ : Semiring R M : Type u_10 inst✝ : AddCommMonoid M P Q : Module R M w : ∀ (r : R) (m : M), r • m = r • m x✝¹ : R x✝ : M ⊢ SMul.smul x✝¹ x✝ = SMul.smul x✝¹ x✝ [PROOFSTEP] exact w _ _ [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M r s : R x y : M ⊢ -r • x + r • x = 0 [PROOFSTEP] rw [← add_smul, add_left_neg, zero_smul] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M r s : R x y : M ⊢ -r • -x = r • x [PROOFSTEP] rw [neg_smul, smul_neg, neg_neg] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M r s : R x✝ y : M u : Rˣ x : M ⊢ -u • x = -(u • x) [PROOFSTEP] rw [Units.smul_def, Units.val_neg, _root_.neg_smul, Units.smul_def] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M r s : R x✝ y x : M ⊢ -1 • x = -x [PROOFSTEP] simp [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M r✝ s✝ : R x y✝ : M r s : R y : M ⊢ (r - s) • y = r • y - s • y [PROOFSTEP] simp [add_smul, sub_eq_add_neg] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Ring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : AddCommMonoid M := inferInstance a : M ⊢ (fun z a => ↑z • a) 0 a = 0 [PROOFSTEP] simpa only [Int.cast_zero] using zero_smul R a [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Ring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : AddCommMonoid M := inferInstance z : ℕ a : M ⊢ (fun z a => ↑z • a) (Int.ofNat (Nat.succ z)) a = a + (fun z a => ↑z • a) (Int.ofNat z) a [PROOFSTEP] simp [add_comm, add_smul] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Ring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : AddCommMonoid M := inferInstance z : ℕ a : M ⊢ (fun z a => ↑z • a) (Int.negSucc z) a = -(fun z a => ↑z • a) (↑(Nat.succ z)) a [PROOFSTEP] simp [← smul_assoc, neg_one_smul] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Ring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : AddCommMonoid M := inferInstance a : M ⊢ -1 • a + a = 0 [PROOFSTEP] nth_rw 2 [← one_smul R a] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Ring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : AddCommMonoid M := inferInstance a : M ⊢ -1 • a + 1 • a = 0 [PROOFSTEP] rw [← add_smul, add_left_neg, zero_smul] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ b : M ⊢ n • b = ↑n • b [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M b : M ⊢ Nat.zero • b = ↑Nat.zero • b [PROOFSTEP] rw [Nat.zero_eq, Nat.cast_zero, zero_smul, zero_smul] [GOAL] case succ α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M b : M n : ℕ ih : n • b = ↑n • b ⊢ Nat.succ n • b = ↑(Nat.succ n) • b [PROOFSTEP] rw [Nat.succ_eq_add_one, Nat.cast_succ, add_smul, add_smul, one_smul, ih, one_smul] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M h : Module ℕ M n : ℕ x : M ⊢ SMul.smul n x = n • x [PROOFSTEP] rw [nsmul_eq_smul_cast ℕ n x, Nat.cast_id] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M h : Module ℕ M n : ℕ x : M ⊢ SMul.smul n x = n • x [PROOFSTEP] rfl [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M ⊢ Module ℕ M [PROOFSTEP] infer_instance [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M P : Module ℕ M n : ℕ ⊢ ∀ (m : M), n • m = n • m [PROOFSTEP] convert nat_smul_eq_nsmul P n [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ x : R y : M ⊢ (Nat.zero • x) • y = Nat.zero • x • y [PROOFSTEP] simp only [Nat.zero_eq, zero_smul] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n✝ : ℕ x : R y : M n : ℕ ih : (n • x) • y = n • x • y ⊢ (Nat.succ n • x) • y = Nat.succ n • x • y [PROOFSTEP] simp only [Nat.succ_eq_add_one, add_smul, one_smul, ih] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring S inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module S M inst✝ : Module R M n : ℤ b : M ⊢ ↑(AddMonoidHom.flip (smulAddHom ℤ M)) b = AddMonoidHom.comp (↑(AddMonoidHom.flip (smulAddHom R M)) b) (Int.castAddHom R) [PROOFSTEP] apply AddMonoidHom.ext_int [GOAL] case h1 α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring S inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module S M inst✝ : Module R M n : ℤ b : M ⊢ ↑(↑(AddMonoidHom.flip (smulAddHom ℤ M)) b) 1 = ↑(AddMonoidHom.comp (↑(AddMonoidHom.flip (smulAddHom R M)) b) (Int.castAddHom R)) 1 [PROOFSTEP] simp [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring S inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module S M inst✝ : Module R M h : Module ℤ M n : ℤ x : M ⊢ SMul.smul n x = n • x [PROOFSTEP] rw [zsmul_eq_smul_cast ℤ n x, Int.cast_id] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring S inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module S M inst✝ : Module R M h : Module ℤ M n : ℤ x : M ⊢ SMul.smul n x = n • x [PROOFSTEP] rfl [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring S inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module S M inst✝ : Module R M ⊢ Module ℤ M [PROOFSTEP] infer_instance [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring S inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module S M inst✝ : Module R M P : Module ℤ M n : ℤ ⊢ ∀ (m : M), n • m = n • m [PROOFSTEP] convert int_smul_eq_zsmul P n [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : Ring R inst✝² : Ring S inst✝¹ : Module R M inst✝ : Module S M₂ x : ℤ a : M ⊢ ↑f (↑x • a) = ↑x • ↑f a [PROOFSTEP] simp only [← zsmul_eq_smul_cast, map_zsmul] [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : Semiring R inst✝² : Semiring S inst✝¹ : Module R M inst✝ : Module S M₂ x : ℕ a : M ⊢ ↑f (↑x • a) = ↑x • ↑f a [PROOFSTEP] simp only [← nsmul_eq_smul_cast, AddMonoidHom.map_nsmul, map_nsmul] [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ x : M ⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x [PROOFSTEP] by_cases hR : (n : R) = 0 [GOAL] case pos α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ x : M hR : ↑n = 0 ⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x [PROOFSTEP] by_cases hS : (n : S) = 0 [GOAL] case neg α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ x : M hR : ¬↑n = 0 ⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x [PROOFSTEP] by_cases hS : (n : S) = 0 [GOAL] case pos α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ x : M hR : ↑n = 0 hS : ↑n = 0 ⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x [PROOFSTEP] simp [hR, hS, map_zero f] [GOAL] case neg α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ x : M hR : ↑n = 0 hS : ¬↑n = 0 ⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x [PROOFSTEP] suffices ∀ y, f y = 0 by rw [this, this, smul_zero] [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ x : M hR : ↑n = 0 hS : ¬↑n = 0 this : ∀ (y : M), ↑f y = 0 ⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x [PROOFSTEP] rw [this, this, smul_zero] [GOAL] case neg α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ x : M hR : ↑n = 0 hS : ¬↑n = 0 ⊢ ∀ (y : M), ↑f y = 0 [PROOFSTEP] clear x [GOAL] case neg α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ hR : ↑n = 0 hS : ¬↑n = 0 ⊢ ∀ (y : M), ↑f y = 0 [PROOFSTEP] intro x [GOAL] case neg α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ hR : ↑n = 0 hS : ¬↑n = 0 x : M ⊢ ↑f x = 0 [PROOFSTEP] rw [← inv_smul_smul₀ hS (f x), ← map_nat_cast_smul f R S] [GOAL] case neg α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ hR : ↑n = 0 hS : ¬↑n = 0 x : M ⊢ (↑n)⁻¹ • ↑f (↑n • x) = 0 [PROOFSTEP] simp [hR, map_zero f] [GOAL] case pos α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ x : M hR : ¬↑n = 0 hS : ↑n = 0 ⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x [PROOFSTEP] suffices ∀ y, f y = 0 by simp [this] [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ x : M hR : ¬↑n = 0 hS : ↑n = 0 this : ∀ (y : M), ↑f y = 0 ⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x [PROOFSTEP] simp [this] [GOAL] case pos α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ x : M hR : ¬↑n = 0 hS : ↑n = 0 ⊢ ∀ (y : M), ↑f y = 0 [PROOFSTEP] clear x [GOAL] case pos α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ hR : ¬↑n = 0 hS : ↑n = 0 ⊢ ∀ (y : M), ↑f y = 0 [PROOFSTEP] intro x [GOAL] case pos α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ hR : ¬↑n = 0 hS : ↑n = 0 x : M ⊢ ↑f x = 0 [PROOFSTEP] rw [← smul_inv_smul₀ hR x, map_nat_cast_smul f R S, hS, zero_smul] [GOAL] case neg α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S M₂ n : ℕ x : M hR : ¬↑n = 0 hS : ¬↑n = 0 ⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x [PROOFSTEP] rw [← inv_smul_smul₀ hS (f _), ← map_nat_cast_smul f R S, smul_inv_smul₀ hR] [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionRing R inst✝² : DivisionRing S inst✝¹ : Module R M inst✝ : Module S M₂ z : ℤ x : M ⊢ ↑f ((↑z)⁻¹ • x) = (↑z)⁻¹ • ↑f x [PROOFSTEP] obtain ⟨n, rfl | rfl⟩ := z.eq_nat_or_neg [GOAL] case intro.inl α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionRing R inst✝² : DivisionRing S inst✝¹ : Module R M inst✝ : Module S M₂ x : M n : ℕ ⊢ ↑f ((↑↑n)⁻¹ • x) = (↑↑n)⁻¹ • ↑f x [PROOFSTEP] rw [Int.cast_Nat_cast, Int.cast_Nat_cast, map_inv_nat_cast_smul _ R S] [GOAL] case intro.inr α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionRing R inst✝² : DivisionRing S inst✝¹ : Module R M inst✝ : Module S M₂ x : M n : ℕ ⊢ ↑f ((↑(-↑n))⁻¹ • x) = (↑(-↑n))⁻¹ • ↑f x [PROOFSTEP] simp_rw [Int.cast_neg, Int.cast_Nat_cast, inv_neg, neg_smul, map_neg, map_inv_nat_cast_smul _ R S] [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M M₂ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionRing R inst✝² : DivisionRing S inst✝¹ : Module R M inst✝ : Module S M₂ c : ℚ x : M ⊢ ↑f (↑c • x) = ↑c • ↑f x [PROOFSTEP] rw [Rat.cast_def, Rat.cast_def, div_eq_mul_inv, div_eq_mul_inv, mul_smul, mul_smul, map_int_cast_smul f R S, map_inv_nat_cast_smul f R S] [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S : Type u_4 M✝ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 R : Type u_9 M : Type u_10 N : Type u_11 inst✝⁵ : Zero R inst✝⁴ : Zero M inst✝³ : Zero N inst✝² : SMul R M inst✝¹ : SMul R N inst✝ : NoZeroSMulDivisors R N f : M → N hf : Injective f h0 : f 0 = 0 hs : ∀ (c : R) (x : M), f (c • x) = c • f x x✝¹ : R x✝ : M h : x✝¹ • x✝ = 0 ⊢ x✝¹ • f x✝ = 0 [PROOFSTEP] rw [← hs, h, h0] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝³ : Zero R inst✝² : Zero M inst✝¹ : SMulWithZero R M inst✝ : NoZeroSMulDivisors R M c : R x : M ⊢ c • x ≠ 0 ↔ c ≠ 0 ∧ x ≠ 0 [PROOFSTEP] rw [Ne.def, smul_eq_zero, not_or] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R ⊢ ∀ {c : ℕ} {x : M}, c • x = 0 → c = 0 ∨ x = 0 [PROOFSTEP] intro c x [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R c : ℕ x : M ⊢ c • x = 0 → c = 0 ∨ x = 0 [PROOFSTEP] rw [nsmul_eq_smul_cast R, smul_eq_zero] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R c : ℕ x : M ⊢ ↑c = 0 ∨ x = 0 → c = 0 ∨ x = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R v : M ⊢ 2 • v = 0 ↔ v = 0 [PROOFSTEP] haveI := Nat.noZeroSMulDivisors R M [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R v : M this : NoZeroSMulDivisors ℕ M ⊢ 2 • v = 0 ↔ v = 0 [PROOFSTEP] simp [smul_eq_zero] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M✝ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M✝ inst✝³ : Module R M✝ M : Type u_9 inst✝² : AddCommMonoidWithOne M inst✝¹ : CharZero M inst✝ : Module R M ⊢ CharZero R [PROOFSTEP] refine' ⟨fun m n h => @Nat.cast_injective M _ _ _ _ _⟩ [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M✝ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M✝ inst✝³ : Module R M✝ M : Type u_9 inst✝² : AddCommMonoidWithOne M inst✝¹ : CharZero M inst✝ : Module R M m n : ℕ h : ↑m = ↑n ⊢ ↑m = ↑n [PROOFSTEP] rw [← nsmul_one, ← nsmul_one, nsmul_eq_smul_cast R m (1 : M), nsmul_eq_smul_cast R n (1 : M), h] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R v : M ⊢ v = -v ↔ v = 0 [PROOFSTEP] rw [← two_nsmul_eq_zero R M, two_smul, add_eq_zero_iff_eq_neg] [GOAL] α : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R v : M ⊢ -v = v ↔ v = 0 [PROOFSTEP] rw [eq_comm, self_eq_neg R M] [GOAL] α : Type u_1 R : Type u_2 k✝ : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module ℚ M k : ℤ x : M h : k • x = 0 ⊢ k = 0 ∨ x = 0 [PROOFSTEP] simpa only [zsmul_eq_smul_cast ℚ k x, smul_eq_zero, Rat.zero_iff_num_zero] using h [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 R : Type u_9 inst✝ : Semiring R m : ℕ ⊢ m • 1 = ↑m [PROOFSTEP] rw [nsmul_eq_mul, mul_one] [GOAL] α : Type u_1 R✝ : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 M₂ : Type u_6 M₃ : Type u_7 ι : Type u_8 R : Type u_9 inst✝ : Ring R m : ℤ ⊢ m • 1 = ↑m [PROOFSTEP] rw [zsmul_eq_mul, mul_one]
{"mathlib_filename": "Mathlib.Algebra.Module.Basic", "llama_tokens": 16226}
[GOAL] x : PGame ⊢ Numeric x ↔ (∀ (i : LeftMoves x) (j : RightMoves x), moveLeft x i < moveRight x j) ∧ (∀ (i : LeftMoves x), Numeric (moveLeft x i)) ∧ ∀ (j : RightMoves x), Numeric (moveRight x j) [PROOFSTEP] cases x [GOAL] case mk α✝ β✝ : Type u_1 a✝¹ : α✝ → PGame a✝ : β✝ → PGame ⊢ Numeric (mk α✝ β✝ a✝¹ a✝) ↔ (∀ (i : LeftMoves (mk α✝ β✝ a✝¹ a✝)) (j : RightMoves (mk α✝ β✝ a✝¹ a✝)), moveLeft (mk α✝ β✝ a✝¹ a✝) i < moveRight (mk α✝ β✝ a✝¹ a✝) j) ∧ (∀ (i : LeftMoves (mk α✝ β✝ a✝¹ a✝)), Numeric (moveLeft (mk α✝ β✝ a✝¹ a✝) i)) ∧ ∀ (j : RightMoves (mk α✝ β✝ a✝¹ a✝)), Numeric (moveRight (mk α✝ β✝ a✝¹ a✝) j) [PROOFSTEP] rfl [GOAL] x : PGame o : Numeric x i : LeftMoves x j : RightMoves x ⊢ moveLeft x i < moveRight x j [PROOFSTEP] cases x [GOAL] case mk α✝ β✝ : Type u_1 a✝¹ : α✝ → PGame a✝ : β✝ → PGame o : Numeric (PGame.mk α✝ β✝ a✝¹ a✝) i : LeftMoves (PGame.mk α✝ β✝ a✝¹ a✝) j : RightMoves (PGame.mk α✝ β✝ a✝¹ a✝) ⊢ moveLeft (PGame.mk α✝ β✝ a✝¹ a✝) i < moveRight (PGame.mk α✝ β✝ a✝¹ a✝) j [PROOFSTEP] exact o.1 i j [GOAL] x : PGame o : Numeric x i : LeftMoves x ⊢ Numeric (PGame.moveLeft x i) [PROOFSTEP] cases x [GOAL] case mk α✝ β✝ : Type u_1 a✝¹ : α✝ → PGame a✝ : β✝ → PGame o : Numeric (PGame.mk α✝ β✝ a✝¹ a✝) i : LeftMoves (PGame.mk α✝ β✝ a✝¹ a✝) ⊢ Numeric (PGame.moveLeft (PGame.mk α✝ β✝ a✝¹ a✝) i) [PROOFSTEP] exact o.2.1 i [GOAL] x : PGame o : Numeric x j : RightMoves x ⊢ Numeric (PGame.moveRight x j) [PROOFSTEP] cases x [GOAL] case mk α✝ β✝ : Type u_1 a✝¹ : α✝ → PGame a✝ : β✝ → PGame o : Numeric (PGame.mk α✝ β✝ a✝¹ a✝) j : RightMoves (PGame.mk α✝ β✝ a✝¹ a✝) ⊢ Numeric (PGame.moveRight (PGame.mk α✝ β✝ a✝¹ a✝) j) [PROOFSTEP] exact o.2.2 j [GOAL] x y : PGame r : x ≡r y ox : Numeric x ⊢ Numeric y [PROOFSTEP] induction' x using PGame.moveRecOn with x IHl IHr generalizing y [GOAL] case IH x✝ y✝ : PGame r✝ : x✝ ≡r y✝ ox✝ : Numeric x✝ x : PGame IHl : ∀ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≡r y → Numeric (PGame.moveLeft x i) → Numeric y IHr : ∀ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≡r y → Numeric (PGame.moveRight x j) → Numeric y y : PGame r : x ≡r y ox : Numeric x ⊢ Numeric y [PROOFSTEP] apply Numeric.mk (fun i j => ?_) (fun i => ?_) fun j => ?_ [GOAL] x✝ y✝ : PGame r✝ : x✝ ≡r y✝ ox✝ : Numeric x✝ x : PGame IHl : ∀ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≡r y → Numeric (PGame.moveLeft x i) → Numeric y IHr : ∀ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≡r y → Numeric (PGame.moveRight x j) → Numeric y y : PGame r : x ≡r y ox : Numeric x i : LeftMoves y j : RightMoves y ⊢ PGame.moveLeft y i < PGame.moveRight y j [PROOFSTEP] rw [← lt_congr (r.moveLeftSymm i).equiv (r.moveRightSymm j).equiv] [GOAL] x✝ y✝ : PGame r✝ : x✝ ≡r y✝ ox✝ : Numeric x✝ x : PGame IHl : ∀ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≡r y → Numeric (PGame.moveLeft x i) → Numeric y IHr : ∀ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≡r y → Numeric (PGame.moveRight x j) → Numeric y y : PGame r : x ≡r y ox : Numeric x i : LeftMoves y j : RightMoves y ⊢ PGame.moveLeft x (↑(leftMovesEquiv r).symm i) < PGame.moveRight x (↑(rightMovesEquiv r).symm j) [PROOFSTEP] apply ox.left_lt_right [GOAL] x✝ y✝ : PGame r✝ : x✝ ≡r y✝ ox✝ : Numeric x✝ x : PGame IHl : ∀ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≡r y → Numeric (PGame.moveLeft x i) → Numeric y IHr : ∀ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≡r y → Numeric (PGame.moveRight x j) → Numeric y y : PGame r : x ≡r y ox : Numeric x i : LeftMoves y ⊢ Numeric (PGame.moveLeft y i) [PROOFSTEP] exact IHl _ (r.moveLeftSymm i) (ox.moveLeft _) [GOAL] x✝ y✝ : PGame r✝ : x✝ ≡r y✝ ox✝ : Numeric x✝ x : PGame IHl : ∀ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≡r y → Numeric (PGame.moveLeft x i) → Numeric y IHr : ∀ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≡r y → Numeric (PGame.moveRight x j) → Numeric y y : PGame r : x ≡r y ox : Numeric x j : RightMoves y ⊢ Numeric (PGame.moveRight y j) [PROOFSTEP] exact IHr _ (r.moveRightSymm j) (ox.moveRight _) [GOAL] x y : PGame ox : Numeric x oy : Numeric y ⊢ x ⧏ y → ¬y ⧏ x [PROOFSTEP] refine' numeric_rec (C := fun x => ∀ z (_oz : Numeric z), x ⧏ z → ¬z ⧏ x) (fun xl xr xL xR hx _oxl _oxr IHxl IHxr => _) x ox y oy [GOAL] x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl → PGame xR : xr → PGame hx : ∀ (i : xl) (j : xr), xL i < xR j _oxl : ∀ (i : xl), Numeric (xL i) _oxr : ∀ (i : xr), Numeric (xR i) IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i) IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i) ⊢ (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (mk xl xr xL xR) [PROOFSTEP] refine' numeric_rec fun yl yr yL yR hy oyl oyr _IHyl _IHyr => _ [GOAL] x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl → PGame xR : xr → PGame hx : ∀ (i : xl) (j : xr), xL i < xR j _oxl : ∀ (i : xl), Numeric (xL i) _oxr : ∀ (i : xr), Numeric (xR i) IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i) IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i) yl yr : Type u_1 yL : yl → PGame yR : yr → PGame hy : ∀ (i : yl) (j : yr), yL i < yR j oyl : ∀ (i : yl), Numeric (yL i) oyr : ∀ (i : yr), Numeric (yR i) _IHyl : ∀ (i : yl), mk xl xr xL xR ⧏ yL i → ¬yL i ⧏ mk xl xr xL xR _IHyr : ∀ (i : yr), mk xl xr xL xR ⧏ yR i → ¬yR i ⧏ mk xl xr xL xR ⊢ mk xl xr xL xR ⧏ mk yl yr yL yR → ¬mk yl yr yL yR ⧏ mk xl xr xL xR [PROOFSTEP] rw [mk_lf_mk, mk_lf_mk] [GOAL] x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl → PGame xR : xr → PGame hx : ∀ (i : xl) (j : xr), xL i < xR j _oxl : ∀ (i : xl), Numeric (xL i) _oxr : ∀ (i : xr), Numeric (xR i) IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i) IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i) yl yr : Type u_1 yL : yl → PGame yR : yr → PGame hy : ∀ (i : yl) (j : yr), yL i < yR j oyl : ∀ (i : yl), Numeric (yL i) oyr : ∀ (i : yr), Numeric (yR i) _IHyl : ∀ (i : yl), mk xl xr xL xR ⧏ yL i → ¬yL i ⧏ mk xl xr xL xR _IHyr : ∀ (i : yr), mk xl xr xL xR ⧏ yR i → ¬yR i ⧏ mk xl xr xL xR ⊢ ((∃ i, mk xl xr xL xR ≤ yL i) ∨ ∃ j, xR j ≤ mk yl yr yL yR) → ¬((∃ i, mk yl yr yL yR ≤ xL i) ∨ ∃ j, yR j ≤ mk xl xr xL xR) [PROOFSTEP] rintro (⟨i, h₁⟩ | ⟨j, h₁⟩) (⟨i, h₂⟩ | ⟨j, h₂⟩) [GOAL] case inl.intro.inl.intro x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl → PGame xR : xr → PGame hx : ∀ (i : xl) (j : xr), xL i < xR j _oxl : ∀ (i : xl), Numeric (xL i) _oxr : ∀ (i : xr), Numeric (xR i) IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i) IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i) yl yr : Type u_1 yL : yl → PGame yR : yr → PGame hy : ∀ (i : yl) (j : yr), yL i < yR j oyl : ∀ (i : yl), Numeric (yL i) oyr : ∀ (i : yr), Numeric (yR i) _IHyl : ∀ (i : yl), mk xl xr xL xR ⧏ yL i → ¬yL i ⧏ mk xl xr xL xR _IHyr : ∀ (i : yr), mk xl xr xL xR ⧏ yR i → ¬yR i ⧏ mk xl xr xL xR i✝ : yl h₁ : mk xl xr xL xR ≤ yL i✝ i : xl h₂ : mk yl yr yL yR ≤ xL i ⊢ False [PROOFSTEP] exact IHxl _ _ (oyl _) (h₁.moveLeft_lf _) (h₂.moveLeft_lf _) [GOAL] case inl.intro.inr.intro x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl → PGame xR : xr → PGame hx : ∀ (i : xl) (j : xr), xL i < xR j _oxl : ∀ (i : xl), Numeric (xL i) _oxr : ∀ (i : xr), Numeric (xR i) IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i) IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i) yl yr : Type u_1 yL : yl → PGame yR : yr → PGame hy : ∀ (i : yl) (j : yr), yL i < yR j oyl : ∀ (i : yl), Numeric (yL i) oyr : ∀ (i : yr), Numeric (yR i) _IHyl : ∀ (i : yl), mk xl xr xL xR ⧏ yL i → ¬yL i ⧏ mk xl xr xL xR _IHyr : ∀ (i : yr), mk xl xr xL xR ⧏ yR i → ¬yR i ⧏ mk xl xr xL xR i : yl h₁ : mk xl xr xL xR ≤ yL i j : yr h₂ : yR j ≤ mk xl xr xL xR ⊢ False [PROOFSTEP] exact (le_trans h₂ h₁).not_gf (lf_of_lt (hy _ _)) [GOAL] case inr.intro.inl.intro x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl → PGame xR : xr → PGame hx : ∀ (i : xl) (j : xr), xL i < xR j _oxl : ∀ (i : xl), Numeric (xL i) _oxr : ∀ (i : xr), Numeric (xR i) IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i) IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i) yl yr : Type u_1 yL : yl → PGame yR : yr → PGame hy : ∀ (i : yl) (j : yr), yL i < yR j oyl : ∀ (i : yl), Numeric (yL i) oyr : ∀ (i : yr), Numeric (yR i) _IHyl : ∀ (i : yl), mk xl xr xL xR ⧏ yL i → ¬yL i ⧏ mk xl xr xL xR _IHyr : ∀ (i : yr), mk xl xr xL xR ⧏ yR i → ¬yR i ⧏ mk xl xr xL xR j : xr h₁ : xR j ≤ mk yl yr yL yR i : xl h₂ : mk yl yr yL yR ≤ xL i ⊢ False [PROOFSTEP] exact (le_trans h₁ h₂).not_gf (lf_of_lt (hx _ _)) [GOAL] case inr.intro.inr.intro x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl → PGame xR : xr → PGame hx : ∀ (i : xl) (j : xr), xL i < xR j _oxl : ∀ (i : xl), Numeric (xL i) _oxr : ∀ (i : xr), Numeric (xR i) IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i) IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i) yl yr : Type u_1 yL : yl → PGame yR : yr → PGame hy : ∀ (i : yl) (j : yr), yL i < yR j oyl : ∀ (i : yl), Numeric (yL i) oyr : ∀ (i : yr), Numeric (yR i) _IHyl : ∀ (i : yl), mk xl xr xL xR ⧏ yL i → ¬yL i ⧏ mk xl xr xL xR _IHyr : ∀ (i : yr), mk xl xr xL xR ⧏ yR i → ¬yR i ⧏ mk xl xr xL xR j✝ : xr h₁ : xR j✝ ≤ mk yl yr yL yR j : yr h₂ : yR j ≤ mk xl xr xL xR ⊢ False [PROOFSTEP] exact IHxr _ _ (oyr _) (h₁.lf_moveRight _) (h₂.lf_moveRight _) [GOAL] x y : PGame ox : Numeric x oy : Numeric y ⊢ x ≤ y ↔ (∀ (i : LeftMoves x), moveLeft x i < y) ∧ ∀ (j : RightMoves y), x < moveRight y j [PROOFSTEP] refine' le_iff_forall_lf.trans (and_congr _ _) [GOAL] case refine'_1 x y : PGame ox : Numeric x oy : Numeric y ⊢ (∀ (i : LeftMoves x), moveLeft x i ⧏ y) ↔ ∀ (i : LeftMoves x), moveLeft x i < y [PROOFSTEP] refine' forall_congr' fun i => lf_iff_lt _ _ [GOAL] case refine'_2 x y : PGame ox : Numeric x oy : Numeric y ⊢ (∀ (j : RightMoves y), x ⧏ moveRight y j) ↔ ∀ (j : RightMoves y), x < moveRight y j [PROOFSTEP] refine' forall_congr' fun i => lf_iff_lt _ _ [GOAL] case refine'_1.refine'_1 x y : PGame ox : Numeric x oy : Numeric y i : LeftMoves x ⊢ Numeric (moveLeft x i) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_1.refine'_2 x y : PGame ox : Numeric x oy : Numeric y i : LeftMoves x ⊢ Numeric y [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_2.refine'_1 x y : PGame ox : Numeric x oy : Numeric y i : RightMoves y ⊢ Numeric x [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_2.refine'_2 x y : PGame ox : Numeric x oy : Numeric y i : RightMoves y ⊢ Numeric (moveRight y i) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] x y : PGame ox : Numeric x oy : Numeric y ⊢ x < y ↔ (∃ i, x ≤ moveLeft y i) ∨ ∃ j, moveRight x j ≤ y [PROOFSTEP] rw [← lf_iff_lt ox oy, lf_iff_exists_le] [GOAL] x y : PGame ox : Numeric x oy : Numeric y ⊢ x < y ↔ (∃ i, (∀ (i' : LeftMoves x), moveLeft x i' < moveLeft y i) ∧ ∀ (j : RightMoves (moveLeft y i)), x < moveRight (moveLeft y i) j) ∨ ∃ j, (∀ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i < y) ∧ ∀ (j' : RightMoves y), moveRight x j < moveRight y j' [PROOFSTEP] rw [← lf_iff_lt ox oy, lf_def] [GOAL] x y : PGame ox : Numeric x oy : Numeric y ⊢ ((∃ i, (∀ (i' : LeftMoves x), moveLeft x i' ⧏ moveLeft y i) ∧ ∀ (j : RightMoves (moveLeft y i)), x ⧏ moveRight (moveLeft y i) j) ∨ ∃ j, (∀ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i ⧏ y) ∧ ∀ (j' : RightMoves y), moveRight x j ⧏ moveRight y j') ↔ (∃ i, (∀ (i' : LeftMoves x), moveLeft x i' < moveLeft y i) ∧ ∀ (j : RightMoves (moveLeft y i)), x < moveRight (moveLeft y i) j) ∨ ∃ j, (∀ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i < y) ∧ ∀ (j' : RightMoves y), moveRight x j < moveRight y j' [PROOFSTEP] refine' or_congr _ _ [GOAL] case refine'_1 x y : PGame ox : Numeric x oy : Numeric y ⊢ (∃ i, (∀ (i' : LeftMoves x), moveLeft x i' ⧏ moveLeft y i) ∧ ∀ (j : RightMoves (moveLeft y i)), x ⧏ moveRight (moveLeft y i) j) ↔ ∃ i, (∀ (i' : LeftMoves x), moveLeft x i' < moveLeft y i) ∧ ∀ (j : RightMoves (moveLeft y i)), x < moveRight (moveLeft y i) j [PROOFSTEP] refine' exists_congr fun x_1 => _ [GOAL] case refine'_2 x y : PGame ox : Numeric x oy : Numeric y ⊢ (∃ j, (∀ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i ⧏ y) ∧ ∀ (j' : RightMoves y), moveRight x j ⧏ moveRight y j') ↔ ∃ j, (∀ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i < y) ∧ ∀ (j' : RightMoves y), moveRight x j < moveRight y j' [PROOFSTEP] refine' exists_congr fun x_1 => _ [GOAL] case refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y ⊢ ((∀ (i' : LeftMoves x), moveLeft x i' ⧏ moveLeft y x_1) ∧ ∀ (j : RightMoves (moveLeft y x_1)), x ⧏ moveRight (moveLeft y x_1) j) ↔ (∀ (i' : LeftMoves x), moveLeft x i' < moveLeft y x_1) ∧ ∀ (j : RightMoves (moveLeft y x_1)), x < moveRight (moveLeft y x_1) j [PROOFSTEP] refine' and_congr _ _ [GOAL] case refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x ⊢ ((∀ (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i ⧏ y) ∧ ∀ (j' : RightMoves y), moveRight x x_1 ⧏ moveRight y j') ↔ (∀ (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i < y) ∧ ∀ (j' : RightMoves y), moveRight x x_1 < moveRight y j' [PROOFSTEP] refine' and_congr _ _ [GOAL] case refine'_1.refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y ⊢ (∀ (i' : LeftMoves x), moveLeft x i' ⧏ moveLeft y x_1) ↔ ∀ (i' : LeftMoves x), moveLeft x i' < moveLeft y x_1 [PROOFSTEP] refine' forall_congr' fun i => lf_iff_lt _ _ [GOAL] case refine'_1.refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y ⊢ (∀ (j : RightMoves (moveLeft y x_1)), x ⧏ moveRight (moveLeft y x_1) j) ↔ ∀ (j : RightMoves (moveLeft y x_1)), x < moveRight (moveLeft y x_1) j [PROOFSTEP] refine' forall_congr' fun i => lf_iff_lt _ _ [GOAL] case refine'_2.refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x ⊢ (∀ (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i ⧏ y) ↔ ∀ (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i < y [PROOFSTEP] refine' forall_congr' fun i => lf_iff_lt _ _ [GOAL] case refine'_2.refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x ⊢ (∀ (j' : RightMoves y), moveRight x x_1 ⧏ moveRight y j') ↔ ∀ (j' : RightMoves y), moveRight x x_1 < moveRight y j' [PROOFSTEP] refine' forall_congr' fun i => lf_iff_lt _ _ [GOAL] case refine'_1.refine'_1.refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y i : LeftMoves x ⊢ Numeric (moveLeft x i) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_1.refine'_1.refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y i : LeftMoves x ⊢ Numeric (moveLeft y x_1) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_1.refine'_2.refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y i : RightMoves (moveLeft y x_1) ⊢ Numeric x [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_1.refine'_2.refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y i : RightMoves (moveLeft y x_1) ⊢ Numeric (moveRight (moveLeft y x_1) i) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_2.refine'_1.refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x i : LeftMoves (moveRight x x_1) ⊢ Numeric (moveLeft (moveRight x x_1) i) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_2.refine'_1.refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x i : LeftMoves (moveRight x x_1) ⊢ Numeric y [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_2.refine'_2.refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x i : RightMoves y ⊢ Numeric (moveRight x x_1) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_2.refine'_2.refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x i : RightMoves y ⊢ Numeric (moveRight y i) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ⊢ ∀ (i : xl ⊕ yl) (j : xr ⊕ yr), (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) i < (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) j [PROOFSTEP] rintro (ix | iy) (jx | jy) [GOAL] case inl.inl xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ix : xl jx : xr ⊢ (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inl ix) < (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) (Sum.inl jx) [PROOFSTEP] exact add_lt_add_right (ox.1 ix jx) _ [GOAL] case inl.inr xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ix : xl jy : yr ⊢ (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inl ix) < (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) (Sum.inr jy) [PROOFSTEP] exact (add_lf_add_of_lf_of_le (lf_mk _ _ ix) (oy.le_moveRight jy)).lt ((ox.moveLeft ix).add oy) (ox.add (oy.moveRight jy)) [GOAL] case inr.inl xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) iy : yl jx : xr ⊢ (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inr iy) < (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) (Sum.inl jx) [PROOFSTEP] exact (add_lf_add_of_lf_of_le (mk_lf _ _ jx) (oy.moveLeft_le iy)).lt (ox.add (oy.moveLeft iy)) ((ox.moveRight jx).add oy) [GOAL] case inr.inr xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) iy : yl jy : yr ⊢ (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inr iy) < (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) (Sum.inr jy) [PROOFSTEP] exact add_lt_add_left (oy.1 iy jy) ⟨xl, xr, xL, xR⟩ [GOAL] xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ⊢ (∀ (i : xl ⊕ yl), Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) i)) ∧ ∀ (j : xr ⊕ yr), Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) j) [PROOFSTEP] constructor [GOAL] case left xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ⊢ ∀ (i : xl ⊕ yl), Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) i) [PROOFSTEP] rintro (ix | iy) [GOAL] case left.inl xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ix : xl ⊢ Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inl ix)) [PROOFSTEP] exact (ox.moveLeft ix).add oy [GOAL] case left.inr xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) iy : yl ⊢ Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inr iy)) [PROOFSTEP] exact ox.add (oy.moveLeft iy) [GOAL] case right xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ⊢ ∀ (j : xr ⊕ yr), Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) j) [PROOFSTEP] rintro (jx | jy) [GOAL] case right.inl xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) jx : xr ⊢ Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) (Sum.inl jx)) [PROOFSTEP] apply (ox.moveRight jx).add oy [GOAL] case right.inr xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) jy : yr ⊢ Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame → PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) (Sum.inr jy)) [PROOFSTEP] apply ox.add (oy.moveRight jy) [GOAL] xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : ∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } → Numeric (y.1 + y.2.1) ix : xl ⊢ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.moveLeft (PGame.mk xl xr xL xR) ix, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := (_ : Numeric (PGame.moveLeft (PGame.mk xl xr xL xR) ix)), snd := oy } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : ∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } → Numeric (y.1 + y.2.1) jy : yr ⊢ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.moveRight (PGame.mk yl yr yL yR) jy, snd := { fst := ox, snd := (_ : Numeric (PGame.moveRight (PGame.mk yl yr yL yR) jy)) } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : ∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } → Numeric (y.1 + y.2.1) iy : yl ⊢ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.moveLeft (PGame.mk yl yr yL yR) iy, snd := { fst := ox, snd := (_ : Numeric (PGame.moveLeft (PGame.mk yl yr yL yR) iy)) } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : ∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } → Numeric (y.1 + y.2.1) jx : xr ⊢ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.moveRight (PGame.mk xl xr xL xR) jx, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := (_ : Numeric (PGame.moveRight (PGame.mk xl xr xL xR) jx)), snd := oy } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : ∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } → Numeric (y.1 + y.2.1) ix : xl ⊢ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.moveLeft (PGame.mk xl xr xL xR) ix, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := (_ : Numeric (PGame.moveLeft (PGame.mk xl xr xL xR) ix)), snd := oy } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : ∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } → Numeric (y.1 + y.2.1) iy : yl ⊢ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.mk xl xr xL xR, snd := { fst := yL iy, snd := { fst := ox, snd := (_ : Numeric (PGame.moveLeft (PGame.mk yl yr yL yR) iy)) } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : ∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } → Numeric (y.1 + y.2.1) jx : xr ⊢ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.moveRight (PGame.mk xl xr xL xR) jx, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := (_ : Numeric (PGame.moveRight (PGame.mk xl xr xL xR) jx)), snd := oy } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl → PGame xR : xr → PGame yl yr : Type u_1 yL : yl → PGame yR : yr → PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : ∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } → Numeric (y.1 + y.2.1) jy : yr ⊢ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.moveRight (PGame.mk yl yr yL yR) jy, snd := { fst := ox, snd := (_ : Numeric (PGame.moveRight (PGame.mk yl yr yL yR) jy)) } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] o : Ordinal.{u_1} ⊢ Numeric (Ordinal.toPGame o) [PROOFSTEP] induction' o using Ordinal.induction with o IH [GOAL] case h o : Ordinal.{u_1} IH : ∀ (k : Ordinal.{u_1}), k < o → Numeric (Ordinal.toPGame k) ⊢ Numeric (Ordinal.toPGame o) [PROOFSTEP] apply numeric_of_isEmpty_rightMoves [GOAL] case h.H o : Ordinal.{u_1} IH : ∀ (k : Ordinal.{u_1}), k < o → Numeric (Ordinal.toPGame k) ⊢ ∀ (i : LeftMoves (Ordinal.toPGame o)), Numeric (moveLeft (Ordinal.toPGame o) i) [PROOFSTEP] simpa using fun i => IH _ (Ordinal.toLeftMovesToPGame_symm_lt i) [GOAL] ⊢ ∀ (a b c : Surreal), a + b + c = a + (b + c) [PROOFSTEP] rintro ⟨_⟩ ⟨_⟩ ⟨_⟩ [GOAL] case mk.mk.mk a✝³ : Surreal a✝² : Subtype Numeric b✝ : Surreal a✝¹ : Subtype Numeric c✝ : Surreal a✝ : Subtype Numeric ⊢ Quot.mk Setoid.r a✝² + Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝ = Quot.mk Setoid.r a✝² + (Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝) [PROOFSTEP] exact Quotient.sound add_assoc_equiv [GOAL] ⊢ ∀ (a : Surreal), 0 + a = a [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk a✝ : Surreal a : Subtype Numeric ⊢ 0 + Quot.mk Setoid.r a = Quot.mk Setoid.r a [PROOFSTEP] exact Quotient.sound (zero_add_equiv a) [GOAL] ⊢ ∀ (a : Surreal), a + 0 = a [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk a✝ : Surreal a : Subtype Numeric ⊢ Quot.mk Setoid.r a + 0 = Quot.mk Setoid.r a [PROOFSTEP] exact Quotient.sound (add_zero_equiv a) [GOAL] ⊢ ∀ (a : Surreal), -a + a = 0 [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk a✝ : Surreal a : Subtype Numeric ⊢ -Quot.mk Setoid.r a + Quot.mk Setoid.r a = 0 [PROOFSTEP] exact Quotient.sound (add_left_neg_equiv a) [GOAL] ⊢ ∀ (a b : Surreal), a + b = b + a [PROOFSTEP] rintro ⟨_⟩ ⟨_⟩ [GOAL] case mk.mk a✝² : Surreal a✝¹ : Subtype Numeric b✝ : Surreal a✝ : Subtype Numeric ⊢ Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝ = Quot.mk Setoid.r a✝ + Quot.mk Setoid.r a✝¹ [PROOFSTEP] exact Quotient.sound add_comm_equiv [GOAL] ⊢ ∀ (a : Surreal), a ≤ a [PROOFSTEP] rintro ⟨_⟩ [GOAL] case mk a✝¹ : Surreal a✝ : Subtype Numeric ⊢ Quot.mk Setoid.r a✝ ≤ Quot.mk Setoid.r a✝ [PROOFSTEP] apply @le_rfl PGame [GOAL] ⊢ ∀ (a b c : Surreal), a ≤ b → b ≤ c → a ≤ c [PROOFSTEP] rintro ⟨_⟩ ⟨_⟩ ⟨_⟩ [GOAL] case mk.mk.mk a✝³ : Surreal a✝² : Subtype Numeric b✝ : Surreal a✝¹ : Subtype Numeric c✝ : Surreal a✝ : Subtype Numeric ⊢ Quot.mk Setoid.r a✝² ≤ Quot.mk Setoid.r a✝¹ → Quot.mk Setoid.r a✝¹ ≤ Quot.mk Setoid.r a✝ → Quot.mk Setoid.r a✝² ≤ Quot.mk Setoid.r a✝ [PROOFSTEP] apply @le_trans PGame [GOAL] ⊢ ∀ (a b : Surreal), a < b ↔ a ≤ b ∧ ¬b ≤ a [PROOFSTEP] rintro ⟨_, ox⟩ ⟨_, oy⟩ [GOAL] case mk.mk.mk.mk a✝ : Surreal val✝¹ : PGame ox : Numeric val✝¹ b✝ : Surreal val✝ : PGame oy : Numeric val✝ ⊢ Quot.mk Setoid.r { val := val✝¹, property := ox } < Quot.mk Setoid.r { val := val✝, property := oy } ↔ Quot.mk Setoid.r { val := val✝¹, property := ox } ≤ Quot.mk Setoid.r { val := val✝, property := oy } ∧ ¬Quot.mk Setoid.r { val := val✝, property := oy } ≤ Quot.mk Setoid.r { val := val✝¹, property := ox } [PROOFSTEP] apply @lt_iff_le_not_le PGame [GOAL] ⊢ ∀ (a b : Surreal), a ≤ b → b ≤ a → a = b [PROOFSTEP] rintro ⟨_⟩ ⟨_⟩ h₁ h₂ [GOAL] case mk.mk a✝² : Surreal a✝¹ : Subtype Numeric b✝ : Surreal a✝ : Subtype Numeric h₁ : Quot.mk Setoid.r a✝¹ ≤ Quot.mk Setoid.r a✝ h₂ : Quot.mk Setoid.r a✝ ≤ Quot.mk Setoid.r a✝¹ ⊢ Quot.mk Setoid.r a✝¹ = Quot.mk Setoid.r a✝ [PROOFSTEP] exact Quotient.sound ⟨h₁, h₂⟩ [GOAL] ⊢ ∀ (a b : Surreal), a ≤ b → ∀ (c : Surreal), c + a ≤ c + b [PROOFSTEP] rintro ⟨_⟩ ⟨_⟩ hx ⟨_⟩ [GOAL] case mk.mk.mk a✝³ : Surreal a✝² : Subtype Numeric b✝ : Surreal a✝¹ : Subtype Numeric hx : Quot.mk Setoid.r a✝² ≤ Quot.mk Setoid.r a✝¹ c✝ : Surreal a✝ : Subtype Numeric ⊢ Quot.mk Setoid.r a✝ + Quot.mk Setoid.r a✝² ≤ Quot.mk Setoid.r a✝ + Quot.mk Setoid.r a✝¹ [PROOFSTEP] exact @add_le_add_left PGame _ _ _ _ _ hx _ [GOAL] src✝ : OrderedAddCommGroup Surreal := orderedAddCommGroup ⊢ ∀ (a b : Surreal), a ≤ b ∨ b ≤ a [PROOFSTEP] rintro ⟨⟨x, ox⟩⟩ ⟨⟨y, oy⟩⟩ [GOAL] case mk.mk.mk.mk src✝ : OrderedAddCommGroup Surreal := orderedAddCommGroup a✝ : Surreal x : PGame ox : Numeric x b✝ : Surreal y : PGame oy : Numeric y ⊢ Quot.mk Setoid.r { val := x, property := ox } ≤ Quot.mk Setoid.r { val := y, property := oy } ∨ Quot.mk Setoid.r { val := y, property := oy } ≤ Quot.mk Setoid.r { val := x, property := ox } [PROOFSTEP] exact or_iff_not_imp_left.2 fun h => (PGame.not_le.1 h).le oy ox [GOAL] ⊢ ∀ (x y : Surreal), ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (x + y) = ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } x + ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } y [PROOFSTEP] rintro ⟨_, _⟩ ⟨_, _⟩ [GOAL] case mk.mk.mk.mk x✝ : Surreal val✝¹ : PGame property✝¹ : Numeric val✝¹ y✝ : Surreal val✝ : PGame property✝ : Numeric val✝ ⊢ ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (Quot.mk Setoid.r { val := val✝¹, property := property✝¹ } + Quot.mk Setoid.r { val := val✝, property := property✝ }) = ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (Quot.mk Setoid.r { val := val✝¹, property := property✝¹ }) + ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (Quot.mk Setoid.r { val := val✝, property := property✝ }) [PROOFSTEP] rfl [GOAL] ⊢ Monotone (↑{ toZeroHom := { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) }, map_add' := (_ : ∀ (x y : Surreal), ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (x + y) = ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } x + ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } y) }).toFun [PROOFSTEP] rintro ⟨_, _⟩ ⟨_, _⟩ [GOAL] case mk.mk.mk.mk a✝ : Surreal val✝¹ : PGame property✝¹ : Numeric val✝¹ b✝ : Surreal val✝ : PGame property✝ : Numeric val✝ ⊢ Quot.mk Setoid.r { val := val✝¹, property := property✝¹ } ≤ Quot.mk Setoid.r { val := val✝, property := property✝ } → ZeroHom.toFun (↑{ toZeroHom := { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) }, map_add' := (_ : ∀ (x y : Surreal), ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (x + y) = ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } x + ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } y) }) (Quot.mk Setoid.r { val := val✝¹, property := property✝¹ }) ≤ ZeroHom.toFun (↑{ toZeroHom := { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) }, map_add' := (_ : ∀ (x y : Surreal), ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (x + y) = ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } x + ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : ∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } y) }) (Quot.mk Setoid.r { val := val✝, property := property✝ }) [PROOFSTEP] exact id [GOAL] a b : Ordinal.{?u.73448} h : (fun o => Surreal.mk (toPGame o) (_ : Numeric (toPGame o))) a = (fun o => Surreal.mk (toPGame o) (_ : Numeric (toPGame o))) b ⊢ toPGame a ≈ toPGame b [PROOFSTEP] apply Quotient.exact h
{"mathlib_filename": "Mathlib.SetTheory.Surreal.Basic", "llama_tokens": 35676}
[GOAL] p : ℕ pp : Prime p m : ℕ hm : m ∣ p ⊢ m = 1 ∨ m = p [PROOFSTEP] obtain ⟨n, hn⟩ := hm [GOAL] case intro p : ℕ pp : Prime p m n : ℕ hn : p = m * n ⊢ m = 1 ∨ m = p [PROOFSTEP] have := pp.isUnit_or_isUnit hn [GOAL] case intro p : ℕ pp : Prime p m n : ℕ hn : p = m * n this : IsUnit m ∨ IsUnit n ⊢ m = 1 ∨ m = p [PROOFSTEP] rw [Nat.isUnit_iff, Nat.isUnit_iff] at this [GOAL] case intro p : ℕ pp : Prime p m n : ℕ hn : p = m * n this : m = 1 ∨ n = 1 ⊢ m = 1 ∨ m = p [PROOFSTEP] apply Or.imp_right _ this [GOAL] p : ℕ pp : Prime p m n : ℕ hn : p = m * n this : m = 1 ∨ n = 1 ⊢ n = 1 → m = p [PROOFSTEP] rintro rfl [GOAL] p : ℕ pp : Prime p m : ℕ hn : p = m * 1 this : m = 1 ∨ 1 = 1 ⊢ m = p [PROOFSTEP] rw [hn, mul_one] [GOAL] p : ℕ ⊢ Prime p ↔ 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p [PROOFSTEP] refine' ⟨fun h => ⟨h.two_le, h.eq_one_or_self_of_dvd⟩, fun h => _⟩ -- Porting note: needed to make ℕ explicit [GOAL] p : ℕ h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p ⊢ Prime p [PROOFSTEP] have h1 := (@one_lt_two ℕ ..).trans_le h.1 [GOAL] p : ℕ h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p h1 : 1 < p ⊢ Prime p [PROOFSTEP] refine' ⟨mt Nat.isUnit_iff.mp h1.ne', fun a b hab => _⟩ [GOAL] p : ℕ h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p h1 : 1 < p a b : ℕ hab : p = a * b ⊢ IsUnit a ∨ IsUnit b [PROOFSTEP] simp only [Nat.isUnit_iff] [GOAL] p : ℕ h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p h1 : 1 < p a b : ℕ hab : p = a * b ⊢ a = 1 ∨ b = 1 [PROOFSTEP] apply Or.imp_right _ (h.2 a _) [GOAL] p : ℕ h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p h1 : 1 < p a b : ℕ hab : p = a * b ⊢ a = p → b = 1 [PROOFSTEP] rintro rfl [GOAL] a b : ℕ h : 2 ≤ a ∧ ∀ (m : ℕ), m ∣ a → m = 1 ∨ m = a h1 : 1 < a hab : a = a * b ⊢ b = 1 [PROOFSTEP] rw [← mul_right_inj' (pos_of_gt h1).ne', ← hab, mul_one] [GOAL] p : ℕ h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p h1 : 1 < p a b : ℕ hab : p = a * b ⊢ a ∣ p [PROOFSTEP] rw [hab] [GOAL] p : ℕ h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p h1 : 1 < p a b : ℕ hab : p = a * b ⊢ a ∣ a * b [PROOFSTEP] exact dvd_mul_right _ _ [GOAL] p : ℕ p2 : 2 ≤ p m : ℕ h : m < p → m ∣ p → m = 1 m2 : 2 ≤ m l : m < p d : m ∣ p ⊢ 1 < 2 [PROOFSTEP] decide [GOAL] p : ℕ p2 : 2 ≤ p m : ℕ h : 2 ≤ m → m < p → ¬m ∣ p l : m < p d : m ∣ p ⊢ m = 1 [PROOFSTEP] rcases m with (_ | _ | m) [GOAL] case zero p : ℕ p2 : 2 ≤ p h : 2 ≤ zero → zero < p → ¬zero ∣ p l : zero < p d : zero ∣ p ⊢ zero = 1 [PROOFSTEP] rw [eq_zero_of_zero_dvd d] at p2 [GOAL] case zero p : ℕ p2 : 2 ≤ 0 h : 2 ≤ zero → zero < p → ¬zero ∣ p l : zero < p d : zero ∣ p ⊢ zero = 1 [PROOFSTEP] revert p2 [GOAL] case zero p : ℕ h : 2 ≤ zero → zero < p → ¬zero ∣ p l : zero < p d : zero ∣ p ⊢ 2 ≤ 0 → zero = 1 [PROOFSTEP] decide [GOAL] case succ.zero p : ℕ p2 : 2 ≤ p h : 2 ≤ succ zero → succ zero < p → ¬succ zero ∣ p l : succ zero < p d : succ zero ∣ p ⊢ succ zero = 1 [PROOFSTEP] rfl [GOAL] case succ.succ p : ℕ p2 : 2 ≤ p m : ℕ h : 2 ≤ succ (succ m) → succ (succ m) < p → ¬succ (succ m) ∣ p l : succ (succ m) < p d : succ (succ m) ∣ p ⊢ succ (succ m) = 1 [PROOFSTEP] exact (h le_add_self l).elim d [GOAL] p : ℕ p2 : 2 ≤ p a : ∀ (m : ℕ), 2 ≤ m → m ≤ sqrt p → ¬m ∣ p this : ∀ {m k : ℕ}, m ≤ k → 1 < m → p ≠ m * k m : ℕ m2 : 2 ≤ m l : m < p x✝ : m ∣ p k : ℕ e : p = m * k ⊢ False [PROOFSTEP] cases' le_total m k with mk km [GOAL] case inl p : ℕ p2 : 2 ≤ p a : ∀ (m : ℕ), 2 ≤ m → m ≤ sqrt p → ¬m ∣ p this : ∀ {m k : ℕ}, m ≤ k → 1 < m → p ≠ m * k m : ℕ m2 : 2 ≤ m l : m < p x✝ : m ∣ p k : ℕ e : p = m * k mk : m ≤ k ⊢ False [PROOFSTEP] exact this mk m2 e [GOAL] case inr p : ℕ p2 : 2 ≤ p a : ∀ (m : ℕ), 2 ≤ m → m ≤ sqrt p → ¬m ∣ p this : ∀ {m k : ℕ}, m ≤ k → 1 < m → p ≠ m * k m : ℕ m2 : 2 ≤ m l : m < p x✝ : m ∣ p k : ℕ e : p = m * k km : k ≤ m ⊢ False [PROOFSTEP] rw [mul_comm] at e [GOAL] case inr p : ℕ p2 : 2 ≤ p a : ∀ (m : ℕ), 2 ≤ m → m ≤ sqrt p → ¬m ∣ p this : ∀ {m k : ℕ}, m ≤ k → 1 < m → p ≠ m * k m : ℕ m2 : 2 ≤ m l : m < p x✝ : m ∣ p k : ℕ e : p = k * m km : k ≤ m ⊢ False [PROOFSTEP] refine' this km (lt_of_mul_lt_mul_right _ (zero_le m)) e [GOAL] case inr p : ℕ p2 : 2 ≤ p a : ∀ (m : ℕ), 2 ≤ m → m ≤ sqrt p → ¬m ∣ p this : ∀ {m k : ℕ}, m ≤ k → 1 < m → p ≠ m * k m : ℕ m2 : 2 ≤ m l : m < p x✝ : m ∣ p k : ℕ e : p = k * m km : k ≤ m ⊢ 1 * m < k * m [PROOFSTEP] rwa [one_mul, ← e] [GOAL] n : ℕ h1 : 1 < n h : ∀ (m : ℕ), m < n → m ≠ 0 → coprime n m ⊢ Prime n [PROOFSTEP] refine' prime_def_lt.mpr ⟨h1, fun m mlt mdvd => _⟩ [GOAL] n : ℕ h1 : 1 < n h : ∀ (m : ℕ), m < n → m ≠ 0 → coprime n m m : ℕ mlt : m < n mdvd : m ∣ n ⊢ m = 1 [PROOFSTEP] have hm : m ≠ 0 := by rintro rfl rw [zero_dvd_iff] at mdvd exact mlt.ne' mdvd [GOAL] n : ℕ h1 : 1 < n h : ∀ (m : ℕ), m < n → m ≠ 0 → coprime n m m : ℕ mlt : m < n mdvd : m ∣ n ⊢ m ≠ 0 [PROOFSTEP] rintro rfl [GOAL] n : ℕ h1 : 1 < n h : ∀ (m : ℕ), m < n → m ≠ 0 → coprime n m mlt : 0 < n mdvd : 0 ∣ n ⊢ False [PROOFSTEP] rw [zero_dvd_iff] at mdvd [GOAL] n : ℕ h1 : 1 < n h : ∀ (m : ℕ), m < n → m ≠ 0 → coprime n m mlt : 0 < n mdvd : n = 0 ⊢ False [PROOFSTEP] exact mlt.ne' mdvd [GOAL] n : ℕ h1 : 1 < n h : ∀ (m : ℕ), m < n → m ≠ 0 → coprime n m m : ℕ mlt : m < n mdvd : m ∣ n hm : m ≠ 0 ⊢ m = 1 [PROOFSTEP] exact (h m mlt hm).symm.eq_one_of_dvd mdvd [GOAL] ⊢ Prime 2 [PROOFSTEP] decide [GOAL] ⊢ Prime 3 [PROOFSTEP] decide [GOAL] p : ℕ hp : Prime p h_two : p ≠ 2 h_three : p ≠ 3 ⊢ 5 ≤ p [PROOFSTEP] by_contra' h [GOAL] p : ℕ hp : Prime p h_two : p ≠ 2 h_three : p ≠ 3 h : p < 5 ⊢ False [PROOFSTEP] revert h_two h_three hp [GOAL] p : ℕ h : p < 5 ⊢ Prime p → p ≠ 2 → p ≠ 3 → False [PROOFSTEP] match p with | 0 => decide | 1 => decide | 2 => decide | 3 => decide | 4 => decide | n + 5 => exact (h.not_le le_add_self).elim [GOAL] p : ℕ h : 0 < 5 ⊢ Prime 0 → 0 ≠ 2 → 0 ≠ 3 → False [PROOFSTEP] decide [GOAL] p : ℕ h : 1 < 5 ⊢ Prime 1 → 1 ≠ 2 → 1 ≠ 3 → False [PROOFSTEP] decide [GOAL] p : ℕ h : 2 < 5 ⊢ Prime 2 → 2 ≠ 2 → 2 ≠ 3 → False [PROOFSTEP] decide [GOAL] p : ℕ h : 3 < 5 ⊢ Prime 3 → 3 ≠ 2 → 3 ≠ 3 → False [PROOFSTEP] decide [GOAL] p : ℕ h : 4 < 5 ⊢ Prime 4 → 4 ≠ 2 → 4 ≠ 3 → False [PROOFSTEP] decide [GOAL] p n : ℕ h : n + 5 < 5 ⊢ Prime (n + 5) → n + 5 ≠ 2 → n + 5 ≠ 3 → False [PROOFSTEP] exact (h.not_le le_add_self).elim [GOAL] a b : ℕ a1 : 1 < a b1 : 1 < b h : Prime (a * b) ⊢ a * 1 = a * b [PROOFSTEP] simpa using (dvd_prime_two_le h a1).1 (dvd_mul_right _ _) [GOAL] a b n : ℕ h : a * b = n h₁ : 1 < a h₂ : 1 < b ⊢ ¬Prime n [PROOFSTEP] rw [← h] [GOAL] a b n : ℕ h : a * b = n h₁ : 1 < a h₂ : 1 < b ⊢ ¬Prime (a * b) [PROOFSTEP] exact not_prime_mul h₁ h₂ [GOAL] a b : ℕ ⊢ Prime (a * b) ↔ Prime a ∧ b = 1 ∨ Prime b ∧ a = 1 [PROOFSTEP] simp only [iff_self_iff, irreducible_mul_iff, ← irreducible_iff_nat_prime, Nat.isUnit_iff] [GOAL] p a : ℕ hp : Prime p a1 : a ≠ 1 ⊢ a ∣ p ↔ p = a [PROOFSTEP] refine' ⟨_, by rintro rfl rfl⟩ [GOAL] p a : ℕ hp : Prime p a1 : a ≠ 1 ⊢ p = a → a ∣ p [PROOFSTEP] rintro rfl [GOAL] p : ℕ hp : Prime p a1 : p ≠ 1 ⊢ p ∣ p [PROOFSTEP] rfl [GOAL] p a : ℕ hp : Prime p a1 : a ≠ 1 ⊢ a ∣ p → p = a [PROOFSTEP] rintro ⟨j, rfl⟩ [GOAL] case intro a : ℕ a1 : a ≠ 1 j : ℕ hp : Prime (a * j) ⊢ a * j = a [PROOFSTEP] rcases prime_mul_iff.mp hp with (⟨_, rfl⟩ | ⟨_, rfl⟩) [GOAL] case intro.inl.intro a : ℕ a1 : a ≠ 1 left✝ : Prime a hp : Prime (a * 1) ⊢ a * 1 = a [PROOFSTEP] exact mul_one _ [GOAL] case intro.inr.intro j : ℕ left✝ : Prime j a1 : 1 ≠ 1 hp : Prime (1 * j) ⊢ 1 * j = 1 [PROOFSTEP] exact (a1 rfl).elim [GOAL] n k : ℕ h : ¬n < k * k ⊢ 0 < 2 [PROOFSTEP] decide [GOAL] n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m ⊢ Nat.minFacProp n (minFacAux n x✝) [PROOFSTEP] rw [minFacAux] [GOAL] n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m ⊢ Nat.minFacProp n (if h : n < x✝ * x✝ then n else if x✝ ∣ n then x✝ else let_fun this := (_ : sqrt n - x✝ < sqrt n + 2 - x✝); minFacAux n (x✝ + 2)) [PROOFSTEP] by_cases h : n < k * k [GOAL] case pos n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : n < k * k ⊢ Nat.minFacProp n (if h : n < x✝ * x✝ then n else if x✝ ∣ n then x✝ else let_fun this := (_ : sqrt n - x✝ < sqrt n + 2 - x✝); minFacAux n (x✝ + 2)) [PROOFSTEP] simp [h] [GOAL] case neg n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k ⊢ Nat.minFacProp n (if h : n < x✝ * x✝ then n else if x✝ ∣ n then x✝ else let_fun this := (_ : sqrt n - x✝ < sqrt n + 2 - x✝); minFacAux n (x✝ + 2)) [PROOFSTEP] simp [h] [GOAL] case pos n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : n < k * k ⊢ Nat.minFacProp n n [PROOFSTEP] have pp : Prime n := prime_def_le_sqrt.2 ⟨n2, fun m m2 l d => not_lt_of_ge l <| lt_of_lt_of_le (sqrt_lt.2 h) (a m m2 d)⟩ [GOAL] case pos n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : n < k * k pp : Prime n ⊢ Nat.minFacProp n n [PROOFSTEP] exact ⟨n2, dvd_rfl, fun m m2 d => le_of_eq ((dvd_prime_two_le pp m2).1 d).symm⟩ [GOAL] case neg n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k ⊢ Nat.minFacProp n (if x✝ ∣ n then x✝ else minFacAux n (x✝ + 2)) [PROOFSTEP] have k2 : 2 ≤ k := by subst e apply Nat.le_add_left [GOAL] n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k ⊢ 2 ≤ k [PROOFSTEP] subst e [GOAL] n : ℕ n2 : 2 ≤ n i : ℕ k : ℕ := 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → 2 * i + 3 ≤ m h : ¬n < k * k ⊢ 2 ≤ k [PROOFSTEP] apply Nat.le_add_left [GOAL] case neg n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k ⊢ Nat.minFacProp n (if x✝ ∣ n then x✝ else minFacAux n (x✝ + 2)) [PROOFSTEP] by_cases dk : k ∣ n [GOAL] case pos n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : k ∣ n ⊢ Nat.minFacProp n (if x✝ ∣ n then x✝ else minFacAux n (x✝ + 2)) [PROOFSTEP] simp [dk] [GOAL] case neg n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n ⊢ Nat.minFacProp n (if x✝ ∣ n then x✝ else minFacAux n (x✝ + 2)) [PROOFSTEP] simp [dk] [GOAL] case pos n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : k ∣ n ⊢ Nat.minFacProp n x✝ [PROOFSTEP] exact ⟨k2, dk, a⟩ [GOAL] case neg n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n ⊢ Nat.minFacProp n (minFacAux n (x✝ + 2)) [PROOFSTEP] refine' have := minFac_lemma n k h minFacAux_has_prop n2 (k + 2) (i + 1) (by simp [e, left_distrib]) fun m m2 d => _ [GOAL] n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n this : sqrt n - k < sqrt n + 2 - k ⊢ k + 2 = 2 * (i + 1) + 3 [PROOFSTEP] simp [e, left_distrib] [GOAL] case neg n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : ℕ m2 : 2 ≤ m d : m ∣ n ⊢ k + 2 ≤ m [PROOFSTEP] cases' Nat.eq_or_lt_of_le (a m m2 d) with me ml [GOAL] case neg.inl n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : ℕ m2 : 2 ≤ m d : m ∣ n me : x✝ = m ⊢ k + 2 ≤ m [PROOFSTEP] subst me [GOAL] case neg.inl n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m2 : 2 ≤ x✝ d : x✝ ∣ n ⊢ k + 2 ≤ x✝ [PROOFSTEP] contradiction [GOAL] case neg.inr n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : ℕ m2 : 2 ≤ m d : m ∣ n ml : x✝ < m ⊢ k + 2 ≤ m [PROOFSTEP] apply (Nat.eq_or_lt_of_le ml).resolve_left [GOAL] case neg.inr n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : ℕ m2 : 2 ≤ m d : m ∣ n ml : x✝ < m ⊢ ¬succ x✝ = m [PROOFSTEP] intro me [GOAL] case neg.inr n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : ℕ m2 : 2 ≤ m d : m ∣ n ml : x✝ < m me : succ x✝ = m ⊢ False [PROOFSTEP] rw [← me, e] at d [GOAL] case neg.inr n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : ℕ m2 : 2 ≤ m d : succ (2 * i + 3) ∣ n ml : x✝ < m me : succ x✝ = m ⊢ False [PROOFSTEP] have d' : 2 * (i + 2) ∣ n := d [GOAL] case neg.inr n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : ℕ m2 : 2 ≤ m d : succ (2 * i + 3) ∣ n ml : x✝ < m me : succ x✝ = m d' : 2 * (i + 2) ∣ n ⊢ False [PROOFSTEP] have := a _ le_rfl (dvd_of_mul_right_dvd d') [GOAL] case neg.inr n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n this✝ : sqrt n - k < sqrt n + 2 - k m : ℕ m2 : 2 ≤ m d : succ (2 * i + 3) ∣ n ml : x✝ < m me : succ x✝ = m d' : 2 * (i + 2) ∣ n this : x✝ ≤ 2 ⊢ False [PROOFSTEP] rw [e] at this [GOAL] case neg.inr n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n this✝ : sqrt n - k < sqrt n + 2 - k m : ℕ m2 : 2 ≤ m d : succ (2 * i + 3) ∣ n ml : x✝ < m me : succ x✝ = m d' : 2 * (i + 2) ∣ n this : 2 * i + 3 ≤ 2 ⊢ False [PROOFSTEP] exact absurd this (by contradiction) [GOAL] n : ℕ n2 : 2 ≤ n x✝ : ℕ k : ℕ := x✝ i : ℕ e : x✝ = 2 * i + 3 a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m h : ¬n < k * k k2 : 2 ≤ k dk : ¬k ∣ n this✝ : sqrt n - k < sqrt n + 2 - k m : ℕ m2 : 2 ≤ m d : succ (2 * i + 3) ∣ n ml : x✝ < m me : succ x✝ = m d' : 2 * (i + 2) ∣ n this : 2 * i + 3 ≤ 2 ⊢ ¬2 * i + 3 ≤ 2 [PROOFSTEP] contradiction [GOAL] n : ℕ n1 : n ≠ 1 ⊢ Nat.minFacProp n (minFac n) [PROOFSTEP] by_cases n0 : n = 0 [GOAL] case pos n : ℕ n1 : n ≠ 1 n0 : n = 0 ⊢ Nat.minFacProp n (minFac n) [PROOFSTEP] simp [n0, minFacProp, GE.ge] [GOAL] case neg n : ℕ n1 : n ≠ 1 n0 : ¬n = 0 ⊢ Nat.minFacProp n (minFac n) [PROOFSTEP] have n2 : 2 ≤ n := by revert n0 n1 rcases n with (_ | _ | _) <;> simp [succ_le_succ] [GOAL] n : ℕ n1 : n ≠ 1 n0 : ¬n = 0 ⊢ 2 ≤ n [PROOFSTEP] revert n0 n1 [GOAL] n : ℕ ⊢ n ≠ 1 → ¬n = 0 → 2 ≤ n [PROOFSTEP] rcases n with (_ | _ | _) [GOAL] case zero ⊢ zero ≠ 1 → ¬zero = 0 → 2 ≤ zero [PROOFSTEP] simp [succ_le_succ] [GOAL] case succ.zero ⊢ succ zero ≠ 1 → ¬succ zero = 0 → 2 ≤ succ zero [PROOFSTEP] simp [succ_le_succ] [GOAL] case succ.succ n✝ : ℕ ⊢ succ (succ n✝) ≠ 1 → ¬succ (succ n✝) = 0 → 2 ≤ succ (succ n✝) [PROOFSTEP] simp [succ_le_succ] [GOAL] case neg n : ℕ n1 : n ≠ 1 n0 : ¬n = 0 n2 : 2 ≤ n ⊢ Nat.minFacProp n (minFac n) [PROOFSTEP] simp [minFac_eq] [GOAL] case neg n : ℕ n1 : n ≠ 1 n0 : ¬n = 0 n2 : 2 ≤ n ⊢ Nat.minFacProp n (if 2 ∣ n then 2 else minFacAux n 3) [PROOFSTEP] by_cases d2 : 2 ∣ n [GOAL] case pos n : ℕ n1 : n ≠ 1 n0 : ¬n = 0 n2 : 2 ≤ n d2 : 2 ∣ n ⊢ Nat.minFacProp n (if 2 ∣ n then 2 else minFacAux n 3) [PROOFSTEP] simp [d2] [GOAL] case neg n : ℕ n1 : n ≠ 1 n0 : ¬n = 0 n2 : 2 ≤ n d2 : ¬2 ∣ n ⊢ Nat.minFacProp n (if 2 ∣ n then 2 else minFacAux n 3) [PROOFSTEP] simp [d2] [GOAL] case pos n : ℕ n1 : n ≠ 1 n0 : ¬n = 0 n2 : 2 ≤ n d2 : 2 ∣ n ⊢ Nat.minFacProp n 2 [PROOFSTEP] exact ⟨le_rfl, d2, fun k k2 _ => k2⟩ [GOAL] case neg n : ℕ n1 : n ≠ 1 n0 : ¬n = 0 n2 : 2 ≤ n d2 : ¬2 ∣ n ⊢ Nat.minFacProp n (minFacAux n 3) [PROOFSTEP] refine' minFacAux_has_prop n2 3 0 rfl fun m m2 d => (Nat.eq_or_lt_of_le m2).resolve_left (mt _ d2) [GOAL] case neg n : ℕ n1 : n ≠ 1 n0 : ¬n = 0 n2 : 2 ≤ n d2 : ¬2 ∣ n m : ℕ m2 : 2 ≤ m d : m ∣ n ⊢ 2 = m → 2 ∣ n [PROOFSTEP] exact fun e => e.symm ▸ d [GOAL] n : ℕ n1 : n = 1 ⊢ minFac n ∣ n [PROOFSTEP] simp [n1] [GOAL] n : ℕ ⊢ ∀ {m : ℕ}, 2 ≤ m → m ∣ n → minFac n ≤ m [PROOFSTEP] by_cases n1 : n = 1 <;> [exact fun m2 _ => n1.symm ▸ le_trans (by decide) m2; apply (minFac_has_prop n1).2.2] [GOAL] n : ℕ ⊢ ∀ {m : ℕ}, 2 ≤ m → m ∣ n → minFac n ≤ m [PROOFSTEP] by_cases n1 : n = 1 [GOAL] case pos n m✝ : ℕ n1 : n = 1 ⊢ 2 ≤ m✝ → m✝ ∣ n → minFac n ≤ m✝ [PROOFSTEP] exact fun m2 _ => n1.symm ▸ le_trans (by decide) m2 [GOAL] n m✝ : ℕ n1 : n = 1 m2 : 2 ≤ m✝ x✝ : m✝ ∣ n ⊢ minFac 1 ≤ 2 [PROOFSTEP] decide [GOAL] case neg n m✝ : ℕ n1 : ¬n = 1 ⊢ 2 ≤ m✝ → m✝ ∣ n → minFac n ≤ m✝ [PROOFSTEP] apply (minFac_has_prop n1).2.2 [GOAL] n : ℕ ⊢ 0 < minFac n [PROOFSTEP] by_cases n1 : n = 1 <;> [exact n1.symm ▸ (by decide); exact (minFac_prime n1).pos] [GOAL] n : ℕ ⊢ 0 < minFac n [PROOFSTEP] by_cases n1 : n = 1 [GOAL] case pos n : ℕ n1 : n = 1 ⊢ 0 < minFac n [PROOFSTEP] exact n1.symm ▸ (by decide) [GOAL] n : ℕ n1 : n = 1 ⊢ 0 < minFac 1 [PROOFSTEP] decide [GOAL] case neg n : ℕ n1 : ¬n = 1 ⊢ 0 < minFac n [PROOFSTEP] exact (minFac_prime n1).pos [GOAL] m n : ℕ h : n = 1 ∨ m ≤ minFac n p : ℕ pp : Prime p d : p ∣ n ⊢ n = 1 → m ≤ p [PROOFSTEP] rintro rfl [GOAL] m p : ℕ pp : Prime p h : 1 = 1 ∨ m ≤ minFac 1 d : p ∣ 1 ⊢ m ≤ p [PROOFSTEP] cases pp.not_dvd_one d [GOAL] m n : ℕ h : n = 1 ∨ m ≤ minFac n p : ℕ pp : 1 < p d : p ∣ n ⊢ n = 1 → m ≤ p [PROOFSTEP] rintro rfl [GOAL] m p : ℕ pp : 1 < p h : 1 = 1 ∨ m ≤ minFac 1 d : p ∣ 1 ⊢ m ≤ p [PROOFSTEP] cases not_le_of_lt pp (le_of_dvd (by decide) d) [GOAL] m p : ℕ pp : 1 < p h : 1 = 1 ∨ m ≤ minFac 1 d : p ∣ 1 ⊢ 0 < 1 [PROOFSTEP] decide [GOAL] n : ℕ pos : 0 < n np : ¬Prime n h0 : n = minFac n * 0 ⊢ ¬0 < n [PROOFSTEP] rw [h0, mul_zero] [GOAL] n : ℕ pos : 0 < n np : ¬Prime n h0 : n = minFac n * 0 ⊢ ¬0 < 0 [PROOFSTEP] exact by decide [GOAL] n : ℕ pos : 0 < n np : ¬Prime n h0 : n = minFac n * 0 ⊢ ¬0 < 0 [PROOFSTEP] decide [GOAL] n : ℕ pos : 0 < n np : ¬Prime n h1 : n = minFac n * 1 ⊢ minFac n ≤ n / minFac n [PROOFSTEP] rw [mul_one] at h1 [GOAL] n : ℕ pos : 0 < n np : ¬Prime n h1 : n = minFac n ⊢ minFac n ≤ n / minFac n [PROOFSTEP] rw [prime_def_minFac, not_and_or, ← h1, eq_self_iff_true, _root_.not_true, or_false_iff, not_le] at np [GOAL] n : ℕ pos : 0 < n np : n < 2 h1 : n = minFac n ⊢ minFac n ≤ n / minFac n [PROOFSTEP] rw [le_antisymm (le_of_lt_succ np) (succ_le_of_lt pos), minFac_one, Nat.div_one] [GOAL] n : ℕ pos : 0 < n np : ¬Prime n x : ℕ hx : n = minFac n * (x + 2) ⊢ minFac n ≤ n / minFac n [PROOFSTEP] conv_rhs => congr rw [hx] [GOAL] n : ℕ pos : 0 < n np : ¬Prime n x : ℕ hx : n = minFac n * (x + 2) | n / minFac n [PROOFSTEP] congr rw [hx] [GOAL] n : ℕ pos : 0 < n np : ¬Prime n x : ℕ hx : n = minFac n * (x + 2) | n / minFac n [PROOFSTEP] congr rw [hx] [GOAL] n : ℕ pos : 0 < n np : ¬Prime n x : ℕ hx : n = minFac n * (x + 2) | n / minFac n [PROOFSTEP] congr [GOAL] case a n : ℕ pos : 0 < n np : ¬Prime n x : ℕ hx : n = minFac n * (x + 2) | n case a n : ℕ pos : 0 < n np : ¬Prime n x : ℕ hx : n = minFac n * (x + 2) | minFac n [PROOFSTEP] rw [hx] [GOAL] n : ℕ pos : 0 < n np : ¬Prime n x : ℕ hx : n = minFac n * (x + 2) ⊢ minFac n ≤ minFac n * (x + 2) / minFac n [PROOFSTEP] rw [Nat.mul_div_cancel_left _ (minFac_pos _)] [GOAL] n : ℕ pos : 0 < n np : ¬Prime n x : ℕ hx : n = minFac n * (x + 2) ⊢ minFac n ≤ x + 2 [PROOFSTEP] exact minFac_le_of_dvd (le_add_left 2 x) ⟨minFac n, by rwa [mul_comm]⟩ [GOAL] n : ℕ pos : 0 < n np : ¬Prime n x : ℕ hx : n = minFac n * (x + 2) ⊢ n = (x + 2) * minFac n [PROOFSTEP] rwa [mul_comm] [GOAL] n : ℕ ⊢ minFac n = 1 ↔ n = 1 [PROOFSTEP] constructor [GOAL] case mp n : ℕ ⊢ minFac n = 1 → n = 1 [PROOFSTEP] intro h [GOAL] case mp n : ℕ h : minFac n = 1 ⊢ n = 1 [PROOFSTEP] by_contra hn [GOAL] case mp n : ℕ h : minFac n = 1 hn : ¬n = 1 ⊢ False [PROOFSTEP] have := minFac_prime hn [GOAL] case mp n : ℕ h : minFac n = 1 hn : ¬n = 1 this : Prime (minFac n) ⊢ False [PROOFSTEP] rw [h] at this [GOAL] case mp n : ℕ h : minFac n = 1 hn : ¬n = 1 this : Prime 1 ⊢ False [PROOFSTEP] exact not_prime_one this [GOAL] case mpr n : ℕ ⊢ n = 1 → minFac n = 1 [PROOFSTEP] rintro rfl [GOAL] case mpr ⊢ minFac 1 = 1 [PROOFSTEP] rfl [GOAL] n : ℕ ⊢ minFac n = 2 ↔ 2 ∣ n [PROOFSTEP] constructor [GOAL] case mp n : ℕ ⊢ minFac n = 2 → 2 ∣ n [PROOFSTEP] intro h [GOAL] case mp n : ℕ h : minFac n = 2 ⊢ 2 ∣ n [PROOFSTEP] rw [← h] [GOAL] case mp n : ℕ h : minFac n = 2 ⊢ minFac n ∣ n [PROOFSTEP] exact minFac_dvd n [GOAL] case mpr n : ℕ ⊢ 2 ∣ n → minFac n = 2 [PROOFSTEP] intro h [GOAL] case mpr n : ℕ h : 2 ∣ n ⊢ minFac n = 2 [PROOFSTEP] have ub := minFac_le_of_dvd (le_refl 2) h [GOAL] case mpr n : ℕ h : 2 ∣ n ub : minFac n ≤ 2 ⊢ minFac n = 2 [PROOFSTEP] have lb := minFac_pos n [GOAL] case mpr n : ℕ h : 2 ∣ n ub : minFac n ≤ 2 lb : 0 < minFac n ⊢ minFac n = 2 [PROOFSTEP] refine ub.eq_or_lt.resolve_right fun h' => ?_ [GOAL] case mpr n : ℕ h : 2 ∣ n ub : minFac n ≤ 2 lb : 0 < minFac n h' : minFac n < 2 ⊢ False [PROOFSTEP] have := le_antisymm (Nat.succ_le_of_lt lb) (lt_succ_iff.mp h') [GOAL] case mpr n : ℕ h : 2 ∣ n ub : minFac n ≤ 2 lb : 0 < minFac n h' : minFac n < 2 this : succ 0 = minFac n ⊢ False [PROOFSTEP] rw [eq_comm, Nat.minFac_eq_one_iff] at this [GOAL] case mpr n : ℕ h : 2 ∣ n ub : minFac n ≤ 2 lb : 0 < minFac n h' : minFac n < 2 this : n = 1 ⊢ False [PROOFSTEP] subst this [GOAL] case mpr h : 2 ∣ 1 ub : minFac 1 ≤ 2 lb : 0 < minFac 1 h' : minFac 1 < 2 ⊢ False [PROOFSTEP] exact not_lt_of_le (le_of_dvd zero_lt_one h) one_lt_two [GOAL] a b : ℕ hdvd : ∀ (p : ℕ), Prime p → p ∣ a → p * a ∣ b ⊢ a ∣ b [PROOFSTEP] obtain rfl | ha := eq_or_ne a 1 [GOAL] case inl b : ℕ hdvd : ∀ (p : ℕ), Prime p → p ∣ 1 → p * 1 ∣ b ⊢ 1 ∣ b [PROOFSTEP] apply one_dvd [GOAL] case inr a b : ℕ hdvd : ∀ (p : ℕ), Prime p → p ∣ a → p * a ∣ b ha : a ≠ 1 ⊢ a ∣ b [PROOFSTEP] obtain ⟨p, hp⟩ := exists_prime_and_dvd ha [GOAL] case inr.intro a b : ℕ hdvd : ∀ (p : ℕ), Prime p → p ∣ a → p * a ∣ b ha : a ≠ 1 p : ℕ hp : Prime p ∧ p ∣ a ⊢ a ∣ b [PROOFSTEP] exact _root_.trans (dvd_mul_left a p) (hdvd p hp.1 hp.2) [GOAL] ⊢ ¬BddAbove {p | Prime p} [PROOFSTEP] rw [not_bddAbove_iff] [GOAL] ⊢ ∀ (x : ℕ), ∃ y, y ∈ {p | Prime p} ∧ x < y [PROOFSTEP] intro n [GOAL] n : ℕ ⊢ ∃ y, y ∈ {p | Prime p} ∧ n < y [PROOFSTEP] obtain ⟨p, hi, hp⟩ := exists_infinite_primes n.succ [GOAL] case intro.intro n p : ℕ hi : succ n ≤ p hp : Prime p ⊢ ∃ y, y ∈ {p | Prime p} ∧ n < y [PROOFSTEP] exact ⟨p, hp, hi⟩ [GOAL] p : ℕ hp : Prime p h : p % 2 = 0 ⊢ ¬2 = 1 [PROOFSTEP] decide [GOAL] p : ℕ hp : Prime p ⊢ Even p ↔ p = 2 [PROOFSTEP] rw [even_iff_two_dvd, prime_dvd_prime_iff_eq prime_two hp, eq_comm] [GOAL] p : ℕ hp : Prime p h2 : p ≠ 2 n : ℕ hn : p = 2 * n + 1 ⊢ p - 1 = n + n [PROOFSTEP] rw [hn, Nat.add_sub_cancel, two_mul] [GOAL] p : ℕ inst✝ : Fact (Prime p) ⊢ p % 2 = 1 ↔ p ≠ 2 [PROOFSTEP] refine' ⟨fun h hf => _, (Nat.Prime.eq_two_or_odd <| @Fact.out p.Prime _).resolve_left⟩ [GOAL] p : ℕ inst✝ : Fact (Prime p) h : p % 2 = 1 hf : p = 2 ⊢ False [PROOFSTEP] rw [hf] at h [GOAL] p : ℕ inst✝ : Fact (Prime p) h : 2 % 2 = 1 hf : p = 2 ⊢ False [PROOFSTEP] simp at h [GOAL] m n : ℕ H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n ⊢ coprime m n [PROOFSTEP] rw [coprime_iff_gcd_eq_one] [GOAL] m n : ℕ H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n ⊢ gcd m n = 1 [PROOFSTEP] by_contra g2 [GOAL] m n : ℕ H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n g2 : ¬gcd m n = 1 ⊢ False [PROOFSTEP] obtain ⟨p, hp, hpdvd⟩ := exists_prime_and_dvd g2 [GOAL] case intro.intro m n : ℕ H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n g2 : ¬gcd m n = 1 p : ℕ hp : Prime p hpdvd : p ∣ gcd m n ⊢ False [PROOFSTEP] apply H p hp [GOAL] case intro.intro.a m n : ℕ H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n g2 : ¬gcd m n = 1 p : ℕ hp : Prime p hpdvd : p ∣ gcd m n ⊢ p ∣ m [PROOFSTEP] apply dvd_trans hpdvd [GOAL] case intro.intro.a m n : ℕ H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n g2 : ¬gcd m n = 1 p : ℕ hp : Prime p hpdvd : p ∣ gcd m n ⊢ p ∣ n [PROOFSTEP] apply dvd_trans hpdvd [GOAL] case intro.intro.a m n : ℕ H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n g2 : ¬gcd m n = 1 p : ℕ hp : Prime p hpdvd : p ∣ gcd m n ⊢ gcd m n ∣ m [PROOFSTEP] exact gcd_dvd_left _ _ [GOAL] case intro.intro.a m n : ℕ H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n g2 : ¬gcd m n = 1 p : ℕ hp : Prime p hpdvd : p ∣ gcd m n ⊢ gcd m n ∣ n [PROOFSTEP] exact gcd_dvd_right _ _ [GOAL] k : ℕ ⊢ k + 2 ≠ 1 [PROOFSTEP] apply Nat.ne_of_gt [GOAL] case h k : ℕ ⊢ 1 < k + 2 [PROOFSTEP] apply Nat.succ_lt_succ [GOAL] case h.a k : ℕ ⊢ 0 < k + 1 [PROOFSTEP] apply Nat.zero_lt_succ [GOAL] p n : ℕ pp : Prime p co : coprime p n d : p ∣ n ⊢ p ∣ n * 1 [PROOFSTEP] simp [d] [GOAL] m n : ℕ ⊢ ¬coprime m n ↔ ∃ p, Prime p ∧ p ∣ m ∧ p ∣ n [PROOFSTEP] apply Iff.intro [GOAL] case mp m n : ℕ ⊢ ¬coprime m n → ∃ p, Prime p ∧ p ∣ m ∧ p ∣ n [PROOFSTEP] intro h [GOAL] case mp m n : ℕ h : ¬coprime m n ⊢ ∃ p, Prime p ∧ p ∣ m ∧ p ∣ n [PROOFSTEP] exact ⟨minFac (gcd m n), minFac_prime h, (minFac_dvd (gcd m n)).trans (gcd_dvd_left m n), (minFac_dvd (gcd m n)).trans (gcd_dvd_right m n)⟩ [GOAL] case mpr m n : ℕ ⊢ (∃ p, Prime p ∧ p ∣ m ∧ p ∣ n) → ¬coprime m n [PROOFSTEP] intro h [GOAL] case mpr m n : ℕ h : ∃ p, Prime p ∧ p ∣ m ∧ p ∣ n ⊢ ¬coprime m n [PROOFSTEP] cases' h with p hp [GOAL] case mpr.intro m n p : ℕ hp : Prime p ∧ p ∣ m ∧ p ∣ n ⊢ ¬coprime m n [PROOFSTEP] apply Nat.not_coprime_of_dvd_of_dvd (Prime.one_lt hp.1) hp.2.1 hp.2.2 [GOAL] p m n : ℕ pp : Prime p Hm : ¬p ∣ m Hn : ¬p ∣ n ⊢ ¬(p ∣ m ∨ p ∣ n) [PROOFSTEP] simp [Hm, Hn] [GOAL] p m n : ℕ pp : Prime p h : p ∣ m ^ n ⊢ p ∣ m [PROOFSTEP] induction' n with n IH [GOAL] case zero p m n : ℕ pp : Prime p h✝ : p ∣ m ^ n h : p ∣ m ^ zero ⊢ p ∣ m [PROOFSTEP] exact pp.not_dvd_one.elim h [GOAL] case succ p m n✝ : ℕ pp : Prime p h✝ : p ∣ m ^ n✝ n : ℕ IH : p ∣ m ^ n → p ∣ m h : p ∣ m ^ succ n ⊢ p ∣ m [PROOFSTEP] rw [pow_succ] at h [GOAL] case succ p m n✝ : ℕ pp : Prime p h✝ : p ∣ m ^ n✝ n : ℕ IH : p ∣ m ^ n → p ∣ m h : p ∣ m ^ n * m ⊢ p ∣ m [PROOFSTEP] exact (pp.dvd_mul.1 h).elim IH id [GOAL] p a k : ℕ hp : Prime p ⊢ a ^ k = p ↔ a = p ∧ k = 1 [PROOFSTEP] refine' ⟨fun h => _, fun h => by rw [h.1, h.2, pow_one]⟩ [GOAL] p a k : ℕ hp : Prime p h : a = p ∧ k = 1 ⊢ a ^ k = p [PROOFSTEP] rw [h.1, h.2, pow_one] [GOAL] p a k : ℕ hp : Prime p h : a ^ k = p ⊢ a = p ∧ k = 1 [PROOFSTEP] rw [← h] at hp [GOAL] p a k : ℕ hp : Prime (a ^ k) h : a ^ k = p ⊢ a = p ∧ k = 1 [PROOFSTEP] rw [← h, hp.eq_one_of_pow, eq_self_iff_true, and_true_iff, pow_one] [GOAL] n k : ℕ hk : k ≠ 0 ⊢ minFac (n ^ k) = minFac n [PROOFSTEP] rcases eq_or_ne n 1 with (rfl | hn) [GOAL] case inl k : ℕ hk : k ≠ 0 ⊢ minFac (1 ^ k) = minFac 1 [PROOFSTEP] simp [GOAL] case inr n k : ℕ hk : k ≠ 0 hn : n ≠ 1 ⊢ minFac (n ^ k) = minFac n [PROOFSTEP] have hnk : n ^ k ≠ 1 := fun hk' => hn ((pow_eq_one_iff hk).1 hk') [GOAL] case inr n k : ℕ hk : k ≠ 0 hn : n ≠ 1 hnk : n ^ k ≠ 1 ⊢ minFac (n ^ k) = minFac n [PROOFSTEP] apply (minFac_le_of_dvd (minFac_prime hn).two_le ((minFac_dvd n).pow hk)).antisymm [GOAL] case inr n k : ℕ hk : k ≠ 0 hn : n ≠ 1 hnk : n ^ k ≠ 1 ⊢ minFac n ≤ minFac (n ^ k) [PROOFSTEP] apply minFac_le_of_dvd (minFac_prime hnk).two_le ((minFac_prime hnk).dvd_of_dvd_pow (minFac_dvd _)) [GOAL] p k : ℕ hp : Prime p hk : k ≠ 0 ⊢ minFac (p ^ k) = p [PROOFSTEP] rw [Nat.pow_minFac hk, hp.minFac_eq] [GOAL] x y p : ℕ hp : Prime p hx : x ≠ 1 hy : y ≠ 1 ⊢ x * y = p ^ 2 ↔ x = p ∧ y = p [PROOFSTEP] refine' ⟨fun h => _, fun ⟨h₁, h₂⟩ => h₁.symm ▸ h₂.symm ▸ (sq _).symm⟩ [GOAL] x y p : ℕ hp : Prime p hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 ⊢ x = p ∧ y = p [PROOFSTEP] have pdvdxy : p ∣ x * y := by rw [h]; simp [sq] -- Could be `wlog := hp.dvd_mul.1 pdvdxy using x y`, but that imports more than we want. [GOAL] x y p : ℕ hp : Prime p hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 ⊢ p ∣ x * y [PROOFSTEP] rw [h] [GOAL] x y p : ℕ hp : Prime p hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 ⊢ p ∣ p ^ 2 [PROOFSTEP] simp [sq] -- Could be `wlog := hp.dvd_mul.1 pdvdxy using x y`, but that imports more than we want. [GOAL] x y p : ℕ hp : Prime p hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y ⊢ x = p ∧ y = p [PROOFSTEP] suffices ∀ x' y' : ℕ, x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p by obtain hx | hy := hp.dvd_mul.1 pdvdxy <;> [skip; rw [And.comm]] <;> [skip; rw [mul_comm] at h pdvdxy ] <;> apply this <;> assumption [GOAL] x y p : ℕ hp : Prime p hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p ⊢ x = p ∧ y = p [PROOFSTEP] obtain hx | hy := hp.dvd_mul.1 pdvdxy <;> [skip; rw [And.comm]] <;> [skip; rw [mul_comm] at h pdvdxy ] [GOAL] x y p : ℕ hp : Prime p hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p ⊢ x = p ∧ y = p [PROOFSTEP] obtain hx | hy := hp.dvd_mul.1 pdvdxy <;> [skip; rw [And.comm]] [GOAL] x y p : ℕ hp : Prime p hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p ⊢ x = p ∧ y = p [PROOFSTEP] obtain hx | hy := hp.dvd_mul.1 pdvdxy [GOAL] case inl x y p : ℕ hp : Prime p hx✝ : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hx : p ∣ x ⊢ x = p ∧ y = p [PROOFSTEP] skip [GOAL] case inr x y p : ℕ hp : Prime p hx : x ≠ 1 hy✝ : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hy : p ∣ y ⊢ x = p ∧ y = p [PROOFSTEP] rw [And.comm] [GOAL] case inl x y p : ℕ hp : Prime p hx✝ : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hx : p ∣ x ⊢ x = p ∧ y = p [PROOFSTEP] skip [GOAL] case inr x y p : ℕ hp : Prime p hx : x ≠ 1 hy✝ : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hy : p ∣ y ⊢ y = p ∧ x = p [PROOFSTEP] rw [mul_comm] at h pdvdxy [GOAL] case inl x y p : ℕ hp : Prime p hx✝ : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hx : p ∣ x ⊢ x = p ∧ y = p [PROOFSTEP] apply this [GOAL] case inr x y p : ℕ hp : Prime p hx : x ≠ 1 hy✝ : y ≠ 1 h : y * x = p ^ 2 pdvdxy : p ∣ y * x this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hy : p ∣ y ⊢ y = p ∧ x = p [PROOFSTEP] apply this [GOAL] case inl.a x y p : ℕ hp : Prime p hx✝ : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hx : p ∣ x ⊢ x ≠ 1 [PROOFSTEP] assumption [GOAL] case inl.a x y p : ℕ hp : Prime p hx✝ : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hx : p ∣ x ⊢ y ≠ 1 [PROOFSTEP] assumption [GOAL] case inl.a x y p : ℕ hp : Prime p hx✝ : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hx : p ∣ x ⊢ x * y = p ^ 2 [PROOFSTEP] assumption [GOAL] case inl.a x y p : ℕ hp : Prime p hx✝ : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hx : p ∣ x ⊢ p ∣ x [PROOFSTEP] assumption [GOAL] case inr.a x y p : ℕ hp : Prime p hx : x ≠ 1 hy✝ : y ≠ 1 h : y * x = p ^ 2 pdvdxy : p ∣ y * x this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hy : p ∣ y ⊢ y ≠ 1 [PROOFSTEP] assumption [GOAL] case inr.a x y p : ℕ hp : Prime p hx : x ≠ 1 hy✝ : y ≠ 1 h : y * x = p ^ 2 pdvdxy : p ∣ y * x this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hy : p ∣ y ⊢ x ≠ 1 [PROOFSTEP] assumption [GOAL] case inr.a x y p : ℕ hp : Prime p hx : x ≠ 1 hy✝ : y ≠ 1 h : y * x = p ^ 2 pdvdxy : p ∣ y * x this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hy : p ∣ y ⊢ y * x = p ^ 2 [PROOFSTEP] assumption [GOAL] case inr.a x y p : ℕ hp : Prime p hx : x ≠ 1 hy✝ : y ≠ 1 h : y * x = p ^ 2 pdvdxy : p ∣ y * x this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p hy : p ∣ y ⊢ p ∣ y [PROOFSTEP] assumption [GOAL] x y p : ℕ hp : Prime p hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y ⊢ ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p [PROOFSTEP] rintro x y hx hy h ⟨a, ha⟩ [GOAL] case intro x✝ y✝ p : ℕ hp : Prime p hx✝ : x✝ ≠ 1 hy✝ : y✝ ≠ 1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : ℕ hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 a : ℕ ha : x = p * a ⊢ x = p ∧ y = p [PROOFSTEP] have : a ∣ p := ⟨y, by rwa [ha, sq, mul_assoc, mul_right_inj' hp.ne_zero, eq_comm] at h ⟩ [GOAL] x✝ y✝ p : ℕ hp : Prime p hx✝ : x✝ ≠ 1 hy✝ : y✝ ≠ 1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : ℕ hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 a : ℕ ha : x = p * a ⊢ p = a * y [PROOFSTEP] rwa [ha, sq, mul_assoc, mul_right_inj' hp.ne_zero, eq_comm] at h [GOAL] case intro x✝ y✝ p : ℕ hp : Prime p hx✝ : x✝ ≠ 1 hy✝ : y✝ ≠ 1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : ℕ hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 a : ℕ ha : x = p * a this : a ∣ p ⊢ x = p ∧ y = p [PROOFSTEP] obtain ha1 | hap := (Nat.dvd_prime hp).mp ‹a ∣ p› [GOAL] case intro.inl x✝ y✝ p : ℕ hp : Prime p hx✝ : x✝ ≠ 1 hy✝ : y✝ ≠ 1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : ℕ hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 a : ℕ ha : x = p * a this : a ∣ p ha1 : a = 1 ⊢ x = p ∧ y = p [PROOFSTEP] subst ha1 [GOAL] case intro.inl x✝ y✝ p : ℕ hp : Prime p hx✝ : x✝ ≠ 1 hy✝ : y✝ ≠ 1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : ℕ hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 ha : x = p * 1 this : 1 ∣ p ⊢ x = p ∧ y = p [PROOFSTEP] rw [mul_one] at ha [GOAL] case intro.inl x✝ y✝ p : ℕ hp : Prime p hx✝ : x✝ ≠ 1 hy✝ : y✝ ≠ 1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : ℕ hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 ha : x = p this : 1 ∣ p ⊢ x = p ∧ y = p [PROOFSTEP] subst ha [GOAL] case intro.inl x✝ y✝ : ℕ hx✝ : x✝ ≠ 1 hy✝ : y✝ ≠ 1 x y : ℕ hx : x ≠ 1 hy : y ≠ 1 hp : Prime x h✝ : x✝ * y✝ = x ^ 2 pdvdxy : x ∣ x✝ * y✝ h : x * y = x ^ 2 this : 1 ∣ x ⊢ x = x ∧ y = x [PROOFSTEP] simp only [sq, mul_right_inj' hp.ne_zero] at h [GOAL] case intro.inl x✝ y✝ : ℕ hx✝ : x✝ ≠ 1 hy✝ : y✝ ≠ 1 x y : ℕ hx : x ≠ 1 hy : y ≠ 1 hp : Prime x h✝ : x✝ * y✝ = x ^ 2 pdvdxy : x ∣ x✝ * y✝ this : 1 ∣ x h : y = x ⊢ x = x ∧ y = x [PROOFSTEP] subst h [GOAL] case intro.inl x y✝ : ℕ hx✝ : x ≠ 1 hy✝ : y✝ ≠ 1 y : ℕ hy hx : y ≠ 1 hp : Prime y h : x * y✝ = y ^ 2 pdvdxy : y ∣ x * y✝ this : 1 ∣ y ⊢ y = y ∧ y = y [PROOFSTEP] exact ⟨rfl, rfl⟩ [GOAL] case intro.inr x✝ y✝ p : ℕ hp : Prime p hx✝ : x✝ ≠ 1 hy✝ : y✝ ≠ 1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : ℕ hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 a : ℕ ha : x = p * a this : a ∣ p hap : a = p ⊢ x = p ∧ y = p [PROOFSTEP] refine' (hy ?_).elim [GOAL] case intro.inr x✝ y✝ p : ℕ hp : Prime p hx✝ : x✝ ≠ 1 hy✝ : y✝ ≠ 1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : ℕ hx : x ≠ 1 hy : y ≠ 1 h : x * y = p ^ 2 a : ℕ ha : x = p * a this : a ∣ p hap : a = p ⊢ y = 1 [PROOFSTEP] subst hap [GOAL] case intro.inr x✝ y✝ : ℕ hx✝ : x✝ ≠ 1 hy✝ : y✝ ≠ 1 x y : ℕ hx : x ≠ 1 hy : y ≠ 1 a : ℕ hp : Prime a h✝ : x✝ * y✝ = a ^ 2 pdvdxy : a ∣ x✝ * y✝ h : x * y = a ^ 2 ha : x = a * a this : a ∣ a ⊢ y = 1 [PROOFSTEP] subst ha [GOAL] case intro.inr x y✝ : ℕ hx✝ : x ≠ 1 hy✝ : y✝ ≠ 1 y : ℕ hy : y ≠ 1 a : ℕ hp : Prime a h✝ : x * y✝ = a ^ 2 pdvdxy : a ∣ x * y✝ this : a ∣ a hx : a * a ≠ 1 h : a * a * y = a ^ 2 ⊢ y = 1 [PROOFSTEP] rw [sq, Nat.mul_right_eq_self_iff (Nat.mul_pos hp.pos hp.pos : 0 < a * a)] at h [GOAL] case intro.inr x y✝ : ℕ hx✝ : x ≠ 1 hy✝ : y✝ ≠ 1 y : ℕ hy : y ≠ 1 a : ℕ hp : Prime a h✝ : x * y✝ = a ^ 2 pdvdxy : a ∣ x * y✝ this : a ∣ a hx : a * a ≠ 1 h : y = 1 ⊢ y = 1 [PROOFSTEP] exact h [GOAL] n p : ℕ hp : Prime p ⊢ p ∣ (n + 1)! ↔ p ≤ n + 1 [PROOFSTEP] rw [factorial_succ, hp.dvd_mul, Prime.dvd_factorial hp] [GOAL] n p : ℕ hp : Prime p ⊢ p ∣ n + 1 ∨ p ≤ n ↔ p ≤ n + 1 [PROOFSTEP] exact ⟨fun h => h.elim (le_of_dvd (succ_pos _)) le_succ_of_le, fun h => (_root_.lt_or_eq_of_le h).elim (Or.inr ∘ le_of_lt_succ) fun h => Or.inl <| by rw [h]⟩ [GOAL] n p : ℕ hp : Prime p h✝ : p ≤ n + 1 h : p = n + 1 ⊢ p ∣ n + 1 [PROOFSTEP] rw [h] [GOAL] p : ℕ pp : Prime p i : ℕ ⊢ coprime p i ∨ p ∣ i [PROOFSTEP] rw [pp.dvd_iff_not_coprime] [GOAL] p : ℕ pp : Prime p i : ℕ ⊢ coprime p i ∨ ¬coprime p i [PROOFSTEP] apply em [GOAL] p : ℕ pp : Prime p m i : ℕ ⊢ i ∣ p ^ m ↔ ∃ k, k ≤ m ∧ i = p ^ k [PROOFSTEP] simp_rw [_root_.dvd_prime_pow (prime_iff.mp pp) m, associated_eq_eq] [GOAL] a p k : ℕ pp : Prime p h₁ : ¬a ∣ p ^ k h₂ : a ∣ p ^ (k + 1) ⊢ a = p ^ (k + 1) [PROOFSTEP] obtain ⟨l, ⟨h, rfl⟩⟩ := (dvd_prime_pow pp).1 h₂ [GOAL] case intro.intro p k : ℕ pp : Prime p l : ℕ h : l ≤ k + 1 h₁ : ¬p ^ l ∣ p ^ k h₂ : p ^ l ∣ p ^ (k + 1) ⊢ p ^ l = p ^ (k + 1) [PROOFSTEP] congr [GOAL] case intro.intro.e_a p k : ℕ pp : Prime p l : ℕ h : l ≤ k + 1 h₁ : ¬p ^ l ∣ p ^ k h₂ : p ^ l ∣ p ^ (k + 1) ⊢ l = k + 1 [PROOFSTEP] exact le_antisymm h (not_le.1 ((not_congr (pow_dvd_pow_iff_le_right (Prime.one_lt pp))).1 h₁)) [GOAL] ⊢ 0 ≠ 1 ↔ ∃ p, Prime p ∧ p ∣ 0 [PROOFSTEP] simpa using Exists.intro 2 Nat.prime_two [GOAL] ⊢ 1 ≠ 1 ↔ ∃ p, Prime p ∧ p ∣ 1 [PROOFSTEP] simp [Nat.not_prime_one] [GOAL] n : ℕ ⊢ n + 2 ≠ 1 ↔ ∃ p, Prime p ∧ p ∣ n + 2 [PROOFSTEP] let a := n + 2 [GOAL] n : ℕ a : ℕ := n + 2 ⊢ n + 2 ≠ 1 ↔ ∃ p, Prime p ∧ p ∣ n + 2 [PROOFSTEP] let ha : a ≠ 1 := Nat.succ_succ_ne_one n [GOAL] n : ℕ a : ℕ := n + 2 ha : a ≠ 1 := succ_succ_ne_one n ⊢ n + 2 ≠ 1 ↔ ∃ p, Prime p ∧ p ∣ n + 2 [PROOFSTEP] simp only [true_iff_iff, Ne.def, not_false_iff, ha] [GOAL] n : ℕ a : ℕ := n + 2 ha : a ≠ 1 := succ_succ_ne_one n ⊢ ∃ p, Prime p ∧ p ∣ n + 2 [PROOFSTEP] exact ⟨a.minFac, Nat.minFac_prime ha, a.minFac_dvd⟩ [GOAL] n : ℕ ⊢ n = 1 ↔ ∀ (p : ℕ), Prime p → ¬p ∣ n [PROOFSTEP] simpa using not_iff_not.mpr ne_one_iff_exists_prime_dvd [GOAL] p : ℕ p_prime : Prime p m n k l : ℕ hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n ⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] have hpd : p ^ (k + l) * p ∣ m * n := by let hpmn' : p ^ (succ (k + l)) ∣ m * n := hpmn rwa [pow_succ'] at hpmn' [GOAL] p : ℕ p_prime : Prime p m n k l : ℕ hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n ⊢ p ^ (k + l) * p ∣ m * n [PROOFSTEP] let hpmn' : p ^ (succ (k + l)) ∣ m * n := hpmn [GOAL] p : ℕ p_prime : Prime p m n k l : ℕ hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpmn' : p ^ succ (k + l) ∣ m * n := hpmn ⊢ p ^ (k + l) * p ∣ m * n [PROOFSTEP] rwa [pow_succ'] at hpmn' [GOAL] p : ℕ p_prime : Prime p m n k l : ℕ hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n ⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] have hpd2 : p ∣ m * n / p ^ (k + l) := dvd_div_of_mul_dvd hpd [GOAL] p : ℕ p_prime : Prime p m n k l : ℕ hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) ⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] have hpd3 : p ∣ m * n / (p ^ k * p ^ l) := by simpa [pow_add] using hpd2 [GOAL] p : ℕ p_prime : Prime p m n k l : ℕ hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) ⊢ p ∣ m * n / (p ^ k * p ^ l) [PROOFSTEP] simpa [pow_add] using hpd2 [GOAL] p : ℕ p_prime : Prime p m n k l : ℕ hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) hpd3 : p ∣ m * n / (p ^ k * p ^ l) ⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] have hpd4 : p ∣ m / p ^ k * (n / p ^ l) := by simpa [Nat.div_mul_div_comm hpm hpn] using hpd3 [GOAL] p : ℕ p_prime : Prime p m n k l : ℕ hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) hpd3 : p ∣ m * n / (p ^ k * p ^ l) ⊢ p ∣ m / p ^ k * (n / p ^ l) [PROOFSTEP] simpa [Nat.div_mul_div_comm hpm hpn] using hpd3 [GOAL] p : ℕ p_prime : Prime p m n k l : ℕ hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) hpd3 : p ∣ m * n / (p ^ k * p ^ l) hpd4 : p ∣ m / p ^ k * (n / p ^ l) ⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] have hpd5 : p ∣ m / p ^ k ∨ p ∣ n / p ^ l := (Prime.dvd_mul p_prime).1 hpd4 [GOAL] p : ℕ p_prime : Prime p m n k l : ℕ hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) hpd3 : p ∣ m * n / (p ^ k * p ^ l) hpd4 : p ∣ m / p ^ k * (n / p ^ l) hpd5 : p ∣ m / p ^ k ∨ p ∣ n / p ^ l ⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] suffices p ^ k * p ∣ m ∨ p ^ l * p ∣ n by rwa [_root_.pow_succ', _root_.pow_succ'] [GOAL] p : ℕ p_prime : Prime p m n k l : ℕ hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) hpd3 : p ∣ m * n / (p ^ k * p ^ l) hpd4 : p ∣ m / p ^ k * (n / p ^ l) hpd5 : p ∣ m / p ^ k ∨ p ∣ n / p ^ l this : p ^ k * p ∣ m ∨ p ^ l * p ∣ n ⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] rwa [_root_.pow_succ', _root_.pow_succ'] [GOAL] p : ℕ p_prime : Prime p m n k l : ℕ hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) hpd3 : p ∣ m * n / (p ^ k * p ^ l) hpd4 : p ∣ m / p ^ k * (n / p ^ l) hpd5 : p ∣ m / p ^ k ∨ p ∣ n / p ^ l ⊢ p ^ k * p ∣ m ∨ p ^ l * p ∣ n [PROOFSTEP] exact hpd5.elim (fun h : p ∣ m / p ^ k => Or.inl <| mul_dvd_of_dvd_div hpm h) fun h : p ∣ n / p ^ l => Or.inr <| mul_dvd_of_dvd_div hpn h [GOAL] p : ℕ hp : Prime p a b : ℤ h : ↑p ∣ a * b ⊢ ↑p ∣ a ∨ ↑p ∣ b [PROOFSTEP] rw [← Int.dvd_natAbs, Int.coe_nat_dvd, Int.natAbs_mul, hp.dvd_mul] at h [GOAL] p : ℕ hp : Prime p a b : ℤ h : p ∣ Int.natAbs a ∨ p ∣ Int.natAbs b ⊢ ↑p ∣ a ∨ ↑p ∣ b [PROOFSTEP] rwa [← Int.dvd_natAbs, Int.coe_nat_dvd, ← Int.dvd_natAbs, Int.coe_nat_dvd] [GOAL] p : ℕ hp : _root_.Prime ↑p h : p = 1 ⊢ False [PROOFSTEP] simp [h, not_prime_one] at hp [GOAL] p : ℕ hp : _root_.Prime ↑p a b : ℕ ⊢ p ∣ a * b → p ∣ a ∨ p ∣ b [PROOFSTEP] simpa only [Int.coe_nat_dvd, (Int.ofNat_mul _ _).symm] using hp.2.2 a b
{"mathlib_filename": "Mathlib.Data.Nat.Prime", "llama_tokens": 26491}
[GOAL] x y : ℝ≥0 ⊢ 0 ^ 2 = x ↔ x = 0 [PROOFSTEP] rw [eq_comm, sq, zero_mul] [GOAL] x✝ y x : ℝ≥0 ⊢ ↑sqrt x * ↑sqrt x = x [PROOFSTEP] rw [← sq, sq_sqrt] [GOAL] x✝ y x : ℝ≥0 ⊢ ↑sqrt (x * x) = x [PROOFSTEP] rw [← sq, sqrt_sq x] [GOAL] x✝ y✝ x y : ℝ≥0 ⊢ ↑sqrt (x * y) = ↑sqrt x * ↑sqrt y [PROOFSTEP] rw [sqrt_eq_iff_sq_eq, mul_pow, sq_sqrt, sq_sqrt] [GOAL] x y : ℝ≥0 ⊢ 0 < ↑sqrt x ↔ 0 < x [PROOFSTEP] simp [pos_iff_ne_zero] [GOAL] f : CauSeq ℚ abs ⊢ 0 ≤ sqrtAux f 0 [PROOFSTEP] rw [sqrtAux, Rat.mkRat_eq, Rat.divInt_eq_div] [GOAL] f : CauSeq ℚ abs ⊢ 0 ≤ ↑↑(Nat.sqrt (Int.toNat (↑f 0).num)) / ↑↑(Nat.sqrt (↑f 0).den) [PROOFSTEP] apply div_nonneg [GOAL] case ha f : CauSeq ℚ abs ⊢ 0 ≤ ↑↑(Nat.sqrt (Int.toNat (↑f 0).num)) [PROOFSTEP] exact Int.cast_nonneg.2 (Int.ofNat_nonneg _) [GOAL] case hb f : CauSeq ℚ abs ⊢ 0 ≤ ↑↑(Nat.sqrt (↑f 0).den) [PROOFSTEP] exact Int.cast_nonneg.2 (Int.ofNat_nonneg _) [GOAL] x✝ y : ℝ x : ℝ≥0 ⊢ ↑(↑NNReal.sqrt x) = sqrt ↑x [PROOFSTEP] rw [Real.sqrt, Real.toNNReal_coe] [GOAL] x y : ℝ h : x ≤ 0 ⊢ sqrt x = 0 [PROOFSTEP] simp [sqrt, Real.toNNReal_eq_zero.2 h] [GOAL] x y : ℝ h : 0 ≤ x ⊢ sqrt x * sqrt x = x [PROOFSTEP] rw [sqrt, ← NNReal.coe_mul, NNReal.mul_self_sqrt, Real.coe_toNNReal _ h] [GOAL] x y : ℝ ⊢ sqrt x = y ↔ y * y = x ∧ 0 ≤ y ∨ x < 0 ∧ y = 0 [PROOFSTEP] constructor [GOAL] case mp x y : ℝ ⊢ sqrt x = y → y * y = x ∧ 0 ≤ y ∨ x < 0 ∧ y = 0 [PROOFSTEP] rintro rfl [GOAL] case mp x : ℝ ⊢ sqrt x * sqrt x = x ∧ 0 ≤ sqrt x ∨ x < 0 ∧ sqrt x = 0 [PROOFSTEP] cases' le_or_lt 0 x with hle hlt [GOAL] case mp.inl x : ℝ hle : 0 ≤ x ⊢ sqrt x * sqrt x = x ∧ 0 ≤ sqrt x ∨ x < 0 ∧ sqrt x = 0 [PROOFSTEP] exact Or.inl ⟨mul_self_sqrt hle, sqrt_nonneg x⟩ [GOAL] case mp.inr x : ℝ hlt : x < 0 ⊢ sqrt x * sqrt x = x ∧ 0 ≤ sqrt x ∨ x < 0 ∧ sqrt x = 0 [PROOFSTEP] exact Or.inr ⟨hlt, sqrt_eq_zero_of_nonpos hlt.le⟩ [GOAL] case mpr x y : ℝ ⊢ y * y = x ∧ 0 ≤ y ∨ x < 0 ∧ y = 0 → sqrt x = y [PROOFSTEP] rintro (⟨rfl, hy⟩ | ⟨hx, rfl⟩) [GOAL] case mpr.inl.intro y : ℝ hy : 0 ≤ y ⊢ sqrt (y * y) = y case mpr.inr.intro x : ℝ hx : x < 0 ⊢ sqrt x = 0 [PROOFSTEP] exacts [sqrt_mul_self hy, sqrt_eq_zero_of_nonpos hx.le] [GOAL] x y : ℝ hx : 0 ≤ x hy : 0 ≤ y h : sqrt x = y ⊢ y * y = x [PROOFSTEP] rw [← h, mul_self_sqrt hx] [GOAL] x y : ℝ hx : 0 ≤ x hy : 0 ≤ y h : y * y = x ⊢ sqrt x = y [PROOFSTEP] rw [← h, sqrt_mul_self hy] [GOAL] x y : ℝ h : 0 < y ⊢ sqrt x = y ↔ y * y = x [PROOFSTEP] simp [sqrt_eq_cases, h.ne', h.le] [GOAL] x y : ℝ ⊢ 1 * 1 = x ↔ x = 1 [PROOFSTEP] rw [eq_comm, mul_one] [GOAL] x y : ℝ h : 0 ≤ x ⊢ sqrt x ^ 2 = x [PROOFSTEP] rw [sq, mul_self_sqrt h] [GOAL] x y : ℝ h : 0 ≤ x ⊢ sqrt (x ^ 2) = x [PROOFSTEP] rw [sq, sqrt_mul_self h] [GOAL] x y : ℝ hx : 0 ≤ x hy : 0 ≤ y ⊢ sqrt x = y ↔ y ^ 2 = x [PROOFSTEP] rw [sq, sqrt_eq_iff_mul_self_eq hx hy] [GOAL] x✝ y x : ℝ ⊢ sqrt (x * x) = |x| [PROOFSTEP] rw [← abs_mul_abs_self x, sqrt_mul_self (abs_nonneg _)] [GOAL] x✝ y x : ℝ ⊢ sqrt (x ^ 2) = |x| [PROOFSTEP] rw [sq, sqrt_mul_self_eq_abs] [GOAL] x y : ℝ ⊢ sqrt 0 = 0 [PROOFSTEP] simp [sqrt] [GOAL] x y : ℝ ⊢ sqrt 1 = 1 [PROOFSTEP] simp [sqrt] [GOAL] x y : ℝ hy : 0 ≤ y ⊢ sqrt x ≤ sqrt y ↔ x ≤ y [PROOFSTEP] rw [sqrt, sqrt, NNReal.coe_le_coe, NNReal.sqrt_le_sqrt_iff, Real.toNNReal_le_toNNReal_iff hy] [GOAL] x y : ℝ hy : 0 < y ⊢ sqrt x < sqrt y ↔ x < y [PROOFSTEP] rw [sqrt, sqrt, NNReal.coe_lt_coe, NNReal.sqrt_lt_sqrt_iff, toNNReal_lt_toNNReal_iff hy] [GOAL] x y : ℝ h : x ≤ y ⊢ sqrt x ≤ sqrt y [PROOFSTEP] rw [sqrt, sqrt, NNReal.coe_le_coe, NNReal.sqrt_le_sqrt_iff] [GOAL] x y : ℝ h : x ≤ y ⊢ toNNReal x ≤ toNNReal y [PROOFSTEP] exact toNNReal_le_toNNReal h [GOAL] x y : ℝ hy : 0 ≤ y ⊢ sqrt x ≤ y ↔ x ≤ y ^ 2 [PROOFSTEP] rw [sqrt, ← Real.le_toNNReal_iff_coe_le hy, NNReal.sqrt_le_iff, sq, ← Real.toNNReal_mul hy, Real.toNNReal_le_toNNReal_iff (mul_self_nonneg y), sq] [GOAL] x y : ℝ ⊢ sqrt x ≤ y ↔ 0 ≤ y ∧ x ≤ y ^ 2 [PROOFSTEP] rw [← and_iff_right_of_imp fun h => (sqrt_nonneg x).trans h, and_congr_right_iff] [GOAL] x y : ℝ ⊢ 0 ≤ y → (sqrt x ≤ y ↔ x ≤ y ^ 2) [PROOFSTEP] exact sqrt_le_left [GOAL] x y : ℝ hx : 0 ≤ x hy : 0 ≤ y ⊢ sqrt x < y ↔ x < y ^ 2 [PROOFSTEP] rw [← sqrt_lt_sqrt_iff hx, sqrt_sq hy] [GOAL] x y : ℝ hy : 0 < y ⊢ sqrt x < y ↔ x < y ^ 2 [PROOFSTEP] rw [← sqrt_lt_sqrt_iff_of_pos (pow_pos hy _), sqrt_sq hy.le] [GOAL] x y : ℝ h : x ^ 2 ≤ y ⊢ |x| ≤ sqrt y [PROOFSTEP] rw [← sqrt_sq_eq_abs] [GOAL] x y : ℝ h : x ^ 2 ≤ y ⊢ sqrt (x ^ 2) ≤ sqrt y [PROOFSTEP] exact sqrt_le_sqrt h [GOAL] x y : ℝ h : 0 ≤ y ⊢ x ^ 2 ≤ y ↔ -sqrt y ≤ x ∧ x ≤ sqrt y [PROOFSTEP] constructor [GOAL] case mp x y : ℝ h : 0 ≤ y ⊢ x ^ 2 ≤ y → -sqrt y ≤ x ∧ x ≤ sqrt y [PROOFSTEP] simpa only [abs_le] using abs_le_sqrt [GOAL] case mpr x y : ℝ h : 0 ≤ y ⊢ -sqrt y ≤ x ∧ x ≤ sqrt y → x ^ 2 ≤ y [PROOFSTEP] rw [← abs_le, ← sq_abs] [GOAL] case mpr x y : ℝ h : 0 ≤ y ⊢ |x| ≤ sqrt y → |x| ^ 2 ≤ y [PROOFSTEP] exact (le_sqrt (abs_nonneg x) h).mp [GOAL] x y : ℝ hx : 0 ≤ x hy : 0 ≤ y ⊢ sqrt x = sqrt y ↔ x = y [PROOFSTEP] simp [le_antisymm_iff, hx, hy] [GOAL] x y : ℝ h : 0 ≤ x ⊢ sqrt x = 0 ↔ x = 0 [PROOFSTEP] simpa using sqrt_inj h le_rfl [GOAL] x y : ℝ ⊢ sqrt x = 0 ↔ x ≤ 0 [PROOFSTEP] rw [sqrt, NNReal.coe_eq_zero, NNReal.sqrt_eq_zero, Real.toNNReal_eq_zero] [GOAL] x y : ℝ h : 0 ≤ x ⊢ sqrt x ≠ 0 ↔ x ≠ 0 [PROOFSTEP] rw [not_iff_not, sqrt_eq_zero h] [GOAL] x y : ℝ ⊢ sqrt x ≠ 0 ↔ 0 < x [PROOFSTEP] rw [← not_le, not_iff_not, sqrt_eq_zero'] [GOAL] x y : ℝ ⊢ sqrt x ≤ 0 ↔ sqrt x = 0 [PROOFSTEP] simp [le_antisymm_iff, sqrt_nonneg] [GOAL] x : ℝ hx : 0 ≤ x y : ℝ ⊢ sqrt (x * y) = sqrt x * sqrt y [PROOFSTEP] simp_rw [sqrt, ← NNReal.coe_mul, NNReal.coe_eq, Real.toNNReal_mul hx, NNReal.sqrt_mul] [GOAL] x y : ℝ hy : 0 ≤ y ⊢ sqrt (x * y) = sqrt x * sqrt y [PROOFSTEP] rw [mul_comm, sqrt_mul hy, mul_comm] [GOAL] x : ℝ ⊢ sqrt x⁻¹ = (sqrt x)⁻¹ [PROOFSTEP] rw [sqrt, Real.toNNReal_inv, NNReal.sqrt_inv, NNReal.coe_inv, sqrt] [GOAL] x : ℝ hx : 0 ≤ x y : ℝ ⊢ sqrt (x / y) = sqrt x / sqrt y [PROOFSTEP] rw [division_def, sqrt_mul hx, sqrt_inv, division_def] [GOAL] x y : ℝ hy : 0 ≤ y ⊢ sqrt (x / y) = sqrt x / sqrt y [PROOFSTEP] rw [division_def, sqrt_mul' x (inv_nonneg.2 hy), sqrt_inv, division_def] [GOAL] x : ℝ ⊢ x / sqrt x = sqrt x [PROOFSTEP] cases' le_or_lt x 0 with h h [GOAL] case inl x : ℝ h : x ≤ 0 ⊢ x / sqrt x = sqrt x [PROOFSTEP] rw [sqrt_eq_zero'.mpr h, div_zero] [GOAL] case inr x : ℝ h : 0 < x ⊢ x / sqrt x = sqrt x [PROOFSTEP] rw [div_eq_iff (sqrt_ne_zero'.mpr h), mul_self_sqrt h.le] [GOAL] x : ℝ ⊢ sqrt x / x = 1 / sqrt x [PROOFSTEP] rw [← div_sqrt, one_div_div, div_sqrt] [GOAL] x : ℝ ⊢ sqrt x / x = (sqrt x)⁻¹ [PROOFSTEP] rw [sqrt_div_self', one_div] [GOAL] x y : ℝ hx : 0 ≤ x ⊢ x < sqrt y ↔ x ^ 2 < y [PROOFSTEP] rw [← sqrt_lt_sqrt_iff (sq_nonneg _), sqrt_sq hx] [GOAL] x y : ℝ ⊢ x ^ 2 < y ↔ -sqrt y < x ∧ x < sqrt y [PROOFSTEP] rw [← abs_lt, ← sq_abs, lt_sqrt (abs_nonneg _)] [GOAL] x y : ℝ h : sqrt x < y ⊢ x < y ^ 2 [PROOFSTEP] have hy := x.sqrt_nonneg.trans_lt h [GOAL] x y : ℝ h : sqrt x < y hy : 0 < y ⊢ x < y ^ 2 [PROOFSTEP] rwa [← sqrt_lt_sqrt_iff_of_pos (sq_pos_of_pos hy), sqrt_sq hy.le] [GOAL] a : ℕ ⊢ ↑(Nat.sqrt a) ≤ sqrt ↑a [PROOFSTEP] rw [Real.le_sqrt (Nat.cast_nonneg _) (Nat.cast_nonneg _)] [GOAL] a : ℕ ⊢ ↑(Nat.sqrt a) ^ 2 ≤ ↑a [PROOFSTEP] norm_cast [GOAL] a : ℕ ⊢ Nat.sqrt a ^ 2 ≤ a [PROOFSTEP] exact Nat.sqrt_le' a [GOAL] a : ℕ ⊢ sqrt ↑a ≤ ↑(Nat.sqrt a) + 1 [PROOFSTEP] rw [Real.sqrt_le_iff] [GOAL] a : ℕ ⊢ 0 ≤ ↑(Nat.sqrt a) + 1 ∧ ↑a ≤ (↑(Nat.sqrt a) + 1) ^ 2 [PROOFSTEP] constructor [GOAL] case left a : ℕ ⊢ 0 ≤ ↑(Nat.sqrt a) + 1 [PROOFSTEP] norm_cast [GOAL] case left a : ℕ ⊢ 0 ≤ Nat.sqrt a + 1 [PROOFSTEP] apply zero_le [GOAL] case right a : ℕ ⊢ ↑a ≤ (↑(Nat.sqrt a) + 1) ^ 2 [PROOFSTEP] norm_cast [GOAL] case right a : ℕ ⊢ a ≤ (Nat.sqrt a + 1) ^ 2 [PROOFSTEP] exact le_of_lt (Nat.lt_succ_sqrt' a) [GOAL] r : ℝ ⊢ 0 ≤ r ↔ ∃ s, r = star s * s [PROOFSTEP] refine ⟨fun hr => ⟨sqrt r, (mul_self_sqrt hr).symm⟩, ?_⟩ [GOAL] r : ℝ ⊢ (∃ s, r = star s * s) → 0 ≤ r [PROOFSTEP] rintro ⟨s, rfl⟩ [GOAL] case intro s : ℝ ⊢ 0 ≤ star s * s [PROOFSTEP] exact mul_self_nonneg s
{"mathlib_filename": "Mathlib.Data.Real.Sqrt", "llama_tokens": 4710}
{"mathlib_filename": "Mathlib.RingTheory.Subring.Pointwise", "llama_tokens": 0}
[GOAL] x : ℝ h : 0 < x ⊢ sin x < x [PROOFSTEP] cases' lt_or_le 1 x with h' h' [GOAL] case inl x : ℝ h : 0 < x h' : 1 < x ⊢ sin x < x [PROOFSTEP] exact (sin_le_one x).trans_lt h' [GOAL] case inr x : ℝ h : 0 < x h' : x ≤ 1 ⊢ sin x < x [PROOFSTEP] have hx : |x| = x := abs_of_nonneg h.le [GOAL] case inr x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x ⊢ sin x < x [PROOFSTEP] have := le_of_abs_le (sin_bound <| show |x| ≤ 1 by rwa [hx]) [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x ⊢ |x| ≤ 1 [PROOFSTEP] rwa [hx] [GOAL] case inr x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this : sin x - (x - x ^ 3 / 6) ≤ |x| ^ 4 * (5 / 96) ⊢ sin x < x [PROOFSTEP] rw [sub_le_iff_le_add', hx] at this [GOAL] case inr x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96) ⊢ sin x < x [PROOFSTEP] apply this.trans_lt [GOAL] case inr x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96) ⊢ x - x ^ 3 / 6 + x ^ 4 * (5 / 96) < x [PROOFSTEP] rw [sub_add, sub_lt_self_iff, sub_pos, div_eq_mul_inv (x ^ 3)] [GOAL] case inr x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96) ⊢ x ^ 4 * (5 / 96) < x ^ 3 * 6⁻¹ [PROOFSTEP] refine' mul_lt_mul' _ (by norm_num) (by norm_num) (pow_pos h 3) [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96) ⊢ 5 / 96 < 6⁻¹ [PROOFSTEP] norm_num [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96) ⊢ 0 ≤ 5 / 96 [PROOFSTEP] norm_num [GOAL] case inr x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96) ⊢ x ^ 4 ≤ x ^ 3 [PROOFSTEP] apply pow_le_pow_of_le_one h.le h' [GOAL] case inr x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96) ⊢ 3 ≤ 4 [PROOFSTEP] norm_num [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 ⊢ x - x ^ 3 / 4 < sin x [PROOFSTEP] have hx : |x| = x := abs_of_nonneg h.le [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x ⊢ x - x ^ 3 / 4 < sin x [PROOFSTEP] have := neg_le_of_abs_le (sin_bound <| show |x| ≤ 1 by rwa [hx]) [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x ⊢ |x| ≤ 1 [PROOFSTEP] rwa [hx] [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this : -(|x| ^ 4 * (5 / 96)) ≤ sin x - (x - x ^ 3 / 6) ⊢ x - x ^ 3 / 4 < sin x [PROOFSTEP] rw [le_sub_iff_add_le, hx] at this [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x ⊢ x - x ^ 3 / 4 < sin x [PROOFSTEP] refine' lt_of_lt_of_le _ this [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x ⊢ x - x ^ 3 / 4 < -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) [PROOFSTEP] have : x ^ 3 / ↑4 - x ^ 3 / ↑6 = x ^ 3 * 12⁻¹ := by ring [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x ⊢ x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹ [PROOFSTEP] ring [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this✝ : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x this : x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹ ⊢ x - x ^ 3 / 4 < -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) [PROOFSTEP] rw [add_comm, sub_add, sub_neg_eq_add, sub_lt_sub_iff_left, ← lt_sub_iff_add_lt', this] [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this✝ : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x this : x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹ ⊢ x ^ 4 * (5 / 96) < x ^ 3 * 12⁻¹ [PROOFSTEP] refine' mul_lt_mul' _ (by norm_num) (by norm_num) (pow_pos h 3) [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this✝ : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x this : x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹ ⊢ 5 / 96 < 12⁻¹ [PROOFSTEP] norm_num [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this✝ : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x this : x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹ ⊢ 0 ≤ 5 / 96 [PROOFSTEP] norm_num [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this✝ : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x this : x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹ ⊢ x ^ 4 ≤ x ^ 3 [PROOFSTEP] apply pow_le_pow_of_le_one h.le h' [GOAL] x : ℝ h : 0 < x h' : x ≤ 1 hx : |x| = x this✝ : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x this : x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹ ⊢ 3 ≤ 4 [PROOFSTEP] norm_num [GOAL] x : ℝ h : cos x ≠ 0 ⊢ HasDerivAt (fun y => tan y - y) (↑1 / cos x ^ 2 - 1) x [PROOFSTEP] simpa using (hasDerivAt_tan h).add (hasDerivAt_id x).neg [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 ⊢ x < tan x [PROOFSTEP] let U := Ico 0 (π / 2) [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) ⊢ x < tan x [PROOFSTEP] have intU : interior U = Ioo 0 (π / 2) := interior_Ico [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) ⊢ x < tan x [PROOFSTEP] have half_pi_pos : 0 < π / 2 := div_pos pi_pos two_pos [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 ⊢ x < tan x [PROOFSTEP] have cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y := by intro y hy exact cos_pos_of_mem_Ioo (Ico_subset_Ioo_left (neg_lt_zero.mpr half_pi_pos) hy) [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 ⊢ ∀ {y : ℝ}, y ∈ U → 0 < cos y [PROOFSTEP] intro y hy [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 y : ℝ hy : y ∈ U ⊢ 0 < cos y [PROOFSTEP] exact cos_pos_of_mem_Ioo (Ico_subset_Ioo_left (neg_lt_zero.mpr half_pi_pos) hy) [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y ⊢ x < tan x [PROOFSTEP] have sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y := by intro y hy rw [intU] at hy exact sin_pos_of_mem_Ioo (Ioo_subset_Ioo_right (div_le_self pi_pos.le one_le_two) hy) [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y ⊢ ∀ {y : ℝ}, y ∈ interior U → 0 < sin y [PROOFSTEP] intro y hy [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y y : ℝ hy : y ∈ interior U ⊢ 0 < sin y [PROOFSTEP] rw [intU] at hy [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y y : ℝ hy : y ∈ Ioo 0 (π / 2) ⊢ 0 < sin y [PROOFSTEP] exact sin_pos_of_mem_Ioo (Ioo_subset_Ioo_right (div_le_self pi_pos.le one_le_two) hy) [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y ⊢ x < tan x [PROOFSTEP] have tan_cts_U : ContinuousOn tan U := by apply ContinuousOn.mono continuousOn_tan intro z hz simp only [mem_setOf_eq] exact (cos_pos hz).ne' [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y ⊢ ContinuousOn tan U [PROOFSTEP] apply ContinuousOn.mono continuousOn_tan [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y ⊢ U ⊆ {x | cos x ≠ 0} [PROOFSTEP] intro z hz [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y z : ℝ hz : z ∈ U ⊢ z ∈ {x | cos x ≠ 0} [PROOFSTEP] simp only [mem_setOf_eq] [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y z : ℝ hz : z ∈ U ⊢ cos z ≠ 0 [PROOFSTEP] exact (cos_pos hz).ne' [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U ⊢ x < tan x [PROOFSTEP] have tan_minus_id_cts : ContinuousOn (fun y : ℝ => tan y - y) U := tan_cts_U.sub continuousOn_id [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U ⊢ x < tan x [PROOFSTEP] have deriv_pos : ∀ y : ℝ, y ∈ interior U → 0 < deriv (fun y' : ℝ => tan y' - y') y := by intro y hy have := cos_pos (interior_subset hy) simp only [deriv_tan_sub_id y this.ne', one_div, gt_iff_lt, sub_pos] norm_cast have bd2 : cos y ^ 2 < 1 := by apply lt_of_le_of_ne y.cos_sq_le_one rw [cos_sq'] simpa only [Ne.def, sub_eq_self, pow_eq_zero_iff, Nat.succ_pos'] using (sin_pos hy).ne' rwa [one_div, lt_inv, inv_one] · exact zero_lt_one simpa only [sq, mul_self_pos] using this.ne' [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U ⊢ ∀ (y : ℝ), y ∈ interior U → 0 < deriv (fun y' => tan y' - y') y [PROOFSTEP] intro y hy [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U y : ℝ hy : y ∈ interior U ⊢ 0 < deriv (fun y' => tan y' - y') y [PROOFSTEP] have := cos_pos (interior_subset hy) [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U y : ℝ hy : y ∈ interior U this : 0 < cos y ⊢ 0 < deriv (fun y' => tan y' - y') y [PROOFSTEP] simp only [deriv_tan_sub_id y this.ne', one_div, gt_iff_lt, sub_pos] [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U y : ℝ hy : y ∈ interior U this : 0 < cos y ⊢ 1 < ↑1 / cos y ^ 2 [PROOFSTEP] norm_cast [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U y : ℝ hy : y ∈ interior U this : 0 < cos y ⊢ 1 < 1 / cos y ^ 2 [PROOFSTEP] have bd2 : cos y ^ 2 < 1 := by apply lt_of_le_of_ne y.cos_sq_le_one rw [cos_sq'] simpa only [Ne.def, sub_eq_self, pow_eq_zero_iff, Nat.succ_pos'] using (sin_pos hy).ne' [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U y : ℝ hy : y ∈ interior U this : 0 < cos y ⊢ cos y ^ 2 < 1 [PROOFSTEP] apply lt_of_le_of_ne y.cos_sq_le_one [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U y : ℝ hy : y ∈ interior U this : 0 < cos y ⊢ cos y ^ 2 ≠ 1 [PROOFSTEP] rw [cos_sq'] [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U y : ℝ hy : y ∈ interior U this : 0 < cos y ⊢ 1 - sin y ^ 2 ≠ 1 [PROOFSTEP] simpa only [Ne.def, sub_eq_self, pow_eq_zero_iff, Nat.succ_pos'] using (sin_pos hy).ne' [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U y : ℝ hy : y ∈ interior U this : 0 < cos y bd2 : cos y ^ 2 < 1 ⊢ 1 < 1 / cos y ^ 2 [PROOFSTEP] rwa [one_div, lt_inv, inv_one] [GOAL] case ha x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U y : ℝ hy : y ∈ interior U this : 0 < cos y bd2 : cos y ^ 2 < 1 ⊢ 0 < 1 [PROOFSTEP] exact zero_lt_one [GOAL] case hb x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U y : ℝ hy : y ∈ interior U this : 0 < cos y bd2 : cos y ^ 2 < 1 ⊢ 0 < cos y ^ 2 [PROOFSTEP] simpa only [sq, mul_self_pos] using this.ne' [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U deriv_pos : ∀ (y : ℝ), y ∈ interior U → 0 < deriv (fun y' => tan y' - y') y ⊢ x < tan x [PROOFSTEP] have mono := Convex.strictMonoOn_of_deriv_pos (convex_Ico 0 (π / 2)) tan_minus_id_cts deriv_pos [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U deriv_pos : ∀ (y : ℝ), y ∈ interior U → 0 < deriv (fun y' => tan y' - y') y mono : StrictMonoOn (fun y => tan y - y) (Ico 0 (π / 2)) ⊢ x < tan x [PROOFSTEP] have zero_in_U : (0 : ℝ) ∈ U := by rwa [left_mem_Ico] [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U deriv_pos : ∀ (y : ℝ), y ∈ interior U → 0 < deriv (fun y' => tan y' - y') y mono : StrictMonoOn (fun y => tan y - y) (Ico 0 (π / 2)) ⊢ 0 ∈ U [PROOFSTEP] rwa [left_mem_Ico] [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U deriv_pos : ∀ (y : ℝ), y ∈ interior U → 0 < deriv (fun y' => tan y' - y') y mono : StrictMonoOn (fun y => tan y - y) (Ico 0 (π / 2)) zero_in_U : 0 ∈ U ⊢ x < tan x [PROOFSTEP] have x_in_U : x ∈ U := ⟨h1.le, h2⟩ [GOAL] x : ℝ h1 : 0 < x h2 : x < π / 2 U : Set ℝ := Ico 0 (π / 2) intU : interior U = Ioo 0 (π / 2) half_pi_pos : 0 < π / 2 cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y tan_cts_U : ContinuousOn tan U tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U deriv_pos : ∀ (y : ℝ), y ∈ interior U → 0 < deriv (fun y' => tan y' - y') y mono : StrictMonoOn (fun y => tan y - y) (Ico 0 (π / 2)) zero_in_U : 0 ∈ U x_in_U : x ∈ U ⊢ x < tan x [PROOFSTEP] simpa only [tan_zero, sub_zero, sub_pos] using mono zero_in_U x_in_U h1 [GOAL] x : ℝ h1 : 0 ≤ x h2 : x < π / 2 ⊢ x ≤ tan x [PROOFSTEP] rcases eq_or_lt_of_le h1 with (rfl | h1') [GOAL] case inl h1 : 0 ≤ 0 h2 : 0 < π / 2 ⊢ 0 ≤ tan 0 [PROOFSTEP] rw [tan_zero] [GOAL] case inr x : ℝ h1 : 0 ≤ x h2 : x < π / 2 h1' : 0 < x ⊢ x ≤ tan x [PROOFSTEP] exact le_of_lt (lt_tan h1' h2) [GOAL] x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 ⊢ cos x < 1 / sqrt (x ^ 2 + 1) [PROOFSTEP] suffices ∀ {y : ℝ} (_ : 0 < y) (_ : y ≤ 3 * π / 2), cos y < ↑1 / sqrt (y ^ 2 + 1) by rcases lt_or_lt_iff_ne.mpr hx3.symm with ⟨h⟩ · exact this h hx2 · convert this (by linarith : 0 < -x) (by linarith) using 1 · rw [cos_neg] · rw [neg_sq] [GOAL] x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1) ⊢ cos x < 1 / sqrt (x ^ 2 + 1) [PROOFSTEP] rcases lt_or_lt_iff_ne.mpr hx3.symm with ⟨h⟩ [GOAL] case inl x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1) h : 0 < x ⊢ cos x < 1 / sqrt (x ^ 2 + 1) [PROOFSTEP] exact this h hx2 [GOAL] case inr x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1) h✝ : x < 0 ⊢ cos x < 1 / sqrt (x ^ 2 + 1) [PROOFSTEP] convert this (by linarith : 0 < -x) (by linarith) using 1 [GOAL] x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1) h✝ : x < 0 ⊢ 0 < -x [PROOFSTEP] linarith [GOAL] x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1) h✝ : x < 0 ⊢ -x ≤ 3 * π / 2 [PROOFSTEP] linarith [GOAL] case h.e'_3 x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1) h✝ : x < 0 ⊢ cos x = cos (-x) [PROOFSTEP] rw [cos_neg] [GOAL] case h.e'_4 x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1) h✝ : x < 0 ⊢ 1 / sqrt (x ^ 2 + 1) = 1 / sqrt ((-x) ^ 2 + 1) [PROOFSTEP] rw [neg_sq] [GOAL] x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 ⊢ ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1) [PROOFSTEP] intro y hy1 hy2 [GOAL] x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 y : ℝ hy1 : 0 < y hy2 : y ≤ 3 * π / 2 ⊢ cos y < 1 / sqrt (y ^ 2 + 1) [PROOFSTEP] have hy3 : ↑0 < y ^ 2 + 1 := by linarith [sq_nonneg y] [GOAL] x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 y : ℝ hy1 : 0 < y hy2 : y ≤ 3 * π / 2 ⊢ 0 < y ^ 2 + 1 [PROOFSTEP] linarith [sq_nonneg y] [GOAL] x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 y : ℝ hy1 : 0 < y hy2 : y ≤ 3 * π / 2 hy3 : 0 < y ^ 2 + 1 ⊢ cos y < 1 / sqrt (y ^ 2 + 1) [PROOFSTEP] rcases lt_or_le y (π / 2) with (hy2' | hy1') [GOAL] case inl x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 y : ℝ hy1 : 0 < y hy2 : y ≤ 3 * π / 2 hy3 : 0 < y ^ 2 + 1 hy2' : y < π / 2 ⊢ cos y < 1 / sqrt (y ^ 2 + 1) [PROOFSTEP] have hy4 : 0 < cos y := cos_pos_of_mem_Ioo ⟨by linarith, hy2'⟩ [GOAL] x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 y : ℝ hy1 : 0 < y hy2 : y ≤ 3 * π / 2 hy3 : 0 < y ^ 2 + 1 hy2' : y < π / 2 ⊢ -(π / 2) < y [PROOFSTEP] linarith [GOAL] case inl x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 y : ℝ hy1 : 0 < y hy2 : y ≤ 3 * π / 2 hy3 : 0 < y ^ 2 + 1 hy2' : y < π / 2 hy4 : 0 < cos y ⊢ cos y < 1 / sqrt (y ^ 2 + 1) [PROOFSTEP] rw [← abs_of_nonneg (cos_nonneg_of_mem_Icc ⟨by linarith, hy2'.le⟩), ← abs_of_nonneg (one_div_nonneg.mpr (sqrt_nonneg _)), ← sq_lt_sq, div_pow, one_pow, sq_sqrt hy3.le, lt_one_div (pow_pos hy4 _) hy3, ← inv_one_add_tan_sq hy4.ne', one_div, inv_inv, add_comm, add_lt_add_iff_left, sq_lt_sq, abs_of_pos hy1, abs_of_nonneg (tan_nonneg_of_nonneg_of_le_pi_div_two hy1.le hy2'.le)] [GOAL] x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 y : ℝ hy1 : 0 < y hy2 : y ≤ 3 * π / 2 hy3 : 0 < y ^ 2 + 1 hy2' : y < π / 2 hy4 : 0 < cos y ⊢ -(π / 2) ≤ y [PROOFSTEP] linarith [GOAL] case inl x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 y : ℝ hy1 : 0 < y hy2 : y ≤ 3 * π / 2 hy3 : 0 < y ^ 2 + 1 hy2' : y < π / 2 hy4 : 0 < cos y ⊢ y < tan y [PROOFSTEP] exact Real.lt_tan hy1 hy2' [GOAL] case inr x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 y : ℝ hy1 : 0 < y hy2 : y ≤ 3 * π / 2 hy3 : 0 < y ^ 2 + 1 hy1' : π / 2 ≤ y ⊢ cos y < 1 / sqrt (y ^ 2 + 1) [PROOFSTEP] refine' lt_of_le_of_lt _ (one_div_pos.mpr <| sqrt_pos_of_pos hy3) [GOAL] case inr x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 y : ℝ hy1 : 0 < y hy2 : y ≤ 3 * π / 2 hy3 : 0 < y ^ 2 + 1 hy1' : π / 2 ≤ y ⊢ cos y ≤ 0 [PROOFSTEP] exact cos_nonpos_of_pi_div_two_le_of_le hy1' (by linarith [pi_pos]) [GOAL] x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 y : ℝ hy1 : 0 < y hy2 : y ≤ 3 * π / 2 hy3 : 0 < y ^ 2 + 1 hy1' : π / 2 ≤ y ⊢ y ≤ π + π / 2 [PROOFSTEP] linarith [pi_pos] [GOAL] x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 ⊢ cos x ≤ 1 / sqrt (x ^ 2 + 1) [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | hx3) [GOAL] case inl hx1 : -(3 * π / 2) ≤ 0 hx2 : 0 ≤ 3 * π / 2 ⊢ cos 0 ≤ 1 / sqrt (0 ^ 2 + 1) [PROOFSTEP] simp [GOAL] case inr x : ℝ hx1 : -(3 * π / 2) ≤ x hx2 : x ≤ 3 * π / 2 hx3 : x ≠ 0 ⊢ cos x ≤ 1 / sqrt (x ^ 2 + 1) [PROOFSTEP] exact (cos_lt_one_div_sqrt_sq_add_one hx1 hx2 hx3).le
{"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Bounds", "llama_tokens": 12956}
{"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Linear", "llama_tokens": 0}
[GOAL] E : Type u_1 i : SeminormedAddCommGroup E r : ℝ w : E ⊢ w ∈ sphere 0 r → -w ∈ sphere 0 r [PROOFSTEP] simp [GOAL] E : Type u_1 i : SeminormedAddCommGroup E r✝ r : ℝ w : E ⊢ w ∈ ball 0 r → -w ∈ ball 0 r [PROOFSTEP] simp [GOAL] E : Type u_1 i : SeminormedAddCommGroup E r✝ r : ℝ w : E ⊢ w ∈ closedBall 0 r → -w ∈ closedBall 0 r [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Analysis.Normed.Group.BallSphere", "llama_tokens": 189}
[GOAL] F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F α₀ α₁ α₂ : Type u₀ β : Type u₁ f : α₀ → α₁ f' : α₁ → α₂ x : F α₀ β ⊢ fst f' (fst f x) = fst (f' ∘ f) x [PROOFSTEP] simp [fst, bimap_bimap] [GOAL] F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F α₀ α₁ : Type u₀ β₀ β₁ : Type u₁ f : α₀ → α₁ f' : β₀ → β₁ x : F α₀ β₀ ⊢ fst f (snd f' x) = bimap f f' x [PROOFSTEP] simp [fst, bimap_bimap] [GOAL] F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F α₀ α₁ : Type u₀ β₀ β₁ : Type u₁ f : α₀ → α₁ f' : β₀ → β₁ x : F α₀ β₀ ⊢ snd f' (fst f x) = bimap f f' x [PROOFSTEP] simp [snd, bimap_bimap] [GOAL] F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F α : Type u₀ β₀ β₁ β₂ : Type u₁ g : β₀ → β₁ g' : β₁ → β₂ x : F α β₀ ⊢ snd g' (snd g x) = snd (g' ∘ g) x [PROOFSTEP] simp [snd, bimap_bimap] [GOAL] F : Type u₀ → Type u₁ → Type u₂ inst✝ : Bifunctor F ⊢ LawfulBifunctor Prod [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 F : Type u₀ → Type u₁ → Type u₂ inst✝ : Bifunctor F ⊢ ∀ {α : Type ?u.3875} {β : Type ?u.3874} (x : α × β), bimap id id x = x [PROOFSTEP] intros [GOAL] case refine'_2 F : Type u₀ → Type u₁ → Type u₂ inst✝ : Bifunctor F ⊢ ∀ {α₀ α₁ α₂ : Type ?u.3875} {β₀ β₁ β₂ : Type ?u.3874} (f : α₀ → α₁) (f' : α₁ → α₂) (g : β₀ → β₁) (g' : β₁ → β₂) (x : α₀ × β₀), bimap f' g' (bimap f g x) = bimap (f' ∘ f) (g' ∘ g) x [PROOFSTEP] intros [GOAL] case refine'_1 F : Type u₀ → Type u₁ → Type u₂ inst✝ : Bifunctor F α✝ : Type ?u.3875 β✝ : Type ?u.3874 x✝ : α✝ × β✝ ⊢ bimap id id x✝ = x✝ [PROOFSTEP] rfl [GOAL] case refine'_2 F : Type u₀ → Type u₁ → Type u₂ inst✝ : Bifunctor F α₀✝ α₁✝ α₂✝ : Type ?u.3875 β₀✝ β₁✝ β₂✝ : Type ?u.3874 f✝ : α₀✝ → α₁✝ f'✝ : α₁✝ → α₂✝ g✝ : β₀✝ → β₁✝ g'✝ : β₁✝ → β₂✝ x✝ : α₀✝ × β₀✝ ⊢ bimap f'✝ g'✝ (bimap f✝ g✝ x✝) = bimap (f'✝ ∘ f✝) (g'✝ ∘ g✝) x✝ [PROOFSTEP] rfl [GOAL] F : Type u₀ → Type u₁ → Type u₂ inst✝ : Bifunctor F ⊢ LawfulBifunctor Const [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 F : Type u₀ → Type u₁ → Type u₂ inst✝ : Bifunctor F ⊢ ∀ {α : Type ?u.4176} {β : Type ?u.4177} (x : Const α β), bimap id id x = x [PROOFSTEP] intros [GOAL] case refine'_2 F : Type u₀ → Type u₁ → Type u₂ inst✝ : Bifunctor F ⊢ ∀ {α₀ α₁ α₂ : Type ?u.4176} {β₀ β₁ β₂ : Type ?u.4177} (f : α₀ → α₁) (f' : α₁ → α₂) (g : β₀ → β₁) (g' : β₁ → β₂) (x : Const α₀ β₀), bimap f' g' (bimap f g x) = bimap (f' ∘ f) (g' ∘ g) x [PROOFSTEP] intros [GOAL] case refine'_1 F : Type u₀ → Type u₁ → Type u₂ inst✝ : Bifunctor F α✝ : Type ?u.4176 β✝ : Type ?u.4177 x✝ : Const α✝ β✝ ⊢ bimap id id x✝ = x✝ [PROOFSTEP] rfl [GOAL] case refine'_2 F : Type u₀ → Type u₁ → Type u₂ inst✝ : Bifunctor F α₀✝ α₁✝ α₂✝ : Type ?u.4176 β₀✝ β₁✝ β₂✝ : Type ?u.4177 f✝ : α₀✝ → α₁✝ f'✝ : α₁✝ → α₂✝ g✝ : β₀✝ → β₁✝ g'✝ : β₁✝ → β₂✝ x✝ : Const α₀✝ β₀✝ ⊢ bimap f'✝ g'✝ (bimap f✝ g✝ x✝) = bimap (f'✝ ∘ f✝) (g'✝ ∘ g✝) x✝ [PROOFSTEP] rfl [GOAL] F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F ⊢ LawfulBifunctor (_root_.flip F) [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F ⊢ ∀ {α : Type u₁} {β : Type u₀} (x : _root_.flip F α β), bimap id id x = x [PROOFSTEP] intros [GOAL] case refine'_2 F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F ⊢ ∀ {α₀ α₁ α₂ : Type u₁} {β₀ β₁ β₂ : Type u₀} (f : α₀ → α₁) (f' : α₁ → α₂) (g : β₀ → β₁) (g' : β₁ → β₂) (x : _root_.flip F α₀ β₀), bimap f' g' (bimap f g x) = bimap (f' ∘ f) (g' ∘ g) x [PROOFSTEP] intros [GOAL] case refine'_1 F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F α✝ : Type u₁ β✝ : Type u₀ x✝ : _root_.flip F α✝ β✝ ⊢ bimap id id x✝ = x✝ [PROOFSTEP] simp [bimap, functor_norm] [GOAL] case refine'_2 F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F α₀✝ α₁✝ α₂✝ : Type u₁ β₀✝ β₁✝ β₂✝ : Type u₀ f✝ : α₀✝ → α₁✝ f'✝ : α₁✝ → α₂✝ g✝ : β₀✝ → β₁✝ g'✝ : β₁✝ → β₂✝ x✝ : _root_.flip F α₀✝ β₀✝ ⊢ bimap f'✝ g'✝ (bimap f✝ g✝ x✝) = bimap (f'✝ ∘ f✝) (g'✝ ∘ g✝) x✝ [PROOFSTEP] simp [bimap, functor_norm] [GOAL] F : Type u₀ → Type u₁ → Type u₂ inst✝ : Bifunctor F ⊢ LawfulBifunctor Sum [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 F : Type u₀ → Type u₁ → Type u₂ inst✝ : Bifunctor F ⊢ ∀ {α : Type ?u.4990} {β : Type ?u.4989} (x : α ⊕ β), bimap id id x = x [PROOFSTEP] aesop [GOAL] case refine'_2 F : Type u₀ → Type u₁ → Type u₂ inst✝ : Bifunctor F ⊢ ∀ {α₀ α₁ α₂ : Type ?u.4990} {β₀ β₁ β₂ : Type ?u.4989} (f : α₀ → α₁) (f' : α₁ → α₂) (g : β₀ → β₁) (g' : β₁ → β₂) (x : α₀ ⊕ β₀), bimap f' g' (bimap f g x) = bimap (f' ∘ f) (g' ∘ g) x [PROOFSTEP] aesop [GOAL] F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F α : Type u₀ ⊢ LawfulFunctor (F α) [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F α : Type u₀ ⊢ ∀ {α_1 β : Type u₁}, mapConst = map ∘ Function.const β [PROOFSTEP] intros [GOAL] case refine'_2 F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F α : Type u₀ ⊢ ∀ {α_1 : Type u₁} (x : F α α_1), id <$> x = x [PROOFSTEP] intros [GOAL] case refine'_3 F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F α : Type u₀ ⊢ ∀ {α_1 β γ : Type u₁} (g : α_1 → β) (h : β → γ) (x : F α α_1), (h ∘ g) <$> x = h <$> g <$> x [PROOFSTEP] intros [GOAL] case refine'_1 F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F α : Type u₀ α✝ β✝ : Type u₁ ⊢ mapConst = map ∘ Function.const β✝ [PROOFSTEP] simp [mapConst, Functor.map, functor_norm] [GOAL] case refine'_2 F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F α : Type u₀ α✝ : Type u₁ x✝ : F α α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] simp [mapConst, Functor.map, functor_norm] [GOAL] case refine'_3 F : Type u₀ → Type u₁ → Type u₂ inst✝¹ : Bifunctor F inst✝ : LawfulBifunctor F α : Type u₀ α✝ β✝ γ✝ : Type u₁ g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : F α α✝ ⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝ [PROOFSTEP] simp [mapConst, Functor.map, functor_norm] [GOAL] F : Type u₀ → Type u₁ → Type u₂ inst✝⁵ : Bifunctor F G : Type u_1 → Type u₀ H : Type u_2 → Type u₁ inst✝⁴ : Functor G inst✝³ : Functor H inst✝² : LawfulFunctor G inst✝¹ : LawfulFunctor H inst✝ : LawfulBifunctor F ⊢ LawfulBifunctor (bicompl F G H) [PROOFSTEP] constructor [GOAL] case id_bimap F : Type u₀ → Type u₁ → Type u₂ inst✝⁵ : Bifunctor F G : Type u_1 → Type u₀ H : Type u_2 → Type u₁ inst✝⁴ : Functor G inst✝³ : Functor H inst✝² : LawfulFunctor G inst✝¹ : LawfulFunctor H inst✝ : LawfulBifunctor F ⊢ ∀ {α : Type u_1} {β : Type u_2} (x : bicompl F G H α β), bimap id id x = x [PROOFSTEP] intros [GOAL] case bimap_bimap F : Type u₀ → Type u₁ → Type u₂ inst✝⁵ : Bifunctor F G : Type u_1 → Type u₀ H : Type u_2 → Type u₁ inst✝⁴ : Functor G inst✝³ : Functor H inst✝² : LawfulFunctor G inst✝¹ : LawfulFunctor H inst✝ : LawfulBifunctor F ⊢ ∀ {α₀ α₁ α₂ : Type u_1} {β₀ β₁ β₂ : Type u_2} (f : α₀ → α₁) (f' : α₁ → α₂) (g : β₀ → β₁) (g' : β₁ → β₂) (x : bicompl F G H α₀ β₀), bimap f' g' (bimap f g x) = bimap (f' ∘ f) (g' ∘ g) x [PROOFSTEP] intros [GOAL] case id_bimap F : Type u₀ → Type u₁ → Type u₂ inst✝⁵ : Bifunctor F G : Type u_1 → Type u₀ H : Type u_2 → Type u₁ inst✝⁴ : Functor G inst✝³ : Functor H inst✝² : LawfulFunctor G inst✝¹ : LawfulFunctor H inst✝ : LawfulBifunctor F α✝ : Type u_1 β✝ : Type u_2 x✝ : bicompl F G H α✝ β✝ ⊢ bimap id id x✝ = x✝ [PROOFSTEP] simp [bimap, map_id, map_comp_map, functor_norm] [GOAL] case bimap_bimap F : Type u₀ → Type u₁ → Type u₂ inst✝⁵ : Bifunctor F G : Type u_1 → Type u₀ H : Type u_2 → Type u₁ inst✝⁴ : Functor G inst✝³ : Functor H inst✝² : LawfulFunctor G inst✝¹ : LawfulFunctor H inst✝ : LawfulBifunctor F α₀✝ α₁✝ α₂✝ : Type u_1 β₀✝ β₁✝ β₂✝ : Type u_2 f✝ : α₀✝ → α₁✝ f'✝ : α₁✝ → α₂✝ g✝ : β₀✝ → β₁✝ g'✝ : β₁✝ → β₂✝ x✝ : bicompl F G H α₀✝ β₀✝ ⊢ bimap f'✝ g'✝ (bimap f✝ g✝ x✝) = bimap (f'✝ ∘ f✝) (g'✝ ∘ g✝) x✝ [PROOFSTEP] simp [bimap, map_id, map_comp_map, functor_norm] [GOAL] F : Type u₀ → Type u₁ → Type u₂ inst✝³ : Bifunctor F G : Type u₂ → Type u_1 inst✝² : Functor G inst✝¹ : LawfulFunctor G inst✝ : LawfulBifunctor F ⊢ LawfulBifunctor (bicompr G F) [PROOFSTEP] constructor [GOAL] case id_bimap F : Type u₀ → Type u₁ → Type u₂ inst✝³ : Bifunctor F G : Type u₂ → Type u_1 inst✝² : Functor G inst✝¹ : LawfulFunctor G inst✝ : LawfulBifunctor F ⊢ ∀ {α : Type u₀} {β : Type u₁} (x : bicompr G F α β), bimap id id x = x [PROOFSTEP] intros [GOAL] case bimap_bimap F : Type u₀ → Type u₁ → Type u₂ inst✝³ : Bifunctor F G : Type u₂ → Type u_1 inst✝² : Functor G inst✝¹ : LawfulFunctor G inst✝ : LawfulBifunctor F ⊢ ∀ {α₀ α₁ α₂ : Type u₀} {β₀ β₁ β₂ : Type u₁} (f : α₀ → α₁) (f' : α₁ → α₂) (g : β₀ → β₁) (g' : β₁ → β₂) (x : bicompr G F α₀ β₀), bimap f' g' (bimap f g x) = bimap (f' ∘ f) (g' ∘ g) x [PROOFSTEP] intros [GOAL] case id_bimap F : Type u₀ → Type u₁ → Type u₂ inst✝³ : Bifunctor F G : Type u₂ → Type u_1 inst✝² : Functor G inst✝¹ : LawfulFunctor G inst✝ : LawfulBifunctor F α✝ : Type u₀ β✝ : Type u₁ x✝ : bicompr G F α✝ β✝ ⊢ bimap id id x✝ = x✝ [PROOFSTEP] simp [bimap, functor_norm] [GOAL] case bimap_bimap F : Type u₀ → Type u₁ → Type u₂ inst✝³ : Bifunctor F G : Type u₂ → Type u_1 inst✝² : Functor G inst✝¹ : LawfulFunctor G inst✝ : LawfulBifunctor F α₀✝ α₁✝ α₂✝ : Type u₀ β₀✝ β₁✝ β₂✝ : Type u₁ f✝ : α₀✝ → α₁✝ f'✝ : α₁✝ → α₂✝ g✝ : β₀✝ → β₁✝ g'✝ : β₁✝ → β₂✝ x✝ : bicompr G F α₀✝ β₀✝ ⊢ bimap f'✝ g'✝ (bimap f✝ g✝ x✝) = bimap (f'✝ ∘ f✝) (g'✝ ∘ g✝) x✝ [PROOFSTEP] simp [bimap, functor_norm]
{"mathlib_filename": "Mathlib.Control.Bifunctor", "llama_tokens": 5802}
{"mathlib_filename": "Mathlib.Tactic.SimpRw", "llama_tokens": 0}
[GOAL] G A : Type u inst✝² : Group G inst✝¹ : IsFreeGroup G inst✝ : MulAction G A ⊢ ∀ {X : Type u} [inst : Group X] (f : Labelling (Generators (ActionCategory G A)) X), ∃! F, ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), F.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g [PROOFSTEP] intro X _ f [GOAL] G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X ⊢ ∃! F, ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), F.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g [PROOFSTEP] let f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => ⟨fun b => @f ⟨(), _⟩ ⟨(), b⟩ ⟨e, smul_inv_smul _ b⟩, IsFreeGroup.of e⟩ [GOAL] G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } ⊢ ∃! F, ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), F.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g [PROOFSTEP] rcases IsFreeGroup.unique_lift f' with ⟨F', hF', uF'⟩ [GOAL] case intro.intro G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' ⊢ ∃! F, ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), F.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g [PROOFSTEP] refine' ⟨uncurry F' _, _, _⟩ [GOAL] case intro.intro.refine'_1 G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' ⊢ ∀ (g : G), (↑F' g).right = g [PROOFSTEP] suffices SemidirectProduct.rightHom.comp F' = MonoidHom.id _ by -- Porting note: `MonoidHom.ext_iff` has been deprecated.exact FunLike.ext_iff.mp this [GOAL] G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' this : MonoidHom.comp SemidirectProduct.rightHom F' = MonoidHom.id G ⊢ ∀ (g : G), (↑F' g).right = g [PROOFSTEP] exact FunLike.ext_iff.mp this [GOAL] case intro.intro.refine'_1 G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' ⊢ MonoidHom.comp SemidirectProduct.rightHom F' = MonoidHom.id G [PROOFSTEP] ext [GOAL] case intro.intro.refine'_1.h G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' a✝ : IsFreeGroup.Generators G ⊢ ↑(MonoidHom.comp SemidirectProduct.rightHom F') (IsFreeGroup.of a✝) = ↑(MonoidHom.id G) (IsFreeGroup.of a✝) [PROOFSTEP] rw [MonoidHom.comp_apply, hF'] [GOAL] case intro.intro.refine'_1.h G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' a✝ : IsFreeGroup.Generators G ⊢ ↑SemidirectProduct.rightHom (f' a✝) = ↑(MonoidHom.id G) (IsFreeGroup.of a✝) [PROOFSTEP] rfl [GOAL] case intro.intro.refine'_2 G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' ⊢ (fun F => ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), F.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g) (ActionCategory.uncurry F' (_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)) [PROOFSTEP] rintro ⟨⟨⟩, a : A⟩ ⟨⟨⟩, b⟩ ⟨e, h : IsFreeGroup.of e • a = b⟩ [GOAL] case intro.intro.refine'_2.mk.unit.mk.unit.mk G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' a : A b : (actionAsFunctor G A).obj PUnit.unit e : IsFreeGroup.Generators G h : IsFreeGroup.of e • a = b ⊢ (ActionCategory.uncurry F' (_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)).map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) { val := e, property := h }) = f { val := e, property := h } [PROOFSTEP] change (F' (IsFreeGroup.of _)).left _ = _ [GOAL] case intro.intro.refine'_2.mk.unit.mk.unit.mk G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' a : A b : (actionAsFunctor G A).obj PUnit.unit e : IsFreeGroup.Generators G h : IsFreeGroup.of e • a = b ⊢ SemidirectProduct.left (↑F' (IsFreeGroup.of ↑{ val := e, property := h })) (ActionCategory.back { fst := PUnit.unit, snd := b }) = f { val := e, property := h } [PROOFSTEP] rw [hF'] [GOAL] case intro.intro.refine'_2.mk.unit.mk.unit.mk G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' a : A b : (actionAsFunctor G A).obj PUnit.unit e : IsFreeGroup.Generators G h : IsFreeGroup.of e • a = b ⊢ SemidirectProduct.left (f' ↑{ val := e, property := h }) (ActionCategory.back { fst := PUnit.unit, snd := b }) = f { val := e, property := h } [PROOFSTEP] cases inv_smul_eq_iff.mpr h.symm [GOAL] case intro.intro.refine'_2.mk.unit.mk.unit.mk.refl G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' b : (actionAsFunctor G A).obj PUnit.unit e : IsFreeGroup.Generators G h : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b ⊢ SemidirectProduct.left (f' ↑{ val := e, property := h }) (ActionCategory.back { fst := PUnit.unit, snd := b }) = f { val := e, property := h } [PROOFSTEP] rfl [GOAL] case intro.intro.refine'_3 G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' ⊢ ∀ (y : ActionCategory G A ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), F.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g) y → y = ActionCategory.uncurry F' (_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x) [PROOFSTEP] intro E hE [GOAL] case intro.intro.refine'_3 G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g ⊢ E = ActionCategory.uncurry F' (_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x) [PROOFSTEP] have : curry E = F' := by apply uF' intro e ext · convert hE _ _ _ rfl · rfl [GOAL] G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g ⊢ ActionCategory.curry E = F' [PROOFSTEP] apply uF' [GOAL] case a G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g ⊢ ∀ (a : IsFreeGroup.Generators G), ↑(ActionCategory.curry E) (IsFreeGroup.of a) = f' a [PROOFSTEP] intro e [GOAL] case a G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g e : IsFreeGroup.Generators G ⊢ ↑(ActionCategory.curry E) (IsFreeGroup.of e) = f' e [PROOFSTEP] ext [GOAL] case a.left.h G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g e : IsFreeGroup.Generators G x✝ : A ⊢ SemidirectProduct.left (↑(ActionCategory.curry E) (IsFreeGroup.of e)) x✝ = SemidirectProduct.left (f' e) x✝ [PROOFSTEP] convert hE _ _ _ [GOAL] case h.e'_2.h G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g e : IsFreeGroup.Generators G x✝ : A e_1✝ : X = (E.obj (let_fun this := { fst := (), snd := (IsFreeGroup.of e)⁻¹ • x✝ }; this) ⟶ E.obj { fst := (), snd := x✝ }) ⊢ SemidirectProduct.left (↑(ActionCategory.curry E) (IsFreeGroup.of e)) x✝ = E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • x✝ = x✝) }) [PROOFSTEP] rfl [GOAL] case a.right G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g e : IsFreeGroup.Generators G ⊢ (↑(ActionCategory.curry E) (IsFreeGroup.of e)).right = (f' e).right [PROOFSTEP] rfl [GOAL] case intro.intro.refine'_3 G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g this : ActionCategory.curry E = F' ⊢ E = ActionCategory.uncurry F' (_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x) [PROOFSTEP] apply Functor.hext [GOAL] case intro.intro.refine'_3.h_obj G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g this : ActionCategory.curry E = F' ⊢ ∀ (X_1 : ActionCategory G A), E.obj X_1 = (ActionCategory.uncurry F' (_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)).obj X_1 [PROOFSTEP] intro [GOAL] case intro.intro.refine'_3.h_obj G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g this : ActionCategory.curry E = F' X✝ : ActionCategory G A ⊢ E.obj X✝ = (ActionCategory.uncurry F' (_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)).obj X✝ [PROOFSTEP] apply Unit.ext [GOAL] case intro.intro.refine'_3.h_map G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g this : ActionCategory.curry E = F' ⊢ ∀ (X_1 Y : ActionCategory G A) (f : X_1 ⟶ Y), HEq (E.map f) ((ActionCategory.uncurry F' (_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)).map f) [PROOFSTEP] refine' ActionCategory.cases _ [GOAL] case intro.intro.refine'_3.h_map G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g this : ActionCategory.curry E = F' ⊢ ∀ (t : A) (g : G), HEq (E.map (homOfPair t g)) ((ActionCategory.uncurry F' (_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)).map (homOfPair t g)) [PROOFSTEP] intros [GOAL] case intro.intro.refine'_3.h_map G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g this : ActionCategory.curry E = F' t✝ : A g✝ : G ⊢ HEq (E.map (homOfPair t✝ g✝)) ((ActionCategory.uncurry F' (_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)).map (homOfPair t✝ g✝)) [PROOFSTEP] simp only [← this, uncurry_map, curry_apply_left, coe_back, homOfPair.val] [GOAL] case intro.intro.refine'_3.h_map G A : Type u inst✝³ : Group G inst✝² : IsFreeGroup G inst✝¹ : MulAction G A X : Type u inst✝ : Group X f : Labelling (Generators (ActionCategory G A)) X f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e => { left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) }, right := IsFreeGroup.of e } F' : G →* (A → X) ⋊[mulAutArrow] G hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a uF' : ∀ (y : G →* (A → X) ⋊[mulAutArrow] G), (fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F' E : ActionCategory G A ⥤ CategoryTheory.SingleObj X hE : ∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b), E.map ((fun {a b} e => { val := IsFreeGroup.of ↑e, property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) }) g) = f g this : ActionCategory.curry E = F' t✝ : A g✝ : G ⊢ HEq (E.map (homOfPair t✝ g✝)) (E.map (homOfPair t✝ g✝)) [PROOFSTEP] rfl [GOAL] G : Type u inst✝² : Groupoid G inst✝¹ : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) a : G p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) a ⊢ treeHom T a = homOfPath T p [PROOFSTEP] rw [treeHom, Unique.default_eq] [GOAL] G : Type u inst✝² : Groupoid G inst✝¹ : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) a b : Generators G e : a ⟶ b H : e ∈ wideSubquiverSymmetrify T a b ⊢ loopOfHom T (of e) = 𝟙 (IsFreeGroupoid.SpanningTree.root' T) [PROOFSTEP] rw [loopOfHom, ← Category.assoc, IsIso.comp_inv_eq, Category.id_comp] [GOAL] G : Type u inst✝² : Groupoid G inst✝¹ : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) a b : Generators G e : a ⟶ b H : e ∈ wideSubquiverSymmetrify T a b ⊢ treeHom T (let_fun this := a; this) ≫ of e = treeHom T b [PROOFSTEP] cases' H with H H [GOAL] case inl G : Type u inst✝² : Groupoid G inst✝¹ : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) a b : Generators G e : a ⟶ b H : T a b (Sum.inl e) ⊢ treeHom T (let_fun this := a; this) ≫ of e = treeHom T b [PROOFSTEP] rw [treeHom_eq T (Path.cons default ⟨Sum.inl e, H⟩), homOfPath] [GOAL] case inl G : Type u inst✝² : Groupoid G inst✝¹ : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) a b : Generators G e : a ⟶ b H : T a b (Sum.inl e) ⊢ treeHom T (let_fun this := a; this) ≫ of e = homOfPath T default ≫ Sum.recOn (↑{ val := Sum.inl e, property := H }) (fun e => of e) fun e => inv (of e) [PROOFSTEP] rfl [GOAL] case inr G : Type u inst✝² : Groupoid G inst✝¹ : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) a b : Generators G e : a ⟶ b H : T b a (Sum.inr e) ⊢ treeHom T (let_fun this := a; this) ≫ of e = treeHom T b [PROOFSTEP] rw [treeHom_eq T (Path.cons default ⟨Sum.inr e, H⟩), homOfPath] [GOAL] case inr G : Type u inst✝² : Groupoid G inst✝¹ : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) a b : Generators G e : a ⟶ b H : T b a (Sum.inr e) ⊢ (homOfPath T default ≫ Sum.recOn (↑{ val := Sum.inr e, property := H }) (fun e => of e) fun e => inv (of e)) ≫ of e = treeHom T b [PROOFSTEP] simp only [IsIso.inv_hom_id, Category.comp_id, Category.assoc, treeHom] [GOAL] G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type ?u.65107 inst✝ : Monoid X f : End (IsFreeGroupoid.SpanningTree.root' T) →* X ⊢ ∀ (X_1 : G), { obj := fun x => (), map := fun {X_2 Y} p => ↑f (loopOfHom T p) }.map (𝟙 X_1) = 𝟙 ({ obj := fun x => (), map := fun {X_2 Y} p => ↑f (loopOfHom T p) }.obj X_1) [PROOFSTEP] intro a [GOAL] G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type ?u.65107 inst✝ : Monoid X f : End (IsFreeGroupoid.SpanningTree.root' T) →* X a : G ⊢ { obj := fun x => (), map := fun {X_1 Y} p => ↑f (loopOfHom T p) }.map (𝟙 a) = 𝟙 ({ obj := fun x => (), map := fun {X_1 Y} p => ↑f (loopOfHom T p) }.obj a) [PROOFSTEP] dsimp only [loopOfHom] [GOAL] G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type ?u.65107 inst✝ : Monoid X f : End (IsFreeGroupoid.SpanningTree.root' T) →* X a : G ⊢ ↑f (treeHom T a ≫ 𝟙 a ≫ inv (treeHom T a)) = 𝟙 () [PROOFSTEP] rw [Category.id_comp, IsIso.hom_inv_id, ← End.one_def, f.map_one, id_as_one] [GOAL] G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type ?u.65107 inst✝ : Monoid X f : End (IsFreeGroupoid.SpanningTree.root' T) →* X ⊢ ∀ {X_1 Y Z : G} (f_1 : X_1 ⟶ Y) (g : Y ⟶ Z), { obj := fun x => (), map := fun {X_2 Y} p => ↑f (loopOfHom T p) }.map (f_1 ≫ g) = { obj := fun x => (), map := fun {X_2 Y} p => ↑f (loopOfHom T p) }.map f_1 ≫ { obj := fun x => (), map := fun {X_2 Y} p => ↑f (loopOfHom T p) }.map g [PROOFSTEP] intros [GOAL] G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type ?u.65107 inst✝ : Monoid X f : End (IsFreeGroupoid.SpanningTree.root' T) →* X X✝ Y✝ Z✝ : G f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ ⊢ { obj := fun x => (), map := fun {X_1 Y} p => ↑f (loopOfHom T p) }.map (f✝ ≫ g✝) = { obj := fun x => (), map := fun {X_1 Y} p => ↑f (loopOfHom T p) }.map f✝ ≫ { obj := fun x => (), map := fun {X_1 Y} p => ↑f (loopOfHom T p) }.map g✝ [PROOFSTEP] rw [comp_as_mul, ← f.map_mul] [GOAL] G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type ?u.65107 inst✝ : Monoid X f : End (IsFreeGroupoid.SpanningTree.root' T) →* X X✝ Y✝ Z✝ : G f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ ⊢ { obj := fun x => (), map := fun {X_1 Y} p => ↑f (loopOfHom T p) }.map (f✝ ≫ g✝) = ↑f (loopOfHom T g✝ * loopOfHom T f✝) [PROOFSTEP] simp only [IsIso.inv_hom_id_assoc, loopOfHom, End.mul_def, Category.assoc] [GOAL] G : Type u inst✝² : Groupoid G inst✝¹ : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) ⊢ ∀ {H : Type u} [inst : Group H] (f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → H), ∃! F, ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a [PROOFSTEP] intro X _ f [GOAL] G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X ⊢ ∃! F, ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a [PROOFSTEP] let f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f ⟨⟨a, b, e⟩, h⟩ [GOAL] G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } ⊢ ∃! F, ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a [PROOFSTEP] rcases unique_lift f' with ⟨F', hF', uF'⟩ [GOAL] case intro.intro G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' ⊢ ∃! F, ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a [PROOFSTEP] refine' ⟨F'.mapEnd _, _, _⟩ [GOAL] case intro.intro.refine'_1 G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' ⊢ (fun F => ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a) (Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F') [PROOFSTEP] suffices ∀ {x y} (q : x ⟶ y), F'.map (loopOfHom T q) = (F'.map q : X) by rintro ⟨⟨a, b, e⟩, h⟩ erw [Functor.mapEnd_apply, this, hF'] exact dif_neg h [GOAL] G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' this : ∀ {x y : G} (q : x ⟶ y), F'.map (loopOfHom T q) = F'.map q ⊢ (fun F => ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a) (Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F') [PROOFSTEP] rintro ⟨⟨a, b, e⟩, h⟩ [GOAL] case mk.mk G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' this : ∀ {x y : G} (q : x ⟶ y), F'.map (loopOfHom T q) = F'.map q a b : Generators G e : a ⟶ b h : { left := a, right := b, hom := e } ∈ (↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ ⊢ ↑(Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F') ((fun e => loopOfHom T (of (↑e).hom)) { val := { left := a, right := b, hom := e }, property := h }) = f { val := { left := a, right := b, hom := e }, property := h } [PROOFSTEP] erw [Functor.mapEnd_apply, this, hF'] [GOAL] case mk.mk G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' this : ∀ {x y : G} (q : x ⟶ y), F'.map (loopOfHom T q) = F'.map q a b : Generators G e : a ⟶ b h : { left := a, right := b, hom := e } ∈ (↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ ⊢ f' (↑{ val := { left := a, right := b, hom := e }, property := h }).hom = f { val := { left := a, right := b, hom := e }, property := h } [PROOFSTEP] exact dif_neg h [GOAL] case intro.intro.refine'_1 G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' ⊢ ∀ {x y : G} (q : x ⟶ y), F'.map (loopOfHom T q) = F'.map q [PROOFSTEP] intros x y q [GOAL] case intro.intro.refine'_1 G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' x y : G q : x ⟶ y ⊢ F'.map (loopOfHom T q) = F'.map q [PROOFSTEP] suffices ∀ {a} (p : Path (root T) a), F'.map (homOfPath T p) = 1 by simp only [this, treeHom, comp_as_mul, inv_as_inv, loopOfHom, inv_one, mul_one, one_mul, Functor.map_inv, Functor.map_comp] [GOAL] G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' x y : G q : x ⟶ y this : ∀ {a : WideSubquiver.toType (Symmetrify (Generators G)) T} (p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) a), F'.map (homOfPath T p) = 1 ⊢ F'.map (loopOfHom T q) = F'.map q [PROOFSTEP] simp only [this, treeHom, comp_as_mul, inv_as_inv, loopOfHom, inv_one, mul_one, one_mul, Functor.map_inv, Functor.map_comp] [GOAL] case intro.intro.refine'_1 G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' x y : G q : x ⟶ y ⊢ ∀ {a : WideSubquiver.toType (Symmetrify (Generators G)) T} (p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) a), F'.map (homOfPath T p) = 1 [PROOFSTEP] intro a p [GOAL] case intro.intro.refine'_1 G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' x y : G q : x ⟶ y a : WideSubquiver.toType (Symmetrify (Generators G)) T p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) a ⊢ F'.map (homOfPath T p) = 1 [PROOFSTEP] induction' p with b c p e ih [GOAL] case intro.intro.refine'_1.nil G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' x y : G q : x ⟶ y a : WideSubquiver.toType (Symmetrify (Generators G)) T ⊢ F'.map (homOfPath T Path.nil) = 1 [PROOFSTEP] rw [homOfPath, F'.map_id, id_as_one] [GOAL] case intro.intro.refine'_1.cons G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' x y : G q : x ⟶ y a b c : WideSubquiver.toType (Symmetrify (Generators G)) T p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) b e : b ⟶ c ih : F'.map (homOfPath T p) = 1 ⊢ F'.map (homOfPath T (Path.cons p e)) = 1 [PROOFSTEP] rw [homOfPath, F'.map_comp, comp_as_mul, ih, mul_one] [GOAL] case intro.intro.refine'_1.cons G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' x y : G q : x ⟶ y a b c : WideSubquiver.toType (Symmetrify (Generators G)) T p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) b e : b ⟶ c ih : F'.map (homOfPath T p) = 1 ⊢ F'.map (Sum.recOn (↑e) (fun e => of e) fun e => inv (of e)) = 1 [PROOFSTEP] rcases e with ⟨e | e, eT⟩ [GOAL] case intro.intro.refine'_1.cons.mk.inl G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' x y : G q : x ⟶ y a b c : WideSubquiver.toType (Symmetrify (Generators G)) T p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) b ih : F'.map (homOfPath T p) = 1 e : b ⟶ c eT : Sum.inl e ∈ T b c ⊢ F'.map (Sum.recOn (↑{ val := Sum.inl e, property := eT }) (fun e => of e) fun e => inv (of e)) = 1 [PROOFSTEP] rw [hF'] [GOAL] case intro.intro.refine'_1.cons.mk.inl G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' x y : G q : x ⟶ y a b c : WideSubquiver.toType (Symmetrify (Generators G)) T p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) b ih : F'.map (homOfPath T p) = 1 e : b ⟶ c eT : Sum.inl e ∈ T b c ⊢ f' e = 1 [PROOFSTEP] exact dif_pos (Or.inl eT) [GOAL] case intro.intro.refine'_1.cons.mk.inr G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' x y : G q : x ⟶ y a b c : WideSubquiver.toType (Symmetrify (Generators G)) T p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) b ih : F'.map (homOfPath T p) = 1 e : c ⟶ b eT : Sum.inr e ∈ T b c ⊢ F'.map (Sum.recOn (↑{ val := Sum.inr e, property := eT }) (fun e => of e) fun e => inv (of e)) = 1 [PROOFSTEP] rw [F'.map_inv, inv_as_inv, inv_eq_one, hF'] [GOAL] case intro.intro.refine'_1.cons.mk.inr G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' x y : G q : x ⟶ y a b c : WideSubquiver.toType (Symmetrify (Generators G)) T p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) b ih : F'.map (homOfPath T p) = 1 e : c ⟶ b eT : Sum.inr e ∈ T b c ⊢ f' e = 1 [PROOFSTEP] exact dif_pos (Or.inr eT) [GOAL] case intro.intro.refine'_2 G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' ⊢ ∀ (y : End (IsFreeGroupoid.SpanningTree.root' T) →* X), (fun F => ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a) y → y = Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F' [PROOFSTEP] intro E hE [GOAL] case intro.intro.refine'_2 G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' E : End (IsFreeGroupoid.SpanningTree.root' T) →* X hE : ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a ⊢ E = Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F' [PROOFSTEP] ext x [GOAL] case intro.intro.refine'_2.h G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' E : End (IsFreeGroupoid.SpanningTree.root' T) →* X hE : ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a x : End (IsFreeGroupoid.SpanningTree.root' T) ⊢ ↑E x = ↑(Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F') x [PROOFSTEP] suffices (functorOfMonoidHom T E).map x = F'.map x by simpa only [loopOfHom, functorOfMonoidHom, IsIso.inv_id, treeHom_root, Category.id_comp, Category.comp_id] using this [GOAL] G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' E : End (IsFreeGroupoid.SpanningTree.root' T) →* X hE : ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a x : End (IsFreeGroupoid.SpanningTree.root' T) this : (functorOfMonoidHom T E).map x = F'.map x ⊢ ↑E x = ↑(Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F') x [PROOFSTEP] simpa only [loopOfHom, functorOfMonoidHom, IsIso.inv_id, treeHom_root, Category.id_comp, Category.comp_id] using this [GOAL] case intro.intro.refine'_2.h G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' E : End (IsFreeGroupoid.SpanningTree.root' T) →* X hE : ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a x : End (IsFreeGroupoid.SpanningTree.root' T) ⊢ (functorOfMonoidHom T E).map x = F'.map x [PROOFSTEP] congr [GOAL] case intro.intro.refine'_2.h.h.e_5.h.e_self G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' E : End (IsFreeGroupoid.SpanningTree.root' T) →* X hE : ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a x : End (IsFreeGroupoid.SpanningTree.root' T) ⊢ functorOfMonoidHom T E = F' [PROOFSTEP] apply uF' [GOAL] case intro.intro.refine'_2.h.h.e_5.h.e_self.a G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' E : End (IsFreeGroupoid.SpanningTree.root' T) →* X hE : ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a x : End (IsFreeGroupoid.SpanningTree.root' T) ⊢ ∀ (a b : Generators G) (g : a ⟶ b), (functorOfMonoidHom T E).map (of g) = f' g [PROOFSTEP] intro a b e [GOAL] case intro.intro.refine'_2.h.h.e_5.h.e_self.a G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' E : End (IsFreeGroupoid.SpanningTree.root' T) →* X hE : ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a x : End (IsFreeGroupoid.SpanningTree.root' T) a b : Generators G e : a ⟶ b ⊢ (functorOfMonoidHom T E).map (of e) = f' e [PROOFSTEP] change E (loopOfHom T _) = dite _ _ _ [GOAL] case intro.intro.refine'_2.h.h.e_5.h.e_self.a G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' E : End (IsFreeGroupoid.SpanningTree.root' T) →* X hE : ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a x : End (IsFreeGroupoid.SpanningTree.root' T) a b : Generators G e : a ⟶ b ⊢ ↑E (loopOfHom T (of e)) = if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } [PROOFSTEP] split_ifs with h [GOAL] case pos G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' E : End (IsFreeGroupoid.SpanningTree.root' T) →* X hE : ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a x : End (IsFreeGroupoid.SpanningTree.root' T) a b : Generators G e : a ⟶ b h : e ∈ wideSubquiverSymmetrify T a b ⊢ ↑E (loopOfHom T (of e)) = 1 [PROOFSTEP] rw [loopOfHom_eq_id T e h, ← End.one_def, E.map_one] [GOAL] case neg G : Type u inst✝³ : Groupoid G inst✝² : IsFreeGroupoid G T : WideSubquiver (Symmetrify (Generators G)) inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T) X : Type u inst✝ : Group X f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X f' : Labelling (Generators G) X := fun a b e => if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h } F' : G ⥤ CategoryTheory.SingleObj X hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g uF' : ∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F' E : End (IsFreeGroupoid.SpanningTree.root' T) →* X hE : ∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a x : End (IsFreeGroupoid.SpanningTree.root' T) a b : Generators G e : a ⟶ b h : ¬e ∈ wideSubquiverSymmetrify T a b ⊢ ↑E (loopOfHom T (of e)) = f { val := { left := a, right := b, hom := e }, property := h } [PROOFSTEP] exact hE ⟨⟨a, b, e⟩, h⟩ [GOAL] G : Type u inst✝¹ : Groupoid G inst✝ : IsFreeGroupoid G a b : G ⊢ Nonempty (a ⟶ b) → Nonempty (Path (IsFreeGroupoid.symgen a) (IsFreeGroupoid.symgen b)) [PROOFSTEP] rintro ⟨p⟩ [GOAL] case intro G : Type u inst✝¹ : Groupoid G inst✝ : IsFreeGroupoid G a b : G p : a ⟶ b ⊢ Nonempty (Path (IsFreeGroupoid.symgen a) (IsFreeGroupoid.symgen b)) [PROOFSTEP] rw [← @WeaklyConnectedComponent.eq (Generators G), eq_comm, ← FreeGroup.of_injective.eq_iff, ← mul_inv_eq_one] [GOAL] case intro G : Type u inst✝¹ : Groupoid G inst✝ : IsFreeGroupoid G a b : G p : a ⟶ b ⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) * (FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ = 1 [PROOFSTEP] let X := FreeGroup (WeaklyConnectedComponent <| Generators G) [GOAL] case intro G : Type u inst✝¹ : Groupoid G inst✝ : IsFreeGroupoid G a b : G p : a ⟶ b X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G)) ⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) * (FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ = 1 [PROOFSTEP] let f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g) [GOAL] case intro G : Type u inst✝¹ : Groupoid G inst✝ : IsFreeGroupoid G a b : G p : a ⟶ b X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G)) f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g) ⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) * (FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ = 1 [PROOFSTEP] let F : G ⥤ CategoryTheory.SingleObj.{u} (X : Type u) := SingleObj.differenceFunctor f [GOAL] case intro G : Type u inst✝¹ : Groupoid G inst✝ : IsFreeGroupoid G a b : G p : a ⟶ b X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G)) f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g) F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f ⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) * (FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ = 1 [PROOFSTEP] change (F.map p) = ((@CategoryTheory.Functor.const G _ _ (SingleObj.category X)).obj ()).map p [GOAL] case intro G : Type u inst✝¹ : Groupoid G inst✝ : IsFreeGroupoid G a b : G p : a ⟶ b X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G)) f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g) F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f ⊢ F.map p = ((Functor.const G).obj ()).map p [PROOFSTEP] congr [GOAL] case intro.h.e_5.h.e_self G : Type u inst✝¹ : Groupoid G inst✝ : IsFreeGroupoid G a b : G p : a ⟶ b X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G)) f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g) F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f ⊢ F = (Functor.const G).obj () [PROOFSTEP] ext [GOAL] case intro.h.e_5.h.e_self.h G : Type u inst✝¹ : Groupoid G inst✝ : IsFreeGroupoid G a b : G p : a ⟶ b X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G)) f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g) F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f a✝ b✝ : Generators G e✝ : a✝ ⟶ b✝ ⊢ F.map (of e✝) = ((Functor.const G).obj ()).map (of e✝) [PROOFSTEP] rw [Functor.const_obj_map, id_as_one, differenceFunctor_map, @mul_inv_eq_one _ _ (f _)] [GOAL] case intro.h.e_5.h.e_self.h G : Type u inst✝¹ : Groupoid G inst✝ : IsFreeGroupoid G a b : G p : a ⟶ b X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G)) f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g) F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f a✝ b✝ : Generators G e✝ : a✝ ⟶ b✝ ⊢ f b✝ = f (let_fun this := a✝; this) [PROOFSTEP] apply congr_arg FreeGroup.of [GOAL] case intro.h.e_5.h.e_self.h G : Type u inst✝¹ : Groupoid G inst✝ : IsFreeGroupoid G a b : G p : a ⟶ b X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G)) f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g) F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f a✝ b✝ : Generators G e✝ : a✝ ⟶ b✝ ⊢ WeaklyConnectedComponent.mk b✝ = WeaklyConnectedComponent.mk (let_fun this := a✝; this) [PROOFSTEP] apply (WeaklyConnectedComponent.eq _ _).mpr [GOAL] case intro.h.e_5.h.e_self.h G : Type u inst✝¹ : Groupoid G inst✝ : IsFreeGroupoid G a b : G p : a ⟶ b X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G)) f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g) F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f a✝ b✝ : Generators G e✝ : a✝ ⟶ b✝ ⊢ Nonempty (Path b✝ (let_fun this := a✝; this)) [PROOFSTEP] exact ⟨Hom.toPath (Sum.inr (by assumption))⟩ [GOAL] G : Type u inst✝¹ : Groupoid G inst✝ : IsFreeGroupoid G a b : G p : a ⟶ b X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G)) f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g) F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f a✝ b✝ : Generators G e✝ : a✝ ⟶ b✝ ⊢ (let_fun this := a✝; this) ⟶ b✝ [PROOFSTEP] assumption
{"mathlib_filename": "Mathlib.GroupTheory.NielsenSchreier", "llama_tokens": 31467}
[GOAL] lo hi a : ℕ h : Nat.succ lo ≤ a ∧ a ≤ hi ⊢ Nat.succ (Nat.pred a) ≤ hi [PROOFSTEP] rw [Nat.succ_pred_eq_of_pos] [GOAL] lo hi a : ℕ h : Nat.succ lo ≤ a ∧ a ≤ hi ⊢ a ≤ hi lo hi a : ℕ h : Nat.succ lo ≤ a ∧ a ≤ hi ⊢ 0 < a [PROOFSTEP] exact h.right [GOAL] lo hi a : ℕ h : Nat.succ lo ≤ a ∧ a ≤ hi ⊢ 0 < a [PROOFSTEP] exact lt_of_le_of_lt (Nat.zero_le lo) h.left
{"mathlib_filename": "Mathlib.Testing.SlimCheck.Gen", "llama_tokens": 213}
[GOAL] n : ℕ h : 0 < n m : ℕ := n / 2 ⊢ m < n [PROOFSTEP] apply Nat.div_lt_self h [GOAL] n : ℕ h : 0 < n m : ℕ := n / 2 ⊢ 1 < 2 [PROOFSTEP] decide [GOAL] n : ℕ ⊢ Fin.ofNat 0 ≤ Fin.ofNat __do_lift✝ [PROOFSTEP] simp [Fin.ofNat, LE.le] [GOAL] n : ℕ ⊢ 0 ≤ __do_lift✝ % (n + 1) [PROOFSTEP] exact Nat.zero_le _ [GOAL] ⊢ 0 < List.length (String.toList " 0123abcABC:,;`\\/") [PROOFSTEP] decide
{"mathlib_filename": "Mathlib.Testing.SlimCheck.Sampleable", "llama_tokens": 236}
[GOAL] α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β tf : TotalFunction α β ⊢ ∀ (a : α), a ∈ zeroDefaultSupp tf ↔ apply (zeroDefault tf) a ≠ 0 [PROOFSTEP] intro a [GOAL] α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β tf : TotalFunction α β a : α ⊢ a ∈ zeroDefaultSupp tf ↔ apply (zeroDefault tf) a ≠ 0 [PROOFSTEP] rcases tf with ⟨A, y⟩ [GOAL] case withDefault α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y : β ⊢ a ∈ zeroDefaultSupp (withDefault A y) ↔ apply (zeroDefault (withDefault A y)) a ≠ 0 [PROOFSTEP] simp only [apply, zeroDefaultSupp, List.mem_map, List.mem_filter, exists_and_right, List.mem_toFinset, exists_eq_right, Sigma.exists, Ne.def, zeroDefault] [GOAL] case withDefault α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y : β ⊢ (∃ x, { fst := a, snd := x } ∈ List.dedupKeys A ∧ (decide ¬x = 0) = true) ↔ ¬Option.getD (List.dlookup a A) 0 = 0 [PROOFSTEP] constructor [GOAL] case withDefault.mp α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y : β ⊢ (∃ x, { fst := a, snd := x } ∈ List.dedupKeys A ∧ (decide ¬x = 0) = true) → ¬Option.getD (List.dlookup a A) 0 = 0 [PROOFSTEP] rintro ⟨od, hval, hod⟩ [GOAL] case withDefault.mp.intro.intro α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y od : β hval : { fst := a, snd := od } ∈ List.dedupKeys A hod : (decide ¬od = 0) = true ⊢ ¬Option.getD (List.dlookup a A) 0 = 0 [PROOFSTEP] have := List.mem_dlookup (List.nodupKeys_dedupKeys A) hval [GOAL] case withDefault.mp.intro.intro α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y od : β hval : { fst := a, snd := od } ∈ List.dedupKeys A hod : (decide ¬od = 0) = true this : od ∈ List.dlookup a (List.dedupKeys A) ⊢ ¬Option.getD (List.dlookup a A) 0 = 0 [PROOFSTEP] rw [(_ : List.dlookup a A = od)] [GOAL] case withDefault.mp.intro.intro α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y od : β hval : { fst := a, snd := od } ∈ List.dedupKeys A hod : (decide ¬od = 0) = true this : od ∈ List.dlookup a (List.dedupKeys A) ⊢ ¬Option.getD (some od) 0 = 0 [PROOFSTEP] simpa using hod [GOAL] α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y od : β hval : { fst := a, snd := od } ∈ List.dedupKeys A hod : (decide ¬od = 0) = true this : od ∈ List.dlookup a (List.dedupKeys A) ⊢ List.dlookup a A = some od [PROOFSTEP] simpa [List.dlookup_dedupKeys, WithTop.some_eq_coe] [GOAL] case withDefault.mpr α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y : β ⊢ ¬Option.getD (List.dlookup a A) 0 = 0 → ∃ x, { fst := a, snd := x } ∈ List.dedupKeys A ∧ (decide ¬x = 0) = true [PROOFSTEP] intro h [GOAL] case withDefault.mpr α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y : β h : ¬Option.getD (List.dlookup a A) 0 = 0 ⊢ ∃ x, { fst := a, snd := x } ∈ List.dedupKeys A ∧ (decide ¬x = 0) = true [PROOFSTEP] use(A.dlookup a).getD (0 : β) [GOAL] case h α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y : β h : ¬Option.getD (List.dlookup a A) 0 = 0 ⊢ { fst := a, snd := Option.getD (List.dlookup a A) 0 } ∈ List.dedupKeys A ∧ (decide ¬Option.getD (List.dlookup a A) 0 = 0) = true [PROOFSTEP] rw [← List.dlookup_dedupKeys] at h ⊢ [GOAL] case h α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y : β h : ¬Option.getD (List.dlookup a (List.dedupKeys A)) 0 = 0 ⊢ { fst := a, snd := Option.getD (List.dlookup a (List.dedupKeys A)) 0 } ∈ List.dedupKeys A ∧ (decide ¬Option.getD (List.dlookup a (List.dedupKeys A)) 0 = 0) = true [PROOFSTEP] simp only [h, ← List.mem_dlookup_iff A.nodupKeys_dedupKeys, and_true_iff, not_false_iff, Option.mem_def] [GOAL] case h α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y : β h : ¬Option.getD (List.dlookup a (List.dedupKeys A)) 0 = 0 ⊢ List.dlookup a (List.dedupKeys A) = some (Option.getD (List.dlookup a (List.dedupKeys A)) 0) [PROOFSTEP] cases haA : List.dlookup a A.dedupKeys [GOAL] case h.none α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y : β h : ¬Option.getD (List.dlookup a (List.dedupKeys A)) 0 = 0 haA : List.dlookup a (List.dedupKeys A) = none ⊢ none = some (Option.getD none 0) [PROOFSTEP] simp [haA] at h [GOAL] case h.some α : Type u β : Type v γ : Sort w inst✝² : Zero β inst✝¹ : DecidableEq α inst✝ : DecidableEq β a : α A : List ((_ : α) × β) y : β h : ¬Option.getD (List.dlookup a (List.dedupKeys A)) 0 = 0 val✝ : β haA : List.dlookup a (List.dedupKeys A) = some val✝ ⊢ some val✝ = some (Option.getD (some val✝) 0) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List (α × α) x y z : α ⊢ applyId ((y, z) :: xs) x = if y = x then z else applyId xs x [PROOFSTEP] simp only [List.applyId, List.dlookup, eq_rec_constant, Prod.toSigma, List.map] [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List (α × α) x y z : α ⊢ Option.getD (if h : y = x then some z else List.dlookup x (List.map (fun p => { fst := p.fst, snd := p.snd }) xs)) x = if y = x then z else Option.getD (List.dlookup x (List.map (fun p => { fst := p.fst, snd := p.snd }) xs)) x [PROOFSTEP] split_ifs [GOAL] case pos α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List (α × α) x y z : α h✝ : y = x ⊢ Option.getD (some z) x = z [PROOFSTEP] rfl [GOAL] case neg α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List (α × α) x y z : α h✝ : ¬y = x ⊢ Option.getD (List.dlookup x (List.map (fun p => { fst := p.fst, snd := p.snd }) xs)) x = Option.getD (List.dlookup x (List.map (fun p => { fst := p.fst, snd := p.snd }) xs)) x [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : List.length xs = List.length ys x y : α i : ℕ h₂ : List.get? xs i = some x ⊢ applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y [PROOFSTEP] induction xs generalizing ys i [GOAL] case nil α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y : α ys : List α h₀ : List.Nodup [] h₁ : List.length [] = List.length ys i : ℕ h₂ : List.get? [] i = some x ⊢ applyId (List.zip [] ys) x = y ↔ List.get? ys i = some y case cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y head✝ : α tail✝ : List α tail_ih✝ : ∀ {ys : List α}, List.Nodup tail✝ → List.length tail✝ = List.length ys → ∀ (i : ℕ), List.get? tail✝ i = some x → (applyId (List.zip tail✝ ys) x = y ↔ List.get? ys i = some y) ys : List α h₀ : List.Nodup (head✝ :: tail✝) h₁ : List.length (head✝ :: tail✝) = List.length ys i : ℕ h₂ : List.get? (head✝ :: tail✝) i = some x ⊢ applyId (List.zip (head✝ :: tail✝) ys) x = y ↔ List.get? ys i = some y [PROOFSTEP] case nil => cases h₂ [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y : α ys : List α h₀ : List.Nodup [] h₁ : List.length [] = List.length ys i : ℕ h₂ : List.get? [] i = some x ⊢ applyId (List.zip [] ys) x = y ↔ List.get? ys i = some y [PROOFSTEP] case nil => cases h₂ [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y : α ys : List α h₀ : List.Nodup [] h₁ : List.length [] = List.length ys i : ℕ h₂ : List.get? [] i = some x ⊢ applyId (List.zip [] ys) x = y ↔ List.get? ys i = some y [PROOFSTEP] cases h₂ [GOAL] case cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y head✝ : α tail✝ : List α tail_ih✝ : ∀ {ys : List α}, List.Nodup tail✝ → List.length tail✝ = List.length ys → ∀ (i : ℕ), List.get? tail✝ i = some x → (applyId (List.zip tail✝ ys) x = y ↔ List.get? ys i = some y) ys : List α h₀ : List.Nodup (head✝ :: tail✝) h₁ : List.length (head✝ :: tail✝) = List.length ys i : ℕ h₂ : List.get? (head✝ :: tail✝) i = some x ⊢ applyId (List.zip (head✝ :: tail✝) ys) x = y ↔ List.get? ys i = some y [PROOFSTEP] case cons x' xs xs_ih => cases i · injection h₂ with h₀; subst h₀ cases ys · cases h₁ · -- porting note: `open List` no longer makes `zip_cons_cons` visiblesimp only [List.applyId, Prod.toSigma, Option.getD_some, List.get?, List.dlookup_cons_eq, List.zip_cons_cons, List.map, Option.some_inj] · cases ys · cases h₁ · cases' h₀ with _ _ h₀ h₁ simp only [List.get?, List.zip_cons_cons, List.applyId_cons] at h₂ ⊢ rw [if_neg] · apply xs_ih <;> solve_by_elim [Nat.succ.inj] · apply h₀; apply List.get?_mem h₂ [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) ys : List α h₀ : List.Nodup (x' :: xs) h₁ : List.length (x' :: xs) = List.length ys i : ℕ h₂ : List.get? (x' :: xs) i = some x ⊢ applyId (List.zip (x' :: xs) ys) x = y ↔ List.get? ys i = some y [PROOFSTEP] case cons x' xs xs_ih => cases i · injection h₂ with h₀; subst h₀ cases ys · cases h₁ · -- porting note: `open List` no longer makes `zip_cons_cons` visiblesimp only [List.applyId, Prod.toSigma, Option.getD_some, List.get?, List.dlookup_cons_eq, List.zip_cons_cons, List.map, Option.some_inj] · cases ys · cases h₁ · cases' h₀ with _ _ h₀ h₁ simp only [List.get?, List.zip_cons_cons, List.applyId_cons] at h₂ ⊢ rw [if_neg] · apply xs_ih <;> solve_by_elim [Nat.succ.inj] · apply h₀; apply List.get?_mem h₂ [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) ys : List α h₀ : List.Nodup (x' :: xs) h₁ : List.length (x' :: xs) = List.length ys i : ℕ h₂ : List.get? (x' :: xs) i = some x ⊢ applyId (List.zip (x' :: xs) ys) x = y ↔ List.get? ys i = some y [PROOFSTEP] cases i [GOAL] case zero α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) ys : List α h₀ : List.Nodup (x' :: xs) h₁ : List.length (x' :: xs) = List.length ys h₂ : List.get? (x' :: xs) Nat.zero = some x ⊢ applyId (List.zip (x' :: xs) ys) x = y ↔ List.get? ys Nat.zero = some y [PROOFSTEP] injection h₂ with h₀ [GOAL] case zero α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) ys : List α h₀✝ : List.Nodup (x' :: xs) h₁ : List.length (x' :: xs) = List.length ys h₀ : x' = x ⊢ applyId (List.zip (x' :: xs) ys) x = y ↔ List.get? ys Nat.zero = some y [PROOFSTEP] subst h₀ [GOAL] case zero α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α y x' : α xs ys : List α h₀ : List.Nodup (x' :: xs) h₁ : List.length (x' :: xs) = List.length ys xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x' → (applyId (List.zip xs ys) x' = y ↔ List.get? ys i = some y) ⊢ applyId (List.zip (x' :: xs) ys) x' = y ↔ List.get? ys Nat.zero = some y [PROOFSTEP] cases ys [GOAL] case zero.nil α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α y x' : α xs : List α h₀ : List.Nodup (x' :: xs) xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x' → (applyId (List.zip xs ys) x' = y ↔ List.get? ys i = some y) h₁ : List.length (x' :: xs) = List.length [] ⊢ applyId (List.zip (x' :: xs) []) x' = y ↔ List.get? [] Nat.zero = some y [PROOFSTEP] cases h₁ [GOAL] case zero.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α y x' : α xs : List α h₀ : List.Nodup (x' :: xs) xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x' → (applyId (List.zip xs ys) x' = y ↔ List.get? ys i = some y) head✝ : α tail✝ : List α h₁ : List.length (x' :: xs) = List.length (head✝ :: tail✝) ⊢ applyId (List.zip (x' :: xs) (head✝ :: tail✝)) x' = y ↔ List.get? (head✝ :: tail✝) Nat.zero = some y [PROOFSTEP] simp only [List.applyId, Prod.toSigma, Option.getD_some, List.get?, List.dlookup_cons_eq, List.zip_cons_cons, List.map, Option.some_inj] [GOAL] case succ α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) ys : List α h₀ : List.Nodup (x' :: xs) h₁ : List.length (x' :: xs) = List.length ys n✝ : ℕ h₂ : List.get? (x' :: xs) (Nat.succ n✝) = some x ⊢ applyId (List.zip (x' :: xs) ys) x = y ↔ List.get? ys (Nat.succ n✝) = some y [PROOFSTEP] cases ys [GOAL] case succ.nil α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) h₀ : List.Nodup (x' :: xs) n✝ : ℕ h₂ : List.get? (x' :: xs) (Nat.succ n✝) = some x h₁ : List.length (x' :: xs) = List.length [] ⊢ applyId (List.zip (x' :: xs) []) x = y ↔ List.get? [] (Nat.succ n✝) = some y [PROOFSTEP] cases h₁ [GOAL] case succ.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) h₀ : List.Nodup (x' :: xs) n✝ : ℕ h₂ : List.get? (x' :: xs) (Nat.succ n✝) = some x head✝ : α tail✝ : List α h₁ : List.length (x' :: xs) = List.length (head✝ :: tail✝) ⊢ applyId (List.zip (x' :: xs) (head✝ :: tail✝)) x = y ↔ List.get? (head✝ :: tail✝) (Nat.succ n✝) = some y [PROOFSTEP] cases' h₀ with _ _ h₀ h₁ [GOAL] case succ.cons.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) n✝ : ℕ h₂ : List.get? (x' :: xs) (Nat.succ n✝) = some x head✝ : α tail✝ : List α h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝) h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' ⊢ applyId (List.zip (x' :: xs) (head✝ :: tail✝)) x = y ↔ List.get? (head✝ :: tail✝) (Nat.succ n✝) = some y [PROOFSTEP] simp only [List.get?, List.zip_cons_cons, List.applyId_cons] at h₂ ⊢ [GOAL] case succ.cons.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) n✝ : ℕ h₂ : List.get? xs n✝ = some x head✝ : α tail✝ : List α h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝) h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' ⊢ (if x' = x then head✝ else applyId (List.zip xs tail✝) x) = y ↔ List.get? tail✝ n✝ = some y [PROOFSTEP] rw [if_neg] [GOAL] case succ.cons.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) n✝ : ℕ h₂ : List.get? xs n✝ = some x head✝ : α tail✝ : List α h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝) h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' ⊢ applyId (List.zip xs tail✝) x = y ↔ List.get? tail✝ n✝ = some y [PROOFSTEP] apply xs_ih [GOAL] case succ.cons.cons.h₀ α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) n✝ : ℕ h₂ : List.get? xs n✝ = some x head✝ : α tail✝ : List α h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝) h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' ⊢ List.Nodup xs [PROOFSTEP] solve_by_elim [Nat.succ.inj] [GOAL] case succ.cons.cons.h₁ α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) n✝ : ℕ h₂ : List.get? xs n✝ = some x head✝ : α tail✝ : List α h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝) h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' ⊢ List.length xs = List.length tail✝ [PROOFSTEP] solve_by_elim [Nat.succ.inj] [GOAL] case succ.cons.cons.h₂ α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) n✝ : ℕ h₂ : List.get? xs n✝ = some x head✝ : α tail✝ : List α h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝) h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' ⊢ List.get? xs n✝ = some x [PROOFSTEP] solve_by_elim [Nat.succ.inj] [GOAL] case succ.cons.cons.hnc α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) n✝ : ℕ h₂ : List.get? xs n✝ = some x head✝ : α tail✝ : List α h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝) h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' ⊢ ¬x' = x [PROOFSTEP] apply h₀ [GOAL] case succ.cons.cons.hnc.a α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x y x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.length xs = List.length ys → ∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y) n✝ : ℕ h₂ : List.get? xs n✝ = some x head✝ : α tail✝ : List α h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝) h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' ⊢ x ∈ xs [PROOFSTEP] apply List.get?_mem h₂ [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x : α ⊢ applyId (List.zip xs ys) x ∈ ys ↔ x ∈ xs [PROOFSTEP] simp only [List.applyId] [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x : α ⊢ Option.getD (List.dlookup x (List.map Prod.toSigma (List.zip xs ys))) x ∈ ys ↔ x ∈ xs [PROOFSTEP] cases h₃ : List.dlookup x (List.map Prod.toSigma (xs.zip ys)) with | none => dsimp [Option.getD] rw [h₁.mem_iff] | some val => have h₂ : ys.Nodup := h₁.nodup_iff.1 h₀ replace h₁ : xs.length = ys.length := h₁.length_eq dsimp induction xs generalizing ys with | nil => contradiction | cons x' xs xs_ih => cases' ys with y ys · cases h₃ dsimp [List.dlookup] at h₃ ; split_ifs at h₃ with h · rw [Option.some_inj] at h₃ subst x'; subst val simp only [List.mem_cons, true_or_iff, eq_self_iff_true] · cases' h₀ with _ _ h₀ h₅ cases' h₂ with _ _ h₂ h₄ have h₆ := Nat.succ.inj h₁ specialize xs_ih h₅ h₃ h₄ h₆ simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff] suffices : val ∈ ys; tauto erw [← Option.mem_def, List.mem_dlookup_iff] at h₃ simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃ rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩ apply (List.mem_zip h₃).2 simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map] rwa [List.map_fst_zip _ _ (le_of_eq h₆)] [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x : α x✝ : Option α h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = x✝ ⊢ Option.getD x✝ x ∈ ys ↔ x ∈ xs [PROOFSTEP] cases h₃ : List.dlookup x (List.map Prod.toSigma (xs.zip ys)) with | none => dsimp [Option.getD] rw [h₁.mem_iff] | some val => have h₂ : ys.Nodup := h₁.nodup_iff.1 h₀ replace h₁ : xs.length = ys.length := h₁.length_eq dsimp induction xs generalizing ys with | nil => contradiction | cons x' xs xs_ih => cases' ys with y ys · cases h₃ dsimp [List.dlookup] at h₃ ; split_ifs at h₃ with h · rw [Option.some_inj] at h₃ subst x'; subst val simp only [List.mem_cons, true_or_iff, eq_self_iff_true] · cases' h₀ with _ _ h₀ h₅ cases' h₂ with _ _ h₂ h₄ have h₆ := Nat.succ.inj h₁ specialize xs_ih h₅ h₃ h₄ h₆ simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff] suffices : val ∈ ys; tauto erw [← Option.mem_def, List.mem_dlookup_iff] at h₃ simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃ rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩ apply (List.mem_zip h₃).2 simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map] rwa [List.map_fst_zip _ _ (le_of_eq h₆)] [GOAL] case none α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x : α h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = none ⊢ Option.getD none x ∈ ys ↔ x ∈ xs [PROOFSTEP] | none => dsimp [Option.getD] rw [h₁.mem_iff] [GOAL] case none α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x : α h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = none ⊢ Option.getD none x ∈ ys ↔ x ∈ xs [PROOFSTEP] dsimp [Option.getD] [GOAL] case none α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x : α h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = none ⊢ x ∈ ys ↔ x ∈ xs [PROOFSTEP] rw [h₁.mem_iff] [GOAL] case some α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x val : α h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val ⊢ Option.getD (some val) x ∈ ys ↔ x ∈ xs [PROOFSTEP] | some val => have h₂ : ys.Nodup := h₁.nodup_iff.1 h₀ replace h₁ : xs.length = ys.length := h₁.length_eq dsimp induction xs generalizing ys with | nil => contradiction | cons x' xs xs_ih => cases' ys with y ys · cases h₃ dsimp [List.dlookup] at h₃ ; split_ifs at h₃ with h · rw [Option.some_inj] at h₃ subst x'; subst val simp only [List.mem_cons, true_or_iff, eq_self_iff_true] · cases' h₀ with _ _ h₀ h₅ cases' h₂ with _ _ h₂ h₄ have h₆ := Nat.succ.inj h₁ specialize xs_ih h₅ h₃ h₄ h₆ simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff] suffices : val ∈ ys; tauto erw [← Option.mem_def, List.mem_dlookup_iff] at h₃ simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃ rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩ apply (List.mem_zip h₃).2 simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map] rwa [List.map_fst_zip _ _ (le_of_eq h₆)] [GOAL] case some α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x val : α h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val ⊢ Option.getD (some val) x ∈ ys ↔ x ∈ xs [PROOFSTEP] have h₂ : ys.Nodup := h₁.nodup_iff.1 h₀ [GOAL] case some α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x val : α h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val h₂ : List.Nodup ys ⊢ Option.getD (some val) x ∈ ys ↔ x ∈ xs [PROOFSTEP] replace h₁ : xs.length = ys.length := h₁.length_eq [GOAL] case some α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs x val : α h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val h₂ : List.Nodup ys h₁ : List.length xs = List.length ys ⊢ Option.getD (some val) x ∈ ys ↔ x ∈ xs [PROOFSTEP] dsimp [GOAL] case some α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs x val : α h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val h₂ : List.Nodup ys h₁ : List.length xs = List.length ys ⊢ val ∈ ys ↔ x ∈ xs [PROOFSTEP] induction xs generalizing ys with | nil => contradiction | cons x' xs xs_ih => cases' ys with y ys · cases h₃ dsimp [List.dlookup] at h₃ ; split_ifs at h₃ with h · rw [Option.some_inj] at h₃ subst x'; subst val simp only [List.mem_cons, true_or_iff, eq_self_iff_true] · cases' h₀ with _ _ h₀ h₅ cases' h₂ with _ _ h₂ h₄ have h₆ := Nat.succ.inj h₁ specialize xs_ih h₅ h₃ h₄ h₆ simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff] suffices : val ∈ ys; tauto erw [← Option.mem_def, List.mem_dlookup_iff] at h₃ simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃ rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩ apply (List.mem_zip h₃).2 simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map] rwa [List.map_fst_zip _ _ (le_of_eq h₆)] [GOAL] case some α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs x val : α h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val h₂ : List.Nodup ys h₁ : List.length xs = List.length ys ⊢ val ∈ ys ↔ x ∈ xs [PROOFSTEP] induction xs generalizing ys with | nil => contradiction | cons x' xs xs_ih => cases' ys with y ys · cases h₃ dsimp [List.dlookup] at h₃ ; split_ifs at h₃ with h · rw [Option.some_inj] at h₃ subst x'; subst val simp only [List.mem_cons, true_or_iff, eq_self_iff_true] · cases' h₀ with _ _ h₀ h₅ cases' h₂ with _ _ h₂ h₄ have h₆ := Nat.succ.inj h₁ specialize xs_ih h₅ h₃ h₄ h₆ simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff] suffices : val ∈ ys; tauto erw [← Option.mem_def, List.mem_dlookup_iff] at h₃ simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃ rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩ apply (List.mem_zip h₃).2 simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map] rwa [List.map_fst_zip _ _ (le_of_eq h₆)] [GOAL] case some.nil α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val : α ys : List α h₀ : List.Nodup [] h₃ : List.dlookup x (List.map Prod.toSigma (List.zip [] ys)) = some val h₂ : List.Nodup ys h₁ : List.length [] = List.length ys ⊢ val ∈ ys ↔ x ∈ [] [PROOFSTEP] | nil => contradiction [GOAL] case some.nil α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val : α ys : List α h₀ : List.Nodup [] h₃ : List.dlookup x (List.map Prod.toSigma (List.zip [] ys)) = some val h₂ : List.Nodup ys h₁ : List.length [] = List.length ys ⊢ val ∈ ys ↔ x ∈ [] [PROOFSTEP] contradiction [GOAL] case some.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val → List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs) ys : List α h₀ : List.Nodup (x' :: xs) h₃ : List.dlookup x (List.map Prod.toSigma (List.zip (x' :: xs) ys)) = some val h₂ : List.Nodup ys h₁ : List.length (x' :: xs) = List.length ys ⊢ val ∈ ys ↔ x ∈ x' :: xs [PROOFSTEP] | cons x' xs xs_ih => cases' ys with y ys · cases h₃ dsimp [List.dlookup] at h₃ ; split_ifs at h₃ with h · rw [Option.some_inj] at h₃ subst x'; subst val simp only [List.mem_cons, true_or_iff, eq_self_iff_true] · cases' h₀ with _ _ h₀ h₅ cases' h₂ with _ _ h₂ h₄ have h₆ := Nat.succ.inj h₁ specialize xs_ih h₅ h₃ h₄ h₆ simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff] suffices : val ∈ ys; tauto erw [← Option.mem_def, List.mem_dlookup_iff] at h₃ simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃ rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩ apply (List.mem_zip h₃).2 simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map] rwa [List.map_fst_zip _ _ (le_of_eq h₆)] [GOAL] case some.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val → List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs) ys : List α h₀ : List.Nodup (x' :: xs) h₃ : List.dlookup x (List.map Prod.toSigma (List.zip (x' :: xs) ys)) = some val h₂ : List.Nodup ys h₁ : List.length (x' :: xs) = List.length ys ⊢ val ∈ ys ↔ x ∈ x' :: xs [PROOFSTEP] cases' ys with y ys [GOAL] case some.cons.nil α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val → List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs) h₀ : List.Nodup (x' :: xs) h₃ : List.dlookup x (List.map Prod.toSigma (List.zip (x' :: xs) [])) = some val h₂ : List.Nodup [] h₁ : List.length (x' :: xs) = List.length [] ⊢ val ∈ [] ↔ x ∈ x' :: xs [PROOFSTEP] cases h₃ [GOAL] case some.cons.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val → List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs) h₀ : List.Nodup (x' :: xs) y : α ys : List α h₃ : List.dlookup x (List.map Prod.toSigma (List.zip (x' :: xs) (y :: ys))) = some val h₂ : List.Nodup (y :: ys) h₁ : List.length (x' :: xs) = List.length (y :: ys) ⊢ val ∈ y :: ys ↔ x ∈ x' :: xs [PROOFSTEP] dsimp [List.dlookup] at h₃ [GOAL] case some.cons.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val → List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs) h₀ : List.Nodup (x' :: xs) y : α ys : List α h₃ : (if h : x' = x then some (h ▸ y) else List.dlookup x (List.map Prod.toSigma (List.zip xs ys))) = some val h₂ : List.Nodup (y :: ys) h₁ : List.length (x' :: xs) = List.length (y :: ys) ⊢ val ∈ y :: ys ↔ x ∈ x' :: xs [PROOFSTEP] split_ifs at h₃ with h [GOAL] case pos α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val → List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs) h₀ : List.Nodup (x' :: xs) y : α ys : List α h₂ : List.Nodup (y :: ys) h₁ : List.length (x' :: xs) = List.length (y :: ys) h : x' = x h₃ : some (h ▸ y) = some val ⊢ val ∈ y :: ys ↔ x ∈ x' :: xs [PROOFSTEP] rw [Option.some_inj] at h₃ [GOAL] case pos α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val → List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs) h₀ : List.Nodup (x' :: xs) y : α ys : List α h₂ : List.Nodup (y :: ys) h₁ : List.length (x' :: xs) = List.length (y :: ys) h : x' = x h₃ : h ▸ y = val ⊢ val ∈ y :: ys ↔ x ∈ x' :: xs [PROOFSTEP] subst x' [GOAL] case pos α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val → List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs) y : α ys : List α h₂ : List.Nodup (y :: ys) h₀ : List.Nodup (x :: xs) h₁ : List.length (x :: xs) = List.length (y :: ys) h₃ : (_ : x = x) ▸ y = val ⊢ val ∈ y :: ys ↔ x ∈ x :: xs [PROOFSTEP] subst val [GOAL] case pos α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x : α xs : List α y : α ys : List α h₂ : List.Nodup (y :: ys) h₀ : List.Nodup (x :: xs) h₁ : List.length (x :: xs) = List.length (y :: ys) xs_ih : ∀ {ys : List α}, List.Nodup xs → List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some ((_ : x = x) ▸ y) → List.Nodup ys → List.length xs = List.length ys → ((_ : x = x) ▸ y ∈ ys ↔ x ∈ xs) ⊢ (_ : x = x) ▸ y ∈ y :: ys ↔ x ∈ x :: xs [PROOFSTEP] simp only [List.mem_cons, true_or_iff, eq_self_iff_true] [GOAL] case neg α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val → List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs) h₀ : List.Nodup (x' :: xs) y : α ys : List α h₂ : List.Nodup (y :: ys) h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val ⊢ val ∈ y :: ys ↔ x ∈ x' :: xs [PROOFSTEP] cases' h₀ with _ _ h₀ h₅ [GOAL] case neg.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val → List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs) y : α ys : List α h₂ : List.Nodup (y :: ys) h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' ⊢ val ∈ y :: ys ↔ x ∈ x' :: xs [PROOFSTEP] cases' h₂ with _ _ h₂ h₄ [GOAL] case neg.cons.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val → List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs) y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' ⊢ val ∈ y :: ys ↔ x ∈ x' :: xs [PROOFSTEP] have h₆ := Nat.succ.inj h₁ [GOAL] case neg.cons.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α xs_ih : ∀ {ys : List α}, List.Nodup xs → List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val → List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs) y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys ⊢ val ∈ y :: ys ↔ x ∈ x' :: xs [PROOFSTEP] specialize xs_ih h₅ h₃ h₄ h₆ [GOAL] case neg.cons.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys xs_ih : val ∈ ys ↔ x ∈ xs ⊢ val ∈ y :: ys ↔ x ∈ x' :: xs [PROOFSTEP] simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff] [GOAL] case neg.cons.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys xs_ih : val ∈ ys ↔ x ∈ xs ⊢ val = y ∨ x ∈ xs ↔ x ∈ xs [PROOFSTEP] suffices : val ∈ ys [GOAL] case neg.cons.cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys xs_ih : val ∈ ys ↔ x ∈ xs this : val ∈ ys ⊢ val = y ∨ x ∈ xs ↔ x ∈ xs case this α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys xs_ih : val ∈ ys ↔ x ∈ xs ⊢ val ∈ ys [PROOFSTEP] tauto [GOAL] case this α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys xs_ih : val ∈ ys ↔ x ∈ xs ⊢ val ∈ ys [PROOFSTEP] erw [← Option.mem_def, List.mem_dlookup_iff] at h₃ [GOAL] case this α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : { fst := x, snd := val } ∈ List.map Prod.toSigma (List.zip xs ys) h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys xs_ih : val ∈ ys ↔ x ∈ xs ⊢ val ∈ ys case this α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : val ∈ List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys xs_ih : val ∈ ys ↔ x ∈ xs ⊢ List.NodupKeys (List.map Prod.toSigma (List.zip xs ys)) [PROOFSTEP] simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃ [GOAL] case this α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys xs_ih : val ∈ ys ↔ x ∈ xs h₃ : ∃ a b, (a, b) ∈ List.zip xs ys ∧ { fst := a, snd := b } = { fst := x, snd := val } ⊢ val ∈ ys case this α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : val ∈ List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys xs_ih : val ∈ ys ↔ x ∈ xs ⊢ List.NodupKeys (List.map Prod.toSigma (List.zip xs ys)) [PROOFSTEP] rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩ [GOAL] case this.intro.intro.intro.refl α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys xs_ih : val ∈ ys ↔ x ∈ xs h₃ : (x, val) ∈ List.zip xs ys ⊢ val ∈ ys case this α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : val ∈ List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys xs_ih : val ∈ ys ↔ x ∈ xs ⊢ List.NodupKeys (List.map Prod.toSigma (List.zip xs ys)) [PROOFSTEP] apply (List.mem_zip h₃).2 [GOAL] case this α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : val ∈ List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys xs_ih : val ∈ ys ↔ x ∈ xs ⊢ List.NodupKeys (List.map Prod.toSigma (List.zip xs ys)) [PROOFSTEP] simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map] [GOAL] case this α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α x val x' : α xs : List α y : α ys : List α h₁ : List.length (x' :: xs) = List.length (y :: ys) h : ¬x' = x h₃ : val ∈ List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a' h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a' h₆ : List.length xs = List.length ys xs_ih : val ∈ ys ↔ x ∈ xs ⊢ List.Nodup (List.map (fun x => x.fst) (List.zip xs ys)) [PROOFSTEP] rwa [List.map_fst_zip _ _ (le_of_eq h₆)] [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α x : α ⊢ ¬x ∈ xs → applyId (List.zip xs ys) x = x [PROOFSTEP] intro h [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α x : α h : ¬x ∈ xs ⊢ applyId (List.zip xs ys) x = x [PROOFSTEP] dsimp [List.applyId] [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α x : α h : ¬x ∈ xs ⊢ Option.getD (List.dlookup x (List.map Prod.toSigma (List.zip xs ys))) x = x [PROOFSTEP] rw [List.dlookup_eq_none.2] [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α x : α h : ¬x ∈ xs ⊢ Option.getD none x = x α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α x : α h : ¬x ∈ xs ⊢ ¬x ∈ List.keys (List.map Prod.toSigma (List.zip xs ys)) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α x : α h : ¬x ∈ xs ⊢ ¬x ∈ List.keys (List.map Prod.toSigma (List.zip xs ys)) [PROOFSTEP] simp only [List.keys, not_exists, Prod.toSigma, exists_and_right, exists_eq_right, List.mem_map, Function.comp_apply, List.map_map, Prod.exists] [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α x : α h : ¬x ∈ xs ⊢ ∀ (x_1 : α), ¬(x, x_1) ∈ List.zip xs ys [PROOFSTEP] intro y hy [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α x : α h : ¬x ∈ xs y : α hy : (x, y) ∈ List.zip xs ys ⊢ False [PROOFSTEP] exact h (List.mem_zip hy).1 [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys ⊢ Injective (applyId (List.zip xs ys)) [PROOFSTEP] intro x y h [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y ⊢ x = y [PROOFSTEP] by_cases hx : x ∈ xs [GOAL] case pos α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y hx : x ∈ xs ⊢ x = y [PROOFSTEP] by_cases hy : y ∈ xs [GOAL] case neg α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y hx : ¬x ∈ xs ⊢ x = y [PROOFSTEP] by_cases hy : y ∈ xs [GOAL] case pos α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y hx : x ∈ xs hy : y ∈ xs ⊢ x = y [PROOFSTEP] rw [List.mem_iff_get?] at hx hy [GOAL] case pos α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y hx : ∃ n, List.get? xs n = some x hy : ∃ n, List.get? xs n = some y ⊢ x = y [PROOFSTEP] cases' hx with i hx [GOAL] case pos.intro α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y hy : ∃ n, List.get? xs n = some y i : ℕ hx : List.get? xs i = some x ⊢ x = y [PROOFSTEP] cases' hy with j hy [GOAL] case pos.intro.intro α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y i : ℕ hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y ⊢ x = y [PROOFSTEP] suffices some x = some y by injection this [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y i : ℕ hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y this : some x = some y ⊢ x = y [PROOFSTEP] injection this [GOAL] case pos.intro.intro α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y i : ℕ hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y ⊢ some x = some y [PROOFSTEP] have h₂ := h₁.length_eq [GOAL] case pos.intro.intro α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y i : ℕ hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys ⊢ some x = some y [PROOFSTEP] rw [List.applyId_zip_eq h₀ h₂ _ _ _ hx] at h [GOAL] case pos.intro.intro α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α i : ℕ h : List.get? ys i = some (applyId (List.zip xs ys) y) hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys ⊢ some x = some y [PROOFSTEP] rw [← hx, ← hy] [GOAL] case pos.intro.intro α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α i : ℕ h : List.get? ys i = some (applyId (List.zip xs ys) y) hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys ⊢ List.get? xs i = List.get? xs j [PROOFSTEP] congr [GOAL] case pos.intro.intro.e_a α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α i : ℕ h : List.get? ys i = some (applyId (List.zip xs ys) y) hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys ⊢ i = j [PROOFSTEP] apply List.get?_injective _ (h₁.nodup_iff.1 h₀) [GOAL] case pos.intro.intro.e_a α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α i : ℕ h : List.get? ys i = some (applyId (List.zip xs ys) y) hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys ⊢ List.get? ys i = List.get? ys j [PROOFSTEP] symm [GOAL] case pos.intro.intro.e_a α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α i : ℕ h : List.get? ys i = some (applyId (List.zip xs ys) y) hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys ⊢ List.get? ys j = List.get? ys i [PROOFSTEP] rw [h] [GOAL] case pos.intro.intro.e_a α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α i : ℕ h : List.get? ys i = some (applyId (List.zip xs ys) y) hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys ⊢ List.get? ys j = some (applyId (List.zip xs ys) y) [PROOFSTEP] rw [← List.applyId_zip_eq] [GOAL] case pos.intro.intro.e_a.h₀ α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α i : ℕ h : List.get? ys i = some (applyId (List.zip xs ys) y) hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys ⊢ List.Nodup xs [PROOFSTEP] assumption [GOAL] case pos.intro.intro.e_a.h₁ α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α i : ℕ h : List.get? ys i = some (applyId (List.zip xs ys) y) hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys ⊢ List.length xs = List.length ys [PROOFSTEP] assumption [GOAL] case pos.intro.intro.e_a.h₂ α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α i : ℕ h : List.get? ys i = some (applyId (List.zip xs ys) y) hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys ⊢ List.get? xs j = some y [PROOFSTEP] assumption [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α i : ℕ h : List.get? ys i = some (applyId (List.zip xs ys) y) hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys ⊢ i < List.length ys [PROOFSTEP] rw [← h₁.length_eq] [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α i : ℕ h : List.get? ys i = some (applyId (List.zip xs ys) y) hx : List.get? xs i = some x j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys ⊢ i < List.length xs [PROOFSTEP] rw [List.get?_eq_some] at hx [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α i : ℕ h : List.get? ys i = some (applyId (List.zip xs ys) y) hx : ∃ h, List.get xs { val := i, isLt := h } = x j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys ⊢ i < List.length xs [PROOFSTEP] cases' hx with hx hx' [GOAL] case intro α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α i : ℕ h : List.get? ys i = some (applyId (List.zip xs ys) y) j : ℕ hy : List.get? xs j = some y h₂ : List.length xs = List.length ys hx : i < List.length xs hx' : List.get xs { val := i, isLt := hx } = x ⊢ i < List.length xs [PROOFSTEP] exact hx [GOAL] case neg α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y hx : x ∈ xs hy : ¬y ∈ xs ⊢ x = y [PROOFSTEP] rw [← applyId_mem_iff h₀ h₁] at hx hy [GOAL] case neg α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y hx : applyId (List.zip xs ys) x ∈ ys hy : ¬applyId (List.zip xs ys) y ∈ ys ⊢ x = y [PROOFSTEP] rw [h] at hx [GOAL] case neg α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y hx : applyId (List.zip xs ys) y ∈ ys hy : ¬applyId (List.zip xs ys) y ∈ ys ⊢ x = y [PROOFSTEP] contradiction [GOAL] case pos α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y hx : ¬x ∈ xs hy : y ∈ xs ⊢ x = y [PROOFSTEP] rw [← applyId_mem_iff h₀ h₁] at hx hy [GOAL] case pos α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y hx : ¬applyId (List.zip xs ys) x ∈ ys hy : applyId (List.zip xs ys) y ∈ ys ⊢ x = y [PROOFSTEP] rw [h] at hx [GOAL] case pos α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y hx : ¬applyId (List.zip xs ys) y ∈ ys hy : applyId (List.zip xs ys) y ∈ ys ⊢ x = y [PROOFSTEP] contradiction [GOAL] case neg α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y hx : ¬x ∈ xs hy : ¬y ∈ xs ⊢ x = y [PROOFSTEP] rwa [List.applyId_eq_self, List.applyId_eq_self] at h [GOAL] case neg.a α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : x = applyId (List.zip xs ys) y hx : ¬x ∈ xs hy : ¬y ∈ xs ⊢ ¬y ∈ xs [PROOFSTEP] assumption [GOAL] case neg.a α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs ys : List α h₀ : List.Nodup xs h₁ : xs ~ ys x y : α h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y hx : ¬x ∈ xs hy : ¬y ∈ xs ⊢ ¬x ∈ xs [PROOFSTEP] assumption [GOAL] α : Type u β : Type v γ : Sort w x✝ : ℕ n : ℕ := x✝ h : 0 < n ⊢ 1 < 2 [PROOFSTEP] decide [GOAL] α✝ : Type u β : Type v γ : Sort w α : Type inst✝ : DecidableEq α xs : List ((_ : α) × α) h₀✝ : List.map Sigma.fst xs ~ List.map Sigma.snd xs h₁✝ : List.Nodup (List.map Sigma.snd xs) xs' ys' : List α h₀ : xs' ~ ys' h₁ : List.Nodup ys' h₃ : List.length xs' ≤ List.length ys' h₄ : List.length ys' ≤ List.length xs' ⊢ List.map Sigma.fst (List.map Prod.toSigma (List.zip xs' ys')) ~ List.map Sigma.snd (List.map Prod.toSigma (List.zip xs' ys')) [PROOFSTEP] simp only [comp, List.map_fst_zip, List.map_snd_zip, *, Prod.fst_toSigma, Prod.snd_toSigma, List.map_map] [GOAL] α✝ : Type u β : Type v γ : Sort w α : Type inst✝ : DecidableEq α xs : List ((_ : α) × α) h₀✝ : List.map Sigma.fst xs ~ List.map Sigma.snd xs h₁✝ : List.Nodup (List.map Sigma.snd xs) xs' ys' : List α h₀ : xs' ~ ys' h₁ : List.Nodup ys' h₃ : List.length xs' ≤ List.length ys' h₄ : List.length ys' ≤ List.length xs' ⊢ List.Nodup (List.map Sigma.snd (List.map Prod.toSigma (List.zip xs' ys'))) [PROOFSTEP] simp only [comp, List.map_snd_zip, *, Prod.snd_toSigma, List.map_map] [GOAL] α : Type u β : Type v γ : Sort w xs ys : List α h : xs ~ ys h' : List.Nodup ys h₀ : List.length xs ≤ List.length ys h₁ : List.length ys ≤ List.length xs ⊢ List.map Sigma.fst (List.toFinmap' (List.zip xs ys)) ~ List.map Sigma.snd (List.toFinmap' (List.zip xs ys)) [PROOFSTEP] simp only [List.toFinmap', comp, List.map_fst_zip, List.map_snd_zip, *, Prod.fst_toSigma, Prod.snd_toSigma, List.map_map] [GOAL] α : Type u β : Type v γ : Sort w xs ys : List α h : xs ~ ys h' : List.Nodup ys h₀ : List.length xs ≤ List.length ys h₁ : List.length ys ≤ List.length xs ⊢ List.Nodup (List.map Sigma.snd (List.toFinmap' (List.zip xs ys))) [PROOFSTEP] simp only [List.toFinmap', comp, List.map_snd_zip, *, Prod.snd_toSigma, List.map_map] [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α f : InjectiveFunction α ⊢ Injective (apply f) [PROOFSTEP] cases' f with xs hperm hnodup [GOAL] case mapToSelf α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List ((_ : α) × α) hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs hnodup : List.Nodup (List.map Sigma.snd xs) ⊢ Injective (apply (mapToSelf xs hperm hnodup)) [PROOFSTEP] generalize h₀ : List.map Sigma.fst xs = xs₀ [GOAL] case mapToSelf α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List ((_ : α) × α) hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs hnodup : List.Nodup (List.map Sigma.snd xs) xs₀ : List α h₀ : List.map Sigma.fst xs = xs₀ ⊢ Injective (apply (mapToSelf xs hperm hnodup)) [PROOFSTEP] generalize h₁ : xs.map (@id ((Σ _ : α, α) → α) <| @Sigma.snd α fun _ : α => α) = xs₁ [GOAL] case mapToSelf α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List ((_ : α) × α) hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs hnodup : List.Nodup (List.map Sigma.snd xs) xs₀ : List α h₀ : List.map Sigma.fst xs = xs₀ xs₁ : List α h₁ : List.map (id Sigma.snd) xs = xs₁ ⊢ Injective (apply (mapToSelf xs hperm hnodup)) [PROOFSTEP] dsimp [id] at h₁ [GOAL] case mapToSelf α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List ((_ : α) × α) hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs hnodup : List.Nodup (List.map Sigma.snd xs) xs₀ : List α h₀ : List.map Sigma.fst xs = xs₀ xs₁ : List α h₁ : List.map Sigma.snd xs = xs₁ ⊢ Injective (apply (mapToSelf xs hperm hnodup)) [PROOFSTEP] have hxs : xs = TotalFunction.List.toFinmap' (xs₀.zip xs₁) := by rw [← h₀, ← h₁, List.toFinmap']; clear h₀ h₁ xs₀ xs₁ hperm hnodup induction xs case nil => simp only [List.zip_nil_right, List.map_nil] case cons xs_hd xs_tl xs_ih => simp only [true_and_iff, Prod.toSigma, eq_self_iff_true, Sigma.eta, List.zip_cons_cons, List.map, List.cons_inj] exact xs_ih [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List ((_ : α) × α) hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs hnodup : List.Nodup (List.map Sigma.snd xs) xs₀ : List α h₀ : List.map Sigma.fst xs = xs₀ xs₁ : List α h₁ : List.map Sigma.snd xs = xs₁ ⊢ xs = List.toFinmap' (List.zip xs₀ xs₁) [PROOFSTEP] rw [← h₀, ← h₁, List.toFinmap'] [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List ((_ : α) × α) hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs hnodup : List.Nodup (List.map Sigma.snd xs) xs₀ : List α h₀ : List.map Sigma.fst xs = xs₀ xs₁ : List α h₁ : List.map Sigma.snd xs = xs₁ ⊢ xs = List.map Prod.toSigma (List.zip (List.map Sigma.fst xs) (List.map Sigma.snd xs)) [PROOFSTEP] clear h₀ h₁ xs₀ xs₁ hperm hnodup [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List ((_ : α) × α) ⊢ xs = List.map Prod.toSigma (List.zip (List.map Sigma.fst xs) (List.map Sigma.snd xs)) [PROOFSTEP] induction xs [GOAL] case nil α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α ⊢ [] = List.map Prod.toSigma (List.zip (List.map Sigma.fst []) (List.map Sigma.snd [])) case cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α head✝ : (_ : α) × α tail✝ : List ((_ : α) × α) tail_ih✝ : tail✝ = List.map Prod.toSigma (List.zip (List.map Sigma.fst tail✝) (List.map Sigma.snd tail✝)) ⊢ head✝ :: tail✝ = List.map Prod.toSigma (List.zip (List.map Sigma.fst (head✝ :: tail✝)) (List.map Sigma.snd (head✝ :: tail✝))) [PROOFSTEP] case nil => simp only [List.zip_nil_right, List.map_nil] [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α ⊢ [] = List.map Prod.toSigma (List.zip (List.map Sigma.fst []) (List.map Sigma.snd [])) [PROOFSTEP] case nil => simp only [List.zip_nil_right, List.map_nil] [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α ⊢ [] = List.map Prod.toSigma (List.zip (List.map Sigma.fst []) (List.map Sigma.snd [])) [PROOFSTEP] simp only [List.zip_nil_right, List.map_nil] [GOAL] case cons α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α head✝ : (_ : α) × α tail✝ : List ((_ : α) × α) tail_ih✝ : tail✝ = List.map Prod.toSigma (List.zip (List.map Sigma.fst tail✝) (List.map Sigma.snd tail✝)) ⊢ head✝ :: tail✝ = List.map Prod.toSigma (List.zip (List.map Sigma.fst (head✝ :: tail✝)) (List.map Sigma.snd (head✝ :: tail✝))) [PROOFSTEP] case cons xs_hd xs_tl xs_ih => simp only [true_and_iff, Prod.toSigma, eq_self_iff_true, Sigma.eta, List.zip_cons_cons, List.map, List.cons_inj] exact xs_ih [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs_hd : (_ : α) × α xs_tl : List ((_ : α) × α) xs_ih : xs_tl = List.map Prod.toSigma (List.zip (List.map Sigma.fst xs_tl) (List.map Sigma.snd xs_tl)) ⊢ xs_hd :: xs_tl = List.map Prod.toSigma (List.zip (List.map Sigma.fst (xs_hd :: xs_tl)) (List.map Sigma.snd (xs_hd :: xs_tl))) [PROOFSTEP] case cons xs_hd xs_tl xs_ih => simp only [true_and_iff, Prod.toSigma, eq_self_iff_true, Sigma.eta, List.zip_cons_cons, List.map, List.cons_inj] exact xs_ih [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs_hd : (_ : α) × α xs_tl : List ((_ : α) × α) xs_ih : xs_tl = List.map Prod.toSigma (List.zip (List.map Sigma.fst xs_tl) (List.map Sigma.snd xs_tl)) ⊢ xs_hd :: xs_tl = List.map Prod.toSigma (List.zip (List.map Sigma.fst (xs_hd :: xs_tl)) (List.map Sigma.snd (xs_hd :: xs_tl))) [PROOFSTEP] simp only [true_and_iff, Prod.toSigma, eq_self_iff_true, Sigma.eta, List.zip_cons_cons, List.map, List.cons_inj] [GOAL] α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs_hd : (_ : α) × α xs_tl : List ((_ : α) × α) xs_ih : xs_tl = List.map Prod.toSigma (List.zip (List.map Sigma.fst xs_tl) (List.map Sigma.snd xs_tl)) ⊢ xs_tl = List.map (fun p => { fst := p.fst, snd := p.snd }) (List.zipWith Prod.mk (List.map Sigma.fst xs_tl) (List.map Sigma.snd xs_tl)) [PROOFSTEP] exact xs_ih [GOAL] case mapToSelf α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List ((_ : α) × α) hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs hnodup : List.Nodup (List.map Sigma.snd xs) xs₀ : List α h₀ : List.map Sigma.fst xs = xs₀ xs₁ : List α h₁ : List.map Sigma.snd xs = xs₁ hxs : xs = List.toFinmap' (List.zip xs₀ xs₁) ⊢ Injective (apply (mapToSelf xs hperm hnodup)) [PROOFSTEP] revert hperm hnodup [GOAL] case mapToSelf α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List ((_ : α) × α) xs₀ : List α h₀ : List.map Sigma.fst xs = xs₀ xs₁ : List α h₁ : List.map Sigma.snd xs = xs₁ hxs : xs = List.toFinmap' (List.zip xs₀ xs₁) ⊢ ∀ (hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs) (hnodup : List.Nodup (List.map Sigma.snd xs)), Injective (apply (mapToSelf xs hperm hnodup)) [PROOFSTEP] rw [hxs] [GOAL] case mapToSelf α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List ((_ : α) × α) xs₀ : List α h₀ : List.map Sigma.fst xs = xs₀ xs₁ : List α h₁ : List.map Sigma.snd xs = xs₁ hxs : xs = List.toFinmap' (List.zip xs₀ xs₁) ⊢ ∀ (hperm : List.map Sigma.fst (List.toFinmap' (List.zip xs₀ xs₁)) ~ List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁))) (hnodup : List.Nodup (List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁)))), Injective (apply (mapToSelf (List.toFinmap' (List.zip xs₀ xs₁)) hperm hnodup)) [PROOFSTEP] intros hperm hnodup [GOAL] case mapToSelf α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List ((_ : α) × α) xs₀ : List α h₀ : List.map Sigma.fst xs = xs₀ xs₁ : List α h₁ : List.map Sigma.snd xs = xs₁ hxs : xs = List.toFinmap' (List.zip xs₀ xs₁) hperm : List.map Sigma.fst (List.toFinmap' (List.zip xs₀ xs₁)) ~ List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁)) hnodup : List.Nodup (List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁))) ⊢ Injective (apply (mapToSelf (List.toFinmap' (List.zip xs₀ xs₁)) hperm hnodup)) [PROOFSTEP] apply InjectiveFunction.applyId_injective [GOAL] case mapToSelf.h₀ α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List ((_ : α) × α) xs₀ : List α h₀ : List.map Sigma.fst xs = xs₀ xs₁ : List α h₁ : List.map Sigma.snd xs = xs₁ hxs : xs = List.toFinmap' (List.zip xs₀ xs₁) hperm : List.map Sigma.fst (List.toFinmap' (List.zip xs₀ xs₁)) ~ List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁)) hnodup : List.Nodup (List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁))) ⊢ List.Nodup xs₀ [PROOFSTEP] rwa [← h₀, hxs, hperm.nodup_iff] [GOAL] case mapToSelf.h₁ α : Type u β : Type v γ : Sort w inst✝ : DecidableEq α xs : List ((_ : α) × α) xs₀ : List α h₀ : List.map Sigma.fst xs = xs₀ xs₁ : List α h₁ : List.map Sigma.snd xs = xs₁ hxs : xs = List.toFinmap' (List.zip xs₀ xs₁) hperm : List.map Sigma.fst (List.toFinmap' (List.zip xs₀ xs₁)) ~ List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁)) hnodup : List.Nodup (List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁))) ⊢ xs₀ ~ xs₁ [PROOFSTEP] rwa [← hxs, h₀, h₁] at hperm
{"mathlib_filename": "Mathlib.Testing.SlimCheck.Functions", "llama_tokens": 31510}
[GOAL] X Y : Scheme f : X ⟶ Y ⊢ @UniversallyClosed = universally (topologically @IsClosedMap) [PROOFSTEP] ext X Y f [GOAL] case h.h.h.a X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y ⊢ UniversallyClosed f ↔ universally (topologically @IsClosedMap) f [PROOFSTEP] rw [UniversallyClosed_iff] [GOAL] X Y : Scheme f : X ⟶ Y ⊢ StableUnderComposition @UniversallyClosed [PROOFSTEP] rw [universallyClosed_eq] [GOAL] X Y : Scheme f : X ⟶ Y ⊢ StableUnderComposition (universally (topologically @IsClosedMap)) [PROOFSTEP] exact StableUnderComposition.universally (fun X Y Z f g hf hg => @IsClosedMap.comp _ _ _ _ _ _ g.1.base f.1.base hg hf) [GOAL] X Y : Scheme f : X ⟶ Y ⊢ PropertyIsLocalAtTarget @UniversallyClosed [PROOFSTEP] rw [universallyClosed_eq] [GOAL] X Y : Scheme f : X ⟶ Y ⊢ PropertyIsLocalAtTarget (universally (topologically @IsClosedMap)) [PROOFSTEP] apply universallyIsLocalAtTargetOfMorphismRestrict [GOAL] case hP₁ X Y : Scheme f : X ⟶ Y ⊢ RespectsIso (topologically @IsClosedMap) [PROOFSTEP] exact StableUnderComposition.respectsIso (fun X Y Z f g hf hg => @IsClosedMap.comp _ _ _ _ _ _ g.1.base f.1.base hg hf) (fun f => (TopCat.homeoOfIso (Scheme.forgetToTop.mapIso f)).isClosedMap) [GOAL] case hP₂ X Y : Scheme f : X ⟶ Y ⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) {ι : Type u_1} (U : ι → Opens ↑↑Y.toPresheafedSpace), iSup U = ⊤ → (∀ (i : ι), topologically (@IsClosedMap) (f ∣_ U i)) → topologically (@IsClosedMap) f [PROOFSTEP] intro X Y f ι U hU H [GOAL] case hP₂ X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y ι : Type u_1 U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), topologically (@IsClosedMap) (f ∣_ U i) ⊢ topologically (@IsClosedMap) f [PROOFSTEP] simp_rw [topologically, morphismRestrict_base] at H [GOAL] case hP₂ X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y ι : Type u_1 U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), IsClosedMap (Set.restrictPreimage (U i).carrier ↑f.val.base) ⊢ topologically (@IsClosedMap) f [PROOFSTEP] exact (isClosedMap_iff_isClosedMap_of_iSup_eq_top hU).mpr H
{"mathlib_filename": "Mathlib.AlgebraicGeometry.Morphisms.UniversallyClosed", "llama_tokens": 991}
{"mathlib_filename": "Mathlib.Tactic", "llama_tokens": 0}
[GOAL] X : Scheme ⊢ Continuous fun x => PEmpty.elim x [PROOFSTEP] continuity [GOAL] X : Scheme f g : ∅ ⟶ X ⊢ f.val.base = g.val.base [PROOFSTEP] ext a [GOAL] case w X : Scheme f g : ∅ ⟶ X a : (forget TopCat).obj ↑∅.toPresheafedSpace ⊢ ↑f.val.base a = ↑g.val.base a [PROOFSTEP] exact PEmpty.elim a [GOAL] X : Scheme f g : ∅ ⟶ X a : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ ⊢ NatTrans.app (f.val.c ≫ whiskerRight (eqToHom (_ : (Opens.map f.val.base).op = (Opens.map g.val.base).op)) ∅.presheaf) a = NatTrans.app g.val.c a [PROOFSTEP] aesop_cat [GOAL] ⊢ IsEmpty PEmpty [PROOFSTEP] infer_instance [GOAL] X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑X.toPresheafedSpace ⊢ IsOpenImmersion f [PROOFSTEP] apply (config := { allowSynthFailures := true }) IsOpenImmersion.of_stalk_iso [GOAL] case hf X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑X.toPresheafedSpace ⊢ OpenEmbedding ↑f.val.base [PROOFSTEP] apply openEmbedding_of_continuous_injective_open [GOAL] case hf.h₁ X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑X.toPresheafedSpace ⊢ Continuous ↑f.val.base [PROOFSTEP] continuity [GOAL] case hf.h₂ X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑X.toPresheafedSpace ⊢ Function.Injective ↑f.val.base [PROOFSTEP] rintro (i : X.carrier) [GOAL] case hf.h₂ X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑X.toPresheafedSpace i : ↑↑X.toPresheafedSpace ⊢ ∀ ⦃a₂ : (forget TopCat).obj ↑X.toPresheafedSpace⦄, ↑f.val.base i = ↑f.val.base a₂ → i = a₂ [PROOFSTEP] exact isEmptyElim i [GOAL] case hf.h₃ X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑X.toPresheafedSpace ⊢ IsOpenMap ↑f.val.base [PROOFSTEP] intro U _ [GOAL] case hf.h₃ X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑X.toPresheafedSpace U : Set ((forget TopCat).obj ↑X.toPresheafedSpace) a✝ : IsOpen U ⊢ IsOpen (↑f.val.base '' U) [PROOFSTEP] convert isOpen_empty (α := Y) [GOAL] case h.e'_3.h X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑X.toPresheafedSpace U : Set ((forget TopCat).obj ↑X.toPresheafedSpace) a✝ : IsOpen U e_1✝ : (forget TopCat).obj ↑Y.toPresheafedSpace = ↑↑Y.toPresheafedSpace ⊢ ↑f.val.base '' U = ∅ [PROOFSTEP] ext [GOAL] case h.e'_3.h.h X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑X.toPresheafedSpace U : Set ((forget TopCat).obj ↑X.toPresheafedSpace) a✝ : IsOpen U e_1✝ : (forget TopCat).obj ↑Y.toPresheafedSpace = ↑↑Y.toPresheafedSpace x✝ : (forget TopCat).obj ↑Y.toPresheafedSpace ⊢ x✝ ∈ ↑f.val.base '' U ↔ x✝ ∈ ∅ [PROOFSTEP] rw [Set.mem_empty_iff_false, iff_false_iff] [GOAL] case h.e'_3.h.h X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑X.toPresheafedSpace U : Set ((forget TopCat).obj ↑X.toPresheafedSpace) a✝ : IsOpen U e_1✝ : (forget TopCat).obj ↑Y.toPresheafedSpace = ↑↑Y.toPresheafedSpace x✝ : (forget TopCat).obj ↑Y.toPresheafedSpace ⊢ ¬x✝ ∈ ↑f.val.base '' U [PROOFSTEP] exact fun x => isEmptyElim (show X.carrier from x.choose) [GOAL] case inst X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑X.toPresheafedSpace ⊢ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x) [PROOFSTEP] rintro (i : X.carrier) [GOAL] case inst X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑X.toPresheafedSpace i : ↑↑X.toPresheafedSpace ⊢ IsIso (PresheafedSpace.stalkMap f.val i) [PROOFSTEP] exact isEmptyElim i [GOAL] X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑Y.toPresheafedSpace ⊢ IsIso f [PROOFSTEP] haveI : IsEmpty X.carrier := ⟨fun x => isEmptyElim (show Y.carrier from f.1.base x)⟩ [GOAL] X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑Y.toPresheafedSpace this : IsEmpty ↑↑X.toPresheafedSpace ⊢ IsIso f [PROOFSTEP] have : Epi f.1.base [GOAL] case this X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑Y.toPresheafedSpace this : IsEmpty ↑↑X.toPresheafedSpace ⊢ Epi f.val.base [PROOFSTEP] rw [TopCat.epi_iff_surjective] [GOAL] case this X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑Y.toPresheafedSpace this : IsEmpty ↑↑X.toPresheafedSpace ⊢ Function.Surjective ↑f.val.base [PROOFSTEP] rintro (x : Y.carrier) [GOAL] case this X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑Y.toPresheafedSpace this : IsEmpty ↑↑X.toPresheafedSpace x : ↑↑Y.toPresheafedSpace ⊢ ∃ a, ↑f.val.base a = x [PROOFSTEP] exact isEmptyElim x [GOAL] X Y : Scheme f : X ⟶ Y inst✝ : IsEmpty ↑↑Y.toPresheafedSpace this✝ : IsEmpty ↑↑X.toPresheafedSpace this : Epi f.val.base ⊢ IsIso f [PROOFSTEP] apply IsOpenImmersion.to_iso [GOAL] X : Scheme ⊢ IsAffineOpen ⊥ [PROOFSTEP] convert rangeIsAffineOpenOfOpenImmersion (initial.to X) [GOAL] case h.e'_2 X : Scheme ⊢ ⊥ = Scheme.Hom.opensRange (initial.to X) [PROOFSTEP] ext -- Porting note : added this `erw` to turn LHS to `False` [GOAL] case h.e'_2.h.h X : Scheme x✝ : ↑↑X.toPresheafedSpace ⊢ x✝ ∈ ↑⊥ ↔ x✝ ∈ ↑(Scheme.Hom.opensRange (initial.to X)) [PROOFSTEP] erw [Set.mem_empty_iff_false] [GOAL] case h.e'_2.h.h X : Scheme x✝ : ↑↑X.toPresheafedSpace ⊢ False ↔ x✝ ∈ ↑(Scheme.Hom.opensRange (initial.to X)) [PROOFSTEP] rw [false_iff_iff] [GOAL] case h.e'_2.h.h X : Scheme x✝ : ↑↑X.toPresheafedSpace ⊢ ¬x✝ ∈ ↑(Scheme.Hom.opensRange (initial.to X)) [PROOFSTEP] exact fun x => isEmptyElim (show (⊥_ Scheme).carrier from x.choose) [GOAL] A : Scheme f : A ⟶ ⊥_ Scheme ⊢ IsIso f [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.AlgebraicGeometry.Limits", "llama_tokens": 2545}
{"mathlib_filename": "Mathlib.Testing.SlimCheck.Testable", "llama_tokens": 0}
[GOAL] C : Type u_1 inst✝ : Category.{?u.34375, u_1} C ⊢ Category.{?u.34397, max (max (?u.34414 + 1) ?u.34375) u_1} (InducedCategory (PresheafedSpace C) toPresheafedSpace) [PROOFSTEP] infer_instance -- Porting note: adding an ext lemma. -- See https://github.com/leanprover-community/mathlib4/issues/5229 [GOAL] C : Type u_1 inst✝ : Category.{?u.34683, u_1} C X Y : SheafedSpace C α β : X ⟶ Y w : α.base = β.base ⊢ (Opens.map α.base).op = (Opens.map β.base).op [PROOFSTEP] rw [w] [GOAL] C : Type u_1 inst✝ : Category.{?u.158005, u_1} C X : SheafedSpace C U : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ ⊢ X.presheaf.obj U = ((𝟙 X).base _* X.presheaf).obj U [PROOFSTEP] aesop_cat [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X : SheafedSpace C U : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ ⊢ NatTrans.app (𝟙 X).c U = eqToHom (_ : X.presheaf.obj U = X.presheaf.obj ((Opens.map (𝟙 ↑X.toPresheafedSpace)).op.obj U)) [PROOFSTEP] aesop_cat [GOAL] C : Type u_1 inst✝ : Category.{?u.162894, u_1} C X Y : SheafedSpace C α β : X ⟶ Y h : α = β U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ ⊢ (Opens.map β.base).op.obj U = (Opens.map α.base).op.obj U [PROOFSTEP] subst h [GOAL] C : Type u_1 inst✝ : Category.{?u.162894, u_1} C X Y : SheafedSpace C α : X ⟶ Y U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ ⊢ (Opens.map α.base).op.obj U = (Opens.map α.base).op.obj U [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.AlgebraicGeometry.SheafedSpace", "llama_tokens": 735}
[GOAL] X Y : Scheme f : X ⟶ Y ⊢ @LocallyOfFiniteType = affineLocally @RingHom.FiniteType [PROOFSTEP] ext X Y f [GOAL] case h.h.h.a X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y ⊢ LocallyOfFiniteType f ↔ affineLocally (@RingHom.FiniteType) f [PROOFSTEP] rw [LocallyOfFiniteType_iff, affineLocally_iff_affineOpens_le] [GOAL] case h.h.h.a.hP X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y ⊢ RingHom.RespectsIso @RingHom.FiniteType [PROOFSTEP] exact RingHom.finiteType_respectsIso [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z hf : LocallyOfFiniteType (f ≫ g) ⊢ LocallyOfFiniteType f [PROOFSTEP] revert hf [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z ⊢ ∀ [hf : LocallyOfFiniteType (f ≫ g)], LocallyOfFiniteType f [PROOFSTEP] rw [locallyOfFiniteType_eq] [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z ⊢ ∀ [hf : affineLocally (@RingHom.FiniteType) (f ≫ g)], affineLocally (@RingHom.FiniteType) f [PROOFSTEP] apply RingHom.finiteType_is_local.affineLocally_of_comp [GOAL] case H X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z ⊢ ∀ {R S T : Type u_1} [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : CommRing T] (f : R →+* S) (g : S →+* T), RingHom.FiniteType (RingHom.comp g f) → RingHom.FiniteType g [PROOFSTEP] introv H [GOAL] case H X✝ Y✝ : Scheme f✝¹ : X✝ ⟶ Y✝ X Y Z : Scheme f✝ : X ⟶ Y g✝ : Y ⟶ Z R S T : Type u_1 inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : CommRing T f : R →+* S g : S →+* T H : RingHom.FiniteType (RingHom.comp g f) ⊢ RingHom.FiniteType g [PROOFSTEP] exact RingHom.FiniteType.of_comp_finiteType H
{"mathlib_filename": "Mathlib.AlgebraicGeometry.Morphisms.FiniteType", "llama_tokens": 902}
[GOAL] X✝ : LocallyRingedSpace X : LocallyRingedSpace x : ↑↑X.toPresheafedSpace ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (𝟙 X.toSheafedSpace) x) [PROOFSTEP] erw [PresheafedSpace.stalkMap.id] [GOAL] X✝ : LocallyRingedSpace X : LocallyRingedSpace x : ↑↑X.toPresheafedSpace ⊢ IsLocalRingHom (𝟙 (PresheafedSpace.stalk X.toPresheafedSpace x)) [PROOFSTEP] apply isLocalRingHom_id [GOAL] X✝ : LocallyRingedSpace X Y Z : LocallyRingedSpace f : Hom X Y g : Hom Y Z x : ↑↑X.toPresheafedSpace ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (f.val ≫ g.val) x) [PROOFSTEP] erw [PresheafedSpace.stalkMap.comp] [GOAL] X✝ : LocallyRingedSpace X Y Z : LocallyRingedSpace f : Hom X Y g : Hom Y Z x : ↑↑X.toPresheafedSpace ⊢ IsLocalRingHom (PresheafedSpace.stalkMap g.val (↑f.val.base x) ≫ PresheafedSpace.stalkMap f.val x) [PROOFSTEP] exact @isLocalRingHom_comp _ _ _ _ _ _ _ _ (f.2 _) (g.2 _) [GOAL] X✝ : LocallyRingedSpace X Y : LocallyRingedSpace f : X ⟶ Y ⊢ (𝟙 X ≫ f).val = f.val [PROOFSTEP] simp [comp] [GOAL] X✝ : LocallyRingedSpace X Y : LocallyRingedSpace f : X ⟶ Y ⊢ (f ≫ 𝟙 Y).val = f.val [PROOFSTEP] simp [comp] [GOAL] X : LocallyRingedSpace x✝³ x✝² x✝¹ x✝ : LocallyRingedSpace f : x✝³ ⟶ x✝² g : x✝² ⟶ x✝¹ h : x✝¹ ⟶ x✝ ⊢ ((f ≫ g) ≫ h).val = (f ≫ g ≫ h).val [PROOFSTEP] simp [comp] [GOAL] X✝ : LocallyRingedSpace X Y : LocallyRingedSpace f : X.toSheafedSpace ⟶ Y.toSheafedSpace inst✝ : IsIso f x : ↑↑X.toPresheafedSpace ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (SheafedSpace.forgetToPresheafedSpace.map f) x) [PROOFSTEP] infer_instance [GOAL] X✝ : LocallyRingedSpace U : TopCat X : LocallyRingedSpace f : U ⟶ toTopCat X h : OpenEmbedding ↑f ⊢ ∀ (x : ↑↑(SheafedSpace.restrict X.toSheafedSpace h).toPresheafedSpace), LocalRing ↑(Presheaf.stalk (SheafedSpace.restrict X.toSheafedSpace h).toPresheafedSpace.presheaf x) [PROOFSTEP] intro x [GOAL] X✝ : LocallyRingedSpace U : TopCat X : LocallyRingedSpace f : U ⟶ toTopCat X h : OpenEmbedding ↑f x : ↑↑(SheafedSpace.restrict X.toSheafedSpace h).toPresheafedSpace ⊢ LocalRing ↑(Presheaf.stalk (SheafedSpace.restrict X.toSheafedSpace h).toPresheafedSpace.presheaf x) [PROOFSTEP] apply @RingEquiv.localRing _ _ _ (X.localRing (f x)) [GOAL] case e X✝ : LocallyRingedSpace U : TopCat X : LocallyRingedSpace f : U ⟶ toTopCat X h : OpenEmbedding ↑f x : ↑↑(SheafedSpace.restrict X.toSheafedSpace h).toPresheafedSpace ⊢ ↑(Presheaf.stalk X.presheaf (↑f x)) ≃+* ↑(Presheaf.stalk (SheafedSpace.restrict X.toSheafedSpace h).toPresheafedSpace.presheaf x) [PROOFSTEP] exact (X.restrictStalkIso h x).symm.commRingCatIsoToRingEquiv [GOAL] X✝ : LocallyRingedSpace X Y : LocallyRingedSpace f : X ⟶ Y U : Opens ↑(toTopCat Y) s : ↑(Y.presheaf.obj (op U)) ⊢ (Opens.map f.val.base).obj (RingedSpace.basicOpen (toRingedSpace Y) s) = RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app f.val.c (op U)) s) [PROOFSTEP] ext x [GOAL] case h.h X✝ : LocallyRingedSpace X Y : LocallyRingedSpace f : X ⟶ Y U : Opens ↑(toTopCat Y) s : ↑(Y.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace ⊢ x ∈ ↑((Opens.map f.val.base).obj (RingedSpace.basicOpen (toRingedSpace Y) s)) ↔ x ∈ ↑(RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app f.val.c (op U)) s)) [PROOFSTEP] constructor [GOAL] case h.h.mp X✝ : LocallyRingedSpace X Y : LocallyRingedSpace f : X ⟶ Y U : Opens ↑(toTopCat Y) s : ↑(Y.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace ⊢ x ∈ ↑((Opens.map f.val.base).obj (RingedSpace.basicOpen (toRingedSpace Y) s)) → x ∈ ↑(RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app f.val.c (op U)) s)) [PROOFSTEP] rintro ⟨⟨y, hyU⟩, hy : IsUnit _, rfl : y = _⟩ [GOAL] case h.h.mp.intro.mk.intro X✝ : LocallyRingedSpace X Y : LocallyRingedSpace f : X ⟶ Y U : Opens ↑(toTopCat Y) s : ↑(Y.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace hyU : ↑f.val.base x ∈ U hy : IsUnit (↑(Presheaf.germ (toRingedSpace Y).toPresheafedSpace.presheaf { val := ↑f.val.base x, property := hyU }) s) ⊢ x ∈ ↑(RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app f.val.c (op U)) s)) [PROOFSTEP] erw [RingedSpace.mem_basicOpen _ _ ⟨x, show x ∈ (Opens.map f.1.base).obj U from hyU⟩, ← PresheafedSpace.stalkMap_germ_apply] [GOAL] case h.h.mp.intro.mk.intro X✝ : LocallyRingedSpace X Y : LocallyRingedSpace f : X ⟶ Y U : Opens ↑(toTopCat Y) s : ↑(Y.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace hyU : ↑f.val.base x ∈ U hy : IsUnit (↑(Presheaf.germ (toRingedSpace Y).toPresheafedSpace.presheaf { val := ↑f.val.base x, property := hyU }) s) ⊢ IsUnit (↑(PresheafedSpace.stalkMap f.val ↑{ val := x, property := (_ : x ∈ (Opens.map f.val.base).obj U) }) (↑(Presheaf.germ Y.presheaf { val := ↑f.val.base ↑{ val := x, property := (_ : x ∈ (Opens.map f.val.base).obj U) }, property := (_ : ↑{ val := x, property := (_ : x ∈ (Opens.map f.val.base).obj U) } ∈ (Opens.map f.val.base).obj U) }) s)) [PROOFSTEP] exact (PresheafedSpace.stalkMap f.1 _).isUnit_map hy [GOAL] case h.h.mpr X✝ : LocallyRingedSpace X Y : LocallyRingedSpace f : X ⟶ Y U : Opens ↑(toTopCat Y) s : ↑(Y.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace ⊢ x ∈ ↑(RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app f.val.c (op U)) s)) → x ∈ ↑((Opens.map f.val.base).obj (RingedSpace.basicOpen (toRingedSpace Y) s)) [PROOFSTEP] rintro ⟨y, hy : IsUnit _, rfl⟩ [GOAL] case h.h.mpr.intro.intro X✝ : LocallyRingedSpace X Y : LocallyRingedSpace f : X ⟶ Y U : Opens ↑(toTopCat Y) s : ↑(Y.presheaf.obj (op U)) y : { x // x ∈ (Opens.map f.val.base).obj U } hy : IsUnit (↑(Presheaf.germ (toRingedSpace X).toPresheafedSpace.presheaf y) (↑(NatTrans.app f.val.c (op U)) s)) ⊢ ↑y ∈ ↑((Opens.map f.val.base).obj (RingedSpace.basicOpen (toRingedSpace Y) s)) [PROOFSTEP] erw [RingedSpace.mem_basicOpen _ _ ⟨f.1.base y.1, y.2⟩] [GOAL] case h.h.mpr.intro.intro X✝ : LocallyRingedSpace X Y : LocallyRingedSpace f : X ⟶ Y U : Opens ↑(toTopCat Y) s : ↑(Y.presheaf.obj (op U)) y : { x // x ∈ (Opens.map f.val.base).obj U } hy : IsUnit (↑(Presheaf.germ (toRingedSpace X).toPresheafedSpace.presheaf y) (↑(NatTrans.app f.val.c (op U)) s)) ⊢ IsUnit (↑(Presheaf.germ Y.presheaf { val := ↑f.val.base ↑y, property := (_ : ↑y ∈ (Opens.map f.val.base).obj U) }) s) [PROOFSTEP] erw [← PresheafedSpace.stalkMap_germ_apply] at hy [GOAL] case h.h.mpr.intro.intro X✝ : LocallyRingedSpace X Y : LocallyRingedSpace f : X ⟶ Y U : Opens ↑(toTopCat Y) s : ↑(Y.presheaf.obj (op U)) y : { x // x ∈ (Opens.map f.val.base).obj U } hy : IsUnit (↑(PresheafedSpace.stalkMap f.val ↑y) (↑(Presheaf.germ Y.presheaf { val := ↑f.val.base ↑y, property := (_ : ↑y ∈ (Opens.map f.val.base).obj U) }) s)) ⊢ IsUnit (↑(Presheaf.germ Y.presheaf { val := ↑f.val.base ↑y, property := (_ : ↑y ∈ (Opens.map f.val.base).obj U) }) s) [PROOFSTEP] exact (isUnit_map_iff (PresheafedSpace.stalkMap f.1 _) _).mp hy [GOAL] X✝ : LocallyRingedSpace X : LocallyRingedSpace U : Opens ↑↑X.toPresheafedSpace ⊢ RingedSpace.basicOpen (toRingedSpace X) 0 = ⊥ [PROOFSTEP] ext x [GOAL] case h.h X✝ : LocallyRingedSpace X : LocallyRingedSpace U : Opens ↑↑X.toPresheafedSpace x : ↑↑(toRingedSpace X).toPresheafedSpace ⊢ x ∈ ↑(RingedSpace.basicOpen (toRingedSpace X) 0) ↔ x ∈ ↑⊥ [PROOFSTEP] simp only [RingedSpace.basicOpen, Opens.coe_mk, Set.mem_image, Set.mem_setOf_eq, Subtype.exists, exists_and_right, exists_eq_right, Opens.coe_bot, Set.mem_empty_iff_false, iff_false, not_exists] [GOAL] case h.h X✝ : LocallyRingedSpace X : LocallyRingedSpace U : Opens ↑↑X.toPresheafedSpace x : ↑↑(toRingedSpace X).toPresheafedSpace ⊢ ∀ (x_1 : x ∈ U), ¬IsUnit (↑(Presheaf.germ (toRingedSpace X).toPresheafedSpace.presheaf { val := x, property := (_ : x ∈ U) }) 0) [PROOFSTEP] intros hx [GOAL] case h.h X✝ : LocallyRingedSpace X : LocallyRingedSpace U : Opens ↑↑X.toPresheafedSpace x : ↑↑(toRingedSpace X).toPresheafedSpace hx : x ∈ U ⊢ ¬IsUnit (↑(Presheaf.germ (toRingedSpace X).toPresheafedSpace.presheaf { val := x, property := (_ : x ∈ U) }) 0) [PROOFSTEP] rw [map_zero, isUnit_zero_iff] [GOAL] case h.h X✝ : LocallyRingedSpace X : LocallyRingedSpace U : Opens ↑↑X.toPresheafedSpace x : ↑↑(toRingedSpace X).toPresheafedSpace hx : x ∈ U ⊢ ¬0 = 1 [PROOFSTEP] change (0 : X.stalk x) ≠ (1 : X.stalk x) [GOAL] case h.h X✝ : LocallyRingedSpace X : LocallyRingedSpace U : Opens ↑↑X.toPresheafedSpace x : ↑↑(toRingedSpace X).toPresheafedSpace hx : x ∈ U ⊢ 0 ≠ 1 [PROOFSTEP] exact zero_ne_one
{"mathlib_filename": "Mathlib.AlgebraicGeometry.LocallyRingedSpace", "llama_tokens": 4091}
[GOAL] X Y Z : Scheme f✝ : X ⟶ Y g : Y ⟶ Z f : X ⟶ Y ⊢ IsOpenImmersion f ↔ OpenEmbedding ↑f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x) [PROOFSTEP] constructor [GOAL] case mp X Y Z : Scheme f✝ : X ⟶ Y g : Y ⟶ Z f : X ⟶ Y ⊢ IsOpenImmersion f → OpenEmbedding ↑f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x) [PROOFSTEP] intro h [GOAL] case mp X Y Z : Scheme f✝ : X ⟶ Y g : Y ⟶ Z f : X ⟶ Y h : IsOpenImmersion f ⊢ OpenEmbedding ↑f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x) [PROOFSTEP] exact ⟨h.1, inferInstance⟩ [GOAL] case mpr X Y Z : Scheme f✝ : X ⟶ Y g : Y ⟶ Z f : X ⟶ Y ⊢ (OpenEmbedding ↑f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x)) → IsOpenImmersion f [PROOFSTEP] rintro ⟨h₁, h₂⟩ [GOAL] case mpr.intro X Y Z : Scheme f✝ : X ⟶ Y g : Y ⟶ Z f : X ⟶ Y h₁ : OpenEmbedding ↑f.val.base h₂ : ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x) ⊢ IsOpenImmersion f [PROOFSTEP] exact IsOpenImmersion.of_stalk_iso f h₁ [GOAL] X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z ⊢ MorphismProperty.StableUnderComposition @IsOpenImmersion [PROOFSTEP] intro X Y Z f g h₁ h₂ [GOAL] X✝ Y✝ Z✝ : Scheme f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z h₁ : IsOpenImmersion f h₂ : IsOpenImmersion g ⊢ IsOpenImmersion (f ≫ g) [PROOFSTEP] exact LocallyRingedSpace.IsOpenImmersion.comp f g [GOAL] X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z ⊢ MorphismProperty.RespectsIso @IsOpenImmersion [PROOFSTEP] apply isOpenImmersion_stableUnderComposition.respectsIso [GOAL] X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z ⊢ ∀ {X Y : Scheme} (e : X ≅ Y), IsOpenImmersion e.hom [PROOFSTEP] intro _ _ _ [GOAL] X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z X✝ Y✝ : Scheme e✝ : X✝ ≅ Y✝ ⊢ IsOpenImmersion e✝.hom [PROOFSTEP] infer_instance [GOAL] X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z ⊢ PropertyIsLocalAtTarget @IsOpenImmersion [PROOFSTEP] constructor [GOAL] case RespectsIso X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z ⊢ MorphismProperty.RespectsIso @IsOpenImmersion [PROOFSTEP] exact isOpenImmersion_respectsIso [GOAL] case restrict X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z ⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) (U : Opens ↑↑Y.toPresheafedSpace), IsOpenImmersion f → IsOpenImmersion (f ∣_ U) [PROOFSTEP] intros [GOAL] case restrict X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ U✝ : Opens ↑↑Y✝.toPresheafedSpace a✝ : IsOpenImmersion f✝ ⊢ IsOpenImmersion (f✝ ∣_ U✝) [PROOFSTEP] infer_instance [GOAL] case of_openCover X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z ⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), IsOpenImmersion pullback.snd) → IsOpenImmersion f [PROOFSTEP] intro X Y f 𝒰 H [GOAL] case of_openCover X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Y✝ g : Y✝ ⟶ Z X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd ⊢ IsOpenImmersion f [PROOFSTEP] rw [isOpenImmersion_iff_stalk] [GOAL] case of_openCover X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Y✝ g : Y✝ ⟶ Z X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd ⊢ OpenEmbedding ↑f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x) [PROOFSTEP] constructor [GOAL] case of_openCover.left X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Y✝ g : Y✝ ⟶ Z X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd ⊢ OpenEmbedding ↑f.val.base [PROOFSTEP] apply (openEmbedding_iff_openEmbedding_of_iSup_eq_top 𝒰.iSup_opensRange f.1.base.2).mpr [GOAL] case of_openCover.left X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Y✝ g : Y✝ ⟶ Z X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd ⊢ ∀ (i : 𝒰.J), OpenEmbedding (Set.restrictPreimage (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i)).carrier f.val.base.toFun) [PROOFSTEP] intro i [GOAL] case of_openCover.left X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Y✝ g : Y✝ ⟶ Z X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd i : 𝒰.J ⊢ OpenEmbedding (Set.restrictPreimage (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i)).carrier f.val.base.toFun) [PROOFSTEP] have := ((isOpenImmersion_respectsIso.arrow_iso_iff (morphismRestrictOpensRange f (𝒰.map i))).mpr (H i)).1 [GOAL] case of_openCover.left X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Y✝ g : Y✝ ⟶ Z X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd i : 𝒰.J this : OpenEmbedding ↑(Arrow.mk (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))).hom.val.base ⊢ OpenEmbedding (Set.restrictPreimage (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i)).carrier f.val.base.toFun) [PROOFSTEP] erw [Arrow.mk_hom, morphismRestrict_val_base] at this [GOAL] case of_openCover.left X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Y✝ g : Y✝ ⟶ Z X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd i : 𝒰.J this : OpenEmbedding (Set.restrictPreimage (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i)).carrier ↑f.val.base) ⊢ OpenEmbedding (Set.restrictPreimage (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i)).carrier f.val.base.toFun) [PROOFSTEP] norm_cast [GOAL] case of_openCover.right X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Y✝ g : Y✝ ⟶ Z X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd ⊢ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x) [PROOFSTEP] intro x [GOAL] case of_openCover.right X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Y✝ g : Y✝ ⟶ Z X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd x : ↑↑X.toPresheafedSpace ⊢ IsIso (PresheafedSpace.stalkMap f.val x) [PROOFSTEP] have := Arrow.iso_w (morphismRestrictStalkMap f (Scheme.Hom.opensRange (𝒰.map <| 𝒰.f <| f.1.base x)) ⟨x, 𝒰.Covers _⟩) [GOAL] case of_openCover.right X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Y✝ g : Y✝ ⟶ Z X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd x : ↑↑X.toPresheafedSpace this : (Arrow.mk (PresheafedSpace.stalkMap f.val ↑{ val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) })).hom = (morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).inv.left ≫ (Arrow.mk (PresheafedSpace.stalkMap (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).val { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) })).hom ≫ (morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).hom.right ⊢ IsIso (PresheafedSpace.stalkMap f.val x) [PROOFSTEP] dsimp only [Arrow.mk_hom] at this [GOAL] case of_openCover.right X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Y✝ g : Y✝ ⟶ Z X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd x : ↑↑X.toPresheafedSpace this : PresheafedSpace.stalkMap f.val x = (morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).inv.left ≫ PresheafedSpace.stalkMap (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).val { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) } ≫ (morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).hom.right ⊢ IsIso (PresheafedSpace.stalkMap f.val x) [PROOFSTEP] rw [this] [GOAL] case of_openCover.right X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Y✝ g : Y✝ ⟶ Z X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd x : ↑↑X.toPresheafedSpace this : PresheafedSpace.stalkMap f.val x = (morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).inv.left ≫ PresheafedSpace.stalkMap (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).val { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) } ≫ (morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).hom.right ⊢ IsIso ((morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).inv.left ≫ PresheafedSpace.stalkMap (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).val { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) } ≫ (morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).hom.right) [PROOFSTEP] haveI : IsOpenImmersion (f ∣_ Scheme.Hom.opensRange (𝒰.map <| 𝒰.f <| f.1.base x)) := (isOpenImmersion_respectsIso.arrow_iso_iff (morphismRestrictOpensRange f (𝒰.map _))).mpr (H _) [GOAL] case of_openCover.right X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Y✝ g : Y✝ ⟶ Z X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd x : ↑↑X.toPresheafedSpace this✝ : PresheafedSpace.stalkMap f.val x = (morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).inv.left ≫ PresheafedSpace.stalkMap (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).val { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) } ≫ (morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).hom.right this : IsOpenImmersion (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) ⊢ IsIso ((morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).inv.left ≫ PresheafedSpace.stalkMap (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).val { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) } ≫ (morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) { val := x, property := (_ : ↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).hom.right) [PROOFSTEP] infer_instance [GOAL] X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z ⊢ ∀ (X Y S : Scheme) (f : X ⟶ S) (g : Y ⟶ S), IsOpenImmersion g → IsOpenImmersion pullback.fst [PROOFSTEP] intro X Y Z f g H [GOAL] X✝ Y✝ Z✝ : Scheme f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion g ⊢ IsOpenImmersion pullback.fst [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.AlgebraicGeometry.Morphisms.OpenImmersion", "llama_tokens": 6749}
[GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y U : Opens ↑↑Y x : { x // x ∈ (Opens.map α.base).obj U } ⊢ germ Y.presheaf { val := ↑α.base ↑x, property := (_ : ↑x ∈ (Opens.map α.base).obj U) } ≫ stalkMap α ↑x = NatTrans.app α.c (op U) ≫ germ X.presheaf x [PROOFSTEP] rw [stalkMap, stalkFunctor_map_germ_assoc, stalkPushforward_germ] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X h : OpenEmbedding ↑f V : Opens ↑U x : ↑U hx : x ∈ V ⊢ germ X.presheaf { val := ↑f x, property := (_ : ↑f x ∈ (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) } ≫ (restrictStalkIso X h x).inv = germ (restrict X h).presheaf { val := x, property := hx } [PROOFSTEP] rw [← restrictStalkIso_hom_eq_germ, Category.assoc, Iso.hom_inv_id, Category.comp_id] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X h : OpenEmbedding ↑f x : ↑U ⊢ (restrictStalkIso X h x).inv = stalkMap (ofRestrict X h) x [PROOFSTEP] refine colimit.hom_ext fun V => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X h : OpenEmbedding ↑f x : ↑U V : (OpenNhds (↑f x))ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf) V ≫ (restrictStalkIso X h x).inv = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf) V ≫ stalkMap (ofRestrict X h) x [PROOFSTEP] induction V with | h V => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X h : OpenEmbedding ↑f x : ↑U V : (OpenNhds (↑f x))ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf) V ≫ (restrictStalkIso X h x).inv = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf) V ≫ stalkMap (ofRestrict X h) x [PROOFSTEP] induction V with | h V => ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X h : OpenEmbedding ↑f x : ↑U V : OpenNhds (↑f x) ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf) (op V) ≫ (restrictStalkIso X h x).inv = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf) (op V) ≫ stalkMap (ofRestrict X h) x [PROOFSTEP] let i : (h.isOpenMap.functorNhds x).obj ((OpenNhds.map f x).obj V) ⟶ V := homOfLE (Set.image_preimage_subset f _) [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X h : OpenEmbedding ↑f x : ↑U V : OpenNhds (↑f x) i : (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).obj ((OpenNhds.map f x).obj V) ⟶ V := homOfLE (_ : ↑f '' (↑f ⁻¹' V.obj.1) ⊆ V.obj.1) ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf) (op V) ≫ (restrictStalkIso X h x).inv = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf) (op V) ≫ stalkMap (ofRestrict X h) x [PROOFSTEP] erw [Iso.comp_inv_eq, colimit.ι_map_assoc, colimit.ι_map_assoc, colimit.ι_pre] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X h : OpenEmbedding ↑f x : ↑U V : OpenNhds (↑f x) i : (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).obj ((OpenNhds.map f x).obj V) ⟶ V := homOfLE (_ : ↑f '' (↑f ⁻¹' V.obj.1) ⊆ V.obj.1) ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf) (op V) = (NatTrans.app (((whiskeringLeft (OpenNhds (↑(ofRestrict X h).base x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑(ofRestrict X h).base x)).op).map (ofRestrict X h).c) (op V) ≫ NatTrans.app (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso (ofRestrict X h).base x).inv) (restrict X h).presheaf) (op V) ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑↑(restrict X h))ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj (restrict X h).presheaf) ((OpenNhds.map (ofRestrict X h).base x).op.obj (op V))) ≫ (restrictStalkIso X h x).hom [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X h : OpenEmbedding ↑f x : ↑U V : OpenNhds (↑f x) i : (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).obj ((OpenNhds.map f x).obj V) ⟶ V := homOfLE (_ : ↑f '' (↑f ⁻¹' V.obj.1) ⊆ V.obj.1) ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf) (op V) = NatTrans.app (((whiskeringLeft (OpenNhds (↑(ofRestrict X h).base x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑(ofRestrict X h).base x)).op).map (ofRestrict X h).c) (op V) ≫ NatTrans.app (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso (ofRestrict X h).base x).inv) (restrict X h).presheaf) (op V) ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑↑(restrict X h))ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj (restrict X h).presheaf) ((OpenNhds.map (ofRestrict X h).base x).op.obj (op V)) ≫ (restrictStalkIso X h x).hom [PROOFSTEP] erw [colimit.ι_pre ((OpenNhds.inclusion (f x)).op ⋙ X.presheaf) (h.isOpenMap.functorNhds x).op] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X h : OpenEmbedding ↑f x : ↑U V : OpenNhds (↑f x) i : (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).obj ((OpenNhds.map f x).obj V) ⟶ V := homOfLE (_ : ↑f '' (↑f ⁻¹' V.obj.1) ⊆ V.obj.1) ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf) (op V) = NatTrans.app (((whiskeringLeft (OpenNhds (↑(ofRestrict X h).base x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑(ofRestrict X h).base x)).op).map (ofRestrict X h).c) (op V) ≫ NatTrans.app (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso (ofRestrict X h).base x).inv) (restrict X h).presheaf) (op V) ≫ colimit.ι ((OpenNhds.inclusion (↑f x)).op ⋙ X.presheaf) ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj ((OpenNhds.map (ofRestrict X h).base x).op.obj (op V))) [PROOFSTEP] erw [← X.presheaf.map_comp_assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X h : OpenEmbedding ↑f x : ↑U V : OpenNhds (↑f x) i : (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).obj ((OpenNhds.map f x).obj V) ⟶ V := homOfLE (_ : ↑f '' (↑f ⁻¹' V.obj.1) ⊆ V.obj.1) ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf) (op V) = X.presheaf.map ((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit ((OpenNhds.inclusion (↑(ofRestrict X h).base x)).op.obj (op V)).unop).op ≫ (IsOpenMap.functor (_ : IsOpenMap ↑f)).op.map (NatTrans.app (NatTrans.op (OpenNhds.inclusionMapIso (ofRestrict X h).base x).inv) (op V))) ≫ colimit.ι ((OpenNhds.inclusion (↑f x)).op ⋙ X.presheaf) ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj ((OpenNhds.map (ofRestrict X h).base x).op.obj (op V))) [PROOFSTEP] exact (colimit.w ((OpenNhds.inclusion (f x)).op ⋙ X.presheaf) i.op).symm [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X h : OpenEmbedding ↑f x : ↑U ⊢ IsIso (stalkMap (ofRestrict X h) x) [PROOFSTEP] rw [← restrictStalkIso_inv_eq_ofRestrict] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X h : OpenEmbedding ↑f x : ↑U ⊢ IsIso (restrictStalkIso X h x).inv [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X : PresheafedSpace C x : ↑↑X ⊢ stalkMap (𝟙 X) x = 𝟙 (stalk X x) [PROOFSTEP] dsimp [stalkMap] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X : PresheafedSpace C x : ↑↑X ⊢ (stalkFunctor C (↑(𝟙 ↑X) x)).map (𝟙 X).c ≫ stalkPushforward C (𝟙 ↑X) X.presheaf x = 𝟙 (stalk X x) [PROOFSTEP] simp only [stalkPushforward.id] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X : PresheafedSpace C x : ↑↑X ⊢ (stalkFunctor C (↑(𝟙 ↑X) x)).map (𝟙 X).c ≫ (stalkFunctor C x).map (Pushforward.id X.presheaf).hom = 𝟙 (stalk X x) [PROOFSTEP] erw [← map_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X : PresheafedSpace C x : ↑↑X ⊢ (stalkFunctor C (↑(𝟙 ↑X) x)).map ((𝟙 X).c ≫ (Pushforward.id X.presheaf).hom) = 𝟙 (stalk X x) [PROOFSTEP] convert (stalkFunctor C x).map_id X.presheaf [GOAL] case h.e'_2.h.h.e'_8 C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X : PresheafedSpace C x : ↑↑X e_1✝ : (stalk X (↑(𝟙 ↑X) x) ⟶ stalk X x) = ((stalkFunctor C x).obj X.presheaf ⟶ (stalkFunctor C x).obj X.presheaf) ⊢ (𝟙 X).c ≫ (Pushforward.id X.presheaf).hom = 𝟙 X.presheaf [PROOFSTEP] ext [GOAL] case h.e'_2.h.h.e'_8.w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X : PresheafedSpace C x : ↑↑X e_1✝ : (stalk X (↑(𝟙 ↑X) x) ⟶ stalk X x) = ((stalkFunctor C x).obj X.presheaf ⟶ (stalkFunctor C x).obj X.presheaf) U✝ : Opens ↑↑X ⊢ NatTrans.app ((𝟙 X).c ≫ (Pushforward.id X.presheaf).hom) (op U✝) = NatTrans.app (𝟙 X.presheaf) (op U✝) [PROOFSTEP] simp only [id_c, id_comp, Pushforward.id_hom_app, op_obj, eqToHom_refl, map_id] [GOAL] case h.e'_2.h.h.e'_8.w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X : PresheafedSpace C x : ↑↑X e_1✝ : (stalk X (↑(𝟙 ↑X) x) ⟶ stalk X x) = ((stalkFunctor C x).obj X.presheaf ⟶ (stalkFunctor C x).obj X.presheaf) U✝ : Opens ↑↑X ⊢ 𝟙 (X.presheaf.obj (op ((Opens.map (𝟙 ↑X)).obj (op U✝).unop))) = NatTrans.app (𝟙 X.presheaf) (op U✝) [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : PresheafedSpace C α : X ⟶ Y β : Y ⟶ Z x : ↑↑X ⊢ stalkMap (α ≫ β) x = stalkMap β (↑α.base x) ≫ stalkMap α x [PROOFSTEP] dsimp [stalkMap, stalkFunctor, stalkPushforward] -- We can't use `ext` here due to https://github.com/leanprover/std4/pull/159 [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : PresheafedSpace C α : X ⟶ Y β : Y ⟶ Z x : ↑↑X ⊢ colimMap (whiskerLeft (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op (α ≫ β).c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map (α.base ≫ β.base) x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map (α.base ≫ β.base) x).op = (colimMap (whiskerLeft (OpenNhds.inclusion (↑β.base (↑α.base x))).op β.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map β.base (↑α.base x) ⋙ OpenNhds.inclusion (↑α.base x)).op) Y.presheaf) ≫ colimit.pre ((OpenNhds.inclusion (↑α.base x)).op ⋙ Y.presheaf) (OpenNhds.map β.base (↑α.base x)).op) ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑α.base x)).op α.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map α.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map α.base x).op [PROOFSTEP] refine colimit.hom_ext fun U => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : PresheafedSpace C α : X ⟶ Y β : Y ⟶ Z x : ↑↑X U : (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj Z.presheaf) U ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op (α ≫ β).c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map (α.base ≫ β.base) x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map (α.base ≫ β.base) x).op = colimit.ι (((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj Z.presheaf) U ≫ (colimMap (whiskerLeft (OpenNhds.inclusion (↑β.base (↑α.base x))).op β.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map β.base (↑α.base x) ⋙ OpenNhds.inclusion (↑α.base x)).op) Y.presheaf) ≫ colimit.pre ((OpenNhds.inclusion (↑α.base x)).op ⋙ Y.presheaf) (OpenNhds.map β.base (↑α.base x)).op) ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑α.base x)).op α.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map α.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map α.base x).op [PROOFSTEP] induction U with | h U => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : PresheafedSpace C α : X ⟶ Y β : Y ⟶ Z x : ↑↑X U : (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj Z.presheaf) U ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op (α ≫ β).c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map (α.base ≫ β.base) x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map (α.base ≫ β.base) x).op = colimit.ι (((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj Z.presheaf) U ≫ (colimMap (whiskerLeft (OpenNhds.inclusion (↑β.base (↑α.base x))).op β.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map β.base (↑α.base x) ⋙ OpenNhds.inclusion (↑α.base x)).op) Y.presheaf) ≫ colimit.pre ((OpenNhds.inclusion (↑α.base x)).op ⋙ Y.presheaf) (OpenNhds.map β.base (↑α.base x)).op) ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑α.base x)).op α.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map α.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map α.base x).op [PROOFSTEP] induction U with | h U => ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : PresheafedSpace C α : X ⟶ Y β : Y ⟶ Z x : ↑↑X U : OpenNhds (↑(α.base ≫ β.base) x) ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj Z.presheaf) (op U) ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op (α ≫ β).c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map (α.base ≫ β.base) x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map (α.base ≫ β.base) x).op = colimit.ι (((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj Z.presheaf) (op U) ≫ (colimMap (whiskerLeft (OpenNhds.inclusion (↑β.base (↑α.base x))).op β.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map β.base (↑α.base x) ⋙ OpenNhds.inclusion (↑α.base x)).op) Y.presheaf) ≫ colimit.pre ((OpenNhds.inclusion (↑α.base x)).op ⋙ Y.presheaf) (OpenNhds.map β.base (↑α.base x)).op) ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑α.base x)).op α.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map α.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map α.base x).op [PROOFSTEP] cases U [GOAL] case h.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : PresheafedSpace C α : X ⟶ Y β : Y ⟶ Z x : ↑↑X obj✝ : Opens ↑↑Z property✝ : ↑(α.base ≫ β.base) x ∈ obj✝ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj Z.presheaf) (op { obj := obj✝, property := property✝ }) ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op (α ≫ β).c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map (α.base ≫ β.base) x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map (α.base ≫ β.base) x).op = colimit.ι (((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj Z.presheaf) (op { obj := obj✝, property := property✝ }) ≫ (colimMap (whiskerLeft (OpenNhds.inclusion (↑β.base (↑α.base x))).op β.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map β.base (↑α.base x) ⋙ OpenNhds.inclusion (↑α.base x)).op) Y.presheaf) ≫ colimit.pre ((OpenNhds.inclusion (↑α.base x)).op ⋙ Y.presheaf) (OpenNhds.map β.base (↑α.base x)).op) ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑α.base x)).op α.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map α.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map α.base x).op [PROOFSTEP] simp only [whiskeringLeft_obj_obj, comp_obj, op_obj, unop_op, OpenNhds.inclusion_obj, ι_colimMap_assoc, pushforwardObj_obj, Opens.map_comp_obj, whiskerLeft_app, comp_c_app, OpenNhds.map_obj, whiskerRight_app, NatTrans.id_app, map_id, colimit.ι_pre, id_comp, assoc, colimit.ι_pre_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C α β : X ⟶ Y h₁ : α = β x x' : ↑↑X h₂ : x = x' ⊢ stalk X x = stalk X x' [PROOFSTEP] rw [h₂] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C α β : X ⟶ Y h₁ : α = β x x' : ↑↑X h₂ : x = x' ⊢ stalk Y (↑α.base x) = stalk Y (↑β.base x') [PROOFSTEP] rw [h₁, h₂] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C α β : X ⟶ Y h₁ : α = β x x' : ↑↑X h₂ : x = x' ⊢ stalkMap α x ≫ eqToHom (_ : stalk X x = stalk X x') = eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑β.base x')) ≫ stalkMap β x' [PROOFSTEP] ext [GOAL] case ih C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C α β : X ⟶ Y h₁ : α = β x x' : ↑↑X h₂ : x = x' U✝ : Opens ↑↑Y hxU✝ : ↑α.base x ∈ U✝ ⊢ germ Y.presheaf { val := ↑α.base x, property := hxU✝ } ≫ stalkMap α x ≫ eqToHom (_ : stalk X x = stalk X x') = germ Y.presheaf { val := ↑α.base x, property := hxU✝ } ≫ eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑β.base x')) ≫ stalkMap β x' [PROOFSTEP] substs h₁ h₂ [GOAL] case ih C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y x : ↑↑X U✝ : Opens ↑↑Y hxU✝ : ↑α.base x ∈ U✝ ⊢ germ Y.presheaf { val := ↑α.base x, property := hxU✝ } ≫ stalkMap α x ≫ eqToHom (_ : stalk X x = stalk X x) = germ Y.presheaf { val := ↑α.base x, property := hxU✝ } ≫ eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑α.base x)) ≫ stalkMap α x [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C α β : X ⟶ Y h : α = β x : ↑↑X ⊢ stalk Y (↑α.base x) = stalk Y (↑β.base x) [PROOFSTEP] rw [h] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C α β : X ⟶ Y h : α = β x : ↑↑X ⊢ stalkMap α x = eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑β.base x)) ≫ stalkMap β x [PROOFSTEP] rw [← stalkMap.congr α β h x x rfl, eqToHom_refl, Category.comp_id] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y x x' : ↑↑X h : x = x' ⊢ stalk X x = stalk X x' [PROOFSTEP] rw [h] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y x x' : ↑↑X h : x = x' ⊢ stalk Y (↑α.base x) = stalk Y (↑α.base x') [PROOFSTEP] rw [h] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y x x' : ↑↑X h : x = x' ⊢ stalkMap α x ≫ eqToHom (_ : stalk X x = stalk X x') = eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑α.base x')) ≫ stalkMap α x' [PROOFSTEP] rw [stalkMap.congr α α rfl x x' h] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y inst✝ : IsIso α x : ↑↑X ⊢ ∃ inv, stalkMap α x ≫ inv = 𝟙 (stalk Y (↑α.base x)) ∧ inv ≫ stalkMap α x = 𝟙 (stalk X x) [PROOFSTEP] let β : Y ⟶ X := CategoryTheory.inv α [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y inst✝ : IsIso α x : ↑↑X β : Y ⟶ X := CategoryTheory.inv α ⊢ ∃ inv, stalkMap α x ≫ inv = 𝟙 (stalk Y (↑α.base x)) ∧ inv ≫ stalkMap α x = 𝟙 (stalk X x) [PROOFSTEP] have h_eq : (α ≫ β).base x = x := by rw [IsIso.hom_inv_id α, id_base, TopCat.id_app] -- Intuitively, the inverse of the stalk map of `α` at `x` should just be the stalk map of `β` -- at `α x`. Unfortunately, we have a problem with dependent type theory here: Because `x` -- is not *definitionally* equal to `β (α x)`, the map `stalk_map β (α x)` has not the correct -- type for an inverse. -- To get a proper inverse, we need to compose with the `eq_to_hom` arrow -- `X.stalk x ⟶ X.stalk ((α ≫ β).base x)`. [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y inst✝ : IsIso α x : ↑↑X β : Y ⟶ X := CategoryTheory.inv α ⊢ ↑(α ≫ β).base x = x [PROOFSTEP] rw [IsIso.hom_inv_id α, id_base, TopCat.id_app] -- Intuitively, the inverse of the stalk map of `α` at `x` should just be the stalk map of `β` -- at `α x`. Unfortunately, we have a problem with dependent type theory here: Because `x` -- is not *definitionally* equal to `β (α x)`, the map `stalk_map β (α x)` has not the correct -- type for an inverse. -- To get a proper inverse, we need to compose with the `eq_to_hom` arrow -- `X.stalk x ⟶ X.stalk ((α ≫ β).base x)`. [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y inst✝ : IsIso α x : ↑↑X β : Y ⟶ X := CategoryTheory.inv α h_eq : ↑(α ≫ β).base x = x ⊢ ∃ inv, stalkMap α x ≫ inv = 𝟙 (stalk Y (↑α.base x)) ∧ inv ≫ stalkMap α x = 𝟙 (stalk X x) [PROOFSTEP] refine' ⟨eqToHom (show X.stalk x = X.stalk ((α ≫ β).base x) by rw [h_eq]) ≫ (stalkMap β (α.base x) : _), _, _⟩ [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y inst✝ : IsIso α x : ↑↑X β : Y ⟶ X := CategoryTheory.inv α h_eq : ↑(α ≫ β).base x = x ⊢ stalk X x = stalk X (↑(α ≫ β).base x) [PROOFSTEP] rw [h_eq] [GOAL] case refine'_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y inst✝ : IsIso α x : ↑↑X β : Y ⟶ X := CategoryTheory.inv α h_eq : ↑(α ≫ β).base x = x ⊢ stalkMap α x ≫ eqToHom (_ : stalk X x = stalk X (↑(α ≫ β).base x)) ≫ stalkMap β (↑α.base x) = 𝟙 (stalk Y (↑α.base x)) [PROOFSTEP] rw [← Category.assoc, congr_point α x ((α ≫ β).base x) h_eq.symm, Category.assoc] [GOAL] case refine'_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y inst✝ : IsIso α x : ↑↑X β : Y ⟶ X := CategoryTheory.inv α h_eq : ↑(α ≫ β).base x = x ⊢ eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑α.base (↑(α ≫ β).base x))) ≫ stalkMap α (↑(α ≫ β).base x) ≫ stalkMap β (↑α.base x) = 𝟙 (stalk Y (↑α.base x)) [PROOFSTEP] erw [← stalkMap.comp β α (α.base x)] [GOAL] case refine'_1 C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y inst✝ : IsIso α x : ↑↑X β : Y ⟶ X := CategoryTheory.inv α h_eq : ↑(α ≫ β).base x = x ⊢ eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑α.base (↑(α ≫ β).base x))) ≫ stalkMap (β ≫ α) (↑α.base x) = 𝟙 (stalk Y (↑α.base x)) [PROOFSTEP] rw [congr_hom _ _ (IsIso.inv_hom_id α), stalkMap.id, eqToHom_trans_assoc, eqToHom_refl, Category.id_comp] [GOAL] case refine'_2 C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimits C X Y : PresheafedSpace C α : X ⟶ Y inst✝ : IsIso α x : ↑↑X β : Y ⟶ X := CategoryTheory.inv α h_eq : ↑(α ≫ β).base x = x ⊢ (eqToHom (_ : stalk X x = stalk X (↑(α ≫ β).base x)) ≫ stalkMap β (↑α.base x)) ≫ stalkMap α x = 𝟙 (stalk X x) [PROOFSTEP] rw [Category.assoc, ← stalkMap.comp, congr_hom _ _ (IsIso.hom_inv_id α), stalkMap.id, eqToHom_trans_assoc, eqToHom_refl, Category.id_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C f : X ⟶ Y x y : ↑↑X h : x ⤳ y ⊢ stalkSpecializes Y.presheaf (_ : ↑f.base x ⤳ ↑f.base y) ≫ stalkMap f x = stalkMap f y ≫ stalkSpecializes X.presheaf h [PROOFSTEP] dsimp [stalkSpecializes, stalkMap, stalkFunctor, stalkPushforward] -- We can't use `ext` here due to https://github.com/leanprover/std4/pull/159 [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C f : X ⟶ Y x y : ↑↑X h : x ⤳ y ⊢ colimit.desc ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf) { pt := colimit ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf), ι := NatTrans.mk fun U => colimit.ι ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf) (op { obj := U.unop.obj, property := (_ : ↑f.base x ∈ U.unop.obj.carrier) }) } ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base x)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op = (colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫ colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf) { pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf), ι := NatTrans.mk fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) } [PROOFSTEP] refine colimit.hom_ext fun j => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C f : X ⟶ Y x y : ↑↑X h : x ⤳ y j : (OpenNhds (↑f.base y))ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f.base y))ᵒᵖ (Opens ↑↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f.base y)).op).obj Y.presheaf) j ≫ colimit.desc ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf) { pt := colimit ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf), ι := NatTrans.mk fun U => colimit.ι ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf) (op { obj := U.unop.obj, property := (_ : ↑f.base x ∈ U.unop.obj.carrier) }) } ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base x)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op = colimit.ι (((whiskeringLeft (OpenNhds (↑f.base y))ᵒᵖ (Opens ↑↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f.base y)).op).obj Y.presheaf) j ≫ (colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫ colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf) { pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf), ι := NatTrans.mk fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) } [PROOFSTEP] induction j with | h j => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C f : X ⟶ Y x y : ↑↑X h : x ⤳ y j : (OpenNhds (↑f.base y))ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f.base y))ᵒᵖ (Opens ↑↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f.base y)).op).obj Y.presheaf) j ≫ colimit.desc ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf) { pt := colimit ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf), ι := NatTrans.mk fun U => colimit.ι ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf) (op { obj := U.unop.obj, property := (_ : ↑f.base x ∈ U.unop.obj.carrier) }) } ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base x)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op = colimit.ι (((whiskeringLeft (OpenNhds (↑f.base y))ᵒᵖ (Opens ↑↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f.base y)).op).obj Y.presheaf) j ≫ (colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫ colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf) { pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf), ι := NatTrans.mk fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) } [PROOFSTEP] induction j with | h j => ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C f : X ⟶ Y x y : ↑↑X h : x ⤳ y j : OpenNhds (↑f.base y) ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f.base y))ᵒᵖ (Opens ↑↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f.base y)).op).obj Y.presheaf) (op j) ≫ colimit.desc ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf) { pt := colimit ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf), ι := NatTrans.mk fun U => colimit.ι ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf) (op { obj := U.unop.obj, property := (_ : ↑f.base x ∈ U.unop.obj.carrier) }) } ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base x)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op = colimit.ι (((whiskeringLeft (OpenNhds (↑f.base y))ᵒᵖ (Opens ↑↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f.base y)).op).obj Y.presheaf) (op j) ≫ (colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫ colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf) { pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf), ι := NatTrans.mk fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) } [PROOFSTEP] dsimp [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C f : X ⟶ Y x y : ↑↑X h : x ⤳ y j : OpenNhds (↑f.base y) ⊢ colimit.ι ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf) (op j) ≫ colimit.desc ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf) { pt := colimit ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf), ι := NatTrans.mk fun U => colimit.ι ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf) (op { obj := U.unop.obj, property := (_ : ↑f.base x ∈ U.unop.obj.carrier) }) } ≫ colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base x)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op = colimit.ι ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf) (op j) ≫ (colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c) ≫ colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫ colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫ colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf) { pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf), ι := NatTrans.mk fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) } [PROOFSTEP] simp only [colimit.ι_desc_assoc, comp_obj, op_obj, unop_op, ι_colimMap_assoc, colimit.map_desc, OpenNhds.inclusion_obj, pushforwardObj_obj, whiskerLeft_app, OpenNhds.map_obj, whiskerRight_app, NatTrans.id_app, map_id, colimit.ι_pre, id_comp, assoc, colimit.pre_desc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C f : X ⟶ Y x y : ↑↑X h : x ⤳ y j : OpenNhds (↑f.base y) ⊢ NatTrans.app f.c (op j.obj) ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := (Opens.map f.base).obj j.obj, property := (_ : ↑f.base x ∈ (op j).unop.obj.carrier) }) = colimit.ι ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf) (op j) ≫ colimit.desc ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf) ((Cocones.precompose (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c)).obj ((Cocones.precompose (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf)).obj (Cocone.whisker (OpenNhds.map f.base y).op { pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf), ι := NatTrans.mk fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) }))) [PROOFSTEP] erw [colimit.ι_desc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C f : X ⟶ Y x y : ↑↑X h : x ⤳ y j : OpenNhds (↑f.base y) ⊢ NatTrans.app f.c (op j.obj) ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := (Opens.map f.base).obj j.obj, property := (_ : ↑f.base x ∈ (op j).unop.obj.carrier) }) = NatTrans.app ((Cocones.precompose (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c)).obj ((Cocones.precompose (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf)).obj (Cocone.whisker (OpenNhds.map f.base y).op { pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf), ι := NatTrans.mk fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) }))).ι (op j) [PROOFSTEP] dsimp [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C f : X ⟶ Y x y : ↑↑X h : x ⤳ y j : OpenNhds (↑f.base y) ⊢ NatTrans.app f.c (op j.obj) ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := (Opens.map f.base).obj j.obj, property := (_ : ↑f.base x ∈ (op j).unop.obj.carrier) }) = NatTrans.app f.c (op ((OpenNhds.inclusion (↑f.base y)).obj j)) ≫ X.presheaf.map (𝟙 (op ((OpenNhds.inclusion y).obj ((OpenNhds.map f.base y).obj j)))) ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := ((OpenNhds.map f.base y).obj j).obj, property := (_ : x ∈ (op ((OpenNhds.map f.base y).obj j)).unop.obj.carrier) }) [PROOFSTEP] erw [X.presheaf.map_id, id_comp] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : PresheafedSpace C f : X ⟶ Y x y : ↑↑X h : x ⤳ y j : OpenNhds (↑f.base y) ⊢ NatTrans.app f.c (op j.obj) ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := (Opens.map f.base).obj j.obj, property := (_ : ↑f.base x ∈ (op j).unop.obj.carrier) }) = NatTrans.app f.c (op ((OpenNhds.inclusion (↑f.base y)).obj j)) ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf) (op { obj := ((OpenNhds.map f.base y).obj j).obj, property := (_ : x ∈ (op ((OpenNhds.map f.base y).obj j)).unop.obj.carrier) }) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.AlgebraicGeometry.Stalks", "llama_tokens": 18112}
[GOAL] k : Type u inst✝⁹ : CommRing k G : Type u inst✝⁸ : Group G V : Type v inst✝⁷ : AddCommGroup V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V W : Type w inst✝³ : AddCommGroup W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W π : W →ₗ[k] V i : V →ₗ[MonoidAlgebra k G] W h : ∀ (v : V), ↑π (↑i v) = v g : G v : V ⊢ ↑(conjugate π g) (↑i v) = v [PROOFSTEP] rw [conjugate_apply, ← i.map_smul, h, ← mul_smul, single_mul_single, mul_one, mul_left_inv, ← one_def, one_smul] [GOAL] k : Type u inst✝¹⁰ : CommRing k G : Type u inst✝⁹ : Group G V : Type v inst✝⁸ : AddCommGroup V inst✝⁷ : Module k V inst✝⁶ : Module (MonoidAlgebra k G) V inst✝⁵ : IsScalarTower k (MonoidAlgebra k G) V W : Type w inst✝⁴ : AddCommGroup W inst✝³ : Module k W inst✝² : Module (MonoidAlgebra k G) W inst✝¹ : IsScalarTower k (MonoidAlgebra k G) W π : W →ₗ[k] V i : V →ₗ[MonoidAlgebra k G] W h : ∀ (v : V), ↑π (↑i v) = v inst✝ : Fintype G g : G v : W ⊢ ↑(sumOfConjugates G π) (MonoidAlgebra.single g 1 • v) = MonoidAlgebra.single g 1 • ↑(sumOfConjugates G π) v [PROOFSTEP] simp only [sumOfConjugates_apply, Finset.smul_sum, conjugate_apply] [GOAL] k : Type u inst✝¹⁰ : CommRing k G : Type u inst✝⁹ : Group G V : Type v inst✝⁸ : AddCommGroup V inst✝⁷ : Module k V inst✝⁶ : Module (MonoidAlgebra k G) V inst✝⁵ : IsScalarTower k (MonoidAlgebra k G) V W : Type w inst✝⁴ : AddCommGroup W inst✝³ : Module k W inst✝² : Module (MonoidAlgebra k G) W inst✝¹ : IsScalarTower k (MonoidAlgebra k G) W π : W →ₗ[k] V i : V →ₗ[MonoidAlgebra k G] W h : ∀ (v : V), ↑π (↑i v) = v inst✝ : Fintype G g : G v : W ⊢ ∑ x : G, MonoidAlgebra.single x⁻¹ 1 • ↑π (MonoidAlgebra.single x 1 • MonoidAlgebra.single g 1 • v) = ∑ x : G, MonoidAlgebra.single g 1 • MonoidAlgebra.single x⁻¹ 1 • ↑π (MonoidAlgebra.single x 1 • v) [PROOFSTEP] refine Fintype.sum_bijective (· * g) (Group.mulRight_bijective g) _ _ fun i ↦ ?_ [GOAL] k : Type u inst✝¹⁰ : CommRing k G : Type u inst✝⁹ : Group G V : Type v inst✝⁸ : AddCommGroup V inst✝⁷ : Module k V inst✝⁶ : Module (MonoidAlgebra k G) V inst✝⁵ : IsScalarTower k (MonoidAlgebra k G) V W : Type w inst✝⁴ : AddCommGroup W inst✝³ : Module k W inst✝² : Module (MonoidAlgebra k G) W inst✝¹ : IsScalarTower k (MonoidAlgebra k G) W π : W →ₗ[k] V i✝ : V →ₗ[MonoidAlgebra k G] W h : ∀ (v : V), ↑π (↑i✝ v) = v inst✝ : Fintype G g : G v : W i : G ⊢ MonoidAlgebra.single i⁻¹ 1 • ↑π (MonoidAlgebra.single i 1 • MonoidAlgebra.single g 1 • v) = MonoidAlgebra.single g 1 • MonoidAlgebra.single ((fun x => x * g) i)⁻¹ 1 • ↑π (MonoidAlgebra.single ((fun x => x * g) i) 1 • v) [PROOFSTEP] simp only [smul_smul, single_mul_single, mul_inv_rev, mul_inv_cancel_left, one_mul] [GOAL] k : Type u inst✝¹¹ : CommRing k G : Type u inst✝¹⁰ : Group G V : Type v inst✝⁹ : AddCommGroup V inst✝⁸ : Module k V inst✝⁷ : Module (MonoidAlgebra k G) V inst✝⁶ : IsScalarTower k (MonoidAlgebra k G) V W : Type w inst✝⁵ : AddCommGroup W inst✝⁴ : Module k W inst✝³ : Module (MonoidAlgebra k G) W inst✝² : IsScalarTower k (MonoidAlgebra k G) W π : W →ₗ[k] V i : V →ₗ[MonoidAlgebra k G] W h : ∀ (v : V), ↑π (↑i v) = v inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) v : W ⊢ ↑(equivariantProjection G π) v = ⅟↑(Fintype.card G) • ∑ g : G, ↑(conjugate π g) v [PROOFSTEP] simp only [equivariantProjection, smul_apply, sumOfConjugatesEquivariant_apply] [GOAL] k : Type u inst✝¹¹ : CommRing k G : Type u inst✝¹⁰ : Group G V : Type v inst✝⁹ : AddCommGroup V inst✝⁸ : Module k V inst✝⁷ : Module (MonoidAlgebra k G) V inst✝⁶ : IsScalarTower k (MonoidAlgebra k G) V W : Type w inst✝⁵ : AddCommGroup W inst✝⁴ : Module k W inst✝³ : Module (MonoidAlgebra k G) W inst✝² : IsScalarTower k (MonoidAlgebra k G) W π : W →ₗ[k] V i : V →ₗ[MonoidAlgebra k G] W h : ∀ (v : V), ↑π (↑i v) = v inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) v : V ⊢ ↑(equivariantProjection G π) (↑i v) = v [PROOFSTEP] rw [equivariantProjection_apply] [GOAL] k : Type u inst✝¹¹ : CommRing k G : Type u inst✝¹⁰ : Group G V : Type v inst✝⁹ : AddCommGroup V inst✝⁸ : Module k V inst✝⁷ : Module (MonoidAlgebra k G) V inst✝⁶ : IsScalarTower k (MonoidAlgebra k G) V W : Type w inst✝⁵ : AddCommGroup W inst✝⁴ : Module k W inst✝³ : Module (MonoidAlgebra k G) W inst✝² : IsScalarTower k (MonoidAlgebra k G) W π : W →ₗ[k] V i : V →ₗ[MonoidAlgebra k G] W h : ∀ (v : V), ↑π (↑i v) = v inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) v : V ⊢ ⅟↑(Fintype.card G) • ∑ g : G, ↑(conjugate π g) (↑i v) = v [PROOFSTEP] simp only [conjugate_i π i h] [GOAL] k : Type u inst✝¹¹ : CommRing k G : Type u inst✝¹⁰ : Group G V : Type v inst✝⁹ : AddCommGroup V inst✝⁸ : Module k V inst✝⁷ : Module (MonoidAlgebra k G) V inst✝⁶ : IsScalarTower k (MonoidAlgebra k G) V W : Type w inst✝⁵ : AddCommGroup W inst✝⁴ : Module k W inst✝³ : Module (MonoidAlgebra k G) W inst✝² : IsScalarTower k (MonoidAlgebra k G) W π : W →ₗ[k] V i : V →ₗ[MonoidAlgebra k G] W h : ∀ (v : V), ↑π (↑i v) = v inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) v : V ⊢ ⅟↑(Fintype.card G) • ∑ x : G, v = v [PROOFSTEP] rw [Finset.sum_const, Finset.card_univ, nsmul_eq_smul_cast k, smul_smul, Invertible.invOf_mul_self, one_smul] [GOAL] k : Type u inst✝¹¹ : Field k G : Type u inst✝¹⁰ : Fintype G inst✝⁹ : Invertible ↑(Fintype.card G) inst✝⁸ : Group G V : Type u inst✝⁷ : AddCommGroup V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V W : Type u inst✝³ : AddCommGroup W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W f : V →ₗ[MonoidAlgebra k G] W hf : LinearMap.ker f = ⊥ ⊢ ∃ g, LinearMap.comp g f = LinearMap.id [PROOFSTEP] obtain ⟨φ, hφ⟩ := (f.restrictScalars k).exists_leftInverse_of_injective <| by simp only [hf, Submodule.restrictScalars_bot, LinearMap.ker_restrictScalars] [GOAL] k : Type u inst✝¹¹ : Field k G : Type u inst✝¹⁰ : Fintype G inst✝⁹ : Invertible ↑(Fintype.card G) inst✝⁸ : Group G V : Type u inst✝⁷ : AddCommGroup V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V W : Type u inst✝³ : AddCommGroup W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W f : V →ₗ[MonoidAlgebra k G] W hf : LinearMap.ker f = ⊥ ⊢ LinearMap.ker (↑k f) = ⊥ [PROOFSTEP] simp only [hf, Submodule.restrictScalars_bot, LinearMap.ker_restrictScalars] [GOAL] case intro k : Type u inst✝¹¹ : Field k G : Type u inst✝¹⁰ : Fintype G inst✝⁹ : Invertible ↑(Fintype.card G) inst✝⁸ : Group G V : Type u inst✝⁷ : AddCommGroup V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V W : Type u inst✝³ : AddCommGroup W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W f : V →ₗ[MonoidAlgebra k G] W hf : LinearMap.ker f = ⊥ φ : W →ₗ[k] V hφ : LinearMap.comp φ (↑k f) = LinearMap.id ⊢ ∃ g, LinearMap.comp g f = LinearMap.id [PROOFSTEP] refine ⟨φ.equivariantProjection G, FunLike.ext _ _ ?_⟩ [GOAL] case intro k : Type u inst✝¹¹ : Field k G : Type u inst✝¹⁰ : Fintype G inst✝⁹ : Invertible ↑(Fintype.card G) inst✝⁸ : Group G V : Type u inst✝⁷ : AddCommGroup V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V W : Type u inst✝³ : AddCommGroup W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W f : V →ₗ[MonoidAlgebra k G] W hf : LinearMap.ker f = ⊥ φ : W →ₗ[k] V hφ : LinearMap.comp φ (↑k f) = LinearMap.id ⊢ ∀ (x : V), ↑(LinearMap.comp (LinearMap.equivariantProjection G φ) f) x = ↑LinearMap.id x [PROOFSTEP] exact φ.equivariantProjection_condition G _ <| FunLike.congr_fun hφ [GOAL] k : Type u inst✝¹¹ : Field k G : Type u inst✝¹⁰ : Fintype G inst✝⁹ : Invertible ↑(Fintype.card G) inst✝⁸ : Group G V : Type u inst✝⁷ : AddCommGroup V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V W : Type u inst✝³ : AddCommGroup W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W p : Submodule (MonoidAlgebra k G) V ⊢ ∃ q, IsCompl p q [PROOFSTEP] have : IsScalarTower k (MonoidAlgebra k G) p := p.isScalarTower' [GOAL] k : Type u inst✝¹¹ : Field k G : Type u inst✝¹⁰ : Fintype G inst✝⁹ : Invertible ↑(Fintype.card G) inst✝⁸ : Group G V : Type u inst✝⁷ : AddCommGroup V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V W : Type u inst✝³ : AddCommGroup W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W p : Submodule (MonoidAlgebra k G) V this : IsScalarTower k (MonoidAlgebra k G) { x // x ∈ p } ⊢ ∃ q, IsCompl p q [PROOFSTEP] rcases MonoidAlgebra.exists_leftInverse_of_injective p.subtype p.ker_subtype with ⟨f, hf⟩ [GOAL] case intro k : Type u inst✝¹¹ : Field k G : Type u inst✝¹⁰ : Fintype G inst✝⁹ : Invertible ↑(Fintype.card G) inst✝⁸ : Group G V : Type u inst✝⁷ : AddCommGroup V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V W : Type u inst✝³ : AddCommGroup W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W p : Submodule (MonoidAlgebra k G) V this : IsScalarTower k (MonoidAlgebra k G) { x // x ∈ p } f : V →ₗ[MonoidAlgebra k G] { x // x ∈ p } hf : LinearMap.comp f (Submodule.subtype p) = LinearMap.id ⊢ ∃ q, IsCompl p q [PROOFSTEP] refine ⟨LinearMap.ker f, LinearMap.isCompl_of_proj ?_⟩ [GOAL] case intro k : Type u inst✝¹¹ : Field k G : Type u inst✝¹⁰ : Fintype G inst✝⁹ : Invertible ↑(Fintype.card G) inst✝⁸ : Group G V : Type u inst✝⁷ : AddCommGroup V inst✝⁶ : Module k V inst✝⁵ : Module (MonoidAlgebra k G) V inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V W : Type u inst✝³ : AddCommGroup W inst✝² : Module k W inst✝¹ : Module (MonoidAlgebra k G) W inst✝ : IsScalarTower k (MonoidAlgebra k G) W p : Submodule (MonoidAlgebra k G) V this : IsScalarTower k (MonoidAlgebra k G) { x // x ∈ p } f : V →ₗ[MonoidAlgebra k G] { x // x ∈ p } hf : LinearMap.comp f (Submodule.subtype p) = LinearMap.id ⊢ ∀ (x : { x // x ∈ p }), ↑f ↑x = x [PROOFSTEP] exact FunLike.congr_fun hf
{"mathlib_filename": "Mathlib.RepresentationTheory.Maschke", "llama_tokens": 5099}
[GOAL] R : Type u inst✝ : CommRing R x✝¹ x✝ : MaximalSpectrum R asIdeal✝¹ : Ideal R IsMaximal✝¹ : Ideal.IsMaximal asIdeal✝¹ asIdeal✝ : Ideal R IsMaximal✝ : Ideal.IsMaximal asIdeal✝ h : toPrimeSpectrum { asIdeal := asIdeal✝¹, IsMaximal := IsMaximal✝¹ } = toPrimeSpectrum { asIdeal := asIdeal✝, IsMaximal := IsMaximal✝ } ⊢ { asIdeal := asIdeal✝¹, IsMaximal := IsMaximal✝¹ } = { asIdeal := asIdeal✝, IsMaximal := IsMaximal✝ } [PROOFSTEP] simpa only [MaximalSpectrum.mk.injEq] using (PrimeSpectrum.ext_iff _ _).mp h [GOAL] R : Type u inst✝ : CommRing R ⊢ range toPrimeSpectrum = {x | IsClosed {x}} [PROOFSTEP] simp only [isClosed_singleton_iff_isMaximal] [GOAL] R : Type u inst✝ : CommRing R ⊢ range toPrimeSpectrum = {x | Ideal.IsMaximal x.asIdeal} [PROOFSTEP] ext ⟨x, _⟩ [GOAL] case h.mk R : Type u inst✝ : CommRing R x : Ideal R IsPrime✝ : Ideal.IsPrime x ⊢ { asIdeal := x, IsPrime := IsPrime✝ } ∈ range toPrimeSpectrum ↔ { asIdeal := x, IsPrime := IsPrime✝ } ∈ {x | Ideal.IsMaximal x.asIdeal} [PROOFSTEP] exact ⟨fun ⟨y, hy⟩ => hy ▸ y.IsMaximal, fun hx => ⟨⟨x, hx⟩, rfl⟩⟩ [GOAL] R : Type u inst✝ : CommRing R x : MaximalSpectrum R ⊢ toPrimeSpectrum ⁻¹' {toPrimeSpectrum x} = {x} [PROOFSTEP] simpa only [← image_singleton] using preimage_image_eq { x } toPrimeSpectrum_injective [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K ⊢ ⨅ (v : MaximalSpectrum R), Localization.subalgebra.ofField K (Ideal.primeCompl v.asIdeal) (_ : Ideal.primeCompl v.asIdeal ≤ nonZeroDivisors R) = ⊥ [PROOFSTEP] ext x [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K ⊢ x ∈ ⨅ (v : MaximalSpectrum R), Localization.subalgebra.ofField K (Ideal.primeCompl v.asIdeal) (_ : Ideal.primeCompl v.asIdeal ≤ nonZeroDivisors R) ↔ x ∈ ⊥ [PROOFSTEP] rw [Algebra.mem_bot, Algebra.mem_iInf] [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K ⊢ (∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)) ↔ x ∈ range ↑(algebraMap R K) [PROOFSTEP] constructor [GOAL] case h.mp R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K ⊢ (∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)) → x ∈ range ↑(algebraMap R K) [PROOFSTEP] contrapose [GOAL] case h.mp R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K ⊢ ¬x ∈ range ↑(algebraMap R K) → ¬∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) [PROOFSTEP] intro hrange hlocal [GOAL] case h.mp R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K hrange : ¬x ∈ range ↑(algebraMap R K) hlocal : ∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) ⊢ False [PROOFSTEP] let denom : Ideal R := (Submodule.span R {1} : Submodule R K).colon (Submodule.span R { x }) [GOAL] case h.mp R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K hrange : ¬x ∈ range ↑(algebraMap R K) hlocal : ∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x}) ⊢ False [PROOFSTEP] have hdenom : (1 : R) ∉ denom := by intro hdenom rcases Submodule.mem_span_singleton.mp (Submodule.mem_colon.mp hdenom x <| Submodule.mem_span_singleton_self x) with ⟨y, hy⟩ exact hrange ⟨y, by rw [← mul_one <| algebraMap R K y, ← Algebra.smul_def, hy, one_smul]⟩ [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K hrange : ¬x ∈ range ↑(algebraMap R K) hlocal : ∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x}) ⊢ ¬1 ∈ denom [PROOFSTEP] intro hdenom [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K hrange : ¬x ∈ range ↑(algebraMap R K) hlocal : ∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x}) hdenom : 1 ∈ denom ⊢ False [PROOFSTEP] rcases Submodule.mem_span_singleton.mp (Submodule.mem_colon.mp hdenom x <| Submodule.mem_span_singleton_self x) with ⟨y, hy⟩ [GOAL] case intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K hrange : ¬x ∈ range ↑(algebraMap R K) hlocal : ∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x}) hdenom : 1 ∈ denom y : R hy : y • 1 = 1 • x ⊢ False [PROOFSTEP] exact hrange ⟨y, by rw [← mul_one <| algebraMap R K y, ← Algebra.smul_def, hy, one_smul]⟩ [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K hrange : ¬x ∈ range ↑(algebraMap R K) hlocal : ∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x}) hdenom : 1 ∈ denom y : R hy : y • 1 = 1 • x ⊢ ↑(algebraMap R K) y = x [PROOFSTEP] rw [← mul_one <| algebraMap R K y, ← Algebra.smul_def, hy, one_smul] [GOAL] case h.mp R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K hrange : ¬x ∈ range ↑(algebraMap R K) hlocal : ∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x}) hdenom : ¬1 ∈ denom ⊢ False [PROOFSTEP] rcases denom.exists_le_maximal fun h => (h ▸ hdenom) Submodule.mem_top with ⟨max, hmax, hle⟩ [GOAL] case h.mp.intro.intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K hrange : ¬x ∈ range ↑(algebraMap R K) hlocal : ∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x}) hdenom : ¬1 ∈ denom max : Ideal R hmax : Ideal.IsMaximal max hle : denom ≤ max ⊢ False [PROOFSTEP] rcases hlocal ⟨max, hmax⟩ with ⟨n, d, hd, rfl⟩ [GOAL] case h.mp.intro.intro.intro.intro.intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K max : Ideal R hmax : Ideal.IsMaximal max n d : R hd : d ∈ Ideal.primeCompl { asIdeal := max, IsMaximal := hmax }.asIdeal hrange : ¬↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ range ↑(algebraMap R K) hlocal : ∀ (i : MaximalSpectrum R), ↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹}) hdenom : ¬1 ∈ denom hle : denom ≤ max ⊢ False [PROOFSTEP] apply hd (hle <| Submodule.mem_colon.mpr fun _ hy => _) [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K max : Ideal R hmax : Ideal.IsMaximal max n d : R hd : d ∈ Ideal.primeCompl { asIdeal := max, IsMaximal := hmax }.asIdeal hrange : ¬↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ range ↑(algebraMap R K) hlocal : ∀ (i : MaximalSpectrum R), ↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹}) hdenom : ¬1 ∈ denom hle : denom ≤ max ⊢ ∀ (x : K), x ∈ Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹} → d • x ∈ Submodule.span R {1} [PROOFSTEP] intro _ hy [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K max : Ideal R hmax : Ideal.IsMaximal max n d : R hd : d ∈ Ideal.primeCompl { asIdeal := max, IsMaximal := hmax }.asIdeal hrange : ¬↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ range ↑(algebraMap R K) hlocal : ∀ (i : MaximalSpectrum R), ↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹}) hdenom : ¬1 ∈ denom hle : denom ≤ max x✝ : K hy : x✝ ∈ Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹} ⊢ d • x✝ ∈ Submodule.span R {1} [PROOFSTEP] rcases Submodule.mem_span_singleton.mp hy with ⟨y, rfl⟩ [GOAL] case intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K max : Ideal R hmax : Ideal.IsMaximal max n d : R hd : d ∈ Ideal.primeCompl { asIdeal := max, IsMaximal := hmax }.asIdeal hrange : ¬↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ range ↑(algebraMap R K) hlocal : ∀ (i : MaximalSpectrum R), ↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹}) hdenom : ¬1 ∈ denom hle : denom ≤ max y : R hy : y • (↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹) ∈ Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹} ⊢ d • y • (↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹) ∈ Submodule.span R {1} [PROOFSTEP] exact Submodule.mem_span_singleton.mpr ⟨y * n, by rw [Algebra.smul_def, mul_one, map_mul, smul_comm, Algebra.smul_def, Algebra.smul_def, mul_comm <| algebraMap R K d, inv_mul_cancel_right₀ <| (map_ne_zero_iff _ <| NoZeroSMulDivisors.algebraMap_injective R K).mpr fun h => (h ▸ hd) max.zero_mem]⟩ [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K max : Ideal R hmax : Ideal.IsMaximal max n d : R hd : d ∈ Ideal.primeCompl { asIdeal := max, IsMaximal := hmax }.asIdeal hrange : ¬↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ range ↑(algebraMap R K) hlocal : ∀ (i : MaximalSpectrum R), ↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹}) hdenom : ¬1 ∈ denom hle : denom ≤ max y : R hy : y • (↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹) ∈ Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹} ⊢ (y * n) • 1 = d • y • (↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹) [PROOFSTEP] rw [Algebra.smul_def, mul_one, map_mul, smul_comm, Algebra.smul_def, Algebra.smul_def, mul_comm <| algebraMap R K d, inv_mul_cancel_right₀ <| (map_ne_zero_iff _ <| NoZeroSMulDivisors.algebraMap_injective R K).mpr fun h => (h ▸ hd) max.zero_mem] [GOAL] case h.mpr R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K ⊢ x ∈ range ↑(algebraMap R K) → ∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) [PROOFSTEP] rintro ⟨y, rfl⟩ ⟨v, hv⟩ [GOAL] case h.mpr.intro.mk R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K y : R v : Ideal R hv : Ideal.IsMaximal v ⊢ ↑(algebraMap R K) y ∈ Localization.subalgebra.ofField K (Ideal.primeCompl { asIdeal := v, IsMaximal := hv }.asIdeal) (_ : Ideal.primeCompl { asIdeal := v, IsMaximal := hv }.asIdeal ≤ nonZeroDivisors R) [PROOFSTEP] exact ⟨y, 1, v.ne_top_iff_one.mp hv.ne_top, by rw [map_one, inv_one, mul_one]⟩ [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K y : R v : Ideal R hv : Ideal.IsMaximal v ⊢ ↑(algebraMap R K) y = ↑(algebraMap R K) y * (↑(algebraMap R K) 1)⁻¹ [PROOFSTEP] rw [map_one, inv_one, mul_one] [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K ⊢ ⨅ (v : PrimeSpectrum R), Localization.subalgebra.ofField K (Ideal.primeCompl v.asIdeal) (_ : Ideal.primeCompl v.asIdeal ≤ nonZeroDivisors R) = ⊥ [PROOFSTEP] ext x [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K ⊢ x ∈ ⨅ (v : PrimeSpectrum R), Localization.subalgebra.ofField K (Ideal.primeCompl v.asIdeal) (_ : Ideal.primeCompl v.asIdeal ≤ nonZeroDivisors R) ↔ x ∈ ⊥ [PROOFSTEP] rw [Algebra.mem_iInf] [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K ⊢ (∀ (i : PrimeSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)) ↔ x ∈ ⊥ [PROOFSTEP] constructor [GOAL] case h.mp R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K ⊢ (∀ (i : PrimeSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)) → x ∈ ⊥ [PROOFSTEP] rw [← MaximalSpectrum.iInf_localization_eq_bot, Algebra.mem_iInf] [GOAL] case h.mp R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K ⊢ (∀ (i : PrimeSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)) → ∀ (i : MaximalSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) [PROOFSTEP] exact fun hx ⟨v, hv⟩ => hx ⟨v, hv.isPrime⟩ [GOAL] case h.mpr R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K ⊢ x ∈ ⊥ → ∀ (i : PrimeSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) [PROOFSTEP] rw [Algebra.mem_bot] [GOAL] case h.mpr R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K x : K ⊢ x ∈ Set.range ↑(algebraMap R K) → ∀ (i : PrimeSpectrum R), x ∈ Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal) (_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R) [PROOFSTEP] rintro ⟨y, rfl⟩ ⟨v, hv⟩ [GOAL] case h.mpr.intro.mk R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K y : R v : Ideal R hv : Ideal.IsPrime v ⊢ ↑(algebraMap R K) y ∈ Localization.subalgebra.ofField K (Ideal.primeCompl { asIdeal := v, IsPrime := hv }.asIdeal) (_ : Ideal.primeCompl { asIdeal := v, IsPrime := hv }.asIdeal ≤ nonZeroDivisors R) [PROOFSTEP] exact ⟨y, 1, v.ne_top_iff_one.mp hv.ne_top, by rw [map_one, inv_one, mul_one]⟩ [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsDomain R K : Type v inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsFractionRing R K y : R v : Ideal R hv : Ideal.IsPrime v ⊢ ↑(algebraMap R K) y = ↑(algebraMap R K) y * (↑(algebraMap R K) 1)⁻¹ [PROOFSTEP] rw [map_one, inv_one, mul_one]
{"mathlib_filename": "Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal", "llama_tokens": 8178}
[GOAL] X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) ⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f) [PROOFSTEP] obtain ⟨g', heq⟩ := h.exists_right_inv [GOAL] case intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) g' : (CategoryTheory.forget CommRingCat).obj (stalk X.presheaf ↑x) heq : ↑(germ X.presheaf x) f * g' = 1 ⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f) [PROOFSTEP] obtain ⟨V, hxV, g, rfl⟩ := X.presheaf.germ_exist x.1 g' [GOAL] case intro.intro.intro.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) V : Opens ↑↑X.toPresheafedSpace hxV : ↑x ∈ V g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V)) heq : ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1 ⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f) [PROOFSTEP] let W := U ⊓ V [GOAL] case intro.intro.intro.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) V : Opens ↑↑X.toPresheafedSpace hxV : ↑x ∈ V g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V)) heq : ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1 W : Opens ↑↑X.toPresheafedSpace := U ⊓ V ⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f) [PROOFSTEP] have hxW : x.1 ∈ W := ⟨x.2, hxV⟩ -- Porting note : `erw` can't write into `HEq`, so this is replaced with another `HEq` in the -- desired form [GOAL] case intro.intro.intro.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) V : Opens ↑↑X.toPresheafedSpace hxV : ↑x ∈ V g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V)) heq : ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1 W : Opens ↑↑X.toPresheafedSpace := U ⊓ V hxW : ↑x ∈ W ⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f) [PROOFSTEP] replace heq : (X.presheaf.germ ⟨x.val, hxW⟩) ((X.presheaf.map (U.infLELeft V).op) f * (X.presheaf.map (U.infLERight V).op) g) = (X.presheaf.germ ⟨x.val, hxW⟩) 1 [GOAL] case heq X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) V : Opens ↑↑X.toPresheafedSpace hxV : ↑x ∈ V g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V)) heq : ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1 W : Opens ↑↑X.toPresheafedSpace := U ⊓ V hxW : ↑x ∈ W ⊢ ↑(germ X.presheaf { val := ↑x, property := hxW }) (↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) = ↑(germ X.presheaf { val := ↑x, property := hxW }) 1 [PROOFSTEP] dsimp [germ] [GOAL] case heq X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) V : Opens ↑↑X.toPresheafedSpace hxV : ↑x ∈ V g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V)) heq : ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1 W : Opens ↑↑X.toPresheafedSpace := U ⊓ V hxW : ↑x ∈ W ⊢ ↑(Limits.colimit.ι ((OpenNhds.inclusion ↑x).op ⋙ X.presheaf) (op { obj := U ⊓ V, property := (_ : ↑{ val := ↑x, property := hxW } ∈ U ⊓ V) })) (↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) = ↑(Limits.colimit.ι ((OpenNhds.inclusion ↑x).op ⋙ X.presheaf) (op { obj := U ⊓ V, property := (_ : ↑{ val := ↑x, property := hxW } ∈ U ⊓ V) })) 1 [PROOFSTEP] erw [map_mul, map_one, show X.presheaf.germ ⟨x, hxW⟩ ((X.presheaf.map (U.infLELeft V).op) f) = X.presheaf.germ x f from X.presheaf.germ_res_apply (Opens.infLELeft U V) ⟨x.1, hxW⟩ f, show X.presheaf.germ ⟨x, hxW⟩ (X.presheaf.map (U.infLERight V).op g) = X.presheaf.germ ⟨x, hxV⟩ g from X.presheaf.germ_res_apply (Opens.infLERight U V) ⟨x.1, hxW⟩ g] [GOAL] case heq X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) V : Opens ↑↑X.toPresheafedSpace hxV : ↑x ∈ V g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V)) heq : ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1 W : Opens ↑↑X.toPresheafedSpace := U ⊓ V hxW : ↑x ∈ W ⊢ ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1 [PROOFSTEP] exact heq [GOAL] case intro.intro.intro.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) V : Opens ↑↑X.toPresheafedSpace hxV : ↑x ∈ V g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V)) W : Opens ↑↑X.toPresheafedSpace := U ⊓ V hxW : ↑x ∈ W heq : ↑(germ X.presheaf { val := ↑x, property := hxW }) (↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) = ↑(germ X.presheaf { val := ↑x, property := hxW }) 1 ⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f) [PROOFSTEP] obtain ⟨W', hxW', i₁, i₂, heq'⟩ := X.presheaf.germ_eq x.1 hxW hxW _ _ heq [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) V : Opens ↑↑X.toPresheafedSpace hxV : ↑x ∈ V g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V)) W : Opens ↑↑X.toPresheafedSpace := U ⊓ V hxW : ↑x ∈ W heq : ↑(germ X.presheaf { val := ↑x, property := hxW }) (↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) = ↑(germ X.presheaf { val := ↑x, property := hxW }) 1 W' : Opens ↑↑X.toPresheafedSpace hxW' : ↑x ∈ W' i₁ i₂ : W' ⟶ W heq' : ↑(X.presheaf.map i₁.op) (↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) = ↑(X.presheaf.map i₂.op) 1 ⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f) [PROOFSTEP] use W', i₁ ≫ Opens.infLELeft U V, hxW' [GOAL] case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) V : Opens ↑↑X.toPresheafedSpace hxV : ↑x ∈ V g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V)) W : Opens ↑↑X.toPresheafedSpace := U ⊓ V hxW : ↑x ∈ W heq : ↑(germ X.presheaf { val := ↑x, property := hxW }) (↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) = ↑(germ X.presheaf { val := ↑x, property := hxW }) 1 W' : Opens ↑↑X.toPresheafedSpace hxW' : ↑x ∈ W' i₁ i₂ : W' ⟶ W heq' : ↑(X.presheaf.map i₁.op) (↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) = ↑(X.presheaf.map i₂.op) 1 ⊢ IsUnit (↑(X.presheaf.map (i₁ ≫ Opens.infLELeft U V).op) f) [PROOFSTEP] rw [(X.presheaf.map i₂.op).map_one, (X.presheaf.map i₁.op).map_mul] at heq' [GOAL] case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) V : Opens ↑↑X.toPresheafedSpace hxV : ↑x ∈ V g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V)) W : Opens ↑↑X.toPresheafedSpace := U ⊓ V hxW : ↑x ∈ W heq : ↑(germ X.presheaf { val := ↑x, property := hxW }) (↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) = ↑(germ X.presheaf { val := ↑x, property := hxW }) 1 W' : Opens ↑↑X.toPresheafedSpace hxW' : ↑x ∈ W' i₁ i₂ : W' ⟶ W heq' : ↑(X.presheaf.map i₁.op) (↑(X.presheaf.map (Opens.infLELeft U V).op) f) * ↑(X.presheaf.map i₁.op) (↑(X.presheaf.map (Opens.infLERight U V).op) g) = 1 ⊢ IsUnit (↑(X.presheaf.map (i₁ ≫ Opens.infLELeft U V).op) f) [PROOFSTEP] rw [← comp_apply, ← X.presheaf.map_comp, ← comp_apply, ← X.presheaf.map_comp, ← op_comp] at heq' [GOAL] case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) V : Opens ↑↑X.toPresheafedSpace hxV : ↑x ∈ V g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V)) W : Opens ↑↑X.toPresheafedSpace := U ⊓ V hxW : ↑x ∈ W heq : ↑(germ X.presheaf { val := ↑x, property := hxW }) (↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) = ↑(germ X.presheaf { val := ↑x, property := hxW }) 1 W' : Opens ↑↑X.toPresheafedSpace hxW' : ↑x ∈ W' i₁ i₂ : W' ⟶ W heq' : ↑(X.presheaf.map (i₁ ≫ Opens.infLELeft U V).op) f * ↑(X.presheaf.map ((Opens.infLERight U V).op ≫ i₁.op)) g = 1 ⊢ IsUnit (↑(X.presheaf.map (i₁ ≫ Opens.infLELeft U V).op) f) [PROOFSTEP] exact isUnit_of_mul_eq_one _ _ heq' [GOAL] X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) ⊢ IsUnit f [PROOFSTEP] choose V iVU m h_unit using fun x : U => X.isUnit_res_of_isUnit_germ U f x (h x) [GOAL] X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) ⊢ IsUnit f [PROOFSTEP] have hcover : U ≤ iSup V [GOAL] case hcover X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) ⊢ U ≤ iSup V [PROOFSTEP] intro x hxU [GOAL] case hcover X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) x : ↑↑X.toPresheafedSpace hxU : x ∈ ↑U ⊢ x ∈ ↑(iSup V) [PROOFSTEP] erw [Opens.mem_iSup] [GOAL] case hcover X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) x : ↑↑X.toPresheafedSpace hxU : x ∈ ↑U ⊢ ∃ i, x ∈ V i [PROOFSTEP] exact ⟨⟨x, hxU⟩, m ⟨x, hxU⟩⟩ -- Let `g x` denote the inverse of `f` in `U x`. [GOAL] X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V ⊢ IsUnit f [PROOFSTEP] choose g hg using fun x : U => IsUnit.exists_right_inv (h_unit x) [GOAL] X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 ⊢ IsUnit f [PROOFSTEP] have ic : IsCompatible (sheaf X).val V g [GOAL] case ic X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 ⊢ IsCompatible (sheaf X).val V g [PROOFSTEP] intro x y [GOAL] case ic X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 x y : { x // x ∈ U } ⊢ ↑((sheaf X).val.map (Opens.infLELeft (V x) (V y)).op) (g x) = ↑((sheaf X).val.map (Opens.infLERight (V x) (V y)).op) (g y) [PROOFSTEP] apply section_ext X.sheaf (V x ⊓ V y) [GOAL] case ic.h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 x y : { x // x ∈ U } ⊢ ∀ (x_1 : { x_1 // x_1 ∈ V x ⊓ V y }), ↑(germ (Sheaf.presheaf (sheaf X)) x_1) (↑((sheaf X).val.map (Opens.infLELeft (V x) (V y)).op) (g x)) = ↑(germ (Sheaf.presheaf (sheaf X)) x_1) (↑((sheaf X).val.map (Opens.infLERight (V x) (V y)).op) (g y)) [PROOFSTEP] rintro ⟨z, hzVx, hzVy⟩ [GOAL] case ic.h.mk.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 x y : { x // x ∈ U } z : ↑↑X.toPresheafedSpace hzVx : z ∈ ↑(V x) hzVy : z ∈ ↑(V y) ⊢ ↑(germ (Sheaf.presheaf (sheaf X)) { val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) }) (↑((sheaf X).val.map (Opens.infLELeft (V x) (V y)).op) (g x)) = ↑(germ (Sheaf.presheaf (sheaf X)) { val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) }) (↑((sheaf X).val.map (Opens.infLERight (V x) (V y)).op) (g y)) [PROOFSTEP] erw [germ_res_apply, germ_res_apply] [GOAL] case ic.h.mk.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 x y : { x // x ∈ U } z : ↑↑X.toPresheafedSpace hzVx : z ∈ ↑(V x) hzVy : z ∈ ↑(V y) ⊢ ↑(germ (Sheaf.presheaf (sheaf X)) ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑(V x)) }) { val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) })) (g x) = ↑(germ (Sheaf.presheaf (sheaf X)) ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑(V y)) }) { val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) })) (g y) [PROOFSTEP] apply (IsUnit.mul_right_inj (h ⟨z, (iVU x).le hzVx⟩)).mp [GOAL] case ic.h.mk.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 x y : { x // x ∈ U } z : ↑↑X.toPresheafedSpace hzVx : z ∈ ↑(V x) hzVy : z ∈ ↑(V y) ⊢ ↑(germ X.presheaf { val := z, property := (_ : z ∈ ↑U) }) f * ↑(germ (Sheaf.presheaf (sheaf X)) ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑(V x)) }) { val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) })) (g x) = ↑(germ X.presheaf { val := z, property := (_ : z ∈ ↑U) }) f * ↑(germ (Sheaf.presheaf (sheaf X)) ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑(V y)) }) { val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) })) (g y) [PROOFSTEP] rw [← show X.presheaf.germ ⟨z, hzVx⟩ (X.presheaf.map (iVU x).op f) = X.presheaf.germ ⟨z, ((iVU x) ⟨z, hzVx⟩).2⟩ f from X.presheaf.germ_res_apply (iVU x) ⟨z, hzVx⟩ f] -- Porting note : change was not necessary in Lean3 [GOAL] case ic.h.mk.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 x y : { x // x ∈ U } z : ↑↑X.toPresheafedSpace hzVx : z ∈ ↑(V x) hzVy : z ∈ ↑(V y) ⊢ ↑(germ X.presheaf { val := z, property := hzVx }) (↑(X.presheaf.map (iVU x).op) f) * ↑(germ (Sheaf.presheaf (sheaf X)) ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑(V x)) }) { val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) })) (g x) = ↑(germ X.presheaf { val := z, property := hzVx }) (↑(X.presheaf.map (iVU x).op) f) * ↑(germ (Sheaf.presheaf (sheaf X)) ((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑(V y)) }) { val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) })) (g y) [PROOFSTEP] change X.presheaf.germ ⟨z, hzVx⟩ _ * (X.presheaf.germ ⟨z, hzVx⟩ _) = X.presheaf.germ ⟨z, hzVx⟩ _ * X.presheaf.germ ⟨z, hzVy⟩ (g y) [GOAL] case ic.h.mk.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 x y : { x // x ∈ U } z : ↑↑X.toPresheafedSpace hzVx : z ∈ ↑(V x) hzVy : z ∈ ↑(V y) ⊢ ↑(germ X.presheaf { val := z, property := hzVx }) (↑(X.presheaf.map (iVU x).op) f) * ↑(germ X.presheaf { val := z, property := hzVx }) (g x) = ↑(germ X.presheaf { val := z, property := hzVx }) (↑(X.presheaf.map (iVU x).op) f) * ↑(germ X.presheaf { val := z, property := hzVy }) (g y) [PROOFSTEP] rw [← RingHom.map_mul, congr_arg (X.presheaf.germ (⟨z, hzVx⟩ : V x)) (hg x), -- Porting note : now need explicitly typing the rewritesshow X.presheaf.germ ⟨z, hzVx⟩ (X.presheaf.map (iVU x).op f) = X.presheaf.germ ⟨z, ((iVU x) ⟨z, hzVx⟩).2⟩ f from X.presheaf.germ_res_apply _ _ f, -- Porting note : now need explicitly typing the rewrites← show X.presheaf.germ ⟨z, hzVy⟩ (X.presheaf.map (iVU y).op f) = X.presheaf.germ ⟨z, ((iVU x) ⟨z, hzVx⟩).2⟩ f from X.presheaf.germ_res_apply (iVU y) ⟨z, hzVy⟩ f, ← RingHom.map_mul, congr_arg (X.presheaf.germ (⟨z, hzVy⟩ : V y)) (hg y), RingHom.map_one, RingHom.map_one] -- We claim that these local inverses glue together to a global inverse of `f`. [GOAL] X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 ic : IsCompatible (sheaf X).val V g ⊢ IsUnit f [PROOFSTEP] obtain ⟨gl, gl_spec, -⟩ := X.sheaf.existsUnique_gluing' V U iVU hcover g ic [GOAL] case intro.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 ic : IsCompatible (sheaf X).val V g gl : (CategoryTheory.forget CommRingCat).obj ((sheaf X).val.obj (op U)) gl_spec : ∀ (i : { x // x ∈ U }), ↑((sheaf X).val.map (iVU i).op) gl = g i ⊢ IsUnit f [PROOFSTEP] apply isUnit_of_mul_eq_one f gl [GOAL] case intro.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 ic : IsCompatible (sheaf X).val V g gl : (CategoryTheory.forget CommRingCat).obj ((sheaf X).val.obj (op U)) gl_spec : ∀ (i : { x // x ∈ U }), ↑((sheaf X).val.map (iVU i).op) gl = g i ⊢ f * gl = 1 [PROOFSTEP] apply X.sheaf.eq_of_locally_eq' V U iVU hcover [GOAL] case intro.intro.h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 ic : IsCompatible (sheaf X).val V g gl : (CategoryTheory.forget CommRingCat).obj ((sheaf X).val.obj (op U)) gl_spec : ∀ (i : { x // x ∈ U }), ↑((sheaf X).val.map (iVU i).op) gl = g i ⊢ ∀ (i : { x // x ∈ U }), ↑((sheaf X).val.map (iVU i).op) (f * gl) = ↑((sheaf X).val.map (iVU i).op) 1 [PROOFSTEP] intro i [GOAL] case intro.intro.h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 ic : IsCompatible (sheaf X).val V g gl : (CategoryTheory.forget CommRingCat).obj ((sheaf X).val.obj (op U)) gl_spec : ∀ (i : { x // x ∈ U }), ↑((sheaf X).val.map (iVU i).op) gl = g i i : { x // x ∈ U } ⊢ ↑((sheaf X).val.map (iVU i).op) (f * gl) = ↑((sheaf X).val.map (iVU i).op) 1 [PROOFSTEP] rw [RingHom.map_one, RingHom.map_mul, gl_spec] [GOAL] case intro.intro.h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f) V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace iVU : (x : { x // x ∈ U }) → V x ⟶ U m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f) hcover : U ≤ iSup V g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1 ic : IsCompatible (sheaf X).val V g gl : (CategoryTheory.forget CommRingCat).obj ((sheaf X).val.obj (op U)) gl_spec : ∀ (i : { x // x ∈ U }), ↑((sheaf X).val.map (iVU i).op) gl = g i i : { x // x ∈ U } ⊢ ↑((sheaf X).val.map (iVU i).op) f * g i = 1 [PROOFSTEP] exact hg i [GOAL] X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) ⊢ IsOpen (Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)}) [PROOFSTEP] rw [isOpen_iff_forall_mem_open] [GOAL] X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) ⊢ ∀ (x : ↑↑X.toPresheafedSpace), x ∈ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} → ∃ t, t ⊆ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} ∧ IsOpen t ∧ x ∈ t [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case intro.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} ⊢ ∃ t, t ⊆ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} ∧ IsOpen t ∧ ↑x ∈ t [PROOFSTEP] obtain ⟨V, i, hxV, hf⟩ := X.isUnit_res_of_isUnit_germ U f x hx [GOAL] case intro.intro.intro.intro.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} V : Opens ↑↑X.toPresheafedSpace i : V ⟶ U hxV : ↑x ∈ V hf : IsUnit (↑(X.presheaf.map i.op) f) ⊢ ∃ t, t ⊆ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} ∧ IsOpen t ∧ ↑x ∈ t [PROOFSTEP] use V.1 [GOAL] case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} V : Opens ↑↑X.toPresheafedSpace i : V ⟶ U hxV : ↑x ∈ V hf : IsUnit (↑(X.presheaf.map i.op) f) ⊢ V.carrier ⊆ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} ∧ IsOpen V.carrier ∧ ↑x ∈ V.carrier [PROOFSTEP] refine' ⟨_, V.2, hxV⟩ [GOAL] case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} V : Opens ↑↑X.toPresheafedSpace i : V ⟶ U hxV : ↑x ∈ V hf : IsUnit (↑(X.presheaf.map i.op) f) ⊢ V.carrier ⊆ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} [PROOFSTEP] intro y hy [GOAL] case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} V : Opens ↑↑X.toPresheafedSpace i : V ⟶ U hxV : ↑x ∈ V hf : IsUnit (↑(X.presheaf.map i.op) f) y : ↑↑X.toPresheafedSpace hy : y ∈ V.carrier ⊢ y ∈ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} [PROOFSTEP] use(⟨y, i.le hy⟩ : U) [GOAL] case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} V : Opens ↑↑X.toPresheafedSpace i : V ⟶ U hxV : ↑x ∈ V hf : IsUnit (↑(X.presheaf.map i.op) f) y : ↑↑X.toPresheafedSpace hy : y ∈ V.carrier ⊢ { val := y, property := (_ : y ∈ ↑U) } ∈ {x | IsUnit (↑(germ X.presheaf x) f)} ∧ ↑{ val := y, property := (_ : y ∈ ↑U) } = y [PROOFSTEP] rw [Set.mem_setOf_eq] [GOAL] case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} V : Opens ↑↑X.toPresheafedSpace i : V ⟶ U hxV : ↑x ∈ V hf : IsUnit (↑(X.presheaf.map i.op) f) y : ↑↑X.toPresheafedSpace hy : y ∈ V.carrier ⊢ IsUnit (↑(germ X.presheaf { val := y, property := (_ : y ∈ ↑U) }) f) ∧ ↑{ val := y, property := (_ : y ∈ ↑U) } = y [PROOFSTEP] constructor [GOAL] case h.left X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} V : Opens ↑↑X.toPresheafedSpace i : V ⟶ U hxV : ↑x ∈ V hf : IsUnit (↑(X.presheaf.map i.op) f) y : ↑↑X.toPresheafedSpace hy : y ∈ V.carrier ⊢ IsUnit (↑(germ X.presheaf { val := y, property := (_ : y ∈ ↑U) }) f) [PROOFSTEP] convert RingHom.isUnit_map (X.presheaf.germ ⟨y, hy⟩) hf [GOAL] case h.e'_3 X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} V : Opens ↑↑X.toPresheafedSpace i : V ⟶ U hxV : ↑x ∈ V hf : IsUnit (↑(X.presheaf.map i.op) f) y : ↑↑X.toPresheafedSpace hy : y ∈ V.carrier ⊢ ↑(germ X.presheaf { val := y, property := (_ : y ∈ ↑U) }) f = ↑(germ X.presheaf { val := y, property := hy }) (↑(X.presheaf.map i.op) f) [PROOFSTEP] exact (X.presheaf.germ_res_apply i ⟨y, hy⟩ f).symm [GOAL] case h.right X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} V : Opens ↑↑X.toPresheafedSpace i : V ⟶ U hxV : ↑x ∈ V hf : IsUnit (↑(X.presheaf.map i.op) f) y : ↑↑X.toPresheafedSpace hy : y ∈ V.carrier ⊢ ↑{ val := y, property := (_ : y ∈ ↑U) } = y [PROOFSTEP] rfl [GOAL] X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } ⊢ ↑x ∈ basicOpen X f ↔ IsUnit (↑(germ X.presheaf x) f) [PROOFSTEP] constructor [GOAL] case mp X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } ⊢ ↑x ∈ basicOpen X f → IsUnit (↑(germ X.presheaf x) f) [PROOFSTEP] rintro ⟨x, hx, a⟩ [GOAL] case mp.intro.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x✝ x : { x // x ∈ U } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} a : ↑x = ↑x✝ ⊢ IsUnit (↑(germ X.presheaf x✝) f) [PROOFSTEP] cases Subtype.eq a [GOAL] case mp.intro.intro.refl X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} a : ↑x = ↑x ⊢ IsUnit (↑(germ X.presheaf x) f) [PROOFSTEP] exact hx [GOAL] case mpr X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } ⊢ IsUnit (↑(germ X.presheaf x) f) → ↑x ∈ basicOpen X f [PROOFSTEP] intro h [GOAL] case mpr X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } h : IsUnit (↑(germ X.presheaf x) f) ⊢ ↑x ∈ basicOpen X f [PROOFSTEP] exact ⟨x, h, rfl⟩ [GOAL] X : RingedSpace f : ↑(X.presheaf.obj (op ⊤)) x : ↑↑X.toPresheafedSpace ⊢ x ∈ ⊤ [PROOFSTEP] trivial [GOAL] X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) ⊢ basicOpen X f ≤ U [PROOFSTEP] rintro _ ⟨x, _, rfl⟩ [GOAL] case intro.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } left✝ : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} ⊢ ↑x ∈ ↑U [PROOFSTEP] exact x.2 [GOAL] X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) ⊢ IsUnit (↑(X.presheaf.map (homOfLE (_ : basicOpen X f ≤ U)).op) f) [PROOFSTEP] apply isUnit_of_isUnit_germ [GOAL] case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) ⊢ ∀ (x : { x // x ∈ basicOpen X f }), IsUnit (↑(germ X.presheaf x) (↑(X.presheaf.map (homOfLE (_ : basicOpen X f ≤ U)).op) f)) [PROOFSTEP] rintro ⟨_, ⟨x, (hx : IsUnit _), rfl⟩⟩ [GOAL] case h.mk.intro.intro X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } hx : IsUnit (↑(germ X.presheaf x) f) ⊢ IsUnit (↑(germ X.presheaf { val := ↑x, property := (_ : ∃ a, a ∈ {x | IsUnit (↑(germ X.presheaf x) f)} ∧ ↑a = ↑x) }) (↑(X.presheaf.map (homOfLE (_ : basicOpen X f ≤ U)).op) f)) [PROOFSTEP] convert hx [GOAL] case h.e'_3 X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : { x // x ∈ U } hx : IsUnit (↑(germ X.presheaf x) f) ⊢ ↑(germ X.presheaf { val := ↑x, property := (_ : ∃ a, a ∈ {x | IsUnit (↑(germ X.presheaf x) f)} ∧ ↑a = ↑x) }) (↑(X.presheaf.map (homOfLE (_ : basicOpen X f ≤ U)).op) f) = ↑(germ X.presheaf x) f [PROOFSTEP] convert X.presheaf.germ_res_apply _ _ _ [GOAL] X : RingedSpace U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V f : ↑(X.presheaf.obj U) ⊢ basicOpen X (↑(X.presheaf.map i) f) = V.unop ⊓ basicOpen X f [PROOFSTEP] induction U using Opposite.rec' [GOAL] case h X : RingedSpace V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ X✝ : Opens ↑↑X.toPresheafedSpace i : op X✝ ⟶ V f : ↑(X.presheaf.obj (op X✝)) ⊢ basicOpen X (↑(X.presheaf.map i) f) = V.unop ⊓ basicOpen X f [PROOFSTEP] induction V using Opposite.rec' [GOAL] case h.h X : RingedSpace X✝¹ : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op X✝¹)) X✝ : Opens ↑↑X.toPresheafedSpace i : op X✝¹ ⟶ op X✝ ⊢ basicOpen X (↑(X.presheaf.map i) f) = (op X✝).unop ⊓ basicOpen X f [PROOFSTEP] let g := i.unop [GOAL] case h.h X : RingedSpace X✝¹ : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op X✝¹)) X✝ : Opens ↑↑X.toPresheafedSpace i : op X✝¹ ⟶ op X✝ g : (op X✝).unop ⟶ (op X✝¹).unop := i.unop ⊢ basicOpen X (↑(X.presheaf.map i) f) = (op X✝).unop ⊓ basicOpen X f [PROOFSTEP] have : i = g.op := rfl [GOAL] case h.h X : RingedSpace X✝¹ : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op X✝¹)) X✝ : Opens ↑↑X.toPresheafedSpace i : op X✝¹ ⟶ op X✝ g : (op X✝).unop ⟶ (op X✝¹).unop := i.unop this : i = g.op ⊢ basicOpen X (↑(X.presheaf.map i) f) = (op X✝).unop ⊓ basicOpen X f [PROOFSTEP] clear_value g [GOAL] case h.h X : RingedSpace X✝¹ : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op X✝¹)) X✝ : Opens ↑↑X.toPresheafedSpace i : op X✝¹ ⟶ op X✝ g : (op X✝).unop ⟶ (op X✝¹).unop this : i = g.op ⊢ basicOpen X (↑(X.presheaf.map i) f) = (op X✝).unop ⊓ basicOpen X f [PROOFSTEP] subst this [GOAL] case h.h X : RingedSpace X✝¹ : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op X✝¹)) X✝ : Opens ↑↑X.toPresheafedSpace g : (op X✝).unop ⟶ (op X✝¹).unop ⊢ basicOpen X (↑(X.presheaf.map g.op) f) = (op X✝).unop ⊓ basicOpen X f [PROOFSTEP] ext [GOAL] case h.h.h.h X : RingedSpace X✝¹ : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op X✝¹)) X✝ : Opens ↑↑X.toPresheafedSpace g : (op X✝).unop ⟶ (op X✝¹).unop x✝ : ↑↑X.toPresheafedSpace ⊢ x✝ ∈ ↑(basicOpen X (↑(X.presheaf.map g.op) f)) ↔ x✝ ∈ ↑((op X✝).unop ⊓ basicOpen X f) [PROOFSTEP] constructor [GOAL] case h.h.h.h.mp X : RingedSpace X✝¹ : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op X✝¹)) X✝ : Opens ↑↑X.toPresheafedSpace g : (op X✝).unop ⟶ (op X✝¹).unop x✝ : ↑↑X.toPresheafedSpace ⊢ x✝ ∈ ↑(basicOpen X (↑(X.presheaf.map g.op) f)) → x✝ ∈ ↑((op X✝).unop ⊓ basicOpen X f) [PROOFSTEP] rintro ⟨x, hx : IsUnit _, rfl⟩ [GOAL] case h.h.h.h.mp.intro.intro X : RingedSpace X✝¹ : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op X✝¹)) X✝ : Opens ↑↑X.toPresheafedSpace g : (op X✝).unop ⟶ (op X✝¹).unop x : { x // x ∈ (op X✝).unop } hx : IsUnit (↑(germ X.presheaf x) (↑(X.presheaf.map g.op) f)) ⊢ ↑x ∈ ↑((op X✝).unop ⊓ basicOpen X f) [PROOFSTEP] erw [X.presheaf.germ_res_apply _ _ _] at hx [GOAL] case h.h.h.h.mp.intro.intro X : RingedSpace X✝¹ : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op X✝¹)) X✝ : Opens ↑↑X.toPresheafedSpace g : (op X✝).unop ⟶ (op X✝¹).unop x : { x // x ∈ (op X✝).unop } hx : IsUnit (↑(germ X.presheaf ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op X✝¹).unop) }) x)) f) ⊢ ↑x ∈ ↑((op X✝).unop ⊓ basicOpen X f) [PROOFSTEP] exact ⟨x.2, g x, hx, rfl⟩ [GOAL] case h.h.h.h.mpr X : RingedSpace X✝¹ : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op X✝¹)) X✝ : Opens ↑↑X.toPresheafedSpace g : (op X✝).unop ⟶ (op X✝¹).unop x✝ : ↑↑X.toPresheafedSpace ⊢ x✝ ∈ ↑((op X✝).unop ⊓ basicOpen X f) → x✝ ∈ ↑(basicOpen X (↑(X.presheaf.map g.op) f)) [PROOFSTEP] rintro ⟨hxV, x, hx, rfl⟩ [GOAL] case h.h.h.h.mpr.intro.intro.intro X : RingedSpace X✝¹ : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op X✝¹)) X✝ : Opens ↑↑X.toPresheafedSpace g : (op X✝).unop ⟶ (op X✝¹).unop x : { x // x ∈ (op X✝¹).unop } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} hxV : ↑x ∈ ↑(op X✝).unop ⊢ ↑x ∈ ↑(basicOpen X (↑(X.presheaf.map g.op) f)) [PROOFSTEP] refine' ⟨⟨x, hxV⟩, (_ : IsUnit _), rfl⟩ [GOAL] case h.h.h.h.mpr.intro.intro.intro X : RingedSpace X✝¹ : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op X✝¹)) X✝ : Opens ↑↑X.toPresheafedSpace g : (op X✝).unop ⟶ (op X✝¹).unop x : { x // x ∈ (op X✝¹).unop } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} hxV : ↑x ∈ ↑(op X✝).unop ⊢ IsUnit (↑(germ X.presheaf { val := ↑x, property := hxV }) (↑(X.presheaf.map g.op) f)) [PROOFSTEP] erw [X.presheaf.germ_res_apply _ _ _] [GOAL] case h.h.h.h.mpr.intro.intro.intro X : RingedSpace X✝¹ : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op X✝¹)) X✝ : Opens ↑↑X.toPresheafedSpace g : (op X✝).unop ⟶ (op X✝¹).unop x : { x // x ∈ (op X✝¹).unop } hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)} hxV : ↑x ∈ ↑(op X✝).unop ⊢ IsUnit (↑(germ X.presheaf ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op X✝¹).unop) }) { val := ↑x, property := hxV })) f) [PROOFSTEP] exact hx [GOAL] X : RingedSpace U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V inst✝ : IsIso i f : ↑(X.presheaf.obj U) ⊢ basicOpen X (↑(X.presheaf.map i) f) = basicOpen X f [PROOFSTEP] apply le_antisymm [GOAL] case a X : RingedSpace U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V inst✝ : IsIso i f : ↑(X.presheaf.obj U) ⊢ basicOpen X (↑(X.presheaf.map i) f) ≤ basicOpen X f [PROOFSTEP] rw [X.basicOpen_res i f] [GOAL] case a X : RingedSpace U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V inst✝ : IsIso i f : ↑(X.presheaf.obj U) ⊢ V.unop ⊓ basicOpen X f ≤ basicOpen X f [PROOFSTEP] exact inf_le_right [GOAL] case a X : RingedSpace U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V inst✝ : IsIso i f : ↑(X.presheaf.obj U) ⊢ basicOpen X f ≤ basicOpen X (↑(X.presheaf.map i) f) [PROOFSTEP] have := X.basicOpen_res (inv i) (X.presheaf.map i f) [GOAL] case a X : RingedSpace U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V inst✝ : IsIso i f : ↑(X.presheaf.obj U) this : basicOpen X (↑(X.presheaf.map (inv i)) (↑(X.presheaf.map i) f)) = U.unop ⊓ basicOpen X (↑(X.presheaf.map i) f) ⊢ basicOpen X f ≤ basicOpen X (↑(X.presheaf.map i) f) [PROOFSTEP] rw [← comp_apply, ← X.presheaf.map_comp, IsIso.hom_inv_id, X.presheaf.map_id, id_apply] at this [GOAL] case a X : RingedSpace U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V inst✝ : IsIso i f : ↑(X.presheaf.obj U) this : basicOpen X f = U.unop ⊓ basicOpen X (↑(X.presheaf.map i) f) ⊢ basicOpen X f ≤ basicOpen X (↑(X.presheaf.map i) f) [PROOFSTEP] rw [this] [GOAL] case a X : RingedSpace U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V inst✝ : IsIso i f : ↑(X.presheaf.obj U) this : basicOpen X f = U.unop ⊓ basicOpen X (↑(X.presheaf.map i) f) ⊢ U.unop ⊓ basicOpen X (↑(X.presheaf.map i) f) ≤ basicOpen X (↑(X.presheaf.map i) f) [PROOFSTEP] exact inf_le_right [GOAL] X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f g : ↑(X.presheaf.obj (op U)) ⊢ basicOpen X (f * g) = basicOpen X f ⊓ basicOpen X g [PROOFSTEP] ext1 [GOAL] case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f g : ↑(X.presheaf.obj (op U)) ⊢ ↑(basicOpen X (f * g)) = ↑(basicOpen X f ⊓ basicOpen X g) [PROOFSTEP] dsimp [RingedSpace.basicOpen] [GOAL] case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f g : ↑(X.presheaf.obj (op U)) ⊢ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) (f * g))} = Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} ∩ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) g)} [PROOFSTEP] rw [← Set.image_inter Subtype.coe_injective] [GOAL] case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f g : ↑(X.presheaf.obj (op U)) ⊢ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) (f * g))} = (fun a => ↑a) '' ({x | IsUnit (↑(germ X.presheaf x) f)} ∩ {x | IsUnit (↑(germ X.presheaf x) g)}) [PROOFSTEP] congr [GOAL] case h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f g : ↑(X.presheaf.obj (op U)) ⊢ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) (f * g))} = (fun a => ↑a) '' ({x | IsUnit (↑(germ X.presheaf x) f)} ∩ {x | IsUnit (↑(germ X.presheaf x) g)}) [PROOFSTEP] ext x [GOAL] case h.h X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f g : ↑(X.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace ⊢ x ∈ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) (f * g))} ↔ x ∈ (fun a => ↑a) '' ({x | IsUnit (↑(germ X.presheaf x) f)} ∩ {x | IsUnit (↑(germ X.presheaf x) g)}) [PROOFSTEP] simp [map_mul, Set.mem_image] [GOAL] X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) hf : IsUnit f ⊢ basicOpen X f = U [PROOFSTEP] apply le_antisymm [GOAL] case a X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) hf : IsUnit f ⊢ basicOpen X f ≤ U [PROOFSTEP] exact X.basicOpen_le f [GOAL] case a X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) hf : IsUnit f ⊢ U ≤ basicOpen X f [PROOFSTEP] intro x hx [GOAL] case a X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) hf : IsUnit f x : ↑↑X.toPresheafedSpace hx : x ∈ ↑U ⊢ x ∈ ↑(basicOpen X f) [PROOFSTEP] erw [X.mem_basicOpen f (⟨x, hx⟩ : U)] [GOAL] case a X : RingedSpace U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) hf : IsUnit f x : ↑↑X.toPresheafedSpace hx : x ∈ ↑U ⊢ IsUnit (↑(germ X.presheaf { val := x, property := hx }) f) [PROOFSTEP] exact RingHom.isUnit_map _ hf
{"mathlib_filename": "Mathlib.AlgebraicGeometry.RingedSpace", "llama_tokens": 22502}
[GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I : Ideal R ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I [PROOFSTEP] refine' IsNoetherian.induction (P := fun I => ∃ Z : Multiset (PrimeSpectrum R), Multiset.prod (Z.map asIdeal) ≤ I) (fun (M : Ideal R) hgt => _) I [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J ⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M [PROOFSTEP] by_cases h_prM : M.IsPrime [GOAL] case pos R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : Ideal.IsPrime M ⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M [PROOFSTEP] use{⟨M, h_prM⟩} [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : Ideal.IsPrime M ⊢ Multiset.prod (Multiset.map asIdeal {{ asIdeal := M, IsPrime := h_prM }}) ≤ M [PROOFSTEP] rw [Multiset.map_singleton, Multiset.prod_singleton] [GOAL] case neg R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M ⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M [PROOFSTEP] by_cases htop : M = ⊤ [GOAL] case pos R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : M = ⊤ ⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M [PROOFSTEP] rw [htop] [GOAL] case pos R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : M = ⊤ ⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) ⊤ [PROOFSTEP] exact ⟨0, le_top⟩ [GOAL] case neg R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ ⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M [PROOFSTEP] have lt_add : ∀ (z) (_ : z ∉ M), M < M + span R { z } := by intro z hz refine' lt_of_le_of_ne le_sup_left fun m_eq => hz _ rw [m_eq] exact Ideal.mem_sup_right (mem_span_singleton_self z) [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ ⊢ ∀ (z : R), ¬z ∈ M → M < M + span R {z} [PROOFSTEP] intro z hz [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ z : R hz : ¬z ∈ M ⊢ M < M + span R {z} [PROOFSTEP] refine' lt_of_le_of_ne le_sup_left fun m_eq => hz _ [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ z : R hz : ¬z ∈ M m_eq : M = M + span R {z} ⊢ z ∈ M [PROOFSTEP] rw [m_eq] [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ z : R hz : ¬z ∈ M m_eq : M = M + span R {z} ⊢ z ∈ M + span R {z} [PROOFSTEP] exact Ideal.mem_sup_right (mem_span_singleton_self z) [GOAL] case neg R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z} ⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M [PROOFSTEP] obtain ⟨x, hx, y, hy, hxy⟩ := (Ideal.not_isPrime_iff.mp h_prM).resolve_left htop [GOAL] case neg.intro.intro.intro.intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z} x : R hx : ¬x ∈ M y : R hy : ¬y ∈ M hxy : x * y ∈ M ⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M [PROOFSTEP] obtain ⟨Wx, h_Wx⟩ := hgt (M + span R { x }) (lt_add _ hx) [GOAL] case neg.intro.intro.intro.intro.intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z} x : R hx : ¬x ∈ M y : R hy : ¬y ∈ M hxy : x * y ∈ M Wx : Multiset (PrimeSpectrum R) h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x} ⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M [PROOFSTEP] obtain ⟨Wy, h_Wy⟩ := hgt (M + span R { y }) (lt_add _ hy) [GOAL] case neg.intro.intro.intro.intro.intro.intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z} x : R hx : ¬x ∈ M y : R hy : ¬y ∈ M hxy : x * y ∈ M Wx : Multiset (PrimeSpectrum R) h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x} Wy : Multiset (PrimeSpectrum R) h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y} ⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M [PROOFSTEP] use Wx + Wy [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z} x : R hx : ¬x ∈ M y : R hy : ¬y ∈ M hxy : x * y ∈ M Wx : Multiset (PrimeSpectrum R) h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x} Wy : Multiset (PrimeSpectrum R) h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y} ⊢ Multiset.prod (Multiset.map asIdeal (Wx + Wy)) ≤ M [PROOFSTEP] rw [Multiset.map_add, Multiset.prod_add] [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z} x : R hx : ¬x ∈ M y : R hy : ¬y ∈ M hxy : x * y ∈ M Wx : Multiset (PrimeSpectrum R) h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x} Wy : Multiset (PrimeSpectrum R) h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y} ⊢ Multiset.prod (Multiset.map asIdeal Wx) * Multiset.prod (Multiset.map asIdeal Wy) ≤ M [PROOFSTEP] apply le_trans (Submodule.mul_le_mul h_Wx h_Wy) [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z} x : R hx : ¬x ∈ M y : R hy : ¬y ∈ M hxy : x * y ∈ M Wx : Multiset (PrimeSpectrum R) h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x} Wy : Multiset (PrimeSpectrum R) h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y} ⊢ (M + span R {x}) * (M + span R {y}) ≤ M [PROOFSTEP] rw [add_mul] [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z} x : R hx : ¬x ∈ M y : R hy : ¬y ∈ M hxy : x * y ∈ M Wx : Multiset (PrimeSpectrum R) h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x} Wy : Multiset (PrimeSpectrum R) h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y} ⊢ M * (M + span R {y}) + span R {x} * (M + span R {y}) ≤ M [PROOFSTEP] apply sup_le (show M * (M + span R { y }) ≤ M from Ideal.mul_le_right) [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z} x : R hx : ¬x ∈ M y : R hy : ¬y ∈ M hxy : x * y ∈ M Wx : Multiset (PrimeSpectrum R) h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x} Wy : Multiset (PrimeSpectrum R) h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y} ⊢ span R {x} * (M + span R {y}) ≤ M [PROOFSTEP] rw [mul_add] [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z} x : R hx : ¬x ∈ M y : R hy : ¬y ∈ M hxy : x * y ∈ M Wx : Multiset (PrimeSpectrum R) h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x} Wy : Multiset (PrimeSpectrum R) h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y} ⊢ span R {x} * M + span R {x} * span R {y} ≤ M [PROOFSTEP] apply sup_le (show span R { x } * M ≤ M from Ideal.mul_le_left) [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A I M : Ideal R hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J h_prM : ¬Ideal.IsPrime M htop : ¬M = ⊤ lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z} x : R hx : ¬x ∈ M y : R hy : ¬y ∈ M hxy : x * y ∈ M Wx : Multiset (PrimeSpectrum R) h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x} Wy : Multiset (PrimeSpectrum R) h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y} ⊢ span R {x} * span R {y} ≤ M [PROOFSTEP] rwa [span_mul_span, Set.singleton_mul_singleton, span_singleton_le_iff_mem] [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I : Ideal A h_nzI : I ≠ ⊥ ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] revert h_nzI [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I : Ideal A ⊢ I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] refine' IsNoetherian.induction (P := fun I => I ≠ ⊥ → ∃ Z : Multiset (PrimeSpectrum A), Multiset.prod (Z.map asIdeal) ≤ I ∧ Multiset.prod (Z.map asIdeal) ≠ ⊥) (fun (M : Ideal A) hgt => _) I [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J ⊢ (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) M [PROOFSTEP] intro h_nzM [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] have hA_nont : Nontrivial A [GOAL] case hA_nont R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ ⊢ Nontrivial A R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] apply IsDomain.toNontrivial [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] by_cases h_topM : M = ⊤ [GOAL] case pos R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : M = ⊤ ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] rcases h_topM with rfl [GOAL] case pos R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I : Ideal A hA_nont : Nontrivial A hgt : ∀ (J : Submodule A A), J > ⊤ → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : ⊤ ≠ ⊥ ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ ⊤ ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] obtain ⟨p_id, h_nzp, h_pp⟩ : ∃ p : Ideal A, p ≠ ⊥ ∧ p.IsPrime := by apply Ring.not_isField_iff_exists_prime.mp h_fA [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I : Ideal A hA_nont : Nontrivial A hgt : ∀ (J : Submodule A A), J > ⊤ → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : ⊤ ≠ ⊥ ⊢ ∃ p, p ≠ ⊥ ∧ Ideal.IsPrime p [PROOFSTEP] apply Ring.not_isField_iff_exists_prime.mp h_fA [GOAL] case pos.intro.intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I : Ideal A hA_nont : Nontrivial A hgt : ∀ (J : Submodule A A), J > ⊤ → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : ⊤ ≠ ⊥ p_id : Ideal A h_nzp : p_id ≠ ⊥ h_pp : Ideal.IsPrime p_id ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ ⊤ ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] use({⟨p_id, h_pp⟩} : Multiset (PrimeSpectrum A)), le_top [GOAL] case right R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I : Ideal A hA_nont : Nontrivial A hgt : ∀ (J : Submodule A A), J > ⊤ → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : ⊤ ≠ ⊥ p_id : Ideal A h_nzp : p_id ≠ ⊥ h_pp : Ideal.IsPrime p_id ⊢ Multiset.prod (Multiset.map asIdeal {{ asIdeal := p_id, IsPrime := h_pp }}) ≠ ⊥ [PROOFSTEP] rwa [Multiset.map_singleton, Multiset.prod_singleton] [GOAL] case neg R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] by_cases h_prM : M.IsPrime [GOAL] case pos R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : Ideal.IsPrime M ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] use({⟨M, h_prM⟩} : Multiset (PrimeSpectrum A)) [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : Ideal.IsPrime M ⊢ Multiset.prod (Multiset.map asIdeal {{ asIdeal := M, IsPrime := h_prM }}) ≤ M ∧ Multiset.prod (Multiset.map asIdeal {{ asIdeal := M, IsPrime := h_prM }}) ≠ ⊥ [PROOFSTEP] rw [Multiset.map_singleton, Multiset.prod_singleton] [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : Ideal.IsPrime M ⊢ { asIdeal := M, IsPrime := h_prM }.asIdeal ≤ M ∧ { asIdeal := M, IsPrime := h_prM }.asIdeal ≠ ⊥ [PROOFSTEP] exact ⟨le_rfl, h_nzM⟩ [GOAL] case neg R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] obtain ⟨x, hx, y, hy, h_xy⟩ := (Ideal.not_isPrime_iff.mp h_prM).resolve_left h_topM [GOAL] case neg.intro.intro.intro.intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] have lt_add : ∀ (z) (_ : z ∉ M), M < M + span A { z } := by intro z hz refine' lt_of_le_of_ne le_sup_left fun m_eq => hz _ rw [m_eq] exact mem_sup_right (mem_span_singleton_self z) [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M ⊢ ∀ (z : A), ¬z ∈ M → M < M + span A {z} [PROOFSTEP] intro z hz [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M z : A hz : ¬z ∈ M ⊢ M < M + span A {z} [PROOFSTEP] refine' lt_of_le_of_ne le_sup_left fun m_eq => hz _ [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M z : A hz : ¬z ∈ M m_eq : M = M + span A {z} ⊢ z ∈ M [PROOFSTEP] rw [m_eq] [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M z : A hz : ¬z ∈ M m_eq : M = M + span A {z} ⊢ z ∈ M + span A {z} [PROOFSTEP] exact mem_sup_right (mem_span_singleton_self z) [GOAL] case neg.intro.intro.intro.intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z} ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] obtain ⟨Wx, h_Wx_le, h_Wx_ne⟩ := hgt (M + span A { x }) (lt_add _ hx) (ne_bot_of_gt (lt_add _ hx)) [GOAL] case neg.intro.intro.intro.intro.intro.intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z} Wx : Multiset (PrimeSpectrum A) h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x} h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥ ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] obtain ⟨Wy, h_Wy_le, h_Wx_ne⟩ := hgt (M + span A { y }) (lt_add _ hy) (ne_bot_of_gt (lt_add _ hy)) [GOAL] case neg.intro.intro.intro.intro.intro.intro.intro.intro R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z} Wx : Multiset (PrimeSpectrum A) h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x} h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥ Wy : Multiset (PrimeSpectrum A) h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y} h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥ ⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥ [PROOFSTEP] use Wx + Wy [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z} Wx : Multiset (PrimeSpectrum A) h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x} h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥ Wy : Multiset (PrimeSpectrum A) h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y} h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥ ⊢ Multiset.prod (Multiset.map asIdeal (Wx + Wy)) ≤ M ∧ Multiset.prod (Multiset.map asIdeal (Wx + Wy)) ≠ ⊥ [PROOFSTEP] rw [Multiset.map_add, Multiset.prod_add] [GOAL] case h R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z} Wx : Multiset (PrimeSpectrum A) h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x} h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥ Wy : Multiset (PrimeSpectrum A) h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y} h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥ ⊢ Multiset.prod (Multiset.map asIdeal Wx) * Multiset.prod (Multiset.map asIdeal Wy) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Wx) * Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥ [PROOFSTEP] refine' ⟨le_trans (Submodule.mul_le_mul h_Wx_le h_Wy_le) _, mt Ideal.mul_eq_bot.mp _⟩ [GOAL] case h.refine'_1 R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z} Wx : Multiset (PrimeSpectrum A) h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x} h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥ Wy : Multiset (PrimeSpectrum A) h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y} h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥ ⊢ (M + span A {x}) * (M + span A {y}) ≤ M [PROOFSTEP] rw [add_mul] [GOAL] case h.refine'_1 R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z} Wx : Multiset (PrimeSpectrum A) h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x} h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥ Wy : Multiset (PrimeSpectrum A) h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y} h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥ ⊢ M * (M + span A {y}) + span A {x} * (M + span A {y}) ≤ M [PROOFSTEP] apply sup_le (show M * (M + span A { y }) ≤ M from Ideal.mul_le_right) [GOAL] case h.refine'_1 R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z} Wx : Multiset (PrimeSpectrum A) h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x} h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥ Wy : Multiset (PrimeSpectrum A) h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y} h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥ ⊢ span A {x} * (M + span A {y}) ≤ M [PROOFSTEP] rw [mul_add] [GOAL] case h.refine'_1 R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z} Wx : Multiset (PrimeSpectrum A) h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x} h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥ Wy : Multiset (PrimeSpectrum A) h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y} h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥ ⊢ span A {x} * M + span A {x} * span A {y} ≤ M [PROOFSTEP] apply sup_le (show span A { x } * M ≤ M from Ideal.mul_le_left) [GOAL] case h.refine'_1 R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z} Wx : Multiset (PrimeSpectrum A) h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x} h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥ Wy : Multiset (PrimeSpectrum A) h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y} h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥ ⊢ span A {x} * span A {y} ≤ M [PROOFSTEP] rwa [span_mul_span, Set.singleton_mul_singleton, span_singleton_le_iff_mem] [GOAL] case h.refine'_2 R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z} Wx : Multiset (PrimeSpectrum A) h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x} h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥ Wy : Multiset (PrimeSpectrum A) h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y} h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥ ⊢ ¬(Multiset.prod (Multiset.map asIdeal Wx) = ⊥ ∨ Multiset.prod (Multiset.map asIdeal Wy) = ⊥) [PROOFSTEP] rintro (hx | hy) [GOAL] case h.refine'_2.inl R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx✝ : ¬x ∈ M y : A hy : ¬y ∈ M h_xy : x * y ∈ M lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z} Wx : Multiset (PrimeSpectrum A) h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x} h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥ Wy : Multiset (PrimeSpectrum A) h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y} h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥ hx : Multiset.prod (Multiset.map asIdeal Wx) = ⊥ ⊢ False [PROOFSTEP] contradiction [GOAL] case h.refine'_2.inr R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A h_fA : ¬IsField A I M : Ideal A hgt : ∀ (J : Submodule A A), J > M → (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J h_nzM : M ≠ ⊥ hA_nont : Nontrivial A h_topM : ¬M = ⊤ h_prM : ¬Ideal.IsPrime M x : A hx : ¬x ∈ M y : A hy✝ : ¬y ∈ M h_xy : x * y ∈ M lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z} Wx : Multiset (PrimeSpectrum A) h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x} h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥ Wy : Multiset (PrimeSpectrum A) h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y} h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥ hy : Multiset.prod (Multiset.map asIdeal Wy) = ⊥ ⊢ False [PROOFSTEP] contradiction [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A ⊢ NoetherianSpace (PrimeSpectrum R) [PROOFSTEP] apply ((noetherianSpace_TFAE <| PrimeSpectrum R).out 0 1).mpr [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A ⊢ WellFounded fun s t => s < t [PROOFSTEP] have H := ‹IsNoetherianRing R› [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A H : IsNoetherianRing R ⊢ WellFounded fun s t => s < t [PROOFSTEP] rw [isNoetherianRing_iff, isNoetherian_iff_wellFounded] at H [GOAL] R : Type u inst✝⁴ : CommRing R inst✝³ : IsNoetherianRing R A : Type u inst✝² : CommRing A inst✝¹ : IsDomain A inst✝ : IsNoetherianRing A H : WellFounded fun x x_1 => x > x_1 ⊢ WellFounded fun s t => s < t [PROOFSTEP] exact (closedsEmbedding R).dual.wellFounded H
{"mathlib_filename": "Mathlib.AlgebraicGeometry.PrimeSpectrum.Noetherian", "llama_tokens": 19884}
[GOAL] R : Type u_1 inst✝ : CommRing R f : R[X] ⊢ IsOpen (imageOfDf f) [PROOFSTEP] rw [imageOfDf, setOf_exists fun i (x : PrimeSpectrum R) => coeff f i ∉ x.asIdeal] [GOAL] R : Type u_1 inst✝ : CommRing R f : R[X] ⊢ IsOpen (⋃ (i : ℕ), {x | ¬coeff f i ∈ x.asIdeal}) [PROOFSTEP] exact isOpen_iUnion fun i => isOpen_basicOpen [GOAL] R : Type u_1 inst✝ : CommRing R f : R[X] ⊢ imageOfDf f = ↑(PrimeSpectrum.comap C) '' (zeroLocus {f})ᶜ [PROOFSTEP] ext x [GOAL] case h R : Type u_1 inst✝ : CommRing R f : R[X] x : PrimeSpectrum R ⊢ x ∈ imageOfDf f ↔ x ∈ ↑(PrimeSpectrum.comap C) '' (zeroLocus {f})ᶜ [PROOFSTEP] refine' ⟨fun hx => ⟨⟨map C x.asIdeal, isPrime_map_C_of_isPrime x.IsPrime⟩, ⟨_, _⟩⟩, _⟩ [GOAL] case h.refine'_1 R : Type u_1 inst✝ : CommRing R f : R[X] x : PrimeSpectrum R hx : x ∈ imageOfDf f ⊢ { asIdeal := Ideal.map C x.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x.asIdeal)) } ∈ (zeroLocus {f})ᶜ [PROOFSTEP] rw [mem_compl_iff, mem_zeroLocus, singleton_subset_iff] [GOAL] case h.refine'_1 R : Type u_1 inst✝ : CommRing R f : R[X] x : PrimeSpectrum R hx : x ∈ imageOfDf f ⊢ ¬f ∈ ↑{ asIdeal := Ideal.map C x.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x.asIdeal)) }.asIdeal [PROOFSTEP] cases' hx with i hi [GOAL] case h.refine'_1.intro R : Type u_1 inst✝ : CommRing R f : R[X] x : PrimeSpectrum R i : ℕ hi : ¬coeff f i ∈ x.asIdeal ⊢ ¬f ∈ ↑{ asIdeal := Ideal.map C x.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x.asIdeal)) }.asIdeal [PROOFSTEP] exact fun a => hi (mem_map_C_iff.mp a i) [GOAL] case h.refine'_2 R : Type u_1 inst✝ : CommRing R f : R[X] x : PrimeSpectrum R hx : x ∈ imageOfDf f ⊢ ↑(PrimeSpectrum.comap C) { asIdeal := Ideal.map C x.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x.asIdeal)) } = x [PROOFSTEP] ext x [GOAL] case h.refine'_2.asIdeal.h R : Type u_1 inst✝ : CommRing R f : R[X] x✝ : PrimeSpectrum R hx : x✝ ∈ imageOfDf f x : R ⊢ x ∈ (↑(PrimeSpectrum.comap C) { asIdeal := Ideal.map C x✝.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x✝.asIdeal)) }).asIdeal ↔ x ∈ x✝.asIdeal [PROOFSTEP] refine' ⟨fun h => _, fun h => subset_span (mem_image_of_mem C.1 h)⟩ [GOAL] case h.refine'_2.asIdeal.h R : Type u_1 inst✝ : CommRing R f : R[X] x✝ : PrimeSpectrum R hx : x✝ ∈ imageOfDf f x : R h : x ∈ (↑(PrimeSpectrum.comap C) { asIdeal := Ideal.map C x✝.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x✝.asIdeal)) }).asIdeal ⊢ x ∈ x✝.asIdeal [PROOFSTEP] rw [← @coeff_C_zero R x _] [GOAL] case h.refine'_2.asIdeal.h R : Type u_1 inst✝ : CommRing R f : R[X] x✝ : PrimeSpectrum R hx : x✝ ∈ imageOfDf f x : R h : x ∈ (↑(PrimeSpectrum.comap C) { asIdeal := Ideal.map C x✝.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x✝.asIdeal)) }).asIdeal ⊢ coeff (↑C x) 0 ∈ x✝.asIdeal [PROOFSTEP] exact mem_map_C_iff.mp h 0 [GOAL] case h.refine'_3 R : Type u_1 inst✝ : CommRing R f : R[X] x : PrimeSpectrum R ⊢ x ∈ ↑(PrimeSpectrum.comap C) '' (zeroLocus {f})ᶜ → x ∈ imageOfDf f [PROOFSTEP] rintro ⟨xli, complement, rfl⟩ [GOAL] case h.refine'_3.intro.intro R : Type u_1 inst✝ : CommRing R f : R[X] xli : PrimeSpectrum R[X] complement : xli ∈ (zeroLocus {f})ᶜ ⊢ ↑(PrimeSpectrum.comap C) xli ∈ imageOfDf f [PROOFSTEP] exact comap_C_mem_imageOfDf complement [GOAL] R : Type u_1 inst✝ : CommRing R f : R[X] ⊢ IsOpenMap ↑(PrimeSpectrum.comap C) [PROOFSTEP] rintro U ⟨s, z⟩ [GOAL] case intro R : Type u_1 inst✝ : CommRing R f : R[X] U : Set (PrimeSpectrum R[X]) s : Set R[X] z : zeroLocus s = Uᶜ ⊢ IsOpen (↑(PrimeSpectrum.comap C) '' U) [PROOFSTEP] rw [← compl_compl U, ← z, ← iUnion_of_singleton_coe s, zeroLocus_iUnion, compl_iInter, image_iUnion] [GOAL] case intro R : Type u_1 inst✝ : CommRing R f : R[X] U : Set (PrimeSpectrum R[X]) s : Set R[X] z : zeroLocus s = Uᶜ ⊢ IsOpen (⋃ (i : ↑s), ↑(PrimeSpectrum.comap C) '' (zeroLocus {↑i})ᶜ) [PROOFSTEP] simp_rw [← imageOfDf_eq_comap_C_compl_zeroLocus] [GOAL] case intro R : Type u_1 inst✝ : CommRing R f : R[X] U : Set (PrimeSpectrum R[X]) s : Set R[X] z : zeroLocus s = Uᶜ ⊢ IsOpen (⋃ (i : ↑s), imageOfDf ↑i) [PROOFSTEP] exact isOpen_iUnion fun f => isOpen_imageOfDf
{"mathlib_filename": "Mathlib.AlgebraicGeometry.PrimeSpectrum.IsOpenComapC", "llama_tokens": 2207}
[GOAL] X : Scheme U : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ ⊢ U = U [PROOFSTEP] induction' U with U [GOAL] case h X : Scheme U : Opens ↑↑X.toPresheafedSpace ⊢ op U = op U [PROOFSTEP] cases U [GOAL] case h.mk X : Scheme carrier✝ : Set ↑↑X.toPresheafedSpace is_open'✝ : IsOpen carrier✝ ⊢ op { carrier := carrier✝, is_open' := is_open'✝ } = op { carrier := carrier✝, is_open' := is_open'✝ } [PROOFSTEP] rfl [GOAL] X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z x : ↑↑X.toPresheafedSpace ⊢ ↑(f ≫ g).val.base x = ↑g.val.base (↑f.val.base x) [PROOFSTEP] simp [GOAL] X Y : Scheme f g : X ⟶ Y e : f = g U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ ⊢ (Opens.map g.val.base).op.obj U = (Opens.map f.val.base).op.obj U [PROOFSTEP] subst e [GOAL] X Y : Scheme f : X ⟶ Y U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ ⊢ (Opens.map f.val.base).op.obj U = (Opens.map f.val.base).op.obj U [PROOFSTEP] rfl [GOAL] X Y : Scheme f g : X ⟶ Y e : f = g U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ ⊢ NatTrans.app f.val.c U = NatTrans.app g.val.c U ≫ X.presheaf.map (eqToHom (_ : (Opens.map g.val.base).op.obj U = (Opens.map f.val.base).op.obj U)) [PROOFSTEP] subst e [GOAL] X Y : Scheme f : X ⟶ Y U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ ⊢ NatTrans.app f.val.c U = NatTrans.app f.val.c U ≫ X.presheaf.map (eqToHom (_ : (Opens.map f.val.base).op.obj U = (Opens.map f.val.base).op.obj U)) [PROOFSTEP] dsimp [GOAL] X Y : Scheme f : X ⟶ Y U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ ⊢ NatTrans.app f.val.c U = NatTrans.app f.val.c U ≫ X.presheaf.map (𝟙 (op ((Opens.map f.val.base).obj U.unop))) [PROOFSTEP] simp [GOAL] X Y : Scheme f : X ⟶ Y U V : Opens ↑↑Y.toPresheafedSpace e : U = V ⊢ NatTrans.app f.val.c (op U) = Y.presheaf.map (eqToHom (_ : V = U)).op ≫ NatTrans.app f.val.c (op V) ≫ X.presheaf.map (eqToHom (_ : (Opens.map f.val.base).obj U = (Opens.map f.val.base).obj V)).op [PROOFSTEP] rw [← IsIso.inv_comp_eq, ← Functor.map_inv, f.val.c.naturality, Presheaf.pushforwardObj_map] [GOAL] X Y : Scheme f : X ⟶ Y U V : Opens ↑↑Y.toPresheafedSpace e : U = V ⊢ NatTrans.app f.val.c (op V) ≫ X.presheaf.map ((Opens.map f.val.base).op.map (inv (eqToHom (_ : V = U)).op)) = NatTrans.app f.val.c (op V) ≫ X.presheaf.map (eqToHom (_ : (Opens.map f.val.base).obj U = (Opens.map f.val.base).obj V)).op [PROOFSTEP] cases e [GOAL] case refl X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ NatTrans.app f.val.c (op U) ≫ X.presheaf.map ((Opens.map f.val.base).op.map (inv (eqToHom (_ : U = U)).op)) = NatTrans.app f.val.c (op U) ≫ X.presheaf.map (eqToHom (_ : (Opens.map f.val.base).obj U = (Opens.map f.val.base).obj U)).op [PROOFSTEP] rfl [GOAL] X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U = V ⊢ X.presheaf.map (eqToHom i).op = eqToHom (_ : X.presheaf.obj (op V) = X.presheaf.obj (op U)) [PROOFSTEP] rw [eqToHom_op, eqToHom_map] [GOAL] X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑X.toPresheafedSpace ⊢ (Opens.map (f ≫ inv f).val.base).obj U = U [PROOFSTEP] rw [IsIso.hom_inv_id] [GOAL] X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑X.toPresheafedSpace ⊢ (Opens.map (𝟙 X).val.base).obj U = U [PROOFSTEP] ext1 [GOAL] case h X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑X.toPresheafedSpace ⊢ ↑((Opens.map (𝟙 X).val.base).obj U) = ↑U [PROOFSTEP] rfl [GOAL] X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑X.toPresheafedSpace ⊢ NatTrans.app (inv f).val.c (op U) = X.presheaf.map (eqToHom (_ : (Opens.map (f ≫ inv f).val.base).obj U = U)).op ≫ inv (NatTrans.app f.val.c (op ((Opens.map (inv f).val.base).obj U))) [PROOFSTEP] rw [IsIso.eq_comp_inv] [GOAL] X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑X.toPresheafedSpace ⊢ NatTrans.app (inv f).val.c (op U) ≫ NatTrans.app f.val.c (op ((Opens.map (inv f).val.base).obj U)) = X.presheaf.map (eqToHom (_ : (Opens.map (f ≫ inv f).val.base).obj U = U)).op [PROOFSTEP] erw [← Scheme.comp_val_c_app] [GOAL] X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑X.toPresheafedSpace ⊢ NatTrans.app (f ≫ inv f).val.c (op U) = X.presheaf.map (eqToHom (_ : (Opens.map (f ≫ inv f).val.base).obj U = U)).op [PROOFSTEP] rw [Scheme.congr_app (IsIso.hom_inv_id f), Scheme.id_app, ← Functor.map_comp, eqToHom_trans, eqToHom_op] [GOAL] R : CommRingCatᵒᵖ ⊢ { obj := fun R => specObj R.unop, map := fun {X Y} f => specMap f.unop }.map (𝟙 R) = 𝟙 ({ obj := fun R => specObj R.unop, map := fun {X Y} f => specMap f.unop }.obj R) [PROOFSTEP] simp [GOAL] X✝ Y✝ Z✝ : CommRingCatᵒᵖ f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ { obj := fun R => specObj R.unop, map := fun {X Y} f => specMap f.unop }.map (f ≫ g) = { obj := fun R => specObj R.unop, map := fun {X Y} f => specMap f.unop }.map f ≫ { obj := fun R => specObj R.unop, map := fun {X Y} f => specMap f.unop }.map g [PROOFSTEP] simp [specMap_comp] [GOAL] X : Scheme V U✝ : Opens ↑↑X.toPresheafedSpace f✝ g : ↑(X.presheaf.obj (op U✝)) U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace ⊢ x ∈ basicOpen X f ↔ ∃ m, IsUnit (↑(Presheaf.germ X.presheaf { val := x, property := m }) f) [PROOFSTEP] fconstructor [GOAL] case mp X : Scheme V U✝ : Opens ↑↑X.toPresheafedSpace f✝ g : ↑(X.presheaf.obj (op U✝)) U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace ⊢ x ∈ basicOpen X f → ∃ m, IsUnit (↑(Presheaf.germ X.presheaf { val := x, property := m }) f) [PROOFSTEP] rintro ⟨y, hy1, rfl⟩ [GOAL] case mp.intro.intro X : Scheme V U✝ : Opens ↑↑X.toPresheafedSpace f✝ g : ↑(X.presheaf.obj (op U✝)) U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) y : { x // x ∈ U } hy1 : y ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) f)} ⊢ ∃ m, IsUnit (↑(Presheaf.germ X.presheaf { val := ↑y, property := m }) f) [PROOFSTEP] exact ⟨y.2, hy1⟩ [GOAL] case mpr X : Scheme V U✝ : Opens ↑↑X.toPresheafedSpace f✝ g : ↑(X.presheaf.obj (op U✝)) U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace ⊢ (∃ m, IsUnit (↑(Presheaf.germ X.presheaf { val := x, property := m }) f)) → x ∈ basicOpen X f [PROOFSTEP] rintro ⟨m, hm⟩ [GOAL] case mpr.intro X : Scheme V U✝ : Opens ↑↑X.toPresheafedSpace f✝ g : ↑(X.presheaf.obj (op U✝)) U : Opens ↑↑X.toPresheafedSpace f : ↑(X.presheaf.obj (op U)) x : ↑↑X.toPresheafedSpace m : x ∈ U hm : IsUnit (↑(Presheaf.germ X.presheaf { val := x, property := m }) f) ⊢ x ∈ basicOpen X f [PROOFSTEP] exact ⟨⟨x, m⟩, hm, rfl⟩ [GOAL] R : CommRingCat f : ↑R ⊢ Scheme.basicOpen (Scheme.Spec.obj (op R)) (↑(SpecΓIdentity.app R).inv f) = PrimeSpectrum.basicOpen f [PROOFSTEP] ext x [GOAL] case h.h R : CommRingCat f : ↑R x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace ⊢ x ∈ ↑(Scheme.basicOpen (Scheme.Spec.obj (op R)) (↑(SpecΓIdentity.app R).inv f)) ↔ x ∈ ↑(PrimeSpectrum.basicOpen f) [PROOFSTEP] erw [Scheme.mem_basicOpen_top] [GOAL] case h.h R : CommRingCat f : ↑R x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace ⊢ IsUnit (↑(Presheaf.germ (Scheme.Spec.obj (op R)).presheaf { val := x, property := _root_.trivial }) (↑(SpecΓIdentity.app R).inv f)) ↔ x ∈ ↑(PrimeSpectrum.basicOpen f) [PROOFSTEP] suffices IsUnit (StructureSheaf.toStalk R x f) ↔ f ∉ PrimeSpectrum.asIdeal x by exact this [GOAL] R : CommRingCat f : ↑R x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace this : IsUnit (↑(StructureSheaf.toStalk (↑R) x) f) ↔ ¬f ∈ x.asIdeal ⊢ IsUnit (↑(Presheaf.germ (Scheme.Spec.obj (op R)).presheaf { val := x, property := _root_.trivial }) (↑(SpecΓIdentity.app R).inv f)) ↔ x ∈ ↑(PrimeSpectrum.basicOpen f) [PROOFSTEP] exact this [GOAL] case h.h R : CommRingCat f : ↑R x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace ⊢ IsUnit (↑(StructureSheaf.toStalk (↑R) x) f) ↔ ¬f ∈ x.asIdeal [PROOFSTEP] erw [← isUnit_map_iff (StructureSheaf.stalkToFiberRingHom R x), StructureSheaf.stalkToFiberRingHom_toStalk] [GOAL] case h.h R : CommRingCat f : ↑R x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace ⊢ IsUnit (↑(algebraMap (↑R) (Localization.AtPrime x.asIdeal)) f) ↔ ¬f ∈ x.asIdeal [PROOFSTEP] exact (IsLocalization.AtPrime.isUnit_to_map_iff (Localization.AtPrime (PrimeSpectrum.asIdeal x)) (PrimeSpectrum.asIdeal x) f : _) [GOAL] R : CommRingCat f : ↑((Spec.toSheafedSpace.obj (op R)).presheaf.obj (op ⊤)) ⊢ Scheme.basicOpen (Scheme.Spec.obj (op R)) f = PrimeSpectrum.basicOpen (↑(SpecΓIdentity.app R).hom f) [PROOFSTEP] convert basicOpen_eq_of_affine ((SpecΓIdentity.app R).hom f) [GOAL] case h.e'_2.h.h.e'_3.h.h R : CommRingCat f : ↑((Spec.toSheafedSpace.obj (op R)).presheaf.obj (op ⊤)) e_1✝¹ : Opens ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace = Opens ↑↑(Scheme.Spec.obj (op ((𝟭 CommRingCat).obj R))).toPresheafedSpace e_1✝ : Scheme.Spec.obj (op R) = Scheme.Spec.obj (op ((𝟭 CommRingCat).obj R)) he✝ : ⊤ = ⊤ ⊢ f = ↑(SpecΓIdentity.app ((𝟭 CommRingCat).obj R)).inv (↑(SpecΓIdentity.app R).hom f) [PROOFSTEP] exact (Iso.hom_inv_id_apply (SpecΓIdentity.app R) f).symm
{"mathlib_filename": "Mathlib.AlgebraicGeometry.Scheme", "llama_tokens": 4505}
[GOAL] X Y : Scheme f : X ⟶ Y x✝ : QuasiCompact f h : ∀ (U : Set ↑↑Y.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑f.val.base ⁻¹' U) ⊢ Continuous ↑f.val.base [PROOFSTEP] continuity [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f ⊢ QuasiCompact f [PROOFSTEP] constructor [GOAL] case isCompact_preimage X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f ⊢ ∀ (U : Set ↑↑Y.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑f.val.base ⁻¹' U) [PROOFSTEP] intro U _ hU' [GOAL] case isCompact_preimage X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Set ↑↑Y.toPresheafedSpace a✝ : IsOpen U hU' : IsCompact U ⊢ IsCompact (↑f.val.base ⁻¹' U) [PROOFSTEP] convert hU'.image (inv f.1.base).continuous_toFun using 1 [GOAL] case h.e'_3.h X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Set ↑↑Y.toPresheafedSpace a✝ : IsOpen U hU' : IsCompact U e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace ⊢ ↑f.val.base ⁻¹' U = (inv f.val.base).toFun '' U [PROOFSTEP] rw [Set.image_eq_preimage_of_inverse] [GOAL] case h.e'_3.h.h₁ X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Set ↑↑Y.toPresheafedSpace a✝ : IsOpen U hU' : IsCompact U e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace ⊢ Function.LeftInverse (↑f.val.base) (inv f.val.base).toFun case h.e'_3.h.h₂ X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Set ↑↑Y.toPresheafedSpace a✝ : IsOpen U hU' : IsCompact U e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace ⊢ Function.RightInverse (↑f.val.base) (inv f.val.base).toFun [PROOFSTEP] delta Function.LeftInverse [GOAL] case h.e'_3.h.h₁ X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Set ↑↑Y.toPresheafedSpace a✝ : IsOpen U hU' : IsCompact U e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace ⊢ ∀ (x : ↑↑Y.toPresheafedSpace), ↑f.val.base (ContinuousMap.toFun (inv f.val.base) x) = x case h.e'_3.h.h₂ X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Set ↑↑Y.toPresheafedSpace a✝ : IsOpen U hU' : IsCompact U e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace ⊢ Function.RightInverse (↑f.val.base) (inv f.val.base).toFun [PROOFSTEP] exacts [IsIso.inv_hom_id_apply f.1.base, IsIso.hom_inv_id_apply f.1.base] [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g ⊢ QuasiCompact (f ≫ g) [PROOFSTEP] constructor [GOAL] case isCompact_preimage X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g ⊢ ∀ (U : Set ↑↑Z.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑(f ≫ g).val.base ⁻¹' U) [PROOFSTEP] intro U hU hU' [GOAL] case isCompact_preimage X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsCompact (↑(f ≫ g).val.base ⁻¹' U) [PROOFSTEP] rw [Scheme.comp_val_base, coe_comp, Set.preimage_comp] [GOAL] case isCompact_preimage X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsCompact (↑f.val.base ⁻¹' (↑g.val.base ⁻¹' U)) [PROOFSTEP] apply QuasiCompact.isCompact_preimage [GOAL] case isCompact_preimage.a X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsOpen (↑g.val.base ⁻¹' U) [PROOFSTEP] exact Continuous.isOpen_preimage (by -- porting note: `continuity` failed -- see https://github.com/leanprover-community/mathlib4/issues/5030exact Scheme.Hom.continuous g) _ hU [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ Continuous ↑g.val.base [PROOFSTEP] exact Scheme.Hom.continuous g [GOAL] case isCompact_preimage.a X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsCompact (↑g.val.base ⁻¹' U) [PROOFSTEP] apply QuasiCompact.isCompact_preimage [GOAL] case isCompact_preimage.a.a X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsOpen U [PROOFSTEP] assumption [GOAL] case isCompact_preimage.a.a X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : QuasiCompact f inst✝ : QuasiCompact g U : Set ↑↑Z.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsCompact U [PROOFSTEP] assumption [GOAL] X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Set ↑↑X.toPresheafedSpace ⊢ IsCompact U ∧ IsOpen U ↔ ∃ s, Set.Finite s ∧ U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] apply Opens.IsBasis.isCompact_open_iff_eq_finite_iUnion (fun (U : X.affineOpens) => (U : Opens X.carrier)) [GOAL] case hb X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Set ↑↑X.toPresheafedSpace ⊢ Opens.IsBasis (Set.range fun U => ↑U) [PROOFSTEP] rw [Subtype.range_coe] [GOAL] case hb X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Set ↑↑X.toPresheafedSpace ⊢ Opens.IsBasis (Scheme.affineOpens X) [PROOFSTEP] exact isBasis_affine_open X [GOAL] case hb' X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Set ↑↑X.toPresheafedSpace ⊢ ∀ (i : ↑(Scheme.affineOpens X)), IsCompact ↑↑i [PROOFSTEP] exact fun i => i.2.isCompact [GOAL] X Y : Scheme f : X ⟶ Y ⊢ QuasiCompact f ↔ ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U) [PROOFSTEP] rw [QuasiCompact_iff] [GOAL] X Y : Scheme f : X ⟶ Y ⊢ (∀ (U : Set ↑↑Y.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑f.val.base ⁻¹' U)) ↔ ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U) [PROOFSTEP] refine' ⟨fun H U hU => H U U.isOpen hU.isCompact, _⟩ [GOAL] X Y : Scheme f : X ⟶ Y ⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)) → ∀ (U : Set ↑↑Y.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑f.val.base ⁻¹' U) [PROOFSTEP] intro H U hU hU' [GOAL] X Y : Scheme f : X ⟶ Y H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U) U : Set ↑↑Y.toPresheafedSpace hU : IsOpen U hU' : IsCompact U ⊢ IsCompact (↑f.val.base ⁻¹' U) [PROOFSTEP] obtain ⟨S, hS, rfl⟩ := (isCompact_open_iff_eq_finset_affine_union U).mp ⟨hU', hU⟩ [GOAL] case intro.intro X Y : Scheme f : X ⟶ Y H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U) S : Set ↑(Scheme.affineOpens Y) hS : Set.Finite S hU : IsOpen (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i) hU' : IsCompact (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i) ⊢ IsCompact (↑f.val.base ⁻¹' ⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i) [PROOFSTEP] simp only [Set.preimage_iUnion] [GOAL] case intro.intro X Y : Scheme f : X ⟶ Y H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U) S : Set ↑(Scheme.affineOpens Y) hS : Set.Finite S hU : IsOpen (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i) hU' : IsCompact (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i) ⊢ IsCompact (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑f.val.base ⁻¹' ↑↑i) [PROOFSTEP] exact Set.Finite.isCompact_biUnion hS (fun i _ => H i i.prop) [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y ⊢ AffineTargetMorphismProperty.toProperty affineProperty f ↔ IsAffine Y ∧ CompactSpace ↑↑X.toPresheafedSpace [PROOFSTEP] delta AffineTargetMorphismProperty.toProperty QuasiCompact.affineProperty [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y ⊢ (∃ h, CompactSpace ↑↑X.toPresheafedSpace) ↔ IsAffine Y ∧ CompactSpace ↑↑X.toPresheafedSpace [PROOFSTEP] simp [GOAL] X Y : Scheme f : X ⟶ Y ⊢ QuasiCompact f ↔ targetAffineLocally QuasiCompact.affineProperty f [PROOFSTEP] rw [quasiCompact_iff_forall_affine] [GOAL] X Y : Scheme f : X ⟶ Y ⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)) ↔ targetAffineLocally QuasiCompact.affineProperty f [PROOFSTEP] trans ∀ U : Y.affineOpens, IsCompact (f.1.base ⁻¹' (U : Set Y.carrier)) [GOAL] X Y : Scheme f : X ⟶ Y ⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)) ↔ ∀ (U : ↑(Scheme.affineOpens Y)), IsCompact (↑f.val.base ⁻¹' ↑↑U) [PROOFSTEP] exact ⟨fun h U => h U U.prop, fun h U hU => h ⟨U, hU⟩⟩ [GOAL] X Y : Scheme f : X ⟶ Y ⊢ (∀ (U : ↑(Scheme.affineOpens Y)), IsCompact (↑f.val.base ⁻¹' ↑↑U)) ↔ targetAffineLocally QuasiCompact.affineProperty f [PROOFSTEP] apply forall_congr' [GOAL] case h X Y : Scheme f : X ⟶ Y ⊢ ∀ (a : ↑(Scheme.affineOpens Y)), IsCompact (↑f.val.base ⁻¹' ↑↑a) ↔ QuasiCompact.affineProperty (f ∣_ ↑a) [PROOFSTEP] exact fun _ => isCompact_iff_compactSpace [GOAL] X Y : Scheme f : X ⟶ Y ⊢ @QuasiCompact = targetAffineLocally QuasiCompact.affineProperty [PROOFSTEP] ext [GOAL] case h.h.h.a X Y : Scheme f : X ⟶ Y x✝² x✝¹ : Scheme x✝ : x✝² ⟶ x✝¹ ⊢ QuasiCompact x✝ ↔ targetAffineLocally QuasiCompact.affineProperty x✝ [PROOFSTEP] exact quasiCompact_iff_affineProperty _ [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) ⊢ IsCompact ↑(Scheme.basicOpen X f) [PROOFSTEP] classical refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1 obtain ⟨s, hs, e⟩ := (isCompact_open_iff_eq_finset_affine_union _).mp ⟨hU, U.isOpen⟩ let g : s → X.affineOpens := by intro V use V.1 ⊓ X.basicOpen f have : V.1.1 ⟶ U := by apply homOfLE; change _ ⊆ (U : Set X.carrier); rw [e] convert @Set.subset_iUnion₂ _ _ _ (fun (U : X.affineOpens) (_ : U ∈ s) => ↑U) V V.prop using 1 erw [← X.toLocallyRingedSpace.toRingedSpace.basicOpen_res this.op] exact IsAffineOpen.basicOpenIsAffine V.1.prop _ haveI : Finite s := hs.to_subtype refine' ⟨Set.range g, Set.finite_range g, _⟩ refine' (Set.inter_eq_right_iff_subset.mpr (SetLike.coe_subset_coe.2 <| RingedSpace.basicOpen_le _ _)).symm.trans _ rw [e, Set.iUnion₂_inter] apply le_antisymm <;> apply Set.iUnion₂_subset · intro i hi exact Set.Subset.trans (Set.Subset.rfl : _ ≤ g ⟨i, hi⟩) (@Set.subset_iUnion₂ _ _ _ (fun (i : Scheme.affineOpens X) (_ : i ∈ Set.range g) => (i : Set X.toPresheafedSpace)) _ (Set.mem_range_self ⟨i, hi⟩)) · rintro ⟨i, hi⟩ ⟨⟨j, hj⟩, hj'⟩ rw [← hj'] refine' Set.Subset.trans _ (Set.subset_iUnion₂ j hj) exact Set.Subset.rfl [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) ⊢ IsCompact ↑(Scheme.basicOpen X f) [PROOFSTEP] refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1 [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) ⊢ ∃ s, Set.Finite s ∧ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] obtain ⟨s, hs, e⟩ := (isCompact_open_iff_eq_finset_affine_union _).mp ⟨hU, U.isOpen⟩ [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ ∃ s, Set.Finite s ∧ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] let g : s → X.affineOpens := by intro V use V.1 ⊓ X.basicOpen f have : V.1.1 ⟶ U := by apply homOfLE; change _ ⊆ (U : Set X.carrier); rw [e] convert @Set.subset_iUnion₂ _ _ _ (fun (U : X.affineOpens) (_ : U ∈ s) => ↑U) V V.prop using 1 erw [← X.toLocallyRingedSpace.toRingedSpace.basicOpen_res this.op] exact IsAffineOpen.basicOpenIsAffine V.1.prop _ [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ ↑s → ↑(Scheme.affineOpens X) [PROOFSTEP] intro V [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s ⊢ ↑(Scheme.affineOpens X) [PROOFSTEP] use V.1 ⊓ X.basicOpen f [GOAL] case property X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s ⊢ ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X [PROOFSTEP] have : V.1.1 ⟶ U := by apply homOfLE; change _ ⊆ (U : Set X.carrier); rw [e] convert @Set.subset_iUnion₂ _ _ _ (fun (U : X.affineOpens) (_ : U ∈ s) => ↑U) V V.prop using 1 [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s ⊢ ↑↑V ⟶ U [PROOFSTEP] apply homOfLE [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s ⊢ ↑↑V ≤ U [PROOFSTEP] change _ ⊆ (U : Set X.carrier) [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s ⊢ ↑↑↑V ⊆ ↑U [PROOFSTEP] rw [e] [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s ⊢ ↑↑↑V ⊆ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] convert @Set.subset_iUnion₂ _ _ _ (fun (U : X.affineOpens) (_ : U ∈ s) => ↑U) V V.prop using 1 [GOAL] case property X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s this : ↑↑V ⟶ U ⊢ ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X [PROOFSTEP] erw [← X.toLocallyRingedSpace.toRingedSpace.basicOpen_res this.op] [GOAL] case property X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i V : ↑s this : ↑↑V ⟶ U ⊢ RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) (↑((LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf.map this.op) f) ∈ Scheme.affineOpens X [PROOFSTEP] exact IsAffineOpen.basicOpenIsAffine V.1.prop _ [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } ⊢ ∃ s, Set.Finite s ∧ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] haveI : Finite s := hs.to_subtype [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ∃ s, Set.Finite s ∧ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] refine' ⟨Set.range g, Set.finite_range g, _⟩ [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i [PROOFSTEP] refine' (Set.inter_eq_right_iff_subset.mpr (SetLike.coe_subset_coe.2 <| RingedSpace.basicOpen_le _ _)).symm.trans _ [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ↑U ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i [PROOFSTEP] rw [e, Set.iUnion₂_inter] [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i [PROOFSTEP] apply le_antisymm [GOAL] case intro.intro.a X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) ≤ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i [PROOFSTEP] apply Set.iUnion₂_subset [GOAL] case intro.intro.a X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i ≤ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) [PROOFSTEP] apply Set.iUnion₂_subset [GOAL] case intro.intro.a.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ∀ (i : ↑(Scheme.affineOpens X)), i ∈ s → ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) ⊆ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i [PROOFSTEP] intro i hi [GOAL] case intro.intro.a.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s i : ↑(Scheme.affineOpens X) hi : i ∈ s ⊢ ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) ⊆ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i [PROOFSTEP] exact Set.Subset.trans (Set.Subset.rfl : _ ≤ g ⟨i, hi⟩) (@Set.subset_iUnion₂ _ _ _ (fun (i : Scheme.affineOpens X) (_ : i ∈ Set.range g) => (i : Set X.toPresheafedSpace)) _ (Set.mem_range_self ⟨i, hi⟩)) [GOAL] case intro.intro.a.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s ⊢ ∀ (i : ↑(Scheme.affineOpens X)), i ∈ Set.range g → ↑↑i ⊆ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) [PROOFSTEP] rintro ⟨i, hi⟩ ⟨⟨j, hj⟩, hj'⟩ [GOAL] case intro.intro.a.h.mk.intro.mk X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s i : Opens ↑↑X.toPresheafedSpace hi : i ∈ Scheme.affineOpens X j : ↑(Scheme.affineOpens X) hj : j ∈ s hj' : g { val := j, property := hj } = { val := i, property := hi } ⊢ ↑↑{ val := i, property := hi } ⊆ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) [PROOFSTEP] rw [← hj'] [GOAL] case intro.intro.a.h.mk.intro.mk X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s i : Opens ↑↑X.toPresheafedSpace hi : i ∈ Scheme.affineOpens X j : ↑(Scheme.affineOpens X) hj : j ∈ s hj' : g { val := j, property := hj } = { val := i, property := hi } ⊢ ↑↑(g { val := j, property := hj }) ⊆ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) [PROOFSTEP] refine' Set.Subset.trans _ (Set.subset_iUnion₂ j hj) [GOAL] case intro.intro.a.h.mk.intro.mk X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact ↑U f : ↑(X.presheaf.obj (op U)) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i g : ↑s → ↑(Scheme.affineOpens X) := fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) } this : Finite ↑s i : Opens ↑↑X.toPresheafedSpace hi : i ∈ Scheme.affineOpens X j : ↑(Scheme.affineOpens X) hj : j ∈ s hj' : g { val := j, property := hj } = { val := i, property := hi } ⊢ ↑↑(g { val := j, property := hj }) ⊆ ↑↑j ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) [PROOFSTEP] exact Set.Subset.rfl [GOAL] X Y : Scheme f : X ⟶ Y ⊢ AffineTargetMorphismProperty.IsLocal affineProperty [PROOFSTEP] constructor [GOAL] case RespectsIso X Y : Scheme f : X ⟶ Y ⊢ MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty affineProperty) [PROOFSTEP] apply AffineTargetMorphismProperty.respectsIso_mk [GOAL] case RespectsIso.h₁ X Y : Scheme f : X ⟶ Y ⊢ ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], affineProperty f → affineProperty (e.hom ≫ f) [PROOFSTEP] rintro X Y Z e _ _ H [GOAL] case RespectsIso.h₂ X Y : Scheme f : X ⟶ Y ⊢ ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], affineProperty f → affineProperty (f ≫ e.hom) [PROOFSTEP] rintro X Y Z e _ _ H [GOAL] case RespectsIso.h₁ X✝ Y✝ : Scheme f : X✝ ⟶ Y✝ X Y Z : Scheme e : X ≅ Y f✝ : Y ⟶ Z inst✝ : IsAffine Z H : affineProperty f✝ ⊢ affineProperty (e.hom ≫ f✝) case RespectsIso.h₂ X✝ Y✝ : Scheme f : X✝ ⟶ Y✝ X Y Z : Scheme e : Y ≅ Z f✝ : X ⟶ Y h✝ : IsAffine Y H : affineProperty f✝ ⊢ affineProperty (f✝ ≫ e.hom) [PROOFSTEP] exacts [@Homeomorph.compactSpace _ _ _ _ H (TopCat.homeoOfIso (asIso e.inv.1.base)), H] [GOAL] case toBasicOpen X Y : Scheme f : X ⟶ Y ⊢ ∀ {X Y : Scheme} [inst : IsAffine Y] (f : X ⟶ Y) (r : ↑(Y.presheaf.obj (op ⊤))), affineProperty f → affineProperty (f ∣_ Scheme.basicOpen Y r) [PROOFSTEP] introv H [GOAL] case toBasicOpen X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : affineProperty f ⊢ affineProperty (f ∣_ Scheme.basicOpen Y r) [PROOFSTEP] dsimp [affineProperty] at H ⊢ [GOAL] case toBasicOpen X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : CompactSpace ↑↑X.toPresheafedSpace ⊢ CompactSpace ↑((Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (Scheme.basicOpen Y r))) [PROOFSTEP] change CompactSpace ((Opens.map f.val.base).obj (Y.basicOpen r)) [GOAL] case toBasicOpen X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : CompactSpace ↑↑X.toPresheafedSpace ⊢ CompactSpace { x // x ∈ (Opens.map f.val.base).obj (Scheme.basicOpen Y r) } [PROOFSTEP] rw [Scheme.preimage_basicOpen f r] [GOAL] case toBasicOpen X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : CompactSpace ↑↑X.toPresheafedSpace ⊢ CompactSpace { x // x ∈ Scheme.basicOpen X (↑(NatTrans.app f.val.c (op ⊤)) r) } [PROOFSTEP] erw [← isCompact_iff_compactSpace] [GOAL] case toBasicOpen X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : CompactSpace ↑↑X.toPresheafedSpace ⊢ IsCompact ↑(Scheme.basicOpen X (↑(NatTrans.app f.val.c (op ⊤)) r)) [PROOFSTEP] rw [← isCompact_univ_iff] at H [GOAL] case toBasicOpen X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : IsCompact Set.univ ⊢ IsCompact ↑(Scheme.basicOpen X (↑(NatTrans.app f.val.c (op ⊤)) r)) [PROOFSTEP] apply isCompact_basicOpen [GOAL] case toBasicOpen.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) H : IsCompact Set.univ ⊢ IsCompact ↑((Opens.map f.val.base).obj ⊤) [PROOFSTEP] exact H [GOAL] case ofBasicOpenCover X Y : Scheme f : X ⟶ Y ⊢ ∀ {X Y : Scheme} [inst : IsAffine Y] (f : X ⟶ Y) (s : Finset ↑(Y.presheaf.obj (op ⊤))), Ideal.span ↑s = ⊤ → (∀ (r : { x // x ∈ s }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)) → affineProperty f [PROOFSTEP] rintro X Y H f S hS hS' [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ affineProperty f [PROOFSTEP] rw [← IsAffineOpen.basicOpen_union_eq_self_iff] at hS [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ affineProperty f case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] delta QuasiCompact.affineProperty [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ CompactSpace ↑↑X.toPresheafedSpace case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] rw [← isCompact_univ_iff] [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsCompact Set.univ case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] change IsCompact ((Opens.map f.val.base).obj ⊤).1 [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsCompact ((Opens.map f.val.base).obj ⊤).carrier case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] rw [← hS] [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsCompact ((Opens.map f.val.base).obj (⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f)).carrier case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] dsimp [Opens.map] [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsCompact (↑f.val.base ⁻¹' ↑(⨆ (f : { x // x ∈ S }), Scheme.basicOpen Y ↑f)) case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] simp only [Opens.iSup_mk, Opens.carrier_eq_coe, Opens.coe_mk, Set.preimage_iUnion] [GOAL] case ofBasicOpenCover X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsCompact (⋃ (i : { x // x ∈ S }), ↑f.val.base ⁻¹' ↑(Scheme.basicOpen Y ↑i)) case ofBasicOpenCover.hU X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme H : IsAffine Y f : X ⟶ Y S : Finset ↑(Y.presheaf.obj (op ⊤)) hS : Ideal.span ↑S = ⊤ hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r) ⊢ IsAffineOpen ⊤ [PROOFSTEP] exacts [isCompact_iUnion fun i => isCompact_iff_compactSpace.mpr (hS' i), topIsAffineOpen _] [GOAL] X Y : Scheme f : X ⟶ Y ⊢ AffineTargetMorphismProperty.StableUnderBaseChange affineProperty [PROOFSTEP] intro X Y S _ _ f g h [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : affineProperty g ⊢ affineProperty pullback.fst [PROOFSTEP] rw [QuasiCompact.affineProperty] at h ⊢ [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace ⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] skip [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace ⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] let 𝒰 := Scheme.Pullback.openCoverOfRight Y.affineCover.finiteSubcover f g [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g ⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] have : Finite 𝒰.J := by dsimp; infer_instance [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g ⊢ Finite 𝒰.J [PROOFSTEP] dsimp [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g ⊢ Finite (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)).J [PROOFSTEP] infer_instance [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g this : Finite 𝒰.J ⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] have : ∀ i, CompactSpace (𝒰.obj i).carrier := by intro i; dsimp; infer_instance [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g this : Finite 𝒰.J ⊢ ∀ (i : 𝒰.J), CompactSpace ↑↑(Scheme.OpenCover.obj 𝒰 i).toPresheafedSpace [PROOFSTEP] intro i [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g this : Finite 𝒰.J i : 𝒰.J ⊢ CompactSpace ↑↑(Scheme.OpenCover.obj 𝒰 i).toPresheafedSpace [PROOFSTEP] dsimp [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g this : Finite 𝒰.J i : 𝒰.J ⊢ CompactSpace ↑↑(pullback f (Scheme.OpenCover.map (Scheme.affineCover Y) (Scheme.OpenCover.f (Scheme.affineCover Y) ↑i) ≫ g)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] infer_instance [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y S : Scheme inst✝¹ : IsAffine S inst✝ : IsAffine X f : X ⟶ S g : Y ⟶ S h : CompactSpace ↑↑Y.toPresheafedSpace 𝒰 : Scheme.OpenCover (pullback f g) := Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g this✝ : Finite 𝒰.J this : ∀ (i : 𝒰.J), CompactSpace ↑↑(Scheme.OpenCover.obj 𝒰 i).toPresheafedSpace ⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] exact 𝒰.compactSpace [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) ⊢ P S [PROOFSTEP] classical obtain ⟨s, hs, hs'⟩ := (isCompact_open_iff_eq_finset_affine_union S.1).mp ⟨hS, S.2⟩ replace hs' : S = iSup fun i : s => (i : Opens X.carrier) := by ext1; simpa using hs' subst hs' apply @Set.Finite.induction_on _ _ _ hs · convert h₁; rw [iSup_eq_bot]; rintro ⟨_, h⟩; exact h.elim · intro x s _ hs h₄ have : IsCompact (⨆ i : s, (i : Opens X.carrier)).1 := by refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1; exact ⟨s, hs, by simp⟩ convert h₂ _ this x h₄ rw [iSup_subtype, sup_comm] conv_rhs => rw [iSup_subtype] exact iSup_insert [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) ⊢ P S [PROOFSTEP] obtain ⟨s, hs, hs'⟩ := (isCompact_open_iff_eq_finset_affine_union S.1).mp ⟨hS, S.2⟩ [GOAL] case intro.intro X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hs' : S.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ P S [PROOFSTEP] replace hs' : S = iSup fun i : s => (i : Opens X.carrier) := by ext1; simpa using hs' [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hs' : S.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ S = ⨆ (i : ↑s), ↑↑i [PROOFSTEP] ext1 [GOAL] case h X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hs' : S.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ ↑S = ↑(⨆ (i : ↑s), ↑↑i) [PROOFSTEP] simpa using hs' [GOAL] case intro.intro X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hs' : S = ⨆ (i : ↑s), ↑↑i ⊢ P S [PROOFSTEP] subst hs' [GOAL] case intro.intro X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ P (⨆ (i : ↑s), ↑↑i) [PROOFSTEP] apply @Set.Finite.induction_on _ _ _ hs [GOAL] case intro.intro.H0 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ P (⨆ (i : ↑∅), ↑↑i) [PROOFSTEP] convert h₁ [GOAL] case h.e'_1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ ⨆ (i : ↑∅), ↑↑i = ⊥ [PROOFSTEP] rw [iSup_eq_bot] [GOAL] case h.e'_1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ ∀ (i : ↑∅), ↑↑i = ⊥ [PROOFSTEP] rintro ⟨_, h⟩ [GOAL] case h.e'_1.mk X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier val✝ : ↑(Scheme.affineOpens X) h : val✝ ∈ ∅ ⊢ ↑↑{ val := val✝, property := h } = ⊥ [PROOFSTEP] exact h.elim [GOAL] case intro.intro.H1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ ∀ {a : ↑(Scheme.affineOpens X)} {s : Set ↑(Scheme.affineOpens X)}, ¬a ∈ s → Set.Finite s → P (⨆ (i : ↑s), ↑↑i) → P (⨆ (i : ↑(insert a s)), ↑↑i) [PROOFSTEP] intro x s _ hs h₄ [GOAL] case intro.intro.H1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) ⊢ P (⨆ (i : ↑(insert x s)), ↑↑i) [PROOFSTEP] have : IsCompact (⨆ i : s, (i : Opens X.carrier)).1 := by refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1; exact ⟨s, hs, by simp⟩ [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) ⊢ IsCompact (⨆ (i : ↑s), ↑↑i).carrier [PROOFSTEP] refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1 [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) ⊢ ∃ s_1, Set.Finite s_1 ∧ (⨆ (i : ↑s), ↑↑i).carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s_1), ↑↑i [PROOFSTEP] exact ⟨s, hs, by simp⟩ [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) ⊢ (⨆ (i : ↑s), ↑↑i).carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i [PROOFSTEP] simp [GOAL] case intro.intro.H1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ P (⨆ (i : ↑(insert x s)), ↑↑i) [PROOFSTEP] convert h₂ _ this x h₄ [GOAL] case h.e'_1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ ⨆ (i : ↑(insert x s)), ↑↑i = (⨆ (i : ↑s), ↑↑i) ⊔ ↑x [PROOFSTEP] rw [iSup_subtype, sup_comm] [GOAL] case h.e'_1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ ⨆ (i : ↑(Scheme.affineOpens X)) (h : i ∈ insert x s), ↑↑{ val := i, property := h } = ↑x ⊔ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] conv_rhs => rw [iSup_subtype] [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier | ↑x ⊔ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] rw [iSup_subtype] [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier | ↑x ⊔ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] rw [iSup_subtype] [GOAL] X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier | ↑x ⊔ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] rw [iSup_subtype] [GOAL] case h.e'_1 X Y : Scheme f : X ⟶ Y Z : Scheme P : Opens ↑↑X.toPresheafedSpace → Prop h₁ : P ⊥ h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U) s✝ : Set ↑(Scheme.affineOpens X) hs✝ : Set.Finite s✝ hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier x : ↑(Scheme.affineOpens X) s : Set ↑(Scheme.affineOpens X) a✝ : ¬x ∈ s hs : Set.Finite s h₄ : P (⨆ (i : ↑s), ↑↑i) this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier ⊢ ⨆ (i : ↑(Scheme.affineOpens X)) (h : i ∈ insert x s), ↑↑{ val := i, property := h } = ↑x ⊔ ⨆ (i : ↑(Scheme.affineOpens X)) (h : i ∈ s), ↑↑{ val := i, property := h } [PROOFSTEP] exact iSup_insert [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z : Scheme X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] rw [← map_zero (X.presheaf.map (homOfLE <| X.basicOpen_le f : X.basicOpen f ⟶ U).op)] at H [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z : Scheme X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X f ≤ U)).op) 0 ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] obtain ⟨⟨_, n, rfl⟩, e⟩ := (isLocalization_basicOpen hU f).eq_iff_exists'.mp H [GOAL] case intro.mk.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y Z : Scheme X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X f ≤ U)).op) 0 n : ℕ e : ↑{ val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } * x = ↑{ val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } * 0 ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] exact ⟨n, by simpa [mul_comm x] using e⟩ [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z : Scheme X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X f ≤ U)).op) 0 n : ℕ e : ↑{ val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } * x = ↑{ val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } * 0 ⊢ f ^ n * x = 0 [PROOFSTEP] simpa [mul_comm x] using e [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] obtain ⟨s, hs, e⟩ := (isCompact_open_iff_eq_finset_affine_union U.1).mp ⟨hU, U.2⟩ [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] replace e : U = iSup fun i : s => (i : Opens X.carrier) [GOAL] case e X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ U = ⨆ (i : ↑s), ↑↑i [PROOFSTEP] ext1 [GOAL] case e.h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ ↑U = ↑(⨆ (i : ↑s), ↑↑i) [PROOFSTEP] simpa using e [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] have h₁ : ∀ i : s, i.1.1 ≤ U := by intro i change (i : Opens X.carrier) ≤ U rw [e] -- porting note: `exact le_iSup _ _` no longer works exact le_iSup (fun (i : s) => (i : Opens (X.toPresheafedSpace))) _ [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i ⊢ ∀ (i : ↑s), ↑↑i ≤ U [PROOFSTEP] intro i [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ ↑↑i ≤ U [PROOFSTEP] change (i : Opens X.carrier) ≤ U [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ ↑↑i ≤ U [PROOFSTEP] rw [e] -- porting note: `exact le_iSup _ _` no longer works [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ ↑↑i ≤ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] exact le_iSup (fun (i : s) => (i : Opens (X.toPresheafedSpace))) _ [GOAL] case intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] have H' := fun i : s => exists_pow_mul_eq_zero_of_res_basicOpen_eq_zero_of_isAffineOpen X i.1.2 (X.presheaf.map (homOfLE (h₁ i)).op x) (X.presheaf.map (homOfLE (h₁ i)).op f) ?_ [GOAL] case intro.intro.refine_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U H' : ∀ (i : ↑s), ∃ n, ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 ⊢ ∃ n, f ^ n * x = 0 case intro.intro.refine_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x |_ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f) = 0 [PROOFSTEP] swap [GOAL] case intro.intro.refine_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x |_ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f) = 0 [PROOFSTEP] delta TopCat.Presheaf.restrictOpen TopCat.Presheaf.restrict at H ⊢ [GOAL] case intro.intro.refine_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f)) → a ∈ ↑↑↑i)).op) (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x) = 0 [PROOFSTEP] convert congr_arg (X.presheaf.map (homOfLE _).op) H [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f)) → a ∈ ↑↑↑i)).op) (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x) = ↑(X.presheaf.map (homOfLE ?intro.intro.refine_1.convert_1).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x) [PROOFSTEP] simp only [← comp_apply, ← Functor.map_comp] [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ ↑(X.presheaf.map ((homOfLE (_ : ↑↑i ≤ U)).op ≫ (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f)) → a ∈ ↑↑↑i)).op)) x = ↑(X.presheaf.map ((homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op ≫ (homOfLE ?intro.intro.refine_1.convert_1).op)) x [PROOFSTEP] rfl [GOAL] case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ 0 = ↑(X.presheaf.map (homOfLE ?intro.intro.refine_1.convert_1).op) 0 [PROOFSTEP] rw [map_zero] [GOAL] case intro.intro.refine_1.convert_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U i : ↑s ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f) ≤ Scheme.basicOpen X f [PROOFSTEP] simp only [Scheme.basicOpen_res, ge_iff_le, inf_le_right] [GOAL] case intro.intro.refine_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U H' : ∀ (i : ↑s), ∃ n, ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] choose n hn using H' [GOAL] case intro.intro.refine_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] haveI := hs.to_subtype [GOAL] case intro.intro.refine_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 this : Finite ↑s ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] cases nonempty_fintype s [GOAL] case intro.intro.refine_2.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 this : Finite ↑s val✝ : Fintype ↑s ⊢ ∃ n, f ^ n * x = 0 [PROOFSTEP] use Finset.univ.sup n [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 this : Finite ↑s val✝ : Fintype ↑s ⊢ f ^ Finset.sup Finset.univ n * x = 0 [PROOFSTEP] suffices ∀ i : s, X.presheaf.map (homOfLE (h₁ i)).op (f ^ Finset.univ.sup n * x) = 0 by subst e apply TopCat.Sheaf.eq_of_locally_eq X.sheaf fun i : s => (i : Opens X.carrier) intro i rw [map_zero] apply this [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 this✝ : Finite ↑s val✝ : Fintype ↑s this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0 ⊢ f ^ Finset.sup Finset.univ n * x = 0 [PROOFSTEP] subst e [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s n : ↑s → ℕ this✝ : Finite ↑s val✝ : Fintype ↑s hU : IsCompact (⨆ (i : ↑s), ↑↑i).carrier x f : ↑(X.presheaf.obj (op (⨆ (i : ↑s), ↑↑i))) H : x |_ Scheme.basicOpen X f = 0 h₁ : ∀ (i : ↑s), ↑↑i ≤ ⨆ (i : ↑s), ↑↑i hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) x = 0 this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) (f ^ Finset.sup Finset.univ n * x) = 0 ⊢ f ^ Finset.sup Finset.univ n * x = 0 [PROOFSTEP] apply TopCat.Sheaf.eq_of_locally_eq X.sheaf fun i : s => (i : Opens X.carrier) [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s n : ↑s → ℕ this✝ : Finite ↑s val✝ : Fintype ↑s hU : IsCompact (⨆ (i : ↑s), ↑↑i).carrier x f : ↑(X.presheaf.obj (op (⨆ (i : ↑s), ↑↑i))) H : x |_ Scheme.basicOpen X f = 0 h₁ : ∀ (i : ↑s), ↑↑i ≤ ⨆ (i : ↑s), ↑↑i hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) x = 0 this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) (f ^ Finset.sup Finset.univ n * x) = 0 ⊢ ∀ (i : ↑s), ↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) (f ^ Finset.sup Finset.univ n * x) = ↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) 0 [PROOFSTEP] intro i [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s n : ↑s → ℕ this✝ : Finite ↑s val✝ : Fintype ↑s hU : IsCompact (⨆ (i : ↑s), ↑↑i).carrier x f : ↑(X.presheaf.obj (op (⨆ (i : ↑s), ↑↑i))) H : x |_ Scheme.basicOpen X f = 0 h₁ : ∀ (i : ↑s), ↑↑i ≤ ⨆ (i : ↑s), ↑↑i hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) x = 0 this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) (f ^ Finset.sup Finset.univ n * x) = 0 i : ↑s ⊢ ↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) (f ^ Finset.sup Finset.univ n * x) = ↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) 0 [PROOFSTEP] rw [map_zero] [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s n : ↑s → ℕ this✝ : Finite ↑s val✝ : Fintype ↑s hU : IsCompact (⨆ (i : ↑s), ↑↑i).carrier x f : ↑(X.presheaf.obj (op (⨆ (i : ↑s), ↑↑i))) H : x |_ Scheme.basicOpen X f = 0 h₁ : ∀ (i : ↑s), ↑↑i ≤ ⨆ (i : ↑s), ↑↑i hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) x = 0 this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) (f ^ Finset.sup Finset.univ n * x) = 0 i : ↑s ⊢ ↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) (f ^ Finset.sup Finset.univ n * x) = 0 [PROOFSTEP] apply this [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 this : Finite ↑s val✝ : Fintype ↑s ⊢ ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0 [PROOFSTEP] intro i [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0 this : Finite ↑s val✝ : Fintype ↑s i : ↑s ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0 [PROOFSTEP] replace hn := congr_arg (fun x => X.presheaf.map (homOfLE (h₁ i)).op (f ^ (Finset.univ.sup n - n i)) * x) (hn i) [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ this : Finite ↑s val✝ : Fintype ↑s i : ↑s hn : (fun x => ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * x) (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x) = (fun x => ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * x) 0 ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0 [PROOFSTEP] dsimp at hn [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ this : Finite ↑s val✝ : Fintype ↑s i : ↑s hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * 0 ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0 [PROOFSTEP] simp only [← map_mul, ← map_pow] at hn [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ this : Finite ↑s val✝ : Fintype ↑s i : ↑s hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i) * (f ^ n i * x)) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * 0 ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0 [PROOFSTEP] rwa [mul_zero, ← mul_assoc, ← pow_add, tsub_add_cancel_of_le] at hn [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y Z X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier x f : ↑(X.presheaf.obj (op U)) H : x |_ Scheme.basicOpen X f = 0 s : Set ↑(Scheme.affineOpens X) hs : Set.Finite s e : U = ⨆ (i : ↑s), ↑↑i h₁ : ∀ (i : ↑s), ↑↑i ≤ U n : ↑s → ℕ this : Finite ↑s val✝ : Fintype ↑s i : ↑s hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i + n i) * x) = 0 ⊢ n i ≤ Finset.sup Finset.univ n [PROOFSTEP] apply Finset.le_sup (Finset.mem_univ i)
{"mathlib_filename": "Mathlib.AlgebraicGeometry.Morphisms.QuasiCompact", "llama_tokens": 37467}
[GOAL] X : Scheme inst✝ : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace h : Nonempty { x // x ∈ U } ⊢ Set.Nonempty (⊤ ∩ ↑U) [PROOFSTEP] simpa using h [GOAL] X : Scheme inst✝ : IsIntegral X ⊢ Field ↑(Scheme.functionField X) [PROOFSTEP] apply fieldOfIsUnitOrEqZero [GOAL] case h X : Scheme inst✝ : IsIntegral X ⊢ ∀ (a : ↑(Scheme.functionField X)), IsUnit a ∨ a = 0 [PROOFSTEP] intro a [GOAL] case h X : Scheme inst✝ : IsIntegral X a : ↑(Scheme.functionField X) ⊢ IsUnit a ∨ a = 0 [PROOFSTEP] obtain ⟨U, m, s, rfl⟩ := TopCat.Presheaf.germ_exist _ _ a [GOAL] case h.intro.intro.intro X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace m : genericPoint ↑↑X.toPresheafedSpace ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) ⊢ IsUnit (↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s) ∨ ↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s = 0 [PROOFSTEP] rw [or_iff_not_imp_right, ← (X.presheaf.germ ⟨_, m⟩).map_zero] [GOAL] case h.intro.intro.intro X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace m : genericPoint ↑↑X.toPresheafedSpace ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) ⊢ ¬↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s = ↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) 0 → IsUnit (↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s) [PROOFSTEP] intro ha [GOAL] case h.intro.intro.intro X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace m : genericPoint ↑↑X.toPresheafedSpace ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) ha : ¬↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s = ↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) 0 ⊢ IsUnit (↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s) [PROOFSTEP] replace ha := ne_of_apply_ne _ ha [GOAL] case h.intro.intro.intro X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace m : genericPoint ↑↑X.toPresheafedSpace ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) ha : s ≠ 0 ⊢ IsUnit (↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s) [PROOFSTEP] have hs : genericPoint X.carrier ∈ RingedSpace.basicOpen _ s := by rw [← SetLike.mem_coe, (genericPoint_spec X.carrier).mem_open_set_iff, Set.top_eq_univ, Set.univ_inter, Set.nonempty_iff_ne_empty, Ne.def, ← Opens.coe_bot, ← SetLike.ext'_iff] erw [basicOpen_eq_bot_iff] exacts [ha, (RingedSpace.basicOpen _ _).isOpen] [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace m : genericPoint ↑↑X.toPresheafedSpace ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) ha : s ≠ 0 ⊢ genericPoint ↑↑X.toPresheafedSpace ∈ RingedSpace.basicOpen X.toSheafedSpace s [PROOFSTEP] rw [← SetLike.mem_coe, (genericPoint_spec X.carrier).mem_open_set_iff, Set.top_eq_univ, Set.univ_inter, Set.nonempty_iff_ne_empty, Ne.def, ← Opens.coe_bot, ← SetLike.ext'_iff] [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace m : genericPoint ↑↑X.toPresheafedSpace ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) ha : s ≠ 0 ⊢ ¬RingedSpace.basicOpen X.toSheafedSpace s = ⊥ X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace m : genericPoint ↑↑X.toPresheafedSpace ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) ha : s ≠ 0 ⊢ IsOpen ↑(RingedSpace.basicOpen X.toSheafedSpace s) [PROOFSTEP] erw [basicOpen_eq_bot_iff] [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace m : genericPoint ↑↑X.toPresheafedSpace ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) ha : s ≠ 0 ⊢ ¬s = 0 X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace m : genericPoint ↑↑X.toPresheafedSpace ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) ha : s ≠ 0 ⊢ IsOpen ↑(RingedSpace.basicOpen X.toSheafedSpace s) [PROOFSTEP] exacts [ha, (RingedSpace.basicOpen _ _).isOpen] [GOAL] case h.intro.intro.intro X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace m : genericPoint ↑↑X.toPresheafedSpace ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) ha : s ≠ 0 hs : genericPoint ↑↑X.toPresheafedSpace ∈ RingedSpace.basicOpen X.toSheafedSpace s ⊢ IsUnit (↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s) [PROOFSTEP] have := (X.presheaf.germ ⟨_, hs⟩).isUnit_map (RingedSpace.isUnit_res_basicOpen _ s) [GOAL] case h.intro.intro.intro X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace m : genericPoint ↑↑X.toPresheafedSpace ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) ha : s ≠ 0 hs : genericPoint ↑↑X.toPresheafedSpace ∈ RingedSpace.basicOpen X.toSheafedSpace s this : IsUnit (↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := hs }) (↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace s ≤ U)).op) s)) ⊢ IsUnit (↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s) [PROOFSTEP] rwa [TopCat.Presheaf.germ_res_apply] at this [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } ⊢ Function.Injective ↑(Presheaf.germ X.presheaf x) [PROOFSTEP] rw [injective_iff_map_eq_zero] [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } ⊢ ∀ (a : (forget CommRingCat).obj (X.presheaf.obj (op U))), ↑(Presheaf.germ X.presheaf x) a = 0 → a = 0 [PROOFSTEP] intro y hy [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } y : (forget CommRingCat).obj (X.presheaf.obj (op U)) hy : ↑(Presheaf.germ X.presheaf x) y = 0 ⊢ y = 0 [PROOFSTEP] rw [← (X.presheaf.germ x).map_zero] at hy [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } y : (forget CommRingCat).obj (X.presheaf.obj (op U)) hy : ↑(Presheaf.germ X.presheaf x) y = ↑(Presheaf.germ X.presheaf x) 0 ⊢ y = 0 [PROOFSTEP] obtain ⟨W, hW, iU, iV, e⟩ := X.presheaf.germ_eq _ x.prop x.prop _ _ hy [GOAL] case intro.intro.intro.intro X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } y : (forget CommRingCat).obj (X.presheaf.obj (op U)) hy : ↑(Presheaf.germ X.presheaf x) y = ↑(Presheaf.germ X.presheaf x) 0 W : Opens ↑↑X.toPresheafedSpace hW : ↑x ∈ W iU iV : W ⟶ U e : ↑(X.presheaf.map iU.op) y = ↑(X.presheaf.map iV.op) 0 ⊢ y = 0 [PROOFSTEP] cases show iU = iV from Subsingleton.elim _ _ [GOAL] case intro.intro.intro.intro.refl X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } y : (forget CommRingCat).obj (X.presheaf.obj (op U)) hy : ↑(Presheaf.germ X.presheaf x) y = ↑(Presheaf.germ X.presheaf x) 0 W : Opens ↑↑X.toPresheafedSpace hW : ↑x ∈ W iU : W ⟶ U e : ↑(X.presheaf.map iU.op) y = ↑(X.presheaf.map iU.op) 0 ⊢ y = 0 [PROOFSTEP] haveI : Nonempty W := ⟨⟨_, hW⟩⟩ [GOAL] case intro.intro.intro.intro.refl X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } y : (forget CommRingCat).obj (X.presheaf.obj (op U)) hy : ↑(Presheaf.germ X.presheaf x) y = ↑(Presheaf.germ X.presheaf x) 0 W : Opens ↑↑X.toPresheafedSpace hW : ↑x ∈ W iU : W ⟶ U e : ↑(X.presheaf.map iU.op) y = ↑(X.presheaf.map iU.op) 0 this : Nonempty { x // x ∈ W } ⊢ y = 0 [PROOFSTEP] exact map_injective_of_isIntegral X iU e [GOAL] X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f hX : IrreducibleSpace ↑↑X.toPresheafedSpace inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace ⊢ ↑f.val.base (genericPoint ↑↑X.toPresheafedSpace) = genericPoint ↑↑Y.toPresheafedSpace [PROOFSTEP] apply ((genericPoint_spec Y).eq _).symm [GOAL] X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f hX : IrreducibleSpace ↑↑X.toPresheafedSpace inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace ⊢ IsGenericPoint (↑f.val.base (genericPoint ↑↑X.toPresheafedSpace)) ⊤ [PROOFSTEP] convert (genericPoint_spec X.carrier).image (show Continuous f.1.base from ContinuousMap.continuous_toFun _) [GOAL] case h.e'_4.h X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f hX : IrreducibleSpace ↑↑X.toPresheafedSpace inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace ⊢ ⊤ = closure (↑f.val.base '' ⊤) [PROOFSTEP] symm [GOAL] case h.e'_4.h X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f hX : IrreducibleSpace ↑↑X.toPresheafedSpace inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace ⊢ closure (↑f.val.base '' ⊤) = ⊤ [PROOFSTEP] rw [eq_top_iff, Set.top_eq_univ, Set.top_eq_univ] [GOAL] case h.e'_4.h X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f hX : IrreducibleSpace ↑↑X.toPresheafedSpace inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace ⊢ Set.univ ≤ closure (↑f.val.base '' Set.univ) [PROOFSTEP] convert subset_closure_inter_of_isPreirreducible_of_isOpen _ H.base_open.open_range _ [GOAL] case h.e'_2.h.e'_3 X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f hX : IrreducibleSpace ↑↑X.toPresheafedSpace inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace ⊢ ↑f.val.base '' Set.univ = Set.univ ∩ Set.range ↑f.val.base case h.e'_4.h.convert_2 X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f hX : IrreducibleSpace ↑↑X.toPresheafedSpace inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace ⊢ IsPreirreducible Set.univ case h.e'_4.h.convert_3 X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f hX : IrreducibleSpace ↑↑X.toPresheafedSpace inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace ⊢ Set.Nonempty (Set.univ ∩ Set.range ↑f.val.base) [PROOFSTEP] rw [Set.univ_inter, Set.image_univ] [GOAL] case h.e'_4.h.convert_2 X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f hX : IrreducibleSpace ↑↑X.toPresheafedSpace inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace ⊢ IsPreirreducible Set.univ case h.e'_4.h.convert_3 X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f hX : IrreducibleSpace ↑↑X.toPresheafedSpace inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace ⊢ Set.Nonempty (Set.univ ∩ Set.range ↑f.val.base) [PROOFSTEP] apply PreirreducibleSpace.isPreirreducible_univ (α := Y.carrier) [GOAL] case h.e'_4.h.convert_3 X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f hX : IrreducibleSpace ↑↑X.toPresheafedSpace inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace ⊢ Set.Nonempty (Set.univ ∩ Set.range ↑f.val.base) [PROOFSTEP] exact ⟨_, trivial, Set.mem_range_self hX.2.some⟩ [GOAL] X : Scheme inst✝ : IrreducibleSpace ↑↑X.toPresheafedSpace x : ↑↑X.toPresheafedSpace ⊢ Algebra ↑(Presheaf.stalk X.presheaf x) ↑(Scheme.functionField X) [PROOFSTEP] apply RingHom.toAlgebra [GOAL] case i X : Scheme inst✝ : IrreducibleSpace ↑↑X.toPresheafedSpace x : ↑↑X.toPresheafedSpace ⊢ ↑(Presheaf.stalk X.presheaf x) →+* ↑(Scheme.functionField X) [PROOFSTEP] exact X.presheaf.stalkSpecializes ((genericPoint_spec X.carrier).specializes trivial) [GOAL] X : Scheme inst✝¹ : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } inst✝ : Nonempty { x // x ∈ U } ⊢ IsScalarTower ↑(X.presheaf.obj (op U)) ↑(Presheaf.stalk X.presheaf ↑x) ↑(Scheme.functionField X) [PROOFSTEP] apply IsScalarTower.of_algebraMap_eq' [GOAL] case h X : Scheme inst✝¹ : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } inst✝ : Nonempty { x // x ∈ U } ⊢ algebraMap ↑(X.presheaf.obj (op U)) ↑(Scheme.functionField X) = RingHom.comp (algebraMap ↑(Presheaf.stalk X.presheaf ↑x) ↑(Scheme.functionField X)) (algebraMap ↑(X.presheaf.obj (op U)) ↑(Presheaf.stalk X.presheaf ↑x)) [PROOFSTEP] simp_rw [RingHom.algebraMap_toAlgebra] [GOAL] case h X : Scheme inst✝¹ : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } inst✝ : Nonempty { x // x ∈ U } ⊢ Scheme.germToFunctionField X U = RingHom.comp (Presheaf.stalkSpecializes X.presheaf (_ : genericPoint ↑↑X.toPresheafedSpace ⤳ ↑x)) (Presheaf.germ X.presheaf x) [PROOFSTEP] change _ = X.presheaf.germ x ≫ _ [GOAL] case h X : Scheme inst✝¹ : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } inst✝ : Nonempty { x // x ∈ U } ⊢ Scheme.germToFunctionField X U = Presheaf.germ X.presheaf x ≫ Presheaf.stalkSpecializes X.presheaf (_ : genericPoint ↑↑X.toPresheafedSpace ⤳ ↑x) [PROOFSTEP] rw [X.presheaf.germ_stalkSpecializes] [GOAL] X : Scheme R : CommRingCat inst✝ : IsDomain ↑R ⊢ ↑R →+* ↑(Scheme.functionField (Scheme.Spec.obj (op R))) [PROOFSTEP] change CommRingCat.of R ⟶ _ [GOAL] X : Scheme R : CommRingCat inst✝ : IsDomain ↑R ⊢ CommRingCat.of ↑R ⟶ Scheme.functionField (Scheme.Spec.obj (op R)) [PROOFSTEP] apply StructureSheaf.toStalk [GOAL] X : Scheme R : CommRingCat inst✝ : IsDomain ↑R ⊢ genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace = { asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) } [PROOFSTEP] apply (genericPoint_spec (Scheme.Spec.obj <| op R).carrier).eq [GOAL] X : Scheme R : CommRingCat inst✝ : IsDomain ↑R ⊢ IsGenericPoint { asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) } ⊤ [PROOFSTEP] rw [isGenericPoint_def] [GOAL] X : Scheme R : CommRingCat inst✝ : IsDomain ↑R ⊢ closure {{ asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }} = ⊤ [PROOFSTEP] rw [← PrimeSpectrum.zeroLocus_vanishingIdeal_eq_closure, PrimeSpectrum.vanishingIdeal_singleton] [GOAL] X : Scheme R : CommRingCat inst✝ : IsDomain ↑R ⊢ PrimeSpectrum.zeroLocus ↑{ asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }.asIdeal = ⊤ [PROOFSTEP] rw [Set.top_eq_univ, ← PrimeSpectrum.zeroLocus_singleton_zero] [GOAL] X : Scheme R : CommRingCat inst✝ : IsDomain ↑R ⊢ PrimeSpectrum.zeroLocus ↑{ asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }.asIdeal = PrimeSpectrum.zeroLocus {0} [PROOFSTEP] rfl [GOAL] X : Scheme R : CommRingCat inst✝ : IsDomain ↑R ⊢ IsFractionRing ↑R ↑(Scheme.functionField (Scheme.Spec.obj (op R))) [PROOFSTEP] convert StructureSheaf.IsLocalization.to_stalk R (genericPoint _) [GOAL] case a X : Scheme R : CommRingCat inst✝ : IsDomain ↑R ⊢ IsFractionRing ↑R ↑(Scheme.functionField (Scheme.Spec.obj (op R))) ↔ IsLocalization.AtPrime (↑(Presheaf.stalk (Sheaf.presheaf (Spec.structureSheaf ↑R)) (genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace))) (genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace).asIdeal [PROOFSTEP] delta IsFractionRing IsLocalization.AtPrime [GOAL] case a X : Scheme R : CommRingCat inst✝ : IsDomain ↑R ⊢ IsLocalization (nonZeroDivisors ↑R) ↑(Scheme.functionField (Scheme.Spec.obj (op R))) ↔ IsLocalization (Ideal.primeCompl (genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace).asIdeal) ↑(Presheaf.stalk (Sheaf.presheaf (Spec.structureSheaf ↑R)) (genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace)) [PROOFSTEP] apply Eq.to_iff [GOAL] case a.a X : Scheme R : CommRingCat inst✝ : IsDomain ↑R ⊢ IsLocalization (nonZeroDivisors ↑R) ↑(Scheme.functionField (Scheme.Spec.obj (op R))) = IsLocalization (Ideal.primeCompl (genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace).asIdeal) ↑(Presheaf.stalk (Sheaf.presheaf (Spec.structureSheaf ↑R)) (genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace)) [PROOFSTEP] congr 1 [GOAL] case a.a.e_M X : Scheme R : CommRingCat inst✝ : IsDomain ↑R ⊢ nonZeroDivisors ↑R = Ideal.primeCompl (genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace).asIdeal [PROOFSTEP] rw [genericPoint_eq_bot_of_affine] [GOAL] case a.a.e_M X : Scheme R : CommRingCat inst✝ : IsDomain ↑R ⊢ nonZeroDivisors ↑R = Ideal.primeCompl { asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }.asIdeal [PROOFSTEP] ext [GOAL] case a.a.e_M.h X : Scheme R : CommRingCat inst✝ : IsDomain ↑R x✝ : ↑R ⊢ x✝ ∈ nonZeroDivisors ↑R ↔ x✝ ∈ Ideal.primeCompl { asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }.asIdeal [PROOFSTEP] exact mem_nonZeroDivisors_iff_ne_zero [GOAL] X✝ : Scheme X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U h : Nonempty { x // x ∈ U } ⊢ Set.Nonempty (⊤ ∩ ↑U) [PROOFSTEP] simpa using h [GOAL] X✝ : Scheme X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U h : Nonempty { x // x ∈ U } ⊢ primeIdealOf hU { val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) } = genericPoint ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace [PROOFSTEP] haveI : IsAffine _ := hU [GOAL] X✝ : Scheme X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U h : Nonempty { x // x ∈ U } this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ primeIdealOf hU { val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) } = genericPoint ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace [PROOFSTEP] have e : U.openEmbedding.isOpenMap.functor.obj ⊤ = U := by ext1; exact Set.image_univ.trans Subtype.range_coe [GOAL] X✝ : Scheme X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U h : Nonempty { x // x ∈ U } this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U [PROOFSTEP] ext1 [GOAL] case h X✝ : Scheme X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U h : Nonempty { x // x ∈ U } this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤) = ↑U [PROOFSTEP] exact Set.image_univ.trans Subtype.range_coe [GOAL] X✝ : Scheme X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U h : Nonempty { x // x ∈ U } this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U ⊢ primeIdealOf hU { val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) } = genericPoint ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace [PROOFSTEP] delta IsAffineOpen.primeIdealOf [GOAL] X✝ : Scheme X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U h : Nonempty { x // x ∈ U } this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U ⊢ ↑(Scheme.Spec.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.base (↑(Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom.val.base { val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) }) = genericPoint ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace [PROOFSTEP] erw [← Scheme.comp_val_base_apply] [GOAL] X✝ : Scheme X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U h : Nonempty { x // x ∈ U } this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U ⊢ ↑((Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom ≫ Scheme.Spec.map (X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.base { val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) } = genericPoint ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace [PROOFSTEP] convert genericPoint_eq_of_isOpenImmersion ((X.restrict U.openEmbedding).isoSpec.hom ≫ Scheme.Spec.map (X.presheaf.map (eqToHom e).op).op) -- Porting note: this was `ext1` [GOAL] case h.e'_2.h.h.e'_6 X✝ : Scheme X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U h : Nonempty { x // x ∈ U } this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U e_1✝ : PrimeSpectrum ↑(X.presheaf.obj (op U)) = (fun x => (forget TopCat).obj ↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace) (genericPoint ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) ⊢ { val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) } = genericPoint ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] apply Subtype.ext [GOAL] case h.e'_2.h.h.e'_6.a X✝ : Scheme X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U h : Nonempty { x // x ∈ U } this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) e : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U e_1✝ : PrimeSpectrum ↑(X.presheaf.obj (op U)) = (fun x => (forget TopCat).obj ↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace) (genericPoint ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) ⊢ ↑{ val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) } = ↑(genericPoint ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) [PROOFSTEP] exact (genericPoint_eq_of_isOpenImmersion (X.ofRestrict U.openEmbedding)).symm [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hU' : Nonempty { x // x ∈ U } ⊢ IsFractionRing ↑(X.presheaf.obj (op U)) ↑(Scheme.functionField X) [PROOFSTEP] haveI : IsAffine _ := hU [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hU' : Nonempty { x // x ∈ U } this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ IsFractionRing ↑(X.presheaf.obj (op U)) ↑(Scheme.functionField X) [PROOFSTEP] haveI : Nonempty (X.restrict U.openEmbedding).carrier := hU' [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hU' : Nonempty { x // x ∈ U } this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) this : Nonempty ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ IsFractionRing ↑(X.presheaf.obj (op U)) ↑(Scheme.functionField X) [PROOFSTEP] haveI : IsIntegral (X.restrict U.openEmbedding) := @isIntegralOfIsAffineIsDomain _ _ _ (by dsimp; rw [Opens.openEmbedding_obj_top]; infer_instance) [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hU' : Nonempty { x // x ∈ U } this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) this : Nonempty ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ IsDomain ↑((Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) [PROOFSTEP] dsimp [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hU' : Nonempty { x // x ∈ U } this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) this : Nonempty ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ IsDomain ↑(X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))) [PROOFSTEP] rw [Opens.openEmbedding_obj_top] [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hU' : Nonempty { x // x ∈ U } this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) this : Nonempty ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ IsDomain ↑(X.presheaf.obj (op U)) [PROOFSTEP] infer_instance [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hU' : Nonempty { x // x ∈ U } this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) this✝ : Nonempty ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace this : IsIntegral (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ IsFractionRing ↑(X.presheaf.obj (op U)) ↑(Scheme.functionField X) [PROOFSTEP] delta IsFractionRing Scheme.functionField [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hU' : Nonempty { x // x ∈ U } this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) this✝ : Nonempty ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace this : IsIntegral (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ IsLocalization (nonZeroDivisors ↑(X.presheaf.obj (op U))) ↑(Presheaf.stalk X.presheaf (genericPoint ↑↑X.toPresheafedSpace)) [PROOFSTEP] convert hU.isLocalization_stalk ⟨genericPoint X.carrier, _⟩ using 1 [GOAL] case h.e'_3.h X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hU' : Nonempty { x // x ∈ U } this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) this✝ : Nonempty ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace this : IsIntegral (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ nonZeroDivisors ↑(X.presheaf.obj (op U)) = Ideal.primeCompl (IsAffineOpen.primeIdealOf hU { val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) }).asIdeal [PROOFSTEP] rw [hU.primeIdealOf_genericPoint, genericPoint_eq_bot_of_affine] [GOAL] case h.e'_3.h X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hU' : Nonempty { x // x ∈ U } this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) this✝ : Nonempty ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace this : IsIntegral (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ nonZeroDivisors ↑(X.presheaf.obj (op U)) = Ideal.primeCompl { asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }.asIdeal [PROOFSTEP] ext [GOAL] case h.e'_3.h.h X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U hU' : Nonempty { x // x ∈ U } this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) this✝ : Nonempty ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace this : IsIntegral (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) x✝ : ↑(X.presheaf.obj (op U)) ⊢ x✝ ∈ nonZeroDivisors ↑(X.presheaf.obj (op U)) ↔ x✝ ∈ Ideal.primeCompl { asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }.asIdeal [PROOFSTEP] exact mem_nonZeroDivisors_iff_ne_zero
{"mathlib_filename": "Mathlib.AlgebraicGeometry.FunctionField", "llama_tokens": 12759}
[GOAL] L : Language M : Type u_1 s : Setoid M ps : Prestructure L s n : ℕ f : Functions L n x : Fin n → M ⊢ (funMap f fun i => Quotient.mk s (x i)) = Quotient.mk s (funMap f x) [PROOFSTEP] change Quotient.map (@funMap L M ps.toStructure n f) Prestructure.fun_equiv (Quotient.finChoice _) = _ [GOAL] L : Language M : Type u_1 s : Setoid M ps : Prestructure L s n : ℕ f : Functions L n x : Fin n → M ⊢ Quotient.map (funMap f) (_ : ∀ (x y : Fin n → M), x ≈ y → funMap f x ≈ funMap f y) (Quotient.finChoice fun i => Quotient.mk s (x i)) = Quotient.mk s (funMap f x) [PROOFSTEP] rw [Quotient.finChoice_eq, Quotient.map_mk] [GOAL] L : Language M : Type u_1 s : Setoid M ps : Prestructure L s n : ℕ r : Relations L n x : Fin n → M ⊢ (RelMap r fun i => Quotient.mk s (x i)) ↔ RelMap r x [PROOFSTEP] change Quotient.lift (@RelMap L M ps.toStructure n r) Prestructure.rel_equiv (Quotient.finChoice _) ↔ _ [GOAL] L : Language M : Type u_1 s : Setoid M ps : Prestructure L s n : ℕ r : Relations L n x : Fin n → M ⊢ Quotient.lift (RelMap r) (_ : ∀ (x y : Fin n → M), x ≈ y → RelMap r x = RelMap r y) (Quotient.finChoice fun i => Quotient.mk s (x i)) ↔ RelMap r x [PROOFSTEP] rw [Quotient.finChoice_eq, Quotient.lift_mk] [GOAL] L : Language M : Type u_1 s : Setoid M ps : Prestructure L s β : Type u_2 t : Term L β x : β → M ⊢ realize (fun i => Quotient.mk s (x i)) t = Quotient.mk s (realize x t) [PROOFSTEP] induction' t with _ _ _ _ ih [GOAL] case var L : Language M : Type u_1 s : Setoid M ps : Prestructure L s β : Type u_2 x : β → M _a✝ : β ⊢ realize (fun i => Quotient.mk s (x i)) (var _a✝) = Quotient.mk s (realize x (var _a✝)) [PROOFSTEP] rfl [GOAL] case func L : Language M : Type u_1 s : Setoid M ps : Prestructure L s β : Type u_2 x : β → M l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L β ih : ∀ (a : Fin l✝), realize (fun i => Quotient.mk s (x i)) (_ts✝ a) = Quotient.mk s (realize x (_ts✝ a)) ⊢ realize (fun i => Quotient.mk s (x i)) (func _f✝ _ts✝) = Quotient.mk s (realize x (func _f✝ _ts✝)) [PROOFSTEP] simp only [ih, funMap_quotient_mk', Term.realize]
{"mathlib_filename": "Mathlib.ModelTheory.Quotients", "llama_tokens": 986}
[GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasLimits C J : Type v inst✝ : Category.{v, v} J F : J ⥤ SheafedSpace C X Y : SheafedSpace C f g : X ⟶ Y ⊢ Epi (coequalizer.π f g).base [PROOFSTEP] erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasLimits C J : Type v inst✝ : Category.{v, v} J F : J ⥤ SheafedSpace C X Y : SheafedSpace C f g : X ⟶ Y ⊢ Epi (coequalizer.π ((forget C).map f) ((forget C).map g) ≫ coequalizerComparison f g (forget C)) [PROOFSTEP] rw [← PreservesCoequalizer.iso_hom] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasLimits C J : Type v inst✝ : Category.{v, v} J F : J ⥤ SheafedSpace C X Y : SheafedSpace C f g : X ⟶ Y ⊢ Epi (coequalizer.π ((forget C).map f) ((forget C).map g) ≫ (PreservesCoequalizer.iso (forget C) f g).hom) [PROOFSTEP] apply epi_comp [GOAL] ι : Type u F : Discrete ι ⥤ LocallyRingedSpace x : ↑↑(colimit (F ⋙ forgetToSheafedSpace)).toPresheafedSpace ⊢ LocalRing ↑(TopCat.Presheaf.stalk (colimit (F ⋙ forgetToSheafedSpace)).toPresheafedSpace.presheaf x) [PROOFSTEP] obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x [GOAL] case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace ⊢ LocalRing ↑(TopCat.Presheaf.stalk (colimit (F ⋙ forgetToSheafedSpace)).toPresheafedSpace.presheaf (↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y)) [PROOFSTEP] haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ [GOAL] case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace this : LocalRing ↑(PresheafedSpace.stalk ((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace y) ⊢ LocalRing ↑(TopCat.Presheaf.stalk (colimit (F ⋙ forgetToSheafedSpace)).toPresheafedSpace.presheaf (↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y)) [PROOFSTEP] exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u + 1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing [GOAL] ι : Type u F : Discrete ι ⥤ LocallyRingedSpace x✝² x✝¹ : Discrete ι j j' : ι x✝ : { as := j } ⟶ { as := j' } f : j = j' ⊢ F.map { down := { down := f } } ≫ (fun j => { val := colimit.ι (F ⋙ forgetToSheafedSpace) j, prop := (_ : ∀ (x : ↑↑(F.obj j).toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) j) x)) }) { as := j' } = (fun j => { val := colimit.ι (F ⋙ forgetToSheafedSpace) j, prop := (_ : ∀ (x : ↑↑(F.obj j).toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) j) x)) }) { as := j } ≫ ((Functor.const (Discrete ι)).obj (coproduct F)).map { down := { down := f } } [PROOFSTEP] subst f [GOAL] ι : Type u F : Discrete ι ⥤ LocallyRingedSpace x✝² x✝¹ : Discrete ι j : ι x✝ : { as := j } ⟶ { as := j } ⊢ F.map { down := { down := (_ : j = j) } } ≫ (fun j => { val := colimit.ι (F ⋙ forgetToSheafedSpace) j, prop := (_ : ∀ (x : ↑↑(F.obj j).toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) j) x)) }) { as := j } = (fun j => { val := colimit.ι (F ⋙ forgetToSheafedSpace) j, prop := (_ : ∀ (x : ↑↑(F.obj j).toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) j) x)) }) { as := j } ≫ ((Functor.const (Discrete ι)).obj (coproduct F)).map { down := { down := (_ : j = j) } } [PROOFSTEP] aesop [GOAL] ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F ⊢ ∀ (x : ↑↑(coproductCofan F).pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) x) [PROOFSTEP] intro x [GOAL] ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F x : ↑↑(coproductCofan F).pt.toPresheafedSpace ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) x) [PROOFSTEP] obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x [GOAL] case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) (↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y)) [PROOFSTEP] have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u + 1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u + 1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y [GOAL] case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace this : PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i ≫ colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y = PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) (↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y) ≫ PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) (↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y)) [PROOFSTEP] rw [← IsIso.comp_inv_eq] at this [GOAL] case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace this : PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i ≫ colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y ≫ inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y) = PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) (↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y) ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) (↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y)) [PROOFSTEP] erw [← this, PresheafedSpace.stalkMap.congr_hom _ _ (colimit.ι_desc (C := SheafedSpace.{u + 1, u, u} CommRingCatMax.{u, u}) (forgetToSheafedSpace.mapCocone s) i : _)] [GOAL] case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace this : PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i ≫ colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y ≫ inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y) = PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) (↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y) ⊢ IsLocalRingHom ((eqToHom (_ : PresheafedSpace.stalk (forgetToSheafedSpace.mapCocone s).pt.toPresheafedSpace (↑(colimit.ι (F ⋙ forgetToSheafedSpace) i ≫ colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)).base y) = PresheafedSpace.stalk (forgetToSheafedSpace.mapCocone s).pt.toPresheafedSpace (↑(NatTrans.app (forgetToSheafedSpace.mapCocone s).ι i).base y)) ≫ PresheafedSpace.stalkMap (NatTrans.app (forgetToSheafedSpace.mapCocone s).ι i) y) ≫ inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y)) [PROOFSTEP] haveI : IsLocalRingHom (PresheafedSpace.stalkMap ((forgetToSheafedSpace.mapCocone s).ι.app i) y) := (s.ι.app i).2 y [GOAL] case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace this✝ : PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i ≫ colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y ≫ inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y) = PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) (↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y) this : IsLocalRingHom (PresheafedSpace.stalkMap (NatTrans.app (forgetToSheafedSpace.mapCocone s).ι i) y) ⊢ IsLocalRingHom ((eqToHom (_ : PresheafedSpace.stalk (forgetToSheafedSpace.mapCocone s).pt.toPresheafedSpace (↑(colimit.ι (F ⋙ forgetToSheafedSpace) i ≫ colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)).base y) = PresheafedSpace.stalk (forgetToSheafedSpace.mapCocone s).pt.toPresheafedSpace (↑(NatTrans.app (forgetToSheafedSpace.mapCocone s).ι i).base y)) ≫ PresheafedSpace.stalkMap (NatTrans.app (forgetToSheafedSpace.mapCocone s).ι i) y) ≫ inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y)) [PROOFSTEP] infer_instance [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace ⊢ IsLocalRingHom (NatTrans.app (coequalizer.π f.val g.val).c (op U)) [PROOFSTEP] have := ι_comp_coequalizerComparison f.1 g.1 SheafedSpace.forgetToPresheafedSpace [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace this : coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ coequalizerComparison f.val g.val SheafedSpace.forgetToPresheafedSpace = SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val) ⊢ IsLocalRingHom (NatTrans.app (coequalizer.π f.val g.val).c (op U)) [PROOFSTEP] rw [← PreservesCoequalizer.iso_hom] at this [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace this : coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom = SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val) ⊢ IsLocalRingHom (NatTrans.app (coequalizer.π f.val g.val).c (op U)) [PROOFSTEP] erw [SheafedSpace.congr_app this.symm (op U)] [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace this : coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom = SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val) ⊢ IsLocalRingHom (NatTrans.app (coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom).c (op U) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map (coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom).base).op.obj (op U) = (Opens.map (SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val)).base).op.obj (op U)))) [PROOFSTEP] rw [PresheafedSpace.comp_c_app, ← PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit_hom_π] -- Porting note : this instance has to be manually added [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace this : coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom = SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val) ⊢ IsLocalRingHom ((NatTrans.app (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.c (op U) ≫ (PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit (parallelPair (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val)) ((Opens.map (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.base).obj (op U).unop)).hom ≫ limit.π (PresheafedSpace.componentwiseDiagram (parallelPair (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val)) ((Opens.map (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.base).obj (op U).unop)) (op WalkingParallelPair.one)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map (coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom).base).op.obj (op U) = (Opens.map (SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val)).base).op.obj (op U)))) [PROOFSTEP] haveI : IsIso (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.c := PresheafedSpace.c_isIso_of_iso _ [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace this✝ : coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom = SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val) this : IsIso (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.c ⊢ IsLocalRingHom ((NatTrans.app (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.c (op U) ≫ (PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit (parallelPair (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val)) ((Opens.map (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.base).obj (op U).unop)).hom ≫ limit.π (PresheafedSpace.componentwiseDiagram (parallelPair (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val)) ((Opens.map (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.base).obj (op U).unop)) (op WalkingParallelPair.one)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map (coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom).base).op.obj (op U) = (Opens.map (SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val)).base).op.obj (op U)))) [PROOFSTEP] infer_instance [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' (imageBasicOpen f g U s).carrier) = (imageBasicOpen f g U s).carrier [PROOFSTEP] fapply Types.coequalizer_preimage_image_eq_of_preimage_eq (f.1.base : X.carrier.1 ⟶ Y.carrier.1) (g.1.base : X.carrier.1 ⟶ Y.carrier.1) [GOAL] case e X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ ↑f.val.base ≫ ↑(coequalizer.π f.val g.val).base = ↑g.val.base ≫ ↑(coequalizer.π f.val g.val).base [PROOFSTEP] ext [GOAL] case e.h X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) a✝ : (forget TopCat).obj ↑X.toPresheafedSpace ⊢ (↑f.val.base ≫ ↑(coequalizer.π f.val g.val).base) a✝ = (↑g.val.base ≫ ↑(coequalizer.π f.val g.val).base) a✝ [PROOFSTEP] simp_rw [types_comp_apply, ← TopCat.comp_app, ← PresheafedSpace.comp_base] [GOAL] case e.h X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) a✝ : (forget TopCat).obj ↑X.toPresheafedSpace ⊢ ↑(f.val ≫ coequalizer.π f.val g.val).base a✝ = ↑(g.val ≫ coequalizer.π f.val g.val).base a✝ [PROOFSTEP] congr 2 [GOAL] case e.h.e_a.e_self X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) a✝ : (forget TopCat).obj ↑X.toPresheafedSpace ⊢ f.val ≫ coequalizer.π f.val g.val = g.val ≫ coequalizer.π f.val g.val [PROOFSTEP] exact coequalizer.condition f.1 g.1 [GOAL] case h X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ IsColimit (Cofork.ofπ ↑(coequalizer.π f.val g.val).base (_ : ↑f.val.base ≫ ↑(coequalizer.π f.val g.val).base = ↑g.val.base ≫ ↑(coequalizer.π f.val g.val).base)) [PROOFSTEP] apply isColimitCoforkMapOfIsColimit (forget TopCat) [GOAL] case h.l X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ IsColimit (Cofork.ofπ (coequalizer.π f.val g.val).base ?h.w) case h.w X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ f.val.base ≫ (coequalizer.π f.val g.val).base = g.val.base ≫ (coequalizer.π f.val g.val).base [PROOFSTEP] apply isColimitCoforkMapOfIsColimit (SheafedSpace.forget _) [GOAL] case h.l.l X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ IsColimit (Cofork.ofπ (coequalizer.π f.val g.val) ?h.l.w) case h.l.w X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ f.val ≫ coequalizer.π f.val g.val = g.val ≫ coequalizer.π f.val g.val [PROOFSTEP] exact coequalizerIsCoequalizer f.1 g.1 [GOAL] case H X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ ↑f.val.base ⁻¹' (imageBasicOpen f g U s).carrier = ↑g.val.base ⁻¹' (imageBasicOpen f g U s).carrier [PROOFSTEP] suffices (TopologicalSpace.Opens.map f.1.base).obj (imageBasicOpen f g U s) = (TopologicalSpace.Opens.map g.1.base).obj (imageBasicOpen f g U s) by injection this [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) this : (Opens.map f.val.base).obj (imageBasicOpen f g U s) = (Opens.map g.val.base).obj (imageBasicOpen f g U s) ⊢ ↑f.val.base ⁻¹' (imageBasicOpen f g U s).carrier = ↑g.val.base ⁻¹' (imageBasicOpen f g U s).carrier [PROOFSTEP] injection this [GOAL] case H X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ (Opens.map f.val.base).obj (imageBasicOpen f g U s) = (Opens.map g.val.base).obj (imageBasicOpen f g U s) [PROOFSTEP] delta imageBasicOpen [GOAL] case H X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ (Opens.map f.val.base).obj (RingedSpace.basicOpen (toRingedSpace Y) (let_fun this := ↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s; this)) = (Opens.map g.val.base).obj (RingedSpace.basicOpen (toRingedSpace Y) (let_fun this := ↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s; this)) [PROOFSTEP] rw [preimage_basicOpen f, preimage_basicOpen g] [GOAL] case H X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app f.val.c (op { unop := { carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' ↑(op U).unop)) } }.unop)) (let_fun this := ↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s; this)) = RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app g.val.c (op { unop := { carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' ↑(op U).unop)) } }.unop)) (let_fun this := ↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s; this)) [PROOFSTEP] dsimp only [Functor.op, unop_op] -- Porting note : change `rw` to `erw` [GOAL] case H X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app f.val.c (op { carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' ↑(op U).unop)) })) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) = RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app g.val.c (op { carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' ↑(op U).unop)) })) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) [PROOFSTEP] erw [← comp_apply, ← SheafedSpace.comp_c_app', ← comp_apply, ← SheafedSpace.comp_c_app', SheafedSpace.congr_app (coequalizer.condition f.1 g.1), comp_apply, X.toRingedSpace.basicOpen_res] [GOAL] case H X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ ((Opens.map (f.val ≫ coequalizer.π f.val g.val).base).op.obj (op U)).unop ⊓ RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app (g.val ≫ coequalizer.π f.val g.val).c (op U)) s) = RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app (g.val ≫ coequalizer.π f.val g.val).c (op U)) s) [PROOFSTEP] apply inf_eq_right.mpr [GOAL] case H X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app (g.val ≫ coequalizer.π f.val g.val).c (op U)) s) ≤ ((Opens.map (f.val ≫ coequalizer.π f.val g.val).base).op.obj (op U)).unop [PROOFSTEP] refine' (RingedSpace.basicOpen_le _ _).trans _ [GOAL] case H X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ ((Opens.map (g.val ≫ coequalizer.π f.val g.val).base).op.obj (op U)).unop ≤ ((Opens.map (f.val ≫ coequalizer.π f.val g.val).base).op.obj (op U)).unop [PROOFSTEP] rw [coequalizer.condition f.1 g.1] [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ IsOpen (↑(coequalizer.π f.val g.val).base '' (imageBasicOpen f g U s).carrier) [PROOFSTEP] rw [← (TopCat.homeoOfIso (PreservesCoequalizer.iso (SheafedSpace.forget _) f.1 g.1)).isOpen_preimage, TopCat.coequalizer_isOpen_iff, ← Set.preimage_comp] [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ IsOpen (↑(TopCat.homeoOfIso (PreservesCoequalizer.iso (SheafedSpace.forget CommRingCat) f.val g.val)) ∘ ↑(colimit.ι (parallelPair ((SheafedSpace.forget CommRingCat).map f.val) ((SheafedSpace.forget CommRingCat).map g.val)) WalkingParallelPair.one) ⁻¹' (↑(coequalizer.π f.val g.val).base '' (imageBasicOpen f g U s).carrier)) [PROOFSTEP] erw [← coe_comp] [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ IsOpen (↑(colimit.ι (parallelPair ((SheafedSpace.forget CommRingCat).map f.val) ((SheafedSpace.forget CommRingCat).map g.val)) WalkingParallelPair.one ≫ (PreservesCoequalizer.iso (SheafedSpace.forget CommRingCat) f.val g.val).hom) ⁻¹' (↑(coequalizer.π f.val g.val).base '' (imageBasicOpen f g U s).carrier)) [PROOFSTEP] rw [PreservesCoequalizer.iso_hom, ι_comp_coequalizerComparison] [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ IsOpen (↑((SheafedSpace.forget CommRingCat).map (coequalizer.π f.val g.val)) ⁻¹' (↑(coequalizer.π f.val g.val).base '' (imageBasicOpen f g U s).carrier)) [PROOFSTEP] dsimp only [SheafedSpace.forget] -- Porting note : change `rw` to `erw` [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' (imageBasicOpen f g U s).carrier)) [PROOFSTEP] erw [imageBasicOpen_image_preimage] [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ⊢ IsOpen (imageBasicOpen f g U s).carrier [PROOFSTEP] exact (imageBasicOpen f g U s).2 [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) x : ↑(toTopCat Y) ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.π f.val g.val) x) [PROOFSTEP] constructor [GOAL] case map_nonunit X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) x : ↑(toTopCat Y) ⊢ ∀ (a : ↑(PresheafedSpace.stalk (coequalizer f.val g.val).toPresheafedSpace (↑(coequalizer.π f.val g.val).base x))), IsUnit (↑(PresheafedSpace.stalkMap (coequalizer.π f.val g.val) x) a) → IsUnit a [PROOFSTEP] rintro a ha [GOAL] case map_nonunit X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) x : ↑(toTopCat Y) a : ↑(PresheafedSpace.stalk (coequalizer f.val g.val).toPresheafedSpace (↑(coequalizer.π f.val g.val).base x)) ha : IsUnit (↑(PresheafedSpace.stalkMap (coequalizer.π f.val g.val) x) a) ⊢ IsUnit a [PROOFSTEP] rcases TopCat.Presheaf.germ_exist _ _ a with ⟨U, hU, s, rfl⟩ [GOAL] case map_nonunit.intro.intro.intro X Y : LocallyRingedSpace f g : X ⟶ Y U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝)) x : ↑(toTopCat Y) U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace hU : ↑(coequalizer.π f.val g.val).base x ∈ U s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ha : IsUnit (↑(PresheafedSpace.stalkMap (coequalizer.π f.val g.val) x) (↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf { val := ↑(coequalizer.π f.val g.val).base x, property := hU }) s)) ⊢ IsUnit (↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf { val := ↑(coequalizer.π f.val g.val).base x, property := hU }) s) [PROOFSTEP] erw [PresheafedSpace.stalkMap_germ_apply (coequalizer.π f.1 g.1 : _) U ⟨_, hU⟩] at ha [GOAL] case map_nonunit.intro.intro.intro X Y : LocallyRingedSpace f g : X ⟶ Y U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝)) x : ↑(toTopCat Y) U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace hU : ↑(coequalizer.π f.val g.val).base x ∈ U s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ha : IsUnit (↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU }) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) ⊢ IsUnit (↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf { val := ↑(coequalizer.π f.val g.val).base x, property := hU }) s) [PROOFSTEP] let V := imageBasicOpen f g U s [GOAL] case map_nonunit.intro.intro.intro X Y : LocallyRingedSpace f g : X ⟶ Y U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝)) x : ↑(toTopCat Y) U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace hU : ↑(coequalizer.π f.val g.val).base x ∈ U s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ha : IsUnit (↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU }) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s ⊢ IsUnit (↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf { val := ↑(coequalizer.π f.val g.val).base x, property := hU }) s) [PROOFSTEP] have hV : (coequalizer.π f.1 g.1).base ⁻¹' ((coequalizer.π f.1 g.1).base '' V.1) = V.1 := imageBasicOpen_image_preimage f g U s [GOAL] case map_nonunit.intro.intro.intro X Y : LocallyRingedSpace f g : X ⟶ Y U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝)) x : ↑(toTopCat Y) U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace hU : ↑(coequalizer.π f.val g.val).base x ∈ U s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ha : IsUnit (↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU }) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier ⊢ IsUnit (↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf { val := ↑(coequalizer.π f.val g.val).base x, property := hU }) s) [PROOFSTEP] have hV' : V = ⟨(coequalizer.π f.1 g.1).base ⁻¹' ((coequalizer.π f.1 g.1).base '' V.1), hV.symm ▸ V.2⟩ := SetLike.ext' hV.symm [GOAL] case map_nonunit.intro.intro.intro X Y : LocallyRingedSpace f g : X ⟶ Y U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝)) x : ↑(toTopCat Y) U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace hU : ↑(coequalizer.π f.val g.val).base x ∈ U s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ha : IsUnit (↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU }) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier hV' : V = { carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier), is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) } ⊢ IsUnit (↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf { val := ↑(coequalizer.π f.val g.val).base x, property := hU }) s) [PROOFSTEP] have V_open : IsOpen ((coequalizer.π f.val g.val).base '' V.1) := imageBasicOpen_image_open f g U s [GOAL] case map_nonunit.intro.intro.intro X Y : LocallyRingedSpace f g : X ⟶ Y U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝)) x : ↑(toTopCat Y) U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace hU : ↑(coequalizer.π f.val g.val).base x ∈ U s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ha : IsUnit (↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU }) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier hV' : V = { carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier), is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) } V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier) ⊢ IsUnit (↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf { val := ↑(coequalizer.π f.val g.val).base x, property := hU }) s) [PROOFSTEP] have VleU : (⟨(coequalizer.π f.val g.val).base '' V.1, V_open⟩ : TopologicalSpace.Opens _) ≤ U := Set.image_subset_iff.mpr (Y.toRingedSpace.basicOpen_le _) [GOAL] case map_nonunit.intro.intro.intro X Y : LocallyRingedSpace f g : X ⟶ Y U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝)) x : ↑(toTopCat Y) U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace hU : ↑(coequalizer.π f.val g.val).base x ∈ U s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ha : IsUnit (↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU }) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier hV' : V = { carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier), is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) } V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier) VleU : { carrier := ↑(coequalizer.π f.val g.val).base '' V.carrier, is_open' := V_open } ≤ U ⊢ IsUnit (↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf { val := ↑(coequalizer.π f.val g.val).base x, property := hU }) s) [PROOFSTEP] have hxV : x ∈ V := ⟨⟨_, hU⟩, ha, rfl⟩ [GOAL] case map_nonunit.intro.intro.intro X Y : LocallyRingedSpace f g : X ⟶ Y U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝)) x : ↑(toTopCat Y) U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace hU : ↑(coequalizer.π f.val g.val).base x ∈ U s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ha : IsUnit (↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU }) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier hV' : V = { carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier), is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) } V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier) VleU : { carrier := ↑(coequalizer.π f.val g.val).base '' V.carrier, is_open' := V_open } ≤ U hxV : x ∈ V ⊢ IsUnit (↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf { val := ↑(coequalizer.π f.val g.val).base x, property := hU }) s) [PROOFSTEP] erw [← (coequalizer f.val g.val).presheaf.germ_res_apply (homOfLE VleU) ⟨_, @Set.mem_image_of_mem _ _ (coequalizer.π f.val g.val).base x V.1 hxV⟩ s] [GOAL] case map_nonunit.intro.intro.intro X Y : LocallyRingedSpace f g : X ⟶ Y U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝)) x : ↑(toTopCat Y) U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace hU : ↑(coequalizer.π f.val g.val).base x ∈ U s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ha : IsUnit (↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU }) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier hV' : V = { carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier), is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) } V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier) VleU : { carrier := ↑(coequalizer.π f.val g.val).base '' V.carrier, is_open' := V_open } ≤ U hxV : x ∈ V ⊢ IsUnit (↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf { val := ↑(coequalizer.π f.val g.val).base x, property := (_ : ↑(coequalizer.π f.val g.val).base x ∈ ↑(coequalizer.π f.val g.val).base '' V.carrier) }) (↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.map (homOfLE VleU).op) s)) [PROOFSTEP] apply RingHom.isUnit_map [GOAL] case map_nonunit.intro.intro.intro.a X Y : LocallyRingedSpace f g : X ⟶ Y U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝)) x : ↑(toTopCat Y) U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace hU : ↑(coequalizer.π f.val g.val).base x ∈ U s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ha : IsUnit (↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU }) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier hV' : V = { carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier), is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) } V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier) VleU : { carrier := ↑(coequalizer.π f.val g.val).base '' V.carrier, is_open' := V_open } ≤ U hxV : x ∈ V ⊢ IsUnit (↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.map (homOfLE VleU).op) s) [PROOFSTEP] rw [← isUnit_map_iff ((coequalizer.π f.val g.val : _).c.app _), ← comp_apply, NatTrans.naturality, comp_apply, TopCat.Presheaf.pushforwardObj_map, ← isUnit_map_iff (Y.presheaf.map (eqToHom hV').op)] -- Porting note : change `rw` to `erw` [GOAL] case map_nonunit.intro.intro.intro.a X Y : LocallyRingedSpace f g : X ⟶ Y U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝)) x : ↑(toTopCat Y) U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace hU : ↑(coequalizer.π f.val g.val).base x ∈ U s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ha : IsUnit (↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU }) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier hV' : V = { carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier), is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) } V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier) VleU : { carrier := ↑(coequalizer.π f.val g.val).base '' V.carrier, is_open' := V_open } ≤ U hxV : x ∈ V ⊢ IsUnit (↑(Y.presheaf.map (eqToHom hV').op) (↑(Y.presheaf.map ((Opens.map (coequalizer.π f.val g.val).base).op.map (homOfLE VleU).op)) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s))) [PROOFSTEP] erw [← comp_apply, ← comp_apply, Category.assoc, ← Y.presheaf.map_comp] [GOAL] case map_nonunit.intro.intro.intro.a X Y : LocallyRingedSpace f g : X ⟶ Y U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝)) x : ↑(toTopCat Y) U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace hU : ↑(coequalizer.π f.val g.val).base x ∈ U s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U)) ha : IsUnit (↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU }) (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier hV' : V = { carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier), is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) } V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier) VleU : { carrier := ↑(coequalizer.π f.val g.val).base '' V.carrier, is_open' := V_open } ≤ U hxV : x ∈ V ⊢ IsUnit (↑(NatTrans.app (coequalizer.π f.val g.val).c (op U) ≫ Y.presheaf.map ((Opens.map (coequalizer.π f.val g.val).base).op.map (homOfLE VleU).op ≫ (eqToHom hV').op)) s) [PROOFSTEP] convert @RingedSpace.isUnit_res_basicOpen Y.toRingedSpace (unop _) (((coequalizer.π f.val g.val).c.app (op U)) s) [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y x : ↑↑(Limits.coequalizer f.val g.val).toPresheafedSpace ⊢ LocalRing ↑(TopCat.Presheaf.stalk (Limits.coequalizer f.val g.val).toPresheafedSpace.presheaf x) [PROOFSTEP] obtain ⟨y, rfl⟩ := (TopCat.epi_iff_surjective (coequalizer.π f.val g.val).base).mp inferInstance x [GOAL] case intro X Y : LocallyRingedSpace f g : X ⟶ Y y : (forget TopCat).obj ↑Y.toPresheafedSpace ⊢ LocalRing ↑(TopCat.Presheaf.stalk (Limits.coequalizer f.val g.val).toPresheafedSpace.presheaf (↑(coequalizer.π f.val g.val).base y)) [PROOFSTEP] exact (PresheafedSpace.stalkMap (coequalizer.π f.val g.val : _) y).domain_localRing [GOAL] X✝ Y✝ : LocallyRingedSpace f✝ g✝ : X✝ ⟶ Y✝ X Y : RingedSpace f g : X ⟶ Y H : f = g x : ↑↑X.toPresheafedSpace h : IsLocalRingHom (PresheafedSpace.stalkMap f x) ⊢ IsLocalRingHom (PresheafedSpace.stalkMap g x) [PROOFSTEP] rw [PresheafedSpace.stalkMap.congr_hom _ _ H.symm x] [GOAL] X✝ Y✝ : LocallyRingedSpace f✝ g✝ : X✝ ⟶ Y✝ X Y : RingedSpace f g : X ⟶ Y H : f = g x : ↑↑X.toPresheafedSpace h : IsLocalRingHom (PresheafedSpace.stalkMap f x) ⊢ IsLocalRingHom (eqToHom (_ : PresheafedSpace.stalk Y.toPresheafedSpace (↑g.base x) = PresheafedSpace.stalk Y.toPresheafedSpace (↑f.base x)) ≫ PresheafedSpace.stalkMap f x) [PROOFSTEP] infer_instance [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y ⊢ IsColimit (coequalizerCofork f g) [PROOFSTEP] apply Cofork.IsColimit.mk' [GOAL] case create X Y : LocallyRingedSpace f g : X ⟶ Y ⊢ (s : Cofork f g) → { l // Cofork.π (coequalizerCofork f g) ≫ l = Cofork.π s ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one}, Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s → m = l } [PROOFSTEP] intro s [GOAL] case create X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g ⊢ { l // Cofork.π (coequalizerCofork f g) ≫ l = Cofork.π s ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one}, Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s → m = l } [PROOFSTEP] have e : f.val ≫ s.π.val = g.val ≫ s.π.val := by injection s.condition [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g ⊢ f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val [PROOFSTEP] injection s.condition [GOAL] case create X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val ⊢ { l // Cofork.π (coequalizerCofork f g) ≫ l = Cofork.π s ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one}, Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s → m = l } [PROOFSTEP] refine ⟨⟨coequalizer.desc s.π.1 e, ?_⟩, ?_⟩ [GOAL] case create.refine_1 X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val ⊢ ∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x) [PROOFSTEP] intro x [GOAL] case create.refine_1 X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x) [PROOFSTEP] rcases(TopCat.epi_iff_surjective (coequalizer.π f.val g.val).base).mp inferInstance x with ⟨y, rfl⟩ -- Porting note : was `apply isLocalRingHom_of_comp _ (PresheafedSpace.stalkMap ...)`, this -- used to allow you to provide the proof that `... ≫ ...` is a local ring homomorphism later, -- but this is no longer possible [GOAL] case create.refine_1.intro X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val y : (forget TopCat).obj ↑Y.toPresheafedSpace ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y)) [PROOFSTEP] set h := _ [GOAL] case create.refine_1.intro X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val y : (forget TopCat).obj ↑Y.toPresheafedSpace h : ?m.154167 := ?m.154168 ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y)) [PROOFSTEP] change IsLocalRingHom h [GOAL] case create.refine_1.intro X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val y : (forget TopCat).obj ↑Y.toPresheafedSpace h : ↑(PresheafedSpace.stalk s.pt.toPresheafedSpace (↑(coequalizer.desc (Cofork.π s).val e).base (↑(coequalizer.π f.val g.val).base y))) →+* ↑(PresheafedSpace.stalk (coequalizerCofork f g).pt.toPresheafedSpace (↑(coequalizer.π f.val g.val).base y)) := PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y) ⊢ IsLocalRingHom h [PROOFSTEP] suffices : IsLocalRingHom ((PresheafedSpace.stalkMap (coequalizerCofork f g).π.1 _).comp h) [GOAL] case create.refine_1.intro X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val y : (forget TopCat).obj ↑Y.toPresheafedSpace h : ↑(PresheafedSpace.stalk s.pt.toPresheafedSpace (↑(coequalizer.desc (Cofork.π s).val e).base (↑(coequalizer.π f.val g.val).base y))) →+* ↑(PresheafedSpace.stalk (coequalizerCofork f g).pt.toPresheafedSpace (↑(coequalizer.π f.val g.val).base y)) := PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y) this : IsLocalRingHom (RingHom.comp (PresheafedSpace.stalkMap (Cofork.π (coequalizerCofork f g)).val y) h) ⊢ IsLocalRingHom h [PROOFSTEP] apply isLocalRingHom_of_comp _ (PresheafedSpace.stalkMap (coequalizerCofork f g).π.1 _) [GOAL] case this X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val y : (forget TopCat).obj ↑Y.toPresheafedSpace h : ↑(PresheafedSpace.stalk s.pt.toPresheafedSpace (↑(coequalizer.desc (Cofork.π s).val e).base (↑(coequalizer.π f.val g.val).base y))) →+* ↑(PresheafedSpace.stalk (coequalizerCofork f g).pt.toPresheafedSpace (↑(coequalizer.π f.val g.val).base y)) := PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y) ⊢ IsLocalRingHom (RingHom.comp (PresheafedSpace.stalkMap (Cofork.π (coequalizerCofork f g)).val y) h) [PROOFSTEP] change IsLocalRingHom (_ ≫ PresheafedSpace.stalkMap (coequalizerCofork f g).π.val y) [GOAL] case this X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val y : (forget TopCat).obj ↑Y.toPresheafedSpace h : ↑(PresheafedSpace.stalk s.pt.toPresheafedSpace (↑(coequalizer.desc (Cofork.π s).val e).base (↑(coequalizer.π f.val g.val).base y))) →+* ↑(PresheafedSpace.stalk (coequalizerCofork f g).pt.toPresheafedSpace (↑(coequalizer.π f.val g.val).base y)) := PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y) ⊢ IsLocalRingHom (h ≫ PresheafedSpace.stalkMap (Cofork.π (coequalizerCofork f g)).val y) [PROOFSTEP] erw [← PresheafedSpace.stalkMap.comp] [GOAL] case this X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val y : (forget TopCat).obj ↑Y.toPresheafedSpace h : ↑(PresheafedSpace.stalk s.pt.toPresheafedSpace (↑(coequalizer.desc (Cofork.π s).val e).base (↑(coequalizer.π f.val g.val).base y))) →+* ↑(PresheafedSpace.stalk (coequalizerCofork f g).pt.toPresheafedSpace (↑(coequalizer.π f.val g.val).base y)) := PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y) ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.π f.val g.val ≫ coequalizer.desc (Cofork.π s).val e) y) [PROOFSTEP] apply isLocalRingHom_stalkMap_congr _ _ (coequalizer.π_desc s.π.1 e).symm y [GOAL] case this X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val y : (forget TopCat).obj ↑Y.toPresheafedSpace h : ↑(PresheafedSpace.stalk s.pt.toPresheafedSpace (↑(coequalizer.desc (Cofork.π s).val e).base (↑(coequalizer.π f.val g.val).base y))) →+* ↑(PresheafedSpace.stalk (coequalizerCofork f g).pt.toPresheafedSpace (↑(coequalizer.π f.val g.val).base y)) := PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y) ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (Cofork.π s).val y) [PROOFSTEP] infer_instance [GOAL] case create.refine_2 X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val ⊢ Cofork.π (coequalizerCofork f g) ≫ { val := coequalizer.desc (Cofork.π s).val e, prop := (_ : ∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) } = Cofork.π s ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one}, Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s → m = { val := coequalizer.desc (Cofork.π s).val e, prop := (_ : ∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) } [PROOFSTEP] constructor [GOAL] case create.refine_2.left X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val ⊢ Cofork.π (coequalizerCofork f g) ≫ { val := coequalizer.desc (Cofork.π s).val e, prop := (_ : ∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) } = Cofork.π s [PROOFSTEP] exact LocallyRingedSpace.Hom.ext _ _ (coequalizer.π_desc _ _) [GOAL] case create.refine_2.right X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val ⊢ ∀ {m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one}, Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s → m = { val := coequalizer.desc (Cofork.π s).val e, prop := (_ : ∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) } [PROOFSTEP] intro m h [GOAL] case create.refine_2.right X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one h : Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s ⊢ m = { val := coequalizer.desc (Cofork.π s).val e, prop := (_ : ∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) } [PROOFSTEP] replace h : (coequalizerCofork f g).π.1 ≫ m.1 = s.π.1 := by rw [← h]; rfl [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one h : Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s ⊢ (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val [PROOFSTEP] rw [← h] [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one h : Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s ⊢ (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π (coequalizerCofork f g) ≫ m).val [PROOFSTEP] rfl [GOAL] case create.refine_2.right X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val ⊢ m = { val := coequalizer.desc (Cofork.π s).val e, prop := (_ : ∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) } [PROOFSTEP] apply LocallyRingedSpace.Hom.ext [GOAL] case create.refine_2.right.val X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val ⊢ m.val = { val := coequalizer.desc (Cofork.π s).val e, prop := (_ : ∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) }.val [PROOFSTEP] apply (colimit.isColimit (parallelPair f.1 g.1)).uniq (Cofork.ofπ s.π.1 e) m.1 [GOAL] case create.refine_2.right.val X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val ⊢ ∀ (j : WalkingParallelPair), NatTrans.app (colimit.cocone (parallelPair f.val g.val)).ι j ≫ m.val = NatTrans.app (Cofork.ofπ (Cofork.π s).val e).ι j [PROOFSTEP] rintro ⟨⟩ [GOAL] case create.refine_2.right.val.zero X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val ⊢ NatTrans.app (colimit.cocone (parallelPair f.val g.val)).ι WalkingParallelPair.zero ≫ m.val = NatTrans.app (Cofork.ofπ (Cofork.π s).val e).ι WalkingParallelPair.zero [PROOFSTEP] rw [← (colimit.cocone (parallelPair f.val g.val)).w WalkingParallelPairHom.left, Category.assoc] [GOAL] case create.refine_2.right.val.zero X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val ⊢ (parallelPair f.val g.val).map WalkingParallelPairHom.left ≫ NatTrans.app (colimit.cocone (parallelPair f.val g.val)).ι WalkingParallelPair.one ≫ m.val = NatTrans.app (Cofork.ofπ (Cofork.π s).val e).ι WalkingParallelPair.zero [PROOFSTEP] change _ ≫ _ ≫ _ = _ ≫ _ [GOAL] case create.refine_2.right.val.zero X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val ⊢ (parallelPair f.val g.val).map WalkingParallelPairHom.left ≫ NatTrans.app (colimit.cocone (parallelPair f.val g.val)).ι WalkingParallelPair.one ≫ m.val = f.val ≫ (Cofork.π s).val [PROOFSTEP] congr [GOAL] case create.refine_2.right.val.one X Y : LocallyRingedSpace f g : X ⟶ Y s : Cofork f g e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val m : ((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val ⊢ NatTrans.app (colimit.cocone (parallelPair f.val g.val)).ι WalkingParallelPair.one ≫ m.val = NatTrans.app (Cofork.ofπ (Cofork.π s).val e).ι WalkingParallelPair.one [PROOFSTEP] exact h [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y F : WalkingParallelPair ⥤ LocallyRingedSpace ⊢ PreservesColimit F forgetToSheafedSpace [PROOFSTEP] suffices : PreservesColimit (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right)) forgetToSheafedSpace [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y F : WalkingParallelPair ⥤ LocallyRingedSpace this : PreservesColimit (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right)) forgetToSheafedSpace ⊢ PreservesColimit F forgetToSheafedSpace [PROOFSTEP] apply preservesColimitOfIsoDiagram _ (diagramIsoParallelPair F).symm [GOAL] case this X Y : LocallyRingedSpace f g : X ⟶ Y F : WalkingParallelPair ⥤ LocallyRingedSpace ⊢ PreservesColimit (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right)) forgetToSheafedSpace [PROOFSTEP] apply preservesColimitOfPreservesColimitCocone (coequalizerCoforkIsColimit _ _) [GOAL] case this X Y : LocallyRingedSpace f g : X ⟶ Y F : WalkingParallelPair ⥤ LocallyRingedSpace ⊢ IsColimit (forgetToSheafedSpace.mapCocone (coequalizerCofork (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right))) [PROOFSTEP] apply (isColimitMapCoconeCoforkEquiv _ _).symm _ [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y F : WalkingParallelPair ⥤ LocallyRingedSpace ⊢ IsColimit (Cofork.ofπ (forgetToSheafedSpace.map { val := coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val, prop := (_ : ∀ (x : ↑(toTopCat (F.obj WalkingParallelPair.one))), IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val) x)) }) (_ : forgetToSheafedSpace.map (F.map WalkingParallelPairHom.left) ≫ forgetToSheafedSpace.map { val := coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val, prop := (_ : ∀ (x : ↑(toTopCat (F.obj WalkingParallelPair.one))), IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val) x)) } = forgetToSheafedSpace.map (F.map WalkingParallelPairHom.right) ≫ forgetToSheafedSpace.map { val := coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val, prop := (_ : ∀ (x : ↑(toTopCat (F.obj WalkingParallelPair.one))), IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val) x)) })) [PROOFSTEP] dsimp only [forgetToSheafedSpace] [GOAL] X Y : LocallyRingedSpace f g : X ⟶ Y F : WalkingParallelPair ⥤ LocallyRingedSpace ⊢ IsColimit (Cofork.ofπ (coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val) (_ : (F.map WalkingParallelPairHom.left).val ≫ coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val = (F.map WalkingParallelPairHom.right).val ≫ coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val)) [PROOFSTEP] exact coequalizerIsCoequalizer _ _
{"mathlib_filename": "Mathlib.AlgebraicGeometry.LocallyRingedSpace.HasColimits", "llama_tokens": 28174}
[GOAL] L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N) → FG N [PROOFSTEP] rintro ⟨t', h, rfl⟩ [GOAL] case intro.intro L : Language M : Type u_1 inst✝ : Structure L M t' : Set M h : Set.Finite t' ⊢ FG (LowerAdjoint.toFun (closure L) t') [PROOFSTEP] rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ [GOAL] case intro.intro.intro L : Language M : Type u_1 inst✝ : Structure L M t : Finset M h : Set.Finite ↑t ⊢ FG (LowerAdjoint.toFun (closure L) ↑t) [PROOFSTEP] exact ⟨t, rfl⟩ [GOAL] L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ FG N ↔ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N [PROOFSTEP] rw [fg_def] [GOAL] L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N) ↔ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N [PROOFSTEP] constructor [GOAL] case mp L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N) → ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N [PROOFSTEP] rintro ⟨S, Sfin, hS⟩ [GOAL] case mp.intro.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Sfin : Set.Finite S hS : LowerAdjoint.toFun (closure L) S = N ⊢ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N [PROOFSTEP] obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding [GOAL] case mp.intro.intro.intro.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M n : ℕ f : Fin n ↪ M Sfin : Set.Finite (range ↑f) hS : LowerAdjoint.toFun (closure L) (range ↑f) = N ⊢ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N [PROOFSTEP] exact ⟨n, f, hS⟩ [GOAL] case mpr L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (∃ n s, LowerAdjoint.toFun (closure L) (range s) = N) → ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N [PROOFSTEP] rintro ⟨n, s, hs⟩ [GOAL] case mpr.intro.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M n : ℕ s : Fin n → M hs : LowerAdjoint.toFun (closure L) (range s) = N ⊢ ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N [PROOFSTEP] refine' ⟨range s, finite_range s, hs⟩ [GOAL] L : Language M : Type u_1 inst✝ : Structure L M ⊢ LowerAdjoint.toFun (closure L) ↑∅ = ⊥ [PROOFSTEP] rw [Finset.coe_empty, closure_empty] [GOAL] L : Language M : Type u_1 inst✝ : Structure L M s : Set M hs : Set.Finite s ⊢ LowerAdjoint.toFun (closure L) ↑(Finite.toFinset hs) = LowerAdjoint.toFun (closure L) s [PROOFSTEP] rw [hs.coe_toFinset] [GOAL] L : Language M : Type u_1 inst✝ : Structure L M N₁ N₂ : Substructure L M hN₁ : FG N₁ hN₂ : FG N₂ t₁ : Set M ht₁ : Set.Finite t₁ ∧ LowerAdjoint.toFun (closure L) t₁ = N₁ t₂ : Set M ht₂ : Set.Finite t₂ ∧ LowerAdjoint.toFun (closure L) t₂ = N₂ ⊢ LowerAdjoint.toFun (closure L) (t₁ ∪ t₂) = N₁ ⊔ N₂ [PROOFSTEP] rw [closure_union, ht₁.2, ht₂.2] [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M →[L] N s : Substructure L M hs : FG s t : Set M ht : Set.Finite t ∧ LowerAdjoint.toFun (closure L) t = s ⊢ LowerAdjoint.toFun (closure L) (↑f '' t) = Substructure.map f s [PROOFSTEP] rw [closure_image, ht.2] [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M hs : FG (Substructure.map (Embedding.toHom f) s) ⊢ FG s [PROOFSTEP] rcases hs with ⟨t, h⟩ [GOAL] case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s ⊢ FG s [PROOFSTEP] rw [fg_def] [GOAL] case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s ⊢ ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = s [PROOFSTEP] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ [GOAL] case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s ⊢ LowerAdjoint.toFun (closure L) (↑f ⁻¹' ↑t) = s [PROOFSTEP] have hf : Function.Injective f.toHom := f.injective [GOAL] case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ↑(Embedding.toHom f) ⊢ LowerAdjoint.toFun (closure L) (↑f ⁻¹' ↑t) = s [PROOFSTEP] refine' map_injective_of_injective hf _ [GOAL] case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ↑(Embedding.toHom f) ⊢ Substructure.map (Embedding.toHom f) (LowerAdjoint.toFun (closure L) (↑f ⁻¹' ↑t)) = Substructure.map (Embedding.toHom f) s [PROOFSTEP] rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] [GOAL] case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ↑(Embedding.toHom f) ⊢ ↑t ⊆ range ↑f [PROOFSTEP] intro x hx [GOAL] case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ↑(Embedding.toHom f) x : N hx : x ∈ ↑t ⊢ x ∈ range ↑f [PROOFSTEP] have h' := subset_closure (L := L) hx [GOAL] case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ↑(Embedding.toHom f) x : N hx : x ∈ ↑t h' : x ∈ ↑(LowerAdjoint.toFun (closure L) ↑t) ⊢ x ∈ range ↑f [PROOFSTEP] rw [h] at h' [GOAL] case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ↑(Embedding.toHom f) x : N hx : x ∈ ↑t h' : x ∈ ↑(Substructure.map (Embedding.toHom f) s) ⊢ x ∈ range ↑f [PROOFSTEP] exact Hom.map_le_range h' [GOAL] L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M h : FG N ⊢ CG N [PROOFSTEP] obtain ⟨s, hf, rfl⟩ := fg_def.1 h [GOAL] case intro.intro L : Language M : Type u_1 inst✝ : Structure L M s : Set M hf : Set.Finite s h : FG (LowerAdjoint.toFun (closure L) s) ⊢ CG (LowerAdjoint.toFun (closure L) s) [PROOFSTEP] refine' ⟨s, hf.countable, rfl⟩ [GOAL] L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ CG N ↔ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N [PROOFSTEP] rw [cg_def] [GOAL] L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N) ↔ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N [PROOFSTEP] constructor [GOAL] case mp L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N) → ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N [PROOFSTEP] rintro ⟨S, Scount, hS⟩ [GOAL] case mp.intro.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Scount : Set.Countable S hS : LowerAdjoint.toFun (closure L) S = N ⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N [PROOFSTEP] cases' eq_empty_or_nonempty (N : Set M) with h h [GOAL] case mp.intro.intro.inl L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Scount : Set.Countable S hS : LowerAdjoint.toFun (closure L) S = N h : ↑N = ∅ ⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N [PROOFSTEP] exact Or.intro_left _ h [GOAL] case mp.intro.intro.inr L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Scount : Set.Countable S hS : LowerAdjoint.toFun (closure L) S = N h : Set.Nonempty ↑N ⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N [PROOFSTEP] obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr [GOAL] case mp.intro.intro.inr.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Scount : Set.Countable S hS : LowerAdjoint.toFun (closure L) S = N h : Set.Nonempty ↑N f : ℕ → M h' : S ∪ {Set.Nonempty.some h} = range f ⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N [PROOFSTEP] refine' Or.intro_right _ ⟨f, _⟩ [GOAL] case mp.intro.intro.inr.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Scount : Set.Countable S hS : LowerAdjoint.toFun (closure L) S = N h : Set.Nonempty ↑N f : ℕ → M h' : S ∪ {Set.Nonempty.some h} = range f ⊢ LowerAdjoint.toFun (closure L) (range f) = N [PROOFSTEP] rw [← h', closure_union, hS, sup_eq_left, closure_le] [GOAL] case mp.intro.intro.inr.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Scount : Set.Countable S hS : LowerAdjoint.toFun (closure L) S = N h : Set.Nonempty ↑N f : ℕ → M h' : S ∪ {Set.Nonempty.some h} = range f ⊢ {Set.Nonempty.some h} ⊆ ↑N [PROOFSTEP] exact singleton_subset_iff.2 h.some_mem [GOAL] case mpr L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N) → ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N [PROOFSTEP] intro h [GOAL] case mpr L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M h : ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N ⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N [PROOFSTEP] cases' h with h h [GOAL] case mpr.inl L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M h : ↑N = ∅ ⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N [PROOFSTEP] refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩ [GOAL] case mpr.inl L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M h : ↑N = ∅ ⊢ N ≤ LowerAdjoint.toFun (closure L) ∅ [PROOFSTEP] rw [← SetLike.coe_subset_coe, h] [GOAL] case mpr.inl L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M h : ↑N = ∅ ⊢ ∅ ⊆ ↑(LowerAdjoint.toFun (closure L) ∅) [PROOFSTEP] exact empty_subset _ [GOAL] case mpr.inr L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M h : ∃ s, LowerAdjoint.toFun (closure L) (range s) = N ⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N [PROOFSTEP] obtain ⟨f, rfl⟩ := h [GOAL] case mpr.inr.intro L : Language M : Type u_1 inst✝ : Structure L M f : ℕ → M ⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = LowerAdjoint.toFun (closure L) (range f) [PROOFSTEP] exact ⟨range f, countable_range _, rfl⟩ [GOAL] L : Language M : Type u_1 inst✝ : Structure L M N₁ N₂ : Substructure L M hN₁ : CG N₁ hN₂ : CG N₂ t₁ : Set M ht₁ : Set.Countable t₁ ∧ LowerAdjoint.toFun (closure L) t₁ = N₁ t₂ : Set M ht₂ : Set.Countable t₂ ∧ LowerAdjoint.toFun (closure L) t₂ = N₂ ⊢ LowerAdjoint.toFun (closure L) (t₁ ∪ t₂) = N₁ ⊔ N₂ [PROOFSTEP] rw [closure_union, ht₁.2, ht₂.2] [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M →[L] N s : Substructure L M hs : CG s t : Set M ht : Set.Countable t ∧ LowerAdjoint.toFun (closure L) t = s ⊢ LowerAdjoint.toFun (closure L) (↑f '' t) = Substructure.map f s [PROOFSTEP] rw [closure_image, ht.2] [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M hs : CG (Substructure.map (Embedding.toHom f) s) ⊢ CG s [PROOFSTEP] rcases hs with ⟨t, h1, h2⟩ [GOAL] case intro.intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Set N h1 : Set.Countable t h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s ⊢ CG s [PROOFSTEP] rw [cg_def] [GOAL] case intro.intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Set N h1 : Set.Countable t h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s ⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = s [PROOFSTEP] refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩ [GOAL] case intro.intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Set N h1 : Set.Countable t h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s ⊢ LowerAdjoint.toFun (closure L) (↑f ⁻¹' t) = s [PROOFSTEP] have hf : Function.Injective f.toHom := f.injective [GOAL] case intro.intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Set N h1 : Set.Countable t h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ↑(Embedding.toHom f) ⊢ LowerAdjoint.toFun (closure L) (↑f ⁻¹' t) = s [PROOFSTEP] refine' map_injective_of_injective hf _ [GOAL] case intro.intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Set N h1 : Set.Countable t h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ↑(Embedding.toHom f) ⊢ Substructure.map (Embedding.toHom f) (LowerAdjoint.toFun (closure L) (↑f ⁻¹' t)) = Substructure.map (Embedding.toHom f) s [PROOFSTEP] rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] [GOAL] case intro.intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Set N h1 : Set.Countable t h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ↑(Embedding.toHom f) ⊢ t ⊆ range ↑f [PROOFSTEP] intro x hx [GOAL] case intro.intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Set N h1 : Set.Countable t h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ↑(Embedding.toHom f) x : N hx : x ∈ t ⊢ x ∈ range ↑f [PROOFSTEP] have h' := subset_closure (L := L) hx [GOAL] case intro.intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Set N h1 : Set.Countable t h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ↑(Embedding.toHom f) x : N hx : x ∈ t h' : x ∈ ↑(LowerAdjoint.toFun (closure L) t) ⊢ x ∈ range ↑f [PROOFSTEP] rw [h2] at h' [GOAL] case intro.intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Set N h1 : Set.Countable t h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ↑(Embedding.toHom f) x : N hx : x ∈ t h' : x ∈ ↑(Substructure.map (Embedding.toHom f) s) ⊢ x ∈ range ↑f [PROOFSTEP] exact Hom.map_le_range h' [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M inst✝ : Countable ((l : ℕ) × Functions L l) s : Substructure L M ⊢ CG s ↔ Countable { x // x ∈ s } [PROOFSTEP] refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩ [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M inst✝ : Countable ((l : ℕ) × Functions L l) s : Substructure L M ⊢ CG s → Countable { x // x ∈ s } [PROOFSTEP] rintro ⟨s, h, rfl⟩ [GOAL] case intro.intro L : Language M : Type u_1 inst✝¹ : Structure L M inst✝ : Countable ((l : ℕ) × Functions L l) s : Set M h : Set.Countable s ⊢ Countable { x // x ∈ LowerAdjoint.toFun (closure L) s } [PROOFSTEP] exact h.substructure_closure L [GOAL] L : Language M : Type u_1 inst✝ : Structure L M ⊢ FG L M ↔ ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = ⊤ [PROOFSTEP] rw [fg_def, Substructure.fg_def] [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N h : FG L M f : M →[L] N ⊢ Substructure.FG (Hom.range f) [PROOFSTEP] rw [Hom.range_eq_map] [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N h : FG L M f : M →[L] N ⊢ Substructure.FG (map f ⊤) [PROOFSTEP] exact (fg_def.1 h).map f [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N h : FG L M f : M →[L] N hs : Function.Surjective ↑f ⊢ FG L N [PROOFSTEP] rw [← Hom.range_eq_top] at hs [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N h : FG L M f : M →[L] N hs : Hom.range f = ⊤ ⊢ FG L N [PROOFSTEP] rw [fg_def, ← hs] [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N h : FG L M f : M →[L] N hs : Hom.range f = ⊤ ⊢ Substructure.FG (Hom.range f) [PROOFSTEP] exact h.range f [GOAL] L : Language M : Type u_1 inst✝ : Structure L M ⊢ CG L M ↔ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = ⊤ [PROOFSTEP] rw [cg_def, Substructure.cg_def] [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N h : CG L M f : M →[L] N ⊢ Substructure.CG (Hom.range f) [PROOFSTEP] rw [Hom.range_eq_map] [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N h : CG L M f : M →[L] N ⊢ Substructure.CG (map f ⊤) [PROOFSTEP] exact (cg_def.1 h).map f [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N h : CG L M f : M →[L] N hs : Function.Surjective ↑f ⊢ CG L N [PROOFSTEP] rw [← Hom.range_eq_top] at hs [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N h : CG L M f : M →[L] N hs : Hom.range f = ⊤ ⊢ CG L N [PROOFSTEP] rw [cg_def, ← hs] [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N h : CG L M f : M →[L] N hs : Hom.range f = ⊤ ⊢ Substructure.CG (Hom.range f) [PROOFSTEP] exact h.range f [GOAL] L : Language M : Type u_1 inst✝¹ : Structure L M inst✝ : Countable ((l : ℕ) × Functions L l) ⊢ CG L M ↔ Countable M [PROOFSTEP] rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff] [GOAL] L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M ⊢ FG S ↔ Structure.FG L { x // x ∈ S } [PROOFSTEP] rw [Structure.fg_def] [GOAL] L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M ⊢ FG S ↔ FG ⊤ [PROOFSTEP] refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩ [GOAL] case refine'_1 L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M h : FG S ⊢ FG (map (Embedding.toHom (subtype S)) ⊤) [PROOFSTEP] rw [← Hom.range_eq_map, range_subtype] [GOAL] case refine'_1 L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M h : FG S ⊢ FG S [PROOFSTEP] exact h [GOAL] case refine'_2 L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M h : FG ⊤ ⊢ FG S [PROOFSTEP] have h := h.map S.subtype.toHom [GOAL] case refine'_2 L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M h✝ : FG ⊤ h : FG (map (Embedding.toHom (subtype S)) ⊤) ⊢ FG S [PROOFSTEP] rw [← Hom.range_eq_map, range_subtype] at h [GOAL] case refine'_2 L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M h✝ : FG ⊤ h : FG S ⊢ FG S [PROOFSTEP] exact h [GOAL] L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M ⊢ CG S ↔ Structure.CG L { x // x ∈ S } [PROOFSTEP] rw [Structure.cg_def] [GOAL] L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M ⊢ CG S ↔ CG ⊤ [PROOFSTEP] refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩ [GOAL] case refine'_1 L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M h : CG S ⊢ CG (map (Embedding.toHom (subtype S)) ⊤) [PROOFSTEP] rw [← Hom.range_eq_map, range_subtype] [GOAL] case refine'_1 L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M h : CG S ⊢ CG S [PROOFSTEP] exact h [GOAL] case refine'_2 L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M h : CG ⊤ ⊢ CG S [PROOFSTEP] have h := h.map S.subtype.toHom [GOAL] case refine'_2 L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M h✝ : CG ⊤ h : CG (map (Embedding.toHom (subtype S)) ⊤) ⊢ CG S [PROOFSTEP] rw [← Hom.range_eq_map, range_subtype] at h [GOAL] case refine'_2 L : Language M : Type u_1 inst✝ : Structure L M S : Substructure L M h✝ : CG ⊤ h : CG S ⊢ CG S [PROOFSTEP] exact h
{"mathlib_filename": "Mathlib.ModelTheory.FinitelyGenerated", "llama_tokens": 9756}
[GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 s : Set A ⊢ zeroLocus 𝒜 ↑(Ideal.span s) = zeroLocus 𝒜 s [PROOFSTEP] ext x [GOAL] case h R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 s : Set A x : ProjectiveSpectrum 𝒜 ⊢ x ∈ zeroLocus 𝒜 ↑(Ideal.span s) ↔ x ∈ zeroLocus 𝒜 s [PROOFSTEP] exact (Submodule.gi _ _).gc s x.asHomogeneousIdeal.toIdeal [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) ⊢ ↑(vanishingIdeal t) = {f | ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal} [PROOFSTEP] ext f [GOAL] case h R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) f : A ⊢ f ∈ ↑(vanishingIdeal t) ↔ f ∈ {f | ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal} [PROOFSTEP] rw [vanishingIdeal, SetLike.mem_coe, ← HomogeneousIdeal.mem_iff, HomogeneousIdeal.toIdeal_iInf, Submodule.mem_iInf] [GOAL] case h R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) f : A ⊢ (∀ (i : ProjectiveSpectrum 𝒜), f ∈ HomogeneousIdeal.toIdeal (⨅ (_ : i ∈ t), i.asHomogeneousIdeal)) ↔ f ∈ {f | ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal} [PROOFSTEP] refine' forall_congr' fun x => _ [GOAL] case h R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) f : A x : ProjectiveSpectrum 𝒜 ⊢ f ∈ HomogeneousIdeal.toIdeal (⨅ (_ : x ∈ t), x.asHomogeneousIdeal) ↔ x ∈ t → f ∈ x.asHomogeneousIdeal [PROOFSTEP] rw [HomogeneousIdeal.toIdeal_iInf, Submodule.mem_iInf, HomogeneousIdeal.mem_iff] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) f : A ⊢ f ∈ vanishingIdeal t ↔ ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal [PROOFSTEP] rw [← SetLike.mem_coe, coe_vanishingIdeal, Set.mem_setOf_eq] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ProjectiveSpectrum 𝒜 ⊢ vanishingIdeal {x} = x.asHomogeneousIdeal [PROOFSTEP] simp [vanishingIdeal] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 ⊢ GaloisConnection (fun s => zeroLocus 𝒜 s) fun t => ↑(vanishingIdeal t) [PROOFSTEP] have ideal_gc : GaloisConnection Ideal.span _ := (Submodule.gi A _).gc [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 ideal_gc : GaloisConnection Ideal.span SetLike.coe ⊢ GaloisConnection (fun s => zeroLocus 𝒜 s) fun t => ↑(vanishingIdeal t) [PROOFSTEP] simpa [zeroLocus_span, Function.comp] using GaloisConnection.compose ideal_gc (gc_ideal 𝒜) [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 I : HomogeneousIdeal 𝒜 t : (Set (ProjectiveSpectrum 𝒜))ᵒᵈ ⊢ (fun I => zeroLocus 𝒜 ↑I) I ≤ t ↔ I ≤ (fun t => vanishingIdeal t) t [PROOFSTEP] simpa [show I.toIdeal ≤ (vanishingIdeal t).toIdeal ↔ I ≤ vanishingIdeal t from Iff.rfl] using subset_zeroLocus_iff_le_vanishingIdeal t I.toIdeal [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 ⊢ vanishingIdeal ∅ = ⊤ [PROOFSTEP] simpa using (gc_ideal _).u_top [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t t' : Set (ProjectiveSpectrum 𝒜) ⊢ vanishingIdeal (t ∪ t') = vanishingIdeal t ⊓ vanishingIdeal t' [PROOFSTEP] ext1 [GOAL] case h R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t t' : Set (ProjectiveSpectrum 𝒜) ⊢ HomogeneousIdeal.toIdeal (vanishingIdeal (t ∪ t')) = HomogeneousIdeal.toIdeal (vanishingIdeal t ⊓ vanishingIdeal t') [PROOFSTEP] exact (gc_ideal 𝒜).u_inf [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 s : Set (Set A) ⊢ zeroLocus 𝒜 (⋃ (s' : Set A) (_ : s' ∈ s), s') = ⋂ (s' : Set A) (_ : s' ∈ s), zeroLocus 𝒜 s' [PROOFSTEP] simp only [zeroLocus_iUnion] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 γ : Sort u_3 t : γ → Set (ProjectiveSpectrum 𝒜) ⊢ HomogeneousIdeal.toIdeal (vanishingIdeal (⋃ (i : γ), t i)) = HomogeneousIdeal.toIdeal (⨅ (i : γ), vanishingIdeal (t i)) [PROOFSTEP] convert (gc_ideal 𝒜).u_iInf [GOAL] case h.e'_3 R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 γ : Sort u_3 t : γ → Set (ProjectiveSpectrum 𝒜) ⊢ HomogeneousIdeal.toIdeal (⨅ (i : γ), vanishingIdeal (t i)) = ⨅ (i : γ), HomogeneousIdeal.toIdeal (vanishingIdeal (t i)) [PROOFSTEP] exact HomogeneousIdeal.toIdeal_iInf _ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 s s' : Set A ⊢ zeroLocus 𝒜 s ∪ zeroLocus 𝒜 s' = zeroLocus 𝒜 ↑(Ideal.span s ⊓ Ideal.span s') [PROOFSTEP] rw [zeroLocus_inf] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 s s' : Set A ⊢ zeroLocus 𝒜 s ∪ zeroLocus 𝒜 s' = zeroLocus 𝒜 ↑(Ideal.span s) ∪ zeroLocus 𝒜 ↑(Ideal.span s') [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f g : A x : ProjectiveSpectrum 𝒜 ⊢ x ∈ zeroLocus 𝒜 {f * g} ↔ x ∈ zeroLocus 𝒜 {f} ∪ zeroLocus 𝒜 {g} [PROOFSTEP] simpa using x.isPrime.mul_mem_iff_mem_or_mem [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A n : ℕ hn : 0 < n x : ProjectiveSpectrum 𝒜 ⊢ x ∈ zeroLocus 𝒜 {f ^ n} ↔ x ∈ zeroLocus 𝒜 {f} [PROOFSTEP] simpa using x.isPrime.pow_mem_iff_mem n hn [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t t' : Set (ProjectiveSpectrum 𝒜) ⊢ vanishingIdeal t ⊔ vanishingIdeal t' ≤ vanishingIdeal (t ∩ t') [PROOFSTEP] intro r [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t t' : Set (ProjectiveSpectrum 𝒜) r : A ⊢ r ∈ vanishingIdeal t ⊔ vanishingIdeal t' → r ∈ vanishingIdeal (t ∩ t') [PROOFSTEP] rw [← HomogeneousIdeal.mem_iff, HomogeneousIdeal.toIdeal_sup, mem_vanishingIdeal, Submodule.mem_sup] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t t' : Set (ProjectiveSpectrum 𝒜) r : A ⊢ (∃ y, y ∈ HomogeneousIdeal.toIdeal (vanishingIdeal t) ∧ ∃ z, z ∈ HomogeneousIdeal.toIdeal (vanishingIdeal t') ∧ y + z = r) → ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t ∩ t' → r ∈ x.asHomogeneousIdeal [PROOFSTEP] rintro ⟨f, hf, g, hg, rfl⟩ x ⟨hxt, hxt'⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t t' : Set (ProjectiveSpectrum 𝒜) f : A hf : f ∈ HomogeneousIdeal.toIdeal (vanishingIdeal t) g : A hg : g ∈ HomogeneousIdeal.toIdeal (vanishingIdeal t') x : ProjectiveSpectrum 𝒜 hxt : x ∈ t hxt' : x ∈ t' ⊢ f + g ∈ x.asHomogeneousIdeal [PROOFSTEP] erw [mem_vanishingIdeal] at hf hg [GOAL] case intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t t' : Set (ProjectiveSpectrum 𝒜) f : A hf : ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal g : A hg : ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t' → g ∈ x.asHomogeneousIdeal x : ProjectiveSpectrum 𝒜 hxt : x ∈ t hxt' : x ∈ t' ⊢ f + g ∈ x.asHomogeneousIdeal [PROOFSTEP] apply Submodule.add_mem [GOAL] case intro.intro.intro.intro.intro.h₁ R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t t' : Set (ProjectiveSpectrum 𝒜) f : A hf : ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal g : A hg : ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t' → g ∈ x.asHomogeneousIdeal x : ProjectiveSpectrum 𝒜 hxt : x ∈ t hxt' : x ∈ t' ⊢ f ∈ HomogeneousIdeal.toIdeal x.asHomogeneousIdeal [PROOFSTEP] solve_by_elim [GOAL] case intro.intro.intro.intro.intro.h₂ R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t t' : Set (ProjectiveSpectrum 𝒜) f : A hf : ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal g : A hg : ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t' → g ∈ x.asHomogeneousIdeal x : ProjectiveSpectrum 𝒜 hxt : x ∈ t hxt' : x ∈ t' ⊢ g ∈ HomogeneousIdeal.toIdeal x.asHomogeneousIdeal [PROOFSTEP] solve_by_elim [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A I : ProjectiveSpectrum 𝒜 ⊢ I ∈ (zeroLocus 𝒜 {f})ᶜ ↔ ¬f ∈ I.asHomogeneousIdeal [PROOFSTEP] rw [Set.mem_compl_iff, mem_zeroLocus, Set.singleton_subset_iff] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A I : ProjectiveSpectrum 𝒜 ⊢ ¬f ∈ ↑I.asHomogeneousIdeal ↔ ¬f ∈ I.asHomogeneousIdeal [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 ⊢ zeroLocus 𝒜 Set.univ = ∅ [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 ⊢ ∀ (A_1 : Set (Set (ProjectiveSpectrum 𝒜))), A_1 ⊆ Set.range (zeroLocus 𝒜) → ⋂₀ A_1 ∈ Set.range (zeroLocus 𝒜) [PROOFSTEP] intro Zs h [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 Zs : Set (Set (ProjectiveSpectrum 𝒜)) h : Zs ⊆ Set.range (zeroLocus 𝒜) ⊢ ⋂₀ Zs ∈ Set.range (zeroLocus 𝒜) [PROOFSTEP] rw [Set.sInter_eq_iInter] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 Zs : Set (Set (ProjectiveSpectrum 𝒜)) h : Zs ⊆ Set.range (zeroLocus 𝒜) ⊢ ⋂ (i : ↑Zs), ↑i ∈ Set.range (zeroLocus 𝒜) [PROOFSTEP] let f : Zs → Set _ := fun i => Classical.choose (h i.2) [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 Zs : Set (Set (ProjectiveSpectrum 𝒜)) h : Zs ⊆ Set.range (zeroLocus 𝒜) f : ↑Zs → Set A := fun i => Classical.choose (_ : ↑i ∈ Set.range (zeroLocus 𝒜)) ⊢ ⋂ (i : ↑Zs), ↑i ∈ Set.range (zeroLocus 𝒜) [PROOFSTEP] have H : (Set.iInter fun i ↦ zeroLocus 𝒜 (f i)) ∈ Set.range (zeroLocus 𝒜) := ⟨_, zeroLocus_iUnion 𝒜 _⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 Zs : Set (Set (ProjectiveSpectrum 𝒜)) h : Zs ⊆ Set.range (zeroLocus 𝒜) f : ↑Zs → Set A := fun i => Classical.choose (_ : ↑i ∈ Set.range (zeroLocus 𝒜)) H : ⋂ (i : ↑Zs), zeroLocus 𝒜 (f i) ∈ Set.range (zeroLocus 𝒜) ⊢ ⋂ (i : ↑Zs), ↑i ∈ Set.range (zeroLocus 𝒜) [PROOFSTEP] convert H using 2 [GOAL] case h.e'_4.h.e'_3 R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 Zs : Set (Set (ProjectiveSpectrum 𝒜)) h : Zs ⊆ Set.range (zeroLocus 𝒜) f : ↑Zs → Set A := fun i => Classical.choose (_ : ↑i ∈ Set.range (zeroLocus 𝒜)) H : ⋂ (i : ↑Zs), zeroLocus 𝒜 (f i) ∈ Set.range (zeroLocus 𝒜) ⊢ (fun i => ↑i) = fun i => zeroLocus 𝒜 (f i) [PROOFSTEP] funext i [GOAL] case h.e'_4.h.e'_3.h R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 Zs : Set (Set (ProjectiveSpectrum 𝒜)) h : Zs ⊆ Set.range (zeroLocus 𝒜) f : ↑Zs → Set A := fun i => Classical.choose (_ : ↑i ∈ Set.range (zeroLocus 𝒜)) H : ⋂ (i : ↑Zs), zeroLocus 𝒜 (f i) ∈ Set.range (zeroLocus 𝒜) i : ↑Zs ⊢ ↑i = zeroLocus 𝒜 (f i) [PROOFSTEP] exact (Classical.choose_spec (h i.2)).symm [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 ⊢ ∀ (A_1 : Set (ProjectiveSpectrum 𝒜)), A_1 ∈ Set.range (zeroLocus 𝒜) → ∀ (B : Set (ProjectiveSpectrum 𝒜)), B ∈ Set.range (zeroLocus 𝒜) → A_1 ∪ B ∈ Set.range (zeroLocus 𝒜) [PROOFSTEP] rintro _ ⟨s, rfl⟩ _ ⟨t, rfl⟩ [GOAL] case intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 s t : Set A ⊢ zeroLocus 𝒜 s ∪ zeroLocus 𝒜 t ∈ Set.range (zeroLocus 𝒜) [PROOFSTEP] exact ⟨_, (union_zeroLocus 𝒜 s t).symm⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : Set (ProjectiveSpectrum 𝒜) ⊢ IsOpen U ↔ ∃ s, Uᶜ = zeroLocus 𝒜 s [PROOFSTEP] simp only [@eq_comm _ Uᶜ] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : Set (ProjectiveSpectrum 𝒜) ⊢ IsOpen U ↔ ∃ s, zeroLocus 𝒜 s = Uᶜ [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 Z : Set (ProjectiveSpectrum 𝒜) ⊢ IsClosed Z ↔ ∃ s, Z = zeroLocus 𝒜 s [PROOFSTEP] rw [← isOpen_compl_iff, isOpen_iff, compl_compl] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 s : Set A ⊢ IsClosed (zeroLocus 𝒜 s) [PROOFSTEP] rw [isClosed_iff_zeroLocus] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 s : Set A ⊢ ∃ s_1, zeroLocus 𝒜 s = zeroLocus 𝒜 s_1 [PROOFSTEP] exact ⟨s, rfl⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) ⊢ zeroLocus 𝒜 ↑(vanishingIdeal t) = closure t [PROOFSTEP] apply Set.Subset.antisymm [GOAL] case h₁ R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) ⊢ zeroLocus 𝒜 ↑(vanishingIdeal t) ⊆ closure t [PROOFSTEP] rintro x hx t' ⟨ht', ht⟩ [GOAL] case h₁.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) x : ProjectiveSpectrum 𝒜 hx : x ∈ zeroLocus 𝒜 ↑(vanishingIdeal t) t' : Set (ProjectiveSpectrum 𝒜) ht' : IsClosed t' ht : t ⊆ t' ⊢ x ∈ t' [PROOFSTEP] obtain ⟨fs, rfl⟩ : ∃ s, t' = zeroLocus 𝒜 s := by rwa [isClosed_iff_zeroLocus] at ht' [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) x : ProjectiveSpectrum 𝒜 hx : x ∈ zeroLocus 𝒜 ↑(vanishingIdeal t) t' : Set (ProjectiveSpectrum 𝒜) ht' : IsClosed t' ht : t ⊆ t' ⊢ ∃ s, t' = zeroLocus 𝒜 s [PROOFSTEP] rwa [isClosed_iff_zeroLocus] at ht' [GOAL] case h₁.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) x : ProjectiveSpectrum 𝒜 hx : x ∈ zeroLocus 𝒜 ↑(vanishingIdeal t) fs : Set A ht' : IsClosed (zeroLocus 𝒜 fs) ht : t ⊆ zeroLocus 𝒜 fs ⊢ x ∈ zeroLocus 𝒜 fs [PROOFSTEP] rw [subset_zeroLocus_iff_subset_vanishingIdeal] at ht [GOAL] case h₁.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) x : ProjectiveSpectrum 𝒜 hx : x ∈ zeroLocus 𝒜 ↑(vanishingIdeal t) fs : Set A ht' : IsClosed (zeroLocus 𝒜 fs) ht : fs ⊆ ↑(vanishingIdeal t) ⊢ x ∈ zeroLocus 𝒜 fs [PROOFSTEP] exact Set.Subset.trans ht hx [GOAL] case h₂ R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) ⊢ closure t ⊆ zeroLocus 𝒜 ↑(vanishingIdeal t) [PROOFSTEP] rw [(isClosed_zeroLocus _ _).closure_subset_iff] [GOAL] case h₂ R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) ⊢ t ⊆ zeroLocus 𝒜 ↑(vanishingIdeal t) [PROOFSTEP] exact subset_zeroLocus_vanishingIdeal 𝒜 t [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) ⊢ vanishingIdeal (closure t) = vanishingIdeal t [PROOFSTEP] have := (gc_ideal 𝒜).u_l_u_eq_u t [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) this : HomogeneousIdeal.toIdeal (vanishingIdeal (zeroLocus 𝒜 ↑(HomogeneousIdeal.toIdeal (vanishingIdeal t)))) = HomogeneousIdeal.toIdeal (vanishingIdeal t) ⊢ vanishingIdeal (closure t) = vanishingIdeal t [PROOFSTEP] ext1 [GOAL] case h R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) this : HomogeneousIdeal.toIdeal (vanishingIdeal (zeroLocus 𝒜 ↑(HomogeneousIdeal.toIdeal (vanishingIdeal t)))) = HomogeneousIdeal.toIdeal (vanishingIdeal t) ⊢ HomogeneousIdeal.toIdeal (vanishingIdeal (closure t)) = HomogeneousIdeal.toIdeal (vanishingIdeal t) [PROOFSTEP] erw [zeroLocus_vanishingIdeal_eq_closure 𝒜 t] at this [GOAL] case h R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 t : Set (ProjectiveSpectrum 𝒜) this : HomogeneousIdeal.toIdeal (vanishingIdeal (closure t)) = HomogeneousIdeal.toIdeal (vanishingIdeal t) ⊢ HomogeneousIdeal.toIdeal (vanishingIdeal (closure t)) = HomogeneousIdeal.toIdeal (vanishingIdeal t) [PROOFSTEP] exact this [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 r : A x : ProjectiveSpectrum 𝒜 ⊢ x ∈ ↑(basicOpen 𝒜 r) ↔ x ∈ (zeroLocus 𝒜 {r})ᶜ [PROOFSTEP] simp only [Set.mem_compl_iff, mem_zeroLocus, Set.singleton_subset_iff] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 r : A x : ProjectiveSpectrum 𝒜 ⊢ x ∈ ↑(basicOpen 𝒜 r) ↔ ¬r ∈ ↑x.asHomogeneousIdeal [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 ⊢ ↑(basicOpen 𝒜 1) = ↑⊤ [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 ⊢ ↑(basicOpen 𝒜 0) = ↑⊥ [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f g : A ⊢ ↑(basicOpen 𝒜 (f * g)) = ↑(basicOpen 𝒜 f ⊓ basicOpen 𝒜 g) [PROOFSTEP] simp [zeroLocus_singleton_mul] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f g : A ⊢ basicOpen 𝒜 (f * g) ≤ basicOpen 𝒜 f [PROOFSTEP] rw [basicOpen_mul 𝒜 f g] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f g : A ⊢ basicOpen 𝒜 f ⊓ basicOpen 𝒜 g ≤ basicOpen 𝒜 f [PROOFSTEP] exact inf_le_left [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f g : A ⊢ basicOpen 𝒜 (f * g) ≤ basicOpen 𝒜 g [PROOFSTEP] rw [basicOpen_mul 𝒜 f g] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f g : A ⊢ basicOpen 𝒜 f ⊓ basicOpen 𝒜 g ≤ basicOpen 𝒜 g [PROOFSTEP] exact inf_le_right [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A n : ℕ hn : 0 < n ⊢ ↑(basicOpen 𝒜 (f ^ n)) = ↑(basicOpen 𝒜 f) [PROOFSTEP] simpa using zeroLocus_singleton_pow 𝒜 f n hn [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A z : ProjectiveSpectrum 𝒜 ⊢ z ∈ ↑(basicOpen 𝒜 f) ↔ z ∈ ↑(⨆ (i : ℕ), basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) [PROOFSTEP] erw [mem_coe_basicOpen, TopologicalSpace.Opens.mem_sSup] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A z : ProjectiveSpectrum 𝒜 ⊢ ¬f ∈ z.asHomogeneousIdeal ↔ ∃ u, (u ∈ Set.range fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) ∧ z ∈ u [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A z : ProjectiveSpectrum 𝒜 ⊢ ¬f ∈ z.asHomogeneousIdeal → ∃ u, (u ∈ Set.range fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) ∧ z ∈ u [PROOFSTEP] intro hz [GOAL] case mpr R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A z : ProjectiveSpectrum 𝒜 ⊢ (∃ u, (u ∈ Set.range fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) ∧ z ∈ u) → ¬f ∈ z.asHomogeneousIdeal [PROOFSTEP] intro hz [GOAL] case mp R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A z : ProjectiveSpectrum 𝒜 hz : ¬f ∈ z.asHomogeneousIdeal ⊢ ∃ u, (u ∈ Set.range fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) ∧ z ∈ u [PROOFSTEP] rcases show ∃ i, GradedAlgebra.proj 𝒜 i f ∉ z.asHomogeneousIdeal by contrapose! hz with H classical rw [← DirectSum.sum_support_decompose 𝒜 f] apply Ideal.sum_mem _ fun i _ => H i with ⟨i, hi⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A z : ProjectiveSpectrum 𝒜 hz : ¬f ∈ z.asHomogeneousIdeal ⊢ ∃ i, ¬↑(GradedAlgebra.proj 𝒜 i) f ∈ z.asHomogeneousIdeal [PROOFSTEP] contrapose! hz with H [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A z : ProjectiveSpectrum 𝒜 H : ∀ (i : ℕ), ↑(GradedAlgebra.proj 𝒜 i) f ∈ z.asHomogeneousIdeal ⊢ f ∈ z.asHomogeneousIdeal [PROOFSTEP] classical rw [← DirectSum.sum_support_decompose 𝒜 f] apply Ideal.sum_mem _ fun i _ => H i [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A z : ProjectiveSpectrum 𝒜 H : ∀ (i : ℕ), ↑(GradedAlgebra.proj 𝒜 i) f ∈ z.asHomogeneousIdeal ⊢ f ∈ z.asHomogeneousIdeal [PROOFSTEP] rw [← DirectSum.sum_support_decompose 𝒜 f] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A z : ProjectiveSpectrum 𝒜 H : ∀ (i : ℕ), ↑(GradedAlgebra.proj 𝒜 i) f ∈ z.asHomogeneousIdeal ⊢ ∑ i in DFinsupp.support (↑(decompose 𝒜) f), ↑(↑(↑(decompose 𝒜) f) i) ∈ z.asHomogeneousIdeal [PROOFSTEP] apply Ideal.sum_mem _ fun i _ => H i [GOAL] case mp.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A z : ProjectiveSpectrum 𝒜 hz : ¬f ∈ z.asHomogeneousIdeal i : ℕ hi : ¬↑(GradedAlgebra.proj 𝒜 i) f ∈ z.asHomogeneousIdeal ⊢ ∃ u, (u ∈ Set.range fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) ∧ z ∈ u [PROOFSTEP] exact ⟨basicOpen 𝒜 (GradedAlgebra.proj 𝒜 i f), ⟨i, rfl⟩, by rwa [mem_basicOpen]⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A z : ProjectiveSpectrum 𝒜 hz : ¬f ∈ z.asHomogeneousIdeal i : ℕ hi : ¬↑(GradedAlgebra.proj 𝒜 i) f ∈ z.asHomogeneousIdeal ⊢ z ∈ basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f) [PROOFSTEP] rwa [mem_basicOpen] [GOAL] case mpr R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A z : ProjectiveSpectrum 𝒜 hz : ∃ u, (u ∈ Set.range fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) ∧ z ∈ u ⊢ ¬f ∈ z.asHomogeneousIdeal [PROOFSTEP] obtain ⟨_, ⟨i, rfl⟩, hz⟩ := hz [GOAL] case mpr.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 f : A z : ProjectiveSpectrum 𝒜 i : ℕ hz : z ∈ (fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) i ⊢ ¬f ∈ z.asHomogeneousIdeal [PROOFSTEP] exact fun rid => hz (z.1.2 i rid) [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 ⊢ IsTopologicalBasis (Set.range fun r => ↑(basicOpen 𝒜 r)) [PROOFSTEP] apply TopologicalSpace.isTopologicalBasis_of_open_of_nhds [GOAL] case h_open R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 ⊢ ∀ (u : Set (ProjectiveSpectrum 𝒜)), (u ∈ Set.range fun r => ↑(basicOpen 𝒜 r)) → IsOpen u [PROOFSTEP] rintro _ ⟨r, rfl⟩ [GOAL] case h_open.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 r : A ⊢ IsOpen ((fun r => ↑(basicOpen 𝒜 r)) r) [PROOFSTEP] exact isOpen_basicOpen 𝒜 [GOAL] case h_nhds R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 ⊢ ∀ (a : ProjectiveSpectrum 𝒜) (u : Set (ProjectiveSpectrum 𝒜)), a ∈ u → IsOpen u → ∃ v, (v ∈ Set.range fun r => ↑(basicOpen 𝒜 r)) ∧ a ∈ v ∧ v ⊆ u [PROOFSTEP] rintro p U hp ⟨s, hs⟩ [GOAL] case h_nhds.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 p : ProjectiveSpectrum 𝒜 U : Set (ProjectiveSpectrum 𝒜) hp : p ∈ U s : Set A hs : zeroLocus 𝒜 s = Uᶜ ⊢ ∃ v, (v ∈ Set.range fun r => ↑(basicOpen 𝒜 r)) ∧ p ∈ v ∧ v ⊆ U [PROOFSTEP] rw [← compl_compl U, Set.mem_compl_iff, ← hs, mem_zeroLocus, Set.not_subset] at hp [GOAL] case h_nhds.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 p : ProjectiveSpectrum 𝒜 U : Set (ProjectiveSpectrum 𝒜) s : Set A hp : ∃ a, a ∈ s ∧ ¬a ∈ ↑p.asHomogeneousIdeal hs : zeroLocus 𝒜 s = Uᶜ ⊢ ∃ v, (v ∈ Set.range fun r => ↑(basicOpen 𝒜 r)) ∧ p ∈ v ∧ v ⊆ U [PROOFSTEP] obtain ⟨f, hfs, hfp⟩ := hp [GOAL] case h_nhds.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 p : ProjectiveSpectrum 𝒜 U : Set (ProjectiveSpectrum 𝒜) s : Set A hs : zeroLocus 𝒜 s = Uᶜ f : A hfs : f ∈ s hfp : ¬f ∈ ↑p.asHomogeneousIdeal ⊢ ∃ v, (v ∈ Set.range fun r => ↑(basicOpen 𝒜 r)) ∧ p ∈ v ∧ v ⊆ U [PROOFSTEP] refine' ⟨basicOpen 𝒜 f, ⟨f, rfl⟩, hfp, _⟩ [GOAL] case h_nhds.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 p : ProjectiveSpectrum 𝒜 U : Set (ProjectiveSpectrum 𝒜) s : Set A hs : zeroLocus 𝒜 s = Uᶜ f : A hfs : f ∈ s hfp : ¬f ∈ ↑p.asHomogeneousIdeal ⊢ ↑(basicOpen 𝒜 f) ⊆ U [PROOFSTEP] rw [← Set.compl_subset_compl, ← hs, basicOpen_eq_zeroLocus_compl, compl_compl] [GOAL] case h_nhds.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 p : ProjectiveSpectrum 𝒜 U : Set (ProjectiveSpectrum 𝒜) s : Set A hs : zeroLocus 𝒜 s = Uᶜ f : A hfs : f ∈ s hfp : ¬f ∈ ↑p.asHomogeneousIdeal ⊢ zeroLocus 𝒜 s ⊆ zeroLocus 𝒜 {f} [PROOFSTEP] exact zeroLocus_anti_mono 𝒜 (Set.singleton_subset_iff.mpr hfs) [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x✝¹ x✝ : ProjectiveSpectrum 𝒜 asHomogeneousIdeal✝¹ : HomogeneousIdeal 𝒜 isPrime✝¹ : Ideal.IsPrime (HomogeneousIdeal.toIdeal asHomogeneousIdeal✝¹) not_irrelevant_le✝¹ : ¬HomogeneousIdeal.irrelevant 𝒜 ≤ asHomogeneousIdeal✝¹ asHomogeneousIdeal✝ : HomogeneousIdeal 𝒜 isPrime✝ : Ideal.IsPrime (HomogeneousIdeal.toIdeal asHomogeneousIdeal✝) not_irrelevant_le✝ : ¬HomogeneousIdeal.irrelevant 𝒜 ≤ asHomogeneousIdeal✝ ⊢ { asHomogeneousIdeal := asHomogeneousIdeal✝¹, isPrime := isPrime✝¹, not_irrelevant_le := not_irrelevant_le✝¹ }.asHomogeneousIdeal = { asHomogeneousIdeal := asHomogeneousIdeal✝, isPrime := isPrime✝, not_irrelevant_le := not_irrelevant_le✝ }.asHomogeneousIdeal → { asHomogeneousIdeal := asHomogeneousIdeal✝¹, isPrime := isPrime✝¹, not_irrelevant_le := not_irrelevant_le✝¹ } = { asHomogeneousIdeal := asHomogeneousIdeal✝, isPrime := isPrime✝, not_irrelevant_le := not_irrelevant_le✝ } [PROOFSTEP] simp only [mk.injEq, imp_self] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x y : ProjectiveSpectrum 𝒜 ⊢ x ≤ y ↔ y ∈ closure {x} [PROOFSTEP] rw [← as_ideal_le_as_ideal, ← zeroLocus_vanishingIdeal_eq_closure, mem_zeroLocus, vanishingIdeal_singleton] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommSemiring R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x y : ProjectiveSpectrum 𝒜 ⊢ x.asHomogeneousIdeal ≤ y.asHomogeneousIdeal ↔ ↑x.asHomogeneousIdeal ⊆ ↑y.asHomogeneousIdeal [PROOFSTEP] simp only [as_ideal_le_as_ideal, coe_subset_coe]
{"mathlib_filename": "Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Topology", "llama_tokens": 16949}
[GOAL] k : Type u inst✝¹ : Field k G : Type u inst✝ : Monoid G V : FdRep k G g h : G ⊢ character V (h * g) = character V (g * h) [PROOFSTEP] simp only [trace_mul_comm, character, map_mul] [GOAL] k : Type u inst✝¹ : Field k G : Type u inst✝ : Monoid G V : FdRep k G ⊢ character V 1 = ↑(finrank k (CoeSort.coe V)) [PROOFSTEP] simp only [character, map_one, trace_one] [GOAL] k : Type u inst✝¹ : Field k G : Type u inst✝ : Monoid G V W : FdRep k G ⊢ character (V ⊗ W) = character V * character W [PROOFSTEP] ext g [GOAL] case h k : Type u inst✝¹ : Field k G : Type u inst✝ : Monoid G V W : FdRep k G g : G ⊢ character (V ⊗ W) g = (character V * character W) g [PROOFSTEP] convert trace_tensorProduct' (V.ρ g) (W.ρ g) [GOAL] k : Type u inst✝¹ : Field k G : Type u inst✝ : Monoid G V W : FdRep k G ⊢ character (Action.FunctorCategoryEquivalence.inverse.obj (Action.FunctorCategoryEquivalence.functor.obj V ⊗ Action.FunctorCategoryEquivalence.functor.obj W)) = character V * character W [PROOFSTEP] simp [← char_tensor] [GOAL] k : Type u inst✝¹ : Field k G : Type u inst✝ : Monoid G V W : FdRep k G i : V ≅ W ⊢ character V = character W [PROOFSTEP] ext g [GOAL] case h k : Type u inst✝¹ : Field k G : Type u inst✝ : Monoid G V W : FdRep k G i : V ≅ W g : G ⊢ character V g = character W g [PROOFSTEP] simp only [character, FdRep.Iso.conj_ρ i] [GOAL] case h k : Type u inst✝¹ : Field k G : Type u inst✝ : Monoid G V W : FdRep k G i : V ≅ W g : G ⊢ ↑(trace k (CoeSort.coe V)) (↑(ρ V) g) = ↑(trace k (CoeSort.coe W)) (↑(LinearEquiv.conj (isoToLinearEquiv i)) (↑(ρ V) g)) [PROOFSTEP] exact (trace_conj' (V.ρ g) _).symm [GOAL] k : Type u inst✝¹ : Field k G : Type u inst✝ : Group G V : FdRep k G g h : G ⊢ character V (h * g * h⁻¹) = character V g [PROOFSTEP] rw [char_mul_comm, inv_mul_cancel_left] [GOAL] k : Type u inst✝¹ : Field k G : Type u inst✝ : Group G V W : FdRep k G g : G ⊢ character (of (linHom (ρ V) (ρ W))) g = character V g⁻¹ * character W g [PROOFSTEP] rw [← char_iso (dualTensorIsoLinHom _ _), char_tensor, Pi.mul_apply, char_dual] [GOAL] k : Type u inst✝³ : Field k G : Type u inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) V : FdRep k G ⊢ ⅟↑(Fintype.card G) • ∑ g : G, character V g = ↑(finrank k { x // x ∈ invariants (ρ V) }) [PROOFSTEP] erw [← (isProj_averageMap V.ρ).trace] -- Porting note: Changed `rw` to `erw` [GOAL] k : Type u inst✝³ : Field k G : Type u inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) V : FdRep k G ⊢ ⅟↑(Fintype.card G) • ∑ g : G, character V g = ↑(trace k (CoeSort.coe V)) (averageMap (ρ V)) [PROOFSTEP] simp [character, GroupAlgebra.average, _root_.map_sum] [GOAL] k : Type u inst✝⁵ : Field k G : GroupCat inst✝⁴ : IsAlgClosed k inst✝³ : Fintype ↑G inst✝² : Invertible ↑(Fintype.card ↑G) V W : FdRep k ↑G inst✝¹ : Simple V inst✝ : Simple W ⊢ ⅟↑(Fintype.card ↑G) • ∑ g : ↑G, character V g * character W g⁻¹ = if Nonempty (V ≅ W) then 1 else 0 [PROOFSTEP] conv_lhs => enter [2, 2, g] rw [mul_comm, ← char_dual, ← Pi.mul_apply, ← char_tensor] rw [char_iso (FdRep.dualTensorIsoLinHom W.ρ V)] -- The average over the group of the character of a representation equals the dimension of the -- space of invariants. [GOAL] k : Type u inst✝⁵ : Field k G : GroupCat inst✝⁴ : IsAlgClosed k inst✝³ : Fintype ↑G inst✝² : Invertible ↑(Fintype.card ↑G) V W : FdRep k ↑G inst✝¹ : Simple V inst✝ : Simple W | ⅟↑(Fintype.card ↑G) • ∑ g : ↑G, character V g * character W g⁻¹ [PROOFSTEP] enter [2, 2, g] rw [mul_comm, ← char_dual, ← Pi.mul_apply, ← char_tensor] rw [char_iso (FdRep.dualTensorIsoLinHom W.ρ V)] -- The average over the group of the character of a representation equals the dimension of the -- space of invariants. [GOAL] k : Type u inst✝⁵ : Field k G : GroupCat inst✝⁴ : IsAlgClosed k inst✝³ : Fintype ↑G inst✝² : Invertible ↑(Fintype.card ↑G) V W : FdRep k ↑G inst✝¹ : Simple V inst✝ : Simple W | ⅟↑(Fintype.card ↑G) • ∑ g : ↑G, character V g * character W g⁻¹ [PROOFSTEP] enter [2, 2, g] rw [mul_comm, ← char_dual, ← Pi.mul_apply, ← char_tensor] rw [char_iso (FdRep.dualTensorIsoLinHom W.ρ V)] -- The average over the group of the character of a representation equals the dimension of the -- space of invariants. [GOAL] k : Type u inst✝⁵ : Field k G : GroupCat inst✝⁴ : IsAlgClosed k inst✝³ : Fintype ↑G inst✝² : Invertible ↑(Fintype.card ↑G) V W : FdRep k ↑G inst✝¹ : Simple V inst✝ : Simple W | ⅟↑(Fintype.card ↑G) • ∑ g : ↑G, character V g * character W g⁻¹ [PROOFSTEP] enter [2, 2, g] [GOAL] case h k : Type u inst✝⁵ : Field k G : GroupCat inst✝⁴ : IsAlgClosed k inst✝³ : Fintype ↑G inst✝² : Invertible ↑(Fintype.card ↑G) V W : FdRep k ↑G inst✝¹ : Simple V inst✝ : Simple W g : ↑G | character V g * character W g⁻¹ [PROOFSTEP] rw [mul_comm, ← char_dual, ← Pi.mul_apply, ← char_tensor] [GOAL] case h k : Type u inst✝⁵ : Field k G : GroupCat inst✝⁴ : IsAlgClosed k inst✝³ : Fintype ↑G inst✝² : Invertible ↑(Fintype.card ↑G) V W : FdRep k ↑G inst✝¹ : Simple V inst✝ : Simple W g : ↑G | character (of (dual (ρ W)) ⊗ V) g [PROOFSTEP] rw [char_iso (FdRep.dualTensorIsoLinHom W.ρ V)] -- The average over the group of the character of a representation equals the dimension of the -- space of invariants. [GOAL] k : Type u inst✝⁵ : Field k G : GroupCat inst✝⁴ : IsAlgClosed k inst✝³ : Fintype ↑G inst✝² : Invertible ↑(Fintype.card ↑G) V W : FdRep k ↑G inst✝¹ : Simple V inst✝ : Simple W ⊢ ⅟↑(Fintype.card ↑G) • ∑ g : ↑G, character (of (linHom (ρ W) (ρ V))) g = if Nonempty (V ≅ W) then 1 else 0 [PROOFSTEP] rw [average_char_eq_finrank_invariants] [GOAL] k : Type u inst✝⁵ : Field k G : GroupCat inst✝⁴ : IsAlgClosed k inst✝³ : Fintype ↑G inst✝² : Invertible ↑(Fintype.card ↑G) V W : FdRep k ↑G inst✝¹ : Simple V inst✝ : Simple W ⊢ ↑(finrank k { x // x ∈ invariants (ρ (of (linHom (ρ W) (ρ V)))) }) = if Nonempty (V ≅ W) then 1 else 0 [PROOFSTEP] rw [show (of (linHom W.ρ V.ρ)).ρ = linHom W.ρ V.ρ from FdRep.of_ρ (linHom W.ρ V.ρ)] -- The space of invariants of `Hom(W, V)` is the subspace of `G`-equivariant linear maps, -- `Hom_G(W, V)`. [GOAL] k : Type u inst✝⁵ : Field k G : GroupCat inst✝⁴ : IsAlgClosed k inst✝³ : Fintype ↑G inst✝² : Invertible ↑(Fintype.card ↑G) V W : FdRep k ↑G inst✝¹ : Simple V inst✝ : Simple W ⊢ ↑(finrank k { x // x ∈ invariants (linHom (ρ W) (ρ V)) }) = if Nonempty (V ≅ W) then 1 else 0 [PROOFSTEP] erw [(linHom.invariantsEquivFdRepHom W V).finrank_eq] -- Porting note: Changed `rw` to `erw` -- By Schur's Lemma, the dimension of `Hom_G(W, V)` is `1` is `V ≅ W` and `0` otherwise. [GOAL] k : Type u inst✝⁵ : Field k G : GroupCat inst✝⁴ : IsAlgClosed k inst✝³ : Fintype ↑G inst✝² : Invertible ↑(Fintype.card ↑G) V W : FdRep k ↑G inst✝¹ : Simple V inst✝ : Simple W ⊢ ↑(finrank k (W ⟶ V)) = if Nonempty (V ≅ W) then 1 else 0 [PROOFSTEP] rw_mod_cast [finrank_hom_simple_simple W V, Iso.nonempty_iso_symm]
{"mathlib_filename": "Mathlib.RepresentationTheory.Character", "llama_tokens": 3304}
[GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ Function.Bijective (primeSpectrumProdOfSum R S) [PROOFSTEP] constructor [GOAL] case left R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ Function.Injective (primeSpectrumProdOfSum R S) [PROOFSTEP] rintro (⟨I, hI⟩ | ⟨J, hJ⟩) (⟨I', hI'⟩ | ⟨J', hJ'⟩) h [GOAL] case left.inl.mk.inl.mk R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsPrime I I' : Ideal R hI' : Ideal.IsPrime I' h : primeSpectrumProdOfSum R S (Sum.inl { asIdeal := I, IsPrime := hI }) = primeSpectrumProdOfSum R S (Sum.inl { asIdeal := I', IsPrime := hI' }) ⊢ Sum.inl { asIdeal := I, IsPrime := hI } = Sum.inl { asIdeal := I', IsPrime := hI' } [PROOFSTEP] simp only [mk.injEq, Ideal.prod.ext_iff, primeSpectrumProdOfSum] at h [GOAL] case left.inl.mk.inr.mk R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsPrime I J' : Ideal S hJ' : Ideal.IsPrime J' h : primeSpectrumProdOfSum R S (Sum.inl { asIdeal := I, IsPrime := hI }) = primeSpectrumProdOfSum R S (Sum.inr { asIdeal := J', IsPrime := hJ' }) ⊢ Sum.inl { asIdeal := I, IsPrime := hI } = Sum.inr { asIdeal := J', IsPrime := hJ' } [PROOFSTEP] simp only [mk.injEq, Ideal.prod.ext_iff, primeSpectrumProdOfSum] at h [GOAL] case left.inr.mk.inl.mk R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S J : Ideal S hJ : Ideal.IsPrime J I' : Ideal R hI' : Ideal.IsPrime I' h : primeSpectrumProdOfSum R S (Sum.inr { asIdeal := J, IsPrime := hJ }) = primeSpectrumProdOfSum R S (Sum.inl { asIdeal := I', IsPrime := hI' }) ⊢ Sum.inr { asIdeal := J, IsPrime := hJ } = Sum.inl { asIdeal := I', IsPrime := hI' } [PROOFSTEP] simp only [mk.injEq, Ideal.prod.ext_iff, primeSpectrumProdOfSum] at h [GOAL] case left.inr.mk.inr.mk R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S J : Ideal S hJ : Ideal.IsPrime J J' : Ideal S hJ' : Ideal.IsPrime J' h : primeSpectrumProdOfSum R S (Sum.inr { asIdeal := J, IsPrime := hJ }) = primeSpectrumProdOfSum R S (Sum.inr { asIdeal := J', IsPrime := hJ' }) ⊢ Sum.inr { asIdeal := J, IsPrime := hJ } = Sum.inr { asIdeal := J', IsPrime := hJ' } [PROOFSTEP] simp only [mk.injEq, Ideal.prod.ext_iff, primeSpectrumProdOfSum] at h [GOAL] case left.inl.mk.inl.mk R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsPrime I I' : Ideal R hI' : Ideal.IsPrime I' h : I = I' ∧ True ⊢ Sum.inl { asIdeal := I, IsPrime := hI } = Sum.inl { asIdeal := I', IsPrime := hI' } [PROOFSTEP] simp only [h] [GOAL] case left.inl.mk.inr.mk R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsPrime I J' : Ideal S hJ' : Ideal.IsPrime J' h : I = ⊤ ∧ ⊤ = J' ⊢ Sum.inl { asIdeal := I, IsPrime := hI } = Sum.inr { asIdeal := J', IsPrime := hJ' } [PROOFSTEP] exact False.elim (hI.ne_top h.left) [GOAL] case left.inr.mk.inl.mk R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S J : Ideal S hJ : Ideal.IsPrime J I' : Ideal R hI' : Ideal.IsPrime I' h : ⊤ = I' ∧ J = ⊤ ⊢ Sum.inr { asIdeal := J, IsPrime := hJ } = Sum.inl { asIdeal := I', IsPrime := hI' } [PROOFSTEP] exact False.elim (hJ.ne_top h.right) [GOAL] case left.inr.mk.inr.mk R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S J : Ideal S hJ : Ideal.IsPrime J J' : Ideal S hJ' : Ideal.IsPrime J' h : True ∧ J = J' ⊢ Sum.inr { asIdeal := J, IsPrime := hJ } = Sum.inr { asIdeal := J', IsPrime := hJ' } [PROOFSTEP] simp only [h] [GOAL] case right R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ Function.Surjective (primeSpectrumProdOfSum R S) [PROOFSTEP] rintro ⟨I, hI⟩ [GOAL] case right.mk R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal (R × S) hI : Ideal.IsPrime I ⊢ ∃ a, primeSpectrumProdOfSum R S a = { asIdeal := I, IsPrime := hI } [PROOFSTEP] rcases(Ideal.ideal_prod_prime I).mp hI with (⟨p, ⟨hp, rfl⟩⟩ | ⟨p, ⟨hp, rfl⟩⟩) [GOAL] case right.mk.inl.intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S p : Ideal R hp : Ideal.IsPrime p hI : Ideal.IsPrime (Ideal.prod p ⊤) ⊢ ∃ a, primeSpectrumProdOfSum R S a = { asIdeal := Ideal.prod p ⊤, IsPrime := hI } [PROOFSTEP] exact ⟨Sum.inl ⟨p, hp⟩, rfl⟩ [GOAL] case right.mk.inr.intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S p : Ideal S hp : Ideal.IsPrime p hI : Ideal.IsPrime (Ideal.prod ⊤ p) ⊢ ∃ a, primeSpectrumProdOfSum R S a = { asIdeal := Ideal.prod ⊤ p, IsPrime := hI } [PROOFSTEP] exact ⟨Sum.inr ⟨p, hp⟩, rfl⟩ [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x : PrimeSpectrum R ⊢ (↑(primeSpectrumProd R S).symm (Sum.inl x)).asIdeal = Ideal.prod x.asIdeal ⊤ [PROOFSTEP] cases x [GOAL] case mk R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S asIdeal✝ : Ideal R IsPrime✝ : Ideal.IsPrime asIdeal✝ ⊢ (↑(primeSpectrumProd R S).symm (Sum.inl { asIdeal := asIdeal✝, IsPrime := IsPrime✝ })).asIdeal = Ideal.prod { asIdeal := asIdeal✝, IsPrime := IsPrime✝ }.asIdeal ⊤ [PROOFSTEP] rfl [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x : PrimeSpectrum S ⊢ (↑(primeSpectrumProd R S).symm (Sum.inr x)).asIdeal = Ideal.prod ⊤ x.asIdeal [PROOFSTEP] cases x [GOAL] case mk R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S asIdeal✝ : Ideal S IsPrime✝ : Ideal.IsPrime asIdeal✝ ⊢ (↑(primeSpectrumProd R S).symm (Sum.inr { asIdeal := asIdeal✝, IsPrime := IsPrime✝ })).asIdeal = Ideal.prod ⊤ { asIdeal := asIdeal✝, IsPrime := IsPrime✝ }.asIdeal [PROOFSTEP] rfl [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set R ⊢ zeroLocus ↑(Ideal.span s) = zeroLocus s [PROOFSTEP] ext x [GOAL] case h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set R x : PrimeSpectrum R ⊢ x ∈ zeroLocus ↑(Ideal.span s) ↔ x ∈ zeroLocus s [PROOFSTEP] exact (Submodule.gi R R).gc s x.asIdeal [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) ⊢ ↑(vanishingIdeal t) = {f | ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal} [PROOFSTEP] ext f [GOAL] case h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) f : R ⊢ f ∈ ↑(vanishingIdeal t) ↔ f ∈ {f | ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal} [PROOFSTEP] rw [vanishingIdeal, SetLike.mem_coe, Submodule.mem_iInf] [GOAL] case h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) f : R ⊢ (∀ (i : PrimeSpectrum R), f ∈ ⨅ (_ : i ∈ t), i.asIdeal) ↔ f ∈ {f | ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal} [PROOFSTEP] apply forall_congr' [GOAL] case h.h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) f : R ⊢ ∀ (a : PrimeSpectrum R), f ∈ ⨅ (_ : a ∈ t), a.asIdeal ↔ a ∈ t → f ∈ a.asIdeal [PROOFSTEP] intro x [GOAL] case h.h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) f : R x : PrimeSpectrum R ⊢ f ∈ ⨅ (_ : x ∈ t), x.asIdeal ↔ x ∈ t → f ∈ x.asIdeal [PROOFSTEP] rw [Submodule.mem_iInf] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) f : R ⊢ f ∈ vanishingIdeal t ↔ ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal [PROOFSTEP] rw [← SetLike.mem_coe, coe_vanishingIdeal, Set.mem_setOf_eq] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x : PrimeSpectrum R ⊢ vanishingIdeal {x} = x.asIdeal [PROOFSTEP] simp [vanishingIdeal] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ GaloisConnection (fun s => zeroLocus s) fun t => ↑(vanishingIdeal t) [PROOFSTEP] have ideal_gc : GaloisConnection Ideal.span _ := (Submodule.gi R R).gc [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ideal_gc : GaloisConnection Ideal.span SetLike.coe ⊢ GaloisConnection (fun s => zeroLocus s) fun t => ↑(vanishingIdeal t) [PROOFSTEP] simpa [zeroLocus_span, Function.comp] using ideal_gc.compose (gc R) [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R f : R ⊢ f ∈ vanishingIdeal (zeroLocus ↑I) ↔ f ∈ Ideal.radical I [PROOFSTEP] rw [mem_vanishingIdeal, Ideal.radical_eq_sInf, Submodule.mem_sInf] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R f : R ⊢ (∀ (x : PrimeSpectrum R), x ∈ zeroLocus ↑I → f ∈ x.asIdeal) ↔ ∀ (p : Submodule R R), p ∈ {J | I ≤ J ∧ Ideal.IsPrime J} → f ∈ p [PROOFSTEP] exact ⟨fun h x hx => h ⟨x, hx.2⟩ hx.1, fun h x hx => h x.1 ⟨hx, x.2⟩⟩ [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f g : R ⊢ zeroLocus {f} ⊆ zeroLocus {g} ↔ g ∈ Ideal.radical (Ideal.span {f}) [PROOFSTEP] rw [← zeroLocus_span { f }, ← zeroLocus_span { g }, zeroLocus_subset_zeroLocus_iff, Ideal.span_le, Set.singleton_subset_iff, SetLike.mem_coe] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ vanishingIdeal ∅ = ⊤ [PROOFSTEP] simpa using (gc R).u_top [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set R h : 1 ∈ s ⊢ zeroLocus s = ∅ [PROOFSTEP] rw [Set.eq_empty_iff_forall_not_mem] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set R h : 1 ∈ s ⊢ ∀ (x : PrimeSpectrum R), ¬x ∈ zeroLocus s [PROOFSTEP] intro x hx [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set R h : 1 ∈ s x : PrimeSpectrum R hx : x ∈ zeroLocus s ⊢ False [PROOFSTEP] rw [mem_zeroLocus] at hx [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set R h : 1 ∈ s x : PrimeSpectrum R hx : s ⊆ ↑x.asIdeal ⊢ False [PROOFSTEP] have x_prime : x.asIdeal.IsPrime := by infer_instance [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set R h : 1 ∈ s x : PrimeSpectrum R hx : s ⊆ ↑x.asIdeal ⊢ Ideal.IsPrime x.asIdeal [PROOFSTEP] infer_instance [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set R h : 1 ∈ s x : PrimeSpectrum R hx : s ⊆ ↑x.asIdeal x_prime : Ideal.IsPrime x.asIdeal ⊢ False [PROOFSTEP] have eq_top : x.asIdeal = ⊤ := by rw [Ideal.eq_top_iff_one] exact hx h [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set R h : 1 ∈ s x : PrimeSpectrum R hx : s ⊆ ↑x.asIdeal x_prime : Ideal.IsPrime x.asIdeal ⊢ x.asIdeal = ⊤ [PROOFSTEP] rw [Ideal.eq_top_iff_one] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set R h : 1 ∈ s x : PrimeSpectrum R hx : s ⊆ ↑x.asIdeal x_prime : Ideal.IsPrime x.asIdeal ⊢ 1 ∈ x.asIdeal [PROOFSTEP] exact hx h [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set R h : 1 ∈ s x : PrimeSpectrum R hx : s ⊆ ↑x.asIdeal x_prime : Ideal.IsPrime x.asIdeal eq_top : x.asIdeal = ⊤ ⊢ False [PROOFSTEP] apply x_prime.ne_top eq_top [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R ⊢ zeroLocus ↑I = ∅ ↔ I = ⊤ [PROOFSTEP] constructor [GOAL] case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R ⊢ zeroLocus ↑I = ∅ → I = ⊤ [PROOFSTEP] contrapose! [GOAL] case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R ⊢ I ≠ ⊤ → zeroLocus ↑I ≠ ∅ [PROOFSTEP] intro h [GOAL] case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R h : I ≠ ⊤ ⊢ zeroLocus ↑I ≠ ∅ [PROOFSTEP] rcases Ideal.exists_le_maximal I h with ⟨M, hM, hIM⟩ [GOAL] case mp.intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R h : I ≠ ⊤ M : Ideal R hM : Ideal.IsMaximal M hIM : I ≤ M ⊢ zeroLocus ↑I ≠ ∅ [PROOFSTEP] exact Set.Nonempty.ne_empty ⟨⟨M, hM.isPrime⟩, hIM⟩ [GOAL] case mpr R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R ⊢ I = ⊤ → zeroLocus ↑I = ∅ [PROOFSTEP] rintro rfl [GOAL] case mpr R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ zeroLocus ↑⊤ = ∅ [PROOFSTEP] apply zeroLocus_empty_of_one_mem [GOAL] case mpr.h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ 1 ∈ ↑⊤ [PROOFSTEP] trivial [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set (PrimeSpectrum R) ⊢ vanishingIdeal s = ⊤ ↔ s = ∅ [PROOFSTEP] rw [← top_le_iff, ← subset_zeroLocus_iff_le_vanishingIdeal, Submodule.top_coe, zeroLocus_univ, Set.subset_empty_iff] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set (Set R) ⊢ zeroLocus (⋃ (s' : Set R) (_ : s' ∈ s), s') = ⋂ (s' : Set R) (_ : s' ∈ s), zeroLocus s' [PROOFSTEP] simp only [zeroLocus_iUnion] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s s' : Set R ⊢ zeroLocus s ∪ zeroLocus s' = zeroLocus ↑(Ideal.span s ⊓ Ideal.span s') [PROOFSTEP] rw [zeroLocus_inf] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s s' : Set R ⊢ zeroLocus s ∪ zeroLocus s' = zeroLocus ↑(Ideal.span s) ∪ zeroLocus ↑(Ideal.span s') [PROOFSTEP] simp [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f g : R x : PrimeSpectrum R ⊢ x ∈ zeroLocus {f * g} ↔ x ∈ zeroLocus {f} ∪ zeroLocus {g} [PROOFSTEP] simpa using x.2.mul_mem_iff_mem_or_mem [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R n : ℕ hn : 0 < n x : PrimeSpectrum R ⊢ x ∈ zeroLocus {f ^ n} ↔ x ∈ zeroLocus {f} [PROOFSTEP] simpa using x.2.pow_mem_iff_mem n hn [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t t' : Set (PrimeSpectrum R) ⊢ vanishingIdeal t ⊔ vanishingIdeal t' ≤ vanishingIdeal (t ∩ t') [PROOFSTEP] intro r [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t t' : Set (PrimeSpectrum R) r : R ⊢ r ∈ vanishingIdeal t ⊔ vanishingIdeal t' → r ∈ vanishingIdeal (t ∩ t') [PROOFSTEP] rw [Submodule.mem_sup, mem_vanishingIdeal] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t t' : Set (PrimeSpectrum R) r : R ⊢ (∃ y, y ∈ vanishingIdeal t ∧ ∃ z, z ∈ vanishingIdeal t' ∧ y + z = r) → ∀ (x : PrimeSpectrum R), x ∈ t ∩ t' → r ∈ x.asIdeal [PROOFSTEP] rintro ⟨f, hf, g, hg, rfl⟩ x ⟨hxt, hxt'⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t t' : Set (PrimeSpectrum R) f : R hf : f ∈ vanishingIdeal t g : R hg : g ∈ vanishingIdeal t' x : PrimeSpectrum R hxt : x ∈ t hxt' : x ∈ t' ⊢ f + g ∈ x.asIdeal [PROOFSTEP] rw [mem_vanishingIdeal] at hf hg [GOAL] case intro.intro.intro.intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t t' : Set (PrimeSpectrum R) f : R hf : ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal g : R hg : ∀ (x : PrimeSpectrum R), x ∈ t' → g ∈ x.asIdeal x : PrimeSpectrum R hxt : x ∈ t hxt' : x ∈ t' ⊢ f + g ∈ x.asIdeal [PROOFSTEP] apply Submodule.add_mem [GOAL] case intro.intro.intro.intro.intro.h₁ R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t t' : Set (PrimeSpectrum R) f : R hf : ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal g : R hg : ∀ (x : PrimeSpectrum R), x ∈ t' → g ∈ x.asIdeal x : PrimeSpectrum R hxt : x ∈ t hxt' : x ∈ t' ⊢ f ∈ x.asIdeal [PROOFSTEP] solve_by_elim [GOAL] case intro.intro.intro.intro.intro.h₂ R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t t' : Set (PrimeSpectrum R) f : R hf : ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal g : R hg : ∀ (x : PrimeSpectrum R), x ∈ t' → g ∈ x.asIdeal x : PrimeSpectrum R hxt : x ∈ t hxt' : x ∈ t' ⊢ g ∈ x.asIdeal [PROOFSTEP] solve_by_elim [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R I : PrimeSpectrum R ⊢ I ∈ (zeroLocus {f})ᶜ ↔ ¬f ∈ I.asIdeal [PROOFSTEP] rw [Set.mem_compl_iff, mem_zeroLocus, Set.singleton_subset_iff] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R I : PrimeSpectrum R ⊢ ¬f ∈ ↑I.asIdeal ↔ ¬f ∈ I.asIdeal [PROOFSTEP] rfl [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ zeroLocus Set.univ = ∅ [PROOFSTEP] simp [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ ∀ (A : Set (Set (PrimeSpectrum R))), A ⊆ Set.range zeroLocus → ⋂₀ A ∈ Set.range zeroLocus [PROOFSTEP] intro Zs h [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S Zs : Set (Set (PrimeSpectrum R)) h : Zs ⊆ Set.range zeroLocus ⊢ ⋂₀ Zs ∈ Set.range zeroLocus [PROOFSTEP] rw [Set.sInter_eq_iInter] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S Zs : Set (Set (PrimeSpectrum R)) h : Zs ⊆ Set.range zeroLocus ⊢ ⋂ (i : ↑Zs), ↑i ∈ Set.range zeroLocus [PROOFSTEP] choose f hf using fun i : Zs => h i.prop [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S Zs : Set (Set (PrimeSpectrum R)) h : Zs ⊆ Set.range zeroLocus f : ↑Zs → Set R hf : ∀ (i : ↑Zs), zeroLocus (f i) = ↑i ⊢ ⋂ (i : ↑Zs), ↑i ∈ Set.range zeroLocus [PROOFSTEP] simp only [← hf] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S Zs : Set (Set (PrimeSpectrum R)) h : Zs ⊆ Set.range zeroLocus f : ↑Zs → Set R hf : ∀ (i : ↑Zs), zeroLocus (f i) = ↑i ⊢ ⋂ (i : ↑Zs), zeroLocus (f i) ∈ Set.range zeroLocus [PROOFSTEP] exact ⟨_, zeroLocus_iUnion _⟩ [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ ∀ (A : Set (PrimeSpectrum R)), A ∈ Set.range zeroLocus → ∀ (B : Set (PrimeSpectrum R)), B ∈ Set.range zeroLocus → A ∪ B ∈ Set.range zeroLocus [PROOFSTEP] rintro _ ⟨s, rfl⟩ _ ⟨t, rfl⟩ [GOAL] case intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s t : Set R ⊢ zeroLocus s ∪ zeroLocus t ∈ Set.range zeroLocus [PROOFSTEP] exact ⟨_, (union_zeroLocus s t).symm⟩ [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S U : Set (PrimeSpectrum R) ⊢ IsOpen U ↔ ∃ s, Uᶜ = zeroLocus s [PROOFSTEP] simp only [@eq_comm _ Uᶜ] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S U : Set (PrimeSpectrum R) ⊢ IsOpen U ↔ ∃ s, zeroLocus s = Uᶜ [PROOFSTEP] rfl [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S Z : Set (PrimeSpectrum R) ⊢ IsClosed Z ↔ ∃ s, Z = zeroLocus s [PROOFSTEP] rw [← isOpen_compl_iff, isOpen_iff, compl_compl] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set R ⊢ IsClosed (zeroLocus s) [PROOFSTEP] rw [isClosed_iff_zeroLocus] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set R ⊢ ∃ s_1, zeroLocus s = zeroLocus s_1 [PROOFSTEP] exact ⟨s, rfl⟩ [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x : PrimeSpectrum R ⊢ IsClosed {x} ↔ Ideal.IsMaximal x.asIdeal [PROOFSTEP] refine' (isClosed_iff_zeroLocus _).trans ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x : PrimeSpectrum R h : ∃ s, {x} = zeroLocus s ⊢ Ideal.IsMaximal x.asIdeal [PROOFSTEP] obtain ⟨s, hs⟩ := h [GOAL] case refine'_1.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x : PrimeSpectrum R s : Set R hs : {x} = zeroLocus s ⊢ Ideal.IsMaximal x.asIdeal [PROOFSTEP] rw [eq_comm, Set.eq_singleton_iff_unique_mem] at hs [GOAL] case refine'_1.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x : PrimeSpectrum R s : Set R hs : x ∈ zeroLocus s ∧ ∀ (x_1 : PrimeSpectrum R), x_1 ∈ zeroLocus s → x_1 = x ⊢ Ideal.IsMaximal x.asIdeal [PROOFSTEP] refine' ⟨⟨x.2.1, fun I hI => Classical.not_not.1 (mt (Ideal.exists_le_maximal I) <| not_exists.2 fun J => not_and.2 fun hJ hIJ => _)⟩⟩ [GOAL] case refine'_1.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x : PrimeSpectrum R s : Set R hs : x ∈ zeroLocus s ∧ ∀ (x_1 : PrimeSpectrum R), x_1 ∈ zeroLocus s → x_1 = x I : Ideal R hI : x.asIdeal < I J : Ideal R hJ : Ideal.IsMaximal J hIJ : I ≤ J ⊢ False [PROOFSTEP] exact ne_of_lt (lt_of_lt_of_le hI hIJ) (symm <| congr_arg PrimeSpectrum.asIdeal (hs.2 ⟨J, hJ.isPrime⟩ fun r hr => hIJ (le_of_lt hI <| hs.1 hr))) [GOAL] case refine'_2 R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x : PrimeSpectrum R h : Ideal.IsMaximal x.asIdeal ⊢ ∃ s, {x} = zeroLocus s [PROOFSTEP] refine' ⟨x.asIdeal.1, _⟩ [GOAL] case refine'_2 R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x : PrimeSpectrum R h : Ideal.IsMaximal x.asIdeal ⊢ {x} = zeroLocus ↑x.asIdeal.toAddSubmonoid [PROOFSTEP] rw [eq_comm, Set.eq_singleton_iff_unique_mem] [GOAL] case refine'_2 R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x : PrimeSpectrum R h : Ideal.IsMaximal x.asIdeal ⊢ x ∈ zeroLocus ↑x.asIdeal.toAddSubmonoid ∧ ∀ (x_1 : PrimeSpectrum R), x_1 ∈ zeroLocus ↑x.asIdeal.toAddSubmonoid → x_1 = x [PROOFSTEP] refine' ⟨fun _ h => h, fun y hy => PrimeSpectrum.ext _ _ (h.eq_of_le y.2.ne_top hy).symm⟩ [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) ⊢ zeroLocus ↑(vanishingIdeal t) = closure t [PROOFSTEP] apply Set.Subset.antisymm [GOAL] case h₁ R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) ⊢ zeroLocus ↑(vanishingIdeal t) ⊆ closure t [PROOFSTEP] rintro x hx t' ⟨ht', ht⟩ [GOAL] case h₁.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) x : PrimeSpectrum R hx : x ∈ zeroLocus ↑(vanishingIdeal t) t' : Set (PrimeSpectrum R) ht' : IsClosed t' ht : t ⊆ t' ⊢ x ∈ t' [PROOFSTEP] obtain ⟨fs, rfl⟩ : ∃ s, t' = zeroLocus s := by rwa [isClosed_iff_zeroLocus] at ht' [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) x : PrimeSpectrum R hx : x ∈ zeroLocus ↑(vanishingIdeal t) t' : Set (PrimeSpectrum R) ht' : IsClosed t' ht : t ⊆ t' ⊢ ∃ s, t' = zeroLocus s [PROOFSTEP] rwa [isClosed_iff_zeroLocus] at ht' [GOAL] case h₁.intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) x : PrimeSpectrum R hx : x ∈ zeroLocus ↑(vanishingIdeal t) fs : Set R ht' : IsClosed (zeroLocus fs) ht : t ⊆ zeroLocus fs ⊢ x ∈ zeroLocus fs [PROOFSTEP] rw [subset_zeroLocus_iff_subset_vanishingIdeal] at ht [GOAL] case h₁.intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) x : PrimeSpectrum R hx : x ∈ zeroLocus ↑(vanishingIdeal t) fs : Set R ht' : IsClosed (zeroLocus fs) ht : fs ⊆ ↑(vanishingIdeal t) ⊢ x ∈ zeroLocus fs [PROOFSTEP] exact Set.Subset.trans ht hx [GOAL] case h₂ R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) ⊢ closure t ⊆ zeroLocus ↑(vanishingIdeal t) [PROOFSTEP] rw [(isClosed_zeroLocus _).closure_subset_iff] [GOAL] case h₂ R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S t : Set (PrimeSpectrum R) ⊢ t ⊆ zeroLocus ↑(vanishingIdeal t) [PROOFSTEP] exact subset_zeroLocus_vanishingIdeal t [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x : PrimeSpectrum R ⊢ closure {x} = zeroLocus ↑x.asIdeal [PROOFSTEP] rw [← zeroLocus_vanishingIdeal_eq_closure, vanishingIdeal_singleton] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set (PrimeSpectrum R) ⊢ Ideal.IsRadical (vanishingIdeal s) [PROOFSTEP] rw [← vanishingIdeal_closure, ← zeroLocus_vanishingIdeal_eq_closure, vanishingIdeal_zeroLocus_eq_radical] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set (PrimeSpectrum R) ⊢ Ideal.IsRadical (Ideal.radical (vanishingIdeal s)) [PROOFSTEP] apply Ideal.radical_isRadical [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s t : Set (PrimeSpectrum R) ht : IsClosed t h : vanishingIdeal t ≤ vanishingIdeal s ⊢ s ⊆ t [PROOFSTEP] rw [← ht.closure_subset_iff, ← ht.closure_eq] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s t : Set (PrimeSpectrum R) ht : IsClosed t h : vanishingIdeal t ≤ vanishingIdeal s ⊢ closure s ⊆ closure t [PROOFSTEP] convert ← zeroLocus_anti_mono_ideal h [GOAL] case h.e'_3 R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s t : Set (PrimeSpectrum R) ht : IsClosed t h : vanishingIdeal t ≤ vanishingIdeal s ⊢ zeroLocus ↑(vanishingIdeal s) = closure s [PROOFSTEP] apply zeroLocus_vanishingIdeal_eq_closure [GOAL] case h.e'_4 R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s t : Set (PrimeSpectrum R) ht : IsClosed t h : vanishingIdeal t ≤ vanishingIdeal s ⊢ zeroLocus ↑(vanishingIdeal t) = closure t [PROOFSTEP] apply zeroLocus_vanishingIdeal_eq_closure [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s t : Set (PrimeSpectrum R) hs : IsClosed s ht : IsClosed t ⊢ s ⊂ t ↔ vanishingIdeal t < vanishingIdeal s [PROOFSTEP] rw [Set.ssubset_def, vanishingIdeal_anti_mono_iff hs, vanishingIdeal_anti_mono_iff ht, lt_iff_le_not_le] [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : IsDomain R ⊢ T1Space (PrimeSpectrum R) ↔ IsField R [PROOFSTEP] refine' ⟨_, fun h => _⟩ [GOAL] case refine'_1 R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : IsDomain R ⊢ T1Space (PrimeSpectrum R) → IsField R [PROOFSTEP] intro h [GOAL] case refine'_1 R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : IsDomain R h : T1Space (PrimeSpectrum R) ⊢ IsField R [PROOFSTEP] have hbot : Ideal.IsPrime (⊥ : Ideal R) := Ideal.bot_prime [GOAL] case refine'_1 R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : IsDomain R h : T1Space (PrimeSpectrum R) hbot : Ideal.IsPrime ⊥ ⊢ IsField R [PROOFSTEP] exact Classical.not_not.1 (mt (Ring.ne_bot_of_isMaximal_of_not_isField <| (isClosed_singleton_iff_isMaximal _).1 (T1Space.t1 ⟨⊥, hbot⟩)) (by aesop)) [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : IsDomain R h : T1Space (PrimeSpectrum R) hbot : Ideal.IsPrime ⊥ ⊢ ¬{ asIdeal := ⊥, IsPrime := hbot }.asIdeal ≠ ⊥ [PROOFSTEP] aesop [GOAL] case refine'_2 R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : IsDomain R h : IsField R ⊢ T1Space (PrimeSpectrum R) [PROOFSTEP] refine' ⟨fun x => (isClosed_singleton_iff_isMaximal x).2 _⟩ [GOAL] case refine'_2 R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : IsDomain R h : IsField R x : PrimeSpectrum R ⊢ Ideal.IsMaximal x.asIdeal [PROOFSTEP] by_cases hx : x.asIdeal = ⊥ [GOAL] case pos R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : IsDomain R h : IsField R x : PrimeSpectrum R hx : x.asIdeal = ⊥ ⊢ Ideal.IsMaximal x.asIdeal [PROOFSTEP] letI := h.toField [GOAL] case pos R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : IsDomain R h : IsField R x : PrimeSpectrum R hx : x.asIdeal = ⊥ this : Field R := IsField.toField h ⊢ Ideal.IsMaximal x.asIdeal [PROOFSTEP] exact hx.symm ▸ Ideal.bot_isMaximal [GOAL] case neg R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : IsDomain R h : IsField R x : PrimeSpectrum R hx : ¬x.asIdeal = ⊥ ⊢ Ideal.IsMaximal x.asIdeal [PROOFSTEP] exact absurd h (Ring.not_isField_iff_exists_prime.2 ⟨x.asIdeal, ⟨hx, x.2⟩⟩) [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ IsIrreducible (zeroLocus ↑I) ↔ Ideal.IsPrime I [PROOFSTEP] rw [Ideal.isPrime_iff, IsIrreducible] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ Set.Nonempty (zeroLocus ↑I) ∧ IsPreirreducible (zeroLocus ↑I) ↔ I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ I [PROOFSTEP] apply and_congr [GOAL] case h₁ R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ Set.Nonempty (zeroLocus ↑I) ↔ I ≠ ⊤ [PROOFSTEP] rw [Set.nonempty_iff_ne_empty, Ne.def, zeroLocus_empty_iff_eq_top] [GOAL] case h₂ R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ IsPreirreducible (zeroLocus ↑I) ↔ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ I [PROOFSTEP] trans ∀ x y : Ideal R, Z(I) ⊆ Z(x) ∪ Z(y) → Z(I) ⊆ Z(x) ∨ Z(I) ⊆ Z(y) [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ IsPreirreducible (zeroLocus ↑I) ↔ ∀ (x y : Ideal R), zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y [PROOFSTEP] simp_rw [isPreirreducible_iff_closed_union_closed, isClosed_iff_zeroLocus_ideal] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ (∀ (z₁ z₂ : Set (PrimeSpectrum R)), (∃ I, z₁ = zeroLocus ↑I) → (∃ I, z₂ = zeroLocus ↑I) → zeroLocus ↑I ⊆ z₁ ∪ z₂ → zeroLocus ↑I ⊆ z₁ ∨ zeroLocus ↑I ⊆ z₂) ↔ ∀ (x y : Ideal R), zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y [PROOFSTEP] constructor [GOAL] case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ (∀ (z₁ z₂ : Set (PrimeSpectrum R)), (∃ I, z₁ = zeroLocus ↑I) → (∃ I, z₂ = zeroLocus ↑I) → zeroLocus ↑I ⊆ z₁ ∪ z₂ → zeroLocus ↑I ⊆ z₁ ∨ zeroLocus ↑I ⊆ z₂) → ∀ (x y : Ideal R), zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y [PROOFSTEP] rintro h x y [GOAL] case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I h : ∀ (z₁ z₂ : Set (PrimeSpectrum R)), (∃ I, z₁ = zeroLocus ↑I) → (∃ I, z₂ = zeroLocus ↑I) → zeroLocus ↑I ⊆ z₁ ∪ z₂ → zeroLocus ↑I ⊆ z₁ ∨ zeroLocus ↑I ⊆ z₂ x y : Ideal R ⊢ zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y [PROOFSTEP] exact h _ _ ⟨x, rfl⟩ ⟨y, rfl⟩ [GOAL] case mpr R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ (∀ (x y : Ideal R), zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y) → ∀ (z₁ z₂ : Set (PrimeSpectrum R)), (∃ I, z₁ = zeroLocus ↑I) → (∃ I, z₂ = zeroLocus ↑I) → zeroLocus ↑I ⊆ z₁ ∪ z₂ → zeroLocus ↑I ⊆ z₁ ∨ zeroLocus ↑I ⊆ z₂ [PROOFSTEP] rintro h _ _ ⟨x, rfl⟩ ⟨y, rfl⟩ [GOAL] case mpr.intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I h : ∀ (x y : Ideal R), zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y x y : Ideal R ⊢ zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y [PROOFSTEP] exact h x y [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ (∀ (x y : Ideal R), zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y) ↔ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ I [PROOFSTEP] simp_rw [← zeroLocus_inf, subset_zeroLocus_iff_le_vanishingIdeal, vanishingIdeal_zeroLocus_eq_radical, hI.radical] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ (∀ (x y : Ideal R), x ⊓ y ≤ I → x ≤ I ∨ y ≤ I) ↔ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ I [PROOFSTEP] constructor [GOAL] case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ (∀ (x y : Ideal R), x ⊓ y ≤ I → x ≤ I ∨ y ≤ I) → ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ I [PROOFSTEP] simp_rw [← SetLike.mem_coe, ← Set.singleton_subset_iff, ← Ideal.span_le, ← Ideal.span_singleton_mul_span_singleton] [GOAL] case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ (∀ (x y : Ideal R), x ⊓ y ≤ I → x ≤ I ∨ y ≤ I) → ∀ {x y : R}, Ideal.span {x} * Ideal.span {y} ≤ I → Ideal.span {x} ≤ I ∨ Ideal.span {y} ≤ I [PROOFSTEP] refine' fun h x y h' => h _ _ _ [GOAL] case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I h : ∀ (x y : Ideal R), x ⊓ y ≤ I → x ≤ I ∨ y ≤ I x y : R h' : Ideal.span {x} * Ideal.span {y} ≤ I ⊢ Ideal.span {x} ⊓ Ideal.span {y} ≤ I [PROOFSTEP] rw [← hI.radical_le_iff] at h' ⊢ [GOAL] case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I h : ∀ (x y : Ideal R), x ⊓ y ≤ I → x ≤ I ∨ y ≤ I x y : R h' : Ideal.radical (Ideal.span {x} * Ideal.span {y}) ≤ I ⊢ Ideal.radical (Ideal.span {x} ⊓ Ideal.span {y}) ≤ I [PROOFSTEP] simpa only [Ideal.radical_inf, Ideal.radical_mul] using h' [GOAL] case mpr R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ (∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ I) → ∀ (x y : Ideal R), x ⊓ y ≤ I → x ≤ I ∨ y ≤ I [PROOFSTEP] simp_rw [or_iff_not_imp_left, SetLike.not_le_iff_exists] [GOAL] case mpr R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I ⊢ (∀ {x y : R}, x * y ∈ I → ¬x ∈ I → y ∈ I) → ∀ (x y : Ideal R), x ⊓ y ≤ I → (∃ x_1, x_1 ∈ x ∧ ¬x_1 ∈ I) → y ≤ I [PROOFSTEP] rintro h s t h' ⟨x, hx, hx'⟩ y hy [GOAL] case mpr.intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hI : Ideal.IsRadical I h : ∀ {x y : R}, x * y ∈ I → ¬x ∈ I → y ∈ I s t : Ideal R h' : s ⊓ t ≤ I x : R hx : x ∈ s hx' : ¬x ∈ I y : R hy : y ∈ t ⊢ y ∈ I [PROOFSTEP] exact h (h' ⟨Ideal.mul_mem_right _ _ hx, Ideal.mul_mem_left _ _ hy⟩) hx' [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S s : Set (PrimeSpectrum R) ⊢ IsIrreducible s ↔ Ideal.IsPrime (vanishingIdeal s) [PROOFSTEP] rw [← isIrreducible_iff_closure, ← zeroLocus_vanishingIdeal_eq_closure, isIrreducible_zeroLocus_iff_of_radical _ (isRadical_vanishingIdeal s)] [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : IsDomain R ⊢ IrreducibleSpace (PrimeSpectrum R) [PROOFSTEP] rw [irreducibleSpace_def, Set.top_eq_univ, ← zeroLocus_bot, isIrreducible_zeroLocus_iff] [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : IsDomain R ⊢ Ideal.IsPrime (Ideal.radical ⊥) [PROOFSTEP] simpa using Ideal.bot_prime [GOAL] R : Type u S✝ : Type v inst✝¹ : CommRing R inst✝ : CommRing S✝ S : Set (PrimeSpectrum R) h₁ : IsIrreducible S h₂ : IsClosed S ⊢ IsGenericPoint { asIdeal := vanishingIdeal S, IsPrime := (_ : Ideal.IsPrime (vanishingIdeal S)) } S [PROOFSTEP] rw [IsGenericPoint, closure_singleton, zeroLocus_vanishingIdeal_eq_closure, h₂.closure_eq] [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S s : Set R ⊢ (fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) }) ⁻¹' zeroLocus s = zeroLocus (↑f '' s) [PROOFSTEP] ext x [GOAL] case h R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S s : Set R x : PrimeSpectrum S ⊢ x ∈ (fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) }) ⁻¹' zeroLocus s ↔ x ∈ zeroLocus (↑f '' s) [PROOFSTEP] simp only [mem_zeroLocus, Set.image_subset_iff] [GOAL] case h R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S s : Set R x : PrimeSpectrum S ⊢ x ∈ (fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) }) ⁻¹' zeroLocus s ↔ s ⊆ (fun a => ↑f a) ⁻¹' ↑x.asIdeal [PROOFSTEP] rfl [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S ⊢ Continuous fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) } [PROOFSTEP] simp only [continuous_iff_isClosed, isClosed_iff_zeroLocus] [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S ⊢ ∀ (s : Set (PrimeSpectrum R)), (∃ s_1, s = zeroLocus s_1) → ∃ s_1, (fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) }) ⁻¹' s = zeroLocus s_1 [PROOFSTEP] rintro _ ⟨s, rfl⟩ [GOAL] case intro R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S s : Set R ⊢ ∃ s_1, (fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) }) ⁻¹' zeroLocus s = zeroLocus s_1 [PROOFSTEP] exact ⟨_, preimage_comap_zeroLocus_aux f s⟩ [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S ⊢ comap (RingHom.id R) = ContinuousMap.id (PrimeSpectrum R) [PROOFSTEP] ext [GOAL] case h.asIdeal.h R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S a✝ : PrimeSpectrum R x✝ : R ⊢ x✝ ∈ (↑(comap (RingHom.id R)) a✝).asIdeal ↔ x✝ ∈ (↑(ContinuousMap.id (PrimeSpectrum R)) a✝).asIdeal [PROOFSTEP] rfl [GOAL] R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S ⊢ Inducing ↑(comap (algebraMap R S)) [PROOFSTEP] constructor [GOAL] case induced R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S ⊢ zariskiTopology = TopologicalSpace.induced (↑(comap (algebraMap R S))) zariskiTopology [PROOFSTEP] rw [topologicalSpace_eq_iff] [GOAL] case induced R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S ⊢ ∀ (s : Set (PrimeSpectrum S)), IsOpen s ↔ IsOpen s [PROOFSTEP] intro U [GOAL] case induced R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S U : Set (PrimeSpectrum S) ⊢ IsOpen U ↔ IsOpen U [PROOFSTEP] rw [← isClosed_compl_iff, ← @isClosed_compl_iff (α := PrimeSpectrum S) (s := U)] [GOAL] case induced R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S U : Set (PrimeSpectrum S) ⊢ IsClosed Uᶜ ↔ IsClosed Uᶜ [PROOFSTEP] generalize Uᶜ = Z [GOAL] case induced R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S U Z : Set (PrimeSpectrum S) ⊢ IsClosed Z ↔ IsClosed Z [PROOFSTEP] simp_rw [isClosed_induced_iff, isClosed_iff_zeroLocus] [GOAL] case induced R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S U Z : Set (PrimeSpectrum S) ⊢ (∃ s, Z = zeroLocus s) ↔ ∃ t, (∃ s, t = zeroLocus s) ∧ ↑(comap (algebraMap R S)) ⁻¹' t = Z [PROOFSTEP] constructor [GOAL] case induced.mp R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S U Z : Set (PrimeSpectrum S) ⊢ (∃ s, Z = zeroLocus s) → ∃ t, (∃ s, t = zeroLocus s) ∧ ↑(comap (algebraMap R S)) ⁻¹' t = Z [PROOFSTEP] rintro ⟨s, rfl⟩ [GOAL] case induced.mp.intro R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S U : Set (PrimeSpectrum S) s : Set S ⊢ ∃ t, (∃ s, t = zeroLocus s) ∧ ↑(comap (algebraMap R S)) ⁻¹' t = zeroLocus s [PROOFSTEP] refine ⟨_, ⟨algebraMap R S ⁻¹' Ideal.span s, rfl⟩, ?_⟩ [GOAL] case induced.mp.intro R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S U : Set (PrimeSpectrum S) s : Set S ⊢ ↑(comap (algebraMap R S)) ⁻¹' zeroLocus (↑(algebraMap R S) ⁻¹' ↑(Ideal.span s)) = zeroLocus s [PROOFSTEP] rw [preimage_comap_zeroLocus, ← zeroLocus_span, ← zeroLocus_span s] [GOAL] case induced.mp.intro R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S U : Set (PrimeSpectrum S) s : Set S ⊢ zeroLocus ↑(Ideal.span (↑(algebraMap R S) '' (↑(algebraMap R S) ⁻¹' ↑(Ideal.span s)))) = zeroLocus ↑(Ideal.span s) [PROOFSTEP] congr 2 [GOAL] case induced.mp.intro R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S U : Set (PrimeSpectrum S) s : Set S ⊢ zeroLocus ↑(Ideal.span (↑(algebraMap R S) '' (↑(algebraMap R S) ⁻¹' ↑(Ideal.span s)))) = zeroLocus ↑(Ideal.span s) [PROOFSTEP] exact congr_arg (zeroLocus ·) <| Submodule.carrier_inj.mpr (IsLocalization.map_comap M S (Ideal.span s)) [GOAL] case induced.mpr R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S U Z : Set (PrimeSpectrum S) ⊢ (∃ t, (∃ s, t = zeroLocus s) ∧ ↑(comap (algebraMap R S)) ⁻¹' t = Z) → ∃ s, Z = zeroLocus s [PROOFSTEP] rintro ⟨_, ⟨t, rfl⟩, rfl⟩ [GOAL] case induced.mpr.intro.intro.intro R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S U : Set (PrimeSpectrum S) t : Set R ⊢ ∃ s, ↑(comap (algebraMap R S)) ⁻¹' zeroLocus t = zeroLocus s [PROOFSTEP] rw [preimage_comap_zeroLocus] [GOAL] case induced.mpr.intro.intro.intro R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S U : Set (PrimeSpectrum S) t : Set R ⊢ ∃ s, zeroLocus (↑(algebraMap R S) '' t) = zeroLocus s [PROOFSTEP] exact ⟨_, rfl⟩ [GOAL] R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S ⊢ Function.Injective ↑(comap (algebraMap R S)) [PROOFSTEP] intro p q h [GOAL] R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S p q : PrimeSpectrum S h : ↑(comap (algebraMap R S)) p = ↑(comap (algebraMap R S)) q ⊢ p = q [PROOFSTEP] replace h := congr_arg (fun x : PrimeSpectrum R => Ideal.map (algebraMap R S) x.asIdeal) h [GOAL] R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S p q : PrimeSpectrum S h : (fun x => Ideal.map (algebraMap R S) x.asIdeal) (↑(comap (algebraMap R S)) p) = (fun x => Ideal.map (algebraMap R S) x.asIdeal) (↑(comap (algebraMap R S)) q) ⊢ p = q [PROOFSTEP] dsimp only [comap, ContinuousMap.coe_mk] at h [GOAL] R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S p q : PrimeSpectrum S h : Ideal.map (algebraMap R S) (Ideal.comap (algebraMap R S) p.asIdeal) = Ideal.map (algebraMap R S) (Ideal.comap (algebraMap R S) q.asIdeal) ⊢ p = q [PROOFSTEP] rw [IsLocalization.map_comap M S, IsLocalization.map_comap M S] at h [GOAL] R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S p q : PrimeSpectrum S h : p.asIdeal = q.asIdeal ⊢ p = q [PROOFSTEP] ext1 [GOAL] case asIdeal R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S p q : PrimeSpectrum S h : p.asIdeal = q.asIdeal ⊢ p.asIdeal = q.asIdeal [PROOFSTEP] exact h [GOAL] R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S ⊢ Set.range ↑(comap (algebraMap R S)) = {p | Disjoint ↑M ↑p.asIdeal} [PROOFSTEP] ext x [GOAL] case h R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S x : PrimeSpectrum R ⊢ x ∈ Set.range ↑(comap (algebraMap R S)) ↔ x ∈ {p | Disjoint ↑M ↑p.asIdeal} [PROOFSTEP] constructor [GOAL] case h.mp R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S x : PrimeSpectrum R ⊢ x ∈ Set.range ↑(comap (algebraMap R S)) → x ∈ {p | Disjoint ↑M ↑p.asIdeal} [PROOFSTEP] simp_rw [disjoint_iff_inf_le] [GOAL] case h.mp R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S x : PrimeSpectrum R ⊢ x ∈ Set.range ↑(comap (algebraMap R S)) → x ∈ {p | ↑M ⊓ ↑p.asIdeal ≤ ⊥} [PROOFSTEP] rintro ⟨p, rfl⟩ x ⟨hx₁, hx₂⟩ [GOAL] case h.mp.intro.intro R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S p : PrimeSpectrum S x : R hx₁ : x ∈ ↑M hx₂ : x ∈ ↑(↑(comap (algebraMap R S)) p).asIdeal ⊢ x ∈ ⊥ [PROOFSTEP] exact (p.2.1 : ¬_) (p.asIdeal.eq_top_of_isUnit_mem hx₂ (IsLocalization.map_units S ⟨x, hx₁⟩)) [GOAL] case h.mpr R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S x : PrimeSpectrum R ⊢ x ∈ {p | Disjoint ↑M ↑p.asIdeal} → x ∈ Set.range ↑(comap (algebraMap R S)) [PROOFSTEP] intro h [GOAL] case h.mpr R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S x : PrimeSpectrum R h : x ∈ {p | Disjoint ↑M ↑p.asIdeal} ⊢ x ∈ Set.range ↑(comap (algebraMap R S)) [PROOFSTEP] use⟨x.asIdeal.map (algebraMap R S), IsLocalization.isPrime_of_isPrime_disjoint M S _ x.2 h⟩ [GOAL] case h R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S x : PrimeSpectrum R h : x ∈ {p | Disjoint ↑M ↑p.asIdeal} ⊢ ↑(comap (algebraMap R S)) { asIdeal := Ideal.map (algebraMap R S) x.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map (algebraMap R S) x.asIdeal)) } = x [PROOFSTEP] ext1 [GOAL] case h.asIdeal R : Type u S : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S S' : Type u_1 inst✝² : CommRing S' f : R →+* S inst✝¹ : Algebra R S M : Submonoid R inst✝ : IsLocalization M S x : PrimeSpectrum R h : x ∈ {p | Disjoint ↑M ↑p.asIdeal} ⊢ (↑(comap (algebraMap R S)) { asIdeal := Ideal.map (algebraMap R S) x.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map (algebraMap R S) x.asIdeal)) }).asIdeal = x.asIdeal [PROOFSTEP] exact IsLocalization.comap_map_of_isPrime_disjoint M S _ x.2 h [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f ⊢ zariskiTopology = TopologicalSpace.induced (↑(comap f)) zariskiTopology [PROOFSTEP] simp_rw [topologicalSpace_eq_iff, ← isClosed_compl_iff, ← @isClosed_compl_iff (PrimeSpectrum S) ((TopologicalSpace.induced (comap f) zariskiTopology)), isClosed_induced_iff, isClosed_iff_zeroLocus] [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f ⊢ ∀ (s : Set (PrimeSpectrum S)), (∃ s_1, sᶜ = zeroLocus s_1) ↔ ∃ t, (∃ s, t = zeroLocus s) ∧ ↑(comap f) ⁻¹' t = sᶜ [PROOFSTEP] refine' fun s => ⟨fun ⟨F, hF⟩ => ⟨zeroLocus (f ⁻¹' F), ⟨f ⁻¹' F, rfl⟩, by rw [preimage_comap_zeroLocus, Function.Surjective.image_preimage hf, hF]⟩, _⟩ [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f s : Set (PrimeSpectrum S) x✝ : ∃ s_1, sᶜ = zeroLocus s_1 F : Set S hF : sᶜ = zeroLocus F ⊢ ↑(comap f) ⁻¹' zeroLocus (↑f ⁻¹' F) = sᶜ [PROOFSTEP] rw [preimage_comap_zeroLocus, Function.Surjective.image_preimage hf, hF] [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f s : Set (PrimeSpectrum S) ⊢ (∃ t, (∃ s, t = zeroLocus s) ∧ ↑(comap f) ⁻¹' t = sᶜ) → ∃ s_1, sᶜ = zeroLocus s_1 [PROOFSTEP] rintro ⟨-, ⟨F, rfl⟩, hF⟩ [GOAL] case intro.intro.intro R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f s : Set (PrimeSpectrum S) F : Set R hF : ↑(comap f) ⁻¹' zeroLocus F = sᶜ ⊢ ∃ s_1, sᶜ = zeroLocus s_1 [PROOFSTEP] exact ⟨f '' F, hF.symm.trans (preimage_comap_zeroLocus f F)⟩ [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S ⊢ ↑(comap f) '' zeroLocus ↑I = zeroLocus ↑(Ideal.comap f I) [PROOFSTEP] simp only [Set.ext_iff, Set.mem_image, mem_zeroLocus, SetLike.coe_subset_coe] [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S ⊢ ∀ (x : PrimeSpectrum R), (∃ x_1, I ≤ x_1.asIdeal ∧ ↑(comap f) x_1 = x) ↔ Ideal.comap f I ≤ x.asIdeal [PROOFSTEP] refine' fun p => ⟨_, fun h_I_p => _⟩ [GOAL] case refine'_1 R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum R ⊢ (∃ x, I ≤ x.asIdeal ∧ ↑(comap f) x = p) → Ideal.comap f I ≤ p.asIdeal [PROOFSTEP] rintro ⟨p, hp, rfl⟩ a ha [GOAL] case refine'_1.intro.intro R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum S hp : I ≤ p.asIdeal a : R ha : a ∈ Ideal.comap f I ⊢ a ∈ (↑(comap f) p).asIdeal [PROOFSTEP] exact hp ha [GOAL] case refine'_2 R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum R h_I_p : Ideal.comap f I ≤ p.asIdeal ⊢ ∃ x, I ≤ x.asIdeal ∧ ↑(comap f) x = p [PROOFSTEP] have hp : ker f ≤ p.asIdeal := (Ideal.comap_mono bot_le).trans h_I_p [GOAL] case refine'_2 R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum R h_I_p : Ideal.comap f I ≤ p.asIdeal hp : ker f ≤ p.asIdeal ⊢ ∃ x, I ≤ x.asIdeal ∧ ↑(comap f) x = p [PROOFSTEP] refine' ⟨⟨p.asIdeal.map f, Ideal.map_isPrime_of_surjective hf hp⟩, fun x hx => _, _⟩ [GOAL] case refine'_2.refine'_1 R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum R h_I_p : Ideal.comap f I ≤ p.asIdeal hp : ker f ≤ p.asIdeal x : S hx : x ∈ I ⊢ x ∈ { asIdeal := Ideal.map f p.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map f p.asIdeal)) }.asIdeal [PROOFSTEP] obtain ⟨x', rfl⟩ := hf x [GOAL] case refine'_2.refine'_1.intro R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum R h_I_p : Ideal.comap f I ≤ p.asIdeal hp : ker f ≤ p.asIdeal x' : R hx : ↑f x' ∈ I ⊢ ↑f x' ∈ { asIdeal := Ideal.map f p.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map f p.asIdeal)) }.asIdeal [PROOFSTEP] exact Ideal.mem_map_of_mem f (h_I_p hx) [GOAL] case refine'_2.refine'_2 R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum R h_I_p : Ideal.comap f I ≤ p.asIdeal hp : ker f ≤ p.asIdeal ⊢ ↑(comap f) { asIdeal := Ideal.map f p.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map f p.asIdeal)) } = p [PROOFSTEP] ext x [GOAL] case refine'_2.refine'_2.asIdeal.h R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum R h_I_p : Ideal.comap f I ≤ p.asIdeal hp : ker f ≤ p.asIdeal x : R ⊢ x ∈ (↑(comap f) { asIdeal := Ideal.map f p.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map f p.asIdeal)) }).asIdeal ↔ x ∈ p.asIdeal [PROOFSTEP] change f x ∈ p.asIdeal.map f ↔ _ [GOAL] case refine'_2.refine'_2.asIdeal.h R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum R h_I_p : Ideal.comap f I ≤ p.asIdeal hp : ker f ≤ p.asIdeal x : R ⊢ ↑f x ∈ Ideal.map f p.asIdeal ↔ x ∈ p.asIdeal [PROOFSTEP] rw [Ideal.mem_map_iff_of_surjective f hf] [GOAL] case refine'_2.refine'_2.asIdeal.h R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum R h_I_p : Ideal.comap f I ≤ p.asIdeal hp : ker f ≤ p.asIdeal x : R ⊢ (∃ x_1, x_1 ∈ p.asIdeal ∧ ↑f x_1 = ↑f x) ↔ x ∈ p.asIdeal [PROOFSTEP] refine' ⟨_, fun hx => ⟨x, hx, rfl⟩⟩ [GOAL] case refine'_2.refine'_2.asIdeal.h R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum R h_I_p : Ideal.comap f I ≤ p.asIdeal hp : ker f ≤ p.asIdeal x : R ⊢ (∃ x_1, x_1 ∈ p.asIdeal ∧ ↑f x_1 = ↑f x) → x ∈ p.asIdeal [PROOFSTEP] rintro ⟨x', hx', heq⟩ [GOAL] case refine'_2.refine'_2.asIdeal.h.intro.intro R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum R h_I_p : Ideal.comap f I ≤ p.asIdeal hp : ker f ≤ p.asIdeal x x' : R hx' : x' ∈ p.asIdeal heq : ↑f x' = ↑f x ⊢ x ∈ p.asIdeal [PROOFSTEP] rw [← sub_sub_cancel x' x] [GOAL] case refine'_2.refine'_2.asIdeal.h.intro.intro R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum R h_I_p : Ideal.comap f I ≤ p.asIdeal hp : ker f ≤ p.asIdeal x x' : R hx' : x' ∈ p.asIdeal heq : ↑f x' = ↑f x ⊢ x' - (x' - x) ∈ p.asIdeal [PROOFSTEP] refine' p.asIdeal.sub_mem hx' (hp _) [GOAL] case refine'_2.refine'_2.asIdeal.h.intro.intro R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f I : Ideal S p : PrimeSpectrum R h_I_p : Ideal.comap f I ≤ p.asIdeal hp : ker f ≤ p.asIdeal x x' : R hx' : x' ∈ p.asIdeal heq : ↑f x' = ↑f x ⊢ x' - x ∈ ker f [PROOFSTEP] rwa [mem_ker, map_sub, sub_eq_zero] [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f ⊢ Set.range ↑(comap f) = zeroLocus ↑(ker f) [PROOFSTEP] rw [← Set.image_univ] [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f ⊢ ↑(comap f) '' Set.univ = zeroLocus ↑(ker f) [PROOFSTEP] convert image_comap_zeroLocus_eq_zeroLocus_comap _ _ hf _ [GOAL] case h.e'_2.h.e'_4 R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f ⊢ Set.univ = zeroLocus ↑⊥ [PROOFSTEP] rw [zeroLocus_bot] [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f ⊢ IsClosed (Set.range ↑(comap f)) [PROOFSTEP] rw [range_comap_of_surjective _ f hf] [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S S' : Type u_1 inst✝ : CommRing S' f : R →+* S hf : Surjective ↑f ⊢ IsClosed (zeroLocus ↑(ker f)) [PROOFSTEP] exact isClosed_zeroLocus _ [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S r : R x : PrimeSpectrum R ⊢ x ∈ ↑(basicOpen r) ↔ x ∈ (zeroLocus {r})ᶜ [PROOFSTEP] simp only [SetLike.mem_coe, mem_basicOpen, Set.mem_compl_iff, mem_zeroLocus, Set.singleton_subset_iff] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ ↑(basicOpen 1) = ↑⊤ [PROOFSTEP] simp [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ ↑(basicOpen 0) = ↑⊥ [PROOFSTEP] simp [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f g : R ⊢ basicOpen f ≤ basicOpen g ↔ f ∈ Ideal.radical (Ideal.span {g}) [PROOFSTEP] rw [← SetLike.coe_subset_coe, basicOpen_eq_zeroLocus_compl, basicOpen_eq_zeroLocus_compl, Set.compl_subset_compl, zeroLocus_subset_zeroLocus_singleton_iff] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f g : R ⊢ ↑(basicOpen (f * g)) = ↑(basicOpen f ⊓ basicOpen g) [PROOFSTEP] simp [zeroLocus_singleton_mul] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f g : R ⊢ basicOpen (f * g) ≤ basicOpen f [PROOFSTEP] rw [basicOpen_mul f g] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f g : R ⊢ basicOpen f ⊓ basicOpen g ≤ basicOpen f [PROOFSTEP] exact inf_le_left [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f g : R ⊢ basicOpen (f * g) ≤ basicOpen g [PROOFSTEP] rw [basicOpen_mul f g] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f g : R ⊢ basicOpen f ⊓ basicOpen g ≤ basicOpen g [PROOFSTEP] exact inf_le_right [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R n : ℕ hn : 0 < n ⊢ ↑(basicOpen (f ^ n)) = ↑(basicOpen f) [PROOFSTEP] simpa using zeroLocus_singleton_pow f n hn [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ TopologicalSpace.IsTopologicalBasis (Set.range fun r => ↑(basicOpen r)) [PROOFSTEP] apply TopologicalSpace.isTopologicalBasis_of_open_of_nhds [GOAL] case h_open R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ ∀ (u : Set (PrimeSpectrum R)), (u ∈ Set.range fun r => ↑(basicOpen r)) → IsOpen u [PROOFSTEP] rintro _ ⟨r, rfl⟩ [GOAL] case h_open.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S r : R ⊢ IsOpen ((fun r => ↑(basicOpen r)) r) [PROOFSTEP] exact isOpen_basicOpen [GOAL] case h_nhds R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ ∀ (a : PrimeSpectrum R) (u : Set (PrimeSpectrum R)), a ∈ u → IsOpen u → ∃ v, (v ∈ Set.range fun r => ↑(basicOpen r)) ∧ a ∈ v ∧ v ⊆ u [PROOFSTEP] rintro p U hp ⟨s, hs⟩ [GOAL] case h_nhds.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S p : PrimeSpectrum R U : Set (PrimeSpectrum R) hp : p ∈ U s : Set R hs : zeroLocus s = Uᶜ ⊢ ∃ v, (v ∈ Set.range fun r => ↑(basicOpen r)) ∧ p ∈ v ∧ v ⊆ U [PROOFSTEP] rw [← compl_compl U, Set.mem_compl_iff, ← hs, mem_zeroLocus, Set.not_subset] at hp [GOAL] case h_nhds.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S p : PrimeSpectrum R U : Set (PrimeSpectrum R) s : Set R hp : ∃ a, a ∈ s ∧ ¬a ∈ ↑p.asIdeal hs : zeroLocus s = Uᶜ ⊢ ∃ v, (v ∈ Set.range fun r => ↑(basicOpen r)) ∧ p ∈ v ∧ v ⊆ U [PROOFSTEP] obtain ⟨f, hfs, hfp⟩ := hp [GOAL] case h_nhds.intro.intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S p : PrimeSpectrum R U : Set (PrimeSpectrum R) s : Set R hs : zeroLocus s = Uᶜ f : R hfs : f ∈ s hfp : ¬f ∈ ↑p.asIdeal ⊢ ∃ v, (v ∈ Set.range fun r => ↑(basicOpen r)) ∧ p ∈ v ∧ v ⊆ U [PROOFSTEP] refine' ⟨basicOpen f, ⟨f, rfl⟩, hfp, _⟩ [GOAL] case h_nhds.intro.intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S p : PrimeSpectrum R U : Set (PrimeSpectrum R) s : Set R hs : zeroLocus s = Uᶜ f : R hfs : f ∈ s hfp : ¬f ∈ ↑p.asIdeal ⊢ ↑(basicOpen f) ⊆ U [PROOFSTEP] rw [← Set.compl_subset_compl, ← hs, basicOpen_eq_zeroLocus_compl, compl_compl] [GOAL] case h_nhds.intro.intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S p : PrimeSpectrum R U : Set (PrimeSpectrum R) s : Set R hs : zeroLocus s = Uᶜ f : R hfs : f ∈ s hfp : ¬f ∈ ↑p.asIdeal ⊢ zeroLocus s ⊆ zeroLocus {f} [PROOFSTEP] exact zeroLocus_anti_mono (Set.singleton_subset_iff.mpr hfs) [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ TopologicalSpace.Opens.IsBasis (Set.range basicOpen) [PROOFSTEP] unfold TopologicalSpace.Opens.IsBasis [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ TopologicalSpace.IsTopologicalBasis (SetLike.coe '' Set.range basicOpen) [PROOFSTEP] convert isTopologicalBasis_basic_opens (R := R) [GOAL] case h.e'_3 R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ SetLike.coe '' Set.range basicOpen = Set.range fun r => ↑(basicOpen r) [PROOFSTEP] rw [← Set.range_comp] [GOAL] case h.e'_3 R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ Set.range (SetLike.coe ∘ basicOpen) = Set.range fun r => ↑(basicOpen r) [PROOFSTEP] rfl [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) hZ : ↑(basicOpen f) ∩ ⋂ (i : ι), Z i = ∅ ⊢ ∃ t, ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ t), Z i = ∅ [PROOFSTEP] let I : ι → Ideal R := fun i => vanishingIdeal (Z i) [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) hZ : ↑(basicOpen f) ∩ ⋂ (i : ι), Z i = ∅ I : ι → Ideal R := fun i => vanishingIdeal (Z i) ⊢ ∃ t, ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ t), Z i = ∅ [PROOFSTEP] have hI : ∀ i, Z i = zeroLocus (I i) := fun i => by simpa only [zeroLocus_vanishingIdeal_eq_closure] using (hZc i).closure_eq.symm [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) hZ : ↑(basicOpen f) ∩ ⋂ (i : ι), Z i = ∅ I : ι → Ideal R := fun i => vanishingIdeal (Z i) i : ι ⊢ Z i = zeroLocus ↑(I i) [PROOFSTEP] simpa only [zeroLocus_vanishingIdeal_eq_closure] using (hZc i).closure_eq.symm [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) hZ : ↑(basicOpen f) ∩ ⋂ (i : ι), Z i = ∅ I : ι → Ideal R := fun i => vanishingIdeal (Z i) hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) ⊢ ∃ t, ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ t), Z i = ∅ [PROOFSTEP] rw [basicOpen_eq_zeroLocus_compl f, Set.inter_comm, ← Set.diff_eq, Set.diff_eq_empty, funext hI, ← zeroLocus_iSup] at hZ [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) I : ι → Ideal R := fun i => vanishingIdeal (Z i) hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f} hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) ⊢ ∃ t, ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ t), Z i = ∅ [PROOFSTEP] obtain ⟨n, hn⟩ : f ∈ (⨆ i : ι, I i).radical := by rw [← vanishingIdeal_zeroLocus_eq_radical] apply vanishingIdeal_anti_mono hZ exact subset_vanishingIdeal_zeroLocus { f } (Set.mem_singleton f) [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) I : ι → Ideal R := fun i => vanishingIdeal (Z i) hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f} hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) ⊢ f ∈ Ideal.radical (⨆ (i : ι), I i) [PROOFSTEP] rw [← vanishingIdeal_zeroLocus_eq_radical] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) I : ι → Ideal R := fun i => vanishingIdeal (Z i) hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f} hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) ⊢ f ∈ vanishingIdeal (zeroLocus ↑(⨆ (i : ι), I i)) [PROOFSTEP] apply vanishingIdeal_anti_mono hZ [GOAL] case a R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) I : ι → Ideal R := fun i => vanishingIdeal (Z i) hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f} hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) ⊢ f ∈ vanishingIdeal (zeroLocus {f}) [PROOFSTEP] exact subset_vanishingIdeal_zeroLocus { f } (Set.mem_singleton f) [GOAL] case intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) I : ι → Ideal R := fun i => vanishingIdeal (Z i) hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f} hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) n : ℕ hn : f ^ n ∈ ⨆ (i : ι), I i ⊢ ∃ t, ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ t), Z i = ∅ [PROOFSTEP] rcases Submodule.exists_finset_of_mem_iSup I hn with ⟨s, hs⟩ [GOAL] case intro.intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) I : ι → Ideal R := fun i => vanishingIdeal (Z i) hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f} hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) n : ℕ hn : f ^ n ∈ ⨆ (i : ι), I i s : Finset ι hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i ⊢ ∃ t, ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ t), Z i = ∅ [PROOFSTEP] use s [GOAL] case h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) I : ι → Ideal R := fun i => vanishingIdeal (Z i) hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f} hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) n : ℕ hn : f ^ n ∈ ⨆ (i : ι), I i s : Finset ι hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i ⊢ ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ s), Z i = ∅ [PROOFSTEP] simp_rw [basicOpen_eq_zeroLocus_compl f, Set.inter_comm (zeroLocus { f })ᶜ, ← Set.diff_eq, Set.diff_eq_empty] [GOAL] case h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) I : ι → Ideal R := fun i => vanishingIdeal (Z i) hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f} hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) n : ℕ hn : f ^ n ∈ ⨆ (i : ι), I i s : Finset ι hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i ⊢ ⋂ (i : ι) (_ : i ∈ s), Z i ⊆ zeroLocus {f} [PROOFSTEP] rw [show (Set.iInter fun i => Set.iInter fun (_ : i ∈ s) => Z i) = Set.iInter fun i => Set.iInter fun (_ : i ∈ s) => zeroLocus (I i) from congr_arg _ (funext fun i => congr_arg _ (funext fun _ => hI i))] [GOAL] case h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) I : ι → Ideal R := fun i => vanishingIdeal (Z i) hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f} hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) n : ℕ hn : f ^ n ∈ ⨆ (i : ι), I i s : Finset ι hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i ⊢ ⋂ (i : ι) (_ : i ∈ s), zeroLocus ↑(I i) ⊆ zeroLocus {f} [PROOFSTEP] simp_rw [← zeroLocus_iSup] [GOAL] case h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) I : ι → Ideal R := fun i => vanishingIdeal (Z i) hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f} hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) n : ℕ hn : f ^ n ∈ ⨆ (i : ι), I i s : Finset ι hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i ⊢ zeroLocus ↑(⨆ (i : ι) (_ : i ∈ s), vanishingIdeal (Z i)) ⊆ zeroLocus {f} [PROOFSTEP] rw [← zeroLocus_radical] -- this one can't be in `simp_rw` because it would loop [GOAL] case h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) I : ι → Ideal R := fun i => vanishingIdeal (Z i) hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f} hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) n : ℕ hn : f ^ n ∈ ⨆ (i : ι), I i s : Finset ι hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i ⊢ zeroLocus ↑(Ideal.radical (⨆ (i : ι) (_ : i ∈ s), vanishingIdeal (Z i))) ⊆ zeroLocus {f} [PROOFSTEP] apply zeroLocus_anti_mono [GOAL] case h.h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) I : ι → Ideal R := fun i => vanishingIdeal (Z i) hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f} hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) n : ℕ hn : f ^ n ∈ ⨆ (i : ι), I i s : Finset ι hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i ⊢ {f} ⊆ ↑(Ideal.radical (⨆ (i : ι) (_ : i ∈ s), vanishingIdeal (Z i))) [PROOFSTEP] rw [Set.singleton_subset_iff] [GOAL] case h.h R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ι : Type u Z : ι → Set (PrimeSpectrum R) hZc : ∀ (i : ι), IsClosed (Z i) I : ι → Ideal R := fun i => vanishingIdeal (Z i) hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f} hI : ∀ (i : ι), Z i = zeroLocus ↑(I i) n : ℕ hn : f ^ n ∈ ⨆ (i : ι), I i s : Finset ι hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i ⊢ f ∈ ↑(Ideal.radical (⨆ (i : ι) (_ : i ∈ s), vanishingIdeal (Z i))) [PROOFSTEP] exact ⟨n, hs⟩ [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ⊢ basicOpen f = ⊥ ↔ IsNilpotent f [PROOFSTEP] rw [← TopologicalSpace.Opens.coe_inj, basicOpen_eq_zeroLocus_compl] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ⊢ (zeroLocus {f})ᶜ = ↑⊥ ↔ IsNilpotent f [PROOFSTEP] simp only [Set.eq_univ_iff_forall, Set.singleton_subset_iff, TopologicalSpace.Opens.coe_bot, nilpotent_iff_mem_prime, Set.compl_empty_iff, mem_zeroLocus, SetLike.mem_coe] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S f : R ⊢ (∀ (x : PrimeSpectrum R), f ∈ x.asIdeal) ↔ ∀ (J : Ideal R), Ideal.IsPrime J → f ∈ J [PROOFSTEP] exact ⟨fun h I hI => h ⟨I, hI⟩, fun h ⟨I, hI⟩ => h I hI⟩ [GOAL] R : Type u S✝ : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S✝ S : Type v inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S ⊢ Set.range ↑(comap (algebraMap R S)) = ↑(basicOpen r) [PROOFSTEP] rw [localization_comap_range S (Submonoid.powers r)] [GOAL] R : Type u S✝ : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S✝ S : Type v inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S ⊢ {p | Disjoint ↑(Submonoid.powers r) ↑p.asIdeal} = ↑(basicOpen r) [PROOFSTEP] ext x [GOAL] case h R : Type u S✝ : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S✝ S : Type v inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S x : PrimeSpectrum R ⊢ x ∈ {p | Disjoint ↑(Submonoid.powers r) ↑p.asIdeal} ↔ x ∈ ↑(basicOpen r) [PROOFSTEP] simp only [mem_zeroLocus, basicOpen_eq_zeroLocus_compl, SetLike.mem_coe, Set.mem_setOf_eq, Set.singleton_subset_iff, Set.mem_compl_iff, disjoint_iff_inf_le] [GOAL] case h R : Type u S✝ : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S✝ S : Type v inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S x : PrimeSpectrum R ⊢ ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥ ↔ ¬r ∈ x.asIdeal [PROOFSTEP] constructor [GOAL] case h.mp R : Type u S✝ : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S✝ S : Type v inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S x : PrimeSpectrum R ⊢ ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥ → ¬r ∈ x.asIdeal [PROOFSTEP] intro h₁ h₂ [GOAL] case h.mp R : Type u S✝ : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S✝ S : Type v inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S x : PrimeSpectrum R h₁ : ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥ h₂ : r ∈ x.asIdeal ⊢ False [PROOFSTEP] exact h₁ ⟨Submonoid.mem_powers r, h₂⟩ [GOAL] case h.mpr R : Type u S✝ : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S✝ S : Type v inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S x : PrimeSpectrum R ⊢ ¬r ∈ x.asIdeal → ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥ [PROOFSTEP] rintro h₁ _ ⟨⟨n, rfl⟩, h₃⟩ [GOAL] case h.mpr.intro.intro R : Type u S✝ : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S✝ S : Type v inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S x : PrimeSpectrum R h₁ : ¬r ∈ x.asIdeal n : ℕ h₃ : (fun x x_1 => x ^ x_1) r n ∈ ↑x.asIdeal ⊢ (fun x x_1 => x ^ x_1) r n ∈ ⊥ [PROOFSTEP] exact h₁ (x.2.mem_of_pow_mem _ h₃) [GOAL] R : Type u S✝ : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S✝ S : Type v inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S ⊢ IsOpen (Set.range ↑(comap (algebraMap R S))) [PROOFSTEP] rw [localization_away_comap_range S r] [GOAL] R : Type u S✝ : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S✝ S : Type v inst✝² : CommRing S inst✝¹ : Algebra R S r : R inst✝ : IsLocalization.Away r S ⊢ IsOpen ↑(basicOpen r) [PROOFSTEP] exact isOpen_basicOpen [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ IsCompact Set.univ [PROOFSTEP] convert isCompact_basicOpen (1 : R) [GOAL] case h.e'_3 R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ Set.univ = ↑(basicOpen 1) [PROOFSTEP] rw [basicOpen_one] [GOAL] case h.e'_3 R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S ⊢ Set.univ = ↑⊤ [PROOFSTEP] rfl [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x y : PrimeSpectrum R ⊢ x ≤ y ↔ y ∈ closure {x} [PROOFSTEP] rw [← asIdeal_le_asIdeal, ← zeroLocus_vanishingIdeal_eq_closure, mem_zeroLocus, vanishingIdeal_singleton, SetLike.coe_subset_coe] [GOAL] R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x y : PrimeSpectrum R h : x ⤳ y ⊢ ∀ (y_1 : { x // x ∈ Ideal.primeCompl y.asIdeal }), IsUnit (↑(algebraMap R (Localization.AtPrime x.asIdeal)) ↑y_1) [PROOFSTEP] rintro ⟨a, ha⟩ [GOAL] case mk R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x y : PrimeSpectrum R h : x ⤳ y a : R ha : a ∈ Ideal.primeCompl y.asIdeal ⊢ IsUnit (↑(algebraMap R (Localization.AtPrime x.asIdeal)) ↑{ val := a, property := ha }) [PROOFSTEP] rw [← PrimeSpectrum.le_iff_specializes, ← asIdeal_le_asIdeal, ← SetLike.coe_subset_coe, ← Set.compl_subset_compl] at h [GOAL] case mk R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S x y : PrimeSpectrum R h : (↑y.asIdeal)ᶜ ⊆ (↑x.asIdeal)ᶜ a : R ha : a ∈ Ideal.primeCompl y.asIdeal ⊢ IsUnit (↑(algebraMap R (Localization.AtPrime x.asIdeal)) ↑{ val := a, property := ha }) [PROOFSTEP] exact (IsLocalization.map_units (Localization.AtPrime x.asIdeal) ⟨a, show a ∈ x.asIdeal.primeCompl from h ha⟩ : _) [GOAL] R : Type u S✝ : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S✝ inst✝² : LocalRing R S : Type v inst✝¹ : CommRing S inst✝ : LocalRing S f : R →+* S ⊢ IsLocalRingHom f ↔ ↑(PrimeSpectrum.comap f) (closedPoint S) = closedPoint R [PROOFSTEP] have := (local_hom_TFAE f).out 0 4 [GOAL] R : Type u S✝ : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S✝ inst✝² : LocalRing R S : Type v inst✝¹ : CommRing S inst✝ : LocalRing S f : R →+* S this : IsLocalRingHom f ↔ Ideal.comap f (maximalIdeal S) = maximalIdeal R ⊢ IsLocalRingHom f ↔ ↑(PrimeSpectrum.comap f) (closedPoint S) = closedPoint R [PROOFSTEP] rw [this, PrimeSpectrum.ext_iff] [GOAL] R : Type u S✝ : Type v inst✝⁴ : CommRing R inst✝³ : CommRing S✝ inst✝² : LocalRing R S : Type v inst✝¹ : CommRing S inst✝ : LocalRing S f : R →+* S this : IsLocalRingHom f ↔ Ideal.comap f (maximalIdeal S) = maximalIdeal R ⊢ Ideal.comap f (maximalIdeal S) = maximalIdeal R ↔ (↑(PrimeSpectrum.comap f) (closedPoint S)).asIdeal = (closedPoint R).asIdeal [PROOFSTEP] rfl [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : LocalRing R U : TopologicalSpace.Opens (PrimeSpectrum R) ⊢ closedPoint R ∈ U ↔ U = ⊤ [PROOFSTEP] constructor [GOAL] case mp R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : LocalRing R U : TopologicalSpace.Opens (PrimeSpectrum R) ⊢ closedPoint R ∈ U → U = ⊤ [PROOFSTEP] rw [eq_top_iff] [GOAL] case mp R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : LocalRing R U : TopologicalSpace.Opens (PrimeSpectrum R) ⊢ closedPoint R ∈ U → ⊤ ≤ U [PROOFSTEP] exact fun h x _ => (specializes_closedPoint x).mem_open U.2 h [GOAL] case mpr R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : LocalRing R U : TopologicalSpace.Opens (PrimeSpectrum R) ⊢ U = ⊤ → closedPoint R ∈ U [PROOFSTEP] rintro rfl [GOAL] case mpr R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : LocalRing R ⊢ closedPoint R ∈ ⊤ [PROOFSTEP] trivial [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : LocalRing R x : PrimeSpectrum (ResidueField R) ⊢ ↑(PrimeSpectrum.comap (residue R)) x = closedPoint R [PROOFSTEP] rw [Subsingleton.elim x ⊥] [GOAL] R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : LocalRing R x : PrimeSpectrum (ResidueField R) ⊢ ↑(PrimeSpectrum.comap (residue R)) ⊥ = closedPoint R [PROOFSTEP] ext1 [GOAL] case asIdeal R : Type u S : Type v inst✝² : CommRing R inst✝¹ : CommRing S inst✝ : LocalRing R x : PrimeSpectrum (ResidueField R) ⊢ (↑(PrimeSpectrum.comap (residue R)) ⊥).asIdeal = (closedPoint R).asIdeal [PROOFSTEP] exact Ideal.mk_ker
{"mathlib_filename": "Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic", "llama_tokens": 39348}
[GOAL] X : Scheme ⊢ T0Space ↑↑X.toPresheafedSpace [PROOFSTEP] refine' T0Space.of_open_cover fun x => _ [GOAL] X : Scheme x : ↑↑X.toPresheafedSpace ⊢ ∃ s, x ∈ s ∧ IsOpen s ∧ T0Space ↑s [PROOFSTEP] obtain ⟨U, R, ⟨e⟩⟩ := X.local_affine x [GOAL] case intro.intro.intro X : Scheme x : ↑↑X.toPresheafedSpace U : OpenNhds x R : CommRingCat e : LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R) ⊢ ∃ s, x ∈ s ∧ IsOpen s ∧ T0Space ↑s [PROOFSTEP] let e' : U.1 ≃ₜ PrimeSpectrum R := homeoOfIso ((LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forget _).mapIso e) [GOAL] case intro.intro.intro X : Scheme x : ↑↑X.toPresheafedSpace U : OpenNhds x R : CommRingCat e : LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R) e' : { x_1 // x_1 ∈ U.obj } ≃ₜ PrimeSpectrum ↑R := homeoOfIso ((LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).mapIso e) ⊢ ∃ s, x ∈ s ∧ IsOpen s ∧ T0Space ↑s [PROOFSTEP] exact ⟨U.1.1, U.2, U.1.2, e'.embedding.t0Space⟩ [GOAL] X : Scheme ⊢ QuasiSober ↑↑X.toPresheafedSpace [PROOFSTEP] apply (config := { allowSynthFailures := true }) quasiSober_of_open_cover (Set.range fun x => Set.range <| (X.affineCover.map x).1.base) [GOAL] case hS X : Scheme ⊢ ∀ (s : ↑(Set.range fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base)), IsOpen ↑s [PROOFSTEP] rintro ⟨_, i, rfl⟩ [GOAL] case hS.mk.intro X : Scheme i : (Scheme.affineCover X).J ⊢ IsOpen ↑{ val := (fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) i, property := (_ : ∃ y, (fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) y = (fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) i) } [PROOFSTEP] exact (X.affineCover.IsOpen i).base_open.open_range [GOAL] case hS' X : Scheme ⊢ ∀ (s : ↑(Set.range fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base)), QuasiSober ↑↑s [PROOFSTEP] rintro ⟨_, i, rfl⟩ [GOAL] case hS'.mk.intro X : Scheme i : (Scheme.affineCover X).J ⊢ QuasiSober ↑↑{ val := (fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) i, property := (_ : ∃ y, (fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) y = (fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) i) } [PROOFSTEP] exact @OpenEmbedding.quasiSober _ _ _ _ _ (Homeomorph.ofEmbedding _ (X.affineCover.IsOpen i).base_open.toEmbedding).symm.openEmbedding PrimeSpectrum.quasiSober [GOAL] case hS'' X : Scheme ⊢ (⋃₀ Set.range fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) = ⊤ [PROOFSTEP] rw [Set.top_eq_univ, Set.sUnion_range, Set.eq_univ_iff_forall] [GOAL] case hS'' X : Scheme ⊢ ∀ (x : (forget TopCat).obj ↑X.toPresheafedSpace), x ∈ ⋃ (x : (Scheme.affineCover X).J), Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base [PROOFSTEP] intro x [GOAL] case hS'' X : Scheme x : (forget TopCat).obj ↑X.toPresheafedSpace ⊢ x ∈ ⋃ (x : (Scheme.affineCover X).J), Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base [PROOFSTEP] exact ⟨_, ⟨_, rfl⟩, X.affineCover.Covers x⟩ [GOAL] X : Scheme inst✝ : ∀ (x : ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(Presheaf.stalk X.presheaf x) ⊢ IsReduced X [PROOFSTEP] refine' ⟨fun U => ⟨fun s hs => _⟩⟩ [GOAL] X : Scheme inst✝ : ∀ (x : ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(Presheaf.stalk X.presheaf x) U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : IsNilpotent s ⊢ s = 0 [PROOFSTEP] apply Presheaf.section_ext X.sheaf U s 0 [GOAL] X : Scheme inst✝ : ∀ (x : ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(Presheaf.stalk X.presheaf x) U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : IsNilpotent s ⊢ ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0 [PROOFSTEP] intro x [GOAL] X : Scheme inst✝ : ∀ (x : ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(Presheaf.stalk X.presheaf x) U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : IsNilpotent s x : { x // x ∈ U } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0 [PROOFSTEP] rw [RingHom.map_zero] [GOAL] X : Scheme inst✝ : ∀ (x : ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(Presheaf.stalk X.presheaf x) U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : IsNilpotent s x : { x // x ∈ U } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 [PROOFSTEP] change X.presheaf.germ x s = 0 [GOAL] X : Scheme inst✝ : ∀ (x : ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(Presheaf.stalk X.presheaf x) U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : IsNilpotent s x : { x // x ∈ U } ⊢ ↑(Presheaf.germ X.presheaf x) s = 0 [PROOFSTEP] exact (hs.map _).eq_zero [GOAL] X : Scheme inst✝ : IsReduced X x : ↑↑X.toPresheafedSpace ⊢ _root_.IsReduced ↑(Presheaf.stalk X.presheaf x) [PROOFSTEP] constructor [GOAL] case eq_zero X : Scheme inst✝ : IsReduced X x : ↑↑X.toPresheafedSpace ⊢ ∀ (x_1 : ↑(Presheaf.stalk X.presheaf x)), IsNilpotent x_1 → x_1 = 0 [PROOFSTEP] rintro g ⟨n, e⟩ [GOAL] case eq_zero.intro X : Scheme inst✝ : IsReduced X x : ↑↑X.toPresheafedSpace g : ↑(Presheaf.stalk X.presheaf x) n : ℕ e : g ^ n = 0 ⊢ g = 0 [PROOFSTEP] obtain ⟨U, hxU, s, rfl⟩ := X.presheaf.germ_exist x g [GOAL] case eq_zero.intro.intro.intro.intro X : Scheme inst✝ : IsReduced X x : ↑↑X.toPresheafedSpace n : ℕ U : Opens ↑↑X.toPresheafedSpace hxU : x ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) e : ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) s ^ n = 0 ⊢ ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) s = 0 [PROOFSTEP] rw [← map_pow, ← map_zero (X.presheaf.germ ⟨x, hxU⟩)] at e [GOAL] case eq_zero.intro.intro.intro.intro X : Scheme inst✝ : IsReduced X x : ↑↑X.toPresheafedSpace n : ℕ U : Opens ↑↑X.toPresheafedSpace hxU : x ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) e : ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) (s ^ n) = ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) 0 ⊢ ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) s = 0 [PROOFSTEP] obtain ⟨V, hxV, iU, iV, e'⟩ := X.presheaf.germ_eq x hxU hxU _ 0 e [GOAL] case eq_zero.intro.intro.intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsReduced X x : ↑↑X.toPresheafedSpace n : ℕ U : Opens ↑↑X.toPresheafedSpace hxU : x ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) e : ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) (s ^ n) = ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) 0 V : Opens ↑↑X.toPresheafedSpace hxV : x ∈ V iU iV : V ⟶ U e' : ↑(X.presheaf.map iU.op) (s ^ n) = ↑(X.presheaf.map iV.op) 0 ⊢ ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) s = 0 [PROOFSTEP] rw [map_pow, map_zero] at e' [GOAL] case eq_zero.intro.intro.intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsReduced X x : ↑↑X.toPresheafedSpace n : ℕ U : Opens ↑↑X.toPresheafedSpace hxU : x ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) e : ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) (s ^ n) = ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) 0 V : Opens ↑↑X.toPresheafedSpace hxV : x ∈ V iU iV : V ⟶ U e' : ↑(X.presheaf.map iU.op) s ^ n = 0 ⊢ ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) s = 0 [PROOFSTEP] replace e' := (IsNilpotent.mk _ _ e').eq_zero (R := X.presheaf.obj <| op V) [GOAL] case eq_zero.intro.intro.intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsReduced X x : ↑↑X.toPresheafedSpace n : ℕ U : Opens ↑↑X.toPresheafedSpace hxU : x ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) e : ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) (s ^ n) = ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) 0 V : Opens ↑↑X.toPresheafedSpace hxV : x ∈ V iU iV : V ⟶ U e' : ↑(X.presheaf.map iU.op) s = 0 ⊢ ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) s = 0 [PROOFSTEP] erw [← ConcreteCategory.congr_hom (X.presheaf.germ_res iU ⟨x, hxV⟩) s] [GOAL] case eq_zero.intro.intro.intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsReduced X x : ↑↑X.toPresheafedSpace n : ℕ U : Opens ↑↑X.toPresheafedSpace hxU : x ∈ U s : (forget CommRingCat).obj (X.presheaf.obj (op U)) e : ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) (s ^ n) = ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) 0 V : Opens ↑↑X.toPresheafedSpace hxV : x ∈ V iU iV : V ⟶ U e' : ↑(X.presheaf.map iU.op) s = 0 ⊢ ↑(X.presheaf.map iU.op ≫ Presheaf.germ X.presheaf { val := x, property := hxV }) s = 0 [PROOFSTEP] rw [comp_apply, e', map_zero] [GOAL] X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝ : IsReduced Y ⊢ IsReduced X [PROOFSTEP] constructor [GOAL] case component_reduced X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝ : IsReduced Y ⊢ autoParam (∀ (U : Opens ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(X.presheaf.obj (op U))) _auto✝ [PROOFSTEP] intro U [GOAL] case component_reduced X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝ : IsReduced Y U : Opens ↑↑X.toPresheafedSpace ⊢ _root_.IsReduced ↑(X.presheaf.obj (op U)) [PROOFSTEP] have : U = (Opens.map f.1.base).obj (H.base_open.isOpenMap.functor.obj U) := by ext1; exact (Set.preimage_image_eq _ H.base_open.inj).symm [GOAL] X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝ : IsReduced Y U : Opens ↑↑X.toPresheafedSpace ⊢ U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U) [PROOFSTEP] ext1 [GOAL] case h X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝ : IsReduced Y U : Opens ↑↑X.toPresheafedSpace ⊢ ↑U = ↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)) [PROOFSTEP] exact (Set.preimage_image_eq _ H.base_open.inj).symm [GOAL] case component_reduced X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝ : IsReduced Y U : Opens ↑↑X.toPresheafedSpace this : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U) ⊢ _root_.IsReduced ↑(X.presheaf.obj (op U)) [PROOFSTEP] rw [this] [GOAL] case component_reduced X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝ : IsReduced Y U : Opens ↑↑X.toPresheafedSpace this : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U) ⊢ _root_.IsReduced ↑(X.presheaf.obj (op ((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)))) [PROOFSTEP] exact isReduced_of_injective (inv <| f.1.c.app (op <| H.base_open.isOpenMap.functor.obj U)) (asIso <| f.1.c.app (op <| H.base_open.isOpenMap.functor.obj U) : Y.presheaf.obj _ ≅ _).symm.commRingCatIsoToRingEquiv.injective [GOAL] X : Scheme R : CommRingCat H : _root_.IsReduced ↑R ⊢ IsReduced (Scheme.Spec.obj (op R)) [PROOFSTEP] apply (config := { allowSynthFailures := true }) isReducedOfStalkIsReduced [GOAL] case inst X : Scheme R : CommRingCat H : _root_.IsReduced ↑R ⊢ ∀ (x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace), _root_.IsReduced ↑(Presheaf.stalk (Scheme.Spec.obj (op R)).presheaf x) [PROOFSTEP] intro x [GOAL] case inst X : Scheme R : CommRingCat H : _root_.IsReduced ↑R x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace ⊢ _root_.IsReduced ↑(Presheaf.stalk (Scheme.Spec.obj (op R)).presheaf x) [PROOFSTEP] dsimp [GOAL] case inst X : Scheme R : CommRingCat H : _root_.IsReduced ↑R x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace ⊢ _root_.IsReduced ↑(Presheaf.stalk (Scheme.Spec.obj (op R)).presheaf x) [PROOFSTEP] have : _root_.IsReduced (CommRingCat.of <| Localization.AtPrime (PrimeSpectrum.asIdeal x)) := by dsimp; infer_instance [GOAL] X : Scheme R : CommRingCat H : _root_.IsReduced ↑R x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace ⊢ _root_.IsReduced ↑(CommRingCat.of (Localization.AtPrime x.asIdeal)) [PROOFSTEP] dsimp [GOAL] X : Scheme R : CommRingCat H : _root_.IsReduced ↑R x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace ⊢ _root_.IsReduced (Localization.AtPrime x.asIdeal) [PROOFSTEP] infer_instance [GOAL] case inst X : Scheme R : CommRingCat H : _root_.IsReduced ↑R x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace this : _root_.IsReduced ↑(CommRingCat.of (Localization.AtPrime x.asIdeal)) ⊢ _root_.IsReduced ↑(Presheaf.stalk (Scheme.Spec.obj (op R)).presheaf x) [PROOFSTEP] exact isReduced_of_injective (StructureSheaf.stalkIso R x).hom (StructureSheaf.stalkIso R x).commRingCatIsoToRingEquiv.injective [GOAL] X : Scheme R : CommRingCat ⊢ IsReduced (Scheme.Spec.obj (op R)) ↔ _root_.IsReduced ↑R [PROOFSTEP] refine' ⟨_, fun h => inferInstance⟩ [GOAL] X : Scheme R : CommRingCat ⊢ IsReduced (Scheme.Spec.obj (op R)) → _root_.IsReduced ↑R [PROOFSTEP] intro h [GOAL] X : Scheme R : CommRingCat h : IsReduced (Scheme.Spec.obj (op R)) ⊢ _root_.IsReduced ↑R [PROOFSTEP] have : _root_.IsReduced (LocallyRingedSpace.Γ.obj (op <| Spec.toLocallyRingedSpace.obj <| op R)) := by change _root_.IsReduced ((Scheme.Spec.obj <| op R).presheaf.obj <| op ⊤); infer_instance [GOAL] X : Scheme R : CommRingCat h : IsReduced (Scheme.Spec.obj (op R)) ⊢ _root_.IsReduced ↑(LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op R)))) [PROOFSTEP] change _root_.IsReduced ((Scheme.Spec.obj <| op R).presheaf.obj <| op ⊤) [GOAL] X : Scheme R : CommRingCat h : IsReduced (Scheme.Spec.obj (op R)) ⊢ _root_.IsReduced ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤)) [PROOFSTEP] infer_instance [GOAL] X : Scheme R : CommRingCat h : IsReduced (Scheme.Spec.obj (op R)) this : _root_.IsReduced ↑(LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op R)))) ⊢ _root_.IsReduced ↑R [PROOFSTEP] exact isReduced_of_injective (toSpecΓ R) (asIso <| toSpecΓ R).commRingCatIsoToRingEquiv.injective [GOAL] X : Scheme inst✝ : IsAffine X h : _root_.IsReduced ↑(X.presheaf.obj (op ⊤)) ⊢ IsReduced (Scheme.Spec.obj (op (Scheme.Γ.obj (op X)))) [PROOFSTEP] rw [affine_isReduced_iff] [GOAL] X : Scheme inst✝ : IsAffine X h : _root_.IsReduced ↑(X.presheaf.obj (op ⊤)) ⊢ _root_.IsReduced ↑(Scheme.Γ.obj (op X)) [PROOFSTEP] exact h [GOAL] X : Scheme P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f], ∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) } h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤ ⊢ ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), P X U [PROOFSTEP] intro X U [GOAL] X✝ : Scheme P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f], ∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) } h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤ X : Scheme U : Opens ↑↑X.toPresheafedSpace ⊢ P X U [PROOFSTEP] apply h₁ [GOAL] case a X✝ : Scheme P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f], ∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) } h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤ X : Scheme U : Opens ↑↑X.toPresheafedSpace ⊢ ∀ (x : { x // x ∈ U }), ∃ V x x, P X V [PROOFSTEP] intro x [GOAL] case a X✝ : Scheme P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f], ∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) } h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤ X : Scheme U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } ⊢ ∃ V x x, P X V [PROOFSTEP] obtain ⟨_, ⟨j, rfl⟩, hx, i⟩ := X.affineBasisCover_is_basis.exists_subset_of_mem_open (SetLike.mem_coe.2 x.prop) U.isOpen [GOAL] case a.intro.intro.intro.intro X✝ : Scheme P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f], ∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) } h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤ X : Scheme U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } j : (Scheme.affineBasisCover X).J hx : ↑x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base i : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base ⊆ ↑U ⊢ ∃ V x x, P X V [PROOFSTEP] let U' : Opens _ := ⟨_, (X.affineBasisCover.IsOpen j).base_open.open_range⟩ [GOAL] case a.intro.intro.intro.intro X✝ : Scheme P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f], ∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) } h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤ X : Scheme U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } j : (Scheme.affineBasisCover X).J hx : ↑x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base i : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base ⊆ ↑U U' : Opens ((forget TopCat).obj ↑X.toPresheafedSpace) := { carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) } ⊢ ∃ V x x, P X V [PROOFSTEP] let i' : U' ⟶ U := homOfLE i [GOAL] case a.intro.intro.intro.intro X✝ : Scheme P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f], ∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) } h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤ X : Scheme U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } j : (Scheme.affineBasisCover X).J hx : ↑x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base i : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base ⊆ ↑U U' : Opens ((forget TopCat).obj ↑X.toPresheafedSpace) := { carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) } i' : U' ⟶ U := homOfLE i ⊢ ∃ V x x, P X V [PROOFSTEP] refine' ⟨U', hx, i', _⟩ [GOAL] case a.intro.intro.intro.intro X✝ : Scheme P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f], ∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) } h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤ X : Scheme U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } j : (Scheme.affineBasisCover X).J hx : ↑x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base i : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base ⊆ ↑U U' : Opens ((forget TopCat).obj ↑X.toPresheafedSpace) := { carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) } i' : U' ⟶ U := homOfLE i ⊢ P X U' [PROOFSTEP] obtain ⟨_, _, rfl, rfl, h₂'⟩ := h₂ (X.affineBasisCover.map j) [GOAL] case a.intro.intro.intro.intro.intro.intro.intro.intro X✝ : Scheme P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f], ∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) } h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤ X : Scheme U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } j : (Scheme.affineBasisCover X).J hx : ↑x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base i : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base ⊆ ↑U U' : Opens ((forget TopCat).obj ↑X.toPresheafedSpace) := { carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) } i' : U' ⟶ U := homOfLE i h₂' : P (Scheme.OpenCover.obj (Scheme.affineBasisCover X) j) { carrier := ⊤, is_open' := (_ : IsOpen ⊤) } → P X { carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) } ⊢ P X U' [PROOFSTEP] apply h₂' [GOAL] case a.intro.intro.intro.intro.intro.intro.intro.intro X✝ : Scheme P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f], ∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) } h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤ X : Scheme U : Opens ↑↑X.toPresheafedSpace x : { x // x ∈ U } j : (Scheme.affineBasisCover X).J hx : ↑x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base i : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base ⊆ ↑U U' : Opens ((forget TopCat).obj ↑X.toPresheafedSpace) := { carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) } i' : U' ⟶ U := homOfLE i h₂' : P (Scheme.OpenCover.obj (Scheme.affineBasisCover X) j) { carrier := ⊤, is_open' := (_ : IsOpen ⊤) } → P X { carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) } ⊢ P (Scheme.OpenCover.obj (Scheme.affineBasisCover X) j) { carrier := ⊤, is_open' := (_ : IsOpen ⊤) } [PROOFSTEP] apply h₃ [GOAL] X : Scheme P : (X : Scheme) → ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (R : CommRingCat) (x : PrimeSpectrum ↑R), P (Scheme.Spec.obj (op R)) x h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [inst : IsOpenImmersion f] (x : ↑↑X.toPresheafedSpace), P X x → P Y (↑f.val.base x) ⊢ ∀ (X : Scheme) (x : ↑↑X.toPresheafedSpace), P X x [PROOFSTEP] intro X x [GOAL] X✝ : Scheme P : (X : Scheme) → ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (R : CommRingCat) (x : PrimeSpectrum ↑R), P (Scheme.Spec.obj (op R)) x h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [inst : IsOpenImmersion f] (x : ↑↑X.toPresheafedSpace), P X x → P Y (↑f.val.base x) X : Scheme x : ↑↑X.toPresheafedSpace ⊢ P X x [PROOFSTEP] obtain ⟨y, e⟩ := X.affineCover.Covers x [GOAL] case intro X✝ : Scheme P : (X : Scheme) → ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (R : CommRingCat) (x : PrimeSpectrum ↑R), P (Scheme.Spec.obj (op R)) x h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [inst : IsOpenImmersion f] (x : ↑↑X.toPresheafedSpace), P X x → P Y (↑f.val.base x) X : Scheme x : ↑↑X.toPresheafedSpace y : (forget TopCat).obj ↑(Scheme.OpenCover.obj (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).toPresheafedSpace e : ↑(Scheme.OpenCover.map (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).val.base y = x ⊢ P X x [PROOFSTEP] convert h₂ (X.affineCover.map (X.affineCover.f x)) y _ [GOAL] case h.e'_2 X✝ : Scheme P : (X : Scheme) → ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (R : CommRingCat) (x : PrimeSpectrum ↑R), P (Scheme.Spec.obj (op R)) x h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [inst : IsOpenImmersion f] (x : ↑↑X.toPresheafedSpace), P X x → P Y (↑f.val.base x) X : Scheme x : ↑↑X.toPresheafedSpace y : (forget TopCat).obj ↑(Scheme.OpenCover.obj (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).toPresheafedSpace e : ↑(Scheme.OpenCover.map (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).val.base y = x ⊢ x = ↑(Scheme.OpenCover.map (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).val.base y [PROOFSTEP] rw [e] [GOAL] case intro X✝ : Scheme P : (X : Scheme) → ↑↑X.toPresheafedSpace → Prop h₁ : ∀ (R : CommRingCat) (x : PrimeSpectrum ↑R), P (Scheme.Spec.obj (op R)) x h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [inst : IsOpenImmersion f] (x : ↑↑X.toPresheafedSpace), P X x → P Y (↑f.val.base x) X : Scheme x : ↑↑X.toPresheafedSpace y : (forget TopCat).obj ↑(Scheme.OpenCover.obj (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).toPresheafedSpace e : ↑(Scheme.OpenCover.map (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).val.base y = x ⊢ P (Scheme.OpenCover.obj (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)) y [PROOFSTEP] apply h₁ [GOAL] X✝ : Scheme X : Scheme hX : IsReduced X U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ ⊢ s = 0 [PROOFSTEP] apply TopCat.Presheaf.section_ext X.sheaf U [GOAL] case h X✝ : Scheme X : Scheme hX : IsReduced X U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ ⊢ ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0 [PROOFSTEP] conv => intro x; rw [RingHom.map_zero] [GOAL] X✝ : Scheme X : Scheme hX : IsReduced X U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ | ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0 [PROOFSTEP] intro x; rw [RingHom.map_zero] [GOAL] X✝ : Scheme X : Scheme hX : IsReduced X U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ | ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0 [PROOFSTEP] intro x; rw [RingHom.map_zero] [GOAL] X✝ : Scheme X : Scheme hX : IsReduced X U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ | ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0 [PROOFSTEP] intro x [GOAL] X✝ : Scheme X : Scheme hX : IsReduced X U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ x : { x // x ∈ U } | ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0 [PROOFSTEP] rw [RingHom.map_zero] [GOAL] case h X✝ : Scheme X : Scheme hX : IsReduced X U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ ⊢ ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 [PROOFSTEP] refine' (@reduce_to_affine_global (fun X U => ∀ [IsReduced X] (s : X.presheaf.obj (op U)), X.basicOpen s = ⊥ → ∀ x, (X.sheaf.presheaf.germ x) s = 0) _ _ _) X U s hs [GOAL] case h.refine'_1 X✝ : Scheme X : Scheme hX : IsReduced X U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ ⊢ ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) X V) → (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) X U [PROOFSTEP] intro X U hx hX s hs x [GOAL] case h.refine'_1 X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U✝ : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U✝)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X : Scheme U : Opens ↑↑X.toPresheafedSpace hx : ∀ (x : { x // x ∈ U }), ∃ V x x, (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) X V hX : IsReduced X s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ x : { x // x ∈ U } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 [PROOFSTEP] obtain ⟨V, hx, i, H⟩ := hx x [GOAL] case h.refine'_1.intro.intro.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U✝ : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U✝)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X : Scheme U : Opens ↑↑X.toPresheafedSpace hx✝ : ∀ (x : { x // x ∈ U }), ∃ V x x, (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) X V hX : IsReduced X s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ x : { x // x ∈ U } V : Opens ↑↑X.toPresheafedSpace hx : ↑x ∈ V i : V ⟶ U H : ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op V))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ V }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 [PROOFSTEP] specialize H (X.presheaf.map i.op s) [GOAL] case h.refine'_1.intro.intro.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U✝ : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U✝)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X : Scheme U : Opens ↑↑X.toPresheafedSpace hx✝ : ∀ (x : { x // x ∈ U }), ∃ V x x, (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) X V hX : IsReduced X s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ x : { x // x ∈ U } V : Opens ↑↑X.toPresheafedSpace hx : ↑x ∈ V i : V ⟶ U H : Scheme.basicOpen X (↑(X.presheaf.map i.op) s) = ⊥ → ∀ (x : { x // x ∈ V }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) (↑(X.presheaf.map i.op) s) = 0 ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 [PROOFSTEP] erw [Scheme.basicOpen_res] at H [GOAL] case h.refine'_1.intro.intro.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U✝ : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U✝)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X : Scheme U : Opens ↑↑X.toPresheafedSpace hx✝ : ∀ (x : { x // x ∈ U }), ∃ V x x, (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) X V hX : IsReduced X s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ x : { x // x ∈ U } V : Opens ↑↑X.toPresheafedSpace hx : ↑x ∈ V i : V ⟶ U H : V ⊓ Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ V }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) (↑(X.presheaf.map i.op) s) = 0 ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 [PROOFSTEP] rw [hs] at H [GOAL] case h.refine'_1.intro.intro.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U✝ : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U✝)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X : Scheme U : Opens ↑↑X.toPresheafedSpace hx✝ : ∀ (x : { x // x ∈ U }), ∃ V x x, (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) X V hX : IsReduced X s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ x : { x // x ∈ U } V : Opens ↑↑X.toPresheafedSpace hx : ↑x ∈ V i : V ⟶ U H : V ⊓ ⊥ = ⊥ → ∀ (x : { x // x ∈ V }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) (↑(X.presheaf.map i.op) s) = 0 ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 [PROOFSTEP] specialize H inf_bot_eq ⟨x, hx⟩ [GOAL] case h.refine'_1.intro.intro.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U✝ : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U✝)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X : Scheme U : Opens ↑↑X.toPresheafedSpace hx✝ : ∀ (x : { x // x ∈ U }), ∃ V x x, (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) X V hX : IsReduced X s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ x : { x // x ∈ U } V : Opens ↑↑X.toPresheafedSpace hx : ↑x ∈ V i : V ⟶ U H : ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) { val := ↑x, property := hx }) (↑(X.presheaf.map i.op) s) = 0 ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 [PROOFSTEP] erw [TopCat.Presheaf.germ_res_apply] at H [GOAL] case h.refine'_1.intro.intro.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U✝ : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U✝)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X : Scheme U : Opens ↑↑X.toPresheafedSpace hx✝ : ∀ (x : { x // x ∈ U }), ∃ V x x, (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) X V hX : IsReduced X s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ x : { x // x ∈ U } V : Opens ↑↑X.toPresheafedSpace hx : ↑x ∈ V i : V ⟶ U H : ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) { val := ↑x, property := hx })) s = 0 ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 [PROOFSTEP] exact H [GOAL] case h.refine'_2 X✝ : Scheme X : Scheme hX : IsReduced X U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ ⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f], ∃ U V hU hV, (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) X { carrier := U, is_open' := (_ : IsOpen U) } → (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) Y { carrier := V, is_open' := (_ : IsOpen V) } [PROOFSTEP] rintro X Y f hf [GOAL] case h.refine'_2 X✝¹ : Scheme X✝ : Scheme hX : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s : ↑(X✝.presheaf.obj (op U)) hs : Scheme.basicOpen X✝ s = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f ⊢ ∃ U V hU hV, (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) X { carrier := U, is_open' := (_ : IsOpen U) } → (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) Y { carrier := V, is_open' := (_ : IsOpen V) } [PROOFSTEP] have e : f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ := by rw [← Set.image_univ, Set.preimage_image_eq _ hf.base_open.inj] [GOAL] X✝¹ : Scheme X✝ : Scheme hX : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s : ↑(X✝.presheaf.obj (op U)) hs : Scheme.basicOpen X✝ s = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f ⊢ ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ [PROOFSTEP] rw [← Set.image_univ, Set.preimage_image_eq _ hf.base_open.inj] [GOAL] case h.refine'_2 X✝¹ : Scheme X✝ : Scheme hX : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s : ↑(X✝.presheaf.obj (op U)) hs : Scheme.basicOpen X✝ s = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ ⊢ ∃ U V hU hV, (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) X { carrier := U, is_open' := (_ : IsOpen U) } → (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) Y { carrier := V, is_open' := (_ : IsOpen V) } [PROOFSTEP] refine' ⟨_, _, e, rfl, _⟩ [GOAL] case h.refine'_2 X✝¹ : Scheme X✝ : Scheme hX : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s : ↑(X✝.presheaf.obj (op U)) hs : Scheme.basicOpen X✝ s = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ ⊢ (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) X { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } → (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) Y { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) } [PROOFSTEP] rintro H hX s hs ⟨_, x, rfl⟩ [GOAL] case h.refine'_2.mk.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ H : ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 hX : IsReduced Y s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) })) hs : Scheme.basicOpen Y s = ⊥ x : (forget TopCat).obj ↑X.toPresheafedSpace ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf Y)) { val := ↑f.val.base x, property := (_ : ∃ y, ↑f.val.base y = ↑f.val.base x) }) s = 0 [PROOFSTEP] haveI := isReducedOfOpenImmersion f [GOAL] case h.refine'_2.mk.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ H : ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 hX : IsReduced Y s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) })) hs : Scheme.basicOpen Y s = ⊥ x : (forget TopCat).obj ↑X.toPresheafedSpace this : IsReduced X ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf Y)) { val := ↑f.val.base x, property := (_ : ∃ y, ↑f.val.base y = ↑f.val.base x) }) s = 0 [PROOFSTEP] specialize H (f.1.c.app _ s) _ ⟨x, by rw [Opens.mem_mk, e]; trivial⟩ [GOAL] X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ H : ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 hX : IsReduced Y s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) })) hs : Scheme.basicOpen Y s = ⊥ x : (forget TopCat).obj ↑X.toPresheafedSpace this : IsReduced X ⊢ x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } [PROOFSTEP] rw [Opens.mem_mk, e] [GOAL] X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ H : ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 hX : IsReduced Y s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) })) hs : Scheme.basicOpen Y s = ⊥ x : (forget TopCat).obj ↑X.toPresheafedSpace this : IsReduced X ⊢ x ∈ Set.univ [PROOFSTEP] trivial [GOAL] case h.refine'_2.mk.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ H : ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 hX : IsReduced Y s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) })) hs : Scheme.basicOpen Y s = ⊥ x : (forget TopCat).obj ↑X.toPresheafedSpace this : IsReduced X ⊢ Scheme.basicOpen X (↑(NatTrans.app f.val.c (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) })) s) = ⊥ [PROOFSTEP] rw [← Scheme.preimage_basicOpen, hs] [GOAL] case h.refine'_2.mk.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ H : ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 hX : IsReduced Y s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) })) hs : Scheme.basicOpen Y s = ⊥ x : (forget TopCat).obj ↑X.toPresheafedSpace this : IsReduced X ⊢ (Opens.map f.val.base).obj ⊥ = ⊥ [PROOFSTEP] ext1 [GOAL] case h.refine'_2.mk.intro.h X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ H : ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0 hX : IsReduced Y s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) })) hs : Scheme.basicOpen Y s = ⊥ x : (forget TopCat).obj ↑X.toPresheafedSpace this : IsReduced X ⊢ ↑((Opens.map f.val.base).obj ⊥) = ↑⊥ [PROOFSTEP] simp [Opens.map] [GOAL] case h.refine'_2.mk.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ hX : IsReduced Y s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) })) hs : Scheme.basicOpen Y s = ⊥ x : (forget TopCat).obj ↑X.toPresheafedSpace this : IsReduced X H : ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) { val := x, property := (_ : x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) }) (↑(NatTrans.app f.val.c (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) })) s) = 0 ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf Y)) { val := ↑f.val.base x, property := (_ : ∃ y, ↑f.val.base y = ↑f.val.base x) }) s = 0 [PROOFSTEP] erw [← PresheafedSpace.stalkMap_germ_apply f.1 ⟨_, _⟩ ⟨x, _⟩] at H [GOAL] case h.refine'_2.mk.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ hX : IsReduced Y s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) })) hs : Scheme.basicOpen Y s = ⊥ x : (forget TopCat).obj ↑X.toPresheafedSpace this : IsReduced X H : ↑(PresheafedSpace.stalkMap f.val ↑{ val := x, property := (_ : x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) }) (↑(Presheaf.germ Y.presheaf { val := ↑f.val.base ↑{ val := x, property := (_ : x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) }, property := (_ : ↑{ val := x, property := (_ : x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) } ∈ (Opens.map f.val.base).obj { carrier := fun x => ∃ y, ↑f.val.base y = x, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }) }) s) = 0 ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf Y)) { val := ↑f.val.base x, property := (_ : ∃ y, ↑f.val.base y = ↑f.val.base x) }) s = 0 [PROOFSTEP] apply_fun inv <| PresheafedSpace.stalkMap f.val x at H [GOAL] case h.refine'_2.mk.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ hX : IsReduced Y s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) })) hs : Scheme.basicOpen Y s = ⊥ x : (forget TopCat).obj ↑X.toPresheafedSpace this : IsReduced X H : ↑(inv (PresheafedSpace.stalkMap f.val x)) (↑(PresheafedSpace.stalkMap f.val ↑{ val := x, property := (_ : x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) }) (↑(Presheaf.germ Y.presheaf { val := ↑f.val.base ↑{ val := x, property := (_ : x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) }, property := (_ : ↑{ val := x, property := (_ : x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) } ∈ (Opens.map f.val.base).obj { carrier := fun x => ∃ y, ↑f.val.base y = x, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }) }) s)) = ↑(inv (PresheafedSpace.stalkMap f.val x)) 0 ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf Y)) { val := ↑f.val.base x, property := (_ : ∃ y, ↑f.val.base y = ↑f.val.base x) }) s = 0 [PROOFSTEP] erw [CategoryTheory.IsIso.hom_inv_id_apply, map_zero] at H [GOAL] case h.refine'_2.mk.intro X✝¹ : Scheme X✝ : Scheme hX✝ : IsReduced X✝ U : Opens ↑↑X✝.toPresheafedSpace s✝ : ↑(X✝.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X✝ s✝ = ⊥ X Y : Scheme f : X ⟶ Y hf : IsOpenImmersion f e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ hX : IsReduced Y s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) })) hs : Scheme.basicOpen Y s = ⊥ x : (forget TopCat).obj ↑X.toPresheafedSpace this : IsReduced X H : ↑(Presheaf.germ Y.presheaf { val := ↑f.val.base ↑{ val := x, property := (_ : x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) }, property := (_ : ↑{ val := x, property := (_ : x ∈ { carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base, is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) } ∈ (Opens.map f.val.base).obj { carrier := fun x => ∃ y, ↑f.val.base y = x, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }) }) s = 0 ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf Y)) { val := ↑f.val.base x, property := (_ : ∃ y, ↑f.val.base y = ↑f.val.base x) }) s = 0 [PROOFSTEP] exact H [GOAL] case h.refine'_3 X✝ : Scheme X : Scheme hX : IsReduced X U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) hs : Scheme.basicOpen X s = ⊥ ⊢ ∀ (R : CommRingCat), (fun X U => ∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))), Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0) (Scheme.Spec.obj (op R)) ⊤ [PROOFSTEP] intro R hX s hs x [GOAL] case h.refine'_3 X✝ : Scheme X : Scheme hX✝ : IsReduced X U : Opens ↑↑X.toPresheafedSpace s✝ : ↑(X.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X s✝ = ⊥ R : CommRingCat hX : IsReduced (Scheme.Spec.obj (op R)) s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤)) hs : Scheme.basicOpen (Scheme.Spec.obj (op R)) s = ⊥ x : { x // x ∈ ⊤ } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf (Scheme.Spec.obj (op R)))) x) s = 0 [PROOFSTEP] erw [basicOpen_eq_of_affine', PrimeSpectrum.basicOpen_eq_bot_iff] at hs [GOAL] case h.refine'_3 X✝ : Scheme X : Scheme hX✝ : IsReduced X U : Opens ↑↑X.toPresheafedSpace s✝ : ↑(X.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X s✝ = ⊥ R : CommRingCat hX : IsReduced (Scheme.Spec.obj (op R)) s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤)) hs : IsNilpotent (↑(SpecΓIdentity.app R).hom s) x : { x // x ∈ ⊤ } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf (Scheme.Spec.obj (op R)))) x) s = 0 [PROOFSTEP] replace hs := hs.map (SpecΓIdentity.app R).inv [GOAL] case h.refine'_3 X✝ : Scheme X : Scheme hX✝ : IsReduced X U : Opens ↑↑X.toPresheafedSpace s✝ : ↑(X.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X s✝ = ⊥ R : CommRingCat hX : IsReduced (Scheme.Spec.obj (op R)) s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤)) x : { x // x ∈ ⊤ } hs : IsNilpotent (↑(SpecΓIdentity.app R).inv (↑(SpecΓIdentity.app R).hom s)) ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf (Scheme.Spec.obj (op R)))) x) s = 0 [PROOFSTEP] replace hs := @IsNilpotent.eq_zero _ _ _ _ (show _ from ?_) hs [GOAL] case h.refine'_3.refine_2 X✝ : Scheme X : Scheme hX✝ : IsReduced X U : Opens ↑↑X.toPresheafedSpace s✝ : ↑(X.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X s✝ = ⊥ R : CommRingCat hX : IsReduced (Scheme.Spec.obj (op R)) s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤)) x : { x // x ∈ ⊤ } hs : ↑(SpecΓIdentity.app R).inv (↑(SpecΓIdentity.app R).hom s) = 0 ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf (Scheme.Spec.obj (op R)))) x) s = 0 case h.refine'_3.refine_1 X✝ : Scheme X : Scheme hX✝ : IsReduced X U : Opens ↑↑X.toPresheafedSpace s✝ : ↑(X.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X s✝ = ⊥ R : CommRingCat hX : IsReduced (Scheme.Spec.obj (op R)) s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤)) x : { x // x ∈ ⊤ } hs : IsNilpotent (↑(SpecΓIdentity.app R).inv (↑(SpecΓIdentity.app R).hom s)) ⊢ _root_.IsReduced ((fun x => ↑((Spec.toLocallyRingedSpace.rightOp ⋙ LocallyRingedSpace.Γ).obj R)) (↑(SpecΓIdentity.app R).hom s)) [PROOFSTEP] rw [Iso.hom_inv_id_apply] at hs [GOAL] case h.refine'_3.refine_2 X✝ : Scheme X : Scheme hX✝ : IsReduced X U : Opens ↑↑X.toPresheafedSpace s✝ : ↑(X.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X s✝ = ⊥ R : CommRingCat hX : IsReduced (Scheme.Spec.obj (op R)) s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤)) x : { x // x ∈ ⊤ } hs : s = 0 ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf (Scheme.Spec.obj (op R)))) x) s = 0 case h.refine'_3.refine_1 X✝ : Scheme X : Scheme hX✝ : IsReduced X U : Opens ↑↑X.toPresheafedSpace s✝ : ↑(X.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X s✝ = ⊥ R : CommRingCat hX : IsReduced (Scheme.Spec.obj (op R)) s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤)) x : { x // x ∈ ⊤ } hs : IsNilpotent (↑(SpecΓIdentity.app R).inv (↑(SpecΓIdentity.app R).hom s)) ⊢ _root_.IsReduced ((fun x => ↑((Spec.toLocallyRingedSpace.rightOp ⋙ LocallyRingedSpace.Γ).obj R)) (↑(SpecΓIdentity.app R).hom s)) [PROOFSTEP] rw [hs, map_zero] [GOAL] case h.refine'_3.refine_1 X✝ : Scheme X : Scheme hX✝ : IsReduced X U : Opens ↑↑X.toPresheafedSpace s✝ : ↑(X.presheaf.obj (op U)) hs✝ : Scheme.basicOpen X s✝ = ⊥ R : CommRingCat hX : IsReduced (Scheme.Spec.obj (op R)) s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤)) x : { x // x ∈ ⊤ } hs : IsNilpotent (↑(SpecΓIdentity.app R).inv (↑(SpecΓIdentity.app R).hom s)) ⊢ _root_.IsReduced ((fun x => ↑((Spec.toLocallyRingedSpace.rightOp ⋙ LocallyRingedSpace.Γ).obj R)) (↑(SpecΓIdentity.app R).hom s)) [PROOFSTEP] exact @IsReduced.component_reduced _ hX ⊤ [GOAL] X✝ : Scheme X : Scheme inst✝ : IsReduced X U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) ⊢ Scheme.basicOpen X s = ⊥ ↔ s = 0 [PROOFSTEP] refine' ⟨eq_zero_of_basicOpen_eq_bot s, _⟩ [GOAL] X✝ : Scheme X : Scheme inst✝ : IsReduced X U : Opens ↑↑X.toPresheafedSpace s : ↑(X.presheaf.obj (op U)) ⊢ s = 0 → Scheme.basicOpen X s = ⊥ [PROOFSTEP] rintro rfl [GOAL] X✝ : Scheme X : Scheme inst✝ : IsReduced X U : Opens ↑↑X.toPresheafedSpace ⊢ Scheme.basicOpen X 0 = ⊥ [PROOFSTEP] simp [GOAL] X : Scheme h : IsIntegral X ⊢ Nonempty { x // x ∈ ⊤ } [PROOFSTEP] simp only [Set.univ_nonempty, Opens.nonempty_coeSort, Opens.coe_top] [GOAL] X : Scheme inst✝ : IsIntegral X ⊢ IsReduced X [PROOFSTEP] constructor [GOAL] case component_reduced X : Scheme inst✝ : IsIntegral X ⊢ autoParam (∀ (U : Opens ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(X.presheaf.obj (op U))) _auto✝ [PROOFSTEP] intro U [GOAL] case component_reduced X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace ⊢ _root_.IsReduced ↑(X.presheaf.obj (op U)) [PROOFSTEP] cases' U.1.eq_empty_or_nonempty with h h [GOAL] case component_reduced.inl X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace h : U.carrier = ∅ ⊢ _root_.IsReduced ↑(X.presheaf.obj (op U)) [PROOFSTEP] have : U = ⊥ := SetLike.ext' h [GOAL] case component_reduced.inl X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace h : U.carrier = ∅ this : U = ⊥ ⊢ _root_.IsReduced ↑(X.presheaf.obj (op U)) [PROOFSTEP] haveI := CommRingCat.subsingleton_of_isTerminal (X.sheaf.isTerminalOfEqEmpty this) [GOAL] case component_reduced.inl X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace h : U.carrier = ∅ this✝ : U = ⊥ this : Subsingleton ↑((Scheme.sheaf X).val.obj (op U)) ⊢ _root_.IsReduced ↑(X.presheaf.obj (op U)) [PROOFSTEP] change _root_.IsReduced (X.sheaf.val.obj (op U)) [GOAL] case component_reduced.inl X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace h : U.carrier = ∅ this✝ : U = ⊥ this : Subsingleton ↑((Scheme.sheaf X).val.obj (op U)) ⊢ _root_.IsReduced ↑((Scheme.sheaf X).val.obj (op U)) [PROOFSTEP] infer_instance [GOAL] case component_reduced.inr X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace h : Set.Nonempty U.carrier ⊢ _root_.IsReduced ↑(X.presheaf.obj (op U)) [PROOFSTEP] haveI : Nonempty U := by simpa [GOAL] X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace h : Set.Nonempty U.carrier ⊢ Nonempty { x // x ∈ U } [PROOFSTEP] simpa [GOAL] case component_reduced.inr X : Scheme inst✝ : IsIntegral X U : Opens ↑↑X.toPresheafedSpace h : Set.Nonempty U.carrier this : Nonempty { x // x ∈ U } ⊢ _root_.IsReduced ↑(X.presheaf.obj (op U)) [PROOFSTEP] infer_instance [GOAL] X : Scheme inst✝ : IsIntegral X ⊢ IrreducibleSpace ↑↑X.toPresheafedSpace [PROOFSTEP] by_contra H [GOAL] X : Scheme inst✝ : IsIntegral X H : ¬IrreducibleSpace ↑↑X.toPresheafedSpace ⊢ False [PROOFSTEP] replace H : ¬IsPreirreducible (⊤ : Set X.carrier) := fun h => H { toPreirreducibleSpace := ⟨h⟩ toNonempty := inferInstance } [GOAL] X : Scheme inst✝ : IsIntegral X H : ¬IsPreirreducible ⊤ ⊢ False [PROOFSTEP] simp_rw [isPreirreducible_iff_closed_union_closed, not_forall, not_or] at H [GOAL] X : Scheme inst✝ : IsIntegral X H : ∃ x x_1 h h h, ¬⊤ ⊆ x ∧ ¬⊤ ⊆ x_1 ⊢ False [PROOFSTEP] rcases H with ⟨S, T, hS, hT, h₁, h₂, h₃⟩ [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ¬⊤ ⊆ S h₃ : ¬⊤ ⊆ T ⊢ False [PROOFSTEP] erw [not_forall] at h₂ h₃ [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x, ¬(x ∈ ⊤ → x ∈ S) h₃ : ∃ x, ¬(x ∈ ⊤ → x ∈ T) ⊢ False [PROOFSTEP] simp_rw [not_forall] at h₂ h₃ [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T ⊢ False [PROOFSTEP] haveI : Nonempty (⟨Sᶜ, hS.1⟩ : Opens X.carrier) := ⟨⟨_, h₂.choose_spec.choose_spec⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } ⊢ False [PROOFSTEP] haveI : Nonempty (⟨Tᶜ, hT.1⟩ : Opens X.carrier) := ⟨⟨_, h₃.choose_spec.choose_spec⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } ⊢ False [PROOFSTEP] haveI : Nonempty (⟨Sᶜ, hS.1⟩ ⊔ ⟨Tᶜ, hT.1⟩ : Opens X.carrier) := ⟨⟨_, Or.inl h₂.choose_spec.choose_spec⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } ⊢ False [PROOFSTEP] let e : X.presheaf.obj _ ≅ CommRingCat.of _ := (X.sheaf.isProductOfDisjoint ⟨_, hS.1⟩ ⟨_, hT.1⟩ ?_).conePointUniqueUpToIso (CommRingCat.prodFanIsLimit _ _) [GOAL] case intro.intro.intro.intro.intro.intro.refine_2 X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } e : X.presheaf.obj (op ({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })) ≅ CommRingCat.of ↑(CommRingCat.prodFan ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) })) ((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }))).1 := IsLimit.conePointUniqueUpToIso (Sheaf.isProductOfDisjoint (Scheme.sheaf X) { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } ?intro.intro.intro.intro.intro.intro.refine_1) (CommRingCat.prodFanIsLimit ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) })) ((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }))) ⊢ False case intro.intro.intro.intro.intro.intro.refine_1 X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } ⊢ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊓ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } = ⊥ [PROOFSTEP] apply (config := { allowSynthFailures := true }) false_of_nontrivial_of_product_domain [GOAL] case inst X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } e : X.presheaf.obj (op ({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })) ≅ CommRingCat.of ↑(CommRingCat.prodFan ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) })) ((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }))).1 := IsLimit.conePointUniqueUpToIso (Sheaf.isProductOfDisjoint (Scheme.sheaf X) { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } ?intro.intro.intro.intro.intro.intro.refine_1) (CommRingCat.prodFanIsLimit ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) })) ((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }))) ⊢ IsDomain (?intro.intro.intro.intro.intro.intro.refine_2.R × ?intro.intro.intro.intro.intro.intro.refine_2.S) [PROOFSTEP] exact e.symm.commRingCatIsoToRingEquiv.toMulEquiv.isDomain _ [GOAL] case inst X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } e : X.presheaf.obj (op ({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })) ≅ CommRingCat.of ↑(CommRingCat.prodFan ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) })) ((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }))).1 := IsLimit.conePointUniqueUpToIso (Sheaf.isProductOfDisjoint (Scheme.sheaf X) { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } ?intro.intro.intro.intro.intro.intro.refine_1) (CommRingCat.prodFanIsLimit ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) })) ((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }))) ⊢ Nontrivial ↑((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) })) [PROOFSTEP] apply X.toLocallyRingedSpace.component_nontrivial [GOAL] case inst X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } e : X.presheaf.obj (op ({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })) ≅ CommRingCat.of ↑(CommRingCat.prodFan ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) })) ((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }))).1 := IsLimit.conePointUniqueUpToIso (Sheaf.isProductOfDisjoint (Scheme.sheaf X) { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } ?intro.intro.intro.intro.intro.intro.refine_1) (CommRingCat.prodFanIsLimit ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) })) ((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }))) ⊢ Nontrivial ↑((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })) [PROOFSTEP] apply X.toLocallyRingedSpace.component_nontrivial [GOAL] case intro.intro.intro.intro.intro.intro.refine_1 X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } ⊢ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊓ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } = ⊥ [PROOFSTEP] ext x [GOAL] case intro.intro.intro.intro.intro.intro.refine_1.h.h X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } x : ↑↑X.toPresheafedSpace ⊢ x ∈ ↑({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊓ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }) ↔ x ∈ ↑⊥ [PROOFSTEP] constructor [GOAL] case intro.intro.intro.intro.intro.intro.refine_1.h.h.mp X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } x : ↑↑X.toPresheafedSpace ⊢ x ∈ ↑({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊓ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }) → x ∈ ↑⊥ [PROOFSTEP] rintro ⟨hS, hT⟩ [GOAL] case intro.intro.intro.intro.intro.intro.refine_1.h.h.mp.intro X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS✝ : IsClosed S hT✝ : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } x : ↑↑X.toPresheafedSpace hS : x ∈ ↑{ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } hT : x ∈ ↑{ carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } ⊢ x ∈ ↑⊥ [PROOFSTEP] cases' h₁ (show x ∈ ⊤ by trivial) with h h [GOAL] X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS✝ : IsClosed S hT✝ : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } x : ↑↑X.toPresheafedSpace hS : x ∈ ↑{ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } hT : x ∈ ↑{ carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } ⊢ x ∈ ⊤ [PROOFSTEP] trivial [GOAL] case intro.intro.intro.intro.intro.intro.refine_1.h.h.mp.intro.inl X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS✝ : IsClosed S hT✝ : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } x : ↑↑X.toPresheafedSpace hS : x ∈ ↑{ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } hT : x ∈ ↑{ carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } h : x ∈ S ⊢ x ∈ ↑⊥ case intro.intro.intro.intro.intro.intro.refine_1.h.h.mp.intro.inr X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS✝ : IsClosed S hT✝ : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } x : ↑↑X.toPresheafedSpace hS : x ∈ ↑{ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } hT : x ∈ ↑{ carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } h : x ∈ T ⊢ x ∈ ↑⊥ [PROOFSTEP] exacts [hS h, hT h] [GOAL] case intro.intro.intro.intro.intro.intro.refine_1.h.h.mpr X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } x : ↑↑X.toPresheafedSpace ⊢ x ∈ ↑⊥ → x ∈ ↑({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊓ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }) [PROOFSTEP] intro x [GOAL] case intro.intro.intro.intro.intro.intro.refine_1.h.h.mpr X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } x✝ : ↑↑X.toPresheafedSpace x : x✝ ∈ ↑⊥ ⊢ x✝ ∈ ↑({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊓ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }) [PROOFSTEP] refine' x.rec (by contradiction) [GOAL] X : Scheme inst✝ : IsIntegral X S T : Set ↑↑X.toPresheafedSpace hS : IsClosed S hT : IsClosed T h₁ : ⊤ ⊆ S ∪ T h₂ : ∃ x x_1, ¬x ∈ S h₃ : ∃ x x_1, ¬x ∈ T this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } } this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } } x✝ : ↑↑X.toPresheafedSpace x : x✝ ∈ ↑⊥ ⊢ False [PROOFSTEP] contradiction [GOAL] X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace ⊢ IsIntegral X [PROOFSTEP] constructor [GOAL] case nonempty X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace ⊢ autoParam (Nonempty ↑↑X.toPresheafedSpace) _auto✝ [PROOFSTEP] infer_instance [GOAL] case component_integral X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace ⊢ autoParam (∀ (U : Opens ↑↑X.toPresheafedSpace) [inst : Nonempty { x // x ∈ U }], IsDomain ↑(X.presheaf.obj (op U))) _auto✝ [PROOFSTEP] intro U hU [GOAL] case component_integral X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } ⊢ IsDomain ↑(X.presheaf.obj (op U)) [PROOFSTEP] haveI := (@LocallyRingedSpace.component_nontrivial X.toLocallyRingedSpace U hU).1 [GOAL] case component_integral X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : ∃ x y, x ≠ y ⊢ IsDomain ↑(X.presheaf.obj (op U)) [PROOFSTEP] have : NoZeroDivisors (X.toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op U)) := by refine' ⟨fun {a b} e => _⟩ simp_rw [← basicOpen_eq_bot_iff, ← Opens.not_nonempty_iff_eq_bot] by_contra' h obtain ⟨_, ⟨x, hx₁, rfl⟩, ⟨x, hx₂, e'⟩⟩ := nonempty_preirreducible_inter (X.basicOpen a).2 (X.basicOpen b).2 h.1 h.2 replace e' := Subtype.eq e' subst e' replace e := congr_arg (X.presheaf.germ x) e rw [RingHom.map_mul, RingHom.map_zero] at e refine' zero_ne_one' (X.presheaf.stalk x.1) (isUnit_zero_iff.1 _) convert hx₁.mul hx₂ exact e.symm [GOAL] X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : ∃ x y, x ≠ y ⊢ NoZeroDivisors ↑(X.presheaf.obj (op U)) [PROOFSTEP] refine' ⟨fun {a b} e => _⟩ [GOAL] X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : ∃ x y, x ≠ y a b : ↑(X.presheaf.obj (op U)) e : a * b = 0 ⊢ a = 0 ∨ b = 0 [PROOFSTEP] simp_rw [← basicOpen_eq_bot_iff, ← Opens.not_nonempty_iff_eq_bot] [GOAL] X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : ∃ x y, x ≠ y a b : ↑(X.presheaf.obj (op U)) e : a * b = 0 ⊢ ¬Set.Nonempty ↑(Scheme.basicOpen X a) ∨ ¬Set.Nonempty ↑(Scheme.basicOpen X b) [PROOFSTEP] by_contra' h [GOAL] X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : ∃ x y, x ≠ y a b : ↑(X.presheaf.obj (op U)) e : a * b = 0 h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b) ⊢ False [PROOFSTEP] obtain ⟨_, ⟨x, hx₁, rfl⟩, ⟨x, hx₂, e'⟩⟩ := nonempty_preirreducible_inter (X.basicOpen a).2 (X.basicOpen b).2 h.1 h.2 [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : ∃ x y, x ≠ y a b : ↑(X.presheaf.obj (op U)) e : a * b = 0 h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b) x✝ : { x // x ∈ U } hx₁ : x✝ ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)} x : { x // x ∈ U } hx₂ : x ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)} e' : ↑x = ↑x✝ ⊢ False [PROOFSTEP] replace e' := Subtype.eq e' [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : ∃ x y, x ≠ y a b : ↑(X.presheaf.obj (op U)) e : a * b = 0 h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b) x✝ : { x // x ∈ U } hx₁ : x✝ ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)} x : { x // x ∈ U } hx₂ : x ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)} e' : x = x✝ ⊢ False [PROOFSTEP] subst e' [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : ∃ x y, x ≠ y a b : ↑(X.presheaf.obj (op U)) e : a * b = 0 h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b) x : { x // x ∈ U } hx₂ : x ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)} hx₁ : x ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)} ⊢ False [PROOFSTEP] replace e := congr_arg (X.presheaf.germ x) e [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : ∃ x y, x ≠ y a b : ↑(X.presheaf.obj (op U)) h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b) x : { x // x ∈ U } hx₂ : x ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)} hx₁ : x ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)} e : ↑(Presheaf.germ X.presheaf x) (a * b) = ↑(Presheaf.germ X.presheaf x) 0 ⊢ False [PROOFSTEP] rw [RingHom.map_mul, RingHom.map_zero] at e [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : ∃ x y, x ≠ y a b : ↑(X.presheaf.obj (op U)) h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b) x : { x // x ∈ U } hx₂ : x ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)} hx₁ : x ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)} e : ↑(Presheaf.germ X.presheaf x) a * ↑(Presheaf.germ X.presheaf x) b = 0 ⊢ False [PROOFSTEP] refine' zero_ne_one' (X.presheaf.stalk x.1) (isUnit_zero_iff.1 _) [GOAL] case intro.intro.intro.intro.intro.intro X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : ∃ x y, x ≠ y a b : ↑(X.presheaf.obj (op U)) h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b) x : { x // x ∈ U } hx₂ : x ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)} hx₁ : x ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)} e : ↑(Presheaf.germ X.presheaf x) a * ↑(Presheaf.germ X.presheaf x) b = 0 ⊢ IsUnit 0 [PROOFSTEP] convert hx₁.mul hx₂ [GOAL] case h.e'_3.h X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : ∃ x y, x ≠ y a b : ↑(X.presheaf.obj (op U)) h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b) x : { x // x ∈ U } hx₂ : x ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)} hx₁ : x ∈ {x | IsUnit (↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)} e : ↑(Presheaf.germ X.presheaf x) a * ↑(Presheaf.germ X.presheaf x) b = 0 e_1✝ : ↑(Presheaf.stalk X.presheaf ↑x) = (fun x_1 => (forget CommRingCat).obj (Presheaf.stalk (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf ↑x)) a ⊢ 0 = ↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a * ↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b [PROOFSTEP] exact e.symm [GOAL] case component_integral X : Scheme inst✝ : IsReduced X H : IrreducibleSpace ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this✝ : ∃ x y, x ≠ y this : NoZeroDivisors ↑(X.presheaf.obj (op U)) ⊢ IsDomain ↑(X.presheaf.obj (op U)) [PROOFSTEP] exact NoZeroDivisors.to_isDomain _ [GOAL] X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace ⊢ IsIntegral X [PROOFSTEP] constructor [GOAL] case nonempty X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace ⊢ autoParam (Nonempty ↑↑X.toPresheafedSpace) _auto✝ [PROOFSTEP] infer_instance [GOAL] case component_integral X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace ⊢ autoParam (∀ (U : Opens ↑↑X.toPresheafedSpace) [inst : Nonempty { x // x ∈ U }], IsDomain ↑(X.presheaf.obj (op U))) _auto✝ [PROOFSTEP] intro U hU [GOAL] case component_integral X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } ⊢ IsDomain ↑(X.presheaf.obj (op U)) [PROOFSTEP] have : U = (Opens.map f.1.base).obj (H.base_open.isOpenMap.functor.obj U) := by ext1; exact (Set.preimage_image_eq _ H.base_open.inj).symm [GOAL] X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } ⊢ U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U) [PROOFSTEP] ext1 [GOAL] case h X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } ⊢ ↑U = ↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)) [PROOFSTEP] exact (Set.preimage_image_eq _ H.base_open.inj).symm [GOAL] case component_integral X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U) ⊢ IsDomain ↑(X.presheaf.obj (op U)) [PROOFSTEP] rw [this] [GOAL] case component_integral X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U) ⊢ IsDomain ↑(X.presheaf.obj (op ((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)))) [PROOFSTEP] have : IsDomain (Y.presheaf.obj (op (H.base_open.isOpenMap.functor.obj U))) := by apply (config := { allowSynthFailures := true }) IsIntegral.component_integral refine' ⟨⟨_, _, hU.some.prop, rfl⟩⟩ [GOAL] X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U) ⊢ IsDomain ↑(Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U))) [PROOFSTEP] apply (config := { allowSynthFailures := true }) IsIntegral.component_integral [GOAL] case inst X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U) ⊢ Nonempty { x // x ∈ (IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U } [PROOFSTEP] refine' ⟨⟨_, _, hU.some.prop, rfl⟩⟩ [GOAL] case component_integral X✝ : Scheme X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f inst✝¹ : IsIntegral Y inst✝ : Nonempty ↑↑X.toPresheafedSpace U : Opens ↑↑X.toPresheafedSpace hU : Nonempty { x // x ∈ U } this✝ : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U) this : IsDomain ↑(Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U))) ⊢ IsDomain ↑(X.presheaf.obj (op ((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)))) [PROOFSTEP] exact (asIso <| f.1.c.app (op <| H.base_open.isOpenMap.functor.obj U) : Y.presheaf.obj _ ≅ _).symm.commRingCatIsoToRingEquiv.toMulEquiv.isDomain _ [GOAL] X : Scheme R : CommRingCat H : IsDomain ↑R ⊢ IrreducibleSpace ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace [PROOFSTEP] convert PrimeSpectrum.irreducibleSpace (R := R) [GOAL] X : Scheme inst✝¹ : IsAffine X inst✝ : Nonempty ↑↑X.toPresheafedSpace h : IsDomain ↑(X.presheaf.obj (op ⊤)) ⊢ IsIntegral (Scheme.Spec.obj (op (Scheme.Γ.obj (op X)))) [PROOFSTEP] rw [affine_isIntegral_iff] [GOAL] X : Scheme inst✝¹ : IsAffine X inst✝ : Nonempty ↑↑X.toPresheafedSpace h : IsDomain ↑(X.presheaf.obj (op ⊤)) ⊢ IsDomain ↑(Scheme.Γ.obj (op X)) [PROOFSTEP] exact h [GOAL] X : Scheme inst✝ : IsIntegral X U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V H : Nonempty { x // x ∈ U } ⊢ Function.Injective ↑(X.presheaf.map i.op) [PROOFSTEP] rw [injective_iff_map_eq_zero] [GOAL] X : Scheme inst✝ : IsIntegral X U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V H : Nonempty { x // x ∈ U } ⊢ ∀ (a : (forget CommRingCat).obj (X.presheaf.obj (op V))), ↑(X.presheaf.map i.op) a = 0 → a = 0 [PROOFSTEP] intro x hx [GOAL] X : Scheme inst✝ : IsIntegral X U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V H : Nonempty { x // x ∈ U } x : (forget CommRingCat).obj (X.presheaf.obj (op V)) hx : ↑(X.presheaf.map i.op) x = 0 ⊢ x = 0 [PROOFSTEP] rw [← basicOpen_eq_bot_iff] at hx ⊢ [GOAL] X : Scheme inst✝ : IsIntegral X U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V H : Nonempty { x // x ∈ U } x : (forget CommRingCat).obj (X.presheaf.obj (op V)) hx : Scheme.basicOpen X (↑(X.presheaf.map i.op) x) = ⊥ ⊢ Scheme.basicOpen X x = ⊥ [PROOFSTEP] rw [Scheme.basicOpen_res] at hx [GOAL] X : Scheme inst✝ : IsIntegral X U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V H : Nonempty { x // x ∈ U } x : (forget CommRingCat).obj (X.presheaf.obj (op V)) hx : U ⊓ Scheme.basicOpen X x = ⊥ ⊢ Scheme.basicOpen X x = ⊥ [PROOFSTEP] revert hx [GOAL] X : Scheme inst✝ : IsIntegral X U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V H : Nonempty { x // x ∈ U } x : (forget CommRingCat).obj (X.presheaf.obj (op V)) ⊢ U ⊓ Scheme.basicOpen X x = ⊥ → Scheme.basicOpen X x = ⊥ [PROOFSTEP] contrapose! [GOAL] X : Scheme inst✝ : IsIntegral X U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V H : Nonempty { x // x ∈ U } x : (forget CommRingCat).obj (X.presheaf.obj (op V)) ⊢ Scheme.basicOpen X x ≠ ⊥ → U ⊓ Scheme.basicOpen X x ≠ ⊥ [PROOFSTEP] simp_rw [Ne.def, ← Opens.not_nonempty_iff_eq_bot, Classical.not_not] [GOAL] X : Scheme inst✝ : IsIntegral X U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V H : Nonempty { x // x ∈ U } x : (forget CommRingCat).obj (X.presheaf.obj (op V)) ⊢ Set.Nonempty ↑(Scheme.basicOpen X x) → Set.Nonempty ↑(U ⊓ Scheme.basicOpen X x) [PROOFSTEP] apply nonempty_preirreducible_inter U.isOpen (RingedSpace.basicOpen _ _).isOpen [GOAL] X : Scheme inst✝ : IsIntegral X U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V H : Nonempty { x // x ∈ U } x : (forget CommRingCat).obj (X.presheaf.obj (op V)) ⊢ Set.Nonempty ↑U [PROOFSTEP] simpa using H
{"mathlib_filename": "Mathlib.AlgebraicGeometry.Properties", "llama_tokens": 45231}
[GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ #((n : ℕ) × Functions (Language.sum L (skolem₁ L)) n) = #((n : ℕ) × BoundedFormula L Empty (n + 1)) [PROOFSTEP] simp only [card_functions_sum, skolem₁_Functions, mk_sigma, sum_add_distrib'] [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ ((sum fun i => lift #(Functions L i)) + sum fun i => lift #(BoundedFormula L Empty (i + 1))) = sum fun i => #(BoundedFormula L Empty (i + 1)) [PROOFSTEP] conv_lhs => enter [2, 1, i]; rw [lift_id'.{u, v}] [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M | (sum fun i => lift #(Functions L i)) + sum fun i => lift #(BoundedFormula L Empty (i + 1)) [PROOFSTEP] enter [2, 1, i]; rw [lift_id'.{u, v}] [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M | (sum fun i => lift #(Functions L i)) + sum fun i => lift #(BoundedFormula L Empty (i + 1)) [PROOFSTEP] enter [2, 1, i]; rw [lift_id'.{u, v}] [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M | (sum fun i => lift #(Functions L i)) + sum fun i => lift #(BoundedFormula L Empty (i + 1)) [PROOFSTEP] enter [2, 1, i] [GOAL] case h L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M i : ℕ | lift #(BoundedFormula L Empty (i + 1)) [PROOFSTEP] rw [lift_id'.{u, v}] [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ ((sum fun i => lift #(Functions L i)) + sum fun i => #(BoundedFormula L Empty (i + 1))) = sum fun i => #(BoundedFormula L Empty (i + 1)) [PROOFSTEP] rw [add_comm, add_eq_max, max_eq_left] [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ (sum fun i => lift #(Functions L i)) ≤ sum fun i => #(BoundedFormula L Empty (i + 1)) [PROOFSTEP] refine' sum_le_sum _ _ fun n => _ [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M n : ℕ ⊢ lift #(Functions L n) ≤ #(BoundedFormula L Empty (n + 1)) [PROOFSTEP] rw [← lift_le.{_, max u v}, lift_lift, lift_mk_le.{v}] [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M n : ℕ ⊢ Nonempty (Functions L n ↪ BoundedFormula L Empty (n + 1)) [PROOFSTEP] refine' ⟨⟨fun f => (func f default).bdEqual (func f default), fun f g h => _⟩⟩ [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M n : ℕ f g : Functions L n h : (fun f => func f default =' func f default) f = (fun f => func f default =' func f default) g ⊢ f = g [PROOFSTEP] rcases h with ⟨rfl, ⟨rfl⟩⟩ [GOAL] case refl L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M n : ℕ f : Functions L n ⊢ f = f [PROOFSTEP] rfl [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ ℵ₀ ≤ sum fun i => #(BoundedFormula L Empty (i + 1)) [PROOFSTEP] rw [← mk_sigma] [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ ℵ₀ ≤ #((i : ℕ) × BoundedFormula L Empty (i + 1)) [PROOFSTEP] exact infinite_iff.1 (Infinite.of_injective (fun n => ⟨n, ⊥⟩) fun x y xy => (Sigma.mk.inj_iff.1 xy).1) [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ #((n : ℕ) × Functions (Language.sum L (skolem₁ L)) n) ≤ max ℵ₀ (card L) [PROOFSTEP] rw [card_functions_sum_skolem₁] [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ #((n : ℕ) × BoundedFormula L Empty (n + 1)) ≤ max ℵ₀ (card L) [PROOFSTEP] trans #(Σ n, L.BoundedFormula Empty n) [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ #((n : ℕ) × BoundedFormula L Empty (n + 1)) ≤ #((n : ℕ) × BoundedFormula L Empty n) [PROOFSTEP] exact ⟨⟨Sigma.map Nat.succ fun _ => id, Nat.succ_injective.sigma_map fun _ => Function.injective_id⟩⟩ [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ #((n : ℕ) × BoundedFormula L Empty n) ≤ max ℵ₀ (card L) [PROOFSTEP] refine' _root_.trans BoundedFormula.card_le (lift_le.{max u v}.1 _) [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ lift (max ℵ₀ (lift #Empty + lift (card L))) ≤ lift (max ℵ₀ (card L)) [PROOFSTEP] simp only [mk_empty, lift_zero, lift_uzero, zero_add] [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ lift (max ℵ₀ (card L)) ≤ lift (max ℵ₀ (card L)) [PROOFSTEP] rfl [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M S : Substructure (Language.sum L (skolem₁ L)) M ⊢ IsElementary (↑(LHom.substructureReduct LHom.sumInl) S) [PROOFSTEP] apply (LHom.sumInl.substructureReduct S).isElementary_of_exists [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M S : Substructure (Language.sum L (skolem₁ L)) M ⊢ ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → { x // x ∈ ↑(LHom.substructureReduct LHom.sumInl) S }) (a : M), BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) ↑b) [PROOFSTEP] intro n φ x a h [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M S : Substructure (Language.sum L (skolem₁ L)) M n : ℕ φ : BoundedFormula L Empty (n + 1) x : Fin n → { x // x ∈ ↑(LHom.substructureReduct LHom.sumInl) S } a : M h : BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a) ⊢ ∃ b, BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) ↑b) [PROOFSTEP] let φ' : (L.sum L.skolem₁).Functions n := LHom.sumInr.onFunction φ [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M S : Substructure (Language.sum L (skolem₁ L)) M n : ℕ φ : BoundedFormula L Empty (n + 1) x : Fin n → { x // x ∈ ↑(LHom.substructureReduct LHom.sumInl) S } a : M h : BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a) φ' : Functions (Language.sum L (skolem₁ L)) n := LHom.onFunction LHom.sumInr φ ⊢ ∃ b, BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) ↑b) [PROOFSTEP] exact ⟨⟨funMap φ' ((↑) ∘ x), S.fun_mem (LHom.sumInr.onFunction φ) ((↑) ∘ x) (by exact fun i => (x i).2)⟩, by exact Classical.epsilon_spec (p := fun a => BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a)) ⟨a, h⟩⟩ [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M S : Substructure (Language.sum L (skolem₁ L)) M n : ℕ φ : BoundedFormula L Empty (n + 1) x : Fin n → { x // x ∈ ↑(LHom.substructureReduct LHom.sumInl) S } a : M h : BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a) φ' : Functions (Language.sum L (skolem₁ L)) n := LHom.onFunction LHom.sumInr φ ⊢ ∀ (i : Fin n), (Subtype.val ∘ x) i ∈ ↑S [PROOFSTEP] exact fun i => (x i).2 [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M S : Substructure (Language.sum L (skolem₁ L)) M n : ℕ φ : BoundedFormula L Empty (n + 1) x : Fin n → { x // x ∈ ↑(LHom.substructureReduct LHom.sumInl) S } a : M h : BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a) φ' : Functions (Language.sum L (skolem₁ L)) n := LHom.onFunction LHom.sumInr φ ⊢ BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) ↑{ val := funMap φ' (Subtype.val ∘ x), property := (_ : funMap (LHom.onFunction LHom.sumInr φ) (Subtype.val ∘ x) ∈ ↑S) }) [PROOFSTEP] exact Classical.epsilon_spec (p := fun a => BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a)) ⟨a, h⟩ [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ Small.{?u.38330, w} { x // x ∈ elementarySkolem₁Reduct ⊥ } [PROOFSTEP] rw [coeSort_elementarySkolem₁Reduct] [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M ⊢ Small.{?u.38330, w} { x // x ∈ ⊥ } [PROOFSTEP] infer_instance [GOAL] L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h1 : ℵ₀ ≤ κ h2 : lift #↑s ≤ lift κ h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M ⊢ ∃ S, s ⊆ ↑S ∧ lift #{ x // x ∈ S } = lift κ [PROOFSTEP] obtain ⟨s', hs'⟩ := Cardinal.le_mk_iff_exists_set.1 h4 [GOAL] case intro L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h1 : ℵ₀ ≤ κ h2 : lift #↑s ≤ lift κ h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) hs' : #↑s' = lift κ ⊢ ∃ S, s ⊆ ↑S ∧ lift #{ x // x ∈ S } = lift κ [PROOFSTEP] rw [← aleph0_le_lift.{_, w}] at h1 [GOAL] case intro L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h1 : ℵ₀ ≤ lift κ h2 : lift #↑s ≤ lift κ h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) hs' : #↑s' = lift κ ⊢ ∃ S, s ⊆ ↑S ∧ lift #{ x // x ∈ S } = lift κ [PROOFSTEP] rw [← hs'] at h1 h2 ⊢ [GOAL] case intro L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ ⊢ ∃ S, s ⊆ ↑S ∧ lift #{ x // x ∈ S } = #↑s' [PROOFSTEP] refine' ⟨elementarySkolem₁Reduct (closure (L.sum L.skolem₁) (s ∪ Equiv.ulift '' s')), (s.subset_union_left _).trans subset_closure, _⟩ [GOAL] case intro L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ ⊢ lift #{ x // x ∈ elementarySkolem₁Reduct (LowerAdjoint.toFun (closure (Language.sum L (skolem₁ L))) (s ∪ ↑Equiv.ulift '' s')) } = #↑s' [PROOFSTEP] have h := mk_image_eq_lift _ s' Equiv.ulift.injective [GOAL] case intro L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = lift #↑s' ⊢ lift #{ x // x ∈ elementarySkolem₁Reduct (LowerAdjoint.toFun (closure (Language.sum L (skolem₁ L))) (s ∪ ↑Equiv.ulift '' s')) } = #↑s' [PROOFSTEP] rw [lift_umax.{w, w'}, lift_id'.{w, w'}] at h [GOAL] case intro L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ lift #{ x // x ∈ elementarySkolem₁Reduct (LowerAdjoint.toFun (closure (Language.sum L (skolem₁ L))) (s ∪ ↑Equiv.ulift '' s')) } = #↑s' [PROOFSTEP] rw [coeSort_elementarySkolem₁Reduct, ← h, lift_inj] [GOAL] case intro L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ #{ x // x ∈ LowerAdjoint.toFun (closure (Language.sum L (skolem₁ L))) (s ∪ ↑Equiv.ulift '' s') } = #↑(↑Equiv.ulift '' s') [PROOFSTEP] refine' le_antisymm (lift_le.1 (lift_card_closure_le.trans _)) (mk_le_mk_of_subset ((Set.subset_union_right _ _).trans subset_closure)) [GOAL] case intro L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ max ℵ₀ (lift #↑(s ∪ ↑Equiv.ulift '' s') + lift #((i : ℕ) × Functions (Language.sum L (skolem₁ L)) i)) ≤ lift #↑(↑Equiv.ulift '' s') [PROOFSTEP] rw [max_le_iff, aleph0_le_lift, ← aleph0_le_lift.{_, w'}, h, add_eq_max, max_le_iff, lift_le] [GOAL] case intro L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ ℵ₀ ≤ #↑s' ∧ #↑(s ∪ ↑Equiv.ulift '' s') ≤ #↑(↑Equiv.ulift '' s') ∧ lift #((i : ℕ) × Functions (Language.sum L (skolem₁ L)) i) ≤ lift #↑(↑Equiv.ulift '' s') case intro L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ ℵ₀ ≤ lift #↑(s ∪ ↑Equiv.ulift '' s') [PROOFSTEP] refine' ⟨h1, (mk_union_le _ _).trans _, (lift_le.2 card_functions_sum_skolem₁_le).trans _⟩ [GOAL] case intro.refine'_1 L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ #↑s + #↑(↑Equiv.ulift '' s') ≤ #↑(↑Equiv.ulift '' s') [PROOFSTEP] rw [← lift_le, lift_add, h, add_comm, add_eq_max h1] [GOAL] case intro.refine'_1 L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ max (#↑s') (lift #↑s) ≤ #↑s' [PROOFSTEP] exact max_le le_rfl h2 [GOAL] case intro.refine'_2 L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ lift (max ℵ₀ (card L)) ≤ lift #↑(↑Equiv.ulift '' s') [PROOFSTEP] rw [lift_max, lift_aleph0, max_le_iff, aleph0_le_lift, and_comm, ← lift_le.{w'}, lift_lift, lift_lift, ← aleph0_le_lift, h] [GOAL] case intro.refine'_2 L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ lift (card L) ≤ lift #↑(↑Equiv.ulift '' s') ∧ ℵ₀ ≤ #↑s' [PROOFSTEP] refine' ⟨_, h1⟩ [GOAL] case intro.refine'_2 L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ lift (card L) ≤ lift #↑(↑Equiv.ulift '' s') [PROOFSTEP] rw [← lift_lift.{w', w}] [GOAL] case intro.refine'_2 L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ lift (lift (card L)) ≤ lift #↑(↑Equiv.ulift '' s') [PROOFSTEP] refine' _root_.trans (lift_le.{w}.2 h3) _ [GOAL] case intro.refine'_2 L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ lift (lift κ) ≤ lift #↑(↑Equiv.ulift '' s') [PROOFSTEP] rw [lift_lift, ← lift_lift.{w, max u v}, ← hs', ← h, lift_lift] [GOAL] case intro L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ ℵ₀ ≤ lift #↑(s ∪ ↑Equiv.ulift '' s') [PROOFSTEP] refine' _root_.trans _ (lift_le.2 (mk_le_mk_of_subset (Set.subset_union_right _ _))) [GOAL] case intro L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ ℵ₀ ≤ lift #↑(↑Equiv.ulift '' s') [PROOFSTEP] rw [aleph0_le_lift, ← aleph0_le_lift, h] [GOAL] case intro L : Language M : Type w inst✝¹ : Nonempty M inst✝ : Structure L M s : Set M κ : Cardinal.{w'} h3 : lift (card L) ≤ lift κ h4 : lift κ ≤ lift #M s' : Set (ULift M) h2 : lift #↑s ≤ #↑s' h1 : ℵ₀ ≤ #↑s' hs' : #↑s' = lift κ h : lift #↑(↑Equiv.ulift '' s') = #↑s' ⊢ ℵ₀ ≤ #↑s' [PROOFSTEP] exact h1
{"mathlib_filename": "Mathlib.ModelTheory.Skolem", "llama_tokens": 8038}
[GOAL] D : GlueData i j : D.J ⊢ LocallyRingedSpace.IsOpenImmersion (f (toLocallyRingedSpaceGlueData D).toGlueData i j) [PROOFSTEP] apply GlueData.f_open [GOAL] D : GlueData i j : D.J ⊢ SheafedSpace.IsOpenImmersion (f (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)).toGlueData i j) [PROOFSTEP] apply GlueData.f_open [GOAL] D : GlueData i j : D.J ⊢ PresheafedSpace.IsOpenImmersion (f (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D))).toGlueData i j) [PROOFSTEP] apply GlueData.f_open [GOAL] D : GlueData i : D.J ⊢ LocallyRingedSpace.IsOpenImmersion (ι (toLocallyRingedSpaceGlueData D).toGlueData i) [PROOFSTEP] apply LocallyRingedSpace.GlueData.ι_isOpenImmersion [GOAL] D : GlueData ⊢ Scheme [PROOFSTEP] apply LocallyRingedSpace.IsOpenImmersion.scheme D.toLocallyRingedSpaceGlueData.toGlueData.glued [GOAL] D : GlueData ⊢ ∀ (x : ↑(LocallyRingedSpace.toTopCat (glued (toLocallyRingedSpaceGlueData D).toGlueData))), ∃ R f, x ∈ Set.range ↑f.val.base ∧ LocallyRingedSpace.IsOpenImmersion f [PROOFSTEP] intro x [GOAL] D : GlueData x : ↑(LocallyRingedSpace.toTopCat (glued (toLocallyRingedSpaceGlueData D).toGlueData)) ⊢ ∃ R f, x ∈ Set.range ↑f.val.base ∧ LocallyRingedSpace.IsOpenImmersion f [PROOFSTEP] obtain ⟨i, y, rfl⟩ := D.toLocallyRingedSpaceGlueData.ι_jointly_surjective x [GOAL] case intro.intro D : GlueData i : (toLocallyRingedSpaceGlueData D).toGlueData.J y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i)) ⊢ ∃ R f, ↑(ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base y ∈ Set.range ↑f.val.base ∧ LocallyRingedSpace.IsOpenImmersion f [PROOFSTEP] refine' ⟨_, _ ≫ D.toLocallyRingedSpaceGlueData.toGlueData.ι i, _⟩ [GOAL] case intro.intro.refine'_1 D : GlueData i : (toLocallyRingedSpaceGlueData D).toGlueData.J y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i)) ⊢ CommRingCat case intro.intro.refine'_2 D : GlueData i : (toLocallyRingedSpaceGlueData D).toGlueData.J y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i)) ⊢ Spec.toLocallyRingedSpace.obj (op ?intro.intro.refine'_1) ⟶ U (toLocallyRingedSpaceGlueData D).toGlueData i case intro.intro.refine'_3 D : GlueData i : (toLocallyRingedSpaceGlueData D).toGlueData.J y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i)) ⊢ ↑(ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base y ∈ Set.range ↑(?intro.intro.refine'_2 ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base ∧ LocallyRingedSpace.IsOpenImmersion (?intro.intro.refine'_2 ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i) [PROOFSTEP] swap [GOAL] case intro.intro.refine'_2 D : GlueData i : (toLocallyRingedSpaceGlueData D).toGlueData.J y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i)) ⊢ Spec.toLocallyRingedSpace.obj (op ?intro.intro.refine'_1) ⟶ U (toLocallyRingedSpaceGlueData D).toGlueData i case intro.intro.refine'_1 D : GlueData i : (toLocallyRingedSpaceGlueData D).toGlueData.J y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i)) ⊢ CommRingCat case intro.intro.refine'_3 D : GlueData i : (toLocallyRingedSpaceGlueData D).toGlueData.J y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i)) ⊢ ↑(ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base y ∈ Set.range ↑(?intro.intro.refine'_2 ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base ∧ LocallyRingedSpace.IsOpenImmersion (?intro.intro.refine'_2 ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i) [PROOFSTEP] exact (D.U i).affineCover.map y [GOAL] case intro.intro.refine'_3 D : GlueData i : (toLocallyRingedSpaceGlueData D).toGlueData.J y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i)) ⊢ ↑(ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base y ∈ Set.range ↑(OpenCover.map (affineCover (U D.toGlueData i)) y ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base ∧ LocallyRingedSpace.IsOpenImmersion (OpenCover.map (affineCover (U D.toGlueData i)) y ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i) [PROOFSTEP] constructor [GOAL] case intro.intro.refine'_3.left D : GlueData i : (toLocallyRingedSpaceGlueData D).toGlueData.J y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i)) ⊢ ↑(ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base y ∈ Set.range ↑(OpenCover.map (affineCover (U D.toGlueData i)) y ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base [PROOFSTEP] dsimp [-Set.mem_range] [GOAL] case intro.intro.refine'_3.left D : GlueData i : (toLocallyRingedSpaceGlueData D).toGlueData.J y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i)) ⊢ ↑(ι (mapGlueData D.toGlueData forgetToLocallyRingedSpace) i).val.base y ∈ Set.range ↑((OpenCover.map (affineCover (U D.toGlueData i)) y).val.base ≫ (ι (mapGlueData D.toGlueData forgetToLocallyRingedSpace) i).val.base) [PROOFSTEP] rw [coe_comp, Set.range_comp] [GOAL] case intro.intro.refine'_3.left D : GlueData i : (toLocallyRingedSpaceGlueData D).toGlueData.J y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i)) ⊢ ↑(ι (mapGlueData D.toGlueData forgetToLocallyRingedSpace) i).val.base y ∈ ↑(ι (mapGlueData D.toGlueData forgetToLocallyRingedSpace) i).val.base '' Set.range ↑(OpenCover.map (affineCover (U D.toGlueData i)) y).val.base [PROOFSTEP] refine' Set.mem_image_of_mem _ _ [GOAL] case intro.intro.refine'_3.left D : GlueData i : (toLocallyRingedSpaceGlueData D).toGlueData.J y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i)) ⊢ y ∈ Set.range ↑(OpenCover.map (affineCover (U D.toGlueData i)) y).val.base [PROOFSTEP] exact (D.U i).affineCover.Covers y [GOAL] case intro.intro.refine'_3.right D : GlueData i : (toLocallyRingedSpaceGlueData D).toGlueData.J y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i)) ⊢ LocallyRingedSpace.IsOpenImmersion (OpenCover.map (affineCover (U D.toGlueData i)) y ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i) [PROOFSTEP] infer_instance [GOAL] D : GlueData i : D.J ⊢ IsOpenImmersion (CategoryTheory.GlueData.ι D.toGlueData i) [PROOFSTEP] rw [← D.ι_isoLocallyRingedSpace_inv] [GOAL] D : GlueData i : D.J ⊢ IsOpenImmersion (CategoryTheory.GlueData.ι (toLocallyRingedSpaceGlueData D).toGlueData i ≫ (isoLocallyRingedSpace D).inv) [PROOFSTEP] infer_instance [GOAL] D : GlueData i j : D.J ⊢ f D.toGlueData i j ≫ ι D i = (t D.toGlueData i j ≫ f D.toGlueData j i) ≫ ι D j [PROOFSTEP] simp [GOAL] D : GlueData ⊢ ↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≅ CategoryTheory.GlueData.glued (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData [PROOFSTEP] refine (PresheafedSpace.forget _).mapIso ?_ ≪≫ GlueData.gluedIso _ (PresheafedSpace.forget.{_, _, u} _) [GOAL] D : GlueData ⊢ (glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≅ CategoryTheory.GlueData.glued (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D))).toGlueData [PROOFSTEP] refine SheafedSpace.forgetToPresheafedSpace.mapIso ?_ ≪≫ SheafedSpace.GlueData.isoPresheafedSpace _ [GOAL] D : GlueData ⊢ (glued D).toLocallyRingedSpace.toSheafedSpace ≅ CategoryTheory.GlueData.glued (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)).toGlueData [PROOFSTEP] refine LocallyRingedSpace.forgetToSheafedSpace.mapIso ?_ ≪≫ LocallyRingedSpace.GlueData.isoSheafedSpace _ [GOAL] D : GlueData ⊢ (glued D).toLocallyRingedSpace ≅ CategoryTheory.GlueData.glued (toLocallyRingedSpaceGlueData D).toGlueData [PROOFSTEP] exact Scheme.GlueData.isoLocallyRingedSpace _ [GOAL] D : GlueData i : D.J ⊢ CategoryTheory.GlueData.ι (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData i ≫ (isoCarrier D).inv = (ι D i).val.base [PROOFSTEP] delta isoCarrier [GOAL] D : GlueData i : D.J ⊢ CategoryTheory.GlueData.ι (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData i ≫ ((PresheafedSpace.forget CommRingCat).mapIso (SheafedSpace.forgetToPresheafedSpace.mapIso (LocallyRingedSpace.forgetToSheafedSpace.mapIso (isoLocallyRingedSpace D) ≪≫ LocallyRingedSpace.GlueData.isoSheafedSpace (toLocallyRingedSpaceGlueData D)) ≪≫ SheafedSpace.GlueData.isoPresheafedSpace (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D))) ≪≫ gluedIso (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D))).toGlueData (PresheafedSpace.forget CommRingCat)).inv = (ι D i).val.base [PROOFSTEP] rw [Iso.trans_inv, GlueData.ι_gluedIso_inv_assoc, Functor.mapIso_inv, Iso.trans_inv, Functor.mapIso_inv, Iso.trans_inv, SheafedSpace.forgetToPresheafedSpace_map, forget_map, forget_map, ← comp_base, ← Category.assoc, D.toLocallyRingedSpaceGlueData.toSheafedSpaceGlueData.ι_isoPresheafedSpace_inv i] [GOAL] D : GlueData i : D.J ⊢ (CategoryTheory.GlueData.ι (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)).toGlueData i ≫ (LocallyRingedSpace.GlueData.isoSheafedSpace (toLocallyRingedSpaceGlueData D)).inv ≫ (LocallyRingedSpace.forgetToSheafedSpace.mapIso (isoLocallyRingedSpace D)).inv).base = (ι D i).val.base [PROOFSTEP] erw [← Category.assoc, D.toLocallyRingedSpaceGlueData.ι_isoSheafedSpace_inv i] [GOAL] D : GlueData i : D.J ⊢ ((CategoryTheory.GlueData.ι (toLocallyRingedSpaceGlueData D).toGlueData i).val ≫ (LocallyRingedSpace.forgetToSheafedSpace.mapIso (isoLocallyRingedSpace D)).inv).base = (ι D i).val.base [PROOFSTEP] change (_ ≫ D.isoLocallyRingedSpace.inv).1.base = _ [GOAL] D : GlueData i : D.J ⊢ (CategoryTheory.GlueData.ι (toLocallyRingedSpaceGlueData D).toGlueData i ≫ (isoLocallyRingedSpace D).inv).val.base = (ι D i).val.base [PROOFSTEP] rw [D.ι_isoLocallyRingedSpace_inv i] [GOAL] D : GlueData i j : D.J x : ↑↑(U D.toGlueData i).toPresheafedSpace y : ↑↑(U D.toGlueData j).toPresheafedSpace ⊢ ↑(CategoryTheory.GlueData.ι D.toGlueData i).val.base x = ↑(CategoryTheory.GlueData.ι D.toGlueData j).val.base y ↔ Rel D { fst := i, snd := x } { fst := j, snd := y } [PROOFSTEP] refine' Iff.trans _ (TopCat.GlueData.ι_eq_iff_rel D.toLocallyRingedSpaceGlueData.toSheafedSpaceGlueData.toPresheafedSpaceGlueData.toTopGlueData i j x y) [GOAL] D : GlueData i j : D.J x : ↑↑(U D.toGlueData i).toPresheafedSpace y : ↑↑(U D.toGlueData j).toPresheafedSpace ⊢ ↑(CategoryTheory.GlueData.ι D.toGlueData i).val.base x = ↑(CategoryTheory.GlueData.ι D.toGlueData j).val.base y ↔ ↑(CategoryTheory.GlueData.ι (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData i) x = ↑(CategoryTheory.GlueData.ι (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData j) y [PROOFSTEP] rw [← ((TopCat.mono_iff_injective D.isoCarrier.inv).mp _).eq_iff] [GOAL] D : GlueData i j : D.J x : ↑↑(U D.toGlueData i).toPresheafedSpace y : ↑↑(U D.toGlueData j).toPresheafedSpace ⊢ ↑(CategoryTheory.GlueData.ι D.toGlueData i).val.base x = ↑(CategoryTheory.GlueData.ι D.toGlueData j).val.base y ↔ ↑(isoCarrier D).inv (↑(CategoryTheory.GlueData.ι (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData i) x) = ↑(isoCarrier D).inv (↑(CategoryTheory.GlueData.ι (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData j) y) [PROOFSTEP] simp_rw [← comp_apply, ← D.ι_isoCarrier_inv] [GOAL] D : GlueData i j : D.J x : ↑↑(U D.toGlueData i).toPresheafedSpace y : ↑↑(U D.toGlueData j).toPresheafedSpace ⊢ ↑(CategoryTheory.GlueData.ι (mapGlueData (mapGlueData (mapGlueData (mapGlueData D.toGlueData forgetToLocallyRingedSpace) LocallyRingedSpace.forgetToSheafedSpace) SheafedSpace.forgetToPresheafedSpace) (PresheafedSpace.forget CommRingCat)) i ≫ (isoCarrier D).inv) x = ↑(CategoryTheory.GlueData.ι (mapGlueData (mapGlueData (mapGlueData (mapGlueData D.toGlueData forgetToLocallyRingedSpace) LocallyRingedSpace.forgetToSheafedSpace) SheafedSpace.forgetToPresheafedSpace) (PresheafedSpace.forget CommRingCat)) j ≫ (isoCarrier D).inv) y ↔ ↑(CategoryTheory.GlueData.ι (mapGlueData (mapGlueData (mapGlueData (mapGlueData D.toGlueData forgetToLocallyRingedSpace) LocallyRingedSpace.forgetToSheafedSpace) SheafedSpace.forgetToPresheafedSpace) (PresheafedSpace.forget CommRingCat)) i ≫ (isoCarrier D).inv) x = ↑(CategoryTheory.GlueData.ι (mapGlueData (mapGlueData (mapGlueData (mapGlueData D.toGlueData forgetToLocallyRingedSpace) LocallyRingedSpace.forgetToSheafedSpace) SheafedSpace.forgetToPresheafedSpace) (PresheafedSpace.forget CommRingCat)) j ≫ (isoCarrier D).inv) y [PROOFSTEP] rfl [GOAL] D : GlueData i j : D.J x : ↑↑(U D.toGlueData i).toPresheafedSpace y : ↑↑(U D.toGlueData j).toPresheafedSpace ⊢ Mono (isoCarrier D).inv [PROOFSTEP] infer_instance [GOAL] D : GlueData U : Set ↑↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ IsOpen U ↔ ∀ (i : D.J), IsOpen (↑(ι D i).val.base ⁻¹' U) [PROOFSTEP] rw [← (TopCat.homeoOfIso D.isoCarrier.symm).isOpen_preimage] [GOAL] D : GlueData U : Set ↑↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ IsOpen (↑(TopCat.homeoOfIso (isoCarrier D).symm) ⁻¹' U) ↔ ∀ (i : D.J), IsOpen (↑(ι D i).val.base ⁻¹' U) [PROOFSTEP] rw [TopCat.GlueData.isOpen_iff] [GOAL] D : GlueData U : Set ↑↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ (∀ (i : (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData.J), IsOpen (↑(CategoryTheory.GlueData.ι (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData i) ⁻¹' (↑(TopCat.homeoOfIso (isoCarrier D).symm) ⁻¹' U))) ↔ ∀ (i : D.J), IsOpen (↑(ι D i).val.base ⁻¹' U) [PROOFSTEP] apply forall_congr' [GOAL] case h D : GlueData U : Set ↑↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ ∀ (a : (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData.J), IsOpen (↑(CategoryTheory.GlueData.ι (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData a) ⁻¹' (↑(TopCat.homeoOfIso (isoCarrier D).symm) ⁻¹' U)) ↔ IsOpen (↑(ι D a).val.base ⁻¹' U) [PROOFSTEP] intro i [GOAL] case h D : GlueData U : Set ↑↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace i : (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData.J ⊢ IsOpen (↑(CategoryTheory.GlueData.ι (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData i) ⁻¹' (↑(TopCat.homeoOfIso (isoCarrier D).symm) ⁻¹' U)) ↔ IsOpen (↑(ι D i).val.base ⁻¹' U) [PROOFSTEP] erw [← Set.preimage_comp, ← ι_isoCarrier_inv] [GOAL] case h D : GlueData U : Set ↑↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace i : (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData.J ⊢ IsOpen (↑(TopCat.homeoOfIso (isoCarrier D).symm) ∘ ↑(CategoryTheory.GlueData.ι (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData i) ⁻¹' U) ↔ IsOpen (↑(CategoryTheory.GlueData.ι (GlueData.toTopGlueData (SheafedSpace.GlueData.toPresheafedSpaceGlueData (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData i ≫ (isoCarrier D).inv) ⁻¹' U) [PROOFSTEP] rfl [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ pullback pullback.fst pullback.fst ⟶ pullback pullback.fst pullback.fst [PROOFSTEP] refine' (pullbackRightPullbackFstIso _ _ _).hom ≫ _ [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ pullback (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) ⟶ pullback pullback.fst pullback.fst [PROOFSTEP] refine' _ ≫ (pullbackSymmetry _ _).hom [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ pullback (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) ⟶ pullback pullback.fst pullback.fst [PROOFSTEP] refine' _ ≫ (pullbackRightPullbackFstIso _ _ _).inv [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ pullback (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) ⟶ pullback (pullback.fst ≫ map 𝒰 y) (map 𝒰 z) [PROOFSTEP] refine' pullback.map _ _ _ _ (pullbackSymmetry _ _).hom (𝟙 _) (𝟙 _) _ _ [GOAL] case refine'_1 X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ (pullback.fst ≫ map 𝒰 x) ≫ 𝟙 X = (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom ≫ pullback.fst ≫ map 𝒰 y [PROOFSTEP] simp [pullback.condition] [GOAL] case refine'_2 X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ map 𝒰 z ≫ 𝟙 X = 𝟙 (obj 𝒰 z) ≫ map 𝒰 z [PROOFSTEP] simp [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ gluedCoverT' 𝒰 x y z ≫ pullback.fst ≫ pullback.fst = pullback.fst ≫ pullback.snd [PROOFSTEP] delta gluedCoverT' [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ ((pullbackRightPullbackFstIso (map 𝒰 x) (map 𝒰 z) pullback.fst).hom ≫ (pullback.map (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) (pullback.fst ≫ map 𝒰 y) (map 𝒰 z) (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom (𝟙 (obj 𝒰 z)) (𝟙 X) (_ : (pullback.fst ≫ map 𝒰 x) ≫ 𝟙 X = (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom ≫ pullback.fst ≫ map 𝒰 y) (_ : map 𝒰 z ≫ 𝟙 X = 𝟙 (obj 𝒰 z) ≫ map 𝒰 z) ≫ (pullbackRightPullbackFstIso (map 𝒰 y) (map 𝒰 z) pullback.fst).inv) ≫ (pullbackSymmetry pullback.fst pullback.fst).hom) ≫ pullback.fst ≫ pullback.fst = pullback.fst ≫ pullback.snd [PROOFSTEP] simp [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ gluedCoverT' 𝒰 x y z ≫ pullback.fst ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] delta gluedCoverT' [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ ((pullbackRightPullbackFstIso (map 𝒰 x) (map 𝒰 z) pullback.fst).hom ≫ (pullback.map (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) (pullback.fst ≫ map 𝒰 y) (map 𝒰 z) (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom (𝟙 (obj 𝒰 z)) (𝟙 X) (_ : (pullback.fst ≫ map 𝒰 x) ≫ 𝟙 X = (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom ≫ pullback.fst ≫ map 𝒰 y) (_ : map 𝒰 z ≫ 𝟙 X = 𝟙 (obj 𝒰 z) ≫ map 𝒰 z) ≫ (pullbackRightPullbackFstIso (map 𝒰 y) (map 𝒰 z) pullback.fst).inv) ≫ (pullbackSymmetry pullback.fst pullback.fst).hom) ≫ pullback.fst ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] simp [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ gluedCoverT' 𝒰 x y z ≫ pullback.snd ≫ pullback.fst = pullback.fst ≫ pullback.snd [PROOFSTEP] delta gluedCoverT' [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ ((pullbackRightPullbackFstIso (map 𝒰 x) (map 𝒰 z) pullback.fst).hom ≫ (pullback.map (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) (pullback.fst ≫ map 𝒰 y) (map 𝒰 z) (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom (𝟙 (obj 𝒰 z)) (𝟙 X) (_ : (pullback.fst ≫ map 𝒰 x) ≫ 𝟙 X = (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom ≫ pullback.fst ≫ map 𝒰 y) (_ : map 𝒰 z ≫ 𝟙 X = 𝟙 (obj 𝒰 z) ≫ map 𝒰 z) ≫ (pullbackRightPullbackFstIso (map 𝒰 y) (map 𝒰 z) pullback.fst).inv) ≫ (pullbackSymmetry pullback.fst pullback.fst).hom) ≫ pullback.snd ≫ pullback.fst = pullback.fst ≫ pullback.snd [PROOFSTEP] simp [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ gluedCoverT' 𝒰 x y z ≫ pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.fst [PROOFSTEP] delta gluedCoverT' [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ ((pullbackRightPullbackFstIso (map 𝒰 x) (map 𝒰 z) pullback.fst).hom ≫ (pullback.map (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) (pullback.fst ≫ map 𝒰 y) (map 𝒰 z) (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom (𝟙 (obj 𝒰 z)) (𝟙 X) (_ : (pullback.fst ≫ map 𝒰 x) ≫ 𝟙 X = (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom ≫ pullback.fst ≫ map 𝒰 y) (_ : map 𝒰 z ≫ 𝟙 X = 𝟙 (obj 𝒰 z) ≫ map 𝒰 z) ≫ (pullbackRightPullbackFstIso (map 𝒰 y) (map 𝒰 z) pullback.fst).inv) ≫ (pullbackSymmetry pullback.fst pullback.fst).hom) ≫ pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.fst [PROOFSTEP] simp [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.fst = pullback.fst [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀ X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ (gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.fst) ≫ pullback.fst = pullback.fst ≫ pullback.fst [PROOFSTEP] simp [GOAL] case h₁ X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ (gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.fst) ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] simp [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.snd = pullback.snd [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀ X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ (gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.snd) ≫ pullback.fst = pullback.snd ≫ pullback.fst [PROOFSTEP] simp [pullback.condition] [GOAL] case h₁ X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ (gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.snd) ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] simp [pullback.condition] [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y = 𝟙 (pullback pullback.fst pullback.fst) [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀ X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ (gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y) ≫ pullback.fst = 𝟙 (pullback pullback.fst pullback.fst) ≫ pullback.fst [PROOFSTEP] simp_rw [Category.id_comp, Category.assoc] [GOAL] case h₁ X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ (gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y) ≫ pullback.snd = 𝟙 (pullback pullback.fst pullback.fst) ≫ pullback.snd [PROOFSTEP] simp_rw [Category.id_comp, Category.assoc] [GOAL] case h₀ X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.fst = pullback.fst case h₁ X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.snd = pullback.snd [PROOFSTEP] apply glued_cover_cocycle_fst [GOAL] case h₁ X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.snd = pullback.snd [PROOFSTEP] apply glued_cover_cocycle_snd [GOAL] X : Scheme 𝒰 : OpenCover X x : 𝒰.J ⊢ (fun x y => (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom) x x = 𝟙 ((fun x => match x with | (x, y) => pullback (map 𝒰 x) (map 𝒰 y)) (x, x)) [PROOFSTEP] simp [GOAL] X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ (fun x y z => gluedCoverT' 𝒰 x y z) x y z ≫ pullback.snd = pullback.fst ≫ (fun x y => (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom) x y [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀ X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ ((fun x y z => gluedCoverT' 𝒰 x y z) x y z ≫ pullback.snd) ≫ pullback.fst = (pullback.fst ≫ (fun x y => (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom) x y) ≫ pullback.fst [PROOFSTEP] simp -- The `cocycle` field could have been `by tidy` but lean timeouts. [GOAL] case h₁ X : Scheme 𝒰 : OpenCover X x y z : 𝒰.J ⊢ ((fun x y z => gluedCoverT' 𝒰 x y z) x y z ≫ pullback.snd) ≫ pullback.snd = (pullback.fst ≫ (fun x y => (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom) x y) ≫ pullback.snd [PROOFSTEP] simp -- The `cocycle` field could have been `by tidy` but lean timeouts. [GOAL] X : Scheme 𝒰 : OpenCover X ⊢ GlueData.glued (gluedCover 𝒰) ⟶ X [PROOFSTEP] fapply Multicoequalizer.desc [GOAL] case k X : Scheme 𝒰 : OpenCover X ⊢ (b : (diagram (gluedCover 𝒰).toGlueData).R) → MultispanIndex.right (diagram (gluedCover 𝒰).toGlueData) b ⟶ X case h X : Scheme 𝒰 : OpenCover X ⊢ ∀ (a : (diagram (gluedCover 𝒰).toGlueData).L), MultispanIndex.fst (diagram (gluedCover 𝒰).toGlueData) a ≫ ?k (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) a) = MultispanIndex.snd (diagram (gluedCover 𝒰).toGlueData) a ≫ ?k (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) a) [PROOFSTEP] exact fun x => 𝒰.map x [GOAL] case h X : Scheme 𝒰 : OpenCover X ⊢ ∀ (a : (diagram (gluedCover 𝒰).toGlueData).L), MultispanIndex.fst (diagram (gluedCover 𝒰).toGlueData) a ≫ map 𝒰 (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) a) = MultispanIndex.snd (diagram (gluedCover 𝒰).toGlueData) a ≫ map 𝒰 (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) a) [PROOFSTEP] rintro ⟨x, y⟩ [GOAL] case h.mk X : Scheme 𝒰 : OpenCover X x y : (gluedCover 𝒰).toGlueData.J ⊢ MultispanIndex.fst (diagram (gluedCover 𝒰).toGlueData) (x, y) ≫ map 𝒰 (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) (x, y)) = MultispanIndex.snd (diagram (gluedCover 𝒰).toGlueData) (x, y) ≫ map 𝒰 (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) (x, y)) [PROOFSTEP] change pullback.fst ≫ _ = ((pullbackSymmetry _ _).hom ≫ pullback.fst) ≫ _ [GOAL] case h.mk X : Scheme 𝒰 : OpenCover X x y : (gluedCover 𝒰).toGlueData.J ⊢ pullback.fst ≫ map 𝒰 (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) (x, y)) = ((pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom ≫ pullback.fst) ≫ map 𝒰 (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) (x, y)) [PROOFSTEP] simpa using pullback.condition [GOAL] X : Scheme 𝒰 : OpenCover X ⊢ Function.Injective ↑(fromGlued 𝒰).val.base [PROOFSTEP] intro x y h [GOAL] X : Scheme 𝒰 : OpenCover X x y : (CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace h : ↑(fromGlued 𝒰).val.base x = ↑(fromGlued 𝒰).val.base y ⊢ x = y [PROOFSTEP] obtain ⟨i, x, rfl⟩ := 𝒰.gluedCover.ι_jointly_surjective x [GOAL] case intro.intro X : Scheme 𝒰 : OpenCover X y : (CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace h : ↑(fromGlued 𝒰).val.base (↑(GlueData.ι (gluedCover 𝒰) i).val.base x) = ↑(fromGlued 𝒰).val.base y ⊢ ↑(GlueData.ι (gluedCover 𝒰) i).val.base x = y [PROOFSTEP] obtain ⟨j, y, rfl⟩ := 𝒰.gluedCover.ι_jointly_surjective y [GOAL] case intro.intro.intro.intro X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace j : (gluedCover 𝒰).toGlueData.J y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace h : ↑(fromGlued 𝒰).val.base (↑(GlueData.ι (gluedCover 𝒰) i).val.base x) = ↑(fromGlued 𝒰).val.base (↑(GlueData.ι (gluedCover 𝒰) j).val.base y) ⊢ ↑(GlueData.ι (gluedCover 𝒰) i).val.base x = ↑(GlueData.ι (gluedCover 𝒰) j).val.base y [PROOFSTEP] simp_rw [← comp_apply, ← SheafedSpace.comp_base, ← LocallyRingedSpace.comp_val] at h [GOAL] case intro.intro.intro.intro X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace j : (gluedCover 𝒰).toGlueData.J y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace h : ↑(GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val.base x = ↑(GlueData.ι (gluedCover 𝒰) j ≫ fromGlued 𝒰).val.base y ⊢ ↑(GlueData.ι (gluedCover 𝒰) i).val.base x = ↑(GlueData.ι (gluedCover 𝒰) j).val.base y [PROOFSTEP] erw [ι_fromGlued, ι_fromGlued] at h [GOAL] case intro.intro.intro.intro X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace j : (gluedCover 𝒰).toGlueData.J y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y ⊢ ↑(GlueData.ι (gluedCover 𝒰) i).val.base x = ↑(GlueData.ι (gluedCover 𝒰) j).val.base y [PROOFSTEP] let e := (TopCat.pullbackConeIsLimit _ _).conePointUniqueUpToIso (isLimitOfHasPullbackOfPreservesLimit Scheme.forgetToTop (𝒰.map i) (𝒰.map j)) [GOAL] case intro.intro.intro.intro X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace j : (gluedCover 𝒰).toGlueData.J y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅ (PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd) (_ : forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) = forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt := IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))) (isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j)) ⊢ ↑(GlueData.ι (gluedCover 𝒰) i).val.base x = ↑(GlueData.ι (gluedCover 𝒰) j).val.base y [PROOFSTEP] rw [𝒰.gluedCover.ι_eq_iff] [GOAL] case intro.intro.intro.intro X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace j : (gluedCover 𝒰).toGlueData.J y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅ (PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd) (_ : forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) = forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt := IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))) (isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j)) ⊢ GlueData.Rel (gluedCover 𝒰) { fst := i, snd := x } { fst := j, snd := y } [PROOFSTEP] right [GOAL] case intro.intro.intro.intro.h X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace j : (gluedCover 𝒰).toGlueData.J y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅ (PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd) (_ : forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) = forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt := IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))) (isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j)) ⊢ ∃ x_1, ↑(GlueData.f (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst).val.base x_1 = { fst := i, snd := x }.snd ∧ ↑(t (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst ≫ GlueData.f (gluedCover 𝒰).toGlueData { fst := j, snd := y }.fst { fst := i, snd := x }.fst).val.base x_1 = { fst := j, snd := y }.snd [PROOFSTEP] use e.hom ⟨⟨x, y⟩, h⟩ [GOAL] case h X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace j : (gluedCover 𝒰).toGlueData.J y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅ (PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd) (_ : forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) = forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt := IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))) (isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j)) ⊢ ↑(GlueData.f (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst).val.base (↑e.hom { val := (x, y), property := h }) = { fst := i, snd := x }.snd ∧ ↑(t (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst ≫ GlueData.f (gluedCover 𝒰).toGlueData { fst := j, snd := y }.fst { fst := i, snd := x }.fst).val.base (↑e.hom { val := (x, y), property := h }) = { fst := j, snd := y }.snd [PROOFSTEP] constructor -- Porting note: in the two subproofs below, added the `change` lines [GOAL] case h.left X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace j : (gluedCover 𝒰).toGlueData.J y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅ (PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd) (_ : forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) = forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt := IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))) (isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j)) ⊢ ↑(GlueData.f (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst).val.base (↑e.hom { val := (x, y), property := h }) = { fst := i, snd := x }.snd [PROOFSTEP] change (e.hom ≫ _) ⟨(x, y), h⟩ = x [GOAL] case h.left X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace j : (gluedCover 𝒰).toGlueData.J y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅ (PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd) (_ : forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) = forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt := IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))) (isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j)) ⊢ ↑(e.hom ≫ (GlueData.f (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst).val.base) { val := (x, y), property := h } = x [PROOFSTEP] erw [IsLimit.conePointUniqueUpToIso_hom_comp _ _ WalkingCospan.left] [GOAL] case h.left X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace j : (gluedCover 𝒰).toGlueData.J y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅ (PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd) (_ : forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) = forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt := IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))) (isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j)) ⊢ ↑(NatTrans.app (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).π WalkingCospan.left) { val := (x, y), property := h } = x [PROOFSTEP] rfl [GOAL] case h.right X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace j : (gluedCover 𝒰).toGlueData.J y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅ (PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd) (_ : forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) = forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt := IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))) (isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j)) ⊢ ↑(t (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst ≫ GlueData.f (gluedCover 𝒰).toGlueData { fst := j, snd := y }.fst { fst := i, snd := x }.fst).val.base (↑e.hom { val := (x, y), property := h }) = { fst := j, snd := y }.snd [PROOFSTEP] change (e.hom ≫ ((gluedCover 𝒰).toGlueData.t i j ≫ (gluedCover 𝒰).toGlueData.f j i).val.base) ⟨(x, y), h⟩ = y [GOAL] case h.right X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace j : (gluedCover 𝒰).toGlueData.J y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅ (PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd) (_ : forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) = forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt := IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))) (isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j)) ⊢ ↑(e.hom ≫ (t (gluedCover 𝒰).toGlueData i j ≫ GlueData.f (gluedCover 𝒰).toGlueData j i).val.base) { val := (x, y), property := h } = y [PROOFSTEP] erw [pullbackSymmetry_hom_comp_fst, IsLimit.conePointUniqueUpToIso_hom_comp _ _ WalkingCospan.right] [GOAL] case h.right X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace j : (gluedCover 𝒰).toGlueData.J y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅ (PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd) (_ : forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) = forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt := IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))) (isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j)) ⊢ ↑(NatTrans.app (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).π WalkingCospan.right) { val := (x, y), property := h } = y [PROOFSTEP] rfl [GOAL] X : Scheme 𝒰 : OpenCover X x : ↑↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ IsIso (stalkMap (fromGlued 𝒰).val x) [PROOFSTEP] obtain ⟨i, x, rfl⟩ := 𝒰.gluedCover.ι_jointly_surjective x [GOAL] case intro.intro X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace ⊢ IsIso (stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x)) [PROOFSTEP] have := PresheafedSpace.stalkMap.congr_hom _ _ (congr_arg LocallyRingedSpace.Hom.val <| 𝒰.ι_fromGlued i) x [GOAL] case intro.intro X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace this : stalkMap (GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val x = eqToHom (_ : stalk X.toPresheafedSpace (↑(GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val.base x) = stalk X.toPresheafedSpace (↑(map 𝒰 i).val.base x)) ≫ stalkMap (map 𝒰 i).val x ⊢ IsIso (stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x)) [PROOFSTEP] erw [PresheafedSpace.stalkMap.comp] at this [GOAL] case intro.intro X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace this : stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x) ≫ stalkMap (GlueData.ι (gluedCover 𝒰) i).val x = eqToHom (_ : stalk X.toPresheafedSpace (↑(GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val.base x) = stalk X.toPresheafedSpace (↑(map 𝒰 i).val.base x)) ≫ stalkMap (map 𝒰 i).val x ⊢ IsIso (stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x)) [PROOFSTEP] rw [← IsIso.eq_comp_inv] at this [GOAL] case intro.intro X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace this : stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x) = (eqToHom (_ : stalk X.toPresheafedSpace (↑(GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val.base x) = stalk X.toPresheafedSpace (↑(map 𝒰 i).val.base x)) ≫ stalkMap (map 𝒰 i).val x) ≫ inv (stalkMap (GlueData.ι (gluedCover 𝒰) i).val x) ⊢ IsIso (stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x)) [PROOFSTEP] rw [this] [GOAL] case intro.intro X : Scheme 𝒰 : OpenCover X i : (gluedCover 𝒰).toGlueData.J x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace this : stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x) = (eqToHom (_ : stalk X.toPresheafedSpace (↑(GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val.base x) = stalk X.toPresheafedSpace (↑(map 𝒰 i).val.base x)) ≫ stalkMap (map 𝒰 i).val x) ≫ inv (stalkMap (GlueData.ι (gluedCover 𝒰) i).val x) ⊢ IsIso ((eqToHom (_ : stalk X.toPresheafedSpace (↑(GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val.base x) = stalk X.toPresheafedSpace (↑(map 𝒰 i).val.base x)) ≫ stalkMap (map 𝒰 i).val x) ≫ inv (stalkMap (GlueData.ι (gluedCover 𝒰) i).val x)) [PROOFSTEP] infer_instance [GOAL] X : Scheme 𝒰 : OpenCover X ⊢ IsOpenMap ↑(fromGlued 𝒰).val.base [PROOFSTEP] intro U hU [GOAL] X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : _root_.IsOpen U ⊢ _root_.IsOpen (↑(fromGlued 𝒰).val.base '' U) [PROOFSTEP] rw [isOpen_iff_forall_mem_open] [GOAL] X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : _root_.IsOpen U ⊢ ∀ (x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace), x ∈ ↑(fromGlued 𝒰).val.base '' U → ∃ t, t ⊆ ↑(fromGlued 𝒰).val.base '' U ∧ _root_.IsOpen t ∧ x ∈ t [PROOFSTEP] intro x hx [GOAL] X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : _root_.IsOpen U x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hx : x ∈ ↑(fromGlued 𝒰).val.base '' U ⊢ ∃ t, t ⊆ ↑(fromGlued 𝒰).val.base '' U ∧ _root_.IsOpen t ∧ x ∈ t [PROOFSTEP] rw [𝒰.gluedCover.isOpen_iff] at hU [GOAL] X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U) x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hx : x ∈ ↑(fromGlued 𝒰).val.base '' U ⊢ ∃ t, t ⊆ ↑(fromGlued 𝒰).val.base '' U ∧ _root_.IsOpen t ∧ x ∈ t [PROOFSTEP] use 𝒰.fromGlued.val.base '' U ∩ Set.range (𝒰.map (𝒰.f x)).1.base [GOAL] case h X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U) x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hx : x ∈ ↑(fromGlued 𝒰).val.base '' U ⊢ ↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base ⊆ ↑(fromGlued 𝒰).val.base '' U ∧ _root_.IsOpen (↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base) ∧ x ∈ ↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base [PROOFSTEP] use Set.inter_subset_left _ _ [GOAL] case right X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U) x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hx : x ∈ ↑(fromGlued 𝒰).val.base '' U ⊢ _root_.IsOpen (↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base) ∧ x ∈ ↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base [PROOFSTEP] constructor [GOAL] case right.left X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U) x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hx : x ∈ ↑(fromGlued 𝒰).val.base '' U ⊢ _root_.IsOpen (↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base) [PROOFSTEP] rw [← Set.image_preimage_eq_inter_range] [GOAL] case right.left X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U) x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hx : x ∈ ↑(fromGlued 𝒰).val.base '' U ⊢ _root_.IsOpen (↑(map 𝒰 (f 𝒰 x)).val.base '' (↑(map 𝒰 (f 𝒰 x)).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U))) [PROOFSTEP] apply (show IsOpenImmersion (𝒰.map (𝒰.f x)) from inferInstance).base_open.isOpenMap [GOAL] case right.left.a X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U) x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hx : x ∈ ↑(fromGlued 𝒰).val.base '' U ⊢ _root_.IsOpen (↑(map 𝒰 (f 𝒰 x)).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U)) [PROOFSTEP] convert hU (𝒰.f x) using 1 [GOAL] case h.e'_3.h X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U) x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hx : x ∈ ↑(fromGlued 𝒰).val.base '' U e_1✝ : (CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U (gluedCover 𝒰).toGlueData (f 𝒰 x)).toPresheafedSpace ⊢ ↑(map 𝒰 (f 𝒰 x)).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U) = ↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ⁻¹' U [PROOFSTEP] rw [← ι_fromGlued] [GOAL] case h.e'_3.h X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U) x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hx : x ∈ ↑(fromGlued 𝒰).val.base '' U e_1✝ : (CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U (gluedCover 𝒰).toGlueData (f 𝒰 x)).toPresheafedSpace ⊢ ↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x) ≫ fromGlued 𝒰).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U) = ↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ⁻¹' U [PROOFSTEP] erw [coe_comp] [GOAL] case h.e'_3.h X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U) x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hx : x ∈ ↑(fromGlued 𝒰).val.base '' U e_1✝ : (CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U (gluedCover 𝒰).toGlueData (f 𝒰 x)).toPresheafedSpace ⊢ ↑(fromGlued 𝒰).val.base ∘ ↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U) = ↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ⁻¹' U [PROOFSTEP] rw [Set.preimage_comp] [GOAL] case h.e'_3.h X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U) x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hx : x ∈ ↑(fromGlued 𝒰).val.base '' U e_1✝ : (CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U (gluedCover 𝒰).toGlueData (f 𝒰 x)).toPresheafedSpace ⊢ ↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ⁻¹' (↑(fromGlued 𝒰).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U)) = ↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ⁻¹' U [PROOFSTEP] congr! 1 [GOAL] case h.e'_3.h.h.e'_4 X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U) x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hx : x ∈ ↑(fromGlued 𝒰).val.base '' U e_1✝ : (CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U (gluedCover 𝒰).toGlueData (f 𝒰 x)).toPresheafedSpace ⊢ ↑(fromGlued 𝒰).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U) = U [PROOFSTEP] refine' Set.preimage_image_eq _ 𝒰.fromGlued_injective [GOAL] case right.right X : Scheme 𝒰 : OpenCover X U : Set ((CategoryTheory.forget TopCat).obj ↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U) x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace hx : x ∈ ↑(fromGlued 𝒰).val.base '' U ⊢ x ∈ ↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base [PROOFSTEP] exact ⟨hx, 𝒰.Covers x⟩ [GOAL] X : Scheme 𝒰 : OpenCover X ⊢ Epi (fromGlued 𝒰).val.base [PROOFSTEP] rw [TopCat.epi_iff_surjective] [GOAL] X : Scheme 𝒰 : OpenCover X ⊢ Function.Surjective ↑(fromGlued 𝒰).val.base [PROOFSTEP] intro x [GOAL] X : Scheme 𝒰 : OpenCover X x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace ⊢ ∃ a, ↑(fromGlued 𝒰).val.base a = x [PROOFSTEP] obtain ⟨y, h⟩ := 𝒰.Covers x [GOAL] case intro X : Scheme 𝒰 : OpenCover X x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace y : (CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace h : ↑(map 𝒰 (f 𝒰 x)).val.base y = x ⊢ ∃ a, ↑(fromGlued 𝒰).val.base a = x [PROOFSTEP] use(𝒰.gluedCover.ι (𝒰.f x)).1.base y [GOAL] case h X : Scheme 𝒰 : OpenCover X x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace y : (CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace h : ↑(map 𝒰 (f 𝒰 x)).val.base y = x ⊢ ↑(fromGlued 𝒰).val.base (↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base y) = x [PROOFSTEP] rw [← comp_apply] [GOAL] case h X : Scheme 𝒰 : OpenCover X x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace y : (CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace h : ↑(map 𝒰 (f 𝒰 x)).val.base y = x ⊢ ↑((GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ≫ (fromGlued 𝒰).val.base) y = x [PROOFSTEP] rw [← 𝒰.ι_fromGlued (𝒰.f x)] at h [GOAL] case h X : Scheme 𝒰 : OpenCover X x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace y : (CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace h : ↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x) ≫ fromGlued 𝒰).val.base y = x ⊢ ↑((GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ≫ (fromGlued 𝒰).val.base) y = x [PROOFSTEP] exact h [GOAL] X : Scheme 𝒰 : OpenCover X F : Scheme ⥤ PresheafedSpace CommRingCat := forgetToLocallyRingedSpace ⋙ LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace ⊢ IsIso (F.map (fromGlued 𝒰)) [PROOFSTEP] change @IsIso (PresheafedSpace _) _ _ _ 𝒰.fromGlued.val [GOAL] X : Scheme 𝒰 : OpenCover X F : Scheme ⥤ PresheafedSpace CommRingCat := forgetToLocallyRingedSpace ⋙ LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace ⊢ IsIso (fromGlued 𝒰).val [PROOFSTEP] apply PresheafedSpace.IsOpenImmersion.to_iso [GOAL] X : Scheme 𝒰 : OpenCover X Y : Scheme f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y ⊢ X ⟶ Y [PROOFSTEP] refine' inv 𝒰.fromGlued ≫ _ [GOAL] X : Scheme 𝒰 : OpenCover X Y : Scheme f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y ⊢ GlueData.glued (gluedCover 𝒰) ⟶ Y [PROOFSTEP] fapply Multicoequalizer.desc [GOAL] case k X : Scheme 𝒰 : OpenCover X Y : Scheme f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y ⊢ (b : (diagram (gluedCover 𝒰).toGlueData).R) → MultispanIndex.right (diagram (gluedCover 𝒰).toGlueData) b ⟶ Y case h X : Scheme 𝒰 : OpenCover X Y : Scheme f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y ⊢ ∀ (a : (diagram (gluedCover 𝒰).toGlueData).L), MultispanIndex.fst (diagram (gluedCover 𝒰).toGlueData) a ≫ ?k (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) a) = MultispanIndex.snd (diagram (gluedCover 𝒰).toGlueData) a ≫ ?k (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) a) [PROOFSTEP] exact f [GOAL] case h X : Scheme 𝒰 : OpenCover X Y : Scheme f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y ⊢ ∀ (a : (diagram (gluedCover 𝒰).toGlueData).L), MultispanIndex.fst (diagram (gluedCover 𝒰).toGlueData) a ≫ f (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) a) = MultispanIndex.snd (diagram (gluedCover 𝒰).toGlueData) a ≫ f (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) a) [PROOFSTEP] rintro ⟨i, j⟩ [GOAL] case h.mk X : Scheme 𝒰 : OpenCover X Y : Scheme f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y i j : (gluedCover 𝒰).toGlueData.J ⊢ MultispanIndex.fst (diagram (gluedCover 𝒰).toGlueData) (i, j) ≫ f (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) (i, j)) = MultispanIndex.snd (diagram (gluedCover 𝒰).toGlueData) (i, j) ≫ f (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) (i, j)) [PROOFSTEP] change pullback.fst ≫ f i = (_ ≫ _) ≫ f j [GOAL] case h.mk X : Scheme 𝒰 : OpenCover X Y : Scheme f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y i j : (gluedCover 𝒰).toGlueData.J ⊢ pullback.fst ≫ f i = (t (gluedCover 𝒰).toGlueData i j ≫ GlueData.f (gluedCover 𝒰).toGlueData j i) ≫ f j [PROOFSTEP] erw [pullbackSymmetry_hom_comp_fst] [GOAL] case h.mk X : Scheme 𝒰 : OpenCover X Y : Scheme f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y i j : (gluedCover 𝒰).toGlueData.J ⊢ pullback.fst ≫ f i = pullback.snd ≫ f j [PROOFSTEP] exact hf i j [GOAL] X : Scheme 𝒰 : OpenCover X Y : Scheme f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y x : 𝒰.J ⊢ map 𝒰 x ≫ glueMorphisms 𝒰 f hf = f x [PROOFSTEP] rw [← ι_fromGlued, Category.assoc] [GOAL] X : Scheme 𝒰 : OpenCover X Y : Scheme f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y x : 𝒰.J ⊢ GlueData.ι (gluedCover 𝒰) x ≫ fromGlued 𝒰 ≫ glueMorphisms 𝒰 f hf = f x [PROOFSTEP] erw [IsIso.hom_inv_id_assoc, Multicoequalizer.π_desc] [GOAL] X : Scheme 𝒰 : OpenCover X Y : Scheme f₁ f₂ : X ⟶ Y h : ∀ (x : 𝒰.J), map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂ ⊢ f₁ = f₂ [PROOFSTEP] rw [← cancel_epi 𝒰.fromGlued] [GOAL] X : Scheme 𝒰 : OpenCover X Y : Scheme f₁ f₂ : X ⟶ Y h : ∀ (x : 𝒰.J), map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂ ⊢ fromGlued 𝒰 ≫ f₁ = fromGlued 𝒰 ≫ f₂ [PROOFSTEP] apply Multicoequalizer.hom_ext [GOAL] case h X : Scheme 𝒰 : OpenCover X Y : Scheme f₁ f₂ : X ⟶ Y h : ∀ (x : 𝒰.J), map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂ ⊢ ∀ (b : (diagram (gluedCover 𝒰).toGlueData).R), Multicoequalizer.π (diagram (gluedCover 𝒰).toGlueData) b ≫ fromGlued 𝒰 ≫ f₁ = Multicoequalizer.π (diagram (gluedCover 𝒰).toGlueData) b ≫ fromGlued 𝒰 ≫ f₂ [PROOFSTEP] intro x [GOAL] case h X : Scheme 𝒰 : OpenCover X Y : Scheme f₁ f₂ : X ⟶ Y h : ∀ (x : 𝒰.J), map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂ x : (diagram (gluedCover 𝒰).toGlueData).R ⊢ Multicoequalizer.π (diagram (gluedCover 𝒰).toGlueData) x ≫ fromGlued 𝒰 ≫ f₁ = Multicoequalizer.π (diagram (gluedCover 𝒰).toGlueData) x ≫ fromGlued 𝒰 ≫ f₂ [PROOFSTEP] erw [Multicoequalizer.π_desc_assoc] [GOAL] case h X : Scheme 𝒰 : OpenCover X Y : Scheme f₁ f₂ : X ⟶ Y h : ∀ (x : 𝒰.J), map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂ x : (diagram (gluedCover 𝒰).toGlueData).R ⊢ map 𝒰 x ≫ f₁ = Multicoequalizer.π (diagram (gluedCover 𝒰).toGlueData) x ≫ fromGlued 𝒰 ≫ f₂ [PROOFSTEP] erw [Multicoequalizer.π_desc_assoc] [GOAL] case h X : Scheme 𝒰 : OpenCover X Y : Scheme f₁ f₂ : X ⟶ Y h : ∀ (x : 𝒰.J), map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂ x : (diagram (gluedCover 𝒰).toGlueData).R ⊢ map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂ [PROOFSTEP] exact h x
{"mathlib_filename": "Mathlib.AlgebraicGeometry.Gluing", "llama_tokens": 31129}
[GOAL] C : Type u_1 inst✝ : Category.{?u.4128, u_1} C X Y : PresheafedSpace C α β : Hom X Y w : α.base = β.base ⊢ (Opens.map α.base).op = (Opens.map β.base).op [PROOFSTEP] rw [w] [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C α β : Hom X Y w : α.base = β.base h : α.c ≫ whiskerRight (eqToHom (_ : (Opens.map α.base).op = (Opens.map β.base).op)) X.presheaf = β.c ⊢ α = β [PROOFSTEP] rcases α with ⟨base, c⟩ [GOAL] case mk C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C β : Hom X Y base : ↑X ⟶ ↑Y c : Y.presheaf ⟶ base _* X.presheaf w : { base := base, c := c }.base = β.base h : { base := base, c := c }.c ≫ whiskerRight (eqToHom (_ : (Opens.map { base := base, c := c }.base).op = (Opens.map β.base).op)) X.presheaf = β.c ⊢ { base := base, c := c } = β [PROOFSTEP] rcases β with ⟨base', c'⟩ [GOAL] case mk.mk C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C base : ↑X ⟶ ↑Y c : Y.presheaf ⟶ base _* X.presheaf base' : ↑X ⟶ ↑Y c' : Y.presheaf ⟶ base' _* X.presheaf w : { base := base, c := c }.base = { base := base', c := c' }.base h : { base := base, c := c }.c ≫ whiskerRight (eqToHom (_ : (Opens.map { base := base, c := c }.base).op = (Opens.map { base := base', c := c' }.base).op)) X.presheaf = { base := base', c := c' }.c ⊢ { base := base, c := c } = { base := base', c := c' } [PROOFSTEP] dsimp at w [GOAL] case mk.mk C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C base : ↑X ⟶ ↑Y c : Y.presheaf ⟶ base _* X.presheaf base' : ↑X ⟶ ↑Y c' : Y.presheaf ⟶ base' _* X.presheaf w : base = base' h : { base := base, c := c }.c ≫ whiskerRight (eqToHom (_ : (Opens.map { base := base, c := c }.base).op = (Opens.map { base := base', c := c' }.base).op)) X.presheaf = { base := base', c := c' }.c ⊢ { base := base, c := c } = { base := base', c := c' } [PROOFSTEP] subst w [GOAL] case mk.mk C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C base : ↑X ⟶ ↑Y c c' : Y.presheaf ⟶ base _* X.presheaf h : { base := base, c := c }.c ≫ whiskerRight (eqToHom (_ : (Opens.map { base := base, c := c }.base).op = (Opens.map { base := base, c := c' }.base).op)) X.presheaf = { base := base, c := c' }.c ⊢ { base := base, c := c } = { base := base, c := c' } [PROOFSTEP] dsimp at h [GOAL] case mk.mk C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C base : ↑X ⟶ ↑Y c c' : Y.presheaf ⟶ base _* X.presheaf h : c ≫ whiskerRight (𝟙 (Opens.map base).op) X.presheaf = c' ⊢ { base := base, c := c } = { base := base, c := c' } [PROOFSTEP] erw [whiskerRight_id', comp_id] at h [GOAL] case mk.mk C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C base : ↑X ⟶ ↑Y c c' : Y.presheaf ⟶ base _* X.presheaf h : c = c' ⊢ { base := base, c := c } = { base := base, c := c' } [PROOFSTEP] subst h [GOAL] case mk.mk C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C base : ↑X ⟶ ↑Y c : Y.presheaf ⟶ base _* X.presheaf ⊢ { base := base, c := c } = { base := base, c := c } [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C α β : Hom X Y w : α.base = β.base h : HEq α.c β.c ⊢ α = β [PROOFSTEP] cases α [GOAL] case mk C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C β : Hom X Y base✝ : ↑X ⟶ ↑Y c✝ : Y.presheaf ⟶ base✝ _* X.presheaf w : { base := base✝, c := c✝ }.base = β.base h : HEq { base := base✝, c := c✝ }.c β.c ⊢ { base := base✝, c := c✝ } = β [PROOFSTEP] cases β [GOAL] case mk.mk C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C base✝¹ : ↑X ⟶ ↑Y c✝¹ : Y.presheaf ⟶ base✝¹ _* X.presheaf base✝ : ↑X ⟶ ↑Y c✝ : Y.presheaf ⟶ base✝ _* X.presheaf w : { base := base✝¹, c := c✝¹ }.base = { base := base✝, c := c✝ }.base h : HEq { base := base✝¹, c := c✝¹ }.c { base := base✝, c := c✝ }.c ⊢ { base := base✝¹, c := c✝¹ } = { base := base✝, c := c✝ } [PROOFSTEP] congr [GOAL] C : Type u_1 inst✝ : Category.{?u.68893, u_1} C X✝ Y✝ : PresheafedSpace C x✝ : X✝ ⟶ Y✝ ⊢ 𝟙 X✝ ≫ x✝ = x✝ [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝ : Category.{?u.68893, u_1} C X✝ Y✝ : PresheafedSpace C x✝ : X✝ ⟶ Y✝ ⊢ { base := 𝟙 ↑X✝ ≫ x✝.base, c := x✝.c ≫ (Presheaf.pushforward C x✝.base).map (𝟙 X✝.presheaf) } = x✝ [PROOFSTEP] ext [GOAL] case w.w C : Type u_1 inst✝ : Category.{?u.68893, u_1} C X✝ Y✝ : PresheafedSpace C x✝¹ : X✝ ⟶ Y✝ x✝ : (forget TopCat).obj ↑X✝ ⊢ ↑{ base := 𝟙 ↑X✝ ≫ x✝¹.base, c := x✝¹.c ≫ (Presheaf.pushforward C x✝¹.base).map (𝟙 X✝.presheaf) }.base x✝ = ↑x✝¹.base x✝ [PROOFSTEP] dsimp [GOAL] case w.w C : Type u_1 inst✝ : Category.{?u.68893, u_1} C X✝ Y✝ : PresheafedSpace C x✝¹ : X✝ ⟶ Y✝ x✝ : (forget TopCat).obj ↑X✝ ⊢ ↑(𝟙 ↑X✝ ≫ x✝¹.base) x✝ = ↑x✝¹.base x✝ [PROOFSTEP] simp [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.68893, u_1} C X✝ Y✝ : PresheafedSpace C x✝ : X✝ ⟶ Y✝ U✝ : Opens ↑↑Y✝ ⊢ NatTrans.app ({ base := 𝟙 ↑X✝ ≫ x✝.base, c := x✝.c ≫ (Presheaf.pushforward C x✝.base).map (𝟙 X✝.presheaf) }.c ≫ whiskerRight (eqToHom (_ : (Opens.map { base := 𝟙 ↑X✝ ≫ x✝.base, c := x✝.c ≫ (Presheaf.pushforward C x✝.base).map (𝟙 X✝.presheaf) }.base).op = (Opens.map x✝.base).op)) X✝.presheaf) (op U✝) = NatTrans.app x✝.c (op U✝) [PROOFSTEP] dsimp [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.68893, u_1} C X✝ Y✝ : PresheafedSpace C x✝ : X✝ ⟶ Y✝ U✝ : Opens ↑↑Y✝ ⊢ NatTrans.app ((x✝.c ≫ (Presheaf.pushforward C x✝.base).map (𝟙 X✝.presheaf)) ≫ whiskerRight (𝟙 (Opens.map (𝟙 ↑X✝ ≫ x✝.base)).op) X✝.presheaf) (op U✝) = NatTrans.app x✝.c (op U✝) [PROOFSTEP] simp only [map_id, whiskerRight_id', assoc] [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.68893, u_1} C X✝ Y✝ : PresheafedSpace C x✝ : X✝ ⟶ Y✝ U✝ : Opens ↑↑Y✝ ⊢ NatTrans.app (x✝.c ≫ 𝟙 ((Presheaf.pushforward C x✝.base).obj X✝.presheaf) ≫ 𝟙 ((Opens.map (𝟙 ↑X✝ ≫ x✝.base)).op ⋙ X✝.presheaf)) (op U✝) = NatTrans.app x✝.c (op U✝) [PROOFSTEP] erw [comp_id, comp_id] [GOAL] C : Type u_1 inst✝ : Category.{?u.77226, u_1} C X Y : PresheafedSpace C α β : X ⟶ Y w : α.base = β.base ⊢ (Opens.map α.base).op = (Opens.map β.base).op [PROOFSTEP] rw [w] [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X : PresheafedSpace C U : (Opens ↑↑X)ᵒᵖ ⊢ NatTrans.app (𝟙 X).c U = X.presheaf.map (𝟙 U) [PROOFSTEP] rw [id_c, map_id] [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X : PresheafedSpace C U : (Opens ↑↑X)ᵒᵖ ⊢ NatTrans.app (𝟙 X.presheaf) U = 𝟙 (X.presheaf.obj U) [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝ : Category.{?u.143246, u_1} C X Y : PresheafedSpace C α β : X ⟶ Y h : α = β U : (Opens ↑↑Y)ᵒᵖ ⊢ (Opens.map β.base).op.obj U = (Opens.map α.base).op.obj U [PROOFSTEP] subst h [GOAL] C : Type u_1 inst✝ : Category.{?u.143246, u_1} C X Y : PresheafedSpace C α : X ⟶ Y U : (Opens ↑↑Y)ᵒᵖ ⊢ (Opens.map α.base).op.obj U = (Opens.map α.base).op.obj U [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C α β : X ⟶ Y h : α = β U : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app α.c U = NatTrans.app β.c U ≫ X.presheaf.map (eqToHom (_ : (Opens.map β.base).op.obj U = (Opens.map α.base).op.obj U)) [PROOFSTEP] subst h [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X Y : PresheafedSpace C α : X ⟶ Y U : (Opens ↑↑Y)ᵒᵖ ⊢ NatTrans.app α.c U = NatTrans.app α.c U ≫ X.presheaf.map (eqToHom (_ : (Opens.map α.base).op.obj U = (Opens.map α.base).op.obj U)) [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf ⊢ { base := H.hom, c := α.inv } ≫ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } = 𝟙 X [PROOFSTEP] ext [GOAL] case w.w C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf x✝ : (CategoryTheory.forget TopCat).obj ↑X ⊢ ↑({ base := H.hom, c := α.inv } ≫ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).base x✝ = ↑(𝟙 X).base x✝ case h.w C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf U✝ : Opens ↑↑X ⊢ NatTrans.app (({ base := H.hom, c := α.inv } ≫ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).c ≫ whiskerRight (eqToHom (_ : (Opens.map ({ base := H.hom, c := α.inv } ≫ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).base).op = (Opens.map (𝟙 X).base).op)) X.presheaf) (op U✝) = NatTrans.app (𝟙 X).c (op U✝) [PROOFSTEP] simp only [comp_base, Iso.hom_inv_id, FunctorToTypes.map_id_apply, id_base] [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf U✝ : Opens ↑↑X ⊢ NatTrans.app (({ base := H.hom, c := α.inv } ≫ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).c ≫ whiskerRight (eqToHom (_ : (Opens.map ({ base := H.hom, c := α.inv } ≫ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).base).op = (Opens.map (𝟙 X).base).op)) X.presheaf) (op U✝) = NatTrans.app (𝟙 X).c (op U✝) [PROOFSTEP] rw [NatTrans.comp_app] [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf U✝ : Opens ↑↑X ⊢ NatTrans.app ({ base := H.hom, c := α.inv } ≫ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).c (op U✝) ≫ NatTrans.app (whiskerRight (eqToHom (_ : (Opens.map ({ base := H.hom, c := α.inv } ≫ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).base).op = (Opens.map (𝟙 X).base).op)) X.presheaf) (op U✝) = NatTrans.app (𝟙 X).c (op U✝) [PROOFSTEP] simp only [id_base, comp_obj, op_obj, comp_base, Presheaf.pushforwardObj_obj, Opens.map_comp_obj, comp_c_app, unop_op, Presheaf.toPushforwardOfIso_app, assoc, Iso.hom_inv_id_app, comp_id, whiskerRight_app, eqToHom_app, id_c_app, map_id, ← Functor.map_comp, eqToHom_trans, eqToHom_refl] [GOAL] C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf ⊢ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv } = 𝟙 Y [PROOFSTEP] ext [GOAL] case w.w C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf x✝ : (CategoryTheory.forget TopCat).obj ↑Y ⊢ ↑({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).base x✝ = ↑(𝟙 Y).base x✝ case h.w C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf U✝ : Opens ↑↑Y ⊢ NatTrans.app (({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).c ≫ whiskerRight (eqToHom (_ : (Opens.map ({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).base).op = (Opens.map (𝟙 Y).base).op)) Y.presheaf) (op U✝) = NatTrans.app (𝟙 Y).c (op U✝) [PROOFSTEP] dsimp [GOAL] case w.w C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf x✝ : (CategoryTheory.forget TopCat).obj ↑Y ⊢ ↑(H.inv ≫ H.hom) x✝ = ↑(𝟙 ↑Y) x✝ case h.w C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf U✝ : Opens ↑↑Y ⊢ NatTrans.app (({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).c ≫ whiskerRight (eqToHom (_ : (Opens.map ({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).base).op = (Opens.map (𝟙 Y).base).op)) Y.presheaf) (op U✝) = NatTrans.app (𝟙 Y).c (op U✝) [PROOFSTEP] rw [H.inv_hom_id] [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf U✝ : Opens ↑↑Y ⊢ NatTrans.app (({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).c ≫ whiskerRight (eqToHom (_ : (Opens.map ({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).base).op = (Opens.map (𝟙 Y).base).op)) Y.presheaf) (op U✝) = NatTrans.app (𝟙 Y).c (op U✝) [PROOFSTEP] dsimp [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf U✝ : Opens ↑↑Y ⊢ NatTrans.app (({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).c ≫ whiskerRight (eqToHom (_ : (Opens.map (H.inv ≫ H.hom)).op = (Opens.map (𝟙 ↑Y)).op)) Y.presheaf) (op U✝) = NatTrans.app (𝟙 Y).c (op U✝) [PROOFSTEP] rw [NatTrans.comp_app] [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf U✝ : Opens ↑↑Y ⊢ NatTrans.app ({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).c (op U✝) ≫ NatTrans.app (whiskerRight (eqToHom (_ : (Opens.map (H.inv ≫ H.hom)).op = (Opens.map (𝟙 ↑Y)).op)) Y.presheaf) (op U✝) = NatTrans.app (𝟙 Y).c (op U✝) [PROOFSTEP] simp only [Presheaf.pushforwardObj_obj, op_obj, Opens.map_comp_obj, comp_obj, comp_c_app, unop_op, Presheaf.toPushforwardOfIso_app, whiskerRight_app, eqToHom_app, assoc, id_c_app, map_id] [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf U✝ : Opens ↑↑Y ⊢ NatTrans.app α.inv (op U✝) ≫ X.presheaf.map (eqToHom (_ : op ((Opens.map H.hom).obj U✝) = op { carrier := ↑H.hom ⁻¹' ↑(op { carrier := ↑H.inv ⁻¹' ↑(op ((Opens.map H.hom).obj U✝)).unop, is_open' := (_ : IsOpen (↑H.inv ⁻¹' ↑(op ((Opens.map H.hom).obj U✝)).unop)) }).unop, is_open' := (_ : IsOpen (↑H.hom ⁻¹' ↑(op { carrier := ↑H.inv ⁻¹' ↑(op ((Opens.map H.hom).obj U✝)).unop, is_open' := (_ : IsOpen (↑H.inv ⁻¹' ↑(op ((Opens.map H.hom).obj U✝)).unop)) }).unop)) })) ≫ NatTrans.app α.hom (op ((Opens.map H.inv).obj ((Opens.map H.hom).obj U✝))) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map (H.inv ≫ H.hom)).op.obj (op U✝) = (Opens.map (𝟙 ↑Y)).op.obj (op U✝))) = 𝟙 (Y.presheaf.obj (op U✝)) [PROOFSTEP] rw [← α.hom.naturality, Presheaf.pushforwardObj_map, eqToHom_map, eqToHom_map, eqToHom_map, eqToHom_trans_assoc, eqToHom_refl, id_comp] [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.204326, u_1} C X Y : PresheafedSpace C H : ↑X ≅ ↑Y α : H.hom _* X.presheaf ≅ Y.presheaf U✝ : Opens ↑↑Y ⊢ NatTrans.app α.inv (op U✝) ≫ NatTrans.app α.hom (op ((Opens.map (𝟙 ↑Y)).obj U✝)) = 𝟙 (Y.presheaf.obj (op U✝)) [PROOFSTEP] apply Iso.inv_hom_id_app [GOAL] C : Type u_1 inst✝ : Category.{?u.217173, u_1} C X Y : PresheafedSpace C H : X ≅ Y ⊢ H.hom.c ≫ Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c = 𝟙 Y.presheaf [PROOFSTEP] ext U [GOAL] case w C : Type u_1 inst✝ : Category.{?u.217173, u_1} C X Y : PresheafedSpace C H : X ≅ Y U : Opens ↑↑Y ⊢ NatTrans.app (H.hom.c ≫ Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c) (op U) = NatTrans.app (𝟙 Y.presheaf) (op U) [PROOFSTEP] rw [NatTrans.comp_app] [GOAL] case w C : Type u_1 inst✝ : Category.{?u.217173, u_1} C X Y : PresheafedSpace C H : X ≅ Y U : Opens ↑↑Y ⊢ NatTrans.app H.hom.c (op U) ≫ NatTrans.app (Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c) (op U) = NatTrans.app (𝟙 Y.presheaf) (op U) [PROOFSTEP] simpa using congr_arg (fun f => f ≫ eqToHom _) (congr_app H.inv_hom_id (op U)) [GOAL] C : Type u_1 inst✝ : Category.{?u.217173, u_1} C X Y : PresheafedSpace C H : X ≅ Y ⊢ Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c ≫ H.hom.c = 𝟙 (H.hom.base _* X.presheaf) [PROOFSTEP] ext U [GOAL] case w C : Type u_1 inst✝ : Category.{?u.217173, u_1} C X Y : PresheafedSpace C H : X ≅ Y U : Opens ↑↑Y ⊢ NatTrans.app (Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c ≫ H.hom.c) (op U) = NatTrans.app (𝟙 (H.hom.base _* X.presheaf)) (op U) [PROOFSTEP] dsimp [GOAL] case w C : Type u_1 inst✝ : Category.{?u.217173, u_1} C X Y : PresheafedSpace C H : X ≅ Y U : Opens ↑↑Y ⊢ NatTrans.app (Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c ≫ H.hom.c) (op U) = NatTrans.app (𝟙 (H.hom.base _* X.presheaf)) (op U) [PROOFSTEP] rw [NatTrans.comp_app, NatTrans.id_app] [GOAL] case w C : Type u_1 inst✝ : Category.{?u.217173, u_1} C X Y : PresheafedSpace C H : X ≅ Y U : Opens ↑↑Y ⊢ NatTrans.app (Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c) (op U) ≫ NatTrans.app H.hom.c (op U) = 𝟙 ((H.hom.base _* X.presheaf).obj (op U)) [PROOFSTEP] simp only [Presheaf.pushforwardObj_obj, op_obj, Presheaf.pushforwardToOfIso_app, Iso.symm_inv, mapIso_hom, forget_map, Iso.symm_hom, mapIso_inv, unop_op, eqToHom_map, assoc] [GOAL] case w C : Type u_1 inst✝ : Category.{?u.217173, u_1} C X Y : PresheafedSpace C H : X ≅ Y U : Opens ↑↑Y ⊢ NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫ eqToHom (_ : Y.presheaf.obj (op ((Opens.map H.inv.base).obj ((Opens.map H.hom.base).obj U))) = Y.presheaf.obj (op U)) ≫ NatTrans.app H.hom.c (op U) = 𝟙 (X.presheaf.obj (op ((Opens.map H.hom.base).obj U))) [PROOFSTEP] have eq₁ := congr_app H.hom_inv_id (op ((Opens.map H.hom.base).obj U)) [GOAL] case w C : Type u_1 inst✝ : Category.{?u.217173, u_1} C X Y : PresheafedSpace C H : X ≅ Y U : Opens ↑↑Y eq₁ : NatTrans.app (H.hom ≫ H.inv).c (op ((Opens.map H.hom.base).obj U)) = NatTrans.app (𝟙 X).c (op ((Opens.map H.hom.base).obj U)) ≫ X.presheaf.map (eqToHom (_ : (Opens.map (𝟙 X).base).op.obj (op ((Opens.map H.hom.base).obj U)) = (Opens.map (H.hom ≫ H.inv).base).op.obj (op ((Opens.map H.hom.base).obj U)))) ⊢ NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫ eqToHom (_ : Y.presheaf.obj (op ((Opens.map H.inv.base).obj ((Opens.map H.hom.base).obj U))) = Y.presheaf.obj (op U)) ≫ NatTrans.app H.hom.c (op U) = 𝟙 (X.presheaf.obj (op ((Opens.map H.hom.base).obj U))) [PROOFSTEP] have eq₂ := H.hom.c.naturality (eqToHom (congr_obj (congr_arg Opens.map ((forget C).congr_map H.inv_hom_id.symm)) U)).op [GOAL] case w C : Type u_1 inst✝ : Category.{?u.217173, u_1} C X Y : PresheafedSpace C H : X ≅ Y U : Opens ↑↑Y eq₁ : NatTrans.app (H.hom ≫ H.inv).c (op ((Opens.map H.hom.base).obj U)) = NatTrans.app (𝟙 X).c (op ((Opens.map H.hom.base).obj U)) ≫ X.presheaf.map (eqToHom (_ : (Opens.map (𝟙 X).base).op.obj (op ((Opens.map H.hom.base).obj U)) = (Opens.map (H.hom ≫ H.inv).base).op.obj (op ((Opens.map H.hom.base).obj U)))) eq₂ : Y.presheaf.map (eqToHom (_ : (Opens.map ((forget C).map (𝟙 Y))).obj U = (Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)).op ≫ NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (𝟙 Y))).obj U)) = NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)) ≫ (H.hom.base _* X.presheaf).map (eqToHom (_ : (Opens.map ((forget C).map (𝟙 Y))).obj U = (Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)).op ⊢ NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫ eqToHom (_ : Y.presheaf.obj (op ((Opens.map H.inv.base).obj ((Opens.map H.hom.base).obj U))) = Y.presheaf.obj (op U)) ≫ NatTrans.app H.hom.c (op U) = 𝟙 (X.presheaf.obj (op ((Opens.map H.hom.base).obj U))) [PROOFSTEP] rw [id_c, NatTrans.id_app, id_comp, eqToHom_map, comp_c_app] at eq₁ [GOAL] case w C : Type u_1 inst✝ : Category.{?u.217173, u_1} C X Y : PresheafedSpace C H : X ≅ Y U : Opens ↑↑Y eq₁ : NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫ NatTrans.app H.hom.c (op ((Opens.map H.inv.base).obj (op ((Opens.map H.hom.base).obj U)).unop)) = eqToHom (_ : X.presheaf.obj ((Opens.map (𝟙 X).base).op.obj (op ((Opens.map H.hom.base).obj U))) = X.presheaf.obj ((Opens.map (H.hom ≫ H.inv).base).op.obj (op ((Opens.map H.hom.base).obj U)))) eq₂ : Y.presheaf.map (eqToHom (_ : (Opens.map ((forget C).map (𝟙 Y))).obj U = (Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)).op ≫ NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (𝟙 Y))).obj U)) = NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)) ≫ (H.hom.base _* X.presheaf).map (eqToHom (_ : (Opens.map ((forget C).map (𝟙 Y))).obj U = (Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)).op ⊢ NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫ eqToHom (_ : Y.presheaf.obj (op ((Opens.map H.inv.base).obj ((Opens.map H.hom.base).obj U))) = Y.presheaf.obj (op U)) ≫ NatTrans.app H.hom.c (op U) = 𝟙 (X.presheaf.obj (op ((Opens.map H.hom.base).obj U))) [PROOFSTEP] rw [eqToHom_op, eqToHom_map] at eq₂ [GOAL] case w C : Type u_1 inst✝ : Category.{?u.217173, u_1} C X Y : PresheafedSpace C H : X ≅ Y U : Opens ↑↑Y eq₁ : NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫ NatTrans.app H.hom.c (op ((Opens.map H.inv.base).obj (op ((Opens.map H.hom.base).obj U)).unop)) = eqToHom (_ : X.presheaf.obj ((Opens.map (𝟙 X).base).op.obj (op ((Opens.map H.hom.base).obj U))) = X.presheaf.obj ((Opens.map (H.hom ≫ H.inv).base).op.obj (op ((Opens.map H.hom.base).obj U)))) eq₂ : eqToHom (_ : Y.presheaf.obj (op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)) = Y.presheaf.obj (op ((Opens.map ((forget C).map (𝟙 Y))).obj U))) ≫ NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (𝟙 Y))).obj U)) = NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)) ≫ (H.hom.base _* X.presheaf).map (eqToHom (_ : op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U) = op ((Opens.map ((forget C).map (𝟙 Y))).obj U))) ⊢ NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫ eqToHom (_ : Y.presheaf.obj (op ((Opens.map H.inv.base).obj ((Opens.map H.hom.base).obj U))) = Y.presheaf.obj (op U)) ≫ NatTrans.app H.hom.c (op U) = 𝟙 (X.presheaf.obj (op ((Opens.map H.hom.base).obj U))) [PROOFSTEP] erw [eq₂, reassoc_of% eq₁] [GOAL] case w C : Type u_1 inst✝ : Category.{?u.217173, u_1} C X Y : PresheafedSpace C H : X ≅ Y U : Opens ↑↑Y eq₁ : NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫ NatTrans.app H.hom.c (op ((Opens.map H.inv.base).obj (op ((Opens.map H.hom.base).obj U)).unop)) = eqToHom (_ : X.presheaf.obj ((Opens.map (𝟙 X).base).op.obj (op ((Opens.map H.hom.base).obj U))) = X.presheaf.obj ((Opens.map (H.hom ≫ H.inv).base).op.obj (op ((Opens.map H.hom.base).obj U)))) eq₂ : eqToHom (_ : Y.presheaf.obj (op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)) = Y.presheaf.obj (op ((Opens.map ((forget C).map (𝟙 Y))).obj U))) ≫ NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (𝟙 Y))).obj U)) = NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)) ≫ (H.hom.base _* X.presheaf).map (eqToHom (_ : op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U) = op ((Opens.map ((forget C).map (𝟙 Y))).obj U))) ⊢ eqToHom (_ : X.presheaf.obj ((Opens.map (𝟙 X).base).op.obj (op ((Opens.map H.hom.base).obj U))) = X.presheaf.obj ((Opens.map (H.hom ≫ H.inv).base).op.obj (op ((Opens.map H.hom.base).obj U)))) ≫ (H.hom.base _* X.presheaf).map (eqToHom (_ : op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U) = op ((Opens.map ((forget C).map (𝟙 Y))).obj U))) = 𝟙 (X.presheaf.obj (op ((Opens.map H.hom.base).obj U))) [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝ : Category.{?u.242573, u_1} C U✝ : TopCat X : PresheafedSpace C f✝ : U✝ ⟶ ↑X h : OpenEmbedding ↑f✝ U V : (Opens ↑↑X)ᵒᵖ f : U ⟶ V ⊢ X.presheaf.map f ≫ (fun V => X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f✝)).counit V.unop).op) V = (fun V => X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f✝)).counit V.unop).op) U ≫ X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑f✝)).op.map ((Opens.map f✝).op.map f)) [PROOFSTEP] rw [← map_comp, ← map_comp] [GOAL] C : Type u_1 inst✝ : Category.{?u.242573, u_1} C U✝ : TopCat X : PresheafedSpace C f✝ : U✝ ⟶ ↑X h : OpenEmbedding ↑f✝ U V : (Opens ↑↑X)ᵒᵖ f : U ⟶ V ⊢ X.presheaf.map (f ≫ (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f✝)).counit V.unop).op) = X.presheaf.map ((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f✝)).counit U.unop).op ≫ (IsOpenMap.functor (_ : IsOpenMap ↑f✝)).op.map ((Opens.map f✝).op.map f)) [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f ⊢ Mono (ofRestrict X hf) [PROOFSTEP] haveI : Mono f := (TopCat.mono_iff_injective _).mpr hf.inj [GOAL] C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this : Mono f ⊢ Mono (ofRestrict X hf) [PROOFSTEP] constructor [GOAL] case right_cancellation C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this : Mono f ⊢ ∀ {Z : PresheafedSpace C} (g h : Z ⟶ restrict X hf), g ≫ ofRestrict X hf = h ≫ ofRestrict X hf → g = h [PROOFSTEP] intro Z g₁ g₂ eq [GOAL] case right_cancellation C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf ⊢ g₁ = g₂ [PROOFSTEP] ext1 [GOAL] case right_cancellation.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf ⊢ g₁.base = g₂.base [PROOFSTEP] have := congr_arg PresheafedSpace.Hom.base eq [GOAL] case right_cancellation.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this✝ : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf this : (g₁ ≫ ofRestrict X hf).base = (g₂ ≫ ofRestrict X hf).base ⊢ g₁.base = g₂.base [PROOFSTEP] simp only [PresheafedSpace.comp_base, PresheafedSpace.ofRestrict_base] at this [GOAL] case right_cancellation.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this✝ : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf this : g₁.base ≫ f = g₂.base ≫ f ⊢ g₁.base = g₂.base [PROOFSTEP] rw [cancel_mono] at this [GOAL] case right_cancellation.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this✝ : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf this : g₁.base = g₂.base ⊢ g₁.base = g₂.base [PROOFSTEP] exact this [GOAL] case right_cancellation.h C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf ⊢ g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf = g₂.c [PROOFSTEP] ext V [GOAL] case right_cancellation.h.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf V : Opens ↑↑(restrict X hf) ⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) = NatTrans.app g₂.c (op V) [PROOFSTEP] have hV : (Opens.map (X.ofRestrict hf).base).obj (hf.isOpenMap.functor.obj V) = V := by ext1 exact Set.preimage_image_eq _ hf.inj [GOAL] C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf V : Opens ↑↑(restrict X hf) ⊢ (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V [PROOFSTEP] ext1 [GOAL] case h C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf V : Opens ↑↑(restrict X hf) ⊢ ↑((Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) = ↑V [PROOFSTEP] exact Set.preimage_image_eq _ hf.inj [GOAL] case right_cancellation.h.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf V : Opens ↑↑(restrict X hf) hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V ⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) = NatTrans.app g₂.c (op V) [PROOFSTEP] haveI : IsIso (hf.isOpenMap.adjunction.counit.app (unop (op (hf.isOpenMap.functor.obj V)))) := NatIso.isIso_app_of_isIso (whiskerLeft hf.isOpenMap.functor hf.isOpenMap.adjunction.counit) V [GOAL] case right_cancellation.h.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this✝ : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf V : Opens ↑↑(restrict X hf) hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V this : IsIso (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop) ⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) = NatTrans.app g₂.c (op V) [PROOFSTEP] have := PresheafedSpace.congr_app eq (op (hf.isOpenMap.functor.obj V)) [GOAL] case right_cancellation.h.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this✝¹ : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf V : Opens ↑↑(restrict X hf) hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V this✝ : IsIso (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop) this : NatTrans.app (g₁ ≫ ofRestrict X hf).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) = NatTrans.app (g₂ ≫ ofRestrict X hf).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) ≫ Z.presheaf.map (eqToHom (_ : (Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) = (Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)))) ⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) = NatTrans.app g₂.c (op V) [PROOFSTEP] simp only [PresheafedSpace.comp_c_app, PresheafedSpace.ofRestrict_c_app, Category.assoc, cancel_epi] at this [GOAL] case right_cancellation.h.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this✝¹ : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf V : Opens ↑↑(restrict X hf) hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V this✝ : IsIso (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop) this : NatTrans.app g₁.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) = NatTrans.app g₂.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫ Z.presheaf.map (eqToHom (_ : (Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) = (Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)))) ⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) = NatTrans.app g₂.c (op V) [PROOFSTEP] have h : _ ≫ _ = _ ≫ _ ≫ _ := congr_arg (fun f => (X.restrict hf).presheaf.map (eqToHom hV).op ≫ f) this [GOAL] case right_cancellation.h.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this✝¹ : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf V : Opens ↑↑(restrict X hf) hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V this✝ : IsIso (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop) this : NatTrans.app g₁.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) = NatTrans.app g₂.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫ Z.presheaf.map (eqToHom (_ : (Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) = (Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)))) h : (restrict X hf).presheaf.map (eqToHom hV).op ≫ NatTrans.app g₁.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) = (restrict X hf).presheaf.map (eqToHom hV).op ≫ NatTrans.app g₂.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫ Z.presheaf.map (eqToHom (_ : (Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) = (Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)))) ⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) = NatTrans.app g₂.c (op V) [PROOFSTEP] erw [g₁.c.naturality, g₂.c.naturality_assoc] at h [GOAL] case right_cancellation.h.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this✝¹ : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf V : Opens ↑↑(restrict X hf) hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V this✝ : IsIso (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop) this : NatTrans.app g₁.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) = NatTrans.app g₂.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫ Z.presheaf.map (eqToHom (_ : (Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) = (Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)))) h : NatTrans.app g₁.c (op V) ≫ (g₁.base _* Z.presheaf).map (eqToHom hV).op = NatTrans.app g₂.c (op V) ≫ (g₂.base _* Z.presheaf).map (eqToHom hV).op ≫ Z.presheaf.map (eqToHom (_ : (Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) = (Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)))) ⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) = NatTrans.app g₂.c (op V) [PROOFSTEP] simp only [Presheaf.pushforwardObj_map, eqToHom_op, Category.assoc, eqToHom_map, eqToHom_trans] at h [GOAL] case right_cancellation.h.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this✝¹ : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf V : Opens ↑↑(restrict X hf) hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V this✝ : IsIso (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop) this : NatTrans.app g₁.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) = NatTrans.app g₂.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫ Z.presheaf.map (eqToHom (_ : (Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) = (Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)))) h : NatTrans.app g₁.c (op V) ≫ eqToHom (_ : Z.presheaf.obj ((Opens.map g₁.base).op.obj (op V)) = Z.presheaf.obj ((Opens.map g₁.base).op.obj (op ((Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V))))) = NatTrans.app g₂.c (op V) ≫ eqToHom (_ : (g₂.base _* Z.presheaf).obj (op V) = (g₁.base _* Z.presheaf).obj (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop))) ⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) = NatTrans.app g₂.c (op V) [PROOFSTEP] rw [← IsIso.comp_inv_eq, inv_eqToHom, Category.assoc, eqToHom_trans] at h [GOAL] case right_cancellation.h.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this✝¹ : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf V : Opens ↑↑(restrict X hf) hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V this✝ : IsIso (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop) this : NatTrans.app g₁.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) = NatTrans.app g₂.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫ Z.presheaf.map (eqToHom (_ : (Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) = (Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)))) h : NatTrans.app g₁.c (op V) ≫ eqToHom (_ : (g₁.base _* Z.presheaf).obj (op V) = (g₂.base _* Z.presheaf).obj (op V)) = NatTrans.app g₂.c (op V) ⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) = NatTrans.app g₂.c (op V) [PROOFSTEP] rw [NatTrans.comp_app] [GOAL] case right_cancellation.h.w C : Type u_1 inst✝ : Category.{?u.247153, u_1} C U : TopCat X : PresheafedSpace C f : U ⟶ ↑X hf : OpenEmbedding ↑f this✝¹ : Mono f Z : PresheafedSpace C g₁ g₂ : Z ⟶ restrict X hf eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf V : Opens ↑↑(restrict X hf) hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V this✝ : IsIso (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop) this : NatTrans.app g₁.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) = NatTrans.app g₂.c (op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫ Z.presheaf.map (eqToHom (_ : (Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) = (Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)))) h : NatTrans.app g₁.c (op V) ≫ eqToHom (_ : (g₁.base _* Z.presheaf).obj (op V) = (g₂.base _* Z.presheaf).obj (op V)) = NatTrans.app g₂.c (op V) ⊢ NatTrans.app g₁.c (op V) ≫ NatTrans.app (whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) = NatTrans.app g₂.c (op V) [PROOFSTEP] simpa using h [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X : PresheafedSpace C ⊢ (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).presheaf = (Opens.inclusionTopIso ↑X).inv _* X.presheaf [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X : PresheafedSpace C ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ⊤))).op ⋙ X.presheaf = (Opens.inclusionTopIso ↑X).inv _* X.presheaf [PROOFSTEP] rw [Opens.inclusion_top_functor X.carrier] [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X : PresheafedSpace C ⊢ (Opens.map (Opens.inclusionTopIso ↑X).inv).op ⋙ X.presheaf = (Opens.inclusionTopIso ↑X).inv _* X.presheaf [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝ : Category.{?u.265841, u_1} C X : PresheafedSpace C ⊢ X.presheaf = (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).base _* (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).presheaf [PROOFSTEP] rw [restrict_top_presheaf, ← Presheaf.Pushforward.comp_eq] [GOAL] C : Type u_1 inst✝ : Category.{?u.265841, u_1} C X : PresheafedSpace C ⊢ X.presheaf = ((Opens.inclusionTopIso ↑X).inv ≫ (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).base) _* X.presheaf [PROOFSTEP] erw [Iso.inv_hom_id] [GOAL] C : Type u_1 inst✝ : Category.{?u.265841, u_1} C X : PresheafedSpace C ⊢ X.presheaf = 𝟙 ↑X _* X.presheaf [PROOFSTEP] rw [Presheaf.Pushforward.id_eq] [GOAL] C : Type u_1 inst✝ : Category.{u_2, u_1} C X : PresheafedSpace C ⊢ (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).c = eqToHom (_ : X.presheaf = (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).base _* (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).presheaf) [PROOFSTEP] ext [GOAL] case w C : Type u_1 inst✝ : Category.{u_2, u_1} C X : PresheafedSpace C U✝ : Opens ↑↑X ⊢ NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).c (op U✝) = NatTrans.app (eqToHom (_ : X.presheaf = (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).base _* (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).presheaf)) (op U✝) [PROOFSTEP] dsimp [ofRestrict] [GOAL] case w C : Type u_1 inst✝ : Category.{u_2, u_1} C X : PresheafedSpace C U✝ : Opens ↑↑X ⊢ X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion ⊤))).counit U✝).op = NatTrans.app (eqToHom (_ : X.presheaf = Opens.inclusion ⊤ _* ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ⊤))).op ⋙ X.presheaf))) (op U✝) [PROOFSTEP] erw [eqToHom_map, eqToHom_app] [GOAL] case w.p C : Type u_1 inst✝ : Category.{u_2, u_1} C X : PresheafedSpace C U✝ : Opens ↑↑X ⊢ op U✝ = op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ⊤))).obj ((Opens.map (Opens.inclusion ⊤)).obj U✝)) case w.p C : Type u_1 inst✝ : Category.{u_2, u_1} C X : PresheafedSpace C U✝ : Opens ↑↑X ⊢ op U✝ = op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ⊤))).obj ((Opens.map (Opens.inclusion ⊤)).obj U✝)) [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝ : Category.{?u.273541, u_1} C X : PresheafedSpace C ⊢ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)) ≫ toRestrictTop X = 𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))) [PROOFSTEP] ext [GOAL] case w.w C : Type u_1 inst✝ : Category.{?u.273541, u_1} C X : PresheafedSpace C x✝ : (CategoryTheory.forget TopCat).obj ↑(restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))) ⊢ ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)) ≫ toRestrictTop X).base x✝ = ↑(𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))).base x✝ [PROOFSTEP] rfl [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.273541, u_1} C X : PresheafedSpace C U✝ : Opens ↑↑(restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))) ⊢ NatTrans.app ((ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)) ≫ toRestrictTop X).c ≫ whiskerRight (eqToHom (_ : (Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)) ≫ toRestrictTop X).base).op = (Opens.map (𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))).base).op)) (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).presheaf) (op U✝) = NatTrans.app (𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))).c (op U✝) [PROOFSTEP] dsimp [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.273541, u_1} C X : PresheafedSpace C U✝ : Opens ↑↑(restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))) ⊢ NatTrans.app ((ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)) ≫ toRestrictTop X).c ≫ whiskerRight (𝟙 (Opens.map (Opens.inclusion ⊤ ≫ (Opens.inclusionTopIso ↑X).inv)).op) ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ⊤))).op ⋙ X.presheaf)) (op U✝) = NatTrans.app (𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))).c (op U✝) [PROOFSTEP] erw [comp_c, toRestrictTop_c, whiskerRight_id', comp_id, ofRestrict_top_c, eqToHom_map, eqToHom_trans, eqToHom_refl] [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.273541, u_1} C X : PresheafedSpace C U✝ : Opens ↑↑(restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))) ⊢ NatTrans.app (𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).presheaf) (op U✝) = NatTrans.app (𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))).c (op U✝) [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝ : Category.{?u.273541, u_1} C X : PresheafedSpace C ⊢ toRestrictTop X ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)) = 𝟙 X [PROOFSTEP] ext [GOAL] case w.w C : Type u_1 inst✝ : Category.{?u.273541, u_1} C X : PresheafedSpace C x✝ : (CategoryTheory.forget TopCat).obj ↑X ⊢ ↑(toRestrictTop X ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).base x✝ = ↑(𝟙 X).base x✝ [PROOFSTEP] rfl [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.273541, u_1} C X : PresheafedSpace C U✝ : Opens ↑↑X ⊢ NatTrans.app ((toRestrictTop X ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).c ≫ whiskerRight (eqToHom (_ : (Opens.map (toRestrictTop X ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).base).op = (Opens.map (𝟙 X).base).op)) X.presheaf) (op U✝) = NatTrans.app (𝟙 X).c (op U✝) [PROOFSTEP] dsimp [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.273541, u_1} C X : PresheafedSpace C U✝ : Opens ↑↑X ⊢ NatTrans.app ((toRestrictTop X ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).c ≫ whiskerRight (𝟙 (Opens.map ((Opens.inclusionTopIso ↑X).inv ≫ Opens.inclusion ⊤)).op) X.presheaf) (op U✝) = NatTrans.app (𝟙 X).c (op U✝) [PROOFSTEP] erw [comp_c, ofRestrict_top_c, toRestrictTop_c, eqToHom_map, whiskerRight_id', comp_id, eqToHom_trans, eqToHom_refl] [GOAL] case h.w C : Type u_1 inst✝ : Category.{?u.273541, u_1} C X : PresheafedSpace C U✝ : Opens ↑↑X ⊢ NatTrans.app (𝟙 X.presheaf) (op U✝) = NatTrans.app (𝟙 X).c (op U✝) [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝¹ : Category.{?u.293007, u_1} C D : Type u_2 inst✝ : Category.{?u.293014, u_2} D F : C ⥤ D X : PresheafedSpace C ⊢ { obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map (𝟙 X) = 𝟙 ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X) [PROOFSTEP] ext U [GOAL] case w.w C : Type u_1 inst✝¹ : Category.{?u.293007, u_1} C D : Type u_2 inst✝ : Category.{?u.293014, u_2} D F : C ⥤ D X : PresheafedSpace C U : (forget TopCat).obj ↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X) ⊢ ↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map (𝟙 X)).base U = ↑(𝟙 ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X)).base U case h.w C : Type u_1 inst✝¹ : Category.{?u.293007, u_1} C D : Type u_2 inst✝ : Category.{?u.293014, u_2} D F : C ⥤ D X : PresheafedSpace C U : Opens ↑↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X) ⊢ NatTrans.app (({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map (𝟙 X)).c ≫ whiskerRight (eqToHom (_ : (Opens.map ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map (𝟙 X)).base).op = (Opens.map (𝟙 ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X)).base).op)) ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X).presheaf) (op U) = NatTrans.app (𝟙 ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X)).c (op U) [PROOFSTEP] rfl [GOAL] case h.w C : Type u_1 inst✝¹ : Category.{?u.293007, u_1} C D : Type u_2 inst✝ : Category.{?u.293014, u_2} D F : C ⥤ D X : PresheafedSpace C U : Opens ↑↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X) ⊢ NatTrans.app (({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map (𝟙 X)).c ≫ whiskerRight (eqToHom (_ : (Opens.map ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map (𝟙 X)).base).op = (Opens.map (𝟙 ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X)).base).op)) ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X).presheaf) (op U) = NatTrans.app (𝟙 ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X)).c (op U) [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.293007, u_1} C D : Type u_2 inst✝ : Category.{?u.293014, u_2} D F : C ⥤ D X✝ Y✝ Z✝ : PresheafedSpace C f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ { obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map (f ≫ g) = { obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map f ≫ { obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map g [PROOFSTEP] ext U [GOAL] case w.w C : Type u_1 inst✝¹ : Category.{?u.293007, u_1} C D : Type u_2 inst✝ : Category.{?u.293014, u_2} D F : C ⥤ D X✝ Y✝ Z✝ : PresheafedSpace C f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ U : (forget TopCat).obj ↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X✝) ⊢ ↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map (f ≫ g)).base U = ↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map f ≫ { obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map g).base U case h.w C : Type u_1 inst✝¹ : Category.{?u.293007, u_1} C D : Type u_2 inst✝ : Category.{?u.293014, u_2} D F : C ⥤ D X✝ Y✝ Z✝ : PresheafedSpace C f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ U : Opens ↑↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj Z✝) ⊢ NatTrans.app (({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map (f ≫ g)).c ≫ whiskerRight (eqToHom (_ : (Opens.map ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map (f ≫ g)).base).op = (Opens.map ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map f ≫ { obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map g).base).op)) ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X✝).presheaf) (op U) = NatTrans.app ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map f ≫ { obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map g).c (op U) [PROOFSTEP] rfl [GOAL] case h.w C : Type u_1 inst✝¹ : Category.{?u.293007, u_1} C D : Type u_2 inst✝ : Category.{?u.293014, u_2} D F : C ⥤ D X✝ Y✝ Z✝ : PresheafedSpace C f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ U : Opens ↑↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj Z✝) ⊢ NatTrans.app (({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map (f ≫ g)).c ≫ whiskerRight (eqToHom (_ : (Opens.map ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map (f ≫ g)).base).op = (Opens.map ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map f ≫ { obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map g).base).op)) ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj X✝).presheaf) (op U) = NatTrans.app ({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map f ≫ { obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F }, map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map g).c (op U) [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.AlgebraicGeometry.PresheafedSpace", "llama_tokens": 28360}
[GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M ϕ : L →ᴸ L' L'' : Language F G : L →ᴸ L' h_fun : F.onFunction = G.onFunction h_rel : F.onRelation = G.onRelation ⊢ F = G [PROOFSTEP] cases' F with Ff Fr [GOAL] case mk L : Language L' : Language M : Type w inst✝ : Structure L M ϕ : L →ᴸ L' L'' : Language G : L →ᴸ L' Ff : ⦃n : ℕ⦄ → Functions L n → Functions L' n Fr : ⦃n : ℕ⦄ → Relations L n → Relations L' n h_fun : { onFunction := Ff, onRelation := Fr }.onFunction = G.onFunction h_rel : { onFunction := Ff, onRelation := Fr }.onRelation = G.onRelation ⊢ { onFunction := Ff, onRelation := Fr } = G [PROOFSTEP] cases' G with Gf Gr [GOAL] case mk.mk L : Language L' : Language M : Type w inst✝ : Structure L M ϕ : L →ᴸ L' L'' : Language Ff : ⦃n : ℕ⦄ → Functions L n → Functions L' n Fr : ⦃n : ℕ⦄ → Relations L n → Relations L' n Gf : ⦃n : ℕ⦄ → Functions L n → Functions L' n Gr : ⦃n : ℕ⦄ → Relations L n → Relations L' n h_fun : { onFunction := Ff, onRelation := Fr }.onFunction = { onFunction := Gf, onRelation := Gr }.onFunction h_rel : { onFunction := Ff, onRelation := Fr }.onRelation = { onFunction := Gf, onRelation := Gr }.onRelation ⊢ { onFunction := Ff, onRelation := Fr } = { onFunction := Gf, onRelation := Gr } [PROOFSTEP] simp only [mk.injEq] [GOAL] case mk.mk L : Language L' : Language M : Type w inst✝ : Structure L M ϕ : L →ᴸ L' L'' : Language Ff : ⦃n : ℕ⦄ → Functions L n → Functions L' n Fr : ⦃n : ℕ⦄ → Relations L n → Relations L' n Gf : ⦃n : ℕ⦄ → Functions L n → Functions L' n Gr : ⦃n : ℕ⦄ → Relations L n → Relations L' n h_fun : { onFunction := Ff, onRelation := Fr }.onFunction = { onFunction := Gf, onRelation := Gr }.onFunction h_rel : { onFunction := Ff, onRelation := Fr }.onRelation = { onFunction := Gf, onRelation := Gr }.onRelation ⊢ Ff = Gf ∧ Fr = Gr [PROOFSTEP] exact And.intro h_fun h_rel [GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M ϕ : L →ᴸ L' L'' : Language F : L →ᴸ L' ⊢ LHom.id L' ∘ᴸ F = F [PROOFSTEP] cases F [GOAL] case mk L : Language L' : Language M : Type w inst✝ : Structure L M ϕ : L →ᴸ L' L'' : Language onFunction✝ : ⦃n : ℕ⦄ → Functions L n → Functions L' n onRelation✝ : ⦃n : ℕ⦄ → Relations L n → Relations L' n ⊢ LHom.id L' ∘ᴸ { onFunction := onFunction✝, onRelation := onRelation✝ } = { onFunction := onFunction✝, onRelation := onRelation✝ } [PROOFSTEP] rfl [GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M ϕ : L →ᴸ L' L'' : Language F : L →ᴸ L' ⊢ F ∘ᴸ LHom.id L = F [PROOFSTEP] cases F [GOAL] case mk L : Language L' : Language M : Type w inst✝ : Structure L M ϕ : L →ᴸ L' L'' : Language onFunction✝ : ⦃n : ℕ⦄ → Functions L n → Functions L' n onRelation✝ : ⦃n : ℕ⦄ → Relations L n → Relations L' n ⊢ { onFunction := onFunction✝, onRelation := onRelation✝ } ∘ᴸ LHom.id L = { onFunction := onFunction✝, onRelation := onRelation✝ } [PROOFSTEP] rfl [GOAL] L : Language L' : Language M✝ : Type w inst✝⁵ : Structure L M✝ ϕ : L →ᴸ L' L''✝ : Language L'' : Language ψ : L'' →ᴸ L' M : Type u_1 inst✝⁴ : Structure L M inst✝³ : Structure L' M inst✝² : Structure L'' M inst✝¹ : IsExpansionOn ϕ M inst✝ : IsExpansionOn ψ M n✝ : ℕ f : Functions (Language.sum L L'') n✝ x✝ : Fin n✝ → M ⊢ ∀ (val : Functions L n✝), funMap (onFunction (LHom.sumElim ϕ ψ) (Sum.inl val)) x✝ = funMap (Sum.inl val) x✝ [PROOFSTEP] simp [GOAL] L : Language L' : Language M✝ : Type w inst✝⁵ : Structure L M✝ ϕ : L →ᴸ L' L''✝ : Language L'' : Language ψ : L'' →ᴸ L' M : Type u_1 inst✝⁴ : Structure L M inst✝³ : Structure L' M inst✝² : Structure L'' M inst✝¹ : IsExpansionOn ϕ M inst✝ : IsExpansionOn ψ M n✝ : ℕ f : Functions (Language.sum L L'') n✝ x✝ : Fin n✝ → M ⊢ ∀ (val : Functions L'' n✝), funMap (onFunction (LHom.sumElim ϕ ψ) (Sum.inr val)) x✝ = funMap (Sum.inr val) x✝ [PROOFSTEP] simp [GOAL] L : Language L' : Language M✝ : Type w inst✝⁵ : Structure L M✝ ϕ : L →ᴸ L' L''✝ : Language L'' : Language ψ : L'' →ᴸ L' M : Type u_1 inst✝⁴ : Structure L M inst✝³ : Structure L' M inst✝² : Structure L'' M inst✝¹ : IsExpansionOn ϕ M inst✝ : IsExpansionOn ψ M n✝ : ℕ R : Relations (Language.sum L L'') n✝ x✝ : Fin n✝ → M ⊢ ∀ (val : Relations L n✝), RelMap (onRelation (LHom.sumElim ϕ ψ) (Sum.inl val)) x✝ = RelMap (Sum.inl val) x✝ [PROOFSTEP] simp [GOAL] L : Language L' : Language M✝ : Type w inst✝⁵ : Structure L M✝ ϕ : L →ᴸ L' L''✝ : Language L'' : Language ψ : L'' →ᴸ L' M : Type u_1 inst✝⁴ : Structure L M inst✝³ : Structure L' M inst✝² : Structure L'' M inst✝¹ : IsExpansionOn ϕ M inst✝ : IsExpansionOn ψ M n✝ : ℕ R : Relations (Language.sum L L'') n✝ x✝ : Fin n✝ → M ⊢ ∀ (val : Relations L'' n✝), RelMap (onRelation (LHom.sumElim ϕ ψ) (Sum.inr val)) x✝ = RelMap (Sum.inr val) x✝ [PROOFSTEP] simp [GOAL] L : Language L' : Language M✝ : Type w inst✝⁶ : Structure L M✝ ϕ : L →ᴸ L' L'' : Language L₁ : Language L₂ : Language ψ : L₁ →ᴸ L₂ M : Type u_1 inst✝⁵ : Structure L M inst✝⁴ : Structure L' M inst✝³ : Structure L₁ M inst✝² : Structure L₂ M inst✝¹ : IsExpansionOn ϕ M inst✝ : IsExpansionOn ψ M n✝ : ℕ f : Functions (Language.sum L L₁) n✝ x✝ : Fin n✝ → M ⊢ ∀ (val : Functions L n✝), funMap (onFunction (sumMap ϕ ψ) (Sum.inl val)) x✝ = funMap (Sum.inl val) x✝ [PROOFSTEP] simp [GOAL] L : Language L' : Language M✝ : Type w inst✝⁶ : Structure L M✝ ϕ : L →ᴸ L' L'' : Language L₁ : Language L₂ : Language ψ : L₁ →ᴸ L₂ M : Type u_1 inst✝⁵ : Structure L M inst✝⁴ : Structure L' M inst✝³ : Structure L₁ M inst✝² : Structure L₂ M inst✝¹ : IsExpansionOn ϕ M inst✝ : IsExpansionOn ψ M n✝ : ℕ f : Functions (Language.sum L L₁) n✝ x✝ : Fin n✝ → M ⊢ ∀ (val : Functions L₁ n✝), funMap (onFunction (sumMap ϕ ψ) (Sum.inr val)) x✝ = funMap (Sum.inr val) x✝ [PROOFSTEP] simp [GOAL] L : Language L' : Language M✝ : Type w inst✝⁶ : Structure L M✝ ϕ : L →ᴸ L' L'' : Language L₁ : Language L₂ : Language ψ : L₁ →ᴸ L₂ M : Type u_1 inst✝⁵ : Structure L M inst✝⁴ : Structure L' M inst✝³ : Structure L₁ M inst✝² : Structure L₂ M inst✝¹ : IsExpansionOn ϕ M inst✝ : IsExpansionOn ψ M n✝ : ℕ R : Relations (Language.sum L L₁) n✝ x✝ : Fin n✝ → M ⊢ ∀ (val : Relations L n✝), RelMap (onRelation (sumMap ϕ ψ) (Sum.inl val)) x✝ = RelMap (Sum.inl val) x✝ [PROOFSTEP] simp [GOAL] L : Language L' : Language M✝ : Type w inst✝⁶ : Structure L M✝ ϕ : L →ᴸ L' L'' : Language L₁ : Language L₂ : Language ψ : L₁ →ᴸ L₂ M : Type u_1 inst✝⁵ : Structure L M inst✝⁴ : Structure L' M inst✝³ : Structure L₁ M inst✝² : Structure L₂ M inst✝¹ : IsExpansionOn ϕ M inst✝ : IsExpansionOn ψ M n✝ : ℕ R : Relations (Language.sum L L₁) n✝ x✝ : Fin n✝ → M ⊢ ∀ (val : Relations L₁ n✝), RelMap (onRelation (sumMap ϕ ψ) (Sum.inr val)) x✝ = RelMap (Sum.inr val) x✝ [PROOFSTEP] simp [GOAL] L : Language L' : Language M✝ : Type w inst✝⁴ : Structure L M✝ ϕ✝ : L →ᴸ L' L'' : Language ϕ : L →ᴸ L' inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f) inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r) h : LHom.Injective ϕ M : Type u_1 inst✝¹ : Inhabited M inst✝ : Structure L M ⊢ IsExpansionOn ϕ M [PROOFSTEP] letI := ϕ.defaultExpansion M [GOAL] L : Language L' : Language M✝ : Type w inst✝⁴ : Structure L M✝ ϕ✝ : L →ᴸ L' L'' : Language ϕ : L →ᴸ L' inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f) inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r) h : LHom.Injective ϕ M : Type u_1 inst✝¹ : Inhabited M inst✝ : Structure L M this : Structure L' M := defaultExpansion ϕ M ⊢ IsExpansionOn ϕ M [PROOFSTEP] refine' ⟨fun {n} f xs => _, fun {n} r xs => _⟩ [GOAL] case refine'_1 L : Language L' : Language M✝ : Type w inst✝⁴ : Structure L M✝ ϕ✝ : L →ᴸ L' L'' : Language ϕ : L →ᴸ L' inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f) inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r) h : LHom.Injective ϕ M : Type u_1 inst✝¹ : Inhabited M inst✝ : Structure L M this : Structure L' M := defaultExpansion ϕ M n : ℕ f : Functions L n xs : Fin n → M ⊢ funMap (LHom.onFunction ϕ f) xs = funMap f xs [PROOFSTEP] have hf : ϕ.onFunction f ∈ Set.range fun f : L.Functions n => ϕ.onFunction f := ⟨f, rfl⟩ [GOAL] case refine'_1 L : Language L' : Language M✝ : Type w inst✝⁴ : Structure L M✝ ϕ✝ : L →ᴸ L' L'' : Language ϕ : L →ᴸ L' inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f) inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r) h : LHom.Injective ϕ M : Type u_1 inst✝¹ : Inhabited M inst✝ : Structure L M this : Structure L' M := defaultExpansion ϕ M n : ℕ f : Functions L n xs : Fin n → M hf : LHom.onFunction ϕ f ∈ Set.range fun f => LHom.onFunction ϕ f ⊢ funMap (LHom.onFunction ϕ f) xs = funMap f xs [PROOFSTEP] refine' (dif_pos hf).trans _ [GOAL] case refine'_1 L : Language L' : Language M✝ : Type w inst✝⁴ : Structure L M✝ ϕ✝ : L →ᴸ L' L'' : Language ϕ : L →ᴸ L' inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f) inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r) h : LHom.Injective ϕ M : Type u_1 inst✝¹ : Inhabited M inst✝ : Structure L M this : Structure L' M := defaultExpansion ϕ M n : ℕ f : Functions L n xs : Fin n → M hf : LHom.onFunction ϕ f ∈ Set.range fun f => LHom.onFunction ϕ f ⊢ funMap (Exists.choose hf) xs = funMap f xs [PROOFSTEP] rw [h.onFunction hf.choose_spec] [GOAL] case refine'_2 L : Language L' : Language M✝ : Type w inst✝⁴ : Structure L M✝ ϕ✝ : L →ᴸ L' L'' : Language ϕ : L →ᴸ L' inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f) inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r) h : LHom.Injective ϕ M : Type u_1 inst✝¹ : Inhabited M inst✝ : Structure L M this : Structure L' M := defaultExpansion ϕ M n : ℕ r : Relations L n xs : Fin n → M ⊢ RelMap (LHom.onRelation ϕ r) xs = RelMap r xs [PROOFSTEP] have hr : ϕ.onRelation r ∈ Set.range fun r : L.Relations n => ϕ.onRelation r := ⟨r, rfl⟩ [GOAL] case refine'_2 L : Language L' : Language M✝ : Type w inst✝⁴ : Structure L M✝ ϕ✝ : L →ᴸ L' L'' : Language ϕ : L →ᴸ L' inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f) inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r) h : LHom.Injective ϕ M : Type u_1 inst✝¹ : Inhabited M inst✝ : Structure L M this : Structure L' M := defaultExpansion ϕ M n : ℕ r : Relations L n xs : Fin n → M hr : LHom.onRelation ϕ r ∈ Set.range fun r => LHom.onRelation ϕ r ⊢ RelMap (LHom.onRelation ϕ r) xs = RelMap r xs [PROOFSTEP] refine' (dif_pos hr).trans _ [GOAL] case refine'_2 L : Language L' : Language M✝ : Type w inst✝⁴ : Structure L M✝ ϕ✝ : L →ᴸ L' L'' : Language ϕ : L →ᴸ L' inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f) inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r) h : LHom.Injective ϕ M : Type u_1 inst✝¹ : Inhabited M inst✝ : Structure L M this : Structure L' M := defaultExpansion ϕ M n : ℕ r : Relations L n xs : Fin n → M hr : LHom.onRelation ϕ r ∈ Set.range fun r => LHom.onRelation ϕ r ⊢ RelMap (Exists.choose hr) xs = RelMap r xs [PROOFSTEP] rw [h.onRelation hr.choose_spec] [GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M L'' : Language e'✝ : L' ≃ᴸ L'' e✝ e : L ≃ᴸ L' e' : L' ≃ᴸ L'' ⊢ LHom.comp (LHom.comp e.invLHom e'.invLHom) (LHom.comp e'.toLHom e.toLHom) = LHom.id L [PROOFSTEP] rw [LHom.comp_assoc, ← LHom.comp_assoc e'.invLHom, e'.left_inv, LHom.id_comp, e.left_inv] [GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M L'' : Language e'✝ : L' ≃ᴸ L'' e✝ e : L ≃ᴸ L' e' : L' ≃ᴸ L'' ⊢ LHom.comp (LHom.comp e'.toLHom e.toLHom) (LHom.comp e.invLHom e'.invLHom) = LHom.id L'' [PROOFSTEP] rw [LHom.comp_assoc, ← LHom.comp_assoc e.toLHom, e.right_inv, LHom.id_comp, e'.right_inv] [GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M α : Type u' ⊢ card (constantsOn α) = #α [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M α : Type u' β : Type v' f : α → β fα : α → M fβ : β → M h : fβ ∘ f = fα ⊢ LHom.IsExpansionOn (LHom.constantsOnMap f) M [PROOFSTEP] letI := constantsOn.structure fα [GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M α : Type u' β : Type v' f : α → β fα : α → M fβ : β → M h : fβ ∘ f = fα this : Structure (constantsOn α) M := constantsOn.structure fα ⊢ LHom.IsExpansionOn (LHom.constantsOnMap f) M [PROOFSTEP] letI := constantsOn.structure fβ [GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M α : Type u' β : Type v' f : α → β fα : α → M fβ : β → M h : fβ ∘ f = fα this✝ : Structure (constantsOn α) M := constantsOn.structure fα this : Structure (constantsOn β) M := constantsOn.structure fβ ⊢ LHom.IsExpansionOn (LHom.constantsOnMap f) M [PROOFSTEP] exact ⟨fun {n} => Nat.casesOn n (fun F _x => (congr_fun h F : _)) fun n F => isEmptyElim F, fun R => isEmptyElim R⟩ [GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M α : Type w' ⊢ card (L[[α]]) = lift (card L) + lift #α [PROOFSTEP] rw [withConstants, card_sum, card_constantsOn] [GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M α : Type w' ie : IsEmpty α ⊢ LHom.comp (LHom.sumElim (LHom.id L) (LHom.ofIsEmpty (constantsOn α) L)) (lhomWithConstants L α) = LHom.id L [PROOFSTEP] rw [lhomWithConstants, LHom.sumElim_comp_inl] [GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M α : Type w' ie : IsEmpty α ⊢ LHom.comp (lhomWithConstants L α) (LHom.sumElim (LHom.id L) (LHom.ofIsEmpty (constantsOn α) L)) = LHom.id (L[[α]]) [PROOFSTEP] simp only [LHom.comp_sumElim, lhomWithConstants, LHom.comp_id] [GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M α : Type w' ie : IsEmpty α ⊢ LHom.sumElim LHom.sumInl (LHom.comp LHom.sumInl (LHom.ofIsEmpty (constantsOn α) L)) = LHom.id (L[[α]]) [PROOFSTEP] exact _root_.trans (congr rfl (Subsingleton.elim _ _)) LHom.sumElim_inl_inr [GOAL] L : Language L' : Language M : Type w inst✝ : Structure L M α : Type w' β : Type u_1 f : α → β ⊢ comp (lhomWithConstantsMap L f) LHom.sumInl = lhomWithConstants L β [PROOFSTEP] ext [GOAL] case h_fun.h.h L : Language L' : Language M : Type w inst✝ : Structure L M α : Type w' β : Type u_1 f : α → β x✝¹ : ℕ x✝ : Functions L x✝¹ ⊢ onFunction (comp (lhomWithConstantsMap L f) LHom.sumInl) x✝ = onFunction (lhomWithConstants L β) x✝ [PROOFSTEP] rfl [GOAL] case h_rel.h.h L : Language L' : Language M : Type w inst✝ : Structure L M α : Type w' β : Type u_1 f : α → β x✝¹ : ℕ x✝ : Relations L x✝¹ ⊢ onRelation (comp (lhomWithConstantsMap L f) LHom.sumInl) x✝ = onRelation (lhomWithConstants L β) x✝ [PROOFSTEP] rfl [GOAL] L : Language L' : Language M : Type w inst✝¹ : Structure L M α : Type u_1 inst✝ : Structure (constantsOn α) M a : α x : Fin 0 → M ⊢ funMap (Sum.inr a) x = ↑(Language.con L a) [PROOFSTEP] rw [Unique.eq_default x] [GOAL] L : Language L' : Language M : Type w inst✝¹ : Structure L M α : Type u_1 inst✝ : Structure (constantsOn α) M a : α x : Fin 0 → M ⊢ funMap (Sum.inr a) default = ↑(Language.con L a) [PROOFSTEP] exact (LHom.sumInr : constantsOn α →ᴸ L.sum _).map_onFunction _ _
{"mathlib_filename": "Mathlib.ModelTheory.LanguageMap", "llama_tokens": 7482}
[GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Monoid G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V g : G r : k ⊢ ↑(asAlgebraHom ρ) (Finsupp.single g r) = r • ↑ρ g [PROOFSTEP] simp only [asAlgebraHom_def, MonoidAlgebra.lift_single] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Monoid G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V g : G ⊢ ↑(asAlgebraHom ρ) (Finsupp.single g 1) = ↑ρ g [PROOFSTEP] simp [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Monoid G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V g : G ⊢ ↑(asAlgebraHom ρ) (↑(of k G) g) = ↑ρ g [PROOFSTEP] simp only [MonoidAlgebra.of_apply, asAlgebraHom_single, one_smul] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Monoid G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V r : k x : V ⊢ ↑(AddEquiv.symm (asModuleEquiv ρ)) (r • x) = ↑(algebraMap k (MonoidAlgebra k G)) r • ↑(AddEquiv.symm (asModuleEquiv ρ)) x [PROOFSTEP] apply_fun ρ.asModuleEquiv [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Monoid G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V r : k x : V ⊢ ↑(asModuleEquiv ρ) (↑(AddEquiv.symm (asModuleEquiv ρ)) (r • x)) = ↑(asModuleEquiv ρ) (↑(algebraMap k (MonoidAlgebra k G)) r • ↑(AddEquiv.symm (asModuleEquiv ρ)) x) [PROOFSTEP] simp [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Monoid G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V g : G x : V ⊢ ↑(AddEquiv.symm (asModuleEquiv ρ)) (↑(↑ρ g) x) = ↑(of k G) g • ↑(AddEquiv.symm (asModuleEquiv ρ)) x [PROOFSTEP] apply_fun ρ.asModuleEquiv [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Monoid G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V g : G x : V ⊢ ↑(asModuleEquiv ρ) (↑(AddEquiv.symm (asModuleEquiv ρ)) (↑(↑ρ g) x)) = ↑(asModuleEquiv ρ) (↑(of k G) g • ↑(AddEquiv.symm (asModuleEquiv ρ)) x) [PROOFSTEP] simp [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V M : Type u_4 inst✝¹ : AddCommMonoid M inst✝ : Module (MonoidAlgebra k G) M r : MonoidAlgebra k G m : RestrictScalars k (MonoidAlgebra k G) M ⊢ ↑(↑(asAlgebraHom (ofModule M)) r) m = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m))) (r • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) [PROOFSTEP] apply MonoidAlgebra.induction_on r [GOAL] case hM k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V M : Type u_4 inst✝¹ : AddCommMonoid M inst✝ : Module (MonoidAlgebra k G) M r : MonoidAlgebra k G m : RestrictScalars k (MonoidAlgebra k G) M ⊢ ∀ (g : G), ↑(↑(asAlgebraHom (ofModule M)) (↑(of k G) g)) m = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m))) (↑(of k G) g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) [PROOFSTEP] intro g [GOAL] case hM k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V M : Type u_4 inst✝¹ : AddCommMonoid M inst✝ : Module (MonoidAlgebra k G) M r : MonoidAlgebra k G m : RestrictScalars k (MonoidAlgebra k G) M g : G ⊢ ↑(↑(asAlgebraHom (ofModule M)) (↑(of k G) g)) m = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m))) (↑(of k G) g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) [PROOFSTEP] simp only [one_smul, MonoidAlgebra.lift_symm_apply, MonoidAlgebra.of_apply, Representation.asAlgebraHom_single, Representation.ofModule, AddEquiv.apply_eq_iff_eq, RestrictScalars.lsmul_apply_apply] [GOAL] case hadd k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V M : Type u_4 inst✝¹ : AddCommMonoid M inst✝ : Module (MonoidAlgebra k G) M r : MonoidAlgebra k G m : RestrictScalars k (MonoidAlgebra k G) M ⊢ ∀ (f g : MonoidAlgebra k G), ↑(↑(asAlgebraHom (ofModule M)) f) m = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m))) (f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) → ↑(↑(asAlgebraHom (ofModule M)) g) m = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m))) (g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) → ↑(↑(asAlgebraHom (ofModule M)) (f + g)) m = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m))) ((f + g) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) [PROOFSTEP] intro f g fw gw [GOAL] case hadd k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V M : Type u_4 inst✝¹ : AddCommMonoid M inst✝ : Module (MonoidAlgebra k G) M r : MonoidAlgebra k G m : RestrictScalars k (MonoidAlgebra k G) M f g : MonoidAlgebra k G fw : ↑(↑(asAlgebraHom (ofModule M)) f) m = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m))) (f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) gw : ↑(↑(asAlgebraHom (ofModule M)) g) m = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m))) (g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) ⊢ ↑(↑(asAlgebraHom (ofModule M)) (f + g)) m = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m))) ((f + g) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) [PROOFSTEP] simp only [fw, gw, map_add, add_smul, LinearMap.add_apply] [GOAL] case hsmul k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V M : Type u_4 inst✝¹ : AddCommMonoid M inst✝ : Module (MonoidAlgebra k G) M r : MonoidAlgebra k G m : RestrictScalars k (MonoidAlgebra k G) M ⊢ ∀ (r : k) (f : MonoidAlgebra k G), ↑(↑(asAlgebraHom (ofModule M)) f) m = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m))) (f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) → ↑(↑(asAlgebraHom (ofModule M)) (r • f)) m = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m))) ((r • f) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) [PROOFSTEP] intro r f w [GOAL] case hsmul k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V M : Type u_4 inst✝¹ : AddCommMonoid M inst✝ : Module (MonoidAlgebra k G) M r✝ : MonoidAlgebra k G m : RestrictScalars k (MonoidAlgebra k G) M r : k f : MonoidAlgebra k G w : ↑(↑(asAlgebraHom (ofModule M)) f) m = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m))) (f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) ⊢ ↑(↑(asAlgebraHom (ofModule M)) (r • f)) m = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m))) ((r • f) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) [PROOFSTEP] simp only [w, AlgHom.map_smul, LinearMap.smul_apply, RestrictScalars.addEquiv_symm_map_smul_smul] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V M : Type u_4 inst✝¹ : AddCommMonoid M inst✝ : Module (MonoidAlgebra k G) M g : G x : RestrictScalars k (MonoidAlgebra k G) (asModule ρ) ⊢ ↑(↑(ofModule (asModule ρ)) g) x = ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => asModule ρ) (↑(↑ρ g) (↑(asModuleEquiv ρ) (↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) x)))))) (↑(AddEquiv.symm (asModuleEquiv ρ)) (↑(↑ρ g) (↑(asModuleEquiv ρ) (↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) x)))) [PROOFSTEP] apply_fun RestrictScalars.addEquiv _ _ ρ.asModule using (RestrictScalars.addEquiv _ _ ρ.asModule).injective [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V M : Type u_4 inst✝¹ : AddCommMonoid M inst✝ : Module (MonoidAlgebra k G) M g : G x : RestrictScalars k (MonoidAlgebra k G) (asModule ρ) ⊢ ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) (↑(↑(ofModule (asModule ρ)) g) x) = ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) (↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => asModule ρ) (↑(↑ρ g) (↑(asModuleEquiv ρ) (↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) x)))))) (↑(AddEquiv.symm (asModuleEquiv ρ)) (↑(↑ρ g) (↑(asModuleEquiv ρ) (↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) x))))) [PROOFSTEP] dsimp [ofModule, RestrictScalars.lsmul_apply_apply] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V M : Type u_4 inst✝¹ : AddCommMonoid M inst✝ : Module (MonoidAlgebra k G) M g : G x : RestrictScalars k (MonoidAlgebra k G) (asModule ρ) ⊢ ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) (↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ))) (MonoidAlgebra.single g 1 • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) x)) = ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) (↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ))) (↑(AddEquiv.symm (asModuleEquiv ρ)) (↑(↑ρ g) (↑(asModuleEquiv ρ) (↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) x))))) [PROOFSTEP] simp [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V M : Type u_4 inst✝¹ : AddCommMonoid M inst✝ : Module (MonoidAlgebra k G) M r : MonoidAlgebra k G m : asModule (ofModule M) ⊢ ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) (↑(asModuleEquiv (ofModule M)) (r • m)) = r • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) (↑(asModuleEquiv (ofModule M)) m) [PROOFSTEP] dsimp [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V M : Type u_4 inst✝¹ : AddCommMonoid M inst✝ : Module (MonoidAlgebra k G) M r : MonoidAlgebra k G m : asModule (ofModule M) ⊢ ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) (↑(↑(asAlgebraHom (ofModule M)) r) (↑(asModuleEquiv (ofModule M)) m)) = r • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) (↑(asModuleEquiv (ofModule M)) m) [PROOFSTEP] simp only [AddEquiv.apply_symm_apply, ofModule_asAlgebraHom_apply_apply] [GOAL] k : Type u_1 inst✝² : CommSemiring k G : Type u_2 inst✝¹ : Monoid G H : Type u_3 inst✝ : MulAction G H ⊢ (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1 [PROOFSTEP] ext x y [GOAL] case h.h.h k : Type u_1 inst✝² : CommSemiring k G : Type u_2 inst✝¹ : Monoid G H : Type u_3 inst✝ : MulAction G H x y : H ⊢ ↑(↑(comp ((fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1) (Finsupp.lsingle x)) 1) y = ↑(↑(comp 1 (Finsupp.lsingle x)) 1) y [PROOFSTEP] dsimp [GOAL] case h.h.h k : Type u_1 inst✝² : CommSemiring k G : Type u_2 inst✝¹ : Monoid G H : Type u_3 inst✝ : MulAction G H x y : H ⊢ ↑(Finsupp.mapDomain (fun x => 1 • x) (Finsupp.single x 1)) y = ↑(Finsupp.single x 1) y [PROOFSTEP] simp [GOAL] k : Type u_1 inst✝² : CommSemiring k G : Type u_2 inst✝¹ : Monoid G H : Type u_3 inst✝ : MulAction G H x y : G ⊢ OneHom.toFun { toFun := fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g), map_one' := (_ : (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g), map_one' := (_ : (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1) } x * OneHom.toFun { toFun := fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g), map_one' := (_ : (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1) } y [PROOFSTEP] ext z w [GOAL] case h.h.h k : Type u_1 inst✝² : CommSemiring k G : Type u_2 inst✝¹ : Monoid G H : Type u_3 inst✝ : MulAction G H x y : G z w : H ⊢ ↑(↑(comp (OneHom.toFun { toFun := fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g), map_one' := (_ : (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1) } (x * y)) (Finsupp.lsingle z)) 1) w = ↑(↑(comp (OneHom.toFun { toFun := fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g), map_one' := (_ : (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1) } x * OneHom.toFun { toFun := fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g), map_one' := (_ : (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1) } y) (Finsupp.lsingle z)) 1) w [PROOFSTEP] simp [mul_smul] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁴ : CommSemiring k inst✝³ : Group G inst✝² : AddCommMonoid V inst✝¹ : Module k V ρ : Representation k G V H : Type u_4 inst✝ : MulAction G H g : G f : H →₀ k h : H ⊢ ↑(↑(↑(ofMulAction k G H) g) f) h = ↑f (g⁻¹ • h) [PROOFSTEP] conv_lhs => rw [← smul_inv_smul g h] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁴ : CommSemiring k inst✝³ : Group G inst✝² : AddCommMonoid V inst✝¹ : Module k V ρ : Representation k G V H : Type u_4 inst✝ : MulAction G H g : G f : H →₀ k h : H | ↑(↑(↑(ofMulAction k G H) g) f) h [PROOFSTEP] rw [← smul_inv_smul g h] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁴ : CommSemiring k inst✝³ : Group G inst✝² : AddCommMonoid V inst✝¹ : Module k V ρ : Representation k G V H : Type u_4 inst✝ : MulAction G H g : G f : H →₀ k h : H | ↑(↑(↑(ofMulAction k G H) g) f) h [PROOFSTEP] rw [← smul_inv_smul g h] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁴ : CommSemiring k inst✝³ : Group G inst✝² : AddCommMonoid V inst✝¹ : Module k V ρ : Representation k G V H : Type u_4 inst✝ : MulAction G H g : G f : H →₀ k h : H | ↑(↑(↑(ofMulAction k G H) g) f) h [PROOFSTEP] rw [← smul_inv_smul g h] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁴ : CommSemiring k inst✝³ : Group G inst✝² : AddCommMonoid V inst✝¹ : Module k V ρ : Representation k G V H : Type u_4 inst✝ : MulAction G H g : G f : H →₀ k h : H ⊢ ↑(↑(↑(ofMulAction k G H) g) f) (g • g⁻¹ • h) = ↑f (g⁻¹ • h) [PROOFSTEP] let h' := g⁻¹ • h [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁴ : CommSemiring k inst✝³ : Group G inst✝² : AddCommMonoid V inst✝¹ : Module k V ρ : Representation k G V H : Type u_4 inst✝ : MulAction G H g : G f : H →₀ k h : H h' : H := g⁻¹ • h ⊢ ↑(↑(↑(ofMulAction k G H) g) f) (g • g⁻¹ • h) = ↑f (g⁻¹ • h) [PROOFSTEP] change ofMulAction k G H g f (g • h') = f h' [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁴ : CommSemiring k inst✝³ : Group G inst✝² : AddCommMonoid V inst✝¹ : Module k V ρ : Representation k G V H : Type u_4 inst✝ : MulAction G H g : G f : H →₀ k h : H h' : H := g⁻¹ • h ⊢ ↑(↑(↑(ofMulAction k G H) g) f) (g • h') = ↑f h' [PROOFSTEP] have hg : Function.Injective ((· • ·) g : H → H) := by intro h₁ h₂ simp [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁴ : CommSemiring k inst✝³ : Group G inst✝² : AddCommMonoid V inst✝¹ : Module k V ρ : Representation k G V H : Type u_4 inst✝ : MulAction G H g : G f : H →₀ k h : H h' : H := g⁻¹ • h ⊢ Function.Injective ((fun x x_1 => x • x_1) g) [PROOFSTEP] intro h₁ h₂ [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁴ : CommSemiring k inst✝³ : Group G inst✝² : AddCommMonoid V inst✝¹ : Module k V ρ : Representation k G V H : Type u_4 inst✝ : MulAction G H g : G f : H →₀ k h : H h' : H := g⁻¹ • h h₁ h₂ : H ⊢ (fun x x_1 => x • x_1) g h₁ = (fun x x_1 => x • x_1) g h₂ → h₁ = h₂ [PROOFSTEP] simp [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁴ : CommSemiring k inst✝³ : Group G inst✝² : AddCommMonoid V inst✝¹ : Module k V ρ : Representation k G V H : Type u_4 inst✝ : MulAction G H g : G f : H →₀ k h : H h' : H := g⁻¹ • h hg : Function.Injective ((fun x x_1 => x • x_1) g) ⊢ ↑(↑(↑(ofMulAction k G H) g) f) (g • h') = ↑f h' [PROOFSTEP] simp only [ofMulAction_def, Finsupp.lmapDomain_apply, Finsupp.mapDomain_apply, hg] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V x : MonoidAlgebra k G y : asModule (ofMulAction k G G) g : G ⊢ (fun z => z • y = z * y) (↑(of k G) g) [PROOFSTEP] show asAlgebraHom (ofMulAction k G G) _ _ = _ [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V x : MonoidAlgebra k G y : asModule (ofMulAction k G G) g : G ⊢ ↑(↑(asAlgebraHom (ofMulAction k G G)) (↑(of k G) g)) y = ↑(of k G) g * y [PROOFSTEP] ext [GOAL] case h k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V x : MonoidAlgebra k G y : asModule (ofMulAction k G G) g a✝ : G ⊢ ↑(↑(↑(asAlgebraHom (ofMulAction k G G)) (↑(of k G) g)) y) a✝ = ↑(↑(of k G) g * y) a✝ [PROOFSTEP] simp only [MonoidAlgebra.of_apply, asAlgebraHom_single, one_smul, ofMulAction_apply, smul_eq_mul] -- Porting note : single_mul_apply not firing in simp [GOAL] case h k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V x : MonoidAlgebra k G y : asModule (ofMulAction k G G) g a✝ : G ⊢ ↑y (g⁻¹ * a✝) = ↑(MonoidAlgebra.single g 1 * y) a✝ [PROOFSTEP] rw [MonoidAlgebra.single_mul_apply, one_mul] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V x✝ : MonoidAlgebra k G y✝ : asModule (ofMulAction k G G) x y : MonoidAlgebra k G hx : (fun z => z • y✝ = z * y✝) x hy : (fun z => z • y✝ = z * y✝) y ⊢ (fun z => z • y✝ = z * y✝) (x + y) [PROOFSTEP] simp only [hx, hy, add_mul, add_smul] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V x✝ : MonoidAlgebra k G y : asModule (ofMulAction k G G) r : k x : MonoidAlgebra k G hx : (fun z => z • y = z * y) x ⊢ (fun z => z • y = z * y) (r • x) [PROOFSTEP] show asAlgebraHom (ofMulAction k G G) _ _ = _ -- Porting note: was simpa [← hx] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V x✝ : MonoidAlgebra k G y : asModule (ofMulAction k G G) r : k x : MonoidAlgebra k G hx : (fun z => z • y = z * y) x ⊢ ↑(↑(asAlgebraHom (ofMulAction k G G)) (r • x)) y = r • x * y [PROOFSTEP] simp only [map_smul, smul_apply, Algebra.smul_mul_assoc] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V x✝ : MonoidAlgebra k G y : asModule (ofMulAction k G G) r : k x : MonoidAlgebra k G hx : (fun z => z • y = z * y) x ⊢ r • ↑(↑(asAlgebraHom (ofMulAction k G G)) x) y = r • (x * y) [PROOFSTEP] rw [← hx] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V x✝ : MonoidAlgebra k G y : asModule (ofMulAction k G G) r : k x : MonoidAlgebra k G hx : (fun z => z • y = z * y) x ⊢ r • ↑(↑(asAlgebraHom (ofMulAction k G G)) x) y = r • x • y [PROOFSTEP] rfl [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V g : G ⊢ ↑(↑(asGroupHom ρ) g) = ↑ρ g [PROOFSTEP] simp only [asGroupHom, MonoidHom.coe_toHomUnits] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W ⊢ (fun g => map (↑ρV g) (↑ρW g)) 1 = 1 [PROOFSTEP] simp only [_root_.map_one, TensorProduct.map_one] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W g h : G ⊢ OneHom.toFun { toFun := fun g => map (↑ρV g) (↑ρW g), map_one' := (_ : map (↑ρV 1) (↑ρW 1) = 1) } (g * h) = OneHom.toFun { toFun := fun g => map (↑ρV g) (↑ρW g), map_one' := (_ : map (↑ρV 1) (↑ρW 1) = 1) } g * OneHom.toFun { toFun := fun g => map (↑ρV g) (↑ρW g), map_one' := (_ : map (↑ρV 1) (↑ρW 1) = 1) } h [PROOFSTEP] simp only [_root_.map_mul, TensorProduct.map_mul] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W r : MonoidAlgebra k G x : V y : W ⊢ let x' := x; let z := x ⊗ₜ[k] y; r • z = (r • x') ⊗ₜ[k] y [PROOFSTEP] show asAlgebraHom (ρV ⊗ 1) _ _ = asAlgebraHom ρV _ _ ⊗ₜ _ [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W r : MonoidAlgebra k G x : V y : W ⊢ ↑(↑(asAlgebraHom (ρV ⊗ 1)) r) (x ⊗ₜ[k] y) = ↑(↑(asAlgebraHom ρV) r) x ⊗ₜ[k] y [PROOFSTEP] simp only [asAlgebraHom_def, MonoidAlgebra.lift_apply, tprod_apply, MonoidHom.one_apply, LinearMap.finsupp_sum_apply, LinearMap.smul_apply, TensorProduct.map_tmul, LinearMap.one_apply] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W r : MonoidAlgebra k G x : V y : W ⊢ (Finsupp.sum r fun i d => d • ↑(↑ρV i) x ⊗ₜ[k] y) = (Finsupp.sum r fun i d => d • ↑(↑ρV i) x) ⊗ₜ[k] y [PROOFSTEP] simp only [Finsupp.sum, TensorProduct.sum_tmul] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W r : MonoidAlgebra k G x : V y : W ⊢ (Finset.sum r.support fun x_1 => ↑r x_1 • ↑(↑ρV x_1) x ⊗ₜ[k] y) = Finset.sum r.support fun a => (↑r a • ↑(↑ρV a) x) ⊗ₜ[k] y [PROOFSTEP] rfl [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W r : MonoidAlgebra k G x : V y : W ⊢ let y' := y; let z := x ⊗ₜ[k] y; r • z = x ⊗ₜ[k] (r • y') [PROOFSTEP] show asAlgebraHom (1 ⊗ ρW) _ _ = _ ⊗ₜ asAlgebraHom ρW _ _ [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W r : MonoidAlgebra k G x : V y : W ⊢ ↑(↑(asAlgebraHom (1 ⊗ ρW)) r) (x ⊗ₜ[k] y) = x ⊗ₜ[k] ↑(↑(asAlgebraHom ρW) r) y [PROOFSTEP] simp only [asAlgebraHom_def, MonoidAlgebra.lift_apply, tprod_apply, MonoidHom.one_apply, LinearMap.finsupp_sum_apply, LinearMap.smul_apply, TensorProduct.map_tmul, LinearMap.one_apply] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Monoid G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W r : MonoidAlgebra k G x : V y : W ⊢ (Finsupp.sum r fun i d => d • x ⊗ₜ[k] ↑(↑ρW i) y) = x ⊗ₜ[k] Finsupp.sum r fun i d => d • ↑(↑ρW i) y [PROOFSTEP] simp only [Finsupp.sum, TensorProduct.tmul_sum, TensorProduct.tmul_smul] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W g : G f₁ f₂ : V →ₗ[k] W ⊢ (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂ [PROOFSTEP] simp_rw [add_comp, comp_add] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W g : G r : k f : V →ₗ[k] W ⊢ AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } f [PROOFSTEP] simp_rw [RingHom.id_apply, smul_comp, comp_smul] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W x : V →ₗ[k] W ⊢ ↑((fun g => { toAddHom := { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }, map_smul' := (_ : ∀ (r : k) (f : V →ₗ[k] W), AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } f) }) 1) x = ↑1 x [PROOFSTEP] dsimp -- Porting note: now needed [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W x : V →ₗ[k] W ⊢ comp (↑ρW 1) (comp x (↑ρV 1⁻¹)) = x [PROOFSTEP] simp_rw [inv_one, map_one, one_eq_id, comp_id, id_comp] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W g h : G x : V →ₗ[k] W ⊢ ↑(OneHom.toFun { toFun := fun g => { toAddHom := { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }, map_smul' := (_ : ∀ (r : k) (f : V →ₗ[k] W), AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } f) }, map_one' := (_ : (fun g => { toAddHom := { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }, map_smul' := (_ : ∀ (r : k) (f : V →ₗ[k] W), AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } f) }) 1 = 1) } (g * h)) x = ↑(OneHom.toFun { toFun := fun g => { toAddHom := { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }, map_smul' := (_ : ∀ (r : k) (f : V →ₗ[k] W), AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } f) }, map_one' := (_ : (fun g => { toAddHom := { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }, map_smul' := (_ : ∀ (r : k) (f : V →ₗ[k] W), AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } f) }) 1 = 1) } g * OneHom.toFun { toFun := fun g => { toAddHom := { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }, map_smul' := (_ : ∀ (r : k) (f : V →ₗ[k] W), AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } f) }, map_one' := (_ : (fun g => { toAddHom := { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }, map_smul' := (_ : ∀ (r : k) (f : V →ₗ[k] W), AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)), map_add' := (_ : ∀ (f₁ f₂ : V →ₗ[k] W), (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) = (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) } f) }) 1 = 1) } h) x [PROOFSTEP] dsimp -- Porting note: now needed [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W g h : G x : V →ₗ[k] W ⊢ comp (↑ρW (g * h)) (comp x (↑ρV (g * h)⁻¹)) = comp (↑ρW g) (comp (comp (↑ρW h) (comp x (↑ρV h⁻¹))) (↑ρV g⁻¹)) [PROOFSTEP] simp_rw [mul_inv_rev, map_mul, mul_eq_comp, comp_assoc] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W g : G f₁ f₂ : Module.Dual k V ⊢ (fun f => comp f (↑ρV g⁻¹)) (f₁ + f₂) = (fun f => comp f (↑ρV g⁻¹)) f₁ + (fun f => comp f (↑ρV g⁻¹)) f₂ [PROOFSTEP] simp only [add_comp] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W g : G r : k f : Module.Dual k V ⊢ AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f [PROOFSTEP] ext [GOAL] case h k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W g : G r : k f : Module.Dual k V x✝ : V ⊢ ↑(AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f)) x✝ = ↑(↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) x✝ [PROOFSTEP] simp only [coe_comp, Function.comp_apply, smul_apply, RingHom.id_apply] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W ⊢ (fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }) 1 = 1 [PROOFSTEP] ext [GOAL] case h.h k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W x✝¹ : Module.Dual k V x✝ : V ⊢ ↑(↑((fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }) 1) x✝¹) x✝ = ↑(↑1 x✝¹) x✝ [PROOFSTEP] dsimp -- Porting note: now needed [GOAL] case h.h k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W x✝¹ : Module.Dual k V x✝ : V ⊢ ↑x✝¹ (↑(↑ρV 1⁻¹) x✝) = ↑x✝¹ x✝ [PROOFSTEP] simp only [coe_comp, Function.comp_apply, map_one, inv_one, coe_mk, one_apply] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W g h : G ⊢ OneHom.toFun { toFun := fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }, map_one' := (_ : (fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }) 1 = 1) } (g * h) = OneHom.toFun { toFun := fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }, map_one' := (_ : (fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }) 1 = 1) } g * OneHom.toFun { toFun := fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }, map_one' := (_ : (fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }) 1 = 1) } h [PROOFSTEP] ext [GOAL] case h.h k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W g h : G x✝¹ : Module.Dual k V x✝ : V ⊢ ↑(↑(OneHom.toFun { toFun := fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }, map_one' := (_ : (fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }) 1 = 1) } (g * h)) x✝¹) x✝ = ↑(↑(OneHom.toFun { toFun := fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }, map_one' := (_ : (fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }) 1 = 1) } g * OneHom.toFun { toFun := fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }, map_one' := (_ : (fun g => { toAddHom := { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }, map_smul' := (_ : ∀ (r : k) (f : Module.Dual k V), AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } (r • f) = ↑(RingHom.id k) r • AddHom.toFun { toFun := fun f => comp f (↑ρV g⁻¹), map_add' := (_ : ∀ (f₁ f₂ : Module.Dual k V), comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) } f) }) 1 = 1) } h) x✝¹) x✝ [PROOFSTEP] dsimp -- Porting note: now needed [GOAL] case h.h k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W g h : G x✝¹ : Module.Dual k V x✝ : V ⊢ ↑x✝¹ (↑(↑ρV (g * h)⁻¹) x✝) = ↑x✝¹ (↑(↑ρV h⁻¹) (↑(↑ρV g⁻¹) x✝)) [PROOFSTEP] simp only [coe_comp, Function.comp_apply, mul_inv_rev, map_mul, coe_mk, mul_apply] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W g : G ⊢ comp (dualTensorHom k V W) (TensorProduct.map (↑(dual ρV) g) (↑ρW g)) = comp (↑(linHom ρV ρW) g) (dualTensorHom k V W) [PROOFSTEP] ext [GOAL] case a.h.h.h k : Type u_1 G : Type u_2 V : Type u_3 W : Type u_4 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V inst✝¹ : AddCommMonoid W inst✝ : Module k W ρV : Representation k G V ρW : Representation k G W g : G x✝² : Module.Dual k V x✝¹ : W x✝ : V ⊢ ↑(↑(↑(TensorProduct.AlgebraTensorModule.curry (comp (dualTensorHom k V W) (TensorProduct.map (↑(dual ρV) g) (↑ρW g)))) x✝²) x✝¹) x✝ = ↑(↑(↑(TensorProduct.AlgebraTensorModule.curry (comp (↑(linHom ρV ρW) g) (dualTensorHom k V W))) x✝²) x✝¹) x✝ [PROOFSTEP] simp [Module.Dual.transpose_apply]
{"mathlib_filename": "Mathlib.RepresentationTheory.Basic", "llama_tokens": 26063}
[GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ f : Functions L n x y : Fin n → (a : α) → M a xy : x ≈ y ⊢ funMap f x ≈ funMap f y [PROOFSTEP] refine' mem_of_superset (iInter_mem.2 xy) fun a ha => _ [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ f : Functions L n x y : Fin n → (a : α) → M a xy : x ≈ y a : α ha : a ∈ ⋂ (i : Fin n), {x_1 | (fun a => x i a = y i a) x_1} ⊢ a ∈ {x_1 | (fun a => funMap f x a = funMap f y a) x_1} [PROOFSTEP] simp only [Set.mem_iInter, Set.mem_setOf_eq] at ha [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ f : Functions L n x y : Fin n → (a : α) → M a xy : x ≈ y a : α ha : ∀ (i : Fin n), x i a = y i a ⊢ a ∈ {x_1 | (fun a => funMap f x a = funMap f y a) x_1} [PROOFSTEP] simp only [Set.mem_setOf_eq, ha] [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ r : Relations L n x y : Fin n → (a : α) → M a xy : x ≈ y ⊢ RelMap r x = RelMap r y [PROOFSTEP] rw [← iff_eq_eq] [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ r : Relations L n x y : Fin n → (a : α) → M a xy : x ≈ y ⊢ RelMap r x ↔ RelMap r y [PROOFSTEP] refine' ⟨fun hx => _, fun hy => _⟩ [GOAL] case refine'_1 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ r : Relations L n x y : Fin n → (a : α) → M a xy : x ≈ y hx : RelMap r x ⊢ RelMap r y [PROOFSTEP] refine' mem_of_superset (inter_mem hx (iInter_mem.2 xy)) _ [GOAL] case refine'_1 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ r : Relations L n x y : Fin n → (a : α) → M a xy : x ≈ y hx : RelMap r x ⊢ {x_1 | (fun a => RelMap r fun i => x i a) x_1} ∩ ⋂ (i : Fin n), {x_1 | (fun a => x i a = y i a) x_1} ⊆ {x | (fun a => RelMap r fun i => y i a) x} [PROOFSTEP] rintro a ⟨ha1, ha2⟩ [GOAL] case refine'_1.intro α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ r : Relations L n x y : Fin n → (a : α) → M a xy : x ≈ y hx : RelMap r x a : α ha1 : a ∈ {x_1 | (fun a => RelMap r fun i => x i a) x_1} ha2 : a ∈ ⋂ (i : Fin n), {x_1 | (fun a => x i a = y i a) x_1} ⊢ a ∈ {x | (fun a => RelMap r fun i => y i a) x} [PROOFSTEP] simp only [Set.mem_iInter, Set.mem_setOf_eq] at * [GOAL] case refine'_1.intro α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ r : Relations L n x y : Fin n → (a : α) → M a xy : x ≈ y hx : ∀ᶠ (a : α) in ↑u, RelMap r fun i => x i a a : α ha1 : RelMap r fun i => x i a ha2 : ∀ (i : Fin n), x i a = y i a ⊢ RelMap r fun i => y i a [PROOFSTEP] rw [← funext ha2] [GOAL] case refine'_1.intro α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ r : Relations L n x y : Fin n → (a : α) → M a xy : x ≈ y hx : ∀ᶠ (a : α) in ↑u, RelMap r fun i => x i a a : α ha1 : RelMap r fun i => x i a ha2 : ∀ (i : Fin n), x i a = y i a ⊢ RelMap r fun x_1 => x x_1 a [PROOFSTEP] exact ha1 [GOAL] case refine'_2 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ r : Relations L n x y : Fin n → (a : α) → M a xy : x ≈ y hy : RelMap r y ⊢ RelMap r x [PROOFSTEP] refine' mem_of_superset (inter_mem hy (iInter_mem.2 xy)) _ [GOAL] case refine'_2 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ r : Relations L n x y : Fin n → (a : α) → M a xy : x ≈ y hy : RelMap r y ⊢ {x | (fun a => RelMap r fun i => y i a) x} ∩ ⋂ (i : Fin n), {x_1 | (fun a => x i a = y i a) x_1} ⊆ {x_1 | (fun a => RelMap r fun i => x i a) x_1} [PROOFSTEP] rintro a ⟨ha1, ha2⟩ [GOAL] case refine'_2.intro α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ r : Relations L n x y : Fin n → (a : α) → M a xy : x ≈ y hy : RelMap r y a : α ha1 : a ∈ {x | (fun a => RelMap r fun i => y i a) x} ha2 : a ∈ ⋂ (i : Fin n), {x_1 | (fun a => x i a = y i a) x_1} ⊢ a ∈ {x_1 | (fun a => RelMap r fun i => x i a) x_1} [PROOFSTEP] simp only [Set.mem_iInter, Set.mem_setOf_eq] at * [GOAL] case refine'_2.intro α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ r : Relations L n x y : Fin n → (a : α) → M a xy : x ≈ y hy : ∀ᶠ (a : α) in ↑u, RelMap r fun i => y i a a : α ha1 : RelMap r fun i => y i a ha2 : ∀ (i : Fin n), x i a = y i a ⊢ RelMap r fun i => x i a [PROOFSTEP] rw [funext ha2] [GOAL] case refine'_2.intro α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M n : ℕ r : Relations L n x y : Fin n → (a : α) → M a xy : x ≈ y hy : ∀ᶠ (a : α) in ↑u, RelMap r fun i => y i a a : α ha1 : RelMap r fun i => y i a ha2 : ∀ (i : Fin n), x i a = y i a ⊢ RelMap r fun x => y x a [PROOFSTEP] exact ha1 [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) n : ℕ f : Functions L n x : Fin n → (a : α) → M a ⊢ (funMap f fun i => Quotient.mk' (x i)) = Quotient.mk' fun a => funMap f fun i => x i a [PROOFSTEP] apply funMap_quotient_mk' [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) β : Type u_3 x : β → (a : α) → M a t : Term L β ⊢ Term.realize (fun i => Quotient.mk' (x i)) t = Quotient.mk' fun a => Term.realize (fun i => x i a) t [PROOFSTEP] convert @Term.realize_quotient_mk' L _ ((u : Filter α).productSetoid M) (Ultraproduct.setoidPrestructure M u) _ t x using 2 [GOAL] case h.e'_3.h.e'_3 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) β : Type u_3 x : β → (a : α) → M a t : Term L β ⊢ (fun a => Term.realize (fun i => x i a) t) = Term.realize x t [PROOFSTEP] ext a [GOAL] case h.e'_3.h.e'_3.h α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) β : Type u_3 x : β → (a : α) → M a t : Term L β a : α ⊢ Term.realize (fun i => x i a) t = Term.realize x t a [PROOFSTEP] induction t [GOAL] case h.e'_3.h.e'_3.h.var α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) β : Type u_3 x : β → (a : α) → M a a : α _a✝ : β ⊢ Term.realize (fun i => x i a) (var _a✝) = Term.realize x (var _a✝) a case h.e'_3.h.e'_3.h.func α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) β : Type u_3 x : β → (a : α) → M a a : α l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L β _ts_ih✝ : ∀ (a_1 : Fin l✝), Term.realize (fun i => x i a) (_ts✝ a_1) = Term.realize x (_ts✝ a_1) a ⊢ Term.realize (fun i => x i a) (func _f✝ _ts✝) = Term.realize x (func _f✝ _ts✝) a [PROOFSTEP] case var => rfl [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) β : Type u_3 x : β → (a : α) → M a a : α _a✝ : β ⊢ Term.realize (fun i => x i a) (var _a✝) = Term.realize x (var _a✝) a [PROOFSTEP] case var => rfl [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) β : Type u_3 x : β → (a : α) → M a a : α _a✝ : β ⊢ Term.realize (fun i => x i a) (var _a✝) = Term.realize x (var _a✝) a [PROOFSTEP] rfl [GOAL] case h.e'_3.h.e'_3.h.func α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) β : Type u_3 x : β → (a : α) → M a a : α l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L β _ts_ih✝ : ∀ (a_1 : Fin l✝), Term.realize (fun i => x i a) (_ts✝ a_1) = Term.realize x (_ts✝ a_1) a ⊢ Term.realize (fun i => x i a) (func _f✝ _ts✝) = Term.realize x (func _f✝ _ts✝) a [PROOFSTEP] case func _ _ _ t_ih => simp only [Term.realize, t_ih] rfl [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) β : Type u_3 x : β → (a : α) → M a a : α l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L β t_ih : ∀ (a_1 : Fin l✝), Term.realize (fun i => x i a) (_ts✝ a_1) = Term.realize x (_ts✝ a_1) a ⊢ Term.realize (fun i => x i a) (func _f✝ _ts✝) = Term.realize x (func _f✝ _ts✝) a [PROOFSTEP] case func _ _ _ t_ih => simp only [Term.realize, t_ih] rfl [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) β : Type u_3 x : β → (a : α) → M a a : α l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L β t_ih : ∀ (a_1 : Fin l✝), Term.realize (fun i => x i a) (_ts✝ a_1) = Term.realize x (_ts✝ a_1) a ⊢ Term.realize (fun i => x i a) (func _f✝ _ts✝) = Term.realize x (func _f✝ _ts✝) a [PROOFSTEP] simp only [Term.realize, t_ih] [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝ : (a : α) → Structure L (M a) β : Type u_3 x : β → (a : α) → M a a : α l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L β t_ih : ∀ (a_1 : Fin l✝), Term.realize (fun i => x i a) (_ts✝ a_1) = Term.realize x (_ts✝ a_1) a ⊢ (funMap _f✝ fun i => Term.realize x (_ts✝ i) a) = funMap _f✝ (fun i => Term.realize x (_ts✝ i)) a [PROOFSTEP] rfl [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ φ : BoundedFormula L β n x : β → (a : α) → M a v : Fin n → (a : α) → M a ⊢ (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a [PROOFSTEP] letI := (u : Filter α).productSetoid M [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ φ : BoundedFormula L β n x : β → (a : α) → M a v : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M ⊢ (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a [PROOFSTEP] induction' φ with _ _ _ _ _ _ _ _ m _ _ ih ih' k φ ih [GOAL] case falsum α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ : ℕ v : Fin n✝ → (a : α) → M a ⊢ (BoundedFormula.Realize BoundedFormula.falsum (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize BoundedFormula.falsum (fun i => x i a) fun i => v i a [PROOFSTEP] simp only [BoundedFormula.Realize, eventually_const] [GOAL] case equal α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ : ℕ t₁✝ t₂✝ : Term L (β ⊕ Fin n✝) v : Fin n✝ → (a : α) → M a ⊢ (BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) (fun i => x i a) fun i => v i a [PROOFSTEP] have h2 : ∀ a : α, (Sum.elim (fun i : β => x i a) fun i => v i a) = fun i => Sum.elim x v i a := fun a => funext fun i => Sum.casesOn i (fun i => rfl) fun i => rfl [GOAL] case equal α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ : ℕ t₁✝ t₂✝ : Term L (β ⊕ Fin n✝) v : Fin n✝ → (a : α) → M a h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a ⊢ (BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) (fun i => x i a) fun i => v i a [PROOFSTEP] simp only [BoundedFormula.Realize, h2, term_realize_cast] [GOAL] case equal α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ : ℕ t₁✝ t₂✝ : Term L (β ⊕ Fin n✝) v : Fin n✝ → (a : α) → M a h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a ⊢ Term.realize (Sum.elim (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) t₁✝ = Term.realize (Sum.elim (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) t₂✝ ↔ ∀ᶠ (a : α) in ↑u, Term.realize (fun i => Sum.elim x v i a) t₁✝ = Term.realize (fun i => Sum.elim x v i a) t₂✝ [PROOFSTEP] erw [(Sum.comp_elim ((↑) : (∀ a, M a) → (u : Filter α).Product M) x v).symm, term_realize_cast, term_realize_cast] [GOAL] case equal α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ : ℕ t₁✝ t₂✝ : Term L (β ⊕ Fin n✝) v : Fin n✝ → (a : α) → M a h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a ⊢ ((Quotient.mk' fun a => Term.realize (fun i => Sum.elim x v i a) t₁✝) = Quotient.mk' fun a => Term.realize (fun i => Sum.elim x v i a) t₂✝) ↔ ∀ᶠ (a : α) in ↑u, Term.realize (fun i => Sum.elim x v i a) t₁✝ = Term.realize (fun i => Sum.elim x v i a) t₂✝ [PROOFSTEP] exact Quotient.eq'' [GOAL] case rel α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝) v : Fin n✝ → (a : α) → M a ⊢ (BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) (fun i => x i a) fun i => v i a [PROOFSTEP] have h2 : ∀ a : α, (Sum.elim (fun i : β => x i a) fun i => v i a) = fun i => Sum.elim x v i a := fun a => funext fun i => Sum.casesOn i (fun i => rfl) fun i => rfl [GOAL] case rel α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝) v : Fin n✝ → (a : α) → M a h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a ⊢ (BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) (fun i => x i a) fun i => v i a [PROOFSTEP] simp only [BoundedFormula.Realize, h2] [GOAL] case rel α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝) v : Fin n✝ → (a : α) → M a h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a ⊢ (RelMap R✝ fun i => Term.realize (Sum.elim (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) (ts✝ i)) ↔ ∀ᶠ (a : α) in ↑u, RelMap R✝ fun i => Term.realize (fun i => Sum.elim x v i a) (ts✝ i) [PROOFSTEP] erw [(Sum.comp_elim ((↑) : (∀ a, M a) → (u : Filter α).Product M) x v).symm] [GOAL] case rel α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝) v : Fin n✝ → (a : α) → M a h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a ⊢ (RelMap R✝ fun i => Term.realize (Quotient.mk' ∘ Sum.elim x v) (ts✝ i)) ↔ ∀ᶠ (a : α) in ↑u, RelMap R✝ fun i => Term.realize (fun i => Sum.elim x v i a) (ts✝ i) [PROOFSTEP] conv_lhs => enter [2, i]; erw [term_realize_cast] [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝) v : Fin n✝ → (a : α) → M a h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a | RelMap R✝ fun i => Term.realize (Quotient.mk' ∘ Sum.elim x v) (ts✝ i) [PROOFSTEP] enter [2, i]; erw [term_realize_cast] [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝) v : Fin n✝ → (a : α) → M a h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a | RelMap R✝ fun i => Term.realize (Quotient.mk' ∘ Sum.elim x v) (ts✝ i) [PROOFSTEP] enter [2, i]; erw [term_realize_cast] [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝) v : Fin n✝ → (a : α) → M a h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a | RelMap R✝ fun i => Term.realize (Quotient.mk' ∘ Sum.elim x v) (ts✝ i) [PROOFSTEP] enter [2, i] [GOAL] case h α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝) v : Fin n✝ → (a : α) → M a h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a i : Fin l✝ | Term.realize (Quotient.mk' ∘ Sum.elim x v) (ts✝ i) [PROOFSTEP] erw [term_realize_cast] [GOAL] case rel α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝) v : Fin n✝ → (a : α) → M a h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a ⊢ (RelMap R✝ fun i => Quotient.mk' fun a => Term.realize (fun i => Sum.elim x v i a) (ts✝ i)) ↔ ∀ᶠ (a : α) in ↑u, RelMap R✝ fun i => Term.realize (fun i => Sum.elim x v i a) (ts✝ i) [PROOFSTEP] apply relMap_quotient_mk' [GOAL] case imp α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M m : ℕ f₁✝ f₂✝ : BoundedFormula L β m ih : ∀ (v : Fin m → (a : α) → M a), (BoundedFormula.Realize f₁✝ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize f₁✝ (fun i => x i a) fun i => v i a ih' : ∀ (v : Fin m → (a : α) → M a), (BoundedFormula.Realize f₂✝ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize f₂✝ (fun i => x i a) fun i => v i a v : Fin m → (a : α) → M a ⊢ (BoundedFormula.Realize (f₁✝ ⟹ f₂✝) (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize (f₁✝ ⟹ f₂✝) (fun i => x i a) fun i => v i a [PROOFSTEP] simp only [BoundedFormula.Realize, ih v, ih' v] [GOAL] case imp α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M m : ℕ f₁✝ f₂✝ : BoundedFormula L β m ih : ∀ (v : Fin m → (a : α) → M a), (BoundedFormula.Realize f₁✝ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize f₁✝ (fun i => x i a) fun i => v i a ih' : ∀ (v : Fin m → (a : α) → M a), (BoundedFormula.Realize f₂✝ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize f₂✝ (fun i => x i a) fun i => v i a v : Fin m → (a : α) → M a ⊢ ((∀ᶠ (a : α) in ↑u, BoundedFormula.Realize f₁✝ (fun i => x i a) fun i => v i a) → ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize f₂✝ (fun i => x i a) fun i => v i a) ↔ ∀ᶠ (a : α) in ↑u, (BoundedFormula.Realize f₁✝ (fun i => x i a) fun i => v i a) → BoundedFormula.Realize f₂✝ (fun i => x i a) fun i => v i a [PROOFSTEP] rw [Ultrafilter.eventually_imp] [GOAL] case all α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a ⊢ (BoundedFormula.Realize (∀'φ) (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize (∀'φ) (fun i => x i a) fun i => v i a [PROOFSTEP] simp only [BoundedFormula.Realize] [GOAL] case all α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a ⊢ (∀ (x_1 : Quotient (productSetoid ↑u fun a => M a)), BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) (Fin.snoc (fun i => Quotient.mk' (v i)) x_1)) ↔ ∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1) [PROOFSTEP] apply Iff.trans (b := ∀ m : ∀ a : α, M a, φ.Realize (fun i : β => (x i : (u : Filter α).Product M)) (Fin.snoc (((↑) : (∀ a, M a) → (u : Filter α).Product M) ∘ v) (m : (u : Filter α).Product M))) [GOAL] case all.h₁ α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a ⊢ (∀ (x_1 : Quotient (productSetoid ↑u fun a => M a)), BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) (Fin.snoc (fun i => Quotient.mk' (v i)) x_1)) ↔ ∀ (m : (a : α) → M a), BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) (Fin.snoc (Quotient.mk' ∘ v) (Quotient.mk' m)) [PROOFSTEP] exact forall_quotient_iff [GOAL] case all.h₂ α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a ⊢ (∀ (m : (a : α) → M a), BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) (Fin.snoc (Quotient.mk' ∘ v) (Quotient.mk' m))) ↔ ∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1) [PROOFSTEP] have h' : ∀ (m : ∀ a, M a) (a : α), (fun i : Fin (k + 1) => (Fin.snoc v m : _ → ∀ a, M a) i a) = Fin.snoc (fun i : Fin k => v i a) (m a) := by refine' fun m a => funext (Fin.reverseInduction _ fun i _ => _) · simp only [Fin.snoc_last] · simp only [Fin.snoc_castSucc] [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a ⊢ ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a) [PROOFSTEP] refine' fun m a => funext (Fin.reverseInduction _ fun i _ => _) [GOAL] case refine'_1 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a m : (a : α) → M a a : α ⊢ Fin.snoc v m (Fin.last k) a = Fin.snoc (fun i => v i a) (m a) (Fin.last k) [PROOFSTEP] simp only [Fin.snoc_last] [GOAL] case refine'_2 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a m : (a : α) → M a a : α i : Fin k x✝ : Fin.snoc v m (Fin.succ i) a = Fin.snoc (fun i => v i a) (m a) (Fin.succ i) ⊢ Fin.snoc v m (Fin.castSucc i) a = Fin.snoc (fun i => v i a) (m a) (Fin.castSucc i) [PROOFSTEP] simp only [Fin.snoc_castSucc] [GOAL] case all.h₂ α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a) ⊢ (∀ (m : (a : α) → M a), BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) (Fin.snoc (Quotient.mk' ∘ v) (Quotient.mk' m))) ↔ ∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1) [PROOFSTEP] simp only [← Fin.comp_snoc] [GOAL] case all.h₂ α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a) ⊢ (∀ (m : (a : α) → M a), BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) (Quotient.mk' ∘ Fin.snoc v m)) ↔ ∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1) [PROOFSTEP] simp only [Function.comp, ih, h'] [GOAL] case all.h₂ α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a) ⊢ (∀ (m : (a : α) → M a), ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) (m a))) ↔ ∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1) [PROOFSTEP] refine' ⟨fun h => _, fun h m => _⟩ [GOAL] case all.h₂.refine'_1 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a) h : ∀ (m : (a : α) → M a), ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) (m a)) ⊢ ∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1) [PROOFSTEP] contrapose! h [GOAL] case all.h₂.refine'_1 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a) h : ¬∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1) ⊢ ∃ m, ¬∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) (m a)) [PROOFSTEP] simp_rw [← Ultrafilter.eventually_not, not_forall] at h [GOAL] case all.h₂.refine'_1 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a) h : ∀ᶠ (x_1 : α) in ↑u, ∃ x_2, ¬BoundedFormula.Realize φ (fun i => x i x_1) (Fin.snoc (fun i => v i x_1) x_2) ⊢ ∃ m, ¬∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) (m a)) [PROOFSTEP] refine' ⟨fun a : α => Classical.epsilon fun m : M a => ¬φ.Realize (fun i => x i a) (Fin.snoc (fun i => v i a) m), _⟩ [GOAL] case all.h₂.refine'_1 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a) h : ∀ᶠ (x_1 : α) in ↑u, ∃ x_2, ¬BoundedFormula.Realize φ (fun i => x i x_1) (Fin.snoc (fun i => v i x_1) x_2) ⊢ ¬∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) ((fun a => Classical.epsilon fun m => ¬BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) m)) a)) [PROOFSTEP] rw [← Ultrafilter.eventually_not] [GOAL] case all.h₂.refine'_1 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a) h : ∀ᶠ (x_1 : α) in ↑u, ∃ x_2, ¬BoundedFormula.Realize φ (fun i => x i x_1) (Fin.snoc (fun i => v i x_1) x_2) ⊢ ∀ᶠ (x_1 : α) in ↑u, ¬BoundedFormula.Realize φ (fun i => x i x_1) (Fin.snoc (fun i => v i x_1) ((fun a => Classical.epsilon fun m => ¬BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) m)) x_1)) [PROOFSTEP] exact Filter.mem_of_superset h fun a ha => Classical.epsilon_spec ha [GOAL] case all.h₂.refine'_2 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a) h : ∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1) m : (a : α) → M a ⊢ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) (m a)) [PROOFSTEP] rw [Filter.eventually_iff] at * [GOAL] case all.h₂.refine'_2 α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 n : ℕ x : β → (a : α) → M a v✝ : Fin n → (a : α) → M a this : Setoid ((a : α) → M a) := productSetoid (↑u) M k : ℕ φ : BoundedFormula L β (k + 1) ih : ∀ (v : Fin (k + 1) → (a : α) → M a), (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a v : Fin k → (a : α) → M a h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a) h : {x_1 | ∀ (x_2 : M x_1), BoundedFormula.Realize φ (fun i => x i x_1) (Fin.snoc (fun i => v i x_1) x_2)} ∈ ↑u m : (a : α) → M a ⊢ {x_1 | BoundedFormula.Realize φ (fun i => x i x_1) (Fin.snoc (fun i => v i x_1) (m x_1))} ∈ ↑u [PROOFSTEP] exact Filter.mem_of_superset h fun a ha => ha (m a) [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 φ : Formula L β x : β → (a : α) → M a ⊢ (Formula.Realize φ fun i => Quotient.mk' (x i)) ↔ ∀ᶠ (a : α) in ↑u, Formula.Realize φ fun i => x i a [PROOFSTEP] simp_rw [Formula.Realize, ← boundedFormula_realize_cast φ x, iff_eq_eq] [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) β : Type u_3 φ : Formula L β x : β → (a : α) → M a ⊢ BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) default = BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' fun a => default i [PROOFSTEP] exact congr rfl (Subsingleton.elim _ _) [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) φ : Sentence L ⊢ Product (↑u) M ⊨ φ ↔ ∀ᶠ (a : α) in ↑u, M a ⊨ φ [PROOFSTEP] simp_rw [Sentence.Realize] [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) φ : Sentence L ⊢ Formula.Realize φ default ↔ ∀ᶠ (a : α) in ↑u, Formula.Realize φ default [PROOFSTEP] erw [← realize_formula_cast φ, iff_eq_eq] [GOAL] α : Type u_1 M : α → Type u_2 u : Ultrafilter α L : Language inst✝¹ : (a : α) → Structure L (M a) inst✝ : ∀ (a : α), Nonempty (M a) φ : Sentence L ⊢ Formula.Realize φ default = Formula.Realize φ fun i => Quotient.mk' fun a => default i [PROOFSTEP] exact congr rfl (Subsingleton.elim _ _)
{"mathlib_filename": "Mathlib.ModelTheory.Ultraproducts", "llama_tokens": 20540}
[GOAL] L : Language T : Theory L α : Type w p q : CompleteType T α h : (fun p => ↑p) p = (fun p => ↑p) q ⊢ p = q [PROOFSTEP] cases p [GOAL] case mk L : Language T : Theory L α : Type w q : CompleteType T α toTheory✝ : Theory (L[[α]]) subset'✝ : LHom.onTheory (lhomWithConstants L α) T ⊆ toTheory✝ isMaximal'✝ : IsMaximal toTheory✝ h : (fun p => ↑p) { toTheory := toTheory✝, subset' := subset'✝, isMaximal' := isMaximal'✝ } = (fun p => ↑p) q ⊢ { toTheory := toTheory✝, subset' := subset'✝, isMaximal' := isMaximal'✝ } = q [PROOFSTEP] cases q [GOAL] case mk.mk L : Language T : Theory L α : Type w toTheory✝¹ : Theory (L[[α]]) subset'✝¹ : LHom.onTheory (lhomWithConstants L α) T ⊆ toTheory✝¹ isMaximal'✝¹ : IsMaximal toTheory✝¹ toTheory✝ : Theory (L[[α]]) subset'✝ : LHom.onTheory (lhomWithConstants L α) T ⊆ toTheory✝ isMaximal'✝ : IsMaximal toTheory✝ h : (fun p => ↑p) { toTheory := toTheory✝¹, subset' := subset'✝¹, isMaximal' := isMaximal'✝¹ } = (fun p => ↑p) { toTheory := toTheory✝, subset' := subset'✝, isMaximal' := isMaximal'✝ } ⊢ { toTheory := toTheory✝¹, subset' := subset'✝¹, isMaximal' := isMaximal'✝¹ } = { toTheory := toTheory✝, subset' := subset'✝, isMaximal' := isMaximal'✝ } [PROOFSTEP] congr [GOAL] L : Language T : Theory L α : Type w p : CompleteType T α φ : Sentence (L[[α]]) hf : Formula.not φ ∈ p ht : φ ∈ p ⊢ False [PROOFSTEP] have h : ¬IsSatisfiable ({ φ, φ.not } : L[[α]].Theory) := by rintro ⟨@⟨_, _, h, _⟩⟩ simp only [model_iff, mem_insert_iff, mem_singleton_iff, forall_eq_or_imp, forall_eq] at h exact h.2 h.1 [GOAL] L : Language T : Theory L α : Type w p : CompleteType T α φ : Sentence (L[[α]]) hf : Formula.not φ ∈ p ht : φ ∈ p ⊢ ¬IsSatisfiable {φ, Formula.not φ} [PROOFSTEP] rintro ⟨@⟨_, _, h, _⟩⟩ [GOAL] case intro.mk L : Language T : Theory L α : Type w p : CompleteType T α φ : Sentence (L[[α]]) hf : Formula.not φ ∈ p ht : φ ∈ p Carrier✝ : Type (max (max u w) v) struc✝ : Structure (L[[α]]) Carrier✝ h : Carrier✝ ⊨ {φ, Formula.not φ} nonempty'✝ : Nonempty Carrier✝ ⊢ False [PROOFSTEP] simp only [model_iff, mem_insert_iff, mem_singleton_iff, forall_eq_or_imp, forall_eq] at h [GOAL] case intro.mk L : Language T : Theory L α : Type w p : CompleteType T α φ : Sentence (L[[α]]) hf : Formula.not φ ∈ p ht : φ ∈ p Carrier✝ : Type (max (max u w) v) struc✝ : Structure (L[[α]]) Carrier✝ nonempty'✝ : Nonempty Carrier✝ h : Carrier✝ ⊨ φ ∧ Carrier✝ ⊨ Formula.not φ ⊢ False [PROOFSTEP] exact h.2 h.1 [GOAL] L : Language T : Theory L α : Type w p : CompleteType T α φ : Sentence (L[[α]]) hf : Formula.not φ ∈ p ht : φ ∈ p h : ¬IsSatisfiable {φ, Formula.not φ} ⊢ False [PROOFSTEP] refine' h (p.isMaximal.1.mono _) [GOAL] L : Language T : Theory L α : Type w p : CompleteType T α φ : Sentence (L[[α]]) hf : Formula.not φ ∈ p ht : φ ∈ p h : ¬IsSatisfiable {φ, Formula.not φ} ⊢ {φ, Formula.not φ} ⊆ ↑p [PROOFSTEP] rw [insert_subset_iff, singleton_subset_iff] [GOAL] L : Language T : Theory L α : Type w p : CompleteType T α φ : Sentence (L[[α]]) hf : Formula.not φ ∈ p ht : φ ∈ p h : ¬IsSatisfiable {φ, Formula.not φ} ⊢ φ ∈ ↑p ∧ Formula.not φ ∈ ↑p [PROOFSTEP] exact ⟨ht, hf⟩ [GOAL] L : Language T : Theory L α : Type w S : Theory (L[[α]]) ⊢ {p | S ⊆ ↑p} = ∅ ↔ ¬IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ S) [PROOFSTEP] rw [iff_not_comm, ← not_nonempty_iff_eq_empty, Classical.not_not, Set.Nonempty] [GOAL] L : Language T : Theory L α : Type w S : Theory (L[[α]]) ⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ S) ↔ ∃ x, x ∈ {p | S ⊆ ↑p} [PROOFSTEP] refine' ⟨fun h => ⟨⟨L[[α]].completeTheory h.some, (subset_union_left _ S).trans completeTheory.subset, completeTheory.isMaximal (L[[α]]) h.some⟩, (subset_union_right ((L.lhomWithConstants α).onTheory T) _).trans completeTheory.subset⟩, _⟩ [GOAL] L : Language T : Theory L α : Type w S : Theory (L[[α]]) ⊢ (∃ x, x ∈ {p | S ⊆ ↑p}) → IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ S) [PROOFSTEP] rintro ⟨p, hp⟩ [GOAL] case intro L : Language T : Theory L α : Type w S : Theory (L[[α]]) p : CompleteType T α hp : p ∈ {p | S ⊆ ↑p} ⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ S) [PROOFSTEP] exact p.isMaximal.1.mono (union_subset p.subset hp) [GOAL] L : Language T : Theory L α : Type w φ : Sentence (L[[α]]) ⊢ {p | φ ∈ p} = Set.univ ↔ LHom.onTheory (lhomWithConstants L α) T ⊨ᵇ φ [PROOFSTEP] rw [models_iff_not_satisfiable, ← compl_empty_iff, compl_setOf_mem, ← setOf_subset_eq_empty_iff] [GOAL] L : Language T : Theory L α : Type w φ : Sentence (L[[α]]) ⊢ {p | Formula.not φ ∈ p} = ∅ ↔ {p | {Formula.not φ} ⊆ ↑p} = ∅ [PROOFSTEP] simp [GOAL] L : Language T : Theory L α : Type w S : Theory (L[[α]]) ⊢ {p | S ⊆ ↑p} = Set.univ ↔ ∀ (φ : Sentence (L[[α]])), φ ∈ S → LHom.onTheory (lhomWithConstants L α) T ⊨ᵇ φ [PROOFSTEP] have h : {p : T.CompleteType α | S ⊆ ↑p} = ⋂₀ ((fun φ => {p | φ ∈ p}) '' S) := by ext simp [subset_def] [GOAL] L : Language T : Theory L α : Type w S : Theory (L[[α]]) ⊢ {p | S ⊆ ↑p} = ⋂₀ ((fun φ => {p | φ ∈ p}) '' S) [PROOFSTEP] ext [GOAL] case h L : Language T : Theory L α : Type w S : Theory (L[[α]]) x✝ : CompleteType T α ⊢ x✝ ∈ {p | S ⊆ ↑p} ↔ x✝ ∈ ⋂₀ ((fun φ => {p | φ ∈ p}) '' S) [PROOFSTEP] simp [subset_def] [GOAL] L : Language T : Theory L α : Type w S : Theory (L[[α]]) h : {p | S ⊆ ↑p} = ⋂₀ ((fun φ => {p | φ ∈ p}) '' S) ⊢ {p | S ⊆ ↑p} = Set.univ ↔ ∀ (φ : Sentence (L[[α]])), φ ∈ S → LHom.onTheory (lhomWithConstants L α) T ⊨ᵇ φ [PROOFSTEP] simp_rw [h, sInter_eq_univ, ← setOf_mem_eq_univ_iff] [GOAL] L : Language T : Theory L α : Type w S : Theory (L[[α]]) h : {p | S ⊆ ↑p} = ⋂₀ ((fun φ => {p | φ ∈ p}) '' S) ⊢ (∀ (s : Set (CompleteType T α)), s ∈ (fun φ => {p | φ ∈ p}) '' S → s = Set.univ) ↔ ∀ (φ : Sentence (L[[α]])), φ ∈ S → {p | φ ∈ p} = Set.univ [PROOFSTEP] refine' ⟨fun h φ φS => h _ ⟨_, φS, rfl⟩, _⟩ [GOAL] L : Language T : Theory L α : Type w S : Theory (L[[α]]) h : {p | S ⊆ ↑p} = ⋂₀ ((fun φ => {p | φ ∈ p}) '' S) ⊢ (∀ (φ : Sentence (L[[α]])), φ ∈ S → {p | φ ∈ p} = Set.univ) → ∀ (s : Set (CompleteType T α)), s ∈ (fun φ => {p | φ ∈ p}) '' S → s = Set.univ [PROOFSTEP] rintro h _ ⟨φ, h1, rfl⟩ [GOAL] case intro.intro L : Language T : Theory L α : Type w S : Theory (L[[α]]) h✝ : {p | S ⊆ ↑p} = ⋂₀ ((fun φ => {p | φ ∈ p}) '' S) h : ∀ (φ : Sentence (L[[α]])), φ ∈ S → {p | φ ∈ p} = Set.univ φ : Sentence (L[[α]]) h1 : φ ∈ S ⊢ (fun φ => {p | φ ∈ p}) φ = Set.univ [PROOFSTEP] exact h _ h1 [GOAL] L : Language T : Theory L α : Type w ⊢ Nonempty (CompleteType T α) ↔ IsSatisfiable T [PROOFSTEP] rw [← isSatisfiable_onTheory_iff (lhomWithConstants_injective L α)] [GOAL] L : Language T : Theory L α : Type w ⊢ Nonempty (CompleteType T α) ↔ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T) [PROOFSTEP] rw [nonempty_iff_univ_nonempty, nonempty_iff_ne_empty, Ne.def, not_iff_comm, ← union_empty ((L.lhomWithConstants α).onTheory T), ← setOf_subset_eq_empty_iff] [GOAL] L : Language T : Theory L α : Type w ⊢ {p | ∅ ⊆ ↑p} = ∅ ↔ Set.univ = ∅ [PROOFSTEP] simp [GOAL] L : Language T : Theory L α : Type w ι : Type u_1 S : ι → Theory (L[[α]]) ⊢ ⋂ (i : ι), {p | S i ⊆ ↑p} = {p | ⋃ (i : ι), S i ⊆ ↑p} [PROOFSTEP] ext [GOAL] case h L : Language T : Theory L α : Type w ι : Type u_1 S : ι → Theory (L[[α]]) x✝ : CompleteType T α ⊢ x✝ ∈ ⋂ (i : ι), {p | S i ⊆ ↑p} ↔ x✝ ∈ {p | ⋃ (i : ι), S i ⊆ ↑p} [PROOFSTEP] simp only [mem_iInter, mem_setOf_eq, iUnion_subset_iff] [GOAL] L : Language T : Theory L α : Type w p : CompleteType T α t : Finset (Sentence (L[[α]])) ⊢ List.foldr (fun x x_1 => x ⊓ x_1) ⊤ (Finset.toList t) ∈ p ↔ ↑t ⊆ ↑p [PROOFSTEP] simp_rw [subset_def, ← SetLike.mem_coe, p.isMaximal.mem_iff_models, models_sentence_iff, Sentence.Realize, Formula.Realize, BoundedFormula.realize_foldr_inf, Finset.mem_toList] [GOAL] L : Language T : Theory L α : Type w p : CompleteType T α t : Finset (Sentence (L[[α]])) ⊢ (∀ (M : ModelType ↑p) (φ : BoundedFormula (L[[α]]) Empty 0), φ ∈ t → BoundedFormula.Realize φ default default) ↔ ∀ (x : Sentence (L[[α]])), x ∈ ↑t → ∀ (M : ModelType ↑p), BoundedFormula.Realize x default default [PROOFSTEP] exact ⟨fun h φ hφ M => h _ _ hφ, fun h M φ hφ => h _ hφ _⟩ [GOAL] L : Language T : Theory L α : Type w M : Type w' inst✝² : Structure L M inst✝¹ : Nonempty M inst✝ : M ⊨ T v : α → M φ : Formula L α ⊢ ↑Formula.equivSentence φ ∈ typeOf T v ↔ Formula.Realize φ v [PROOFSTEP] simp [GOAL] L : Language T : Theory L α : Type w M : Type w' inst✝² : Structure L M inst✝¹ : Nonempty M inst✝ : M ⊨ T p : CompleteType T α ⊢ ∃ M, p ∈ realizedTypes T (↑M) α [PROOFSTEP] obtain ⟨M⟩ := p.isMaximal.1 [GOAL] case intro L : Language T : Theory L α : Type w M✝ : Type w' inst✝² : Structure L M✝ inst✝¹ : Nonempty M✝ inst✝ : M✝ ⊨ T p : CompleteType T α M : ModelType ↑p ⊢ ∃ M, p ∈ realizedTypes T (↑M) α [PROOFSTEP] refine' ⟨(M.subtheoryModel p.subset).reduct (L.lhomWithConstants α), fun a => (L.con a : M), _⟩ [GOAL] case intro L : Language T : Theory L α : Type w M✝ : Type w' inst✝² : Structure L M✝ inst✝¹ : Nonempty M✝ inst✝ : M✝ ⊨ T p : CompleteType T α M : ModelType ↑p ⊢ (typeOf T fun a => ↑(Language.con L a)) = p [PROOFSTEP] refine' SetLike.ext fun φ => _ [GOAL] case intro L : Language T : Theory L α : Type w M✝ : Type w' inst✝² : Structure L M✝ inst✝¹ : Nonempty M✝ inst✝ : M✝ ⊨ T p : CompleteType T α M : ModelType ↑p φ : Sentence (L[[α]]) ⊢ (φ ∈ typeOf T fun a => ↑(Language.con L a)) ↔ φ ∈ p [PROOFSTEP] simp only [CompleteType.mem_typeOf] [GOAL] case intro L : Language T : Theory L α : Type w M✝ : Type w' inst✝² : Structure L M✝ inst✝¹ : Nonempty M✝ inst✝ : M✝ ⊨ T p : CompleteType T α M : ModelType ↑p φ : Sentence (L[[α]]) ⊢ (Formula.Realize (↑Formula.equivSentence.symm φ) fun a => ↑(Language.con L a)) ↔ φ ∈ p [PROOFSTEP] refine' (@Formula.realize_equivSentence_symm_con _ ((M.subtheoryModel p.subset).reduct (L.lhomWithConstants α)) _ _ M.struc _ φ).trans (_root_.trans (_root_.trans _ (p.isMaximal.isComplete.realize_sentence_iff φ M)) (p.isMaximal.mem_iff_models φ).symm) [GOAL] case intro L : Language T : Theory L α : Type w M✝ : Type w' inst✝² : Structure L M✝ inst✝¹ : Nonempty M✝ inst✝ : M✝ ⊨ T p : CompleteType T α M : ModelType ↑p φ : Sentence (L[[α]]) ⊢ ↑(ModelType.reduct (lhomWithConstants L α) (ModelType.subtheoryModel M (_ : LHom.onTheory (lhomWithConstants L α) T ⊆ ↑p))) ⊨ φ ↔ ↑M ⊨ φ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.ModelTheory.Types", "llama_tokens": 5087}
{"mathlib_filename": "Mathlib.ModelTheory.Bundled", "llama_tokens": 0}
[GOAL] L : Language ι : Type v inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j G' : ℕ → Type w inst✝ : (i : ℕ) → Structure L (G' i) f' : (n : ℕ) → G' n ↪[L] G' (n + 1) m n : ℕ h : m ≤ n ⊢ ↑(natLERec f' m n h) = fun a => Nat.leRecOn h (fun k => ↑(f' k)) a [PROOFSTEP] obtain ⟨k, rfl⟩ := Nat.exists_eq_add_of_le h [GOAL] case intro L : Language ι : Type v inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j G' : ℕ → Type w inst✝ : (i : ℕ) → Structure L (G' i) f' : (n : ℕ) → G' n ↪[L] G' (n + 1) m k : ℕ h : m ≤ m + k ⊢ ↑(natLERec f' m (m + k) h) = fun a => Nat.leRecOn h (fun k => ↑(f' k)) a [PROOFSTEP] ext x [GOAL] case intro.h L : Language ι : Type v inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j G' : ℕ → Type w inst✝ : (i : ℕ) → Structure L (G' i) f' : (n : ℕ) → G' n ↪[L] G' (n + 1) m k : ℕ h : m ≤ m + k x : G' m ⊢ ↑(natLERec f' m (m + k) h) x = Nat.leRecOn h (fun k => ↑(f' k)) x [PROOFSTEP] induction' k with k ih [GOAL] case intro.h.zero L : Language ι : Type v inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j G' : ℕ → Type w inst✝ : (i : ℕ) → Structure L (G' i) f' : (n : ℕ) → G' n ↪[L] G' (n + 1) m k : ℕ h✝ : m ≤ m + k x : G' m h : m ≤ m + Nat.zero ⊢ ↑(natLERec f' m (m + Nat.zero) h) x = Nat.leRecOn h (fun k => ↑(f' k)) x [PROOFSTEP] rw [natLERec, Nat.leRecOn_self, Embedding.refl_apply, Nat.leRecOn_self] [GOAL] case intro.h.succ L : Language ι : Type v inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j G' : ℕ → Type w inst✝ : (i : ℕ) → Structure L (G' i) f' : (n : ℕ) → G' n ↪[L] G' (n + 1) m k✝ : ℕ h✝ : m ≤ m + k✝ x : G' m k : ℕ ih : ∀ (h : m ≤ m + k), ↑(natLERec f' m (m + k) h) x = Nat.leRecOn h (fun k => ↑(f' k)) x h : m ≤ m + Nat.succ k ⊢ ↑(natLERec f' m (m + Nat.succ k) h) x = Nat.leRecOn h (fun k => ↑(f' k)) x [PROOFSTEP] rw [Nat.leRecOn_succ le_self_add, natLERec, Nat.leRecOn_succ le_self_add, ← natLERec, Embedding.comp_apply, ih] [GOAL] L : Language ι : Type v inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j G' : ℕ → Type w inst✝ : (i : ℕ) → Structure L (G' i) f' : (n : ℕ) → G' n ↪[L] G' (n + 1) i✝ j✝ k✝ : ℕ hij : i✝ ≤ j✝ hjk : j✝ ≤ k✝ ⊢ ∀ (x : G' i✝), ↑(natLERec f' j✝ k✝ hjk) (↑(natLERec f' i✝ j✝ hij) x) = ↑(natLERec f' i✝ k✝ (_ : i✝ ≤ k✝)) x [PROOFSTEP] simp [Nat.leRecOn_trans hij hjk] [GOAL] L : Language ι : Type v inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) α : Type u_1 i : ι x : α → G i ⊢ unify f (fun a => Structure.Sigma.mk f i (x a)) i (_ : ∀ (j : ι), j ∈ range (Sigma.fst ∘ fun a => Structure.Sigma.mk f i (x a)) → j ≤ i) = x [PROOFSTEP] ext a [GOAL] case h L : Language ι : Type v inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) α : Type u_1 i : ι x : α → G i a : α ⊢ unify f (fun a => Structure.Sigma.mk f i (x a)) i (_ : ∀ (j : ι), j ∈ range (Sigma.fst ∘ fun a => Structure.Sigma.mk f i (x a)) → j ≤ i) a = x a [PROOFSTEP] rw [unify] [GOAL] case h L : Language ι : Type v inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) α : Type u_1 i : ι x : α → G i a : α ⊢ ↑(f (Structure.Sigma.mk f i (x a)).fst i (_ : (Structure.Sigma.mk f i (x a)).fst ≤ i)) (Structure.Sigma.mk f i (x a)).snd = x a [PROOFSTEP] apply DirectedSystem.map_self [GOAL] L : Language ι : Type v inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) α : Type u_1 x : α → Σˣ f i j : ι ij : i ≤ j h : i ∈ upperBounds (range (Sigma.fst ∘ x)) ⊢ ↑(f i j ij) ∘ unify f x i h = unify f x j (_ : ∀ (k : ι), k ∈ range (Sigma.fst ∘ x) → k ≤ j) [PROOFSTEP] ext a [GOAL] case h L : Language ι : Type v inst✝² : Preorder ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) α : Type u_1 x : α → Σˣ f i j : ι ij : i ≤ j h : i ∈ upperBounds (range (Sigma.fst ∘ x)) a : α ⊢ (↑(f i j ij) ∘ unify f x i h) a = unify f x j (_ : ∀ (k : ι), k ∈ range (Sigma.fst ∘ x) → k ≤ j) a [PROOFSTEP] simp [unify, DirectedSystem.map_map] [GOAL] L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝⁴ x✝³ x✝² : Σˣ f i : ι x : (fun i => G i) i j : ι y : (fun i => G i) j x✝¹ : match { fst := i, snd := x } with | { fst := i, snd := x } => match { fst := j, snd := y } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y k : ι z : (fun i => G i) k x✝ : match { fst := j, snd := y } with | { fst := i, snd := x } => match { fst := k, snd := z } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y ij : ι hiij : i ≤ ij hjij : j ≤ ij hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y jk : ι hjjk : j ≤ jk hkjk : k ≤ jk hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z ⊢ match { fst := i, snd := x } with | { fst := i, snd := x } => match { fst := k, snd := z } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y [PROOFSTEP] obtain ⟨ijk, hijijk, hjkijk⟩ := directed_of (· ≤ ·) ij jk [GOAL] case intro.intro L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝⁴ x✝³ x✝² : Σˣ f i : ι x : (fun i => G i) i j : ι y : (fun i => G i) j x✝¹ : match { fst := i, snd := x } with | { fst := i, snd := x } => match { fst := j, snd := y } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y k : ι z : (fun i => G i) k x✝ : match { fst := j, snd := y } with | { fst := i, snd := x } => match { fst := k, snd := z } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y ij : ι hiij : i ≤ ij hjij : j ≤ ij hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y jk : ι hjjk : j ≤ jk hkjk : k ≤ jk hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z ijk : ι hijijk : ij ≤ ijk hjkijk : jk ≤ ijk ⊢ match { fst := i, snd := x } with | { fst := i, snd := x } => match { fst := k, snd := z } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y [PROOFSTEP] refine' ⟨ijk, le_trans hiij hijijk, le_trans hkjk hjkijk, _⟩ [GOAL] case intro.intro L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝⁴ x✝³ x✝² : Σˣ f i : ι x : (fun i => G i) i j : ι y : (fun i => G i) j x✝¹ : match { fst := i, snd := x } with | { fst := i, snd := x } => match { fst := j, snd := y } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y k : ι z : (fun i => G i) k x✝ : match { fst := j, snd := y } with | { fst := i, snd := x } => match { fst := k, snd := z } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y ij : ι hiij : i ≤ ij hjij : j ≤ ij hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y jk : ι hjjk : j ≤ jk hkjk : k ≤ jk hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z ijk : ι hijijk : ij ≤ ijk hjkijk : jk ≤ ijk ⊢ ↑(f i ijk (_ : i ≤ ijk)) x = ↑(f k ijk (_ : k ≤ ijk)) z [PROOFSTEP] rw [← DirectedSystem.map_map, hij, DirectedSystem.map_map] [GOAL] case intro.intro L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝⁴ x✝³ x✝² : Σˣ f i : ι x : (fun i => G i) i j : ι y : (fun i => G i) j x✝¹ : match { fst := i, snd := x } with | { fst := i, snd := x } => match { fst := j, snd := y } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y k : ι z : (fun i => G i) k x✝ : match { fst := j, snd := y } with | { fst := i, snd := x } => match { fst := k, snd := z } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y ij : ι hiij : i ≤ ij hjij : j ≤ ij hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y jk : ι hjjk : j ≤ jk hkjk : k ≤ jk hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z ijk : ι hijijk : ij ≤ ijk hjkijk : jk ≤ ijk ⊢ ↑(f j ijk (_ : j ≤ ijk)) y = ↑(f k ijk (_ : k ≤ ijk)) z case intro.intro.hjk L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝⁴ x✝³ x✝² : Σˣ f i : ι x : (fun i => G i) i j : ι y : (fun i => G i) j x✝¹ : match { fst := i, snd := x } with | { fst := i, snd := x } => match { fst := j, snd := y } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y k : ι z : (fun i => G i) k x✝ : match { fst := j, snd := y } with | { fst := i, snd := x } => match { fst := k, snd := z } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y ij : ι hiij : i ≤ ij hjij : j ≤ ij hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y jk : ι hjjk : j ≤ jk hkjk : k ≤ jk hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z ijk : ι hijijk : ij ≤ ijk hjkijk : jk ≤ ijk ⊢ ij ≤ ijk case intro.intro.hjk L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝⁴ x✝³ x✝² : Σˣ f i : ι x : (fun i => G i) i j : ι y : (fun i => G i) j x✝¹ : match { fst := i, snd := x } with | { fst := i, snd := x } => match { fst := j, snd := y } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y k : ι z : (fun i => G i) k x✝ : match { fst := j, snd := y } with | { fst := i, snd := x } => match { fst := k, snd := z } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y ij : ι hiij : i ≤ ij hjij : j ≤ ij hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y jk : ι hjjk : j ≤ jk hkjk : k ≤ jk hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z ijk : ι hijijk : ij ≤ ijk hjkijk : jk ≤ ijk ⊢ ij ≤ ijk case intro.intro.hjk L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝⁴ x✝³ x✝² : Σˣ f i : ι x : (fun i => G i) i j : ι y : (fun i => G i) j x✝¹ : match { fst := i, snd := x } with | { fst := i, snd := x } => match { fst := j, snd := y } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y k : ι z : (fun i => G i) k x✝ : match { fst := j, snd := y } with | { fst := i, snd := x } => match { fst := k, snd := z } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y ij : ι hiij : i ≤ ij hjij : j ≤ ij hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y jk : ι hjjk : j ≤ jk hkjk : k ≤ jk hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z ijk : ι hijijk : ij ≤ ijk hjkijk : jk ≤ ijk ⊢ ij ≤ ijk [PROOFSTEP] symm [GOAL] case intro.intro L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝⁴ x✝³ x✝² : Σˣ f i : ι x : (fun i => G i) i j : ι y : (fun i => G i) j x✝¹ : match { fst := i, snd := x } with | { fst := i, snd := x } => match { fst := j, snd := y } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y k : ι z : (fun i => G i) k x✝ : match { fst := j, snd := y } with | { fst := i, snd := x } => match { fst := k, snd := z } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y ij : ι hiij : i ≤ ij hjij : j ≤ ij hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y jk : ι hjjk : j ≤ jk hkjk : k ≤ jk hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z ijk : ι hijijk : ij ≤ ijk hjkijk : jk ≤ ijk ⊢ ↑(f k ijk (_ : k ≤ ijk)) z = ↑(f j ijk (_ : j ≤ ijk)) y [PROOFSTEP] rw [← DirectedSystem.map_map, ← hjk, DirectedSystem.map_map] [GOAL] case intro.intro.hjk L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝⁴ x✝³ x✝² : Σˣ f i : ι x : (fun i => G i) i j : ι y : (fun i => G i) j x✝¹ : match { fst := i, snd := x } with | { fst := i, snd := x } => match { fst := j, snd := y } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y k : ι z : (fun i => G i) k x✝ : match { fst := j, snd := y } with | { fst := i, snd := x } => match { fst := k, snd := z } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y ij : ι hiij : i ≤ ij hjij : j ≤ ij hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y jk : ι hjjk : j ≤ jk hkjk : k ≤ jk hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z ijk : ι hijijk : ij ≤ ijk hjkijk : jk ≤ ijk ⊢ jk ≤ ijk [PROOFSTEP] assumption [GOAL] case intro.intro.hjk L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 x✝⁴ x✝³ x✝² : Σˣ f i : ι x : (fun i => G i) i j : ι y : (fun i => G i) j x✝¹ : match { fst := i, snd := x } with | { fst := i, snd := x } => match { fst := j, snd := y } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y k : ι z : (fun i => G i) k x✝ : match { fst := j, snd := y } with | { fst := i, snd := x } => match { fst := k, snd := z } with | { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y ij : ι hiij : i ≤ ij hjij : j ≤ ij hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y jk : ι hjjk : j ≤ jk hkjk : k ≤ jk hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z ijk : ι hijijk : ij ≤ ijk hjkijk : jk ≤ ijk ⊢ ij ≤ ijk [PROOFSTEP] assumption [GOAL] L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) x y : Σˣ f i : ι hx : x.fst ≤ i hy : y.fst ≤ i ⊢ x ≈ y ↔ ↑(f x.fst i hx) x.snd = ↑(f y.fst i hy) y.snd [PROOFSTEP] cases x [GOAL] case mk L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) y : Σˣ f i : ι hy : y.fst ≤ i fst✝ : ι snd✝ : (fun i => G i) fst✝ hx : { fst := fst✝, snd := snd✝ }.fst ≤ i ⊢ { fst := fst✝, snd := snd✝ } ≈ y ↔ ↑(f { fst := fst✝, snd := snd✝ }.fst i hx) { fst := fst✝, snd := snd✝ }.snd = ↑(f y.fst i hy) y.snd [PROOFSTEP] cases y [GOAL] case mk.mk L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) i fst✝¹ : ι snd✝¹ : (fun i => G i) fst✝¹ hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i fst✝ : ι snd✝ : (fun i => G i) fst✝ hy : { fst := fst✝, snd := snd✝ }.fst ≤ i ⊢ { fst := fst✝¹, snd := snd✝¹ } ≈ { fst := fst✝, snd := snd✝ } ↔ ↑(f { fst := fst✝¹, snd := snd✝¹ }.fst i hx) { fst := fst✝¹, snd := snd✝¹ }.snd = ↑(f { fst := fst✝, snd := snd✝ }.fst i hy) { fst := fst✝, snd := snd✝ }.snd [PROOFSTEP] refine' ⟨fun xy => _, fun xy => ⟨i, hx, hy, xy⟩⟩ [GOAL] case mk.mk L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) i fst✝¹ : ι snd✝¹ : (fun i => G i) fst✝¹ hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i fst✝ : ι snd✝ : (fun i => G i) fst✝ hy : { fst := fst✝, snd := snd✝ }.fst ≤ i xy : { fst := fst✝¹, snd := snd✝¹ } ≈ { fst := fst✝, snd := snd✝ } ⊢ ↑(f { fst := fst✝¹, snd := snd✝¹ }.fst i hx) { fst := fst✝¹, snd := snd✝¹ }.snd = ↑(f { fst := fst✝, snd := snd✝ }.fst i hy) { fst := fst✝, snd := snd✝ }.snd [PROOFSTEP] obtain ⟨j, _, _, h⟩ := xy [GOAL] case mk.mk.intro.intro.intro L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) i fst✝¹ : ι snd✝¹ : (fun i => G i) fst✝¹ hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i fst✝ : ι snd✝ : (fun i => G i) fst✝ hy : { fst := fst✝, snd := snd✝ }.fst ≤ i j : ι w✝¹ : fst✝¹ ≤ j w✝ : fst✝ ≤ j h : ↑(f fst✝¹ j w✝¹) snd✝¹ = ↑(f fst✝ j w✝) snd✝ ⊢ ↑(f { fst := fst✝¹, snd := snd✝¹ }.fst i hx) { fst := fst✝¹, snd := snd✝¹ }.snd = ↑(f { fst := fst✝, snd := snd✝ }.fst i hy) { fst := fst✝, snd := snd✝ }.snd [PROOFSTEP] obtain ⟨k, ik, jk⟩ := directed_of (· ≤ ·) i j [GOAL] case mk.mk.intro.intro.intro.intro.intro L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) i fst✝¹ : ι snd✝¹ : (fun i => G i) fst✝¹ hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i fst✝ : ι snd✝ : (fun i => G i) fst✝ hy : { fst := fst✝, snd := snd✝ }.fst ≤ i j : ι w✝¹ : fst✝¹ ≤ j w✝ : fst✝ ≤ j h : ↑(f fst✝¹ j w✝¹) snd✝¹ = ↑(f fst✝ j w✝) snd✝ k : ι ik : i ≤ k jk : j ≤ k ⊢ ↑(f { fst := fst✝¹, snd := snd✝¹ }.fst i hx) { fst := fst✝¹, snd := snd✝¹ }.snd = ↑(f { fst := fst✝, snd := snd✝ }.fst i hy) { fst := fst✝, snd := snd✝ }.snd [PROOFSTEP] have h := congr_arg (f j k jk) h [GOAL] case mk.mk.intro.intro.intro.intro.intro L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) i fst✝¹ : ι snd✝¹ : (fun i => G i) fst✝¹ hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i fst✝ : ι snd✝ : (fun i => G i) fst✝ hy : { fst := fst✝, snd := snd✝ }.fst ≤ i j : ι w✝¹ : fst✝¹ ≤ j w✝ : fst✝ ≤ j h✝ : ↑(f fst✝¹ j w✝¹) snd✝¹ = ↑(f fst✝ j w✝) snd✝ k : ι ik : i ≤ k jk : j ≤ k h : ↑(f j k jk) (↑(f fst✝¹ j w✝¹) snd✝¹) = ↑(f j k jk) (↑(f fst✝ j w✝) snd✝) ⊢ ↑(f { fst := fst✝¹, snd := snd✝¹ }.fst i hx) { fst := fst✝¹, snd := snd✝¹ }.snd = ↑(f { fst := fst✝, snd := snd✝ }.fst i hy) { fst := fst✝, snd := snd✝ }.snd [PROOFSTEP] apply (f i k ik).injective [GOAL] case mk.mk.intro.intro.intro.intro.intro.a L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) i fst✝¹ : ι snd✝¹ : (fun i => G i) fst✝¹ hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i fst✝ : ι snd✝ : (fun i => G i) fst✝ hy : { fst := fst✝, snd := snd✝ }.fst ≤ i j : ι w✝¹ : fst✝¹ ≤ j w✝ : fst✝ ≤ j h✝ : ↑(f fst✝¹ j w✝¹) snd✝¹ = ↑(f fst✝ j w✝) snd✝ k : ι ik : i ≤ k jk : j ≤ k h : ↑(f j k jk) (↑(f fst✝¹ j w✝¹) snd✝¹) = ↑(f j k jk) (↑(f fst✝ j w✝) snd✝) ⊢ ↑(f i k ik) (↑(f { fst := fst✝¹, snd := snd✝¹ }.fst i hx) { fst := fst✝¹, snd := snd✝¹ }.snd) = ↑(f i k ik) (↑(f { fst := fst✝, snd := snd✝ }.fst i hy) { fst := fst✝, snd := snd✝ }.snd) [PROOFSTEP] rw [DirectedSystem.map_map, DirectedSystem.map_map] at * [GOAL] case mk.mk.intro.intro.intro.intro.intro.a L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) i fst✝¹ : ι snd✝¹ : (fun i => G i) fst✝¹ hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i fst✝ : ι snd✝ : (fun i => G i) fst✝ hy : { fst := fst✝, snd := snd✝ }.fst ≤ i j : ι w✝¹ : fst✝¹ ≤ j w✝ : fst✝ ≤ j h✝ : ↑(f fst✝¹ j w✝¹) snd✝¹ = ↑(f fst✝ j w✝) snd✝ k : ι ik : i ≤ k jk : j ≤ k h : ↑(f fst✝¹ k (_ : fst✝¹ ≤ k)) snd✝¹ = ↑(f fst✝ k (_ : fst✝ ≤ k)) snd✝ ⊢ ↑(f { fst := fst✝¹, snd := snd✝¹ }.fst k (_ : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ k)) { fst := fst✝¹, snd := snd✝¹ }.snd = ↑(f { fst := fst✝, snd := snd✝ }.fst k (_ : { fst := fst✝, snd := snd✝ }.fst ≤ k)) { fst := fst✝, snd := snd✝ }.snd [PROOFSTEP] exact h [GOAL] L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) n : ℕ F : Functions L n x : Fin n → Σˣ f i j : ι hi : i ∈ upperBounds (range (Sigma.fst ∘ x)) hj : j ∈ upperBounds (range (Sigma.fst ∘ x)) ⊢ Structure.Sigma.mk f i (funMap F (unify f x i hi)) ≈ Structure.Sigma.mk f j (funMap F (unify f x j hj)) [PROOFSTEP] obtain ⟨k, ik, jk⟩ := directed_of (· ≤ ·) i j [GOAL] case intro.intro L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) n : ℕ F : Functions L n x : Fin n → Σˣ f i j : ι hi : i ∈ upperBounds (range (Sigma.fst ∘ x)) hj : j ∈ upperBounds (range (Sigma.fst ∘ x)) k : ι ik : i ≤ k jk : j ≤ k ⊢ Structure.Sigma.mk f i (funMap F (unify f x i hi)) ≈ Structure.Sigma.mk f j (funMap F (unify f x j hj)) [PROOFSTEP] refine' ⟨k, ik, jk, _⟩ [GOAL] case intro.intro L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) n : ℕ F : Functions L n x : Fin n → Σˣ f i j : ι hi : i ∈ upperBounds (range (Sigma.fst ∘ x)) hj : j ∈ upperBounds (range (Sigma.fst ∘ x)) k : ι ik : i ≤ k jk : j ≤ k ⊢ ↑(f i k ik) (funMap F (unify f x i hi)) = ↑(f j k jk) (funMap F (unify f x j hj)) [PROOFSTEP] rw [(f i k ik).map_fun, (f j k jk).map_fun, comp_unify, comp_unify] [GOAL] L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) n : ℕ R : Relations L n x : Fin n → Σˣ f i j : ι hi : i ∈ upperBounds (range (Sigma.fst ∘ x)) hj : j ∈ upperBounds (range (Sigma.fst ∘ x)) ⊢ RelMap R (unify f x i hi) = RelMap R (unify f x j hj) [PROOFSTEP] obtain ⟨k, ik, jk⟩ := directed_of (· ≤ ·) i j [GOAL] case intro.intro L : Language ι : Type v inst✝³ : Preorder ι G : ι → Type w inst✝² : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝ : DirectedSystem G fun i j h => ↑(f i j h) n : ℕ R : Relations L n x : Fin n → Σˣ f i j : ι hi : i ∈ upperBounds (range (Sigma.fst ∘ x)) hj : j ∈ upperBounds (range (Sigma.fst ∘ x)) k : ι ik : i ≤ k jk : j ≤ k ⊢ RelMap R (unify f x i hi) = RelMap R (unify f x j hj) [PROOFSTEP] rw [← (f i k ik).map_rel, comp_unify, ← (f j k jk).map_rel, comp_unify] [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x y : α → Σˣ f xy : x ≈ y ⊢ ∃ i hx hy, unify f x i hx = unify f y i hy [PROOFSTEP] obtain ⟨i, hi⟩ := Fintype.bddAbove_range (Sum.elim (fun a => (x a).1) fun a => (y a).1) [GOAL] case intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x y : α → Σˣ f xy : x ≈ y i : ι hi : i ∈ upperBounds (range (Sum.elim (fun a => (x a).fst) fun a => (y a).fst)) ⊢ ∃ i hx hy, unify f x i hx = unify f y i hy [PROOFSTEP] rw [Sum.elim_range, upperBounds_union] at hi [GOAL] case intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x y : α → Σˣ f xy : x ≈ y i : ι hi : i ∈ upperBounds (range fun a => (x a).fst) ∩ upperBounds (range fun a => (y a).fst) ⊢ ∃ i hx hy, unify f x i hx = unify f y i hy [PROOFSTEP] simp_rw [← Function.comp_apply (f := Sigma.fst)] at hi [GOAL] case intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x y : α → Σˣ f xy : x ≈ y i : ι hi : i ∈ upperBounds (range fun a => (Sigma.fst ∘ x) a) ∩ upperBounds (range fun a => (Sigma.fst ∘ y) a) ⊢ ∃ i hx hy, unify f x i hx = unify f y i hy [PROOFSTEP] exact ⟨i, hi.1, hi.2, funext fun a => (equiv_iff G f _ _).1 (xy a)⟩ [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ F : Functions L n x y : Fin n → Σˣ f xy : x ≈ y ⊢ funMap F x ≈ funMap F y [PROOFSTEP] obtain ⟨i, hx, hy, h⟩ := exists_unify_eq G f xy [GOAL] case intro.intro.intro L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ F : Functions L n x y : Fin n → Σˣ f xy : x ≈ y i : ι hx : i ∈ upperBounds (range (Sigma.fst ∘ x)) hy : i ∈ upperBounds (range (Sigma.fst ∘ y)) h : unify f x i hx = unify f y i hy ⊢ funMap F x ≈ funMap F y [PROOFSTEP] refine' Setoid.trans (funMap_equiv_unify G f F x i hx) (Setoid.trans _ (Setoid.symm (funMap_equiv_unify G f F y i hy))) [GOAL] case intro.intro.intro L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ F : Functions L n x y : Fin n → Σˣ f xy : x ≈ y i : ι hx : i ∈ upperBounds (range (Sigma.fst ∘ x)) hy : i ∈ upperBounds (range (Sigma.fst ∘ y)) h : unify f x i hx = unify f y i hy ⊢ Structure.Sigma.mk f i (funMap F (unify f x i hx)) ≈ Structure.Sigma.mk f i (funMap F (unify f y i hy)) [PROOFSTEP] rw [h] [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ R : Relations L n x y : Fin n → Σˣ f xy : x ≈ y ⊢ RelMap R x = RelMap R y [PROOFSTEP] obtain ⟨i, hx, hy, h⟩ := exists_unify_eq G f xy [GOAL] case intro.intro.intro L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ R : Relations L n x y : Fin n → Σˣ f xy : x ≈ y i : ι hx : i ∈ upperBounds (range (Sigma.fst ∘ x)) hy : i ∈ upperBounds (range (Sigma.fst ∘ y)) h : unify f x i hx = unify f y i hy ⊢ RelMap R x = RelMap R y [PROOFSTEP] refine' _root_.trans (relMap_equiv_unify G f R x i hx) (_root_.trans _ (symm (relMap_equiv_unify G f R y i hy))) [GOAL] case intro.intro.intro L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ R : Relations L n x y : Fin n → Σˣ f xy : x ≈ y i : ι hx : i ∈ upperBounds (range (Sigma.fst ∘ x)) hy : i ∈ upperBounds (range (Sigma.fst ∘ y)) h : unify f x i hx = unify f y i hy ⊢ RelMap R (unify f x i hx) = RelMap R (unify f y i hy) [PROOFSTEP] rw [h] [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ F : Functions L n i : ι x : Fin n → G i ⊢ (funMap F fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (x a))) = Quotient.mk (setoid G f) (Structure.Sigma.mk f i (funMap F x)) [PROOFSTEP] simp [Function.comp_apply, funMap_quotient_mk', Quotient.eq'] [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ F : Functions L n i : ι x : Fin n → G i ⊢ (funMap F fun i_1 => Structure.Sigma.mk f i (x i_1)) ≈ Structure.Sigma.mk f i (funMap F x) [PROOFSTEP] obtain ⟨k, ik, jk⟩ := directed_of (· ≤ ·) i (Classical.choose (Fintype.bddAbove_range fun _ : Fin n => i)) [GOAL] case intro.intro L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ F : Functions L n i : ι x : Fin n → G i k : ι ik : i ≤ k jk : Classical.choose (_ : BddAbove (range fun x => i)) ≤ k ⊢ (funMap F fun i_1 => Structure.Sigma.mk f i (x i_1)) ≈ Structure.Sigma.mk f i (funMap F x) [PROOFSTEP] refine' ⟨k, jk, ik, _⟩ [GOAL] case intro.intro L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ F : Functions L n i : ι x : Fin n → G i k : ι ik : i ≤ k jk : Classical.choose (_ : BddAbove (range fun x => i)) ≤ k ⊢ ↑(f (Classical.choose (_ : BddAbove (range fun a => (Structure.Sigma.mk f i (x a)).fst))) k jk) (funMap F (unify f (fun i_1 => Structure.Sigma.mk f i (x i_1)) (Classical.choose (_ : BddAbove (range fun a => (Structure.Sigma.mk f i (x a)).fst))) (_ : Classical.choose (_ : BddAbove (range fun a => (Structure.Sigma.mk f i (x a)).fst)) ∈ upperBounds (range fun a => (Structure.Sigma.mk f i (x a)).fst)))) = ↑(f i k ik) (funMap F x) [PROOFSTEP] simp only [Embedding.map_fun, comp_unify] [GOAL] case intro.intro L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ F : Functions L n i : ι x : Fin n → G i k : ι ik : i ≤ k jk : Classical.choose (_ : BddAbove (range fun x => i)) ≤ k ⊢ funMap F (unify f (fun i_1 => Structure.Sigma.mk f i (x i_1)) k (_ : ∀ (k_1 : ι), k_1 ∈ range (Sigma.fst ∘ fun i_1 => Structure.Sigma.mk f i (x i_1)) → k_1 ≤ k)) = funMap F (↑(f i k ik) ∘ x) [PROOFSTEP] rfl [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ R : Relations L n i : ι x : Fin n → G i ⊢ (RelMap R fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (x a))) = RelMap R x [PROOFSTEP] rw [relMap_quotient_mk'] [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ R : Relations L n i : ι x : Fin n → G i ⊢ (RelMap R fun a => Structure.Sigma.mk f i (x a)) = RelMap R x [PROOFSTEP] obtain ⟨k, _, _⟩ := directed_of (· ≤ ·) i (Classical.choose (Fintype.bddAbove_range fun _ : Fin n => i)) [GOAL] case intro.intro L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ R : Relations L n i : ι x : Fin n → G i k : ι left✝ : i ≤ k right✝ : Classical.choose (_ : BddAbove (range fun x => i)) ≤ k ⊢ (RelMap R fun a => Structure.Sigma.mk f i (x a)) = RelMap R x [PROOFSTEP] rw [relMap_equiv_unify G f R (fun a => .mk f i (x a)) i] [GOAL] case intro.intro L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ R : Relations L n i : ι x : Fin n → G i k : ι left✝ : i ≤ k right✝ : Classical.choose (_ : BddAbove (range fun x => i)) ≤ k ⊢ RelMap R (unify f (fun a => Structure.Sigma.mk f i (x a)) i ?intro.intro) = RelMap R x case intro.intro L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι n : ℕ R : Relations L n i : ι x : Fin n → G i k : ι left✝ : i ≤ k right✝ : Classical.choose (_ : BddAbove (range fun x => i)) ≤ k ⊢ i ∈ upperBounds (range (Sigma.fst ∘ fun a => Structure.Sigma.mk f i (x a))) [PROOFSTEP] rw [unify_sigma_mk_self] [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x : α → DirectLimit G f ⊢ ∃ i y, x = fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a)) [PROOFSTEP] obtain ⟨i, hi⟩ := Fintype.bddAbove_range fun a => (x a).out.1 [GOAL] case intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x : α → DirectLimit G f i : ι hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst) ⊢ ∃ i y, x = fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a)) [PROOFSTEP] refine' ⟨i, unify f (Quotient.out ∘ x) i hi, _⟩ [GOAL] case intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x : α → DirectLimit G f i : ι hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst) ⊢ x = fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (unify f (Quotient.out ∘ x) i hi a)) [PROOFSTEP] ext a [GOAL] case intro.h L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x : α → DirectLimit G f i : ι hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst) a : α ⊢ x a = Quotient.mk (setoid G f) (Structure.Sigma.mk f i (unify f (Quotient.out ∘ x) i hi a)) [PROOFSTEP] rw [Quotient.eq_mk_iff_out, unify] [GOAL] case intro.h L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x : α → DirectLimit G f i : ι hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst) a : α ⊢ Quotient.out (x a) ≈ Structure.Sigma.mk f i (↑(f ((Quotient.out ∘ x) a).fst i (_ : ((Quotient.out ∘ x) a).fst ≤ i)) ((Quotient.out ∘ x) a).snd) [PROOFSTEP] generalize_proofs r [GOAL] case intro.h L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x : α → DirectLimit G f i : ι hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst) a : α r : ((Quotient.out ∘ x) a).fst ≤ i ⊢ Quotient.out (x a) ≈ Structure.Sigma.mk f i (↑(f ((Quotient.out ∘ x) a).fst i r) ((Quotient.out ∘ x) a).snd) [PROOFSTEP] change _ ≈ .mk f i (f (Quotient.out (x a)).fst i r (Quotient.out (x a)).snd) [GOAL] case intro.h L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x : α → DirectLimit G f i : ι hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst) a : α r : ((Quotient.out ∘ x) a).fst ≤ i ⊢ Quotient.out (x a) ≈ Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd) [PROOFSTEP] have : (.mk f i (f (Quotient.out (x a)).fst i r (Quotient.out (x a)).snd) : Σˣ f).fst ≤ i := le_rfl [GOAL] case intro.h L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x : α → DirectLimit G f i : ι hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst) a : α r : ((Quotient.out ∘ x) a).fst ≤ i this : (Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd)).fst ≤ i ⊢ Quotient.out (x a) ≈ Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd) [PROOFSTEP] rw [equiv_iff G f (i := i) (hi _) this] [GOAL] case intro.h L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x : α → DirectLimit G f i : ι hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst) a : α r : ((Quotient.out ∘ x) a).fst ≤ i this : (Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd)).fst ≤ i ⊢ ↑(f (Quotient.out (x a)).fst i (_ : (Quotient.out (x a)).fst ≤ i)) (Quotient.out (x a)).snd = ↑(f (Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd)).fst i this) (Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd)).snd [PROOFSTEP] simp only [DirectedSystem.map_self] [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι α : Type u_1 inst✝ : Fintype α x : α → DirectLimit G f i : ι hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst) a : α r : ((Quotient.out ∘ x) a).fst ≤ i this : (Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd)).fst ≤ i ⊢ (Quotient.out (x a)).fst ∈ range fun a => (Quotient.out (x a)).fst [PROOFSTEP] exact ⟨a, rfl⟩ [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι i : ι x y : G i h : (fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) x = (fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) y ⊢ x = y [PROOFSTEP] rw [Quotient.eq] at h [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι i : ι x y : G i h : Structure.Sigma.mk f i x ≈ Structure.Sigma.mk f i y ⊢ x = y [PROOFSTEP] obtain ⟨j, h1, _, h3⟩ := h [GOAL] case intro.intro.intro L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι i : ι x y : G i j : ι h1 w✝ : i ≤ j h3 : ↑(f i j h1) x = ↑(f i j w✝) y ⊢ x = y [PROOFSTEP] exact (f i j h1).injective h3 [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι i : ι n✝ : ℕ F : Functions L n✝ x : Fin n✝ → G i ⊢ Function.Embedding.toFun { toFun := fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a), inj' := (_ : ∀ (x y : G i), (fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) x = (fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) y → x = y) } (funMap F x) = funMap F ({ toFun := fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a), inj' := (_ : ∀ (x y : G i), (fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) x = (fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) y → x = y) }.toFun ∘ x) [PROOFSTEP] simp [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι i : ι n✝ : ℕ F : Functions L n✝ x : Fin n✝ → G i ⊢ Quotient.mk (setoid G f) (Structure.Sigma.mk f i (funMap F x)) = funMap F ((fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) ∘ x) [PROOFSTEP] rw [← funMap_quotient_mk'_sigma_mk'] [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι i : ι n✝ : ℕ F : Functions L n✝ x : Fin n✝ → G i ⊢ (funMap F fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (x a))) = funMap F ((fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) ∘ x) [PROOFSTEP] rfl [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι i : ι ⊢ ∀ {n : ℕ} (r : Relations L n) (x : Fin n → G i), RelMap r ({ toFun := fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a), inj' := (_ : ∀ (x y : G i), (fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) x = (fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) y → x = y) }.toFun ∘ x) ↔ RelMap r x [PROOFSTEP] intro n R x [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι i : ι n : ℕ R : Relations L n x : Fin n → G i ⊢ RelMap R ({ toFun := fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a), inj' := (_ : ∀ (x y : G i), (fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) x = (fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) y → x = y) }.toFun ∘ x) ↔ RelMap R x [PROOFSTEP] change RelMap R (fun a => (⟦.mk f i (x a)⟧ : DirectLimit G f)) ↔ _ [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι i : ι n : ℕ R : Relations L n x : Fin n → G i ⊢ (RelMap R fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (x a))) ↔ RelMap R x [PROOFSTEP] simp only [relMap_quotient_mk'_sigma_mk'] [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι i j : ι hij : i ≤ j x : G i ⊢ ↑(of L ι G f j) (↑(f i j hij) x) = ↑(of L ι G f i) x [PROOFSTEP] rw [of_apply, of_apply, Quotient.eq] [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι i j : ι hij : i ≤ j x : G i ⊢ Structure.Sigma.mk f j (↑(f i j hij) x) ≈ Structure.Sigma.mk f i x [PROOFSTEP] refine' Setoid.symm ⟨j, hij, refl j, _⟩ [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι i j : ι hij : i ≤ j x : G i ⊢ ↑(f i j hij) x = ↑(f j j (_ : j ≤ j)) (↑(f i j hij) x) [PROOFSTEP] simp only [DirectedSystem.map_self] [GOAL] L : Language ι : Type v inst✝⁴ : Preorder ι G : ι → Type w inst✝³ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝² : IsDirected ι fun x x_1 => x ≤ x_1 inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h) inst✝ : Nonempty ι z : DirectLimit G f ⊢ ↑(of L ι G f (Quotient.out z).fst) (Quotient.out z).snd = z [PROOFSTEP] simp [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x x y : Σˣ f xy : x ≈ y ⊢ (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y [PROOFSTEP] simp [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x x y : Σˣ f xy : x ≈ y ⊢ ↑(g x.fst) x.snd = ↑(g y.fst) y.snd [PROOFSTEP] obtain ⟨i, hx, hy⟩ := directed_of (· ≤ ·) x.1 y.1 [GOAL] case intro.intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x x y : Σˣ f xy : x ≈ y i : ι hx : x.fst ≤ i hy : y.fst ≤ i ⊢ ↑(g x.fst) x.snd = ↑(g y.fst) y.snd [PROOFSTEP] rw [← Hg x.1 i hx, ← Hg y.1 i hy] [GOAL] case intro.intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x x y : Σˣ f xy : x ≈ y i : ι hx : x.fst ≤ i hy : y.fst ≤ i ⊢ ↑(g i) (↑(f x.fst i hx) x.snd) = ↑(g i) (↑(f y.fst i hy) y.snd) [PROOFSTEP] exact congr_arg _ ((equiv_iff ..).1 xy) [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x x y : DirectLimit G f xy : Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x = Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y ⊢ x = y [PROOFSTEP] rw [← Quotient.out_eq x, ← Quotient.out_eq y, Quotient.lift_mk, Quotient.lift_mk] at xy [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x x y : DirectLimit G f xy : ↑(g (Quotient.out x).fst) (Quotient.out x).snd = ↑(g (Quotient.out y).fst) (Quotient.out y).snd ⊢ x = y [PROOFSTEP] obtain ⟨i, hx, hy⟩ := directed_of (· ≤ ·) x.out.1 y.out.1 [GOAL] case intro.intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x x y : DirectLimit G f xy : ↑(g (Quotient.out x).fst) (Quotient.out x).snd = ↑(g (Quotient.out y).fst) (Quotient.out y).snd i : ι hx : (Quotient.out x).fst ≤ i hy : (Quotient.out y).fst ≤ i ⊢ x = y [PROOFSTEP] rw [← Hg x.out.1 i hx, ← Hg y.out.1 i hy] at xy [GOAL] case intro.intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x x y : DirectLimit G f i : ι hx : (Quotient.out x).fst ≤ i hy : (Quotient.out y).fst ≤ i xy : ↑(g i) (↑(f (Quotient.out x).fst i hx) (Quotient.out x).snd) = ↑(g i) (↑(f (Quotient.out y).fst i hy) (Quotient.out y).snd) ⊢ x = y [PROOFSTEP] rw [← Quotient.out_eq x, ← Quotient.out_eq y, Quotient.eq, equiv_iff G f hx hy] [GOAL] case intro.intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x x y : DirectLimit G f i : ι hx : (Quotient.out x).fst ≤ i hy : (Quotient.out y).fst ≤ i xy : ↑(g i) (↑(f (Quotient.out x).fst i hx) (Quotient.out x).snd) = ↑(g i) (↑(f (Quotient.out y).fst i hy) (Quotient.out y).snd) ⊢ ↑(f (Quotient.out x).fst i hx) (Quotient.out x).snd = ↑(f (Quotient.out y).fst i hy) (Quotient.out y).snd [PROOFSTEP] exact (g i).injective xy [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x n✝ : ℕ F : Functions L n✝ x : Fin n✝ → DirectLimit G f ⊢ Function.Embedding.toFun { toFun := Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y), inj' := (_ : ∀ (x y : DirectLimit G f), Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x = Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y → x = y) } (funMap F x) = funMap F ({ toFun := Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y), inj' := (_ : ∀ (x y : DirectLimit G f), Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x = Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y → x = y) }.toFun ∘ x) [PROOFSTEP] obtain ⟨i, y, rfl⟩ := exists_quotient_mk'_sigma_mk'_eq G f x [GOAL] case intro.intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x n✝ : ℕ F : Functions L n✝ i : ι y : Fin n✝ → G i ⊢ Function.Embedding.toFun { toFun := Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y), inj' := (_ : ∀ (x y : DirectLimit G f), Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x = Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y → x = y) } (funMap F fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a))) = funMap F ({ toFun := Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y), inj' := (_ : ∀ (x y : DirectLimit G f), Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x = Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y → x = y) }.toFun ∘ fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a))) [PROOFSTEP] change _ = funMap F (Quotient.lift _ _ ∘ Quotient.mk _ ∘ Structure.Sigma.mk f i ∘ y) [GOAL] case intro.intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x n✝ : ℕ F : Functions L n✝ i : ι y : Fin n✝ → G i ⊢ Function.Embedding.toFun { toFun := Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y), inj' := (_ : ∀ (x y : DirectLimit G f), Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x = Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y → x = y) } (funMap F fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a))) = funMap F (Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) ∘ Quotient.mk (setoid G f) ∘ Structure.Sigma.mk f i ∘ y) [PROOFSTEP] rw [funMap_quotient_mk'_sigma_mk', ← Function.comp.assoc, Quotient.lift_comp_mk] [GOAL] case intro.intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x n✝ : ℕ F : Functions L n✝ i : ι y : Fin n✝ → G i ⊢ Function.Embedding.toFun { toFun := Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y), inj' := (_ : ∀ (x y : DirectLimit G f), Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x = Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y → x = y) } (Quotient.mk (setoid G f) (Structure.Sigma.mk f i (funMap F fun a => y a))) = funMap F ((fun x => ↑(g x.fst) x.snd) ∘ Structure.Sigma.mk f i ∘ y) [PROOFSTEP] simp only [Quotient.lift_mk, Embedding.map_fun] [GOAL] case intro.intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x n✝ : ℕ F : Functions L n✝ i : ι y : Fin n✝ → G i ⊢ funMap F (↑(g i) ∘ fun a => y a) = funMap F ((fun x => ↑(g x.fst) x.snd) ∘ Structure.Sigma.mk f i ∘ y) [PROOFSTEP] rfl [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x n✝ : ℕ R : Relations L n✝ x : Fin n✝ → DirectLimit G f ⊢ RelMap R ({ toFun := Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y), inj' := (_ : ∀ (x y : DirectLimit G f), Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x = Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y → x = y) }.toFun ∘ x) ↔ RelMap R x [PROOFSTEP] obtain ⟨i, y, rfl⟩ := exists_quotient_mk'_sigma_mk'_eq G f x [GOAL] case intro.intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x n✝ : ℕ R : Relations L n✝ i : ι y : Fin n✝ → G i ⊢ RelMap R ({ toFun := Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y), inj' := (_ : ∀ (x y : DirectLimit G f), Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x = Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y → x = y) }.toFun ∘ fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a))) ↔ RelMap R fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a)) [PROOFSTEP] change RelMap R (Quotient.lift _ _ ∘ Quotient.mk _ ∘ Structure.Sigma.mk f i ∘ y) ↔ _ [GOAL] case intro.intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x n✝ : ℕ R : Relations L n✝ i : ι y : Fin n✝ → G i ⊢ RelMap R (Quotient.lift (fun x => ↑(g x.fst) x.snd) (_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) ∘ Quotient.mk (setoid G f) ∘ Structure.Sigma.mk f i ∘ y) ↔ RelMap R fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a)) [PROOFSTEP] rw [relMap_quotient_mk'_sigma_mk' G f, ← (g i).map_rel R y, ← Function.comp.assoc, Quotient.lift_comp_mk] [GOAL] case intro.intro L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x n✝ : ℕ R : Relations L n✝ i : ι y : Fin n✝ → G i ⊢ RelMap R ((fun x => ↑(g x.fst) x.snd) ∘ Structure.Sigma.mk f i ∘ y) ↔ RelMap R (↑(g i) ∘ y) [PROOFSTEP] rfl [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x i : ι x : G i ⊢ ↑(lift L ι G f g Hg) (Quotient.mk (setoid G f) (Structure.Sigma.mk f i x)) = ↑(g i) x [PROOFSTEP] change (lift L ι G f g Hg).toFun ⟦.mk f i x⟧ = _ [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x i : ι x : G i ⊢ Function.Embedding.toFun (lift L ι G f g Hg).toEmbedding (Quotient.mk (setoid G f) (Structure.Sigma.mk f i x)) = ↑(g i) x [PROOFSTEP] simp only [lift, Quotient.lift_mk] [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x i : ι x : G i ⊢ ↑(lift L ι G f g Hg) (↑(of L ι G f i) x) = ↑(g i) x [PROOFSTEP] simp [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x F : DirectLimit G f ↪[L] P x✝ : DirectLimit G f i j : ι hij : i ≤ j x : G i ⊢ ↑((fun i => Embedding.comp F (of L ι G f i)) j) (↑(f i j hij) x) = ↑((fun i => Embedding.comp F (of L ι G f i)) i) x [PROOFSTEP] rw [F.comp_apply, F.comp_apply, of_f] [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x F : DirectLimit G f ↪[L] P x✝ : DirectLimit G f i : ι x : G i ⊢ ↑F (↑(of L ι G f i) x) = ↑(lift L ι G f (fun i => Embedding.comp F (of L ι G f i)) (_ : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑((fun i => Embedding.comp F (of L ι G f i)) j) (↑(f i j hij) x) = ↑((fun i => Embedding.comp F (of L ι G f i)) i) x)) (↑(of L ι G f i) x) [PROOFSTEP] rw [lift_of] [GOAL] L : Language ι : Type v inst✝⁵ : Preorder ι G : ι → Type w inst✝⁴ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : DirectedSystem G fun i j h => ↑(f i j h) inst✝¹ : Nonempty ι P : Type u₁ inst✝ : Structure L P g : (i : ι) → G i ↪[L] P Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x F : DirectLimit G f ↪[L] P x✝ : DirectLimit G f i : ι x : G i ⊢ ↑F (↑(of L ι G f i) x) = ↑(Embedding.comp F (of L ι G f i)) x [PROOFSTEP] rfl [GOAL] L : Language ι✝ : Type v inst✝¹¹ : Preorder ι✝ G✝ : ι✝ → Type w inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i) f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1 inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h) inst✝⁷ : Nonempty ι✝ P : Type u₁ inst✝⁶ : Structure L P g : (i : ι✝) → G✝ i ↪[L] P Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x ι : Type u_1 inst✝⁵ : Encodable ι inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j h : ∀ (i : ι), CG L (G i) inst✝ : DirectedSystem G fun i j h => ↑(f i j h) ⊢ CG L (DirectLimit G f) [PROOFSTEP] refine' ⟨⟨⋃ i, DirectLimit.of L ι G f i '' Classical.choose (h i).out, _, _⟩⟩ [GOAL] case refine'_1 L : Language ι✝ : Type v inst✝¹¹ : Preorder ι✝ G✝ : ι✝ → Type w inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i) f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1 inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h) inst✝⁷ : Nonempty ι✝ P : Type u₁ inst✝⁶ : Structure L P g : (i : ι✝) → G✝ i ↪[L] P Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x ι : Type u_1 inst✝⁵ : Encodable ι inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j h : ∀ (i : ι), CG L (G i) inst✝ : DirectedSystem G fun i j h => ↑(f i j h) ⊢ Set.Countable (⋃ (i : ι), ↑(of L ι G f i) '' Classical.choose (_ : Substructure.CG ⊤)) [PROOFSTEP] exact Set.countable_iUnion fun i => Set.Countable.image (Classical.choose_spec (h i).out).1 _ [GOAL] case refine'_2 L : Language ι✝ : Type v inst✝¹¹ : Preorder ι✝ G✝ : ι✝ → Type w inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i) f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1 inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h) inst✝⁷ : Nonempty ι✝ P : Type u₁ inst✝⁶ : Structure L P g : (i : ι✝) → G✝ i ↪[L] P Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x ι : Type u_1 inst✝⁵ : Encodable ι inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j h : ∀ (i : ι), CG L (G i) inst✝ : DirectedSystem G fun i j h => ↑(f i j h) ⊢ LowerAdjoint.toFun (Substructure.closure L) (⋃ (i : ι), ↑(of L ι G f i) '' Classical.choose (_ : Substructure.CG ⊤)) = ⊤ [PROOFSTEP] rw [eq_top_iff, Substructure.closure_unionᵢ] [GOAL] case refine'_2 L : Language ι✝ : Type v inst✝¹¹ : Preorder ι✝ G✝ : ι✝ → Type w inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i) f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1 inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h) inst✝⁷ : Nonempty ι✝ P : Type u₁ inst✝⁶ : Structure L P g : (i : ι✝) → G✝ i ↪[L] P Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x ι : Type u_1 inst✝⁵ : Encodable ι inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j h : ∀ (i : ι), CG L (G i) inst✝ : DirectedSystem G fun i j h => ↑(f i j h) ⊢ ⊤ ≤ ⨆ (i : ι), LowerAdjoint.toFun (Substructure.closure L) (↑(of L ι G f i) '' Classical.choose (_ : Substructure.CG ⊤)) [PROOFSTEP] simp_rw [← Embedding.coe_toHom, Substructure.closure_image] [GOAL] case refine'_2 L : Language ι✝ : Type v inst✝¹¹ : Preorder ι✝ G✝ : ι✝ → Type w inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i) f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1 inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h) inst✝⁷ : Nonempty ι✝ P : Type u₁ inst✝⁶ : Structure L P g : (i : ι✝) → G✝ i ↪[L] P Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x ι : Type u_1 inst✝⁵ : Encodable ι inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j h : ∀ (i : ι), CG L (G i) inst✝ : DirectedSystem G fun i j h => ↑(f i j h) ⊢ ⊤ ≤ ⨆ (i : ι), Substructure.map (Embedding.toHom (of L ι G f i)) (LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) [PROOFSTEP] rw [le_iSup_iff] [GOAL] case refine'_2 L : Language ι✝ : Type v inst✝¹¹ : Preorder ι✝ G✝ : ι✝ → Type w inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i) f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1 inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h) inst✝⁷ : Nonempty ι✝ P : Type u₁ inst✝⁶ : Structure L P g : (i : ι✝) → G✝ i ↪[L] P Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x ι : Type u_1 inst✝⁵ : Encodable ι inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j h : ∀ (i : ι), CG L (G i) inst✝ : DirectedSystem G fun i j h => ↑(f i j h) ⊢ ∀ (b : Substructure L (DirectLimit G f)), (∀ (i : ι), Substructure.map (Embedding.toHom (of L ι G f i)) (LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) ≤ b) → ⊤ ≤ b [PROOFSTEP] intro S hS x _ [GOAL] case refine'_2 L : Language ι✝ : Type v inst✝¹¹ : Preorder ι✝ G✝ : ι✝ → Type w inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i) f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1 inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h) inst✝⁷ : Nonempty ι✝ P : Type u₁ inst✝⁶ : Structure L P g : (i : ι✝) → G✝ i ↪[L] P Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x ι : Type u_1 inst✝⁵ : Encodable ι inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j h : ∀ (i : ι), CG L (G i) inst✝ : DirectedSystem G fun i j h => ↑(f i j h) S : Substructure L (DirectLimit G f) hS : ∀ (i : ι), Substructure.map (Embedding.toHom (of L ι G f i)) (LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) ≤ S x : DirectLimit G f a✝ : x ∈ ⊤ ⊢ x ∈ S [PROOFSTEP] let out := Quotient.out (s := DirectLimit.setoid G f) [GOAL] case refine'_2 L : Language ι✝ : Type v inst✝¹¹ : Preorder ι✝ G✝ : ι✝ → Type w inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i) f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1 inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h) inst✝⁷ : Nonempty ι✝ P : Type u₁ inst✝⁶ : Structure L P g : (i : ι✝) → G✝ i ↪[L] P Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x ι : Type u_1 inst✝⁵ : Encodable ι inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j h : ∀ (i : ι), CG L (G i) inst✝ : DirectedSystem G fun i j h => ↑(f i j h) S : Substructure L (DirectLimit G f) hS : ∀ (i : ι), Substructure.map (Embedding.toHom (of L ι G f i)) (LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) ≤ S x : DirectLimit G f a✝ : x ∈ ⊤ out : Quotient (setoid G f) → Σˣ f := Quotient.out ⊢ x ∈ S [PROOFSTEP] refine' hS (out x).1 ⟨(out x).2, _, _⟩ [GOAL] case refine'_2.refine'_1 L : Language ι✝ : Type v inst✝¹¹ : Preorder ι✝ G✝ : ι✝ → Type w inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i) f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1 inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h) inst✝⁷ : Nonempty ι✝ P : Type u₁ inst✝⁶ : Structure L P g : (i : ι✝) → G✝ i ↪[L] P Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x ι : Type u_1 inst✝⁵ : Encodable ι inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j h : ∀ (i : ι), CG L (G i) inst✝ : DirectedSystem G fun i j h => ↑(f i j h) S : Substructure L (DirectLimit G f) hS : ∀ (i : ι), Substructure.map (Embedding.toHom (of L ι G f i)) (LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) ≤ S x : DirectLimit G f a✝ : x ∈ ⊤ out : Quotient (setoid G f) → Σˣ f := Quotient.out ⊢ (out x).snd ∈ ↑(LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) [PROOFSTEP] rw [(Classical.choose_spec (h (out x).1).out).2] [GOAL] case refine'_2.refine'_1 L : Language ι✝ : Type v inst✝¹¹ : Preorder ι✝ G✝ : ι✝ → Type w inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i) f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1 inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h) inst✝⁷ : Nonempty ι✝ P : Type u₁ inst✝⁶ : Structure L P g : (i : ι✝) → G✝ i ↪[L] P Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x ι : Type u_1 inst✝⁵ : Encodable ι inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j h : ∀ (i : ι), CG L (G i) inst✝ : DirectedSystem G fun i j h => ↑(f i j h) S : Substructure L (DirectLimit G f) hS : ∀ (i : ι), Substructure.map (Embedding.toHom (of L ι G f i)) (LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) ≤ S x : DirectLimit G f a✝ : x ∈ ⊤ out : Quotient (setoid G f) → Σˣ f := Quotient.out ⊢ (out x).snd ∈ ↑⊤ [PROOFSTEP] trivial [GOAL] case refine'_2.refine'_2 L : Language ι✝ : Type v inst✝¹¹ : Preorder ι✝ G✝ : ι✝ → Type w inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i) f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1 inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h) inst✝⁷ : Nonempty ι✝ P : Type u₁ inst✝⁶ : Structure L P g : (i : ι✝) → G✝ i ↪[L] P Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x ι : Type u_1 inst✝⁵ : Encodable ι inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type w inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j h : ∀ (i : ι), CG L (G i) inst✝ : DirectedSystem G fun i j h => ↑(f i j h) S : Substructure L (DirectLimit G f) hS : ∀ (i : ι), Substructure.map (Embedding.toHom (of L ι G f i)) (LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) ≤ S x : DirectLimit G f a✝ : x ∈ ⊤ out : Quotient (setoid G f) → Σˣ f := Quotient.out ⊢ ↑(Embedding.toHom (of L ι G f (out x).fst)) (out x).snd = x [PROOFSTEP] simp only [Embedding.coe_toHom, DirectLimit.of_apply, Sigma.eta, Quotient.out_eq]
{"mathlib_filename": "Mathlib.ModelTheory.DirectLimit", "llama_tokens": 43299}
[GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N h : Countable M ⊢ Set.Countable (Quotient.mk' '' age L M) [PROOFSTEP] classical refine' (congr_arg _ (Set.ext <| forall_quotient_iff.2 fun N => _)).mp (countable_range fun s : Finset M => ⟦⟨closure L (s : Set M), inferInstance⟩⟧) constructor · rintro ⟨s, hs⟩ use Bundled.of (closure L (s : Set M)) exact ⟨⟨(fg_iff_structure_fg _).1 (fg_closure s.finite_toSet), ⟨Substructure.subtype _⟩⟩, hs⟩ · simp only [mem_range, Quotient.eq] rintro ⟨P, ⟨⟨s, hs⟩, ⟨PM⟩⟩, hP2⟩ have : P ≈ N := by apply Quotient.eq'.mp; rw [hP2]; rfl -- Porting note: added refine' ⟨s.image PM, Setoid.trans (b := P) _ this⟩ rw [← Embedding.coe_toHom, Finset.coe_image, closure_image PM.toHom, hs, ← Hom.range_eq_map] exact ⟨PM.equivRange.symm⟩ [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N h : Countable M ⊢ Set.Countable (Quotient.mk' '' age L M) [PROOFSTEP] refine' (congr_arg _ (Set.ext <| forall_quotient_iff.2 fun N => _)).mp (countable_range fun s : Finset M => ⟦⟨closure L (s : Set M), inferInstance⟩⟧) [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : Countable M N : Bundled (Structure L) ⊢ (Quotient.mk equivSetoid N ∈ range fun s => Quotient.mk equivSetoid (Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑s })) ↔ Quotient.mk equivSetoid N ∈ Quotient.mk' '' age L M [PROOFSTEP] constructor [GOAL] case mp L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : Countable M N : Bundled (Structure L) ⊢ (Quotient.mk equivSetoid N ∈ range fun s => Quotient.mk equivSetoid (Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑s })) → Quotient.mk equivSetoid N ∈ Quotient.mk' '' age L M [PROOFSTEP] rintro ⟨s, hs⟩ [GOAL] case mp.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : Countable M N : Bundled (Structure L) s : Finset M hs : (fun s => Quotient.mk equivSetoid (Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑s })) s = Quotient.mk equivSetoid N ⊢ Quotient.mk equivSetoid N ∈ Quotient.mk' '' age L M [PROOFSTEP] use Bundled.of (closure L (s : Set M)) [GOAL] case h L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : Countable M N : Bundled (Structure L) s : Finset M hs : (fun s => Quotient.mk equivSetoid (Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑s })) s = Quotient.mk equivSetoid N ⊢ Bundled.of { x // x ∈ LowerAdjoint.toFun (closure L) ↑s } ∈ age L M ∧ Quotient.mk' (Bundled.of { x // x ∈ LowerAdjoint.toFun (closure L) ↑s }) = Quotient.mk equivSetoid N [PROOFSTEP] exact ⟨⟨(fg_iff_structure_fg _).1 (fg_closure s.finite_toSet), ⟨Substructure.subtype _⟩⟩, hs⟩ [GOAL] case mpr L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : Countable M N : Bundled (Structure L) ⊢ Quotient.mk equivSetoid N ∈ Quotient.mk' '' age L M → Quotient.mk equivSetoid N ∈ range fun s => Quotient.mk equivSetoid (Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑s }) [PROOFSTEP] simp only [mem_range, Quotient.eq] [GOAL] case mpr L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : Countable M N : Bundled (Structure L) ⊢ Quotient.mk equivSetoid N ∈ Quotient.mk' '' age L M → ∃ y, Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑y } ≈ N [PROOFSTEP] rintro ⟨P, ⟨⟨s, hs⟩, ⟨PM⟩⟩, hP2⟩ [GOAL] case mpr.intro.intro.intro.mk.intro.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : Countable M N P : Bundled (Structure L) hP2 : Quotient.mk' P = Quotient.mk equivSetoid N s : Finset ↑P hs : LowerAdjoint.toFun (closure L) ↑s = ⊤ PM : ↑P ↪[L] M ⊢ ∃ y, Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑y } ≈ N [PROOFSTEP] have : P ≈ N := by apply Quotient.eq'.mp; rw [hP2]; rfl -- Porting note: added [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : Countable M N P : Bundled (Structure L) hP2 : Quotient.mk' P = Quotient.mk equivSetoid N s : Finset ↑P hs : LowerAdjoint.toFun (closure L) ↑s = ⊤ PM : ↑P ↪[L] M ⊢ P ≈ N [PROOFSTEP] apply Quotient.eq'.mp [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : Countable M N P : Bundled (Structure L) hP2 : Quotient.mk' P = Quotient.mk equivSetoid N s : Finset ↑P hs : LowerAdjoint.toFun (closure L) ↑s = ⊤ PM : ↑P ↪[L] M ⊢ Quotient.mk' P = Quotient.mk' N [PROOFSTEP] rw [hP2] [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : Countable M N P : Bundled (Structure L) hP2 : Quotient.mk' P = Quotient.mk equivSetoid N s : Finset ↑P hs : LowerAdjoint.toFun (closure L) ↑s = ⊤ PM : ↑P ↪[L] M ⊢ Quotient.mk equivSetoid N = Quotient.mk' N [PROOFSTEP] rfl -- Porting note: added [GOAL] case mpr.intro.intro.intro.mk.intro.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : Countable M N P : Bundled (Structure L) hP2 : Quotient.mk' P = Quotient.mk equivSetoid N s : Finset ↑P hs : LowerAdjoint.toFun (closure L) ↑s = ⊤ PM : ↑P ↪[L] M this : P ≈ N ⊢ ∃ y, Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑y } ≈ N [PROOFSTEP] refine' ⟨s.image PM, Setoid.trans (b := P) _ this⟩ [GOAL] case mpr.intro.intro.intro.mk.intro.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : Countable M N P : Bundled (Structure L) hP2 : Quotient.mk' P = Quotient.mk equivSetoid N s : Finset ↑P hs : LowerAdjoint.toFun (closure L) ↑s = ⊤ PM : ↑P ↪[L] M this : P ≈ N ⊢ Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑(Finset.image (↑PM) s) } ≈ P [PROOFSTEP] rw [← Embedding.coe_toHom, Finset.coe_image, closure_image PM.toHom, hs, ← Hom.range_eq_map] [GOAL] case mpr.intro.intro.intro.mk.intro.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : Countable M N P : Bundled (Structure L) hP2 : Quotient.mk' P = Quotient.mk equivSetoid N s : Finset ↑P hs : LowerAdjoint.toFun (closure L) ↑s = ⊤ PM : ↑P ↪[L] M this : P ≈ N ⊢ Bundled.mk { x // x ∈ Hom.range (Embedding.toHom PM) } ≈ P [PROOFSTEP] exact ⟨PM.equivRange.symm⟩ [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝⁶ : Structure L M N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) ⊢ age L (DirectLimit G f) = ⋃ (i : ι), age L (G i) [PROOFSTEP] classical ext M simp only [mem_iUnion] constructor · rintro ⟨Mfg, ⟨e⟩⟩ obtain ⟨s, hs⟩ := Mfg.range e.toHom let out := @Quotient.out _ (DirectLimit.setoid G f) obtain ⟨i, hi⟩ := Finset.exists_le (s.image (Sigma.fst ∘ out)) have e' := (DirectLimit.of L ι G f i).equivRange.symm.toEmbedding refine' ⟨i, Mfg, ⟨e'.comp ((Substructure.inclusion _).comp e.equivRange.toEmbedding)⟩⟩ rw [← hs, closure_le] intro x hx refine' ⟨f (out x).1 i (hi (out x).1 (Finset.mem_image_of_mem _ hx)) (out x).2, _⟩ rw [Embedding.coe_toHom, DirectLimit.of_apply, @Quotient.mk_eq_iff_out _ (_), DirectLimit.equiv_iff G f _ (hi (out x).1 (Finset.mem_image_of_mem _ hx)), DirectedSystem.map_self] rfl · rintro ⟨i, Mfg, ⟨e⟩⟩ exact ⟨Mfg, ⟨Embedding.comp (DirectLimit.of L ι G f i) e⟩⟩ [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝⁶ : Structure L M N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) ⊢ age L (DirectLimit G f) = ⋃ (i : ι), age L (G i) [PROOFSTEP] ext M [GOAL] case h L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) ⊢ M ∈ age L (DirectLimit G f) ↔ M ∈ ⋃ (i : ι), age L (G i) [PROOFSTEP] simp only [mem_iUnion] [GOAL] case h L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) ⊢ M ∈ age L (DirectLimit G f) ↔ ∃ i, M ∈ age L (G i) [PROOFSTEP] constructor [GOAL] case h.mp L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) ⊢ M ∈ age L (DirectLimit G f) → ∃ i, M ∈ age L (G i) [PROOFSTEP] rintro ⟨Mfg, ⟨e⟩⟩ [GOAL] case h.mp.intro.intro L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) Mfg : Structure.FG L ↑M e : ↑M ↪[L] DirectLimit G f ⊢ ∃ i, M ∈ age L (G i) [PROOFSTEP] obtain ⟨s, hs⟩ := Mfg.range e.toHom [GOAL] case h.mp.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) Mfg : Structure.FG L ↑M e : ↑M ↪[L] DirectLimit G f s : Finset (DirectLimit G f) hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e) ⊢ ∃ i, M ∈ age L (G i) [PROOFSTEP] let out := @Quotient.out _ (DirectLimit.setoid G f) [GOAL] case h.mp.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) Mfg : Structure.FG L ↑M e : ↑M ↪[L] DirectLimit G f s : Finset (DirectLimit G f) hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e) out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out ⊢ ∃ i, M ∈ age L (G i) [PROOFSTEP] obtain ⟨i, hi⟩ := Finset.exists_le (s.image (Sigma.fst ∘ out)) [GOAL] case h.mp.intro.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) Mfg : Structure.FG L ↑M e : ↑M ↪[L] DirectLimit G f s : Finset (DirectLimit G f) hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e) out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i ⊢ ∃ i, M ∈ age L (G i) [PROOFSTEP] have e' := (DirectLimit.of L ι G f i).equivRange.symm.toEmbedding [GOAL] case h.mp.intro.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) Mfg : Structure.FG L ↑M e : ↑M ↪[L] DirectLimit G f s : Finset (DirectLimit G f) hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e) out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i ⊢ ∃ i, M ∈ age L (G i) [PROOFSTEP] refine' ⟨i, Mfg, ⟨e'.comp ((Substructure.inclusion _).comp e.equivRange.toEmbedding)⟩⟩ [GOAL] case h.mp.intro.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) Mfg : Structure.FG L ↑M e : ↑M ↪[L] DirectLimit G f s : Finset (DirectLimit G f) hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e) out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i ⊢ Hom.range (Embedding.toHom e) ≤ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) [PROOFSTEP] rw [← hs, closure_le] [GOAL] case h.mp.intro.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) Mfg : Structure.FG L ↑M e : ↑M ↪[L] DirectLimit G f s : Finset (DirectLimit G f) hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e) out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i ⊢ ↑s ⊆ ↑(Hom.range (Embedding.toHom (DirectLimit.of L ι G f i))) [PROOFSTEP] intro x hx [GOAL] case h.mp.intro.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) Mfg : Structure.FG L ↑M e : ↑M ↪[L] DirectLimit G f s : Finset (DirectLimit G f) hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e) out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i x : DirectLimit G f hx : x ∈ ↑s ⊢ x ∈ ↑(Hom.range (Embedding.toHom (DirectLimit.of L ι G f i))) [PROOFSTEP] refine' ⟨f (out x).1 i (hi (out x).1 (Finset.mem_image_of_mem _ hx)) (out x).2, _⟩ [GOAL] case h.mp.intro.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) Mfg : Structure.FG L ↑M e : ↑M ↪[L] DirectLimit G f s : Finset (DirectLimit G f) hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e) out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i x : DirectLimit G f hx : x ∈ ↑s ⊢ ↑(Embedding.toHom (DirectLimit.of L ι G f i)) (↑(f (out x).fst i (_ : (out x).fst ≤ i)) (out x).snd) = x [PROOFSTEP] rw [Embedding.coe_toHom, DirectLimit.of_apply, @Quotient.mk_eq_iff_out _ (_), DirectLimit.equiv_iff G f _ (hi (out x).1 (Finset.mem_image_of_mem _ hx)), DirectedSystem.map_self] [GOAL] L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) Mfg : Structure.FG L ↑M e : ↑M ↪[L] DirectLimit G f s : Finset (DirectLimit G f) hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e) out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i x : DirectLimit G f hx : x ∈ ↑s ⊢ (Structure.Sigma.mk f i (↑(f (out x).fst i (_ : (out x).fst ≤ i)) (out x).snd)).fst ≤ i L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) Mfg : Structure.FG L ↑M e : ↑M ↪[L] DirectLimit G f s : Finset (DirectLimit G f) hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e) out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out i : ι hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i x : DirectLimit G f hx : x ∈ ↑s ⊢ (Structure.Sigma.mk f i (↑(f (out x).fst i (_ : (out x).fst ≤ i)) (out x).snd)).fst ≤ i [PROOFSTEP] rfl [GOAL] case h.mpr L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) ⊢ (∃ i, M ∈ age L (G i)) → M ∈ age L (DirectLimit G f) [PROOFSTEP] rintro ⟨i, Mfg, ⟨e⟩⟩ [GOAL] case h.mpr.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M✝ : Type w inst✝⁶ : Structure L M✝ N : Type w inst✝⁵ : Structure L N ι : Type w inst✝⁴ : Preorder ι inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1 inst✝² : Nonempty ι G : ι → Type (max w w') inst✝¹ : (i : ι) → Structure L (G i) f : (i j : ι) → i ≤ j → G i ↪[L] G j inst✝ : DirectedSystem G fun i j h => ↑(f i j h) M : Bundled (Structure L) i : ι Mfg : Structure.FG L ↑M e : ↑M ↪[L] G i ⊢ M ∈ age L (DirectLimit G f) [PROOFSTEP] exact ⟨Mfg, ⟨Embedding.comp (DirectLimit.of L ι G f i) e⟩⟩ [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K ⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K [PROOFSTEP] obtain ⟨F, hF⟩ := hc.exists_eq_range (hn.image _) [GOAL] case intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : Quotient.mk' '' K = range F ⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K [PROOFSTEP] simp only [Set.ext_iff, forall_quotient_iff, mem_image, mem_range, Quotient.eq'] at hF [GOAL] case intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.mk' x = Quotient.mk equivSetoid a) ↔ ∃ y, F y = Quotient.mk equivSetoid a ⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K [PROOFSTEP] simp_rw [Quotient.eq_mk_iff_out] at hF [GOAL] case intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a ⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K [PROOFSTEP] have hF' : ∀ n : ℕ, (F n).out ∈ K := by intro n obtain ⟨P, hP1, hP2⟩ := (hF (F n).out).2 ⟨n, Setoid.refl _⟩ -- Porting note: fix hP2 because `Quotient.out (Quotient.mk' x) ≈ a` was not simplified -- to `x ≈ a` in hF replace hP2 := Setoid.trans (Setoid.symm (Quotient.mk_out P)) hP2 exact (h _ _ hP2).1 hP1 [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a ⊢ ∀ (n : ℕ), Quotient.out (F n) ∈ K [PROOFSTEP] intro n [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a n : ℕ ⊢ Quotient.out (F n) ∈ K [PROOFSTEP] obtain ⟨P, hP1, hP2⟩ := (hF (F n).out).2 ⟨n, Setoid.refl _⟩ -- Porting note: fix hP2 because `Quotient.out (Quotient.mk' x) ≈ a` was not simplified -- to `x ≈ a` in hF [GOAL] case intro.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a n : ℕ P : Bundled (Structure L) hP1 : P ∈ K hP2 : Quotient.out (Quotient.mk' P) ≈ Quotient.out (F n) ⊢ Quotient.out (F n) ∈ K [PROOFSTEP] replace hP2 := Setoid.trans (Setoid.symm (Quotient.mk_out P)) hP2 [GOAL] case intro.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a n : ℕ P : Bundled (Structure L) hP1 : P ∈ K hP2 : P ≈ Quotient.out (F n) ⊢ Quotient.out (F n) ∈ K [PROOFSTEP] exact (h _ _ hP2).1 hP1 [GOAL] case intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K ⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K [PROOFSTEP] choose P hPK hP hFP using fun (N : K) (n : ℕ) => jep N N.2 (F (n + 1)).out (hF' _) [GOAL] case intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) ⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K [PROOFSTEP] let G : ℕ → K := @Nat.rec (fun _ => K) ⟨(F 0).out, hF' 0⟩ fun n N => ⟨P N n, hPK N n⟩ -- Poting note: was -- let f : ∀ i j, i ≤ j → G i ↪[L] G j := DirectedSystem.natLeRec fun n => (hP _ n).some [GOAL] case intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } ⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K [PROOFSTEP] let f : ∀ (i j : ℕ), i ≤ j → (G i).val ↪[L] (G j).val := by refine DirectedSystem.natLERec (G' := fun i => (G i).val) (L := L) ?_ dsimp only exact (fun n => (hP _ n).some) [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } ⊢ (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) [PROOFSTEP] refine DirectedSystem.natLERec (G' := fun i => (G i).val) (L := L) ?_ [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } ⊢ (n : ℕ) → (fun i => ↑↑(G i)) n ↪[L] (fun i => ↑↑(G i)) (n + 1) [PROOFSTEP] dsimp only [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } ⊢ (n : ℕ) → ↑↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) ↪[L] ↑↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) (n + 1)) [PROOFSTEP] exact (fun n => (hP _ n).some) [GOAL] case intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) ⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K [PROOFSTEP] have : DirectedSystem (fun n ↦ (G n).val) fun i j h ↦ ↑(f i j h) := by dsimp; infer_instance [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) ⊢ DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h) [PROOFSTEP] dsimp [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) ⊢ DirectedSystem (fun n => ↑↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) fun i j h => ↑(DirectedSystem.natLERec (fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) i j h) [PROOFSTEP] infer_instance [GOAL] case intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) this : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h) ⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K [PROOFSTEP] refine ⟨Bundled.of (@DirectLimit L _ _ (fun n ↦ (G n).val) _ f _ _), ?_, ?_⟩ [GOAL] case intro.refine_1 L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) this : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h) ⊢ Structure.CG L ↑(Bundled.of (DirectLimit (fun n => ↑↑(G n)) f)) [PROOFSTEP] exact DirectLimit.cg _ (fun n => (fg _ (G n).2).cg) [GOAL] case intro.refine_2 L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) this : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h) ⊢ age L ↑(Bundled.of (DirectLimit (fun n => ↑↑(G n)) f)) = K [PROOFSTEP] refine (age_directLimit (fun n ↦ (G n).val) f).trans (subset_antisymm (iUnion_subset fun n N hN => hp (G n).val (G n).2 hN) fun N KN => ?_) [GOAL] case intro.refine_2 L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) this : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h) N : Bundled (Structure L) KN : N ∈ K ⊢ N ∈ ⋃ (i : ℕ), age L ↑↑(G i) [PROOFSTEP] have : Quotient.out (Quotient.mk' N) ≈ N := Quotient.eq_mk_iff_out.mp rfl [GOAL] case intro.refine_2 L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h) N : Bundled (Structure L) KN : N ∈ K this : Quotient.out (Quotient.mk' N) ≈ N ⊢ N ∈ ⋃ (i : ℕ), age L ↑↑(G i) [PROOFSTEP] obtain ⟨n, ⟨e⟩⟩ := (hF N).1 ⟨N, KN, this⟩ [GOAL] case intro.refine_2.intro.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h) N : Bundled (Structure L) KN : N ∈ K this : Quotient.out (Quotient.mk' N) ≈ N n : ℕ e : ↑(Quotient.out (F n)) ≃[L] ↑N ⊢ N ∈ ⋃ (i : ℕ), age L ↑↑(G i) [PROOFSTEP] refine mem_iUnion_of_mem n ⟨fg _ KN, ⟨Embedding.comp ?_ e.symm.toEmbedding⟩⟩ [GOAL] case intro.refine_2.intro.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h) N : Bundled (Structure L) KN : N ∈ K this : Quotient.out (Quotient.mk' N) ≈ N n : ℕ e : ↑(Quotient.out (F n)) ≃[L] ↑N ⊢ ↑(Quotient.out (F n)) ↪[L] ↑↑(G n) [PROOFSTEP] cases' n with n [GOAL] case intro.refine_2.intro.intro.zero L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h) N : Bundled (Structure L) KN : N ∈ K this : Quotient.out (Quotient.mk' N) ≈ N e : ↑(Quotient.out (F Nat.zero)) ≃[L] ↑N ⊢ ↑(Quotient.out (F Nat.zero)) ↪[L] ↑↑(G Nat.zero) [PROOFSTEP] dsimp [GOAL] case intro.refine_2.intro.intro.zero L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h) N : Bundled (Structure L) KN : N ∈ K this : Quotient.out (Quotient.mk' N) ≈ N e : ↑(Quotient.out (F Nat.zero)) ≃[L] ↑N ⊢ ↑(Quotient.out (F 0)) ↪[L] ↑(Quotient.out (F 0)) [PROOFSTEP] exact Embedding.refl _ _ [GOAL] case intro.refine_2.intro.intro.succ L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h) N : Bundled (Structure L) KN : N ∈ K this : Quotient.out (Quotient.mk' N) ≈ N n : ℕ e : ↑(Quotient.out (F (Nat.succ n))) ≃[L] ↑N ⊢ ↑(Quotient.out (F (Nat.succ n))) ↪[L] ↑↑(G (Nat.succ n)) [PROOFSTEP] dsimp [GOAL] case intro.refine_2.intro.intro.succ L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ hn : Set.Nonempty K h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) hc : Set.Countable (Quotient.mk' '' K) fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K F : ℕ → Quotient equivSetoid hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K P : ↑K → ℕ → Bundled (Structure L) hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n) hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n) G : ℕ → ↑K := Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N => { val := P N n, property := (_ : P N n ∈ K) } f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) := DirectedSystem.natLERec (id fun n => Nonempty.some (_ : (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)) (P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n))) this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h) N : Bundled (Structure L) KN : N ∈ K this : Quotient.out (Quotient.mk' N) ≈ N n : ℕ e : ↑(Quotient.out (F (Nat.succ n))) ≃[L] ↑N ⊢ ↑(Quotient.out (F (Nat.succ n))) ↪[L] ↑(P (Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } (fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) n) [PROOFSTEP] exact (hFP _ n).some [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝² : Structure L M N : Type w inst✝¹ : Structure L N inst✝ : Countable ((l : ℕ) × Functions L l) ⊢ (∃ M, Countable ↑M ∧ age L ↑M = K) ↔ Set.Nonempty K ∧ (∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)) ∧ Set.Countable (Quotient.mk' '' K) ∧ (∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M) ∧ Hereditary K ∧ JointEmbedding K [PROOFSTEP] constructor [GOAL] case mp L : Language K : Set (Bundled (Structure L)) M : Type w inst✝² : Structure L M N : Type w inst✝¹ : Structure L N inst✝ : Countable ((l : ℕ) × Functions L l) ⊢ (∃ M, Countable ↑M ∧ age L ↑M = K) → Set.Nonempty K ∧ (∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)) ∧ Set.Countable (Quotient.mk' '' K) ∧ (∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M) ∧ Hereditary K ∧ JointEmbedding K [PROOFSTEP] rintro ⟨M, h1, h2, rfl⟩ [GOAL] case mp.intro.intro.refl L : Language M✝ : Type w inst✝² : Structure L M✝ N : Type w inst✝¹ : Structure L N inst✝ : Countable ((l : ℕ) × Functions L l) M : Bundled (Structure L) h1 : Countable ↑M ⊢ Set.Nonempty (age L ↑M) ∧ (∀ (M_1 N : Bundled (Structure L)), Nonempty (↑M_1 ≃[L] ↑N) → (M_1 ∈ age L ↑M ↔ N ∈ age L ↑M)) ∧ Set.Countable (Quotient.mk' '' age L ↑M) ∧ (∀ (M_1 : Bundled (Structure L)), M_1 ∈ age L ↑M → Structure.FG L ↑M_1) ∧ Hereditary (age L ↑M) ∧ JointEmbedding (age L ↑M) [PROOFSTEP] refine' ⟨age.nonempty M, age.is_equiv_invariant L M, age.countable_quotient M, fun N hN => hN.1, age.hereditary M, age.jointEmbedding M⟩ [GOAL] case mpr L : Language K : Set (Bundled (Structure L)) M : Type w inst✝² : Structure L M N : Type w inst✝¹ : Structure L N inst✝ : Countable ((l : ℕ) × Functions L l) ⊢ Set.Nonempty K ∧ (∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)) ∧ Set.Countable (Quotient.mk' '' K) ∧ (∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M) ∧ Hereditary K ∧ JointEmbedding K → ∃ M, Countable ↑M ∧ age L ↑M = K [PROOFSTEP] rintro ⟨Kn, eqinv, cq, hfg, hp, jep⟩ [GOAL] case mpr.intro.intro.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝² : Structure L M N : Type w inst✝¹ : Structure L N inst✝ : Countable ((l : ℕ) × Functions L l) Kn : Set.Nonempty K eqinv : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K) cq : Set.Countable (Quotient.mk' '' K) hfg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M hp : Hereditary K jep : JointEmbedding K ⊢ ∃ M, Countable ↑M ∧ age L ↑M = K [PROOFSTEP] obtain ⟨M, hM, rfl⟩ := exists_cg_is_age_of Kn eqinv cq hfg hp jep [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro L : Language M✝ : Type w inst✝² : Structure L M✝ N : Type w inst✝¹ : Structure L N inst✝ : Countable ((l : ℕ) × Functions L l) M : Bundled (Structure L) hM : Structure.CG L ↑M Kn : Set.Nonempty (age L ↑M) eqinv : ∀ (M_1 N : Bundled (Structure L)), Nonempty (↑M_1 ≃[L] ↑N) → (M_1 ∈ age L ↑M ↔ N ∈ age L ↑M) cq : Set.Countable (Quotient.mk' '' age L ↑M) hfg : ∀ (M_1 : Bundled (Structure L)), M_1 ∈ age L ↑M → Structure.FG L ↑M_1 hp : Hereditary (age L ↑M) jep : JointEmbedding (age L ↑M) ⊢ ∃ M_1, Countable ↑M_1 ∧ age L ↑M_1 = age L ↑M [PROOFSTEP] exact ⟨M, Structure.cg_iff_countable.1 hM, rfl⟩ [GOAL] L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N : Type w inst✝ : Structure L N h : IsUltrahomogeneous L M ⊢ Amalgamation (age L M) [PROOFSTEP] rintro N P Q NP NQ ⟨Nfg, ⟨-⟩⟩ ⟨Pfg, ⟨PM⟩⟩ ⟨Qfg, ⟨QM⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : IsUltrahomogeneous L M N P Q : Bundled (Structure L) NP : ↑N ↪[L] ↑P NQ : ↑N ↪[L] ↑Q Nfg : Structure.FG L ↑N Pfg : Structure.FG L ↑P PM : ↑P ↪[L] M Qfg : Structure.FG L ↑Q QM : ↑Q ↪[L] M ⊢ ∃ Q_1 NQ_1 PQ, Q_1 ∈ age L M ∧ Embedding.comp NQ_1 NP = Embedding.comp PQ NQ [PROOFSTEP] obtain ⟨g, hg⟩ := h (PM.comp NP).toHom.range (Nfg.range _) ((QM.comp NQ).comp (PM.comp NP).equivRange.symm.toEmbedding) [GOAL] case intro.intro.intro.intro.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : IsUltrahomogeneous L M N P Q : Bundled (Structure L) NP : ↑N ↪[L] ↑P NQ : ↑N ↪[L] ↑Q Nfg : Structure.FG L ↑N Pfg : Structure.FG L ↑P PM : ↑P ↪[L] M Qfg : Structure.FG L ↑Q QM : ↑Q ↪[L] M g : M ≃[L] M hg : Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) = Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP)))) ⊢ ∃ Q_1 NQ_1 PQ, Q_1 ∈ age L M ∧ Embedding.comp NQ_1 NP = Embedding.comp PQ NQ [PROOFSTEP] let s := (g.toHom.comp PM.toHom).range ⊔ QM.toHom.range [GOAL] case intro.intro.intro.intro.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : IsUltrahomogeneous L M N P Q : Bundled (Structure L) NP : ↑N ↪[L] ↑P NQ : ↑N ↪[L] ↑Q Nfg : Structure.FG L ↑N Pfg : Structure.FG L ↑P PM : ↑P ↪[L] M Qfg : Structure.FG L ↑Q QM : ↑Q ↪[L] M g : M ≃[L] M hg : Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) = Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP)))) s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM) ⊢ ∃ Q_1 NQ_1 PQ, Q_1 ∈ age L M ∧ Embedding.comp NQ_1 NP = Embedding.comp PQ NQ [PROOFSTEP] refine' ⟨Bundled.of s, Embedding.comp (Substructure.inclusion le_sup_left) (g.toEmbedding.comp PM).equivRange.toEmbedding, Embedding.comp (Substructure.inclusion le_sup_right) QM.equivRange.toEmbedding, ⟨(fg_iff_structure_fg _).1 (FG.sup (Pfg.range _) (Qfg.range _)), ⟨Substructure.subtype _⟩⟩, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : IsUltrahomogeneous L M N P Q : Bundled (Structure L) NP : ↑N ↪[L] ↑P NQ : ↑N ↪[L] ↑Q Nfg : Structure.FG L ↑N Pfg : Structure.FG L ↑P PM : ↑P ↪[L] M Qfg : Structure.FG L ↑Q QM : ↑Q ↪[L] M g : M ≃[L] M hg : Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) = Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP)))) s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM) ⊢ Embedding.comp (Embedding.comp (Substructure.inclusion (_ : Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))) (Equiv.toEmbedding (Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM)))) NP = Embedding.comp (Embedding.comp (Substructure.inclusion (_ : Hom.range (Embedding.toHom QM) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))) (Equiv.toEmbedding (Embedding.equivRange QM))) NQ [PROOFSTEP] ext n [GOAL] case intro.intro.intro.intro.intro.intro.intro.h L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : IsUltrahomogeneous L M N P Q : Bundled (Structure L) NP : ↑N ↪[L] ↑P NQ : ↑N ↪[L] ↑Q Nfg : Structure.FG L ↑N Pfg : Structure.FG L ↑P PM : ↑P ↪[L] M Qfg : Structure.FG L ↑Q QM : ↑Q ↪[L] M g : M ≃[L] M hg : Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) = Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP)))) s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM) n : ↑N ⊢ ↑(Embedding.comp (Embedding.comp (Substructure.inclusion (_ : Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))) (Equiv.toEmbedding (Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM)))) NP) n = ↑(Embedding.comp (Embedding.comp (Substructure.inclusion (_ : Hom.range (Embedding.toHom QM) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))) (Equiv.toEmbedding (Embedding.equivRange QM))) NQ) n [PROOFSTEP] apply Subtype.ext [GOAL] case intro.intro.intro.intro.intro.intro.intro.h.a L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : IsUltrahomogeneous L M N P Q : Bundled (Structure L) NP : ↑N ↪[L] ↑P NQ : ↑N ↪[L] ↑Q Nfg : Structure.FG L ↑N Pfg : Structure.FG L ↑P PM : ↑P ↪[L] M Qfg : Structure.FG L ↑Q QM : ↑Q ↪[L] M g : M ≃[L] M hg : Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) = Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP)))) s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM) n : ↑N ⊢ ↑(↑(Embedding.comp (Embedding.comp (Substructure.inclusion (_ : Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))) (Equiv.toEmbedding (Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM)))) NP) n) = ↑(↑(Embedding.comp (Embedding.comp (Substructure.inclusion (_ : Hom.range (Embedding.toHom QM) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))) (Equiv.toEmbedding (Embedding.equivRange QM))) NQ) n) [PROOFSTEP] have hgn := (Embedding.ext_iff.1 hg) ((PM.comp NP).equivRange n) [GOAL] case intro.intro.intro.intro.intro.intro.intro.h.a L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : IsUltrahomogeneous L M N P Q : Bundled (Structure L) NP : ↑N ↪[L] ↑P NQ : ↑N ↪[L] ↑Q Nfg : Structure.FG L ↑N Pfg : Structure.FG L ↑P PM : ↑P ↪[L] M Qfg : Structure.FG L ↑Q QM : ↑Q ↪[L] M g : M ≃[L] M hg : Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) = Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP)))) s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM) n : ↑N hgn : ↑(Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP))))) (↑(Embedding.equivRange (Embedding.comp PM NP)) n) = ↑(Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP))))) (↑(Embedding.equivRange (Embedding.comp PM NP)) n) ⊢ ↑(↑(Embedding.comp (Embedding.comp (Substructure.inclusion (_ : Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))) (Equiv.toEmbedding (Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM)))) NP) n) = ↑(↑(Embedding.comp (Embedding.comp (Substructure.inclusion (_ : Hom.range (Embedding.toHom QM) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))) (Equiv.toEmbedding (Embedding.equivRange QM))) NQ) n) [PROOFSTEP] simp only [Embedding.comp_apply, Equiv.coe_toEmbedding, Equiv.symm_apply_apply, Substructure.coeSubtype, Embedding.equivRange_apply] at hgn [GOAL] case intro.intro.intro.intro.intro.intro.intro.h.a L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : IsUltrahomogeneous L M N P Q : Bundled (Structure L) NP : ↑N ↪[L] ↑P NQ : ↑N ↪[L] ↑Q Nfg : Structure.FG L ↑N Pfg : Structure.FG L ↑P PM : ↑P ↪[L] M Qfg : Structure.FG L ↑Q QM : ↑Q ↪[L] M g : M ≃[L] M hg : Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) = Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP)))) s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM) n : ↑N hgn : ↑QM (↑NQ n) = ↑g (↑PM (↑NP n)) ⊢ ↑(↑(Embedding.comp (Embedding.comp (Substructure.inclusion (_ : Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))) (Equiv.toEmbedding (Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM)))) NP) n) = ↑(↑(Embedding.comp (Embedding.comp (Substructure.inclusion (_ : Hom.range (Embedding.toHom QM) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))) (Equiv.toEmbedding (Embedding.equivRange QM))) NQ) n) [PROOFSTEP] simp only [Embedding.comp_apply, Equiv.coe_toEmbedding] [GOAL] case intro.intro.intro.intro.intro.intro.intro.h.a L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : IsUltrahomogeneous L M N P Q : Bundled (Structure L) NP : ↑N ↪[L] ↑P NQ : ↑N ↪[L] ↑Q Nfg : Structure.FG L ↑N Pfg : Structure.FG L ↑P PM : ↑P ↪[L] M Qfg : Structure.FG L ↑Q QM : ↑Q ↪[L] M g : M ≃[L] M hg : Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) = Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP)))) s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM) n : ↑N hgn : ↑QM (↑NQ n) = ↑g (↑PM (↑NP n)) ⊢ ↑(↑(Substructure.inclusion (_ : Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))) (↑(Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM)) (↑NP n))) = ↑(↑(Substructure.inclusion (_ : Hom.range (Embedding.toHom QM) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))) (↑(Embedding.equivRange QM) (↑NQ n))) [PROOFSTEP] erw [Substructure.coe_inclusion, Substructure.coe_inclusion] [GOAL] case intro.intro.intro.intro.intro.intro.intro.h.a L : Language K : Set (Bundled (Structure L)) M : Type w inst✝¹ : Structure L M N✝ : Type w inst✝ : Structure L N✝ h : IsUltrahomogeneous L M N P Q : Bundled (Structure L) NP : ↑N ↪[L] ↑P NQ : ↑N ↪[L] ↑Q Nfg : Structure.FG L ↑N Pfg : Structure.FG L ↑P PM : ↑P ↪[L] M Qfg : Structure.FG L ↑Q QM : ↑Q ↪[L] M g : M ≃[L] M hg : Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) = Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP)))) s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM) n : ↑N hgn : ↑QM (↑NQ n) = ↑g (↑PM (↑NP n)) ⊢ ↑(Set.inclusion (_ : Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)) (↑(Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM)) (↑NP n))) = ↑(Set.inclusion (_ : Hom.range (Embedding.toHom QM) ≤ Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)) (↑(Embedding.equivRange QM) (↑NQ n))) [PROOFSTEP] simp only [Embedding.comp_apply, Equiv.coe_toEmbedding, Set.coe_inclusion, Embedding.equivRange_apply, hgn]
{"mathlib_filename": "Mathlib.ModelTheory.Fraisse", "llama_tokens": 35705}
[GOAL] P : AffineTargetMorphismProperty X Y : Scheme f : X ⟶ Y i : IsAffine Y ⊢ toProperty P f ↔ P f [PROOFSTEP] delta AffineTargetMorphismProperty.toProperty [GOAL] P : AffineTargetMorphismProperty X Y : Scheme f : X ⟶ Y i : IsAffine Y ⊢ (∃ h, P f) ↔ P f [PROOFSTEP] simp [*] [GOAL] P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝¹ : IsIso f inst✝ : IsAffine Z ⊢ P (f ≫ g) ↔ P g [PROOFSTEP] rw [← P.toProperty_apply, ← P.toProperty_apply, hP.cancel_left_isIso] [GOAL] P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z inst✝² : IsIso g inst✝¹ : IsAffine Z inst✝ : IsAffine Y ⊢ P (f ≫ g) ↔ P f [PROOFSTEP] rw [← P.toProperty_apply, ← P.toProperty_apply, hP.cancel_right_isIso] [GOAL] P : AffineTargetMorphismProperty h₁ : ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], P f → P (e.hom ≫ f) h₂ : ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], P f → P (f ≫ e.hom) ⊢ MorphismProperty.RespectsIso (toProperty P) [PROOFSTEP] constructor [GOAL] case left P : AffineTargetMorphismProperty h₁ : ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], P f → P (e.hom ≫ f) h₂ : ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], P f → P (f ≫ e.hom) ⊢ ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z), toProperty P f → toProperty P (e.hom ≫ f) [PROOFSTEP] rintro X Y Z e f ⟨a, h⟩ [GOAL] case left.intro P : AffineTargetMorphismProperty h₁ : ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], P f → P (e.hom ≫ f) h₂ : ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], P f → P (f ≫ e.hom) X Y Z : Scheme e : X ≅ Y f : Y ⟶ Z a : IsAffine Z h : P f ⊢ toProperty P (e.hom ≫ f) [PROOFSTEP] exact ⟨a, h₁ e f h⟩ [GOAL] case right P : AffineTargetMorphismProperty h₁ : ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], P f → P (e.hom ≫ f) h₂ : ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], P f → P (f ≫ e.hom) ⊢ ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y), toProperty P f → toProperty P (f ≫ e.hom) [PROOFSTEP] rintro X Y Z e f ⟨a, h⟩ [GOAL] case right.intro P : AffineTargetMorphismProperty h₁ : ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], P f → P (e.hom ≫ f) h₂ : ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], P f → P (f ≫ e.hom) X Y Z : Scheme e : Y ≅ Z f : X ⟶ Y a : IsAffine Y h : P f ⊢ toProperty P (f ≫ e.hom) [PROOFSTEP] exact ⟨isAffineOfIso e.inv, h₂ e f h⟩ [GOAL] P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) ⊢ MorphismProperty.RespectsIso (targetAffineLocally P) [PROOFSTEP] constructor [GOAL] case left P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) ⊢ ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z), targetAffineLocally P f → targetAffineLocally P (e.hom ≫ f) [PROOFSTEP] introv H U [GOAL] case left P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) X Y Z : Scheme e : X ≅ Y f : Y ⟶ Z H : targetAffineLocally P f U : ↑(Scheme.affineOpens Z) ⊢ P ((e.hom ≫ f) ∣_ ↑U) [PROOFSTEP] haveI : IsAffine _ := U.prop [GOAL] case left P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) X Y Z : Scheme e : X ≅ Y f : Y ⟶ Z H : targetAffineLocally P f U : ↑(Scheme.affineOpens Z) this : IsAffine (Scheme.restrict Z (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ⊢ P ((e.hom ≫ f) ∣_ ↑U) [PROOFSTEP] rw [morphismRestrict_comp, affine_cancel_left_isIso hP] [GOAL] case left P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) X Y Z : Scheme e : X ≅ Y f : Y ⟶ Z H : targetAffineLocally P f U : ↑(Scheme.affineOpens Z) this : IsAffine (Scheme.restrict Z (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ⊢ P (f ∣_ ↑U) [PROOFSTEP] exact H U [GOAL] case right P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) ⊢ ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y), targetAffineLocally P f → targetAffineLocally P (f ≫ e.hom) [PROOFSTEP] introv H [GOAL] case right P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) X Y Z : Scheme e : Y ≅ Z f : X ⟶ Y H : targetAffineLocally P f ⊢ targetAffineLocally P (f ≫ e.hom) [PROOFSTEP] rintro ⟨U, hU : IsAffineOpen U⟩ [GOAL] case right.mk P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) X Y Z : Scheme e : Y ≅ Z f : X ⟶ Y H : targetAffineLocally P f U : Opens ↑↑Z.toPresheafedSpace hU : IsAffineOpen U ⊢ P ((f ≫ e.hom) ∣_ ↑{ val := U, property := hU }) [PROOFSTEP] dsimp [GOAL] case right.mk P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) X Y Z : Scheme e : Y ≅ Z f : X ⟶ Y H : targetAffineLocally P f U : Opens ↑↑Z.toPresheafedSpace hU : IsAffineOpen U ⊢ P ((f ≫ e.hom) ∣_ U) [PROOFSTEP] haveI : IsAffine _ := hU [GOAL] case right.mk P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) X Y Z : Scheme e : Y ≅ Z f : X ⟶ Y H : targetAffineLocally P f U : Opens ↑↑Z.toPresheafedSpace hU : IsAffineOpen U this : IsAffine (Scheme.restrict Z (_ : OpenEmbedding ↑(Opens.inclusion U))) ⊢ P ((f ≫ e.hom) ∣_ U) [PROOFSTEP] haveI : IsAffine _ := hU.map_isIso e.hom [GOAL] case right.mk P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) X Y Z : Scheme e : Y ≅ Z f : X ⟶ Y H : targetAffineLocally P f U : Opens ↑↑Z.toPresheafedSpace hU : IsAffineOpen U this✝ : IsAffine (Scheme.restrict Z (_ : OpenEmbedding ↑(Opens.inclusion U))) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map e.hom.val.base).obj U)))) ⊢ P ((f ≫ e.hom) ∣_ U) [PROOFSTEP] rw [morphismRestrict_comp, affine_cancel_right_isIso hP] [GOAL] case right.mk P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P) X Y Z : Scheme e : Y ≅ Z f : X ⟶ Y H : targetAffineLocally P f U : Opens ↑↑Z.toPresheafedSpace hU : IsAffineOpen U this✝ : IsAffine (Scheme.restrict Z (_ : OpenEmbedding ↑(Opens.inclusion U))) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map e.hom.val.base).obj U)))) ⊢ P (f ∣_ (Opens.map e.hom.val.base).obj U) [PROOFSTEP] exact H ⟨(Opens.map e.hom.val.base).obj U, hU.map_isIso e.hom⟩ [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd ⊢ targetAffineLocally P f [PROOFSTEP] classical let S i := (⟨⟨Set.range (𝒰.map i).1.base, (𝒰.IsOpen i).base_open.open_range⟩, rangeIsAffineOpenOfOpenImmersion (𝒰.map i)⟩ : Y.affineOpens) intro U apply of_affine_open_cover (P := _) U (Set.range S) · intro U r h haveI : IsAffine _ := U.2 have := hP.2 (f ∣_ U.1) replace this := this (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op r) h haveI i1 : IsAffine (Y.restrict (Scheme.affineBasicOpen Y r).1.openEmbedding) := (Scheme.affineBasicOpen Y r).2 haveI i2 : IsAffine ((Y.restrict U.1.openEmbedding).restrict ((Y.restrict U.1.openEmbedding).basicOpen <| (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op r)).openEmbedding) := IsAffineOpen.basicOpenIsAffine (X := Y.restrict U.1.openEmbedding) (topIsAffineOpen _) _ rw [← P.toProperty_apply] at this ⊢ exact (hP.1.arrow_mk_iso_iff (morphismRestrictRestrictBasicOpen f _ r)).mp this · intro U s hs H haveI : IsAffine _ := U.2 apply hP.3 (f ∣_ U.1) (s.image (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op)) · apply_fun Ideal.comap (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top.symm).op) at hs rw [Ideal.comap_top] at hs rw [← hs] simp only [eqToHom_op, eqToHom_map, Finset.coe_image] have : ∀ {R S : CommRingCat} (e : S = R) (s : Set S), Ideal.span (eqToHom e '' s) = Ideal.comap (eqToHom e.symm) (Ideal.span s) := by intro _ _ e _ subst e simp only [eqToHom_refl, id_apply, Set.image_id'] -- Porting note : Lean didn't see `𝟙 _` is just ring hom id exact (Ideal.comap_id _).symm apply this · rintro ⟨r, hr⟩ obtain ⟨r, hr', rfl⟩ := Finset.mem_image.mp hr specialize H ⟨r, hr'⟩ -- Porting note : the following 2 instances was not necessary haveI i1 : IsAffine (Y.restrict (Scheme.affineBasicOpen Y r).1.openEmbedding) := (Scheme.affineBasicOpen Y r).2 haveI i2 : IsAffine ((Y.restrict U.1.openEmbedding).restrict ((Y.restrict U.1.openEmbedding).basicOpen <| (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op r)).openEmbedding) := IsAffineOpen.basicOpenIsAffine (X := Y.restrict U.1.openEmbedding) (topIsAffineOpen _) _ rw [← P.toProperty_apply] at H ⊢ exact (hP.1.arrow_mk_iso_iff (morphismRestrictRestrictBasicOpen f _ r)).mpr H · rw [Set.eq_univ_iff_forall] simp only [Set.mem_iUnion] intro x exact ⟨⟨_, ⟨𝒰.f x, rfl⟩⟩, 𝒰.Covers x⟩ · rintro ⟨_, i, rfl⟩ specialize h𝒰 i haveI i1 : IsAffine (Y.restrict (S i).1.openEmbedding) := (S i).2 rw [← P.toProperty_apply] at h𝒰 ⊢ exact (hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)).mpr h𝒰 [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd ⊢ targetAffineLocally P f [PROOFSTEP] let S i := (⟨⟨Set.range (𝒰.map i).1.base, (𝒰.IsOpen i).base_open.open_range⟩, rangeIsAffineOpenOfOpenImmersion (𝒰.map i)⟩ : Y.affineOpens) [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } ⊢ targetAffineLocally P f [PROOFSTEP] intro U [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U : ↑(Scheme.affineOpens Y) ⊢ P (f ∣_ ↑U) [PROOFSTEP] apply of_affine_open_cover (P := _) U (Set.range S) [GOAL] case hP₁ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U : ↑(Scheme.affineOpens Y) ⊢ ∀ (U : ↑(Scheme.affineOpens Y)) (f_1 : ↑(Y.presheaf.obj (op ↑U))), P (f ∣_ ↑U) → P (f ∣_ ↑(Scheme.affineBasicOpen Y f_1)) [PROOFSTEP] intro U r h [GOAL] case hP₁ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) r : ↑(Y.presheaf.obj (op ↑U)) h : P (f ∣_ ↑U) ⊢ P (f ∣_ ↑(Scheme.affineBasicOpen Y r)) [PROOFSTEP] haveI : IsAffine _ := U.2 [GOAL] case hP₁ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) r : ↑(Y.presheaf.obj (op ↑U)) h : P (f ∣_ ↑U) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ⊢ P (f ∣_ ↑(Scheme.affineBasicOpen Y r)) [PROOFSTEP] have := hP.2 (f ∣_ U.1) [GOAL] case hP₁ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) r : ↑(Y.presheaf.obj (op ↑U)) h : P (f ∣_ ↑U) this✝ : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) this : ∀ (r : ↑((Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤))), P (f ∣_ ↑U) → P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) r) ⊢ P (f ∣_ ↑(Scheme.affineBasicOpen Y r)) [PROOFSTEP] replace this := this (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op r) h [GOAL] case hP₁ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) r : ↑(Y.presheaf.obj (op ↑U)) h : P (f ∣_ ↑U) this✝ : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) this : P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r)) ⊢ P (f ∣_ ↑(Scheme.affineBasicOpen Y r)) [PROOFSTEP] haveI i1 : IsAffine (Y.restrict (Scheme.affineBasicOpen Y r).1.openEmbedding) := (Scheme.affineBasicOpen Y r).2 [GOAL] case hP₁ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) r : ↑(Y.presheaf.obj (op ↑U)) h : P (f ∣_ ↑U) this✝ : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) this : P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r)) i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(Scheme.affineBasicOpen Y r)))) ⊢ P (f ∣_ ↑(Scheme.affineBasicOpen Y r)) [PROOFSTEP] haveI i2 : IsAffine ((Y.restrict U.1.openEmbedding).restrict ((Y.restrict U.1.openEmbedding).basicOpen <| (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op r)).openEmbedding) := IsAffineOpen.basicOpenIsAffine (X := Y.restrict U.1.openEmbedding) (topIsAffineOpen _) _ [GOAL] case hP₁ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) r : ↑(Y.presheaf.obj (op ↑U)) h : P (f ∣_ ↑U) this✝ : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) this : P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r)) i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(Scheme.affineBasicOpen Y r)))) i2 : IsAffine (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r))))) ⊢ P (f ∣_ ↑(Scheme.affineBasicOpen Y r)) [PROOFSTEP] rw [← P.toProperty_apply] at this ⊢ [GOAL] case hP₁ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) r : ↑(Y.presheaf.obj (op ↑U)) h : P (f ∣_ ↑U) this✝ : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) this : AffineTargetMorphismProperty.toProperty P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r)) i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(Scheme.affineBasicOpen Y r)))) i2 : IsAffine (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r))))) ⊢ AffineTargetMorphismProperty.toProperty P (f ∣_ ↑(Scheme.affineBasicOpen Y r)) [PROOFSTEP] exact (hP.1.arrow_mk_iso_iff (morphismRestrictRestrictBasicOpen f _ r)).mp this [GOAL] case hP₂ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U : ↑(Scheme.affineOpens Y) ⊢ ∀ (U : ↑(Scheme.affineOpens Y)) (s : Finset ↑(Y.presheaf.obj (op ↑U))), Ideal.span ↑s = ⊤ → (∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))) → P (f ∣_ ↑U) [PROOFSTEP] intro U s hs H [GOAL] case hP₂ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) hs : Ideal.span ↑s = ⊤ H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) ⊢ P (f ∣_ ↑U) [PROOFSTEP] haveI : IsAffine _ := U.2 [GOAL] case hP₂ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) hs : Ideal.span ↑s = ⊤ H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ⊢ P (f ∣_ ↑U) [PROOFSTEP] apply hP.3 (f ∣_ U.1) (s.image (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op)) [GOAL] case hP₂.x P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) hs : Ideal.span ↑s = ⊤ H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ⊢ Ideal.span ↑(Finset.image (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s) = ⊤ [PROOFSTEP] apply_fun Ideal.comap (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top.symm).op) at hs [GOAL] case hP₂.x P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) hs : Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op) (Ideal.span ↑s) = Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op) ⊤ ⊢ Ideal.span ↑(Finset.image (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s) = ⊤ [PROOFSTEP] rw [Ideal.comap_top] at hs [GOAL] case hP₂.x P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) hs : Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op) (Ideal.span ↑s) = ⊤ ⊢ Ideal.span ↑(Finset.image (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s) = ⊤ [PROOFSTEP] rw [← hs] [GOAL] case hP₂.x P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) hs : Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op) (Ideal.span ↑s) = ⊤ ⊢ Ideal.span ↑(Finset.image (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s) = Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op) (Ideal.span ↑s) [PROOFSTEP] simp only [eqToHom_op, eqToHom_map, Finset.coe_image] [GOAL] case hP₂.x P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) hs : Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op) (Ideal.span ↑s) = ⊤ ⊢ Ideal.span (↑(eqToHom (_ : Y.presheaf.obj (op ↑U) = Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)))) '' ↑s) = Ideal.comap (eqToHom (_ : Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)) = Y.presheaf.obj (op ↑U))) (Ideal.span ↑s) [PROOFSTEP] have : ∀ {R S : CommRingCat} (e : S = R) (s : Set S), Ideal.span (eqToHom e '' s) = Ideal.comap (eqToHom e.symm) (Ideal.span s) := by intro _ _ e _ subst e simp only [eqToHom_refl, id_apply, Set.image_id'] -- Porting note : Lean didn't see `𝟙 _` is just ring hom id exact (Ideal.comap_id _).symm [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) hs : Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op) (Ideal.span ↑s) = ⊤ ⊢ ∀ {R S : CommRingCat} (e : S = R) (s : Set ↑S), Ideal.span (↑(eqToHom e) '' s) = Ideal.comap (eqToHom (_ : R = S)) (Ideal.span s) [PROOFSTEP] intro _ _ e _ [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) hs : Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op) (Ideal.span ↑s) = ⊤ R✝ S✝ : CommRingCat e : S✝ = R✝ s✝ : Set ↑S✝ ⊢ Ideal.span (↑(eqToHom e) '' s✝) = Ideal.comap (eqToHom (_ : R✝ = S✝)) (Ideal.span s✝) [PROOFSTEP] subst e [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) hs : Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op) (Ideal.span ↑s) = ⊤ S✝ : CommRingCat s✝ : Set ↑S✝ ⊢ Ideal.span (↑(eqToHom (_ : S✝ = S✝)) '' s✝) = Ideal.comap (eqToHom (_ : S✝ = S✝)) (Ideal.span s✝) [PROOFSTEP] simp only [eqToHom_refl, id_apply, Set.image_id'] -- Porting note : Lean didn't see `𝟙 _` is just ring hom id [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) hs : Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op) (Ideal.span ↑s) = ⊤ S✝ : CommRingCat s✝ : Set ↑S✝ ⊢ Ideal.span s✝ = Ideal.comap (𝟙 S✝) (Ideal.span s✝) [PROOFSTEP] exact (Ideal.comap_id _).symm [GOAL] case hP₂.x P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this✝ : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) hs : Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op) (Ideal.span ↑s) = ⊤ this : ∀ {R S : CommRingCat} (e : S = R) (s : Set ↑S), Ideal.span (↑(eqToHom e) '' s) = Ideal.comap (eqToHom (_ : R = S)) (Ideal.span s) ⊢ Ideal.span (↑(eqToHom (_ : Y.presheaf.obj (op ↑U) = Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)))) '' ↑s) = Ideal.comap (eqToHom (_ : Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)) = Y.presheaf.obj (op ↑U))) (Ideal.span ↑s) [PROOFSTEP] apply this [GOAL] case hP₂.a P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) hs : Ideal.span ↑s = ⊤ H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ⊢ ∀ (r : { x // x ∈ Finset.image (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s }), P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ↑r) [PROOFSTEP] rintro ⟨r, hr⟩ [GOAL] case hP₂.a.mk P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) hs : Ideal.span ↑s = ⊤ H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) r : ↑((Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op ⊤)) hr : r ∈ Finset.image (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s ⊢ P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ↑{ val := r, property := hr }) [PROOFSTEP] obtain ⟨r, hr', rfl⟩ := Finset.mem_image.mp hr [GOAL] case hP₂.a.mk.intro.intro P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) hs : Ideal.span ↑s = ⊤ H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1)) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) r : (forget CommRingCat).obj (Y.presheaf.obj (op ↑U)) hr' : r ∈ s hr : ↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r ∈ Finset.image (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s ⊢ P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ↑{ val := ↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r, property := hr }) [PROOFSTEP] specialize H ⟨r, hr'⟩ -- Porting note : the following 2 instances was not necessary [GOAL] case hP₂.a.mk.intro.intro P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) hs : Ideal.span ↑s = ⊤ this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) r : (forget CommRingCat).obj (Y.presheaf.obj (op ↑U)) hr' : r ∈ s hr : ↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r ∈ Finset.image (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s H : P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑{ val := r, property := hr' })) ⊢ P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ↑{ val := ↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r, property := hr }) [PROOFSTEP] haveI i1 : IsAffine (Y.restrict (Scheme.affineBasicOpen Y r).1.openEmbedding) := (Scheme.affineBasicOpen Y r).2 [GOAL] case hP₂.a.mk.intro.intro P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) hs : Ideal.span ↑s = ⊤ this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) r : (forget CommRingCat).obj (Y.presheaf.obj (op ↑U)) hr' : r ∈ s hr : ↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r ∈ Finset.image (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s H : P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑{ val := r, property := hr' })) i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(Scheme.affineBasicOpen Y r)))) ⊢ P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ↑{ val := ↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r, property := hr }) [PROOFSTEP] haveI i2 : IsAffine ((Y.restrict U.1.openEmbedding).restrict ((Y.restrict U.1.openEmbedding).basicOpen <| (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op r)).openEmbedding) := IsAffineOpen.basicOpenIsAffine (X := Y.restrict U.1.openEmbedding) (topIsAffineOpen _) _ [GOAL] case hP₂.a.mk.intro.intro P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) hs : Ideal.span ↑s = ⊤ this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) r : (forget CommRingCat).obj (Y.presheaf.obj (op ↑U)) hr' : r ∈ s hr : ↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r ∈ Finset.image (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s H : P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑{ val := r, property := hr' })) i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(Scheme.affineBasicOpen Y r)))) i2 : IsAffine (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r))))) ⊢ P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ↑{ val := ↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r, property := hr }) [PROOFSTEP] rw [← P.toProperty_apply] at H ⊢ [GOAL] case hP₂.a.mk.intro.intro P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U✝ U : ↑(Scheme.affineOpens Y) s : Finset ↑(Y.presheaf.obj (op ↑U)) hs : Ideal.span ↑s = ⊤ this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) r : (forget CommRingCat).obj (Y.presheaf.obj (op ↑U)) hr' : r ∈ s hr : ↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r ∈ Finset.image (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s H : AffineTargetMorphismProperty.toProperty P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑{ val := r, property := hr' })) i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(Scheme.affineBasicOpen Y r)))) i2 : IsAffine (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r))))) ⊢ AffineTargetMorphismProperty.toProperty P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ↑{ val := ↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r, property := hr }) [PROOFSTEP] exact (hP.1.arrow_mk_iso_iff (morphismRestrictRestrictBasicOpen f _ r)).mpr H [GOAL] case hS P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U : ↑(Scheme.affineOpens Y) ⊢ ⋃ (i : ↑(Set.range S)), ↑↑↑i = Set.univ [PROOFSTEP] rw [Set.eq_univ_iff_forall] [GOAL] case hS P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U : ↑(Scheme.affineOpens Y) ⊢ ∀ (x : ↑↑Y.toPresheafedSpace), x ∈ ⋃ (i : ↑(Set.range S)), ↑↑↑i [PROOFSTEP] simp only [Set.mem_iUnion] [GOAL] case hS P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U : ↑(Scheme.affineOpens Y) ⊢ ∀ (x : ↑↑Y.toPresheafedSpace), ∃ i, x ∈ ↑↑↑i [PROOFSTEP] intro x [GOAL] case hS P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U : ↑(Scheme.affineOpens Y) x : ↑↑Y.toPresheafedSpace ⊢ ∃ i, x ∈ ↑↑↑i [PROOFSTEP] exact ⟨⟨_, ⟨𝒰.f x, rfl⟩⟩, 𝒰.Covers x⟩ [GOAL] case hS' P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U : ↑(Scheme.affineOpens Y) ⊢ ∀ (U : ↑(Set.range S)), P (f ∣_ ↑↑U) [PROOFSTEP] rintro ⟨_, i, rfl⟩ [GOAL] case hS'.mk.intro P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U : ↑(Scheme.affineOpens Y) i : 𝒰.J ⊢ P (f ∣_ ↑↑{ val := S i, property := (_ : ∃ y, S y = S i) }) [PROOFSTEP] specialize h𝒰 i [GOAL] case hS'.mk.intro P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U : ↑(Scheme.affineOpens Y) i : 𝒰.J h𝒰 : P pullback.snd ⊢ P (f ∣_ ↑↑{ val := S i, property := (_ : ∃ y, S y = S i) }) [PROOFSTEP] haveI i1 : IsAffine (Y.restrict (S i).1.openEmbedding) := (S i).2 [GOAL] case hS'.mk.intro P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U : ↑(Scheme.affineOpens Y) i : 𝒰.J h𝒰 : P pullback.snd i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(S i)))) ⊢ P (f ∣_ ↑↑{ val := S i, property := (_ : ∃ y, S y = S i) }) [PROOFSTEP] rw [← P.toProperty_apply] at h𝒰 ⊢ [GOAL] case hS'.mk.intro P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } := fun i => { val := { carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) }, property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) } U : ↑(Scheme.affineOpens Y) i : 𝒰.J h𝒰 : AffineTargetMorphismProperty.toProperty P pullback.snd i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(S i)))) ⊢ AffineTargetMorphismProperty.toProperty P (f ∣_ ↑↑{ val := S i, property := (_ : ∃ y, S y = S i) }) [PROOFSTEP] exact (hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)).mpr h𝒰 [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y ⊢ TFAE [targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd, ∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 1 → 4 [GOAL] case tfae_1_to_4 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y ⊢ targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd [PROOFSTEP] intro H U g h₁ h₂ [GOAL] case tfae_1_to_4 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y H : targetAffineLocally P f U : Scheme g : U ⟶ Y h₁ : IsAffine U h₂ : IsOpenImmersion g ⊢ P pullback.snd [PROOFSTEP] set U' : Opens _ := ⟨_, h₂.base_open.open_range⟩ [GOAL] case tfae_1_to_4 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y H : targetAffineLocally P f U : Scheme g : U ⟶ Y h₁ : IsAffine U h₂ : IsOpenImmersion g U' : Opens ((forget TopCat).obj ↑Y.toPresheafedSpace) := { carrier := Set.range ↑g.val.base, is_open' := (_ : IsOpen (Set.range ↑g.val.base)) } ⊢ P pullback.snd [PROOFSTEP] replace H := H ⟨U', rangeIsAffineOpenOfOpenImmersion g⟩ [GOAL] case tfae_1_to_4 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y U : Scheme g : U ⟶ Y h₁ : IsAffine U h₂ : IsOpenImmersion g U' : Opens ((forget TopCat).obj ↑Y.toPresheafedSpace) := { carrier := Set.range ↑g.val.base, is_open' := (_ : IsOpen (Set.range ↑g.val.base)) } H : P (f ∣_ ↑{ val := U', property := (_ : IsAffineOpen (Scheme.Hom.opensRange g)) }) ⊢ P pullback.snd [PROOFSTEP] haveI i1 : IsAffine (Y.restrict U'.openEmbedding) := rangeIsAffineOpenOfOpenImmersion g [GOAL] case tfae_1_to_4 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y U : Scheme g : U ⟶ Y h₁ : IsAffine U h₂ : IsOpenImmersion g U' : Opens ((forget TopCat).obj ↑Y.toPresheafedSpace) := { carrier := Set.range ↑g.val.base, is_open' := (_ : IsOpen (Set.range ↑g.val.base)) } H : P (f ∣_ ↑{ val := U', property := (_ : IsAffineOpen (Scheme.Hom.opensRange g)) }) i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U'))) ⊢ P pullback.snd [PROOFSTEP] rw [← P.toProperty_apply] at H ⊢ [GOAL] case tfae_1_to_4 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y U : Scheme g : U ⟶ Y h₁ : IsAffine U h₂ : IsOpenImmersion g U' : Opens ((forget TopCat).obj ↑Y.toPresheafedSpace) := { carrier := Set.range ↑g.val.base, is_open' := (_ : IsOpen (Set.range ↑g.val.base)) } H : toProperty P (f ∣_ ↑{ val := U', property := (_ : IsAffineOpen (Scheme.Hom.opensRange g)) }) i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U'))) ⊢ toProperty P pullback.snd [PROOFSTEP] rwa [← hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)] [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd ⊢ TFAE [targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd, ∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 4 → 3 [GOAL] case tfae_4_to_3 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd ⊢ (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd [PROOFSTEP] intro H 𝒰 h𝒰 i [GOAL] case tfae_4_to_3 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd H : ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) i : 𝒰.J ⊢ P pullback.snd [PROOFSTEP] apply H [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd ⊢ TFAE [targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd, ∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 3 → 2 [GOAL] case tfae_3_to_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd ⊢ (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd [PROOFSTEP] exact fun H => ⟨Y.affineCover, inferInstance, H Y.affineCover⟩ [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd ⊢ TFAE [targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd, ∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 2 → 1 [GOAL] case tfae_2_to_1 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd ⊢ (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f [PROOFSTEP] rintro ⟨𝒰, h𝒰, H⟩ [GOAL] case tfae_2_to_1.intro.intro P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) H : ∀ (i : 𝒰.J), P pullback.snd ⊢ targetAffineLocally P f [PROOFSTEP] exact targetAffineLocallyOfOpenCover hP f 𝒰 H [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ⊢ TFAE [targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd, ∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 5 → 2 [GOAL] case tfae_5_to_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ⊢ (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd [PROOFSTEP] rintro ⟨ι, U, hU, hU', H⟩ [GOAL] case tfae_5_to_2.intro.intro.intro.intro P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) H : ∀ (i : ι), P (f ∣_ U i) ⊢ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd [PROOFSTEP] refine' ⟨Y.openCoverOfSuprEqTop U hU, hU', _⟩ [GOAL] case tfae_5_to_2.intro.intro.intro.intro P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) H : ∀ (i : ι), P (f ∣_ U i) ⊢ ∀ (i : (Scheme.openCoverOfSuprEqTop Y U hU).J), P pullback.snd [PROOFSTEP] intro i [GOAL] case tfae_5_to_2.intro.intro.intro.intro P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J ⊢ P pullback.snd [PROOFSTEP] specialize H i [GOAL] case tfae_5_to_2.intro.intro.intro.intro P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : P (f ∣_ U i) ⊢ P pullback.snd [PROOFSTEP] haveI i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) := hU' i [GOAL] case tfae_5_to_2.intro.intro.intro.intro P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) ⊢ P pullback.snd [PROOFSTEP] haveI i3 : IsAffine (Y.restrict (U i).openEmbedding) := hU' i [GOAL] case tfae_5_to_2.intro.intro.intro.intro P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) ⊢ P pullback.snd [PROOFSTEP] rw [← P.toProperty_apply, ← hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)] [GOAL] case tfae_5_to_2.intro.intro.intro.intro P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) ⊢ toProperty P (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) [PROOFSTEP] rw [← P.toProperty_apply] at H [GOAL] case tfae_5_to_2.intro.intro.intro.intro P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) ⊢ toProperty P (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) [PROOFSTEP] convert H [GOAL] case h.e'_2.h.e'_1.h.e'_6.h.e'_6 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i case h.e'_2.h.e'_3.e'_2.h.e'_6 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) e_1✝ : (Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))) = (Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (U i)) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i case h.e'_3.h.e'_1.h.e'_6 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i case h.e'_3.h.e'_3.e'_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) e_1✝ : (Opens.toTopCat ↑Y.toPresheafedSpace).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = (Opens.toTopCat ↑Y.toPresheafedSpace).obj (U i) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i case h.e'_4.e'_4 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) e_2✝ : Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))))) = Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (U i)))) e_3✝ : Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)))) = Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i [PROOFSTEP] all_goals ext1; exact Subtype.range_coe [GOAL] case h.e'_2.h.e'_1.h.e'_6.h.e'_6 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i [PROOFSTEP] ext1 [GOAL] case h.e'_2.h.e'_1.h.e'_6.h.e'_6.h P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) ⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i) [PROOFSTEP] exact Subtype.range_coe [GOAL] case h.e'_2.h.e'_3.e'_2.h.e'_6 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) e_1✝ : (Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))) = (Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (U i)) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i [PROOFSTEP] ext1 [GOAL] case h.e'_2.h.e'_3.e'_2.h.e'_6.h P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) e_1✝ : (Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))) = (Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (U i)) ⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i) [PROOFSTEP] exact Subtype.range_coe [GOAL] case h.e'_3.h.e'_1.h.e'_6 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i [PROOFSTEP] ext1 [GOAL] case h.e'_3.h.e'_1.h.e'_6.h P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) ⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i) [PROOFSTEP] exact Subtype.range_coe [GOAL] case h.e'_3.h.e'_3.e'_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) e_1✝ : (Opens.toTopCat ↑Y.toPresheafedSpace).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = (Opens.toTopCat ↑Y.toPresheafedSpace).obj (U i) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i [PROOFSTEP] ext1 [GOAL] case h.e'_3.h.e'_3.e'_2.h P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) e_1✝ : (Opens.toTopCat ↑Y.toPresheafedSpace).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = (Opens.toTopCat ↑Y.toPresheafedSpace).obj (U i) ⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i) [PROOFSTEP] exact Subtype.range_coe [GOAL] case h.e'_4.e'_4 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) e_2✝ : Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))))) = Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (U i)))) e_3✝ : Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)))) = Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i [PROOFSTEP] ext1 [GOAL] case h.e'_4.e'_4.h P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ hU' : ∀ (i : ι), IsAffineOpen (U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J H : toProperty P (f ∣_ U i) i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) e_2✝ : Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))))) = Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (U i)))) e_3✝ : Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)))) = Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))) ⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i) [PROOFSTEP] exact Subtype.range_coe [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd ⊢ TFAE [targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd, ∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 1 → 5 [GOAL] case tfae_1_to_5 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd ⊢ targetAffineLocally P f → ∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i) [PROOFSTEP] intro H [GOAL] case tfae_1_to_5 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd H : targetAffineLocally P f ⊢ ∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i) [PROOFSTEP] refine ⟨Y.carrier, fun x => (Scheme.Hom.opensRange <| Y.affineCover.map x), ?_, fun i => rangeIsAffineOpenOfOpenImmersion _, ?_⟩ [GOAL] case tfae_1_to_5.refine_1 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd H : targetAffineLocally P f ⊢ ⨆ (x : ↑↑Y.toPresheafedSpace), Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.affineCover Y) x) = ⊤ [PROOFSTEP] rw [eq_top_iff] [GOAL] case tfae_1_to_5.refine_1 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd H : targetAffineLocally P f ⊢ ⊤ ≤ ⨆ (x : ↑↑Y.toPresheafedSpace), Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.affineCover Y) x) [PROOFSTEP] intro x _ [GOAL] case tfae_1_to_5.refine_1 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd H : targetAffineLocally P f x : ↑↑Y.toPresheafedSpace a✝ : x ∈ ↑⊤ ⊢ x ∈ ↑(⨆ (x : ↑↑Y.toPresheafedSpace), Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.affineCover Y) x)) [PROOFSTEP] erw [Opens.mem_iSup] [GOAL] case tfae_1_to_5.refine_1 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd H : targetAffineLocally P f x : ↑↑Y.toPresheafedSpace a✝ : x ∈ ↑⊤ ⊢ ∃ i, x ∈ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.affineCover Y) i) [PROOFSTEP] exact ⟨x, Y.affineCover.Covers x⟩ [GOAL] case tfae_1_to_5.refine_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd H : targetAffineLocally P f ⊢ ∀ (i : ↑↑Y.toPresheafedSpace), P (f ∣_ (fun x => Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.affineCover Y) x)) i) [PROOFSTEP] intro i [GOAL] case tfae_1_to_5.refine_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd H : targetAffineLocally P f i : ↑↑Y.toPresheafedSpace ⊢ P (f ∣_ (fun x => Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.affineCover Y) x)) i) [PROOFSTEP] exact H ⟨_, rangeIsAffineOpenOfOpenImmersion _⟩ [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd tfae_1_to_5 : targetAffineLocally P f → ∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i) ⊢ TFAE [targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd, ∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_finish [GOAL] P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd ⊢ IsLocal P [PROOFSTEP] refine' ⟨hP, _, _⟩ [GOAL] case refine'_1 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd ⊢ ∀ {X Y : Scheme} [inst : IsAffine Y] (f : X ⟶ Y) (r : ↑(Y.presheaf.obj (op ⊤))), P f → P (f ∣_ Scheme.basicOpen Y r) [PROOFSTEP] introv h [GOAL] case refine'_1 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) h : P f ⊢ P (f ∣_ Scheme.basicOpen Y r) [PROOFSTEP] haveI : IsAffine _ := (topIsAffineOpen Y).basicOpenIsAffine r [GOAL] case refine'_1 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) h : P f this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r)))) ⊢ P (f ∣_ Scheme.basicOpen Y r) [PROOFSTEP] delta morphismRestrict [GOAL] case refine'_1 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) h : P f this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r)))) ⊢ P ((pullbackRestrictIsoRestrict f (Scheme.basicOpen Y r)).inv ≫ pullback.snd) [PROOFSTEP] rw [affine_cancel_left_isIso hP] [GOAL] case refine'_1 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) h : P f this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r)))) ⊢ P pullback.snd [PROOFSTEP] refine' @H _ _ f ⟨Scheme.openCoverOfIsIso (𝟙 Y), _, _⟩ _ (Y.ofRestrict _) _ _ [GOAL] case refine'_1.refine'_1 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) h : P f this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r)))) ⊢ ∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i) [PROOFSTEP] intro i [GOAL] case refine'_1.refine'_1 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) h : P f this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r)))) i : (Scheme.openCoverOfIsIso (𝟙 Y)).J ⊢ IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i) [PROOFSTEP] dsimp [GOAL] case refine'_1.refine'_1 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) h : P f this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r)))) i : (Scheme.openCoverOfIsIso (𝟙 Y)).J ⊢ IsAffine Y [PROOFSTEP] infer_instance [GOAL] case refine'_1.refine'_2 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) h : P f this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r)))) ⊢ ∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), P pullback.snd [PROOFSTEP] intro i [GOAL] case refine'_1.refine'_2 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) h : P f this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r)))) i : (Scheme.openCoverOfIsIso (𝟙 Y)).J ⊢ P pullback.snd [PROOFSTEP] dsimp [GOAL] case refine'_1.refine'_2 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y r : ↑(Y.presheaf.obj (op ⊤)) h : P f this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r)))) i : (Scheme.openCoverOfIsIso (𝟙 Y)).J ⊢ P pullback.snd [PROOFSTEP] rwa [← Category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_isIso hP] [GOAL] case refine'_2 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd ⊢ ∀ {X Y : Scheme} [inst : IsAffine Y] (f : X ⟶ Y) (s : Finset ↑(Y.presheaf.obj (op ⊤))), Ideal.span ↑s = ⊤ → (∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r)) → P f [PROOFSTEP] introv hs hs' [GOAL] case refine'_2 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑(Y.presheaf.obj (op ⊤)) hs : Ideal.span ↑s = ⊤ hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r) ⊢ P f [PROOFSTEP] replace hs := ((topIsAffineOpen Y).basicOpen_union_eq_self_iff _).mpr hs [GOAL] case refine'_2 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑(Y.presheaf.obj (op ⊤)) hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r) hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤ ⊢ P f [PROOFSTEP] have := H f ⟨Y.openCoverOfSuprEqTop _ hs, ?_, ?_⟩ (𝟙 _) [GOAL] case refine'_2.refine_3 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑(Y.presheaf.obj (op ⊤)) hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r) hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤ this : P pullback.snd ⊢ P f case refine'_2.refine_1 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑(Y.presheaf.obj (op ⊤)) hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r) hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤ ⊢ ∀ (i : (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs).J), IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs) i) case refine'_2.refine_2 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑(Y.presheaf.obj (op ⊤)) hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r) hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤ ⊢ ∀ (i : (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs).J), P pullback.snd [PROOFSTEP] rwa [← Category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_isIso hP] at this [GOAL] case refine'_2.refine_1 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑(Y.presheaf.obj (op ⊤)) hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r) hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤ ⊢ ∀ (i : (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs).J), IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs) i) [PROOFSTEP] intro i [GOAL] case refine'_2.refine_1 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑(Y.presheaf.obj (op ⊤)) hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r) hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤ i : (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs).J ⊢ IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs) i) [PROOFSTEP] exact (topIsAffineOpen Y).basicOpenIsAffine _ [GOAL] case refine'_2.refine_2 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑(Y.presheaf.obj (op ⊤)) hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r) hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤ ⊢ ∀ (i : (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs).J), P pullback.snd [PROOFSTEP] rintro (i : s) [GOAL] case refine'_2.refine_2 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑(Y.presheaf.obj (op ⊤)) hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r) hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤ i : { x // x ∈ s } ⊢ P pullback.snd [PROOFSTEP] specialize hs' i [GOAL] case refine'_2.refine_2 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑(Y.presheaf.obj (op ⊤)) hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤ i : { x // x ∈ s } hs' : P (f ∣_ Scheme.basicOpen Y ↑i) ⊢ P pullback.snd [PROOFSTEP] haveI : IsAffine _ := (topIsAffineOpen Y).basicOpenIsAffine i.1 [GOAL] case refine'_2.refine_2 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑(Y.presheaf.obj (op ⊤)) hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤ i : { x // x ∈ s } hs' : P (f ∣_ Scheme.basicOpen Y ↑i) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y ↑i)))) ⊢ P pullback.snd [PROOFSTEP] delta morphismRestrict at hs' [GOAL] case refine'_2.refine_2 P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) H : ∀ {X Y : Scheme} (f : X ⟶ Y), (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y s : Finset ↑(Y.presheaf.obj (op ⊤)) hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤ i : { x // x ∈ s } hs' : P ((pullbackRestrictIsoRestrict f (Scheme.basicOpen Y ↑i)).inv ≫ pullback.snd) this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y ↑i)))) ⊢ P pullback.snd [PROOFSTEP] rwa [affine_cancel_left_isIso hP] at hs' [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) ⊢ targetAffineLocally P f ↔ ∀ (i : 𝒰.J), P pullback.snd [PROOFSTEP] refine' ⟨fun H => let h := ((hP.affine_openCover_TFAE f).out 0 2).mp H; _, fun H => let h := ((hP.affine_openCover_TFAE f).out 1 0).mp; _⟩ [GOAL] case refine'_1 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) H : targetAffineLocally P f h : ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd := Iff.mp (List.TFAE.out (affine_openCover_TFAE hP f) 0 2) H ⊢ ∀ (i : 𝒰.J), P pullback.snd [PROOFSTEP] exact fun i => h 𝒰 i [GOAL] case refine'_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) H : ∀ (i : 𝒰.J), P pullback.snd h : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f := (List.TFAE.out (affine_openCover_TFAE hP f) 1 0).mp ⊢ targetAffineLocally P f [PROOFSTEP] exact h ⟨𝒰, inferInstance, H⟩ [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y inst✝ : IsAffine Y ⊢ targetAffineLocally P f ↔ P f [PROOFSTEP] haveI : ∀ i, IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i) := fun i => by dsimp; infer_instance [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y inst✝ : IsAffine Y i : (Scheme.openCoverOfIsIso (𝟙 Y)).J ⊢ IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i) [PROOFSTEP] dsimp [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y inst✝ : IsAffine Y i : (Scheme.openCoverOfIsIso (𝟙 Y)).J ⊢ IsAffine Y [PROOFSTEP] infer_instance [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y inst✝ : IsAffine Y this : ∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i) ⊢ targetAffineLocally P f ↔ P f [PROOFSTEP] rw [hP.affine_openCover_iff f (Scheme.openCoverOfIsIso (𝟙 Y))] [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y inst✝ : IsAffine Y this : ∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i) ⊢ (∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), P pullback.snd) ↔ P f [PROOFSTEP] trans P (pullback.snd : pullback f (𝟙 _) ⟶ _) [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y inst✝ : IsAffine Y this : ∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i) ⊢ (∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), P pullback.snd) ↔ P pullback.snd [PROOFSTEP] exact ⟨fun H => H PUnit.unit, fun H _ => H⟩ [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y inst✝ : IsAffine Y this : ∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i) ⊢ P pullback.snd ↔ P f [PROOFSTEP] rw [← Category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_isIso hP.1] [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P ⊢ PropertyIsLocalAtTarget (targetAffineLocally P) [PROOFSTEP] constructor [GOAL] case RespectsIso P : AffineTargetMorphismProperty hP : IsLocal P ⊢ MorphismProperty.RespectsIso (targetAffineLocally P) [PROOFSTEP] exact targetAffineLocally_respectsIso hP.1 [GOAL] case restrict P : AffineTargetMorphismProperty hP : IsLocal P ⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) (U : Opens ↑↑Y.toPresheafedSpace), targetAffineLocally P f → targetAffineLocally P (f ∣_ U) [PROOFSTEP] intro X Y f U H V [GOAL] case restrict P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace H : targetAffineLocally P f V : ↑(Scheme.affineOpens (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) ⊢ P (f ∣_ U ∣_ ↑V) [PROOFSTEP] rw [← P.toProperty_apply (i := V.2), hP.1.arrow_mk_iso_iff (morphismRestrictRestrict f _ _)] [GOAL] case restrict P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace H : targetAffineLocally P f V : ↑(Scheme.affineOpens (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) ⊢ toProperty P (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ↑V) [PROOFSTEP] convert H ⟨_, IsAffineOpen.imageIsOpenImmersion V.2 (Y.ofRestrict _)⟩ [GOAL] case a P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace H : targetAffineLocally P f V : ↑(Scheme.affineOpens (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) ⊢ toProperty P (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ↑V) ↔ P (f ∣_ ↑{ val := (Scheme.Hom.opensFunctor (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).obj ↑V, property := (_ : IsAffineOpen ((Scheme.Hom.opensFunctor (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).obj ↑V)) }) [PROOFSTEP] rw [← P.toProperty_apply (i := IsAffineOpen.imageIsOpenImmersion V.2 (Y.ofRestrict _))] [GOAL] case of_openCover P : AffineTargetMorphismProperty hP : IsLocal P ⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), targetAffineLocally P pullback.snd) → targetAffineLocally P f [PROOFSTEP] rintro X Y f 𝒰 h𝒰 [GOAL] case of_openCover P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd ⊢ targetAffineLocally P f [PROOFSTEP] have h01 := (hP.affine_openCover_TFAE f).out 0 1 [GOAL] case of_openCover P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd ⊢ targetAffineLocally P f [PROOFSTEP] rw [h01] [GOAL] case of_openCover P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd ⊢ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd [PROOFSTEP] refine' ⟨𝒰.bind fun _ => Scheme.affineCover _, _, _⟩ [GOAL] case of_openCover.refine'_1 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd ⊢ ∀ (i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J), IsAffine (Scheme.OpenCover.obj (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)) i) [PROOFSTEP] intro i [GOAL] case of_openCover.refine'_1 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J ⊢ IsAffine (Scheme.OpenCover.obj (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)) i) [PROOFSTEP] dsimp [Scheme.OpenCover.bind] [GOAL] case of_openCover.refine'_1 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J ⊢ IsAffine (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) [PROOFSTEP] infer_instance [GOAL] case of_openCover.refine'_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd ⊢ ∀ (i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J), P pullback.snd [PROOFSTEP] intro i [GOAL] case of_openCover.refine'_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J ⊢ P pullback.snd [PROOFSTEP] specialize h𝒰 i.1 -- Porting note : rewrite `[(hP.affine_openCover_TFAE pullback.snd).out 0 1` directly -- complains about metavariables [GOAL] case of_openCover.refine'_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J h𝒰 : targetAffineLocally P pullback.snd ⊢ P pullback.snd [PROOFSTEP] have h02 := (hP.affine_openCover_TFAE (pullback.snd : pullback f (𝒰.map i.fst) ⟶ _)).out 0 2 [GOAL] case of_openCover.refine'_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J h𝒰 : targetAffineLocally P pullback.snd h02 : targetAffineLocally P pullback.snd ↔ ∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst)) [inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd ⊢ P pullback.snd [PROOFSTEP] rw [h02] at h𝒰 [GOAL] case of_openCover.refine'_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J h𝒰 : ∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst)) [inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd h02 : targetAffineLocally P pullback.snd ↔ ∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst)) [inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd ⊢ P pullback.snd [PROOFSTEP] specialize h𝒰 (Scheme.affineCover _) i.2 [GOAL] case of_openCover.refine'_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J h02 : targetAffineLocally P pullback.snd ↔ ∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst)) [inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd h𝒰 : P pullback.snd ⊢ P pullback.snd [PROOFSTEP] let e : pullback f ((𝒰.obj i.fst).affineCover.map i.snd ≫ 𝒰.map i.fst) ⟶ pullback (pullback.snd : pullback f (𝒰.map i.fst) ⟶ _) ((𝒰.obj i.fst).affineCover.map i.snd) := by refine' (pullbackSymmetry _ _).hom ≫ _ refine' (pullbackRightPullbackFstIso _ _ _).inv ≫ _ refine' (pullbackSymmetry _ _).hom ≫ _ refine' pullback.map _ _ _ _ (pullbackSymmetry _ _).hom (𝟙 _) (𝟙 _) _ _ <;> simp only [Category.comp_id, Category.id_comp, pullbackSymmetry_hom_comp_snd] [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J h02 : targetAffineLocally P pullback.snd ↔ ∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst)) [inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd h𝒰 : P pullback.snd ⊢ pullback f (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst) ⟶ pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) [PROOFSTEP] refine' (pullbackSymmetry _ _).hom ≫ _ [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J h02 : targetAffineLocally P pullback.snd ↔ ∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst)) [inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd h𝒰 : P pullback.snd ⊢ pullback (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst) f ⟶ pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) [PROOFSTEP] refine' (pullbackRightPullbackFstIso _ _ _).inv ≫ _ [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J h02 : targetAffineLocally P pullback.snd ↔ ∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst)) [inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd h𝒰 : P pullback.snd ⊢ pullback (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) pullback.fst ⟶ pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) [PROOFSTEP] refine' (pullbackSymmetry _ _).hom ≫ _ [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J h02 : targetAffineLocally P pullback.snd ↔ ∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst)) [inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd h𝒰 : P pullback.snd ⊢ pullback pullback.fst (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) ⟶ pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) [PROOFSTEP] refine' pullback.map _ _ _ _ (pullbackSymmetry _ _).hom (𝟙 _) (𝟙 _) _ _ [GOAL] case refine'_1 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J h02 : targetAffineLocally P pullback.snd ↔ ∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst)) [inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd h𝒰 : P pullback.snd ⊢ pullback.fst ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) = (pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom ≫ pullback.snd [PROOFSTEP] simp only [Category.comp_id, Category.id_comp, pullbackSymmetry_hom_comp_snd] [GOAL] case refine'_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J h02 : targetAffineLocally P pullback.snd ↔ ∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst)) [inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd h𝒰 : P pullback.snd ⊢ Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) = 𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) ≫ Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd [PROOFSTEP] simp only [Category.comp_id, Category.id_comp, pullbackSymmetry_hom_comp_snd] [GOAL] case of_openCover.refine'_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J h02 : targetAffineLocally P pullback.snd ↔ ∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst)) [inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd h𝒰 : P pullback.snd e : pullback f (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst) ⟶ pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) := (pullbackSymmetry f (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst)).hom ≫ (pullbackRightPullbackFstIso (Scheme.OpenCover.map 𝒰 i.fst) f (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)).inv ≫ (pullbackSymmetry (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) pullback.fst).hom ≫ pullback.map pullback.fst (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) (pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom (𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)) (𝟙 (Scheme.OpenCover.obj 𝒰 i.fst)) (_ : pullback.fst ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) = (pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom ≫ pullback.snd) (_ : Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) = 𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) ≫ Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) ⊢ P pullback.snd [PROOFSTEP] rw [← affine_cancel_left_isIso hP.1 e] at h𝒰 [GOAL] case of_openCover.refine'_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J h02 : targetAffineLocally P pullback.snd ↔ ∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst)) [inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd e : pullback f (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst) ⟶ pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) := (pullbackSymmetry f (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst)).hom ≫ (pullbackRightPullbackFstIso (Scheme.OpenCover.map 𝒰 i.fst) f (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)).inv ≫ (pullbackSymmetry (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) pullback.fst).hom ≫ pullback.map pullback.fst (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) (pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom (𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)) (𝟙 (Scheme.OpenCover.obj 𝒰 i.fst)) (_ : pullback.fst ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) = (pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom ≫ pullback.snd) (_ : Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) = 𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) ≫ Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) h𝒰 : P (e ≫ pullback.snd) ⊢ P pullback.snd [PROOFSTEP] convert h𝒰 using 1 [GOAL] case h.e'_3.h P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J h02 : targetAffineLocally P pullback.snd ↔ ∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst)) [inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd e : pullback f (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst) ⟶ pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) := (pullbackSymmetry f (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst)).hom ≫ (pullbackRightPullbackFstIso (Scheme.OpenCover.map 𝒰 i.fst) f (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)).inv ≫ (pullbackSymmetry (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) pullback.fst).hom ≫ pullback.map pullback.fst (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) (pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom (𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)) (𝟙 (Scheme.OpenCover.obj 𝒰 i.fst)) (_ : pullback.fst ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) = (pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom ≫ pullback.snd) (_ : Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) = 𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) ≫ Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) h𝒰 : P (e ≫ pullback.snd) e_1✝ : pullback f (Scheme.OpenCover.map (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)) i) = pullback f (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst) e_2✝ : Scheme.OpenCover.obj (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)) i = Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ⊢ pullback.snd = e ≫ pullback.snd [PROOFSTEP] simp [GOAL] P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y ⊢ TFAE [P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd, ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U), ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 2 → 1 [GOAL] case tfae_2_to_1 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y ⊢ (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f [PROOFSTEP] rintro ⟨𝒰, H⟩ [GOAL] case tfae_2_to_1.intro P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), P pullback.snd ⊢ P f [PROOFSTEP] exact hP.3 f 𝒰 H [GOAL] P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f ⊢ TFAE [P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd, ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U), ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 1 → 4 [GOAL] case tfae_1_to_4 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f ⊢ P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) [PROOFSTEP] intro H U [GOAL] case tfae_1_to_4 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f H : P f U : Opens ↑↑Y.toPresheafedSpace ⊢ P (f ∣_ U) [PROOFSTEP] exact hP.2 f U H [GOAL] P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) ⊢ TFAE [P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd, ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U), ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 4 → 3 [GOAL] case tfae_4_to_3 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) ⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd [PROOFSTEP] intro H 𝒰 i [GOAL] case tfae_4_to_3 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) 𝒰 : Scheme.OpenCover Y i : 𝒰.J ⊢ P pullback.snd [PROOFSTEP] rw [← hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)] [GOAL] case tfae_4_to_3 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) 𝒰 : Scheme.OpenCover Y i : 𝒰.J ⊢ P (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i)) [PROOFSTEP] exact H <| Scheme.Hom.opensRange (𝒰.map i) [GOAL] P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd ⊢ TFAE [P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd, ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U), ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 3 → 2 [GOAL] case tfae_3_to_2 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd ⊢ (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd [PROOFSTEP] exact fun H => ⟨Y.affineCover, H Y.affineCover⟩ [GOAL] P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd ⊢ TFAE [P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd, ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U), ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 4 → 5 [GOAL] case tfae_4_to_5 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd ⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd [PROOFSTEP] intro H U g hg [GOAL] case tfae_4_to_5 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) U : Scheme g : U ⟶ Y hg : IsOpenImmersion g ⊢ P pullback.snd [PROOFSTEP] rw [← hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)] [GOAL] case tfae_4_to_5 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) U : Scheme g : U ⟶ Y hg : IsOpenImmersion g ⊢ P (f ∣_ Scheme.Hom.opensRange g) [PROOFSTEP] apply H [GOAL] P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd ⊢ TFAE [P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd, ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U), ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 5 → 4 [GOAL] case tfae_5_to_4 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd ⊢ (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) [PROOFSTEP] intro H U [GOAL] case tfae_5_to_4 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd H : ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd U : Opens ↑↑Y.toPresheafedSpace ⊢ P (f ∣_ U) [PROOFSTEP] erw [hP.1.cancel_left_isIso] [GOAL] case tfae_5_to_4 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd H : ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd U : Opens ↑↑Y.toPresheafedSpace ⊢ P pullback.snd [PROOFSTEP] apply H [GOAL] P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) ⊢ TFAE [P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd, ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U), ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 4 → 6 [GOAL] case tfae_4_to_6 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) ⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) [PROOFSTEP] intro H [GOAL] case tfae_4_to_6 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) ⊢ ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) [PROOFSTEP] exact ⟨PUnit, fun _ => ⊤, ciSup_const, fun _ => H _⟩ [GOAL] P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ⊢ TFAE [P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd, ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U), ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_have 6 → 2 [GOAL] case tfae_6_to_2 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ⊢ (∃ ι U x, ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd [PROOFSTEP] rintro ⟨ι, U, hU, H⟩ [GOAL] case tfae_6_to_2.intro.intro.intro P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) ⊢ ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd [PROOFSTEP] refine' ⟨Y.openCoverOfSuprEqTop U hU, _⟩ [GOAL] case tfae_6_to_2.intro.intro.intro P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) ⊢ ∀ (i : (Scheme.openCoverOfSuprEqTop Y U hU).J), P pullback.snd [PROOFSTEP] intro i [GOAL] case tfae_6_to_2.intro.intro.intro P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J ⊢ P pullback.snd [PROOFSTEP] rw [← hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)] [GOAL] case tfae_6_to_2.intro.intro.intro P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J ⊢ P (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) [PROOFSTEP] convert H i [GOAL] case h.e'_1.h.e'_1.h.e'_6.h.e'_6 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i case h.e'_1.h.e'_3.e'_2.h.e'_6 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J e_1✝ : (Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))) = (Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (U i)) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i case h.e'_2.h.e'_1.h.e'_6 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i case h.e'_2.h.e'_3.e'_2 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J e_1✝ : (Opens.toTopCat ↑Y.toPresheafedSpace).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = (Opens.toTopCat ↑Y.toPresheafedSpace).obj (U i) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i case h.e'_3.e'_4 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J e_1✝ : Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))))) = Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (U i)))) e_2✝ : Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)))) = Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i [PROOFSTEP] all_goals ext1; exact Subtype.range_coe [GOAL] case h.e'_1.h.e'_1.h.e'_6.h.e'_6 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i [PROOFSTEP] ext1 [GOAL] case h.e'_1.h.e'_1.h.e'_6.h.e'_6.h P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J ⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i) [PROOFSTEP] exact Subtype.range_coe [GOAL] case h.e'_1.h.e'_3.e'_2.h.e'_6 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J e_1✝ : (Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))) = (Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (U i)) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i [PROOFSTEP] ext1 [GOAL] case h.e'_1.h.e'_3.e'_2.h.e'_6.h P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J e_1✝ : (Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))) = (Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (U i)) ⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i) [PROOFSTEP] exact Subtype.range_coe [GOAL] case h.e'_2.h.e'_1.h.e'_6 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i [PROOFSTEP] ext1 [GOAL] case h.e'_2.h.e'_1.h.e'_6.h P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J ⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i) [PROOFSTEP] exact Subtype.range_coe [GOAL] case h.e'_2.h.e'_3.e'_2 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J e_1✝ : (Opens.toTopCat ↑Y.toPresheafedSpace).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = (Opens.toTopCat ↑Y.toPresheafedSpace).obj (U i) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i [PROOFSTEP] ext1 [GOAL] case h.e'_2.h.e'_3.e'_2.h P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J e_1✝ : (Opens.toTopCat ↑Y.toPresheafedSpace).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = (Opens.toTopCat ↑Y.toPresheafedSpace).obj (U i) ⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i) [PROOFSTEP] exact Subtype.range_coe [GOAL] case h.e'_3.e'_4 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J e_1✝ : Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))))) = Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (U i)))) e_2✝ : Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)))) = Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))) ⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i [PROOFSTEP] ext1 [GOAL] case h.e'_3.e'_4.h P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) ι : Type u U : ι → Opens ↑↑Y.toPresheafedSpace hU : iSup U = ⊤ H : ∀ (i : ι), P (f ∣_ U i) i : (Scheme.openCoverOfSuprEqTop Y U hU).J e_1✝ : Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))))) = Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (U i)))) e_2✝ : Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)))) = Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))) ⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i) [PROOFSTEP] exact Subtype.range_coe [GOAL] P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd tfae_4_to_5 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd tfae_5_to_4 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U) tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i) tfae_6_to_2 : (∃ ι U x, ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd ⊢ TFAE [P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd, ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U), ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)] [PROOFSTEP] tfae_finish [GOAL] P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y ⊢ P f ↔ ∀ (i : 𝒰.J), P pullback.snd [PROOFSTEP] refine ⟨fun H => let h := ((hP.openCover_TFAE f).out 0 2).mp H; fun i => ?_, fun H => let h := ((hP.openCover_TFAE f).out 1 0).mp; ?_⟩ [GOAL] case refine_1 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : P f h : ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd := Iff.mp (List.TFAE.out (openCover_TFAE hP f) 0 2) H i : 𝒰.J ⊢ P pullback.snd [PROOFSTEP] exact h 𝒰 i [GOAL] case refine_2 P : MorphismProperty Scheme hP : PropertyIsLocalAtTarget P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y H : ∀ (i : 𝒰.J), P pullback.snd h : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f := (List.TFAE.out (openCover_TFAE hP f) 1 0).mp ⊢ P f [PROOFSTEP] exact h ⟨𝒰, H⟩ [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : IsAffine S H : P g ⊢ targetAffineLocally P pullback.fst [PROOFSTEP] have h01 := (hP.affine_openCover_TFAE (pullback.fst : pullback f g ⟶ X)).out 0 1 [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : IsAffine S H : P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd ⊢ targetAffineLocally P pullback.fst [PROOFSTEP] rw [h01] [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : IsAffine S H : P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd ⊢ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd [PROOFSTEP] use X.affineCover, inferInstance [GOAL] case h P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : IsAffine S H : P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd ⊢ ∀ (i : (Scheme.affineCover X).J), P pullback.snd [PROOFSTEP] intro i [GOAL] case h P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : IsAffine S H : P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.affineCover X).J ⊢ P pullback.snd [PROOFSTEP] let e := pullbackSymmetry _ _ ≪≫ pullbackRightPullbackFstIso f g (X.affineCover.map i) [GOAL] case h P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : IsAffine S H : P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.affineCover X).J e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≅ pullback (Scheme.OpenCover.map (Scheme.affineCover X) i ≫ f) g := pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≪≫ pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.affineCover X) i) ⊢ P pullback.snd [PROOFSTEP] have : e.hom ≫ pullback.fst = pullback.snd := by simp [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : IsAffine S H : P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.affineCover X).J e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≅ pullback (Scheme.OpenCover.map (Scheme.affineCover X) i ≫ f) g := pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≪≫ pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.affineCover X) i) ⊢ e.hom ≫ pullback.fst = pullback.snd [PROOFSTEP] simp [GOAL] case h P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : IsAffine S H : P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.affineCover X).J e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≅ pullback (Scheme.OpenCover.map (Scheme.affineCover X) i ≫ f) g := pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≪≫ pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.affineCover X) i) this : e.hom ≫ pullback.fst = pullback.snd ⊢ P pullback.snd [PROOFSTEP] rw [← this, affine_cancel_left_isIso hP.1] [GOAL] case h P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : IsAffine S H : P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.affineCover X).J e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≅ pullback (Scheme.OpenCover.map (Scheme.affineCover X) i ≫ f) g := pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≪≫ pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.affineCover X) i) this : e.hom ≫ pullback.fst = pullback.snd ⊢ P pullback.fst [PROOFSTEP] apply hP' [GOAL] case h.a P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S inst✝ : IsAffine S H : P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd i : (Scheme.affineCover X).J e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≅ pullback (Scheme.OpenCover.map (Scheme.affineCover X) i ≫ f) g := pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≪≫ pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.affineCover X) i) this : e.hom ≫ pullback.fst = pullback.snd ⊢ P g [PROOFSTEP] assumption [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : targetAffineLocally P g ⊢ targetAffineLocally P pullback.fst [PROOFSTEP] have h01 := (hP.targetAffineLocallyIsLocal.openCover_TFAE (pullback.fst : pullback f g ⟶ X)).out 0 1 [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : targetAffineLocally P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd ⊢ targetAffineLocally P pullback.fst [PROOFSTEP] rw [h01] [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : targetAffineLocally P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd ⊢ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd [PROOFSTEP] use S.affineCover.pullbackCover f [GOAL] case h P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : targetAffineLocally P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd ⊢ ∀ (i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J), targetAffineLocally P pullback.snd [PROOFSTEP] intro i [GOAL] case h P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : targetAffineLocally P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J ⊢ targetAffineLocally P pullback.snd [PROOFSTEP] have h03 := (hP.affine_openCover_TFAE g).out 0 3 [GOAL] case h P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : targetAffineLocally P g h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J h03 : targetAffineLocally P g ↔ ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd ⊢ targetAffineLocally P pullback.snd [PROOFSTEP] rw [h03] at H [GOAL] case h P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J h03 : targetAffineLocally P g ↔ ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd ⊢ targetAffineLocally P pullback.snd [PROOFSTEP] let e : pullback (pullback.fst : pullback f g ⟶ _) ((S.affineCover.pullbackCover f).map i) ≅ _ := by refine' pullbackSymmetry _ _ ≪≫ pullbackRightPullbackFstIso f g _ ≪≫ _ ≪≫ (pullbackRightPullbackFstIso (S.affineCover.map i) g (pullback.snd : pullback f (S.affineCover.map i) ⟶ _)).symm exact asIso (pullback.map _ _ _ _ (𝟙 _) (𝟙 _) (𝟙 _) (by simpa using pullback.condition) (by simp)) [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J h03 : targetAffineLocally P g ↔ ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd ⊢ pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅ ?m.95921 [PROOFSTEP] refine' pullbackSymmetry _ _ ≪≫ pullbackRightPullbackFstIso f g _ ≪≫ _ ≪≫ (pullbackRightPullbackFstIso (S.affineCover.map i) g (pullback.snd : pullback f (S.affineCover.map i) ⟶ _)).symm [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J h03 : targetAffineLocally P g ↔ ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd ⊢ pullback (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g ≅ pullback (pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g [PROOFSTEP] exact asIso (pullback.map _ _ _ _ (𝟙 _) (𝟙 _) (𝟙 _) (by simpa using pullback.condition) (by simp)) [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J h03 : targetAffineLocally P g ↔ ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd ⊢ (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S = 𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫ pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i [PROOFSTEP] simpa using pullback.condition [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J h03 : targetAffineLocally P g ↔ ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd ⊢ g ≫ 𝟙 S = 𝟙 Y ≫ g [PROOFSTEP] simp [GOAL] case h P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J h03 : targetAffineLocally P g ↔ ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅ pullback pullback.snd pullback.fst := pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫ pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫ asIso (pullback.map (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g (pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g (𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i)) (𝟙 Y) (𝟙 S) (_ : (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S = 𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫ pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) (_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) ≪≫ (pullbackRightPullbackFstIso (Scheme.OpenCover.map (Scheme.affineCover S) i) g pullback.snd).symm ⊢ targetAffineLocally P pullback.snd [PROOFSTEP] have : e.hom ≫ pullback.fst = pullback.snd := by simp [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J h03 : targetAffineLocally P g ↔ ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅ pullback pullback.snd pullback.fst := pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫ pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫ asIso (pullback.map (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g (pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g (𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i)) (𝟙 Y) (𝟙 S) (_ : (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S = 𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫ pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) (_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) ≪≫ (pullbackRightPullbackFstIso (Scheme.OpenCover.map (Scheme.affineCover S) i) g pullback.snd).symm ⊢ e.hom ≫ pullback.fst = pullback.snd [PROOFSTEP] simp [GOAL] case h P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J h03 : targetAffineLocally P g ↔ ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅ pullback pullback.snd pullback.fst := pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫ pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫ asIso (pullback.map (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g (pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g (𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i)) (𝟙 Y) (𝟙 S) (_ : (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S = 𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫ pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) (_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) ≪≫ (pullbackRightPullbackFstIso (Scheme.OpenCover.map (Scheme.affineCover S) i) g pullback.snd).symm this : e.hom ≫ pullback.fst = pullback.snd ⊢ targetAffineLocally P pullback.snd [PROOFSTEP] rw [← this, (targetAffineLocally_respectsIso hP.1).cancel_left_isIso] [GOAL] case h P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J h03 : targetAffineLocally P g ↔ ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅ pullback pullback.snd pullback.fst := pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫ pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫ asIso (pullback.map (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g (pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g (𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i)) (𝟙 Y) (𝟙 S) (_ : (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S = 𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫ pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) (_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) ≪≫ (pullbackRightPullbackFstIso (Scheme.OpenCover.map (Scheme.affineCover S) i) g pullback.snd).symm this : e.hom ≫ pullback.fst = pullback.snd ⊢ targetAffineLocally P pullback.fst [PROOFSTEP] apply hP.targetAffineLocallyPullbackFstOfRightOfStableUnderBaseChange hP' [GOAL] case h.H P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J h03 : targetAffineLocally P g ↔ ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅ pullback pullback.snd pullback.fst := pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫ pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫ asIso (pullback.map (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g (pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g (𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i)) (𝟙 Y) (𝟙 S) (_ : (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S = 𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫ pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) (_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) ≪≫ (pullbackRightPullbackFstIso (Scheme.OpenCover.map (Scheme.affineCover S) i) g pullback.snd).symm this : e.hom ≫ pullback.fst = pullback.snd ⊢ P pullback.fst [PROOFSTEP] rw [← pullbackSymmetry_hom_comp_snd, affine_cancel_left_isIso hP.1] [GOAL] case h.H P : AffineTargetMorphismProperty hP : IsLocal P hP' : StableUnderBaseChange P X Y S : Scheme f : X ⟶ S g : Y ⟶ S H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J h03 : targetAffineLocally P g ↔ ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅ pullback pullback.snd pullback.fst := pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫ pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫ asIso (pullback.map (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g (pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g (𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i)) (𝟙 Y) (𝟙 S) (_ : (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S = 𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫ pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) (_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) ≪≫ (pullbackRightPullbackFstIso (Scheme.OpenCover.map (Scheme.affineCover S) i) g pullback.snd).symm this : e.hom ≫ pullback.fst = pullback.snd ⊢ P pullback.snd [PROOFSTEP] apply H [GOAL] P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) ⊢ MorphismProperty.RespectsIso (toProperty (diagonal P)) [PROOFSTEP] delta AffineTargetMorphismProperty.diagonal [GOAL] P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) ⊢ MorphismProperty.RespectsIso (toProperty fun {X x} f x_1 => ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f)) [PROOFSTEP] apply AffineTargetMorphismProperty.respectsIso_mk [GOAL] case h₁ P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) ⊢ ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], (∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ Y) (f₂ : U₂ ⟶ Y) [inst_1 : IsAffine U₁] [inst_2 : IsAffine U₂] [inst_3 : IsOpenImmersion f₁] [inst_4 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f)) → ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst_1 : IsAffine U₁] [inst_2 : IsAffine U₂] [inst_3 : IsOpenImmersion f₁] [inst_4 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ (e.hom ≫ f)) [PROOFSTEP] introv H _ _ [GOAL] case h₁ P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) X Y Z : Scheme e : X ≅ Y f : Y ⟶ Z inst✝⁴ : IsAffine Z H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ Y) (f₂ : U₂ ⟶ Y) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f) U₁ U₂ : Scheme f₁ : U₁ ⟶ X f₂ : U₂ ⟶ X inst✝³ : IsAffine U₁ inst✝² : IsAffine U₂ inst✝¹ : IsOpenImmersion f₁ inst✝ : IsOpenImmersion f₂ ⊢ P (pullback.mapDesc f₁ f₂ (e.hom ≫ f)) [PROOFSTEP] rw [pullback.mapDesc_comp, affine_cancel_left_isIso hP, affine_cancel_right_isIso hP] -- Porting note : add the following two instances [GOAL] case h₁ P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) X Y Z : Scheme e : X ≅ Y f : Y ⟶ Z inst✝⁴ : IsAffine Z H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ Y) (f₂ : U₂ ⟶ Y) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f) U₁ U₂ : Scheme f₁ : U₁ ⟶ X f₂ : U₂ ⟶ X inst✝³ : IsAffine U₁ inst✝² : IsAffine U₂ inst✝¹ : IsOpenImmersion f₁ inst✝ : IsOpenImmersion f₂ ⊢ P (pullback.mapDesc (f₁ ≫ e.hom) (f₂ ≫ e.hom) f) [PROOFSTEP] have i1 : IsOpenImmersion (f₁ ≫ e.hom) := PresheafedSpace.IsOpenImmersion.comp _ _ [GOAL] case h₁ P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) X Y Z : Scheme e : X ≅ Y f : Y ⟶ Z inst✝⁴ : IsAffine Z H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ Y) (f₂ : U₂ ⟶ Y) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f) U₁ U₂ : Scheme f₁ : U₁ ⟶ X f₂ : U₂ ⟶ X inst✝³ : IsAffine U₁ inst✝² : IsAffine U₂ inst✝¹ : IsOpenImmersion f₁ inst✝ : IsOpenImmersion f₂ i1 : IsOpenImmersion (f₁ ≫ e.hom) ⊢ P (pullback.mapDesc (f₁ ≫ e.hom) (f₂ ≫ e.hom) f) [PROOFSTEP] have i2 : IsOpenImmersion (f₂ ≫ e.hom) := PresheafedSpace.IsOpenImmersion.comp _ _ [GOAL] case h₁ P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) X Y Z : Scheme e : X ≅ Y f : Y ⟶ Z inst✝⁴ : IsAffine Z H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ Y) (f₂ : U₂ ⟶ Y) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f) U₁ U₂ : Scheme f₁ : U₁ ⟶ X f₂ : U₂ ⟶ X inst✝³ : IsAffine U₁ inst✝² : IsAffine U₂ inst✝¹ : IsOpenImmersion f₁ inst✝ : IsOpenImmersion f₂ i1 : IsOpenImmersion (f₁ ≫ e.hom) i2 : IsOpenImmersion (f₂ ≫ e.hom) ⊢ P (pullback.mapDesc (f₁ ≫ e.hom) (f₂ ≫ e.hom) f) [PROOFSTEP] apply H [GOAL] case h₂ P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) ⊢ ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], (∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f)) → ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ (f ≫ e.hom)) [PROOFSTEP] introv H _ _ -- Porting note : add the following two instances [GOAL] case h₂ P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) X Y Z : Scheme e : Y ≅ Z f : X ⟶ Y h : IsAffine Y H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f) U₁ U₂ : Scheme f₁ : U₁ ⟶ X f₂ : U₂ ⟶ X inst✝³ : IsAffine U₁ inst✝² : IsAffine U₂ inst✝¹ : IsOpenImmersion f₁ inst✝ : IsOpenImmersion f₂ ⊢ P (pullback.mapDesc f₁ f₂ (f ≫ e.hom)) [PROOFSTEP] have _ : IsAffine Z := isAffineOfIso e.inv [GOAL] case h₂ P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) X Y Z : Scheme e : Y ≅ Z f : X ⟶ Y h : IsAffine Y H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f) U₁ U₂ : Scheme f₁ : U₁ ⟶ X f₂ : U₂ ⟶ X inst✝³ : IsAffine U₁ inst✝² : IsAffine U₂ inst✝¹ : IsOpenImmersion f₁ inst✝ : IsOpenImmersion f₂ x✝ : IsAffine Z ⊢ P (pullback.mapDesc f₁ f₂ (f ≫ e.hom)) [PROOFSTEP] rw [pullback.mapDesc_comp, affine_cancel_right_isIso hP] [GOAL] case h₂ P : AffineTargetMorphismProperty hP : MorphismProperty.RespectsIso (toProperty P) X Y Z : Scheme e : Y ≅ Z f : X ⟶ Y h : IsAffine Y H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f) U₁ U₂ : Scheme f₁ : U₁ ⟶ X f₂ : U₂ ⟶ X inst✝³ : IsAffine U₁ inst✝² : IsAffine U₂ inst✝¹ : IsOpenImmersion f₁ inst✝ : IsOpenImmersion f₂ x✝ : IsAffine Z ⊢ P (pullback.mapDesc f₁ f₂ f) [PROOFSTEP] apply H [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) ⊢ MorphismProperty.diagonal (targetAffineLocally P) f [PROOFSTEP] let 𝒱 := (Scheme.Pullback.openCoverOfBase 𝒰 f f).bind fun i => Scheme.Pullback.openCoverOfLeftRight.{u} (𝒰' i) (𝒰' i) pullback.snd pullback.snd [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd ⊢ MorphismProperty.diagonal (targetAffineLocally P) f [PROOFSTEP] have i1 : ∀ i, IsAffine (𝒱.obj i) := fun i => by dsimp; infer_instance [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i : 𝒱.J ⊢ IsAffine (Scheme.OpenCover.obj 𝒱 i) [PROOFSTEP] dsimp [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i : 𝒱.J ⊢ IsAffine (pullback (Scheme.OpenCover.map (𝒰' i.fst) i.snd.fst ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i.fst) i.snd.snd ≫ pullback.snd)) [PROOFSTEP] infer_instance [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) ⊢ MorphismProperty.diagonal (targetAffineLocally P) f [PROOFSTEP] refine' (hP.affine_openCover_iff _ _).mpr _ [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) ⊢ ∀ (i : 𝒱.J), P pullback.snd [PROOFSTEP] rintro ⟨i, j, k⟩ [GOAL] case mk.mk P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J ⊢ P pullback.snd [PROOFSTEP] dsimp [GOAL] case mk.mk P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J ⊢ P pullback.snd [PROOFSTEP] convert (affine_cancel_left_isIso hP.1 (pullbackDiagonalMapIso _ _ ((𝒰' i).map j) ((𝒰' i).map k)).inv pullback.snd).mp _ [GOAL] case h.e'_1.h.e'_7 P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J ⊢ pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) = pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) case h.e'_3.e'_7 P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J e_1✝ : pullback (pullback.diagonal f) (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) = pullback (pullback.diagonal f) (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f)) ⊢ pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) = pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) case mk.mk P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J ⊢ P ((pullbackDiagonalMapIso f (Scheme.OpenCover.map 𝒰 i) (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)).inv ≫ pullback.snd) [PROOFSTEP] pick_goal 3 [GOAL] case mk.mk P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J ⊢ P ((pullbackDiagonalMapIso f (Scheme.OpenCover.map 𝒰 i) (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)).inv ≫ pullback.snd) [PROOFSTEP] convert h𝒰' i j k [GOAL] case h.e'_3 P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J ⊢ (pullbackDiagonalMapIso f (Scheme.OpenCover.map 𝒰 i) (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)).inv ≫ pullback.snd = pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd [PROOFSTEP] apply pullback.hom_ext [GOAL] case h.e'_3.h₀ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J ⊢ ((pullbackDiagonalMapIso f (Scheme.OpenCover.map 𝒰 i) (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)).inv ≫ pullback.snd) ≫ pullback.fst = pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd ≫ pullback.fst [PROOFSTEP] simp [GOAL] case h.e'_3.h₁ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J ⊢ ((pullbackDiagonalMapIso f (Scheme.OpenCover.map 𝒰 i) (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)).inv ≫ pullback.snd) ≫ pullback.snd = pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd ≫ pullback.snd [PROOFSTEP] simp [GOAL] case h.e'_1.h.e'_7 P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J ⊢ pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) = pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) case h.e'_3.e'_7 P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J e_1✝ : pullback (pullback.diagonal f) (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) = pullback (pullback.diagonal f) (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f)) ⊢ pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) = pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) [PROOFSTEP] all_goals apply pullback.hom_ext <;> simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc] [GOAL] case h.e'_1.h.e'_7 P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J ⊢ pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) = pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) [PROOFSTEP] apply pullback.hom_ext [GOAL] case h.e'_1.h.e'_7.h₀ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J ⊢ (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) ≫ pullback.fst = pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) ≫ pullback.fst [PROOFSTEP] simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc] [GOAL] case h.e'_1.h.e'_7.h₁ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J ⊢ (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) ≫ pullback.snd = pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) ≫ pullback.snd [PROOFSTEP] simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc] [GOAL] case h.e'_3.e'_7 P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J e_1✝ : pullback (pullback.diagonal f) (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) = pullback (pullback.diagonal f) (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f)) ⊢ pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) = pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) [PROOFSTEP] apply pullback.hom_ext [GOAL] case h.e'_3.e'_7.h₀ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J e_1✝ : pullback (pullback.diagonal f) (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) = pullback (pullback.diagonal f) (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f)) ⊢ (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) ≫ pullback.fst = pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) ≫ pullback.fst [PROOFSTEP] simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc] [GOAL] case h.e'_3.e'_7.h₁ P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒱 : Scheme.OpenCover (pullback f f) := Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i => Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i) i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J j k : (𝒰' i).J e_1✝ : pullback (pullback.diagonal f) (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) = pullback (pullback.diagonal f) (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f)) ⊢ (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) (𝟙 (Scheme.OpenCover.obj 𝒰 i)) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) (_ : (Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) = Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) ≫ pullback.snd = pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) (Scheme.OpenCover.map 𝒰 i) (_ : (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f) (_ : (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i = (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) ≫ pullback.snd [PROOFSTEP] simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc] [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y U : Scheme f : X ⟶ Y g : U ⟶ Y inst✝¹ : IsAffine U inst✝ : IsOpenImmersion g H : MorphismProperty.diagonal (targetAffineLocally P) f ⊢ diagonal P pullback.snd [PROOFSTEP] rintro U V f₁ f₂ hU hV hf₁ hf₂ [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g H : MorphismProperty.diagonal (targetAffineLocally P) f U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ ⊢ P (pullback.mapDesc f₁ f₂ pullback.snd) [PROOFSTEP] replace H := ((hP.affine_openCover_TFAE (pullback.diagonal f)).out 0 3).mp H [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd ⊢ P (pullback.mapDesc f₁ f₂ pullback.snd) [PROOFSTEP] let g₁ := pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g (by rw [Category.assoc, Category.assoc, pullback.condition]) (by rw [Category.assoc, Category.assoc, pullback.condition]) -- Porting note : added this instance [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd ⊢ (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f [PROOFSTEP] rw [Category.assoc, Category.assoc, pullback.condition] [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd ⊢ (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f [PROOFSTEP] rw [Category.assoc, Category.assoc, pullback.condition] [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f := pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g (_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f) ⊢ P (pullback.mapDesc f₁ f₂ pullback.snd) [PROOFSTEP] haveI hg₁ : IsOpenImmersion g₁ := by apply (config := { allowSynthFailures := true }) Scheme.pullback_map_isOpenImmersion · exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₁) _ · exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₂) _ [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f := pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g (_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f) ⊢ IsOpenImmersion g₁ [PROOFSTEP] apply (config := { allowSynthFailures := true }) Scheme.pullback_map_isOpenImmersion [GOAL] case inst P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f := pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g (_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f) ⊢ IsOpenImmersion (f₁ ≫ pullback.fst) [PROOFSTEP] exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₁) _ [GOAL] case inst P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f := pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g (_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f) ⊢ IsOpenImmersion (f₂ ≫ pullback.fst) [PROOFSTEP] exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₂) _ [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f := pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g (_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f) hg₁ : IsOpenImmersion g₁ ⊢ P (pullback.mapDesc f₁ f₂ pullback.snd) [PROOFSTEP] specialize H g₁ [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f := pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g (_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f) hg₁ : IsOpenImmersion g₁ H : P pullback.snd ⊢ P (pullback.mapDesc f₁ f₂ pullback.snd) [PROOFSTEP] rw [← affine_cancel_left_isIso hP.1 (pullbackDiagonalMapIso f _ f₁ f₂).hom] [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f := pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g (_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f) hg₁ : IsOpenImmersion g₁ H : P pullback.snd ⊢ P ((pullbackDiagonalMapIso f g f₁ f₂).hom ≫ pullback.mapDesc f₁ f₂ pullback.snd) [PROOFSTEP] convert H [GOAL] case h.e'_3 P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f := pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g (_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f) hg₁ : IsOpenImmersion g₁ H : P pullback.snd ⊢ (pullbackDiagonalMapIso f g f₁ f₂).hom ≫ pullback.mapDesc f₁ f₂ pullback.snd = pullback.snd [PROOFSTEP] apply pullback.hom_ext [GOAL] case h.e'_3.h₀ P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f := pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g (_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f) hg₁ : IsOpenImmersion g₁ H : P pullback.snd ⊢ ((pullbackDiagonalMapIso f g f₁ f₂).hom ≫ pullback.mapDesc f₁ f₂ pullback.snd) ≫ pullback.fst = pullback.snd ≫ pullback.fst [PROOFSTEP] simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc, Category.comp_id, pullbackDiagonalMapIso_hom_fst, pullbackDiagonalMapIso_hom_snd] [GOAL] case h.e'_3.h₁ P : AffineTargetMorphismProperty hP : IsLocal P X Y U✝ : Scheme f : X ⟶ Y g : U✝ ⟶ Y inst✝¹ : IsAffine U✝ inst✝ : IsOpenImmersion g U V : Scheme f₁ : U ⟶ pullback f g f₂ : V ⟶ pullback f g hU : IsAffine U hV : IsAffine V hf₁ : IsOpenImmersion f₁ hf₂ : IsOpenImmersion f₂ g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f := pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g (_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f) hg₁ : IsOpenImmersion g₁ H : P pullback.snd ⊢ ((pullbackDiagonalMapIso f g f₁ f₂).hom ≫ pullback.mapDesc f₁ f₂ pullback.snd) ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc, Category.comp_id, pullbackDiagonalMapIso_hom_fst, pullbackDiagonalMapIso_hom_snd] [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y ⊢ TFAE [MorphismProperty.diagonal (targetAffineLocally P) f, ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd, ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)] [PROOFSTEP] tfae_have 1 → 4 [GOAL] case tfae_1_to_4 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y ⊢ MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd [PROOFSTEP] introv H hU hg _ _ [GOAL] case tfae_1_to_4 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y H : MorphismProperty.diagonal (targetAffineLocally P) f U : Scheme g : U ⟶ Y inst✝⁴ : IsAffine U hU : IsOpenImmersion g hg U₂ : Scheme f₁ : hg ⟶ pullback f g f₂ : U₂ ⟶ pullback f g inst✝³ : IsAffine hg inst✝² : IsAffine U₂ inst✝¹ : IsOpenImmersion f₁ inst✝ : IsOpenImmersion f₂ ⊢ P (pullback.mapDesc f₁ f₂ pullback.snd) [PROOFSTEP] apply P.diagonalOfTargetAffineLocally [GOAL] case tfae_1_to_4.hP P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y H : MorphismProperty.diagonal (targetAffineLocally P) f U : Scheme g : U ⟶ Y inst✝⁴ : IsAffine U hU : IsOpenImmersion g hg U₂ : Scheme f₁ : hg ⟶ pullback f g f₂ : U₂ ⟶ pullback f g inst✝³ : IsAffine hg inst✝² : IsAffine U₂ inst✝¹ : IsOpenImmersion f₁ inst✝ : IsOpenImmersion f₂ ⊢ IsLocal P [PROOFSTEP] assumption [GOAL] case tfae_1_to_4.H P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y H : MorphismProperty.diagonal (targetAffineLocally P) f U : Scheme g : U ⟶ Y inst✝⁴ : IsAffine U hU : IsOpenImmersion g hg U₂ : Scheme f₁ : hg ⟶ pullback f g f₂ : U₂ ⟶ pullback f g inst✝³ : IsAffine hg inst✝² : IsAffine U₂ inst✝¹ : IsOpenImmersion f₁ inst✝ : IsOpenImmersion f₂ ⊢ MorphismProperty.diagonal (targetAffineLocally P) f [PROOFSTEP] assumption [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd ⊢ TFAE [MorphismProperty.diagonal (targetAffineLocally P) f, ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd, ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)] [PROOFSTEP] tfae_have 4 → 3 [GOAL] case tfae_4_to_3 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd ⊢ (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd [PROOFSTEP] introv H h𝒰 [GOAL] case tfae_4_to_3 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd H : ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd 𝒰 : Scheme.OpenCover Y inst✝² : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) i : 𝒰.J h𝒰 U₂ : Scheme f₁ : h𝒰 ⟶ pullback f (Scheme.OpenCover.map 𝒰 i) f₂ : U₂ ⟶ pullback f (Scheme.OpenCover.map 𝒰 i) inst✝¹ : IsAffine h𝒰 inst✝ : IsAffine U₂ ⊢ ∀ [inst : IsOpenImmersion f₁] [inst : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ pullback.snd) [PROOFSTEP] apply H [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd ⊢ TFAE [MorphismProperty.diagonal (targetAffineLocally P) f, ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd, ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)] [PROOFSTEP] tfae_have 3 → 2 [GOAL] case tfae_3_to_2 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd ⊢ (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd [PROOFSTEP] exact fun H => ⟨Y.affineCover, inferInstance, H Y.affineCover⟩ [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd ⊢ TFAE [MorphismProperty.diagonal (targetAffineLocally P) f, ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd, ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)] [PROOFSTEP] tfae_have 2 → 5 [GOAL] case tfae_2_to_5 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd ⊢ (∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) [PROOFSTEP] rintro ⟨𝒰, h𝒰, H⟩ [GOAL] case tfae_2_to_5.intro.intro P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) H : ∀ (i : 𝒰.J), diagonal P pullback.snd ⊢ ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) [PROOFSTEP] refine' ⟨𝒰, inferInstance, fun _ => Scheme.affineCover _, inferInstance, _⟩ [GOAL] case tfae_2_to_5.intro.intro P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) H : ∀ (i : 𝒰.J), diagonal P pullback.snd ⊢ ∀ (i : 𝒰.J) (j k : ((fun x => Scheme.affineCover (pullback f (Scheme.OpenCover.map 𝒰 x))) i).J), P (pullback.mapDesc (Scheme.OpenCover.map ((fun x => Scheme.affineCover (pullback f (Scheme.OpenCover.map 𝒰 x))) i) j) (Scheme.OpenCover.map ((fun x => Scheme.affineCover (pullback f (Scheme.OpenCover.map 𝒰 x))) i) k) pullback.snd) [PROOFSTEP] intro i j k [GOAL] case tfae_2_to_5.intro.intro P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd 𝒰 : Scheme.OpenCover Y h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) H : ∀ (i : 𝒰.J), diagonal P pullback.snd i : 𝒰.J j k : ((fun x => Scheme.affineCover (pullback f (Scheme.OpenCover.map 𝒰 x))) i).J ⊢ P (pullback.mapDesc (Scheme.OpenCover.map ((fun x => Scheme.affineCover (pullback f (Scheme.OpenCover.map 𝒰 x))) i) j) (Scheme.OpenCover.map ((fun x => Scheme.affineCover (pullback f (Scheme.OpenCover.map 𝒰 x))) i) k) pullback.snd) [PROOFSTEP] apply H [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd tfae_2_to_5 : (∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) ⊢ TFAE [MorphismProperty.diagonal (targetAffineLocally P) f, ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd, ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)] [PROOFSTEP] tfae_have 5 → 1 [GOAL] case tfae_5_to_1 P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd tfae_2_to_5 : (∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) ⊢ (∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)) → MorphismProperty.diagonal (targetAffineLocally P) f [PROOFSTEP] rintro ⟨𝒰, _, 𝒰', _, H⟩ [GOAL] case tfae_5_to_1.intro.intro.intro.intro P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd tfae_2_to_5 : (∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) 𝒰 : Scheme.OpenCover Y w✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) 𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i)) w✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j) H : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) ⊢ MorphismProperty.diagonal (targetAffineLocally P) f [PROOFSTEP] exact diagonalTargetAffineLocallyOfOpenCover P hP f 𝒰 𝒰' H [GOAL] P : AffineTargetMorphismProperty hP : IsLocal P X Y : Scheme f : X ⟶ Y tfae_1_to_4 : MorphismProperty.diagonal (targetAffineLocally P) f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd tfae_4_to_3 : (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) → ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd tfae_2_to_5 : (∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd) → ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd) tfae_5_to_1 : (∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)) → MorphismProperty.diagonal (targetAffineLocally P) f ⊢ TFAE [MorphismProperty.diagonal (targetAffineLocally P) f, ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), diagonal P pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd, ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)] [PROOFSTEP] tfae_finish [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P ⊢ MorphismProperty.diagonal (targetAffineLocally P) = targetAffineLocally (AffineTargetMorphismProperty.diagonal P) [PROOFSTEP] refine funext fun _ => funext fun _ => funext fun f => propext ?_ [GOAL] P : AffineTargetMorphismProperty hP : AffineTargetMorphismProperty.IsLocal P x✝¹ x✝ : Scheme f : x✝¹ ⟶ x✝ ⊢ MorphismProperty.diagonal (targetAffineLocally P) f ↔ targetAffineLocally (AffineTargetMorphismProperty.diagonal P) f [PROOFSTEP] exact ((hP.diagonal_affine_openCover_TFAE f).out 0 1).trans ((hP.diagonal.affine_openCover_TFAE f).out 1 0) [GOAL] P : MorphismProperty Scheme hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f ⊢ PropertyIsLocalAtTarget (MorphismProperty.universally P) [PROOFSTEP] refine' ⟨P.universally_respectsIso, fun {X Y} f U => P.universally_stableUnderBaseChange (isPullback_morphismRestrict f U).flip, _⟩ [GOAL] P : MorphismProperty Scheme hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f ⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd) → MorphismProperty.universally P f [PROOFSTEP] intro X Y f 𝒰 h X' Y' i₁ i₂ f' H [GOAL] P : MorphismProperty Scheme hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd X' Y' : Scheme i₁ : X' ⟶ X i₂ : Y' ⟶ Y f' : X' ⟶ Y' H : IsPullback f' i₁ i₂ f ⊢ P f' [PROOFSTEP] apply hP _ (𝒰.pullbackCover i₂) [GOAL] P : MorphismProperty Scheme hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd X' Y' : Scheme i₁ : X' ⟶ X i₂ : Y' ⟶ Y f' : X' ⟶ Y' H : IsPullback f' i₁ i₂ f ⊢ ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J), P pullback.snd [PROOFSTEP] intro i [GOAL] P : MorphismProperty Scheme hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd X' Y' : Scheme i₁ : X' ⟶ X i₂ : Y' ⟶ Y f' : X' ⟶ Y' H : IsPullback f' i₁ i₂ f i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J ⊢ P pullback.snd [PROOFSTEP] dsimp [GOAL] P : MorphismProperty Scheme hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd X' Y' : Scheme i₁ : X' ⟶ X i₂ : Y' ⟶ Y f' : X' ⟶ Y' H : IsPullback f' i₁ i₂ f i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J ⊢ P pullback.snd [PROOFSTEP] apply h i (pullback.lift (pullback.fst ≫ i₁) (pullback.snd ≫ pullback.snd) _) pullback.snd [GOAL] case x P : MorphismProperty Scheme hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd X' Y' : Scheme i₁ : X' ⟶ X i₂ : Y' ⟶ Y f' : X' ⟶ Y' H : IsPullback f' i₁ i₂ f i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J ⊢ IsPullback pullback.snd (pullback.lift (pullback.fst ≫ i₁) (pullback.snd ≫ pullback.snd) ?m.186333) pullback.snd pullback.snd P : MorphismProperty Scheme hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd X' Y' : Scheme i₁ : X' ⟶ X i₂ : Y' ⟶ Y f' : X' ⟶ Y' H : IsPullback f' i₁ i₂ f i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J ⊢ (pullback.fst ≫ i₁) ≫ f = (pullback.snd ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i [PROOFSTEP] swap [GOAL] P : MorphismProperty Scheme hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd X' Y' : Scheme i₁ : X' ⟶ X i₂ : Y' ⟶ Y f' : X' ⟶ Y' H : IsPullback f' i₁ i₂ f i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J ⊢ (pullback.fst ≫ i₁) ≫ f = (pullback.snd ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i [PROOFSTEP] rw [Category.assoc, Category.assoc, ← pullback.condition, ← pullback.condition_assoc, H.w] [GOAL] case x P : MorphismProperty Scheme hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd X' Y' : Scheme i₁ : X' ⟶ X i₂ : Y' ⟶ Y f' : X' ⟶ Y' H : IsPullback f' i₁ i₂ f i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J ⊢ IsPullback pullback.snd (pullback.lift (pullback.fst ≫ i₁) (pullback.snd ≫ pullback.snd) (_ : (pullback.fst ≫ i₁) ≫ f = (pullback.snd ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i)) pullback.snd pullback.snd [PROOFSTEP] refine' (IsPullback.of_right _ (pullback.lift_snd _ _ _) (IsPullback.of_hasPullback _ _)).flip [GOAL] case x P : MorphismProperty Scheme hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd X' Y' : Scheme i₁ : X' ⟶ X i₂ : Y' ⟶ Y f' : X' ⟶ Y' H : IsPullback f' i₁ i₂ f i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J ⊢ IsPullback (pullback.lift (pullback.fst ≫ i₁) (pullback.snd ≫ pullback.snd) (_ : (pullback.fst ≫ i₁) ≫ f = (pullback.snd ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i) ≫ pullback.fst) pullback.snd f (pullback.snd ≫ Scheme.OpenCover.map 𝒰 i) [PROOFSTEP] rw [pullback.lift_fst, ← pullback.condition] [GOAL] case x P : MorphismProperty Scheme hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f X Y : Scheme f : X ⟶ Y 𝒰 : Scheme.OpenCover Y h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd X' Y' : Scheme i₁ : X' ⟶ X i₂ : Y' ⟶ Y f' : X' ⟶ Y' H : IsPullback f' i₁ i₂ f i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J ⊢ IsPullback (pullback.fst ≫ i₁) pullback.snd f (pullback.fst ≫ i₂) [PROOFSTEP] exact (IsPullback.of_hasPullback _ _).paste_horiz H.flip [GOAL] P : MorphismProperty Scheme hP₁ : MorphismProperty.RespectsIso P hP₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) {ι : Type u} (U : ι → Opens ↑↑Y.toPresheafedSpace), iSup U = ⊤ → (∀ (i : ι), P (f ∣_ U i)) → P f X✝ Y✝ : Scheme f : X✝ ⟶ Y✝ 𝒰 : Scheme.OpenCover Y✝ h𝒰 : ∀ (i : 𝒰.J), P pullback.snd ⊢ P f [PROOFSTEP] apply hP₂ f (fun i : 𝒰.J => Scheme.Hom.opensRange (𝒰.map i)) 𝒰.iSup_opensRange [GOAL] P : MorphismProperty Scheme hP₁ : MorphismProperty.RespectsIso P hP₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) {ι : Type u} (U : ι → Opens ↑↑Y.toPresheafedSpace), iSup U = ⊤ → (∀ (i : ι), P (f ∣_ U i)) → P f X✝ Y✝ : Scheme f : X✝ ⟶ Y✝ 𝒰 : Scheme.OpenCover Y✝ h𝒰 : ∀ (i : 𝒰.J), P pullback.snd ⊢ ∀ (i : 𝒰.J), P (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i)) [PROOFSTEP] simp_rw [hP₁.arrow_mk_iso_iff (morphismRestrictOpensRange f _)] [GOAL] P : MorphismProperty Scheme hP₁ : MorphismProperty.RespectsIso P hP₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) {ι : Type u} (U : ι → Opens ↑↑Y.toPresheafedSpace), iSup U = ⊤ → (∀ (i : ι), P (f ∣_ U i)) → P f X✝ Y✝ : Scheme f : X✝ ⟶ Y✝ 𝒰 : Scheme.OpenCover Y✝ h𝒰 : ∀ (i : 𝒰.J), P pullback.snd ⊢ ∀ (i : 𝒰.J), P pullback.snd [PROOFSTEP] exact h𝒰
{"mathlib_filename": "Mathlib.AlgebraicGeometry.Morphisms.Basic", "llama_tokens": 147088}
[GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 t : Term L α ⊢ relabel id t = t [PROOFSTEP] induction' t with _ _ _ _ ih [GOAL] case var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 _a✝ : α ⊢ relabel id (var _a✝) = var _a✝ [PROOFSTEP] rfl [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L α ih : ∀ (a : Fin l✝), relabel id (_ts✝ a) = _ts✝ a ⊢ relabel id (func _f✝ _ts✝) = func _f✝ _ts✝ [PROOFSTEP] simp [ih] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 f : α → β g : β → γ t : Term L α ⊢ relabel g (relabel f t) = relabel (g ∘ f) t [PROOFSTEP] induction' t with _ _ _ _ ih [GOAL] case var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 f : α → β g : β → γ _a✝ : α ⊢ relabel g (relabel f (var _a✝)) = relabel (g ∘ f) (var _a✝) [PROOFSTEP] rfl [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 f : α → β g : β → γ l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L α ih : ∀ (a : Fin l✝), relabel g (relabel f (_ts✝ a)) = relabel (g ∘ f) (_ts✝ a) ⊢ relabel g (relabel f (func _f✝ _ts✝)) = relabel (g ∘ f) (func _f✝ _ts✝) [PROOFSTEP] simp [ih] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 g : α ≃ β t : Term L α ⊢ relabel (↑g.symm) (relabel (↑g) t) = t [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 g : α ≃ β t : Term L β ⊢ relabel (↑g) (relabel (↑g.symm) t) = t [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 ⊢ Function.LeftInverse varsToConstants constantsToVars [PROOFSTEP] intro t [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 t : Term (L[[γ]]) α ⊢ varsToConstants (constantsToVars t) = t [PROOFSTEP] induction' t with _ n f _ ih [GOAL] case var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 _a✝ : α ⊢ varsToConstants (constantsToVars (var _a✝)) = var _a✝ [PROOFSTEP] rfl [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ f : Functions (L[[γ]]) n _ts✝ : Fin n → Term (L[[γ]]) α ih : ∀ (a : Fin n), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a ⊢ varsToConstants (constantsToVars (func f _ts✝)) = func f _ts✝ [PROOFSTEP] cases n [GOAL] case func.zero L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 f : Functions (L[[γ]]) Nat.zero _ts✝ : Fin Nat.zero → Term (L[[γ]]) α ih : ∀ (a : Fin Nat.zero), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a ⊢ varsToConstants (constantsToVars (func f _ts✝)) = func f _ts✝ [PROOFSTEP] cases f [GOAL] case func.zero.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 _ts✝ : Fin Nat.zero → Term (L[[γ]]) α ih : ∀ (a : Fin Nat.zero), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a val✝ : Functions L Nat.zero ⊢ varsToConstants (constantsToVars (func (Sum.inl val✝) _ts✝)) = func (Sum.inl val✝) _ts✝ [PROOFSTEP] simp [constantsToVars, varsToConstants, ih] [GOAL] case func.zero.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 _ts✝ : Fin Nat.zero → Term (L[[γ]]) α ih : ∀ (a : Fin Nat.zero), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a val✝ : Functions (constantsOn γ) Nat.zero ⊢ varsToConstants (constantsToVars (func (Sum.inr val✝) _ts✝)) = func (Sum.inr val✝) _ts✝ [PROOFSTEP] simp [constantsToVars, varsToConstants, Constants.term] [GOAL] case func.succ L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝ : ℕ f : Functions (L[[γ]]) (Nat.succ n✝) _ts✝ : Fin (Nat.succ n✝) → Term (L[[γ]]) α ih : ∀ (a : Fin (Nat.succ n✝)), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a ⊢ varsToConstants (constantsToVars (func f _ts✝)) = func f _ts✝ [PROOFSTEP] cases' f with f f [GOAL] case func.succ.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝ : ℕ _ts✝ : Fin (Nat.succ n✝) → Term (L[[γ]]) α ih : ∀ (a : Fin (Nat.succ n✝)), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a f : Functions L (Nat.succ n✝) ⊢ varsToConstants (constantsToVars (func (Sum.inl f) _ts✝)) = func (Sum.inl f) _ts✝ [PROOFSTEP] simp [constantsToVars, varsToConstants, ih] [GOAL] case func.succ.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝ : ℕ _ts✝ : Fin (Nat.succ n✝) → Term (L[[γ]]) α ih : ∀ (a : Fin (Nat.succ n✝)), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a f : Functions (constantsOn γ) (Nat.succ n✝) ⊢ varsToConstants (constantsToVars (func (Sum.inr f) _ts✝)) = func (Sum.inr f) _ts✝ [PROOFSTEP] exact isEmptyElim f [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 ⊢ Function.RightInverse varsToConstants constantsToVars [PROOFSTEP] intro t [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 t : Term L (γ ⊕ α) ⊢ constantsToVars (varsToConstants t) = t [PROOFSTEP] induction' t with x n f _ ih [GOAL] case var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 x : γ ⊕ α ⊢ constantsToVars (varsToConstants (var x)) = var x [PROOFSTEP] cases x [GOAL] case var.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 val✝ : γ ⊢ constantsToVars (varsToConstants (var (Sum.inl val✝))) = var (Sum.inl val✝) [PROOFSTEP] rfl [GOAL] case var.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 val✝ : α ⊢ constantsToVars (varsToConstants (var (Sum.inr val✝))) = var (Sum.inr val✝) [PROOFSTEP] rfl [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ f : Functions L n _ts✝ : Fin n → Term L (γ ⊕ α) ih : ∀ (a : Fin n), constantsToVars (varsToConstants (_ts✝ a)) = _ts✝ a ⊢ constantsToVars (varsToConstants (func f _ts✝)) = func f _ts✝ [PROOFSTEP] cases n [GOAL] case func.zero L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 f : Functions L Nat.zero _ts✝ : Fin Nat.zero → Term L (γ ⊕ α) ih : ∀ (a : Fin Nat.zero), constantsToVars (varsToConstants (_ts✝ a)) = _ts✝ a ⊢ constantsToVars (varsToConstants (func f _ts✝)) = func f _ts✝ [PROOFSTEP] simp [varsToConstants, constantsToVars, ih] [GOAL] case func.succ L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝ : ℕ f : Functions L (Nat.succ n✝) _ts✝ : Fin (Nat.succ n✝) → Term L (γ ⊕ α) ih : ∀ (a : Fin (Nat.succ n✝)), constantsToVars (varsToConstants (_ts✝ a)) = _ts✝ a ⊢ constantsToVars (varsToConstants (func f _ts✝)) = func f _ts✝ [PROOFSTEP] simp [varsToConstants, constantsToVars, ih] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 ⊢ onTerm (LHom.id L) = id [PROOFSTEP] ext t [GOAL] case h L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 t : Term L α ⊢ onTerm (LHom.id L) t = id t [PROOFSTEP] induction' t with _ _ _ _ ih [GOAL] case h.var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 _a✝ : α ⊢ onTerm (LHom.id L) (var _a✝) = id (var _a✝) [PROOFSTEP] rfl [GOAL] case h.func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L α ih : ∀ (a : Fin l✝), onTerm (LHom.id L) (_ts✝ a) = id (_ts✝ a) ⊢ onTerm (LHom.id L) (func _f✝ _ts✝) = id (func _f✝ _ts✝) [PROOFSTEP] simp_rw [onTerm, ih] [GOAL] case h.func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L α ih : ∀ (a : Fin l✝), onTerm (LHom.id L) (_ts✝ a) = id (_ts✝ a) ⊢ (func (onFunction (LHom.id L) _f✝) fun i => id (_ts✝ i)) = id (func _f✝ _ts✝) [PROOFSTEP] rfl [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' ⊢ onTerm (comp φ ψ) = onTerm φ ∘ onTerm ψ [PROOFSTEP] ext t [GOAL] case h L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' t : Term L α ⊢ onTerm (comp φ ψ) t = (onTerm φ ∘ onTerm ψ) t [PROOFSTEP] induction' t with _ _ _ _ ih [GOAL] case h.var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' _a✝ : α ⊢ onTerm (comp φ ψ) (var _a✝) = (onTerm φ ∘ onTerm ψ) (var _a✝) [PROOFSTEP] rfl [GOAL] case h.func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L α ih : ∀ (a : Fin l✝), onTerm (comp φ ψ) (_ts✝ a) = (onTerm φ ∘ onTerm ψ) (_ts✝ a) ⊢ onTerm (comp φ ψ) (func _f✝ _ts✝) = (onTerm φ ∘ onTerm ψ) (func _f✝ _ts✝) [PROOFSTEP] simp_rw [onTerm, ih] [GOAL] case h.func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L α ih : ∀ (a : Fin l✝), onTerm (comp φ ψ) (_ts✝ a) = (onTerm φ ∘ onTerm ψ) (_ts✝ a) ⊢ (func (onFunction (comp φ ψ) _f✝) fun i => (onTerm φ ∘ onTerm ψ) (_ts✝ i)) = (onTerm φ ∘ onTerm ψ) (func _f✝ _ts✝) [PROOFSTEP] rfl [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 φ : L ≃ᴸ L' ⊢ Function.LeftInverse (LHom.onTerm φ.invLHom) (LHom.onTerm φ.toLHom) [PROOFSTEP] rw [Function.leftInverse_iff_comp, ← LHom.comp_onTerm, φ.left_inv, LHom.id_onTerm] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 φ : L ≃ᴸ L' ⊢ Function.RightInverse (LHom.onTerm φ.invLHom) (LHom.onTerm φ.toLHom) [PROOFSTEP] rw [Function.rightInverse_iff_comp, ← LHom.comp_onTerm, φ.right_inv, LHom.id_onTerm] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝ n : ℕ h : n ≤ n φ : BoundedFormula L α n ⊢ castLE h φ = φ [PROOFSTEP] induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ n : ℕ h✝ : n ≤ n n✝ : ℕ h : n✝ ≤ n✝ ⊢ castLE h falsum = falsum [PROOFSTEP] rfl [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ n : ℕ h✝ : n ≤ n n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) h : n✝ ≤ n✝ ⊢ castLE h (equal t₁✝ t₂✝) = equal t₁✝ t₂✝ [PROOFSTEP] simp [Fin.castLE_of_eq] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ n : ℕ h✝ : n ≤ n n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) h : n✝ ≤ n✝ ⊢ castLE h (rel R✝ ts✝) = rel R✝ ts✝ [PROOFSTEP] simp [Fin.castLE_of_eq] [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ n : ℕ h✝ : n ≤ n n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ (h : n✝ ≤ n✝), castLE h f₁✝ = f₁✝ ih2 : ∀ (h : n✝ ≤ n✝), castLE h f₂✝ = f₂✝ h : n✝ ≤ n✝ ⊢ castLE h (imp f₁✝ f₂✝) = imp f₁✝ f₂✝ [PROOFSTEP] simp [Fin.castLE_of_eq, ih1, ih2] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ n : ℕ h✝ : n ≤ n n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (h : n✝ + 1 ≤ n✝ + 1), castLE h f✝ = f✝ h : n✝ ≤ n✝ ⊢ castLE h (all f✝) = all f✝ [PROOFSTEP] simp [Fin.castLE_of_eq, ih3] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝ k m n : ℕ km : k ≤ m mn : m ≤ n φ : BoundedFormula L α k ⊢ castLE mn (castLE km φ) = castLE (_ : k ≤ n) φ [PROOFSTEP] revert m n [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n k : ℕ φ : BoundedFormula L α k ⊢ ∀ {m n : ℕ} (km : k ≤ m) (mn : m ≤ n), castLE mn (castLE km φ) = castLE (_ : k ≤ n) φ [PROOFSTEP] induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n k n✝ : ℕ ⊢ ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km falsum) = castLE (_ : n✝ ≤ n) falsum [PROOFSTEP] intro m n km mn [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n k n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) ⊢ ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km (equal t₁✝ t₂✝)) = castLE (_ : n✝ ≤ n) (equal t₁✝ t₂✝) [PROOFSTEP] intro m n km mn [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n k n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) ⊢ ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km (rel R✝ ts✝)) = castLE (_ : n✝ ≤ n) (rel R✝ ts✝) [PROOFSTEP] intro m n km mn [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n k n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km f₁✝) = castLE (_ : n✝ ≤ n) f₁✝ ih2 : ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km f₂✝) = castLE (_ : n✝ ≤ n) f₂✝ ⊢ ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km (imp f₁✝ f₂✝)) = castLE (_ : n✝ ≤ n) (imp f₁✝ f₂✝) [PROOFSTEP] intro m n km mn [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n k n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ {m n : ℕ} (km : n✝ + 1 ≤ m) (mn : m ≤ n), castLE mn (castLE km f✝) = castLE (_ : n✝ + 1 ≤ n) f✝ ⊢ ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km (all f✝)) = castLE (_ : n✝ ≤ n) (all f✝) [PROOFSTEP] intro m n km mn [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ k n✝ m n : ℕ km : n✝ ≤ m mn : m ≤ n ⊢ castLE mn (castLE km falsum) = castLE (_ : n✝ ≤ n) falsum [PROOFSTEP] rfl [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ k n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) m n : ℕ km : n✝ ≤ m mn : m ≤ n ⊢ castLE mn (castLE km (equal t₁✝ t₂✝)) = castLE (_ : n✝ ≤ n) (equal t₁✝ t₂✝) [PROOFSTEP] simp [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ k n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) m n : ℕ km : n✝ ≤ m mn : m ≤ n ⊢ castLE mn (castLE km (rel R✝ ts✝)) = castLE (_ : n✝ ≤ n) (rel R✝ ts✝) [PROOFSTEP] simp only [castLE, eq_self_iff_true, heq_iff_eq, true_and_iff] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ k n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) m n : ℕ km : n✝ ≤ m mn : m ≤ n ⊢ rel R✝ (Term.relabel (Sum.map id (Fin.castLE mn)) ∘ Term.relabel (Sum.map id (Fin.castLE km)) ∘ ts✝) = rel R✝ (Term.relabel (Sum.map id (Fin.castLE (_ : n✝ ≤ n))) ∘ ts✝) [PROOFSTEP] rw [← Function.comp.assoc, Term.relabel_comp_relabel] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ k n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) m n : ℕ km : n✝ ≤ m mn : m ≤ n ⊢ rel R✝ (Term.relabel (Sum.map id (Fin.castLE mn) ∘ Sum.map id (Fin.castLE km)) ∘ ts✝) = rel R✝ (Term.relabel (Sum.map id (Fin.castLE (_ : n✝ ≤ n))) ∘ ts✝) [PROOFSTEP] simp [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ k n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km f₁✝) = castLE (_ : n✝ ≤ n) f₁✝ ih2 : ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km f₂✝) = castLE (_ : n✝ ≤ n) f₂✝ m n : ℕ km : n✝ ≤ m mn : m ≤ n ⊢ castLE mn (castLE km (imp f₁✝ f₂✝)) = castLE (_ : n✝ ≤ n) (imp f₁✝ f₂✝) [PROOFSTEP] simp [ih1, ih2] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ k n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ {m n : ℕ} (km : n✝ + 1 ≤ m) (mn : m ≤ n), castLE mn (castLE km f✝) = castLE (_ : n✝ + 1 ≤ n) f✝ m n : ℕ km : n✝ ≤ m mn : m ≤ n ⊢ castLE mn (castLE km (all f✝)) = castLE (_ : n✝ ≤ n) (all f✝) [PROOFSTEP] simp only [castLE, ih3] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝ n n' m : ℕ φ : BoundedFormula L α n x✝ : ℕ ⊢ x✝ + 1 + n' ≤ x✝ + n' + 1 [PROOFSTEP] rw [add_assoc, add_comm 1, add_assoc] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝ : ℕ L'' : Language ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n → Relations L' n ft' : (n : ℕ) → Term L' (β ⊕ Fin n) → Term L'' (γ ⊕ Fin n) fr' : (n : ℕ) → Relations L' n → Relations L'' n n : ℕ φ : BoundedFormula L α n ⊢ mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) φ) = mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) φ [PROOFSTEP] induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ : ℕ L'' : Language ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n → Relations L' n ft' : (n : ℕ) → Term L' (β ⊕ Fin n) → Term L'' (γ ⊕ Fin n) fr' : (n : ℕ) → Relations L' n → Relations L'' n n n✝ : ℕ ⊢ mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) falsum) = mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) falsum [PROOFSTEP] rfl [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ : ℕ L'' : Language ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n → Relations L' n ft' : (n : ℕ) → Term L' (β ⊕ Fin n) → Term L'' (γ ⊕ Fin n) fr' : (n : ℕ) → Relations L' n → Relations L'' n n n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) ⊢ mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) (equal t₁✝ t₂✝)) = mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) (equal t₁✝ t₂✝) [PROOFSTEP] simp [mapTermRel] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ : ℕ L'' : Language ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n → Relations L' n ft' : (n : ℕ) → Term L' (β ⊕ Fin n) → Term L'' (γ ⊕ Fin n) fr' : (n : ℕ) → Relations L' n → Relations L'' n n n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) ⊢ mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) (rel R✝ ts✝)) = mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) (rel R✝ ts✝) [PROOFSTEP] simp [mapTermRel] [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ : ℕ L'' : Language ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n → Relations L' n ft' : (n : ℕ) → Term L' (β ⊕ Fin n) → Term L'' (γ ⊕ Fin n) fr' : (n : ℕ) → Relations L' n → Relations L'' n n n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) f₁✝) = mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) f₁✝ ih2 : mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) f₂✝) = mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) f₂✝ ⊢ mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) (imp f₁✝ f₂✝)) = mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) (imp f₁✝ f₂✝) [PROOFSTEP] simp [mapTermRel, ih1, ih2] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ : ℕ L'' : Language ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n → Relations L' n ft' : (n : ℕ) → Term L' (β ⊕ Fin n) → Term L'' (γ ⊕ Fin n) fr' : (n : ℕ) → Relations L' n → Relations L'' n n n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) f✝) = mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) f✝ ⊢ mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) (all f✝)) = mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) (all f✝) [PROOFSTEP] simp [mapTermRel, ih3] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝ n : ℕ φ : BoundedFormula L α n ⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) φ = φ [PROOFSTEP] induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ n n✝ : ℕ ⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) falsum = falsum [PROOFSTEP] rfl [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ n n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) ⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (equal t₁✝ t₂✝) = equal t₁✝ t₂✝ [PROOFSTEP] simp [mapTermRel] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ n n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) ⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (rel R✝ ts✝) = rel R✝ ts✝ [PROOFSTEP] simp [mapTermRel] [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ n n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : mapTermRel (fun x => id) (fun x => id) (fun x => id) f₁✝ = f₁✝ ih2 : mapTermRel (fun x => id) (fun x => id) (fun x => id) f₂✝ = f₂✝ ⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (imp f₁✝ f₂✝) = imp f₁✝ f₂✝ [PROOFSTEP] simp [mapTermRel, ih1, ih2] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝¹ n n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : mapTermRel (fun x => id) (fun x => id) (fun x => id) f✝ = f✝ ⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (all f✝) = all f✝ [PROOFSTEP] simp [mapTermRel, ih3] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝ : ℕ ft : (n : ℕ) → Term L (α ⊕ Fin n) ≃ Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n ≃ Relations L' n n : ℕ φ : BoundedFormula L α n ⊢ mapTermRel (fun n => ↑(ft n).symm) (fun n => ↑(fr n).symm) (fun x => id) (mapTermRel (fun n => ↑(ft n)) (fun n => ↑(fr n)) (fun x => id) φ) = φ [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n✝ : ℕ ft : (n : ℕ) → Term L (α ⊕ Fin n) ≃ Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n ≃ Relations L' n n : ℕ φ : BoundedFormula L' β n ⊢ mapTermRel (fun n => ↑(ft n)) (fun n => ↑(fr n)) (fun x => id) (mapTermRel (fun n => ↑(ft n).symm) (fun n => ↑(fr n).symm) (fun x => id) φ) = φ [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n m : ℕ g : α → β ⊕ Fin n v : β → M xs : Fin (n + m) → M ⊢ Sum.elim v xs ∘ relabelAux g m = Sum.elim (Sum.elim v (xs ∘ castAdd m) ∘ g) (xs ∘ natAdd n) [PROOFSTEP] ext x [GOAL] case h L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n m : ℕ g : α → β ⊕ Fin n v : β → M xs : Fin (n + m) → M x : α ⊕ Fin m ⊢ (Sum.elim v xs ∘ relabelAux g m) x = Sum.elim (Sum.elim v (xs ∘ castAdd m) ∘ g) (xs ∘ natAdd n) x [PROOFSTEP] cases' x with x x [GOAL] case h.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n m : ℕ g : α → β ⊕ Fin n v : β → M xs : Fin (n + m) → M x : α ⊢ (Sum.elim v xs ∘ relabelAux g m) (Sum.inl x) = Sum.elim (Sum.elim v (xs ∘ castAdd m) ∘ g) (xs ∘ natAdd n) (Sum.inl x) [PROOFSTEP] simp only [BoundedFormula.relabelAux, Function.comp_apply, Sum.map_inl, Sum.elim_inl] [GOAL] case h.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n m : ℕ g : α → β ⊕ Fin n v : β → M xs : Fin (n + m) → M x : α ⊢ Sum.elim v xs (Sum.map id (↑finSumFinEquiv) (↑(Equiv.sumAssoc β (Fin n) (Fin m)) (Sum.inl (g x)))) = Sum.elim v (xs ∘ castAdd m) (g x) [PROOFSTEP] cases' g x with l r [GOAL] case h.inl.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n m : ℕ g : α → β ⊕ Fin n v : β → M xs : Fin (n + m) → M x : α l : β ⊢ Sum.elim v xs (Sum.map id (↑finSumFinEquiv) (↑(Equiv.sumAssoc β (Fin n) (Fin m)) (Sum.inl (Sum.inl l)))) = Sum.elim v (xs ∘ castAdd m) (Sum.inl l) [PROOFSTEP] simp [GOAL] case h.inl.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n m : ℕ g : α → β ⊕ Fin n v : β → M xs : Fin (n + m) → M x : α r : Fin n ⊢ Sum.elim v xs (Sum.map id (↑finSumFinEquiv) (↑(Equiv.sumAssoc β (Fin n) (Fin m)) (Sum.inl (Sum.inr r)))) = Sum.elim v (xs ∘ castAdd m) (Sum.inr r) [PROOFSTEP] simp [GOAL] case h.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n m : ℕ g : α → β ⊕ Fin n v : β → M xs : Fin (n + m) → M x : Fin m ⊢ (Sum.elim v xs ∘ relabelAux g m) (Sum.inr x) = Sum.elim (Sum.elim v (xs ∘ castAdd m) ∘ g) (xs ∘ natAdd n) (Sum.inr x) [PROOFSTEP] simp [BoundedFormula.relabelAux] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n k : ℕ ⊢ relabelAux Sum.inl k = Sum.map id (natAdd n) [PROOFSTEP] ext x [GOAL] case h L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n k : ℕ x : α ⊕ Fin k ⊢ relabelAux Sum.inl k x = Sum.map id (natAdd n) x [PROOFSTEP] cases x [GOAL] case h.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n k : ℕ val✝ : α ⊢ relabelAux Sum.inl k (Sum.inl val✝) = Sum.map id (natAdd n) (Sum.inl val✝) [PROOFSTEP] simp [relabelAux] [GOAL] case h.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n k : ℕ val✝ : Fin k ⊢ relabelAux Sum.inl k (Sum.inr val✝) = Sum.map id (natAdd n) (Sum.inr val✝) [PROOFSTEP] simp [relabelAux] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ g : α → β ⊕ Fin n k : ℕ φ : BoundedFormula L α k ⊢ relabel g (BoundedFormula.not φ) = BoundedFormula.not (relabel g φ) [PROOFSTEP] simp [BoundedFormula.not] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ g : α → β ⊕ Fin n k : ℕ φ : BoundedFormula L α (k + 1) ⊢ relabel g (all φ) = all (relabel g φ) [PROOFSTEP] rw [relabel, mapTermRel, relabel] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ g : α → β ⊕ Fin n k : ℕ φ : BoundedFormula L α (k + 1) ⊢ all (castLE (_ : n + k + 1 ≥ n + (k + 1)) (mapTermRel (fun x t => Term.relabel (relabelAux g x) t) (fun x => id) (fun x => castLE (_ : n + x + 1 ≥ n + (x + 1))) φ)) = all (mapTermRel (fun x t => Term.relabel (relabelAux g x) t) (fun x => id) (fun x => castLE (_ : n + x + 1 ≥ n + (x + 1))) φ) [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ g : α → β ⊕ Fin n k : ℕ φ : BoundedFormula L α (k + 1) ⊢ relabel g (BoundedFormula.ex φ) = BoundedFormula.ex (relabel g φ) [PROOFSTEP] simp [BoundedFormula.ex] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ φ : BoundedFormula L α n ⊢ relabel Sum.inl φ = castLE (_ : 0 + n ≥ n) φ [PROOFSTEP] simp only [relabel, relabelAux_sum_inl] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ φ : BoundedFormula L α n ⊢ mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id) (fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) φ = castLE (_ : 0 + n ≥ n) φ [PROOFSTEP] induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n n✝ : ℕ ⊢ mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id) (fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) falsum = castLE (_ : 0 + n✝ ≥ n✝) falsum [PROOFSTEP] rfl [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) ⊢ mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id) (fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) (equal t₁✝ t₂✝) = castLE (_ : 0 + n✝ ≥ n✝) (equal t₁✝ t₂✝) [PROOFSTEP] simp [Fin.natAdd_zero, castLE_of_eq, mapTermRel] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) ⊢ mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id) (fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) (rel R✝ ts✝) = castLE (_ : 0 + n✝ ≥ n✝) (rel R✝ ts✝) [PROOFSTEP] simp [Fin.natAdd_zero, castLE_of_eq, mapTermRel] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) ⊢ (fun i => Term.relabel (Sum.map id (Fin.cast (_ : n✝ = 0 + n✝))) (ts✝ i)) = Term.relabel (Sum.map id (Fin.cast (_ : n✝ = 0 + n✝))) ∘ ts✝ [PROOFSTEP] rfl [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id) (fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) f₁✝ = castLE (_ : 0 + n✝ ≥ n✝) f₁✝ ih2 : mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id) (fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) f₂✝ = castLE (_ : 0 + n✝ ≥ n✝) f₂✝ ⊢ mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id) (fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) (imp f₁✝ f₂✝) = castLE (_ : 0 + n✝ ≥ n✝) (imp f₁✝ f₂✝) [PROOFSTEP] simp [mapTermRel, ih1, ih2] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id) (fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) f✝ = castLE (_ : 0 + (n✝ + 1) ≥ n✝ + 1) f✝ ⊢ mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id) (fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) (all f✝) = castLE (_ : 0 + n✝ ≥ n✝) (all f✝) [PROOFSTEP] simp [mapTermRel, ih3, castLE] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ : BoundedFormula L α (n + 1) con : IsAtomic (all φ) ⊢ False [PROOFSTEP] cases con [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ : BoundedFormula L α (n + 1) con : IsAtomic (BoundedFormula.ex φ) ⊢ False [PROOFSTEP] cases con [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ : BoundedFormula L α (n + 1) con : IsQF (all φ) ⊢ False [PROOFSTEP] cases' con with _ con [GOAL] case of_isAtomic L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ : BoundedFormula L α (n + 1) con : IsAtomic (all φ) ⊢ False [PROOFSTEP] exact φ.not_all_isAtomic con [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ : BoundedFormula L α (n + 1) con : IsQF (BoundedFormula.ex φ) ⊢ False [PROOFSTEP] cases' con with _ con _ _ con [GOAL] case of_isAtomic L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ : BoundedFormula L α (n + 1) con : IsAtomic (BoundedFormula.ex φ) ⊢ False [PROOFSTEP] exact φ.not_ex_isAtomic con [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ : BoundedFormula L α (n + 1) con : IsQF (all (BoundedFormula.not φ)) h₂✝ : IsQF ⊥ ⊢ False [PROOFSTEP] exact not_all_isQF _ con [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝¹ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M m : ℕ φ : BoundedFormula L α m h✝ : IsPrenex φ f : α → β ⊕ Fin n n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) x✝ : IsPrenex φ✝ h : IsPrenex (BoundedFormula.relabel f φ✝) ⊢ IsPrenex (BoundedFormula.relabel f (BoundedFormula.all φ✝)) [PROOFSTEP] simp [h.all] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝¹ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M m : ℕ φ : BoundedFormula L α m h✝ : IsPrenex φ f : α → β ⊕ Fin n n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) x✝ : IsPrenex φ✝ h : IsPrenex (BoundedFormula.relabel f φ✝) ⊢ IsPrenex (BoundedFormula.relabel f (BoundedFormula.ex φ✝)) [PROOFSTEP] simp [h.ex] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ ψ : BoundedFormula L α n hφ : IsQF φ hψ : IsPrenex ψ ⊢ IsPrenex (toPrenexImpRight φ ψ) [PROOFSTEP] induction' hψ with _ _ hψ _ _ _ ih1 _ _ _ ih2 [GOAL] case of_isQF L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ n✝ : ℕ φ✝ : BoundedFormula L α n✝ hψ : IsQF φ✝ φ : BoundedFormula L α n✝ hφ : IsQF φ ⊢ IsPrenex (toPrenexImpRight φ φ✝) [PROOFSTEP] rw [hψ.toPrenexImpRight] [GOAL] case of_isQF L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ n✝ : ℕ φ✝ : BoundedFormula L α n✝ hψ : IsQF φ✝ φ : BoundedFormula L α n✝ hφ : IsQF φ ⊢ IsPrenex (imp φ φ✝) [PROOFSTEP] exact (hφ.imp hψ).isPrenex [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) h✝ : IsPrenex φ✝ ih1 : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → IsPrenex (toPrenexImpRight φ φ✝) φ : BoundedFormula L α n✝ hφ : IsQF φ ⊢ IsPrenex (toPrenexImpRight φ (all φ✝)) [PROOFSTEP] exact (ih1 hφ.liftAt).all [GOAL] case ex L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) h✝ : IsPrenex φ✝ ih2 : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → IsPrenex (toPrenexImpRight φ φ✝) φ : BoundedFormula L α n✝ hφ : IsQF φ ⊢ IsPrenex (toPrenexImpRight φ (BoundedFormula.ex φ✝)) [PROOFSTEP] exact (ih2 hφ.liftAt).ex [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ ψ : BoundedFormula L α n hφ : IsPrenex φ hψ : IsPrenex ψ ⊢ IsPrenex (toPrenexImp φ ψ) [PROOFSTEP] induction' hφ with _ _ hφ _ _ _ ih1 _ _ _ ih2 [GOAL] case of_isQF L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝¹ ψ✝¹ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ ψ✝ : BoundedFormula L α n hψ✝ : IsPrenex ψ✝ n✝ : ℕ φ✝ : BoundedFormula L α n✝ hφ : IsQF φ✝ ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ IsPrenex (toPrenexImp φ✝ ψ) [PROOFSTEP] rw [hφ.toPrenexImp] [GOAL] case of_isQF L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝¹ ψ✝¹ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ ψ✝ : BoundedFormula L α n hψ✝ : IsPrenex ψ✝ n✝ : ℕ φ✝ : BoundedFormula L α n✝ hφ : IsQF φ✝ ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ IsPrenex (toPrenexImpRight φ✝ ψ) [PROOFSTEP] exact isPrenex_toPrenexImpRight hφ hψ [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝¹ ψ✝¹ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ ψ✝ : BoundedFormula L α n hψ✝ : IsPrenex ψ✝ n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) h✝ : IsPrenex φ✝ ih1 : ∀ {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → IsPrenex (toPrenexImp φ✝ ψ) ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ IsPrenex (toPrenexImp (all φ✝) ψ) [PROOFSTEP] exact (ih1 hψ.liftAt).ex [GOAL] case ex L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n l : ℕ φ✝¹ ψ✝¹ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ ψ✝ : BoundedFormula L α n hψ✝ : IsPrenex ψ✝ n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) h✝ : IsPrenex φ✝ ih2 : ∀ {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → IsPrenex (toPrenexImp φ✝ ψ) ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ IsPrenex (toPrenexImp (BoundedFormula.ex φ✝) ψ) [PROOFSTEP] exact (ih2 hψ.liftAt).all [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ ⊢ onBoundedFormula (LHom.id L) = id [PROOFSTEP] ext f [GOAL] case h L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ f : BoundedFormula L α n ⊢ onBoundedFormula (LHom.id L) f = id f [PROOFSTEP] induction' f with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 [GOAL] case h.falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n n✝ : ℕ ⊢ onBoundedFormula (LHom.id L) falsum = id falsum [PROOFSTEP] rfl [GOAL] case h.equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) ⊢ onBoundedFormula (LHom.id L) (equal t₁✝ t₂✝) = id (equal t₁✝ t₂✝) [PROOFSTEP] rw [onBoundedFormula, LHom.id_onTerm, id.def, id.def, id.def, Term.bdEqual] [GOAL] case h.rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) ⊢ onBoundedFormula (LHom.id L) (rel R✝ ts✝) = id (rel R✝ ts✝) [PROOFSTEP] rw [onBoundedFormula, LHom.id_onTerm] [GOAL] case h.rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) ⊢ Relations.boundedFormula (onRelation (LHom.id L) R✝) (id ∘ ts✝) = id (rel R✝ ts✝) [PROOFSTEP] rfl [GOAL] case h.imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : onBoundedFormula (LHom.id L) f₁✝ = id f₁✝ ih2 : onBoundedFormula (LHom.id L) f₂✝ = id f₂✝ ⊢ onBoundedFormula (LHom.id L) (imp f₁✝ f₂✝) = id (imp f₁✝ f₂✝) [PROOFSTEP] rw [onBoundedFormula, ih1, ih2, id.def, id.def, id.def] [GOAL] case h.all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : onBoundedFormula (LHom.id L) f✝ = id f✝ ⊢ onBoundedFormula (LHom.id L) (all f✝) = id (all f✝) [PROOFSTEP] rw [onBoundedFormula, ih3, id.def, id.def] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' ⊢ onBoundedFormula (comp φ ψ) = onBoundedFormula φ ∘ onBoundedFormula ψ [PROOFSTEP] ext f [GOAL] case h L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' f : BoundedFormula L α n ⊢ onBoundedFormula (comp φ ψ) f = (onBoundedFormula φ ∘ onBoundedFormula ψ) f [PROOFSTEP] induction' f with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 [GOAL] case h.falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' n✝ : ℕ ⊢ onBoundedFormula (comp φ ψ) falsum = (onBoundedFormula φ ∘ onBoundedFormula ψ) falsum [PROOFSTEP] rfl [GOAL] case h.equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) ⊢ onBoundedFormula (comp φ ψ) (equal t₁✝ t₂✝) = (onBoundedFormula φ ∘ onBoundedFormula ψ) (equal t₁✝ t₂✝) [PROOFSTEP] simp only [onBoundedFormula, comp_onTerm, Function.comp_apply] [GOAL] case h.rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) ⊢ onBoundedFormula (comp φ ψ) (rel R✝ ts✝) = (onBoundedFormula φ ∘ onBoundedFormula ψ) (rel R✝ ts✝) [PROOFSTEP] simp only [onBoundedFormula, comp_onRelation, comp_onTerm, Function.comp_apply] [GOAL] case h.rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) ⊢ Relations.boundedFormula (onRelation φ (onRelation ψ R✝)) ((onTerm φ ∘ onTerm ψ) ∘ ts✝) = Relations.boundedFormula (onRelation φ (onRelation ψ R✝)) (onTerm φ ∘ onTerm ψ ∘ ts✝) [PROOFSTEP] rfl [GOAL] case h.imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : onBoundedFormula (comp φ ψ) f₁✝ = (onBoundedFormula φ ∘ onBoundedFormula ψ) f₁✝ ih2 : onBoundedFormula (comp φ ψ) f₂✝ = (onBoundedFormula φ ∘ onBoundedFormula ψ) f₂✝ ⊢ onBoundedFormula (comp φ ψ) (imp f₁✝ f₂✝) = (onBoundedFormula φ ∘ onBoundedFormula ψ) (imp f₁✝ f₂✝) [PROOFSTEP] simp only [onBoundedFormula, Function.comp_apply, ih1, ih2, eq_self_iff_true, and_self_iff] [GOAL] case h.all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ L'' : Language φ : L' →ᴸ L'' ψ : L →ᴸ L' n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : onBoundedFormula (comp φ ψ) f✝ = (onBoundedFormula φ ∘ onBoundedFormula ψ) f✝ ⊢ onBoundedFormula (comp φ ψ) (all f✝) = (onBoundedFormula φ ∘ onBoundedFormula ψ) (all f✝) [PROOFSTEP] simp only [ih3, onBoundedFormula, Function.comp_apply] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ φ : L ≃ᴸ L' ⊢ Function.LeftInverse (LHom.onBoundedFormula φ.invLHom) (LHom.onBoundedFormula φ.toLHom) [PROOFSTEP] rw [Function.leftInverse_iff_comp, ← LHom.comp_onBoundedFormula, φ.left_inv, LHom.id_onBoundedFormula] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ φ : L ≃ᴸ L' ⊢ Function.RightInverse (LHom.onBoundedFormula φ.invLHom) (LHom.onBoundedFormula φ.toLHom) [PROOFSTEP] rw [Function.rightInverse_iff_comp, ← LHom.comp_onBoundedFormula, φ.right_inv, LHom.id_onBoundedFormula] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ s : Set α ⊢ distinctConstantsTheory L s = ⋃ (t : Finset ↑s), distinctConstantsTheory L ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) t) [PROOFSTEP] classical simp only [distinctConstantsTheory] rw [← image_iUnion, ← iUnion_inter] refine' congr rfl (congr (congr rfl _) rfl) ext ⟨i, j⟩ simp only [prod_mk_mem_set_prod_eq, Finset.coe_map, Function.Embedding.coe_subtype, mem_iUnion, mem_image, Finset.mem_coe, Subtype.exists, Subtype.coe_mk, exists_and_right, exists_eq_right] refine' ⟨fun h => ⟨{⟨i, h.1⟩, ⟨j, h.2⟩}, ⟨h.1, _⟩, ⟨h.2, _⟩⟩, _⟩ · simp · simp · rintro ⟨t, ⟨is, _⟩, ⟨js, _⟩⟩ exact ⟨is, js⟩ [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ s : Set α ⊢ distinctConstantsTheory L s = ⋃ (t : Finset ↑s), distinctConstantsTheory L ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) t) [PROOFSTEP] simp only [distinctConstantsTheory] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ s : Set α ⊢ (fun ab => Formula.not (Term.equal (Constants.term (Language.con L ab.fst)) (Constants.term (Language.con L ab.snd)))) '' (s ×ˢ s ∩ (diagonal α)ᶜ) = ⋃ (t : Finset ↑s), (fun ab => Formula.not (Term.equal (Constants.term (Language.con L ab.fst)) (Constants.term (Language.con L ab.snd)))) '' (↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) t) ×ˢ ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) t) ∩ (diagonal α)ᶜ) [PROOFSTEP] rw [← image_iUnion, ← iUnion_inter] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ s : Set α ⊢ (fun ab => Formula.not (Term.equal (Constants.term (Language.con L ab.fst)) (Constants.term (Language.con L ab.snd)))) '' (s ×ˢ s ∩ (diagonal α)ᶜ) = (fun ab => Formula.not (Term.equal (Constants.term (Language.con L ab.fst)) (Constants.term (Language.con L ab.snd)))) '' ((⋃ (i : Finset ↑s), ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i) ×ˢ ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i)) ∩ (diagonal α)ᶜ) [PROOFSTEP] refine' congr rfl (congr (congr rfl _) rfl) [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ s : Set α ⊢ s ×ˢ s = ⋃ (i : Finset ↑s), ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i) ×ˢ ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i) [PROOFSTEP] ext ⟨i, j⟩ [GOAL] case h.mk L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ s : Set α i j : α ⊢ (i, j) ∈ s ×ˢ s ↔ (i, j) ∈ ⋃ (i : Finset ↑s), ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i) ×ˢ ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i) [PROOFSTEP] simp only [prod_mk_mem_set_prod_eq, Finset.coe_map, Function.Embedding.coe_subtype, mem_iUnion, mem_image, Finset.mem_coe, Subtype.exists, Subtype.coe_mk, exists_and_right, exists_eq_right] [GOAL] case h.mk L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ s : Set α i j : α ⊢ i ∈ s ∧ j ∈ s ↔ ∃ i_1, (∃ x, { val := i, property := (_ : i ∈ s) } ∈ i_1) ∧ ∃ x, { val := j, property := (_ : j ∈ s) } ∈ i_1 [PROOFSTEP] refine' ⟨fun h => ⟨{⟨i, h.1⟩, ⟨j, h.2⟩}, ⟨h.1, _⟩, ⟨h.2, _⟩⟩, _⟩ [GOAL] case h.mk.refine'_1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ s : Set α i j : α h : i ∈ s ∧ j ∈ s ⊢ { val := i, property := (_ : i ∈ s) } ∈ {{ val := i, property := (_ : i ∈ s) }, { val := j, property := (_ : j ∈ s) }} [PROOFSTEP] simp [GOAL] case h.mk.refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ s : Set α i j : α h : i ∈ s ∧ j ∈ s ⊢ { val := j, property := (_ : j ∈ s) } ∈ {{ val := i, property := (_ : i ∈ s) }, { val := j, property := (_ : j ∈ s) }} [PROOFSTEP] simp [GOAL] case h.mk.refine'_3 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ s : Set α i j : α ⊢ (∃ i_1, (∃ x, { val := i, property := (_ : i ∈ s) } ∈ i_1) ∧ ∃ x, { val := j, property := (_ : j ∈ s) } ∈ i_1) → i ∈ s ∧ j ∈ s [PROOFSTEP] rintro ⟨t, ⟨is, _⟩, ⟨js, _⟩⟩ [GOAL] case h.mk.refine'_3.intro.intro.intro.intro L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type u_3 n : ℕ s : Set α i j : α t : Finset ↑s is : i ∈ s h✝¹ : { val := i, property := (_ : i ∈ s) } ∈ t js : j ∈ s h✝ : { val := j, property := (_ : j ∈ s) } ∈ t ⊢ i ∈ s ∧ j ∈ s [PROOFSTEP] exact ⟨is, js⟩
{"mathlib_filename": "Mathlib.ModelTheory.Syntax", "llama_tokens": 31219}
[GOAL] M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) L' : Language inst✝¹ : Structure L' M h : Definable A L s φ : L →ᴸ L' inst✝ : LHom.IsExpansionOn φ M ⊢ Definable A L' s [PROOFSTEP] obtain ⟨ψ, rfl⟩ := h [GOAL] case intro M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M L' : Language inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : LHom.IsExpansionOn φ M ψ : Formula (L[[↑A]]) α ⊢ Definable A L' (setOf (Formula.Realize ψ)) [PROOFSTEP] refine' ⟨(φ.addConstants A).onFormula ψ, _⟩ [GOAL] case intro M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M L' : Language inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : LHom.IsExpansionOn φ M ψ : Formula (L[[↑A]]) α ⊢ setOf (Formula.Realize ψ) = setOf (Formula.Realize (LHom.onFormula (LHom.addConstants (↑A) φ) ψ)) [PROOFSTEP] ext x [GOAL] case intro.h M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M L' : Language inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : LHom.IsExpansionOn φ M ψ : Formula (L[[↑A]]) α x : α → M ⊢ x ∈ setOf (Formula.Realize ψ) ↔ x ∈ setOf (Formula.Realize (LHom.onFormula (LHom.addConstants (↑A) φ) ψ)) [PROOFSTEP] simp only [mem_setOf_eq, LHom.realize_onFormula] [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) ⊢ Definable ∅ L s ↔ ∃ φ, s = setOf (Formula.Realize φ) [PROOFSTEP] rw [Definable, Equiv.exists_congr_left (LEquiv.addEmptyConstants L (∅ : Set M)).onFormula] [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) ⊢ (∃ φ, s = setOf (Formula.Realize φ)) ↔ ∃ b, s = setOf (Formula.Realize (↑(LEquiv.onFormula (LEquiv.addEmptyConstants L ↑∅)).symm b)) [PROOFSTEP] simp [-constantsOn] [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) hAs : Definable A L s hAB : A ⊆ B ⊢ Definable B L s [PROOFSTEP] rw [definable_iff_empty_definable_with_params] at * [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) hAs : Definable ∅ (L[[↑A]]) s hAB : A ⊆ B ⊢ Definable ∅ (L[[↑B]]) s [PROOFSTEP] exact hAs.map_expansion (L.lhomWithConstantsMap (Set.inclusion hAB)) [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) ⊢ ∅ = setOf (Formula.Realize ⊥) [PROOFSTEP] ext [GOAL] case h M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) x✝ : α → M ⊢ x✝ ∈ ∅ ↔ x✝ ∈ setOf (Formula.Realize ⊥) [PROOFSTEP] simp [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) ⊢ univ = setOf (Formula.Realize ⊤) [PROOFSTEP] ext [GOAL] case h M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) x✝ : α → M ⊢ x✝ ∈ univ ↔ x✝ ∈ setOf (Formula.Realize ⊤) [PROOFSTEP] simp [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s f g : Set (α → M) hf : Definable A L f hg : Definable A L g ⊢ Definable A L (f ∩ g) [PROOFSTEP] rcases hf with ⟨φ, rfl⟩ [GOAL] case intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s g : Set (α → M) hg : Definable A L g φ : Formula (L[[↑A]]) α ⊢ Definable A L (setOf (Formula.Realize φ) ∩ g) [PROOFSTEP] rcases hg with ⟨θ, rfl⟩ [GOAL] case intro.intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) φ θ : Formula (L[[↑A]]) α ⊢ Definable A L (setOf (Formula.Realize φ) ∩ setOf (Formula.Realize θ)) [PROOFSTEP] refine' ⟨φ ⊓ θ, _⟩ [GOAL] case intro.intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) φ θ : Formula (L[[↑A]]) α ⊢ setOf (Formula.Realize φ) ∩ setOf (Formula.Realize θ) = setOf (Formula.Realize (φ ⊓ θ)) [PROOFSTEP] ext [GOAL] case intro.intro.h M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) φ θ : Formula (L[[↑A]]) α x✝ : α → M ⊢ x✝ ∈ setOf (Formula.Realize φ) ∩ setOf (Formula.Realize θ) ↔ x✝ ∈ setOf (Formula.Realize (φ ⊓ θ)) [PROOFSTEP] simp [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s f g : Set (α → M) hf : Definable A L f hg : Definable A L g ⊢ Definable A L (f ∪ g) [PROOFSTEP] rcases hf with ⟨φ, hφ⟩ [GOAL] case intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s f g : Set (α → M) hg : Definable A L g φ : Formula (L[[↑A]]) α hφ : f = setOf (Formula.Realize φ) ⊢ Definable A L (f ∪ g) [PROOFSTEP] rcases hg with ⟨θ, hθ⟩ [GOAL] case intro.intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s f g : Set (α → M) φ : Formula (L[[↑A]]) α hφ : f = setOf (Formula.Realize φ) θ : Formula (L[[↑A]]) α hθ : g = setOf (Formula.Realize θ) ⊢ Definable A L (f ∪ g) [PROOFSTEP] refine' ⟨φ ⊔ θ, _⟩ [GOAL] case intro.intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s f g : Set (α → M) φ : Formula (L[[↑A]]) α hφ : f = setOf (Formula.Realize φ) θ : Formula (L[[↑A]]) α hθ : g = setOf (Formula.Realize θ) ⊢ f ∪ g = setOf (Formula.Realize (φ ⊔ θ)) [PROOFSTEP] ext [GOAL] case intro.intro.h M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s f g : Set (α → M) φ : Formula (L[[↑A]]) α hφ : f = setOf (Formula.Realize φ) θ : Formula (L[[↑A]]) α hθ : g = setOf (Formula.Realize θ) x✝ : α → M ⊢ x✝ ∈ f ∪ g ↔ x✝ ∈ setOf (Formula.Realize (φ ⊔ θ)) [PROOFSTEP] rw [hφ, hθ, mem_setOf_eq, Formula.realize_sup, mem_union, mem_setOf_eq, mem_setOf_eq] [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) ι : Type u_2 f : ι → Set (α → M) hf : ∀ (i : ι), Definable A L (f i) s : Finset ι ⊢ Definable A L (Finset.inf s f) [PROOFSTEP] classical refine' Finset.induction definable_univ (fun i s _ h => _) s rw [Finset.inf_insert] exact (hf i).inter h [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) ι : Type u_2 f : ι → Set (α → M) hf : ∀ (i : ι), Definable A L (f i) s : Finset ι ⊢ Definable A L (Finset.inf s f) [PROOFSTEP] refine' Finset.induction definable_univ (fun i s _ h => _) s [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝¹ : Set (α → M) ι : Type u_2 f : ι → Set (α → M) hf : ∀ (i : ι), Definable A L (f i) s✝ : Finset ι i : ι s : Finset ι x✝ : ¬i ∈ s h : Definable A L (Finset.inf s f) ⊢ Definable A L (Finset.inf (insert i s) f) [PROOFSTEP] rw [Finset.inf_insert] [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝¹ : Set (α → M) ι : Type u_2 f : ι → Set (α → M) hf : ∀ (i : ι), Definable A L (f i) s✝ : Finset ι i : ι s : Finset ι x✝ : ¬i ∈ s h : Definable A L (Finset.inf s f) ⊢ Definable A L (f i ⊓ Finset.inf s f) [PROOFSTEP] exact (hf i).inter h [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) ι : Type u_2 f : ι → Set (α → M) hf : ∀ (i : ι), Definable A L (f i) s : Finset ι ⊢ Definable A L (Finset.sup s f) [PROOFSTEP] classical refine' Finset.induction definable_empty (fun i s _ h => _) s rw [Finset.sup_insert] exact (hf i).union h [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) ι : Type u_2 f : ι → Set (α → M) hf : ∀ (i : ι), Definable A L (f i) s : Finset ι ⊢ Definable A L (Finset.sup s f) [PROOFSTEP] refine' Finset.induction definable_empty (fun i s _ h => _) s [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝¹ : Set (α → M) ι : Type u_2 f : ι → Set (α → M) hf : ∀ (i : ι), Definable A L (f i) s✝ : Finset ι i : ι s : Finset ι x✝ : ¬i ∈ s h : Definable A L (Finset.sup s f) ⊢ Definable A L (Finset.sup (insert i s) f) [PROOFSTEP] rw [Finset.sup_insert] [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝¹ : Set (α → M) ι : Type u_2 f : ι → Set (α → M) hf : ∀ (i : ι), Definable A L (f i) s✝ : Finset ι i : ι s : Finset ι x✝ : ¬i ∈ s h : Definable A L (Finset.sup s f) ⊢ Definable A L (f i ⊔ Finset.sup s f) [PROOFSTEP] exact (hf i).union h [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) ι : Type u_2 f : ι → Set (α → M) hf : ∀ (i : ι), Definable A L (f i) s : Finset ι ⊢ Definable A L (⋂ (i : ι) (_ : i ∈ s), f i) [PROOFSTEP] rw [← Finset.inf_set_eq_iInter] [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) ι : Type u_2 f : ι → Set (α → M) hf : ∀ (i : ι), Definable A L (f i) s : Finset ι ⊢ Definable A L (Finset.inf s fun i => f i) [PROOFSTEP] exact definable_finset_inf hf s [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) ι : Type u_2 f : ι → Set (α → M) hf : ∀ (i : ι), Definable A L (f i) s : Finset ι ⊢ Definable A L (⋃ (i : ι) (_ : i ∈ s), f i) [PROOFSTEP] rw [← Finset.sup_set_eq_biUnion] [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) ι : Type u_2 f : ι → Set (α → M) hf : ∀ (i : ι), Definable A L (f i) s : Finset ι ⊢ Definable A L (Finset.sup s fun i => f i) [PROOFSTEP] exact definable_finset_sup hf s [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ s : Set (α → M) hf : Definable A L s ⊢ Definable A L sᶜ [PROOFSTEP] rcases hf with ⟨φ, hφ⟩ [GOAL] case intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ s : Set (α → M) φ : Formula (L[[↑A]]) α hφ : s = setOf (Formula.Realize φ) ⊢ Definable A L sᶜ [PROOFSTEP] refine' ⟨φ.not, _⟩ [GOAL] case intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ s : Set (α → M) φ : Formula (L[[↑A]]) α hφ : s = setOf (Formula.Realize φ) ⊢ sᶜ = setOf (Formula.Realize (Formula.not φ)) [PROOFSTEP] ext v [GOAL] case intro.h M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ s : Set (α → M) φ : Formula (L[[↑A]]) α hφ : s = setOf (Formula.Realize φ) v : α → M ⊢ v ∈ sᶜ ↔ v ∈ setOf (Formula.Realize (Formula.not φ)) [PROOFSTEP] rw [hφ, compl_setOf, mem_setOf, mem_setOf, Formula.realize_not] [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) f : α → β s : Set (α → M) h : Definable A L s ⊢ Definable A L ((fun g => g ∘ f) ⁻¹' s) [PROOFSTEP] obtain ⟨φ, rfl⟩ := h [GOAL] case intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) f : α → β φ : Formula (L[[↑A]]) α ⊢ Definable A L ((fun g => g ∘ f) ⁻¹' setOf (Formula.Realize φ)) [PROOFSTEP] refine' ⟨φ.relabel f, _⟩ [GOAL] case intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) f : α → β φ : Formula (L[[↑A]]) α ⊢ (fun g => g ∘ f) ⁻¹' setOf (Formula.Realize φ) = setOf (Formula.Realize (Formula.relabel f φ)) [PROOFSTEP] ext [GOAL] case intro.h M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) f : α → β φ : Formula (L[[↑A]]) α x✝ : β → M ⊢ x✝ ∈ (fun g => g ∘ f) ⁻¹' setOf (Formula.Realize φ) ↔ x✝ ∈ setOf (Formula.Realize (Formula.relabel f φ)) [PROOFSTEP] simp only [Set.preimage_setOf_eq, mem_setOf_eq, Formula.realize_relabel] [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ≃ β ⊢ Definable A L ((fun g => g ∘ ↑f) '' s) [PROOFSTEP] refine' (congr rfl _).mp (h.preimage_comp f.symm) [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ≃ β ⊢ (fun g => g ∘ ↑f.symm) ⁻¹' s = (fun g => g ∘ ↑f) '' s [PROOFSTEP] rw [image_eq_preimage_of_inverse] [GOAL] case h₁ M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ≃ β ⊢ Function.LeftInverse (fun g => g ∘ ↑f.symm) fun g => g ∘ ↑f [PROOFSTEP] intro i [GOAL] case h₁ M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ≃ β i : β → M ⊢ (fun g => g ∘ ↑f.symm) ((fun g => g ∘ ↑f) i) = i [PROOFSTEP] ext b [GOAL] case h₁.h M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ≃ β i : β → M b : β ⊢ (fun g => g ∘ ↑f.symm) ((fun g => g ∘ ↑f) i) b = i b [PROOFSTEP] simp only [Function.comp_apply, Equiv.apply_symm_apply] [GOAL] case h₂ M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ≃ β ⊢ Function.RightInverse (fun g => g ∘ ↑f.symm) fun g => g ∘ ↑f [PROOFSTEP] intro i [GOAL] case h₂ M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ≃ β i : α → M ⊢ (fun g => g ∘ ↑f) ((fun g => g ∘ ↑f.symm) i) = i [PROOFSTEP] ext a [GOAL] case h₂.h M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ≃ β i : α → M a : α ⊢ (fun g => g ∘ ↑f) ((fun g => g ∘ ↑f.symm) i) a = i a [PROOFSTEP] simp [GOAL] M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) m : ℕ s : Set (α ⊕ Fin m → M) h : Definable A L s ⊢ Definable A L ((fun g => g ∘ Sum.inl) '' s) [PROOFSTEP] obtain ⟨φ, rfl⟩ := h [GOAL] case intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) m : ℕ φ : Formula (L[[↑A]]) (α ⊕ Fin m) ⊢ Definable A L ((fun g => g ∘ Sum.inl) '' setOf (Formula.Realize φ)) [PROOFSTEP] refine' ⟨(BoundedFormula.relabel id φ).exs, _⟩ [GOAL] case intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) m : ℕ φ : Formula (L[[↑A]]) (α ⊕ Fin m) ⊢ (fun g => g ∘ Sum.inl) '' setOf (Formula.Realize φ) = setOf (Formula.Realize (BoundedFormula.exs (BoundedFormula.relabel id φ))) [PROOFSTEP] ext x [GOAL] case intro.h M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) m : ℕ φ : Formula (L[[↑A]]) (α ⊕ Fin m) x : α → M ⊢ x ∈ (fun g => g ∘ Sum.inl) '' setOf (Formula.Realize φ) ↔ x ∈ setOf (Formula.Realize (BoundedFormula.exs (BoundedFormula.relabel id φ))) [PROOFSTEP] simp only [Set.mem_image, mem_setOf_eq, BoundedFormula.realize_exs, BoundedFormula.realize_relabel, Function.comp.right_id, Fin.castAdd_zero, Fin.castIso_refl] [GOAL] case intro.h M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) m : ℕ φ : Formula (L[[↑A]]) (α ⊕ Fin m) x : α → M ⊢ (∃ x_1, Formula.Realize φ x_1 ∧ x_1 ∘ Sum.inl = x) ↔ ∃ xs, BoundedFormula.Realize φ (Sum.elim x (xs ∘ Fin.cast (_ : m = m))) (xs ∘ Fin.natAdd m) [PROOFSTEP] constructor [GOAL] case intro.h.mp M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) m : ℕ φ : Formula (L[[↑A]]) (α ⊕ Fin m) x : α → M ⊢ (∃ x_1, Formula.Realize φ x_1 ∧ x_1 ∘ Sum.inl = x) → ∃ xs, BoundedFormula.Realize φ (Sum.elim x (xs ∘ Fin.cast (_ : m = m))) (xs ∘ Fin.natAdd m) [PROOFSTEP] rintro ⟨y, hy, rfl⟩ [GOAL] case intro.h.mp.intro.intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) m : ℕ φ : Formula (L[[↑A]]) (α ⊕ Fin m) y : α ⊕ Fin m → M hy : Formula.Realize φ y ⊢ ∃ xs, BoundedFormula.Realize φ (Sum.elim (y ∘ Sum.inl) (xs ∘ Fin.cast (_ : m = m))) (xs ∘ Fin.natAdd m) [PROOFSTEP] exact ⟨y ∘ Sum.inr, (congr (congr rfl (Sum.elim_comp_inl_inr y).symm) (funext finZeroElim)).mp hy⟩ [GOAL] case intro.h.mpr M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) m : ℕ φ : Formula (L[[↑A]]) (α ⊕ Fin m) x : α → M ⊢ (∃ xs, BoundedFormula.Realize φ (Sum.elim x (xs ∘ Fin.cast (_ : m = m))) (xs ∘ Fin.natAdd m)) → ∃ x_1, Formula.Realize φ x_1 ∧ x_1 ∘ Sum.inl = x [PROOFSTEP] rintro ⟨y, hy⟩ [GOAL] case intro.h.mpr.intro M : Type w A : Set M L : Language inst✝ : Structure L M α : Type u₁ β : Type u_1 B : Set M s : Set (α → M) m : ℕ φ : Formula (L[[↑A]]) (α ⊕ Fin m) x : α → M y : Fin (m + 0) → M hy : BoundedFormula.Realize φ (Sum.elim x (y ∘ Fin.cast (_ : m = m))) (y ∘ Fin.natAdd m) ⊢ ∃ x_1, Formula.Realize φ x_1 ∧ x_1 ∘ Sum.inl = x [PROOFSTEP] exact ⟨Sum.elim x y, (congr rfl (funext finZeroElim)).mp hy, Sum.elim_comp_inl _ _⟩ [GOAL] M : Type w A : Set M L : Language inst✝¹ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ↪ β inst✝ : Finite β ⊢ Definable A L ((fun g => g ∘ ↑f) '' s) [PROOFSTEP] classical cases nonempty_fintype β refine' (congr rfl (ext fun x => _)).mp (((h.image_comp_equiv (Equiv.Set.sumCompl (range f))).image_comp_equiv (Equiv.sumCongr (Equiv.ofInjective f f.injective) (Fintype.equivFin (↥(range f)ᶜ)).symm)).image_comp_sum_inl_fin _) simp only [mem_preimage, mem_image, exists_exists_and_eq_and] refine' exists_congr fun y => and_congr_right fun _ => Eq.congr_left (funext fun a => _) simp [GOAL] M : Type w A : Set M L : Language inst✝¹ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ↪ β inst✝ : Finite β ⊢ Definable A L ((fun g => g ∘ ↑f) '' s) [PROOFSTEP] cases nonempty_fintype β [GOAL] case intro M : Type w A : Set M L : Language inst✝¹ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ↪ β inst✝ : Finite β val✝ : Fintype β ⊢ Definable A L ((fun g => g ∘ ↑f) '' s) [PROOFSTEP] refine' (congr rfl (ext fun x => _)).mp (((h.image_comp_equiv (Equiv.Set.sumCompl (range f))).image_comp_equiv (Equiv.sumCongr (Equiv.ofInjective f f.injective) (Fintype.equivFin (↥(range f)ᶜ)).symm)).image_comp_sum_inl_fin _) [GOAL] case intro M : Type w A : Set M L : Language inst✝¹ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ↪ β inst✝ : Finite β val✝ : Fintype β x : α → M ⊢ x ∈ (fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.ofInjective ↑f (_ : Function.Injective ↑f)) (Fintype.equivFin ↑(range ↑f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range ↑f))) '' s)) ↔ x ∈ (fun g => g ∘ ↑f) '' s [PROOFSTEP] simp only [mem_preimage, mem_image, exists_exists_and_eq_and] [GOAL] case intro M : Type w A : Set M L : Language inst✝¹ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ↪ β inst✝ : Finite β val✝ : Fintype β x : α → M ⊢ (∃ a, a ∈ s ∧ ((a ∘ ↑(Equiv.Set.sumCompl (range ↑f))) ∘ ↑(Equiv.sumCongr (Equiv.ofInjective ↑f (_ : Function.Injective ↑f)) (Fintype.equivFin ↑(range ↑f)ᶜ).symm)) ∘ Sum.inl = x) ↔ ∃ x_1, x_1 ∈ s ∧ x_1 ∘ ↑f = x [PROOFSTEP] refine' exists_congr fun y => and_congr_right fun _ => Eq.congr_left (funext fun a => _) [GOAL] case intro M : Type w A : Set M L : Language inst✝¹ : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α ↪ β inst✝ : Finite β val✝ : Fintype β x : α → M y : β → M x✝ : y ∈ s a : α ⊢ (((y ∘ ↑(Equiv.Set.sumCompl (range ↑f))) ∘ ↑(Equiv.sumCongr (Equiv.ofInjective ↑f (_ : Function.Injective ↑f)) (Fintype.equivFin ↑(range ↑f)ᶜ).symm)) ∘ Sum.inl) a = (y ∘ ↑f) a [PROOFSTEP] simp [GOAL] M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β ⊢ Definable A L ((fun g => g ∘ f) '' s) [PROOFSTEP] classical cases nonempty_fintype α cases nonempty_fintype β have h := (((h.image_comp_equiv (Equiv.Set.sumCompl (range f))).image_comp_equiv (Equiv.sumCongr (_root_.Equiv.refl _) (Fintype.equivFin _).symm)).image_comp_sum_inl_fin _).preimage_comp (rangeSplitting f) have h' : A.Definable L {x : α → M | ∀ a, x a = x (rangeSplitting f (rangeFactorization f a))} := by have h' : ∀ a, A.Definable L {x : α → M | x a = x (rangeSplitting f (rangeFactorization f a))} := by refine' fun a => ⟨(var a).equal (var (rangeSplitting f (rangeFactorization f a))), ext _⟩ simp refine' (congr rfl (ext _)).mp (definable_finset_biInter h' Finset.univ) simp refine' (congr rfl (ext fun x => _)).mp (h.inter h') simp only [Equiv.coe_trans, mem_inter_iff, mem_preimage, mem_image, exists_exists_and_eq_and, mem_setOf_eq] constructor · rintro ⟨⟨y, ys, hy⟩, hx⟩ refine' ⟨y, ys, _⟩ ext a rw [hx a, ← Function.comp_apply (f := x), ← hy] simp · rintro ⟨y, ys, rfl⟩ refine' ⟨⟨y, ys, _⟩, fun a => _⟩ · ext simp [Set.apply_rangeSplitting f] · rw [Function.comp_apply, Function.comp_apply, apply_rangeSplitting f, rangeFactorization_coe] [GOAL] M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β ⊢ Definable A L ((fun g => g ∘ f) '' s) [PROOFSTEP] cases nonempty_fintype α [GOAL] case intro M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝ : Fintype α ⊢ Definable A L ((fun g => g ∘ f) '' s) [PROOFSTEP] cases nonempty_fintype β [GOAL] case intro.intro M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β ⊢ Definable A L ((fun g => g ∘ f) '' s) [PROOFSTEP] have h := (((h.image_comp_equiv (Equiv.Set.sumCompl (range f))).image_comp_equiv (Equiv.sumCongr (_root_.Equiv.refl _) (Fintype.equivFin _).symm)).image_comp_sum_inl_fin _).preimage_comp (rangeSplitting f) [GOAL] case intro.intro M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) ⊢ Definable A L ((fun g => g ∘ f) '' s) [PROOFSTEP] have h' : A.Definable L {x : α → M | ∀ a, x a = x (rangeSplitting f (rangeFactorization f a))} := by have h' : ∀ a, A.Definable L {x : α → M | x a = x (rangeSplitting f (rangeFactorization f a))} := by refine' fun a => ⟨(var a).equal (var (rangeSplitting f (rangeFactorization f a))), ext _⟩ simp refine' (congr rfl (ext _)).mp (definable_finset_biInter h' Finset.univ) simp [GOAL] M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) ⊢ Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} [PROOFSTEP] have h' : ∀ a, A.Definable L {x : α → M | x a = x (rangeSplitting f (rangeFactorization f a))} := by refine' fun a => ⟨(var a).equal (var (rangeSplitting f (rangeFactorization f a))), ext _⟩ simp [GOAL] M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) ⊢ ∀ (a : α), Definable A L {x | x a = x (rangeSplitting f (rangeFactorization f a))} [PROOFSTEP] refine' fun a => ⟨(var a).equal (var (rangeSplitting f (rangeFactorization f a))), ext _⟩ [GOAL] M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) a : α ⊢ ∀ (x : α → M), x ∈ {x | x a = x (rangeSplitting f (rangeFactorization f a))} ↔ x ∈ setOf (Formula.Realize (Term.equal (var a) (var (rangeSplitting f (rangeFactorization f a))))) [PROOFSTEP] simp [GOAL] M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : ∀ (a : α), Definable A L {x | x a = x (rangeSplitting f (rangeFactorization f a))} ⊢ Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} [PROOFSTEP] refine' (congr rfl (ext _)).mp (definable_finset_biInter h' Finset.univ) [GOAL] M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : ∀ (a : α), Definable A L {x | x a = x (rangeSplitting f (rangeFactorization f a))} ⊢ ∀ (x : α → M), x ∈ ⋂ (i : α) (_ : i ∈ Finset.univ), {x | x i = x (rangeSplitting f (rangeFactorization f i))} ↔ x ∈ {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} [PROOFSTEP] simp [GOAL] case intro.intro M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} ⊢ Definable A L ((fun g => g ∘ f) '' s) [PROOFSTEP] refine' (congr rfl (ext fun x => _)).mp (h.inter h') [GOAL] case intro.intro M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} x : α → M ⊢ x ∈ (fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))) ∩ {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} ↔ x ∈ (fun g => g ∘ f) '' s [PROOFSTEP] simp only [Equiv.coe_trans, mem_inter_iff, mem_preimage, mem_image, exists_exists_and_eq_and, mem_setOf_eq] [GOAL] case intro.intro M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} x : α → M ⊢ ((∃ a, a ∈ s ∧ ((a ∘ ↑(Equiv.Set.sumCompl (range f))) ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘ Sum.inl = x ∘ rangeSplitting f) ∧ ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))) ↔ ∃ x_1, x_1 ∈ s ∧ x_1 ∘ f = x [PROOFSTEP] constructor [GOAL] case intro.intro.mp M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} x : α → M ⊢ ((∃ a, a ∈ s ∧ ((a ∘ ↑(Equiv.Set.sumCompl (range f))) ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘ Sum.inl = x ∘ rangeSplitting f) ∧ ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))) → ∃ x_1, x_1 ∈ s ∧ x_1 ∘ f = x [PROOFSTEP] rintro ⟨⟨y, ys, hy⟩, hx⟩ [GOAL] case intro.intro.mp.intro.intro.intro M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} x : α → M hx : ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a)) y : β → M ys : y ∈ s hy : ((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘ Sum.inl = x ∘ rangeSplitting f ⊢ ∃ x_1, x_1 ∈ s ∧ x_1 ∘ f = x [PROOFSTEP] refine' ⟨y, ys, _⟩ [GOAL] case intro.intro.mp.intro.intro.intro M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} x : α → M hx : ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a)) y : β → M ys : y ∈ s hy : ((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘ Sum.inl = x ∘ rangeSplitting f ⊢ y ∘ f = x [PROOFSTEP] ext a [GOAL] case intro.intro.mp.intro.intro.intro.h M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} x : α → M hx : ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a)) y : β → M ys : y ∈ s hy : ((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘ Sum.inl = x ∘ rangeSplitting f a : α ⊢ (y ∘ f) a = x a [PROOFSTEP] rw [hx a, ← Function.comp_apply (f := x), ← hy] [GOAL] case intro.intro.mp.intro.intro.intro.h M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} x : α → M hx : ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a)) y : β → M ys : y ∈ s hy : ((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘ Sum.inl = x ∘ rangeSplitting f a : α ⊢ (y ∘ f) a = (((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘ Sum.inl) (rangeFactorization f a) [PROOFSTEP] simp [GOAL] case intro.intro.mpr M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} x : α → M ⊢ (∃ x_1, x_1 ∈ s ∧ x_1 ∘ f = x) → (∃ a, a ∈ s ∧ ((a ∘ ↑(Equiv.Set.sumCompl (range f))) ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘ Sum.inl = x ∘ rangeSplitting f) ∧ ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a)) [PROOFSTEP] rintro ⟨y, ys, rfl⟩ [GOAL] case intro.intro.mpr.intro.intro M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} y : β → M ys : y ∈ s ⊢ (∃ a, a ∈ s ∧ ((a ∘ ↑(Equiv.Set.sumCompl (range f))) ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘ Sum.inl = (y ∘ f) ∘ rangeSplitting f) ∧ ∀ (a : α), (y ∘ f) a = (y ∘ f) (rangeSplitting f (rangeFactorization f a)) [PROOFSTEP] refine' ⟨⟨y, ys, _⟩, fun a => _⟩ [GOAL] case intro.intro.mpr.intro.intro.refine'_1 M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} y : β → M ys : y ∈ s ⊢ ((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘ Sum.inl = (y ∘ f) ∘ rangeSplitting f [PROOFSTEP] ext [GOAL] case intro.intro.mpr.intro.intro.refine'_1.h M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} y : β → M ys : y ∈ s x✝ : ↑(range f) ⊢ (((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘ Sum.inl) x✝ = ((y ∘ f) ∘ rangeSplitting f) x✝ [PROOFSTEP] simp [Set.apply_rangeSplitting f] [GOAL] case intro.intro.mpr.intro.intro.refine'_2 M : Type w A : Set M L : Language inst✝² : Structure L M α : Type u₁ β : Type u_1 B : Set M s✝ : Set (α → M) s : Set (β → M) h✝ : Definable A L s f : α → β inst✝¹ : Finite α inst✝ : Finite β val✝¹ : Fintype α val✝ : Fintype β h : Definable A L ((fun g => g ∘ rangeSplitting f) ⁻¹' ((fun g => g ∘ Sum.inl) '' ((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) '' ((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s)))) h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} y : β → M ys : y ∈ s a : α ⊢ (y ∘ f) a = (y ∘ f) (rangeSplitting f (rangeFactorization f a)) [PROOFSTEP] rw [Function.comp_apply, Function.comp_apply, apply_rangeSplitting f, rangeFactorization_coe]
{"mathlib_filename": "Mathlib.ModelTheory.Definability", "llama_tokens": 19726}
[GOAL] L : Language α : Type w V : Type w' n : ℕ inst✝ : Structure Language.graph V ⊢ V ⊨ Theory.simpleGraph ↔ (Irreflexive fun x y => RelMap adj ![x, y]) ∧ Symmetric fun x y => RelMap adj ![x, y] [PROOFSTEP] simp [Theory.simpleGraph] [GOAL] L : Language α : Type w V : Type w' n : ℕ G : SimpleGraph V ⊢ V ⊨ Theory.simpleGraph [PROOFSTEP] simp only [@Theory.simpleGraph_model_iff _ G.structure, relMap_apply₂] [GOAL] L : Language α : Type w V : Type w' n : ℕ G : SimpleGraph V ⊢ (Irreflexive fun x y => SimpleGraph.Adj G x y) ∧ Symmetric fun x y => SimpleGraph.Adj G x y [PROOFSTEP] exact ⟨G.loopless, G.symm⟩ [GOAL] L : Language α : Type w V : Type w' n : ℕ G : SimpleGraph V ⊢ FirstOrder.Language.simpleGraphOfStructure V = G [PROOFSTEP] ext [GOAL] case Adj.h.h.a L : Language α : Type w V : Type w' n : ℕ G : SimpleGraph V x✝¹ x✝ : V ⊢ SimpleGraph.Adj (FirstOrder.Language.simpleGraphOfStructure V) x✝¹ x✝ ↔ SimpleGraph.Adj G x✝¹ x✝ [PROOFSTEP] rfl [GOAL] L : Language α : Type w V : Type w' n : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph ⊢ SimpleGraph.structure (simpleGraphOfStructure V) = S [PROOFSTEP] ext [GOAL] case funMap.h.h.h L : Language α : Type w V : Type w' n : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph x✝² : ℕ x✝¹ : Functions Language.graph x✝² x✝ : Fin x✝² → V ⊢ funMap x✝¹ x✝ = funMap x✝¹ x✝ case RelMap.h.h.h.a L : Language α : Type w V : Type w' n : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph x✝² : ℕ x✝¹ : Relations Language.graph x✝² x✝ : Fin x✝² → V ⊢ RelMap x✝¹ x✝ ↔ RelMap x✝¹ x✝ [PROOFSTEP] case funMap n f xs => exact (IsRelational.empty_functions n).elim f [GOAL] L : Language α : Type w V : Type w' n✝ : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph n : ℕ f : Functions Language.graph n xs : Fin n → V ⊢ funMap f xs = funMap f xs [PROOFSTEP] case funMap n f xs => exact (IsRelational.empty_functions n).elim f [GOAL] L : Language α : Type w V : Type w' n✝ : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph n : ℕ f : Functions Language.graph n xs : Fin n → V ⊢ funMap f xs = funMap f xs [PROOFSTEP] exact (IsRelational.empty_functions n).elim f [GOAL] case RelMap.h.h.h.a L : Language α : Type w V : Type w' n : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph x✝² : ℕ x✝¹ : Relations Language.graph x✝² x✝ : Fin x✝² → V ⊢ RelMap x✝¹ x✝ ↔ RelMap x✝¹ x✝ [PROOFSTEP] case RelMap n r xs => rw [iff_eq_eq] cases' n with n · exact r.elim · cases' n with n · exact r.elim · cases' n with n · cases r change RelMap adj ![xs 0, xs 1] = _ refine' congr rfl (funext _) simp [Fin.forall_fin_two] · exact r.elim [GOAL] L : Language α : Type w V : Type w' n✝ : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph n : ℕ r : Relations Language.graph n xs : Fin n → V ⊢ RelMap r xs ↔ RelMap r xs [PROOFSTEP] case RelMap n r xs => rw [iff_eq_eq] cases' n with n · exact r.elim · cases' n with n · exact r.elim · cases' n with n · cases r change RelMap adj ![xs 0, xs 1] = _ refine' congr rfl (funext _) simp [Fin.forall_fin_two] · exact r.elim [GOAL] L : Language α : Type w V : Type w' n✝ : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph n : ℕ r : Relations Language.graph n xs : Fin n → V ⊢ RelMap r xs ↔ RelMap r xs [PROOFSTEP] rw [iff_eq_eq] [GOAL] L : Language α : Type w V : Type w' n✝ : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph n : ℕ r : Relations Language.graph n xs : Fin n → V ⊢ RelMap r xs = RelMap r xs [PROOFSTEP] cases' n with n [GOAL] case zero L : Language α : Type w V : Type w' n : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph r : Relations Language.graph Nat.zero xs : Fin Nat.zero → V ⊢ RelMap r xs = RelMap r xs [PROOFSTEP] exact r.elim [GOAL] case succ L : Language α : Type w V : Type w' n✝ : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph n : ℕ r : Relations Language.graph (Nat.succ n) xs : Fin (Nat.succ n) → V ⊢ RelMap r xs = RelMap r xs [PROOFSTEP] cases' n with n [GOAL] case succ.zero L : Language α : Type w V : Type w' n : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph r : Relations Language.graph (Nat.succ Nat.zero) xs : Fin (Nat.succ Nat.zero) → V ⊢ RelMap r xs = RelMap r xs [PROOFSTEP] exact r.elim [GOAL] case succ.succ L : Language α : Type w V : Type w' n✝ : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph n : ℕ r : Relations Language.graph (Nat.succ (Nat.succ n)) xs : Fin (Nat.succ (Nat.succ n)) → V ⊢ RelMap r xs = RelMap r xs [PROOFSTEP] cases' n with n [GOAL] case succ.succ.zero L : Language α : Type w V : Type w' n : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph r : Relations Language.graph (Nat.succ (Nat.succ Nat.zero)) xs : Fin (Nat.succ (Nat.succ Nat.zero)) → V ⊢ RelMap r xs = RelMap r xs [PROOFSTEP] cases r [GOAL] case succ.succ.zero.unit L : Language α : Type w V : Type w' n : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph xs : Fin (Nat.succ (Nat.succ Nat.zero)) → V ⊢ RelMap PUnit.unit xs = RelMap PUnit.unit xs [PROOFSTEP] change RelMap adj ![xs 0, xs 1] = _ [GOAL] case succ.succ.zero.unit L : Language α : Type w V : Type w' n : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph xs : Fin (Nat.succ (Nat.succ Nat.zero)) → V ⊢ RelMap adj ![xs 0, xs 1] = RelMap PUnit.unit xs [PROOFSTEP] refine' congr rfl (funext _) [GOAL] case succ.succ.zero.unit L : Language α : Type w V : Type w' n : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph xs : Fin (Nat.succ (Nat.succ Nat.zero)) → V ⊢ ∀ (x : Fin (Nat.succ 1)), Matrix.vecCons (xs 0) ![xs 1] x = xs x [PROOFSTEP] simp [Fin.forall_fin_two] [GOAL] case succ.succ.succ L : Language α : Type w V : Type w' n✝ : ℕ S : Structure Language.graph V inst✝ : V ⊨ Theory.simpleGraph n : ℕ r : Relations Language.graph (Nat.succ (Nat.succ (Nat.succ n))) xs : Fin (Nat.succ (Nat.succ (Nat.succ n))) → V ⊢ RelMap r xs = RelMap r xs [PROOFSTEP] exact r.elim
{"mathlib_filename": "Mathlib.ModelTheory.Graph", "llama_tokens": 2753}
[GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : LE M ⊢ OrderedStructure Language.order M [PROOFSTEP] rw [orderedStructure_iff, orderLHom_order] [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : LE M ⊢ LHom.IsExpansionOn (LHom.id Language.order) M [PROOFSTEP] exact LHom.id_isExpansionOn M [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : Preorder M ⊢ M ⊨ preorderTheory Language.order [PROOFSTEP] simp only [preorderTheory, Theory.model_iff, Set.mem_insert_iff, Set.mem_singleton_iff, forall_eq_or_imp, Relations.realize_reflexive, relMap_apply₂, forall_eq, Relations.realize_transitive] [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : Preorder M ⊢ (Reflexive fun x y => x ≤ y) ∧ Transitive fun x y => x ≤ y [PROOFSTEP] exact ⟨le_refl, fun _ _ _ => le_trans⟩ [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : PartialOrder M ⊢ M ⊨ partialOrderTheory Language.order [PROOFSTEP] simp only [partialOrderTheory, Theory.model_iff, Set.mem_insert_iff, Set.mem_singleton_iff, forall_eq_or_imp, Relations.realize_reflexive, relMap_apply₂, Relations.realize_antisymmetric, forall_eq, Relations.realize_transitive] [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : PartialOrder M ⊢ (Reflexive fun x y => x ≤ y) ∧ (AntiSymmetric fun x y => x ≤ y) ∧ Transitive fun x y => x ≤ y [PROOFSTEP] exact ⟨le_refl, fun _ _ => le_antisymm, fun _ _ _ => le_trans⟩ [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : LinearOrder M ⊢ M ⊨ linearOrderTheory Language.order [PROOFSTEP] simp only [linearOrderTheory, Theory.model_iff, Set.mem_insert_iff, Set.mem_singleton_iff, forall_eq_or_imp, Relations.realize_reflexive, relMap_apply₂, Relations.realize_antisymmetric, Relations.realize_transitive, forall_eq, Relations.realize_total] [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : LinearOrder M ⊢ (Reflexive fun x y => x ≤ y) ∧ (AntiSymmetric fun x y => x ≤ y) ∧ (Transitive fun x y => x ≤ y) ∧ Total fun x y => x ≤ y [PROOFSTEP] exact ⟨le_refl, fun _ _ => le_antisymm, fun _ _ _ => le_trans, le_total⟩ [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝³ : IsOrdered L inst✝² : Structure L M inst✝¹ : LE M inst✝ : OrderedStructure L M a b : M ⊢ RelMap leSymb ![a, b] ↔ a ≤ b [PROOFSTEP] rw [← orderLHom_leSymb, LHom.map_onRelation] [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝³ : IsOrdered L inst✝² : Structure L M inst✝¹ : LE M inst✝ : OrderedStructure L M a b : M ⊢ RelMap leSymb ![a, b] ↔ a ≤ b [PROOFSTEP] rfl [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝³ : IsOrdered L inst✝² : Structure L M inst✝¹ : LE M inst✝ : OrderedStructure L M t₁ t₂ : Term L (α ⊕ Fin n) v : α → M xs : Fin n → M ⊢ BoundedFormula.Realize (le t₁ t₂) v xs ↔ realize (Sum.elim v xs) t₁ ≤ realize (Sum.elim v xs) t₂ [PROOFSTEP] simp [Term.le] [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝³ : IsOrdered L inst✝² : Structure L M inst✝¹ : Preorder M inst✝ : OrderedStructure L M t₁ t₂ : Term L (α ⊕ Fin n) v : α → M xs : Fin n → M ⊢ BoundedFormula.Realize (lt t₁ t₂) v xs ↔ realize (Sum.elim v xs) t₁ < realize (Sum.elim v xs) t₂ [PROOFSTEP] simp [Term.lt, lt_iff_le_not_le] [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : LE M ⊢ M ⊨ noTopOrderSentence Language.order ↔ NoTopOrder M [PROOFSTEP] simp only [noTopOrderSentence, Sentence.Realize, Formula.Realize, BoundedFormula.realize_all, BoundedFormula.realize_ex, BoundedFormula.realize_not, Term.realize, Term.realize_le, Sum.elim_inr] [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : LE M ⊢ (∀ (a : M), ∃ a_1, ¬Fin.snoc (Fin.snoc default a) a_1 1 ≤ Fin.snoc (Fin.snoc default a) a_1 0) ↔ NoTopOrder M [PROOFSTEP] refine' ⟨fun h => ⟨fun a => h a⟩, _⟩ [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : LE M ⊢ NoTopOrder M → ∀ (a : M), ∃ a_1, ¬Fin.snoc (Fin.snoc default a) a_1 1 ≤ Fin.snoc (Fin.snoc default a) a_1 0 [PROOFSTEP] intro h a [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : LE M h : NoTopOrder M a : M ⊢ ∃ a_1, ¬Fin.snoc (Fin.snoc default a) a_1 1 ≤ Fin.snoc (Fin.snoc default a) a_1 0 [PROOFSTEP] exact exists_not_le a [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : LE M ⊢ M ⊨ noBotOrderSentence Language.order ↔ NoBotOrder M [PROOFSTEP] simp only [noBotOrderSentence, Sentence.Realize, Formula.Realize, BoundedFormula.realize_all, BoundedFormula.realize_ex, BoundedFormula.realize_not, Term.realize, Term.realize_le, Sum.elim_inr] [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : LE M ⊢ (∀ (a : M), ∃ a_1, ¬Fin.snoc (Fin.snoc default a) a_1 0 ≤ Fin.snoc (Fin.snoc default a) a_1 1) ↔ NoBotOrder M [PROOFSTEP] refine' ⟨fun h => ⟨fun a => h a⟩, _⟩ [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : LE M ⊢ NoBotOrder M → ∀ (a : M), ∃ a_1, ¬Fin.snoc (Fin.snoc default a) a_1 0 ≤ Fin.snoc (Fin.snoc default a) a_1 1 [PROOFSTEP] intro h a [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : LE M h : NoBotOrder M a : M ⊢ ∃ a_1, ¬Fin.snoc (Fin.snoc default a) a_1 0 ≤ Fin.snoc (Fin.snoc default a) a_1 1 [PROOFSTEP] exact exists_not_ge a [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : Preorder M ⊢ M ⊨ denselyOrderedSentence Language.order ↔ DenselyOrdered M [PROOFSTEP] simp only [denselyOrderedSentence, Sentence.Realize, Formula.Realize, BoundedFormula.realize_imp, BoundedFormula.realize_all, Term.realize, Term.realize_lt, Sum.elim_inr, BoundedFormula.realize_ex, BoundedFormula.realize_inf] [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : Preorder M ⊢ (∀ (a a_1 : M), Fin.snoc (Fin.snoc default a) a_1 0 < Fin.snoc (Fin.snoc default a) a_1 1 → ∃ a_3, Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 0 < Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 2 ∧ Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 2 < Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 1) ↔ DenselyOrdered M [PROOFSTEP] refine' ⟨fun h => ⟨fun a b ab => h a b ab⟩, _⟩ [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : Preorder M ⊢ DenselyOrdered M → ∀ (a a_1 : M), Fin.snoc (Fin.snoc default a) a_1 0 < Fin.snoc (Fin.snoc default a) a_1 1 → ∃ a_3, Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 0 < Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 2 ∧ Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 2 < Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 1 [PROOFSTEP] intro h a b ab [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝ : Preorder M h : DenselyOrdered M a b : M ab : Fin.snoc (Fin.snoc default a) b 0 < Fin.snoc (Fin.snoc default a) b 1 ⊢ ∃ a_1, Fin.snoc (Fin.snoc (Fin.snoc default a) b) a_1 0 < Fin.snoc (Fin.snoc (Fin.snoc default a) b) a_1 2 ∧ Fin.snoc (Fin.snoc (Fin.snoc default a) b) a_1 2 < Fin.snoc (Fin.snoc (Fin.snoc default a) b) a_1 1 [PROOFSTEP] exact exists_between ab [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝³ : LinearOrder M inst✝² : DenselyOrdered M inst✝¹ : NoTopOrder M inst✝ : NoBotOrder M ⊢ M ⊨ dlo Language.order [PROOFSTEP] simp only [dlo, Set.union_insert, Set.union_singleton, Theory.model_iff, Set.mem_insert_iff, forall_eq_or_imp, realize_noTopOrder, realize_noBotOrder, realize_denselyOrdered, true_and_iff] [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝³ : LinearOrder M inst✝² : DenselyOrdered M inst✝¹ : NoTopOrder M inst✝ : NoBotOrder M ⊢ ∀ (a : Sentence Language.order), a ∈ linearOrderTheory Language.order → M ⊨ a [PROOFSTEP] rw [← Theory.model_iff] [GOAL] L : Language α : Type w M : Type w' n : ℕ inst✝³ : LinearOrder M inst✝² : DenselyOrdered M inst✝¹ : NoTopOrder M inst✝ : NoBotOrder M ⊢ M ⊨ linearOrderTheory Language.order [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.ModelTheory.Order", "llama_tokens": 3560}
[GOAL] k : Type u_1 G : Type u_2 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) g : G ⊢ Finsupp.single g 1 * average k G = average k G [PROOFSTEP] simp only [mul_one, Finset.mul_sum, Algebra.mul_smul_comm, average, MonoidAlgebra.of_apply, Finset.sum_congr, MonoidAlgebra.single_mul_single] [GOAL] k : Type u_1 G : Type u_2 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) g : G ⊢ ⅟↑(Fintype.card G) • ∑ x : G, single (g * x) 1 = ⅟↑(Fintype.card G) • ∑ x : G, single x 1 [PROOFSTEP] set f : G → MonoidAlgebra k G := fun x => Finsupp.single x 1 [GOAL] k : Type u_1 G : Type u_2 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) g : G f : G → MonoidAlgebra k G := fun x => Finsupp.single x 1 ⊢ ⅟↑(Fintype.card G) • ∑ x : G, single (g * x) 1 = ⅟↑(Fintype.card G) • Finset.sum Finset.univ f [PROOFSTEP] show ⅟(Fintype.card G : k) • ∑ x : G, f (g * x) = ⅟(Fintype.card G : k) • ∑ x : G, f x [GOAL] k : Type u_1 G : Type u_2 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) g : G f : G → MonoidAlgebra k G := fun x => Finsupp.single x 1 ⊢ ⅟↑(Fintype.card G) • ∑ x : G, f (g * x) = ⅟↑(Fintype.card G) • ∑ x : G, f x [PROOFSTEP] rw [Function.Bijective.sum_comp (Group.mulLeft_bijective g) _] [GOAL] k : Type u_1 G : Type u_2 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) g : G ⊢ average k G * Finsupp.single g 1 = average k G [PROOFSTEP] simp only [mul_one, Finset.sum_mul, Algebra.smul_mul_assoc, average, MonoidAlgebra.of_apply, Finset.sum_congr, MonoidAlgebra.single_mul_single] [GOAL] k : Type u_1 G : Type u_2 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) g : G ⊢ ⅟↑(Fintype.card G) • ∑ x : G, single (x * g) 1 = ⅟↑(Fintype.card G) • ∑ x : G, single x 1 [PROOFSTEP] set f : G → MonoidAlgebra k G := fun x => Finsupp.single x 1 [GOAL] k : Type u_1 G : Type u_2 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) g : G f : G → MonoidAlgebra k G := fun x => Finsupp.single x 1 ⊢ ⅟↑(Fintype.card G) • ∑ x : G, single (x * g) 1 = ⅟↑(Fintype.card G) • Finset.sum Finset.univ f [PROOFSTEP] show ⅟(Fintype.card G : k) • ∑ x : G, f (x * g) = ⅟(Fintype.card G : k) • ∑ x : G, f x [GOAL] k : Type u_1 G : Type u_2 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) g : G f : G → MonoidAlgebra k G := fun x => Finsupp.single x 1 ⊢ ⅟↑(Fintype.card G) • ∑ x : G, f (x * g) = ⅟↑(Fintype.card G) • ∑ x : G, f x [PROOFSTEP] rw [Function.Bijective.sum_comp (Group.mulRight_bijective g) _] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V a✝ b✝ : V hv : a✝ ∈ {v | ∀ (g : G), ↑(↑ρ g) v = v} hw : b✝ ∈ {v | ∀ (g : G), ↑(↑ρ g) v = v} g : G ⊢ ↑(↑ρ g) (a✝ + b✝) = a✝ + b✝ [PROOFSTEP] simp only [hv g, hw g, map_add] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V g : G ⊢ ↑(↑ρ g) 0 = 0 [PROOFSTEP] simp only [map_zero] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V r : k v : V hv : v ∈ { toAddSubsemigroup := { carrier := {v | ∀ (g : G), ↑(↑ρ g) v = v}, add_mem' := (_ : ∀ {a b : V}, a ∈ {v | ∀ (g : G), ↑(↑ρ g) v = v} → b ∈ {v | ∀ (g : G), ↑(↑ρ g) v = v} → ∀ (g : G), ↑(↑ρ g) (a + b) = a + b) }, zero_mem' := (_ : ∀ (g : G), ↑(↑ρ g) 0 = 0) }.toAddSubsemigroup.carrier g : G ⊢ ↑(↑ρ g) (r • v) = r • v [PROOFSTEP] simp only [hv g, LinearMap.map_smulₛₗ, RingHom.id_apply] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V v : V ⊢ v ∈ invariants ρ ↔ ∀ (g : G), ↑(↑ρ g) v = v [PROOFSTEP] rfl [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V ⊢ (invariants ρ).toAddSubmonoid.toAddSubsemigroup.carrier = ⋂ (g : G), Function.fixedPoints ↑(↑ρ g) [PROOFSTEP] ext [GOAL] case h k : Type u_1 G : Type u_2 V : Type u_3 inst✝³ : CommSemiring k inst✝² : Group G inst✝¹ : AddCommMonoid V inst✝ : Module k V ρ : Representation k G V x✝ : V ⊢ x✝ ∈ (invariants ρ).toAddSubmonoid.toAddSubsemigroup.carrier ↔ x✝ ∈ ⋂ (g : G), Function.fixedPoints ↑(↑ρ g) [PROOFSTEP] simp [Function.IsFixedPt] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) v : V g : G ⊢ ↑(↑ρ g) (↑(averageMap ρ) v) = ↑(averageMap ρ) v [PROOFSTEP] rw [averageMap, ← asAlgebraHom_single_one, ← LinearMap.mul_apply, ← map_mul (asAlgebraHom ρ), mul_average_left] [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) v : V hv : v ∈ invariants ρ ⊢ ↑(averageMap ρ) v = v [PROOFSTEP] rw [mem_invariants] at hv [GOAL] k : Type u_1 G : Type u_2 V : Type u_3 inst✝⁵ : CommSemiring k inst✝⁴ : Group G inst✝³ : AddCommMonoid V inst✝² : Module k V ρ : Representation k G V inst✝¹ : Fintype G inst✝ : Invertible ↑(Fintype.card G) v : V hv : ∀ (g : G), ↑(↑ρ g) v = v ⊢ ↑(averageMap ρ) v = v [PROOFSTEP] simp [average, map_sum, hv, Finset.card_univ, nsmul_eq_smul_cast k _ v, smul_smul] [GOAL] k : Type u inst✝ : CommRing k G : GroupCat X Y : Rep k ↑G f : ↑X.V →ₗ[k] ↑Y.V g : ↑G ⊢ ↑(↑(linHom (Rep.ρ X) (Rep.ρ Y)) g) f = f ↔ LinearMap.comp f (↑(Rep.ρ X) g) = LinearMap.comp (↑(Rep.ρ Y) g) f [PROOFSTEP] dsimp [GOAL] k : Type u inst✝ : CommRing k G : GroupCat X Y : Rep k ↑G f : ↑X.V →ₗ[k] ↑Y.V g : ↑G ⊢ LinearMap.comp (↑(Rep.ρ Y) g) (LinearMap.comp f (↑(Rep.ρ X) g⁻¹)) = f ↔ LinearMap.comp f (↑(Rep.ρ X) g) = LinearMap.comp (↑(Rep.ρ Y) g) f [PROOFSTEP] erw [← ρAut_apply_inv] [GOAL] k : Type u inst✝ : CommRing k G : GroupCat X Y : Rep k ↑G f : ↑X.V →ₗ[k] ↑Y.V g : ↑G ⊢ LinearMap.comp (↑(Rep.ρ Y) g) (LinearMap.comp f (↑(ρAut X) g).inv) = f ↔ LinearMap.comp f (↑(Rep.ρ X) g) = LinearMap.comp (↑(Rep.ρ Y) g) f [PROOFSTEP] rw [← LinearMap.comp_assoc, ← ModuleCat.comp_def, ← ModuleCat.comp_def, Iso.inv_comp_eq, ρAut_apply_hom] [GOAL] k : Type u inst✝ : CommRing k G : GroupCat X Y : Rep k ↑G f : ↑X.V →ₗ[k] ↑Y.V g : ↑G ⊢ f ≫ ↑(Rep.ρ Y) g = ↑X.ρ g ≫ f ↔ LinearMap.comp f (↑(Rep.ρ X) g) = f ≫ ↑(Rep.ρ Y) g [PROOFSTEP] exact comm [GOAL] k : Type u inst✝ : CommRing k G : GroupCat X Y : Rep k ↑G x✝ : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) } ⊢ (fun f => { val := f.hom, property := (_ : ∀ (g : ↑G), ↑(↑(linHom (Rep.ρ X) (Rep.ρ Y)) g) f.hom = f.hom) }) (AddHom.toFun { toAddHom := { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_1) = (fun f => Hom.mk ↑f) (x + x_1)) }, map_smul' := (_ : ∀ (x : k) (x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), AddHom.toFun { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) } (x • x_1) = AddHom.toFun { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) } (x • x_1)) }.toAddHom x✝) = x✝ [PROOFSTEP] apply Subtype.ext [GOAL] case a k : Type u inst✝ : CommRing k G : GroupCat X Y : Rep k ↑G x✝ : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) } ⊢ ↑((fun f => { val := f.hom, property := (_ : ∀ (g : ↑G), ↑(↑(linHom (Rep.ρ X) (Rep.ρ Y)) g) f.hom = f.hom) }) (AddHom.toFun { toAddHom := { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_1) = (fun f => Hom.mk ↑f) (x + x_1)) }, map_smul' := (_ : ∀ (x : k) (x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), AddHom.toFun { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) } (x • x_1) = AddHom.toFun { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) } (x • x_1)) }.toAddHom x✝)) = ↑x✝ [PROOFSTEP] ext [GOAL] case a.h k : Type u inst✝ : CommRing k G : GroupCat X Y : Rep k ↑G x✝¹ : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) } x✝ : CoeSort.coe X ⊢ ↑↑((fun f => { val := f.hom, property := (_ : ∀ (g : ↑G), ↑(↑(linHom (Rep.ρ X) (Rep.ρ Y)) g) f.hom = f.hom) }) (AddHom.toFun { toAddHom := { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_1) = (fun f => Hom.mk ↑f) (x + x_1)) }, map_smul' := (_ : ∀ (x : k) (x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), AddHom.toFun { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) } (x • x_1) = AddHom.toFun { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) } (x • x_1)) }.toAddHom x✝¹)) x✝ = ↑↑x✝¹ x✝ [PROOFSTEP] rfl -- Porting note: Added `apply Subtype.ext` [GOAL] k : Type u inst✝ : CommRing k G : GroupCat X Y : Rep k ↑G x✝ : X ⟶ Y ⊢ AddHom.toFun { toAddHom := { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_1) = (fun f => Hom.mk ↑f) (x + x_1)) }, map_smul' := (_ : ∀ (x : k) (x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), AddHom.toFun { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) } (x • x_1) = AddHom.toFun { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) } (x • x_1)) }.toAddHom ((fun f => { val := f.hom, property := (_ : ∀ (g : ↑G), ↑(↑(linHom (Rep.ρ X) (Rep.ρ Y)) g) f.hom = f.hom) }) x✝) = x✝ [PROOFSTEP] ext [GOAL] case h.h k : Type u inst✝ : CommRing k G : GroupCat X Y : Rep k ↑G x✝¹ : X ⟶ Y x✝ : ↑X.V ⊢ ↑(AddHom.toFun { toAddHom := { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_1) = (fun f => Hom.mk ↑f) (x + x_1)) }, map_smul' := (_ : ∀ (x : k) (x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), AddHom.toFun { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) } (x • x_1) = AddHom.toFun { toFun := fun f => Hom.mk ↑f, map_add' := (_ : ∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }), (fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) } (x • x_1)) }.toAddHom ((fun f => { val := f.hom, property := (_ : ∀ (g : ↑G), ↑(↑(linHom (Rep.ρ X) (Rep.ρ Y)) g) f.hom = f.hom) }) x✝¹)).hom x✝ = ↑x✝¹.hom x✝ [PROOFSTEP] rfl [GOAL] k : Type u inst✝ : Field k G : GroupCat X Y : FdRep k ↑G ⊢ { x // x ∈ invariants (linHom (FdRep.ρ X) (FdRep.ρ Y)) } ≃ₗ[k] X ⟶ Y [PROOFSTEP] rw [← FdRep.forget₂_ρ, ← FdRep.forget₂_ρ] -- Porting note: The original version used `linHom.invariantsEquivRepHom _ _ ≪≫ₗ` [GOAL] k : Type u inst✝ : Field k G : GroupCat X Y : FdRep k ↑G ⊢ { x // x ∈ invariants (linHom (Rep.ρ ((forget₂ (FdRep k ↑G) (Rep k ↑G)).obj X)) (Rep.ρ ((forget₂ (FdRep k ↑G) (Rep k ↑G)).obj Y))) } ≃ₗ[k] X ⟶ Y [PROOFSTEP] exact linHom.invariantsEquivRepHom ((forget₂ (FdRep k G) (Rep k G)).obj X) ((forget₂ (FdRep k G) (Rep k G)).obj Y) ≪≫ₗ FdRep.forget₂HomLinearEquiv X Y
{"mathlib_filename": "Mathlib.RepresentationTheory.Invariants", "llama_tokens": 6841}
[GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α ⊢ IsChain r univ ↔ IsTrichotomous α r [PROOFSTEP] refine' ⟨fun h => ⟨fun a b => _⟩, fun h => @isChain_of_trichotomous _ _ h univ⟩ [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a✝ b✝ x y : α h : IsChain r univ a b : α ⊢ r a b ∨ a = b ∨ r b a [PROOFSTEP] rw [or_left_comm, or_iff_not_imp_left] [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a✝ b✝ x y : α h : IsChain r univ a b : α ⊢ ¬a = b → r a b ∨ r b a [PROOFSTEP] exact h trivial trivial [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α inst✝¹ : LinearOrder α inst✝ : Preorder β f : α → β hf : Monotone f ⊢ IsChain (fun x x_1 => x ≤ x_1) (range f) [PROOFSTEP] rw [← image_univ] [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α inst✝¹ : LinearOrder α inst✝ : Preorder β f : α → β hf : Monotone f ⊢ IsChain (fun x x_1 => x ≤ x_1) (f '' univ) [PROOFSTEP] exact (isChain_of_trichotomous _).image (· ≤ ·) _ _ hf [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c✝ c₁ c₂ c₃ s t : Set α a✝ b✝ x y : α inst✝ : IsRefl α r f : β → α c : Set β h : IsChain (f ⁻¹'o r) c x✝¹ x✝ : { a // a ∈ c } a : β ha : a ∈ c b : β hb : b ∈ c hab : a = b ⊢ ∃ z, r ((fun x => f ↑x) { val := a, property := ha }) ((fun x => f ↑x) z) ∧ r ((fun x => f ↑x) { val := b, property := hb }) ((fun x => f ↑x) z) [PROOFSTEP] simp only [hab, exists_prop, and_self_iff, Subtype.exists] [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c✝ c₁ c₂ c₃ s t : Set α a✝ b✝ x y : α inst✝ : IsRefl α r f : β → α c : Set β h : IsChain (f ⁻¹'o r) c x✝¹ x✝ : { a // a ∈ c } a : β ha : a ∈ c b : β hb : b ∈ c hab : a = b ⊢ ∃ a, a ∈ c ∧ r (f b) (f a) [PROOFSTEP] exact ⟨b, hb, refl _⟩ [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c✝ c₁ c₂ c₃ s t : Set α a✝ b✝ x y : α inst✝¹ : IsRefl α r hchain : IsChain r s inst✝ : IsTrans α r a b c : α mem1 : a ∈ s mem2 : b ∈ s mem3 : c ∈ s ⊢ ∃ z x, r a z ∧ r b z ∧ r c z [PROOFSTEP] rcases directedOn_iff_directed.mpr (IsChain.directed hchain) a mem1 b mem2 with ⟨z, mem4, H1, H2⟩ [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 r : α → α → Prop c✝ c₁ c₂ c₃ s t : Set α a✝ b✝ x y : α inst✝¹ : IsRefl α r hchain : IsChain r s inst✝ : IsTrans α r a b c : α mem1 : a ∈ s mem2 : b ∈ s mem3 : c ∈ s z : α mem4 : z ∈ s H1 : r a z H2 : r b z ⊢ ∃ z x, r a z ∧ r b z ∧ r c z [PROOFSTEP] rcases directedOn_iff_directed.mpr (IsChain.directed hchain) z mem4 c mem3 with ⟨z', mem5, H3, H4⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 r : α → α → Prop c✝ c₁ c₂ c₃ s t : Set α a✝ b✝ x y : α inst✝¹ : IsRefl α r hchain : IsChain r s inst✝ : IsTrans α r a b c : α mem1 : a ∈ s mem2 : b ∈ s mem3 : c ∈ s z : α mem4 : z ∈ s H1 : r a z H2 : r b z z' : α mem5 : z' ∈ s H3 : r z z' H4 : r c z' ⊢ ∃ z x, r a z ∧ r b z ∧ r c z [PROOFSTEP] exact ⟨z', mem5, _root_.trans H1 H3, _root_.trans H2 H3, H4⟩ [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α h : ∃ t, IsChain r s ∧ SuperChain r s t ⊢ SuperChain r s (SuccChain r s) [PROOFSTEP] have : IsChain r s ∧ SuperChain r s (choose h) := @choose_spec _ (fun t => IsChain r s ∧ SuperChain r s t) _ [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α h : ∃ t, IsChain r s ∧ SuperChain r s t this : IsChain r s ∧ SuperChain r s (choose h) ⊢ SuperChain r s (SuccChain r s) [PROOFSTEP] simpa [SuccChain, dif_pos, exists_and_left.mp h] using this.2 [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α hs : IsChain r s h : ¬∃ t, IsChain r s ∧ SuperChain r s t ⊢ IsChain r (SuccChain r s) [PROOFSTEP] rw [exists_and_left] at h [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α hs : IsChain r s h : ¬(IsChain r s ∧ ∃ x, SuperChain r s x) ⊢ IsChain r (SuccChain r s) [PROOFSTEP] simpa [SuccChain, dif_neg, h] using hs [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α hs₁ : IsChain r s hs₂ : ¬IsMaxChain r s ⊢ SuperChain r s (SuccChain r s) [PROOFSTEP] simp only [IsMaxChain, not_and, not_forall, exists_prop, exists_and_left] at hs₂ [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α hs₁ : IsChain r s hs₂ : IsChain r s → ∃ x, IsChain r x ∧ s ⊆ x ∧ ¬s = x ⊢ SuperChain r s (SuccChain r s) [PROOFSTEP] obtain ⟨t, ht, hst⟩ := hs₂ hs₁ [GOAL] case intro.intro α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t✝ : Set α a b x y : α hs₁ : IsChain r s hs₂ : IsChain r s → ∃ x, IsChain r x ∧ s ⊆ x ∧ ¬s = x t : Set α ht : IsChain r t hst : s ⊆ t ∧ ¬s = t ⊢ SuperChain r s (SuccChain r s) [PROOFSTEP] exact succChain_spec ⟨t, hs₁, ht, ssubset_iff_subset_ne.2 hst⟩ [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α h : ¬∃ t, IsChain r s ∧ SuperChain r s t ⊢ s ⊆ SuccChain r s [PROOFSTEP] rw [exists_and_left] at h [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α h : ¬(IsChain r s ∧ ∃ x, SuperChain r s x) ⊢ s ⊆ SuccChain r s [PROOFSTEP] simp [SuccChain, dif_neg, h, Subset.rfl] [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α ⊢ ChainClosure r ∅ [PROOFSTEP] have : ChainClosure r (⋃₀ ∅) := ChainClosure.union fun a h => False.rec h [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α this : ChainClosure r (⋃₀ ∅) ⊢ ChainClosure r ∅ [PROOFSTEP] simpa using this [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α hc₁ : ChainClosure r c₁ h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂ ⊢ SuccChain r c₂ ⊆ c₁ ∨ c₁ ⊆ c₂ [PROOFSTEP] induction hc₁ [GOAL] case succ α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂ s✝ : Set α a✝ : ChainClosure r s✝ a_ih✝ : SuccChain r c₂ ⊆ s✝ ∨ s✝ ⊆ c₂ ⊢ SuccChain r c₂ ⊆ SuccChain r s✝ ∨ SuccChain r s✝ ⊆ c₂ case union α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂ s✝ : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a a_ih✝ : ∀ (a : Set α), a ∈ s✝ → SuccChain r c₂ ⊆ a ∨ a ⊆ c₂ ⊢ SuccChain r c₂ ⊆ ⋃₀ s✝ ∨ ⋃₀ s✝ ⊆ c₂ [PROOFSTEP] case succ c₃ hc₃ ih => cases' ih with ih ih · exact Or.inl (ih.trans subset_succChain) · exact (h hc₃ ih).imp_left fun (h : c₂ = c₃) => h ▸ Subset.rfl [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃✝ s t : Set α a b x y : α h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂ c₃ : Set α hc₃ : ChainClosure r c₃ ih : SuccChain r c₂ ⊆ c₃ ∨ c₃ ⊆ c₂ ⊢ SuccChain r c₂ ⊆ SuccChain r c₃ ∨ SuccChain r c₃ ⊆ c₂ [PROOFSTEP] case succ c₃ hc₃ ih => cases' ih with ih ih · exact Or.inl (ih.trans subset_succChain) · exact (h hc₃ ih).imp_left fun (h : c₂ = c₃) => h ▸ Subset.rfl [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃✝ s t : Set α a b x y : α h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂ c₃ : Set α hc₃ : ChainClosure r c₃ ih : SuccChain r c₂ ⊆ c₃ ∨ c₃ ⊆ c₂ ⊢ SuccChain r c₂ ⊆ SuccChain r c₃ ∨ SuccChain r c₃ ⊆ c₂ [PROOFSTEP] cases' ih with ih ih [GOAL] case inl α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃✝ s t : Set α a b x y : α h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂ c₃ : Set α hc₃ : ChainClosure r c₃ ih : SuccChain r c₂ ⊆ c₃ ⊢ SuccChain r c₂ ⊆ SuccChain r c₃ ∨ SuccChain r c₃ ⊆ c₂ [PROOFSTEP] exact Or.inl (ih.trans subset_succChain) [GOAL] case inr α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃✝ s t : Set α a b x y : α h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂ c₃ : Set α hc₃ : ChainClosure r c₃ ih : c₃ ⊆ c₂ ⊢ SuccChain r c₂ ⊆ SuccChain r c₃ ∨ SuccChain r c₃ ⊆ c₂ [PROOFSTEP] exact (h hc₃ ih).imp_left fun (h : c₂ = c₃) => h ▸ Subset.rfl [GOAL] case union α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂ s✝ : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a a_ih✝ : ∀ (a : Set α), a ∈ s✝ → SuccChain r c₂ ⊆ a ∨ a ⊆ c₂ ⊢ SuccChain r c₂ ⊆ ⋃₀ s✝ ∨ ⋃₀ s✝ ⊆ c₂ [PROOFSTEP] case union s _ ih => refine' or_iff_not_imp_left.2 fun hn => sUnion_subset fun a ha => _ exact (ih a ha).resolve_left fun h => hn <| h.trans <| subset_sUnion_of_mem ha [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s✝ t : Set α a b x y : α h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂ s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → SuccChain r c₂ ⊆ a ∨ a ⊆ c₂ ⊢ SuccChain r c₂ ⊆ ⋃₀ s ∨ ⋃₀ s ⊆ c₂ [PROOFSTEP] case union s _ ih => refine' or_iff_not_imp_left.2 fun hn => sUnion_subset fun a ha => _ exact (ih a ha).resolve_left fun h => hn <| h.trans <| subset_sUnion_of_mem ha [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s✝ t : Set α a b x y : α h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂ s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → SuccChain r c₂ ⊆ a ∨ a ⊆ c₂ ⊢ SuccChain r c₂ ⊆ ⋃₀ s ∨ ⋃₀ s ⊆ c₂ [PROOFSTEP] refine' or_iff_not_imp_left.2 fun hn => sUnion_subset fun a ha => _ [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s✝ t : Set α a✝¹ b x y : α h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂ s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → SuccChain r c₂ ⊆ a ∨ a ⊆ c₂ hn : ¬SuccChain r c₂ ⊆ ⋃₀ s a : Set α ha : a ∈ s ⊢ a ⊆ c₂ [PROOFSTEP] exact (ih a ha).resolve_left fun h => hn <| h.trans <| subset_sUnion_of_mem ha [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α hc₁ : ChainClosure r c₁ hc₂ : ChainClosure r c₂ h : c₁ ⊆ c₂ ⊢ c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂ [PROOFSTEP] induction hc₂ generalizing c₁ hc₁ [GOAL] case succ α : Type u_1 β : Type u_2 r : α → α → Prop c c₂ c₃ s t : Set α a b x y : α s✝ : Set α a✝ : ChainClosure r s✝ a_ih✝ : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ s✝ → s✝ = c₁ ∨ SuccChain r c₁ ⊆ s✝ c₁ : Set α hc₁ : ChainClosure r c₁ h : c₁ ⊆ SuccChain r s✝ ⊢ SuccChain r s✝ = c₁ ∨ SuccChain r c₁ ⊆ SuccChain r s✝ case union α : Type u_1 β : Type u_2 r : α → α → Prop c c₂ c₃ s t : Set α a b x y : α s✝ : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a a_ih✝ : ∀ (a : Set α), a ∈ s✝ → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a c₁ : Set α hc₁ : ChainClosure r c₁ h : c₁ ⊆ ⋃₀ s✝ ⊢ ⋃₀ s✝ = c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s✝ [PROOFSTEP] case succ c₂ _ ih => refine' ((chainClosure_succ_total_aux hc₁) fun c₁ => ih).imp h.antisymm' fun h₁ => _ obtain rfl | h₂ := ih hc₁ h₁ · exact Subset.rfl · exact h₂.trans subset_succChain [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₂✝ c₃ s t : Set α a b x y : α c₂ : Set α a✝ : ChainClosure r c₂ ih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂ c₁ : Set α hc₁ : ChainClosure r c₁ h : c₁ ⊆ SuccChain r c₂ ⊢ SuccChain r c₂ = c₁ ∨ SuccChain r c₁ ⊆ SuccChain r c₂ [PROOFSTEP] case succ c₂ _ ih => refine' ((chainClosure_succ_total_aux hc₁) fun c₁ => ih).imp h.antisymm' fun h₁ => _ obtain rfl | h₂ := ih hc₁ h₁ · exact Subset.rfl · exact h₂.trans subset_succChain [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₂✝ c₃ s t : Set α a b x y : α c₂ : Set α a✝ : ChainClosure r c₂ ih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂ c₁ : Set α hc₁ : ChainClosure r c₁ h : c₁ ⊆ SuccChain r c₂ ⊢ SuccChain r c₂ = c₁ ∨ SuccChain r c₁ ⊆ SuccChain r c₂ [PROOFSTEP] refine' ((chainClosure_succ_total_aux hc₁) fun c₁ => ih).imp h.antisymm' fun h₁ => _ [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₂✝ c₃ s t : Set α a b x y : α c₂ : Set α a✝ : ChainClosure r c₂ ih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂ c₁ : Set α hc₁ : ChainClosure r c₁ h : c₁ ⊆ SuccChain r c₂ h₁ : c₁ ⊆ c₂ ⊢ SuccChain r c₁ ⊆ SuccChain r c₂ [PROOFSTEP] obtain rfl | h₂ := ih hc₁ h₁ [GOAL] case inl α : Type u_1 β : Type u_2 r : α → α → Prop c c₂✝ c₃ s t : Set α a b x y : α c₂ : Set α a✝ : ChainClosure r c₂ ih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂ hc₁ : ChainClosure r c₂ h : c₂ ⊆ SuccChain r c₂ h₁ : c₂ ⊆ c₂ ⊢ SuccChain r c₂ ⊆ SuccChain r c₂ [PROOFSTEP] exact Subset.rfl [GOAL] case inr α : Type u_1 β : Type u_2 r : α → α → Prop c c₂✝ c₃ s t : Set α a b x y : α c₂ : Set α a✝ : ChainClosure r c₂ ih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂ c₁ : Set α hc₁ : ChainClosure r c₁ h : c₁ ⊆ SuccChain r c₂ h₁ : c₁ ⊆ c₂ h₂ : SuccChain r c₁ ⊆ c₂ ⊢ SuccChain r c₁ ⊆ SuccChain r c₂ [PROOFSTEP] exact h₂.trans subset_succChain [GOAL] case union α : Type u_1 β : Type u_2 r : α → α → Prop c c₂ c₃ s t : Set α a b x y : α s✝ : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a a_ih✝ : ∀ (a : Set α), a ∈ s✝ → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a c₁ : Set α hc₁ : ChainClosure r c₁ h : c₁ ⊆ ⋃₀ s✝ ⊢ ⋃₀ s✝ = c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s✝ [PROOFSTEP] case union s _ ih => apply Or.imp_left h.antisymm' apply by_contradiction simp only [sUnion_subset_iff, not_or, not_forall, exists_prop, and_imp, forall_exists_index] intro c₃ hc₃ h₁ h₂ obtain h | h := chainClosure_succ_total_aux hc₁ fun c₄ => ih _ hc₃ · exact h₁ (subset_succChain.trans h) obtain h' | h' := ih c₃ hc₃ hc₁ h · exact h₁ h'.subset · exact h₂ (h'.trans <| subset_sUnion_of_mem hc₃) [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₂ c₃ s✝ t : Set α a b x y : α s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a c₁ : Set α hc₁ : ChainClosure r c₁ h : c₁ ⊆ ⋃₀ s ⊢ ⋃₀ s = c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s [PROOFSTEP] case union s _ ih => apply Or.imp_left h.antisymm' apply by_contradiction simp only [sUnion_subset_iff, not_or, not_forall, exists_prop, and_imp, forall_exists_index] intro c₃ hc₃ h₁ h₂ obtain h | h := chainClosure_succ_total_aux hc₁ fun c₄ => ih _ hc₃ · exact h₁ (subset_succChain.trans h) obtain h' | h' := ih c₃ hc₃ hc₁ h · exact h₁ h'.subset · exact h₂ (h'.trans <| subset_sUnion_of_mem hc₃) [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₂ c₃ s✝ t : Set α a b x y : α s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a c₁ : Set α hc₁ : ChainClosure r c₁ h : c₁ ⊆ ⋃₀ s ⊢ ⋃₀ s = c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s [PROOFSTEP] apply Or.imp_left h.antisymm' [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₂ c₃ s✝ t : Set α a b x y : α s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a c₁ : Set α hc₁ : ChainClosure r c₁ h : c₁ ⊆ ⋃₀ s ⊢ ⋃₀ s ⊆ c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s [PROOFSTEP] apply by_contradiction [GOAL] case a α : Type u_1 β : Type u_2 r : α → α → Prop c c₂ c₃ s✝ t : Set α a b x y : α s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a c₁ : Set α hc₁ : ChainClosure r c₁ h : c₁ ⊆ ⋃₀ s ⊢ ¬(⋃₀ s ⊆ c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s) → False [PROOFSTEP] simp only [sUnion_subset_iff, not_or, not_forall, exists_prop, and_imp, forall_exists_index] [GOAL] case a α : Type u_1 β : Type u_2 r : α → α → Prop c c₂ c₃ s✝ t : Set α a b x y : α s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a c₁ : Set α hc₁ : ChainClosure r c₁ h : c₁ ⊆ ⋃₀ s ⊢ ∀ (x : Set α), x ∈ s → ¬x ⊆ c₁ → ¬SuccChain r c₁ ⊆ ⋃₀ s → False [PROOFSTEP] intro c₃ hc₃ h₁ h₂ [GOAL] case a α : Type u_1 β : Type u_2 r : α → α → Prop c c₂ c₃✝ s✝ t : Set α a b x y : α s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a c₁ : Set α hc₁ : ChainClosure r c₁ h : c₁ ⊆ ⋃₀ s c₃ : Set α hc₃ : c₃ ∈ s h₁ : ¬c₃ ⊆ c₁ h₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s ⊢ False [PROOFSTEP] obtain h | h := chainClosure_succ_total_aux hc₁ fun c₄ => ih _ hc₃ [GOAL] case a.inl α : Type u_1 β : Type u_2 r : α → α → Prop c c₂ c₃✝ s✝ t : Set α a b x y : α s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a c₁ : Set α hc₁ : ChainClosure r c₁ h✝ : c₁ ⊆ ⋃₀ s c₃ : Set α hc₃ : c₃ ∈ s h₁ : ¬c₃ ⊆ c₁ h₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s h : SuccChain r c₃ ⊆ c₁ ⊢ False [PROOFSTEP] exact h₁ (subset_succChain.trans h) [GOAL] case a.inr α : Type u_1 β : Type u_2 r : α → α → Prop c c₂ c₃✝ s✝ t : Set α a b x y : α s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a c₁ : Set α hc₁ : ChainClosure r c₁ h✝ : c₁ ⊆ ⋃₀ s c₃ : Set α hc₃ : c₃ ∈ s h₁ : ¬c₃ ⊆ c₁ h₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s h : c₁ ⊆ c₃ ⊢ False [PROOFSTEP] obtain h' | h' := ih c₃ hc₃ hc₁ h [GOAL] case a.inr.inl α : Type u_1 β : Type u_2 r : α → α → Prop c c₂ c₃✝ s✝ t : Set α a b x y : α s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a c₁ : Set α hc₁ : ChainClosure r c₁ h✝ : c₁ ⊆ ⋃₀ s c₃ : Set α hc₃ : c₃ ∈ s h₁ : ¬c₃ ⊆ c₁ h₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s h : c₁ ⊆ c₃ h' : c₃ = c₁ ⊢ False [PROOFSTEP] exact h₁ h'.subset [GOAL] case a.inr.inr α : Type u_1 β : Type u_2 r : α → α → Prop c c₂ c₃✝ s✝ t : Set α a b x y : α s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a c₁ : Set α hc₁ : ChainClosure r c₁ h✝ : c₁ ⊆ ⋃₀ s c₃ : Set α hc₃ : c₃ ∈ s h₁ : ¬c₃ ⊆ c₁ h₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s h : c₁ ⊆ c₃ h' : SuccChain r c₁ ⊆ c₃ ⊢ False [PROOFSTEP] exact h₂ (h'.trans <| subset_sUnion_of_mem hc₃) [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α hc₁ : ChainClosure r c₁ hc₂ : ChainClosure r c₂ hc : SuccChain r c₂ = c₂ ⊢ c₁ ⊆ c₂ [PROOFSTEP] induction hc₁ [GOAL] case succ α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α hc₂ : ChainClosure r c₂ hc : SuccChain r c₂ = c₂ s✝ : Set α a✝ : ChainClosure r s✝ a_ih✝ : s✝ ⊆ c₂ ⊢ SuccChain r s✝ ⊆ c₂ case union α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α hc₂ : ChainClosure r c₂ hc : SuccChain r c₂ = c₂ s✝ : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a a_ih✝ : ∀ (a : Set α), a ∈ s✝ → a ⊆ c₂ ⊢ ⋃₀ s✝ ⊆ c₂ [PROOFSTEP] case succ s₁ hc₁ h => exact (chainClosure_succ_total hc₁ hc₂ h).elim (fun h => h ▸ hc.subset) id [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α hc₂ : ChainClosure r c₂ hc : SuccChain r c₂ = c₂ s₁ : Set α hc₁ : ChainClosure r s₁ h : s₁ ⊆ c₂ ⊢ SuccChain r s₁ ⊆ c₂ [PROOFSTEP] case succ s₁ hc₁ h => exact (chainClosure_succ_total hc₁ hc₂ h).elim (fun h => h ▸ hc.subset) id [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α hc₂ : ChainClosure r c₂ hc : SuccChain r c₂ = c₂ s₁ : Set α hc₁ : ChainClosure r s₁ h : s₁ ⊆ c₂ ⊢ SuccChain r s₁ ⊆ c₂ [PROOFSTEP] exact (chainClosure_succ_total hc₁ hc₂ h).elim (fun h => h ▸ hc.subset) id [GOAL] case union α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α hc₂ : ChainClosure r c₂ hc : SuccChain r c₂ = c₂ s✝ : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a a_ih✝ : ∀ (a : Set α), a ∈ s✝ → a ⊆ c₂ ⊢ ⋃₀ s✝ ⊆ c₂ [PROOFSTEP] case union s _ ih => exact sUnion_subset ih [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s✝ t : Set α a b x y : α hc₂ : ChainClosure r c₂ hc : SuccChain r c₂ = c₂ s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → a ⊆ c₂ ⊢ ⋃₀ s ⊆ c₂ [PROOFSTEP] case union s _ ih => exact sUnion_subset ih [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s✝ t : Set α a b x y : α hc₂ : ChainClosure r c₂ hc : SuccChain r c₂ = c₂ s : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a ih : ∀ (a : Set α), a ∈ s → a ⊆ c₂ ⊢ ⋃₀ s ⊆ c₂ [PROOFSTEP] exact sUnion_subset ih [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α hc : ChainClosure r c ⊢ IsChain r c [PROOFSTEP] induction hc [GOAL] case succ α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α s✝ : Set α a✝ : ChainClosure r s✝ a_ih✝ : IsChain r s✝ ⊢ IsChain r (SuccChain r s✝) case union α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α s✝ : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a a_ih✝ : ∀ (a : Set α), a ∈ s✝ → IsChain r a ⊢ IsChain r (⋃₀ s✝) [PROOFSTEP] case succ c _ h => exact h.succ [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c✝ c₁ c₂ c₃ s t : Set α a b x y : α c : Set α a✝ : ChainClosure r c h : IsChain r c ⊢ IsChain r (SuccChain r c) [PROOFSTEP] case succ c _ h => exact h.succ [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c✝ c₁ c₂ c₃ s t : Set α a b x y : α c : Set α a✝ : ChainClosure r c h : IsChain r c ⊢ IsChain r (SuccChain r c) [PROOFSTEP] exact h.succ [GOAL] case union α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s t : Set α a b x y : α s✝ : Set (Set α) a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a a_ih✝ : ∀ (a : Set α), a ∈ s✝ → IsChain r a ⊢ IsChain r (⋃₀ s✝) [PROOFSTEP] case union s hs h => exact fun c₁ ⟨t₁, ht₁, (hc₁ : c₁ ∈ t₁)⟩ c₂ ⟨t₂, ht₂, (hc₂ : c₂ ∈ t₂)⟩ hneq => ((hs _ ht₁).total <| hs _ ht₂).elim (fun ht => h t₂ ht₂ (ht hc₁) hc₂ hneq) fun ht => h t₁ ht₁ hc₁ (ht hc₂) hneq [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s✝ t : Set α a b x y : α s : Set (Set α) hs : ∀ (a : Set α), a ∈ s → ChainClosure r a h : ∀ (a : Set α), a ∈ s → IsChain r a ⊢ IsChain r (⋃₀ s) [PROOFSTEP] case union s hs h => exact fun c₁ ⟨t₁, ht₁, (hc₁ : c₁ ∈ t₁)⟩ c₂ ⟨t₂, ht₂, (hc₂ : c₂ ∈ t₂)⟩ hneq => ((hs _ ht₁).total <| hs _ ht₂).elim (fun ht => h t₂ ht₂ (ht hc₁) hc₂ hneq) fun ht => h t₁ ht₁ hc₁ (ht hc₂) hneq [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c c₁ c₂ c₃ s✝ t : Set α a b x y : α s : Set (Set α) hs : ∀ (a : Set α), a ∈ s → ChainClosure r a h : ∀ (a : Set α), a ∈ s → IsChain r a ⊢ IsChain r (⋃₀ s) [PROOFSTEP] exact fun c₁ ⟨t₁, ht₁, (hc₁ : c₁ ∈ t₁)⟩ c₂ ⟨t₂, ht₂, (hc₂ : c₂ ∈ t₂)⟩ hneq => ((hs _ ht₁).total <| hs _ ht₂).elim (fun ht => h t₂ ht₂ (ht hc₁) hc₂ hneq) fun ht => h t₁ ht₁ hc₁ (ht hc₂) hneq [GOAL] α : Type u_1 β : Type u_2 inst✝ : LE α s✝ t✝ : Flag α a : α s t : Flag α h : s.carrier = t.carrier ⊢ s = t [PROOFSTEP] cases s [GOAL] case mk α : Type u_1 β : Type u_2 inst✝ : LE α s t✝ : Flag α a : α t : Flag α carrier✝ : Set α Chain'✝ : IsChain (fun x x_1 => x ≤ x_1) carrier✝ max_chain'✝ : ∀ ⦃s : Set α⦄, IsChain (fun x x_1 => x ≤ x_1) s → carrier✝ ⊆ s → carrier✝ = s h : { carrier := carrier✝, Chain' := Chain'✝, max_chain' := max_chain'✝ }.carrier = t.carrier ⊢ { carrier := carrier✝, Chain' := Chain'✝, max_chain' := max_chain'✝ } = t [PROOFSTEP] cases t [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝ : LE α s t : Flag α a : α carrier✝¹ : Set α Chain'✝¹ : IsChain (fun x x_1 => x ≤ x_1) carrier✝¹ max_chain'✝¹ : ∀ ⦃s : Set α⦄, IsChain (fun x x_1 => x ≤ x_1) s → carrier✝¹ ⊆ s → carrier✝¹ = s carrier✝ : Set α Chain'✝ : IsChain (fun x x_1 => x ≤ x_1) carrier✝ max_chain'✝ : ∀ ⦃s : Set α⦄, IsChain (fun x x_1 => x ≤ x_1) s → carrier✝ ⊆ s → carrier✝ = s h : { carrier := carrier✝¹, Chain' := Chain'✝¹, max_chain' := max_chain'✝¹ }.carrier = { carrier := carrier✝, Chain' := Chain'✝, max_chain' := max_chain'✝ }.carrier ⊢ { carrier := carrier✝¹, Chain' := Chain'✝¹, max_chain' := max_chain'✝¹ } = { carrier := carrier✝, Chain' := Chain'✝, max_chain' := max_chain'✝ } [PROOFSTEP] congr
{"mathlib_filename": "Mathlib.Order.Chain", "llama_tokens": 13383}
[GOAL] a₀ a₁ a₂ : Type u i : ℕ ⊢ lift #(Sequence₂ a₀ a₁ a₂ i) = #(Sequence₂ (ULift a₀) (ULift a₁) (ULift a₂) i) [PROOFSTEP] rcases i with (_ | _ | _ | i) [GOAL] case zero a₀ a₁ a₂ : Type u ⊢ lift #(Sequence₂ a₀ a₁ a₂ Nat.zero) = #(Sequence₂ (ULift a₀) (ULift a₁) (ULift a₂) Nat.zero) [PROOFSTEP] simp only [Sequence₂, mk_uLift, mk_fintype, Fintype.card_of_isEmpty, Nat.cast_zero, lift_zero] [GOAL] case succ.zero a₀ a₁ a₂ : Type u ⊢ lift #(Sequence₂ a₀ a₁ a₂ (Nat.succ Nat.zero)) = #(Sequence₂ (ULift a₀) (ULift a₁) (ULift a₂) (Nat.succ Nat.zero)) [PROOFSTEP] simp only [Sequence₂, mk_uLift, mk_fintype, Fintype.card_of_isEmpty, Nat.cast_zero, lift_zero] [GOAL] case succ.succ.zero a₀ a₁ a₂ : Type u ⊢ lift #(Sequence₂ a₀ a₁ a₂ (Nat.succ (Nat.succ Nat.zero))) = #(Sequence₂ (ULift a₀) (ULift a₁) (ULift a₂) (Nat.succ (Nat.succ Nat.zero))) [PROOFSTEP] simp only [Sequence₂, mk_uLift, mk_fintype, Fintype.card_of_isEmpty, Nat.cast_zero, lift_zero] [GOAL] case succ.succ.succ a₀ a₁ a₂ : Type u i : ℕ ⊢ lift #(Sequence₂ a₀ a₁ a₂ (Nat.succ (Nat.succ (Nat.succ i)))) = #(Sequence₂ (ULift a₀) (ULift a₁) (ULift a₂) (Nat.succ (Nat.succ (Nat.succ i)))) [PROOFSTEP] simp only [Sequence₂, mk_uLift, mk_fintype, Fintype.card_of_isEmpty, Nat.cast_zero, lift_zero] [GOAL] a₀ a₁ a₂ : Type u ⊢ (sum fun i => #(Sequence₂ a₀ a₁ a₂ i)) = #a₀ + #a₁ + #a₂ [PROOFSTEP] rw [sum_nat_eq_add_sum_succ, sum_nat_eq_add_sum_succ, sum_nat_eq_add_sum_succ] [GOAL] a₀ a₁ a₂ : Type u ⊢ #(Sequence₂ a₀ a₁ a₂ 0) + (#(Sequence₂ a₀ a₁ a₂ (0 + 1)) + (#(Sequence₂ a₀ a₁ a₂ (0 + 1 + 1)) + sum fun i => #(Sequence₂ a₀ a₁ a₂ (i + 1 + 1 + 1)))) = #a₀ + #a₁ + #a₂ [PROOFSTEP] simp [add_assoc, Sequence₂] [GOAL] L : Language L' : Language ⊢ card L = (sum fun l => lift #(Functions L l)) + sum fun l => lift #(Relations L l) [PROOFSTEP] simp [card, Symbols] [GOAL] L : Language L' : Language ⊢ card Language.empty = 0 [PROOFSTEP] simp [card_eq_card_functions_add_card_relations] [GOAL] L : Language L' : Language ⊢ IsEmpty (Symbols Language.empty) [PROOFSTEP] simp only [Language.Symbols, isEmpty_sum, isEmpty_sigma] [GOAL] L : Language L' : Language ⊢ (∀ (a : ℕ), IsEmpty (Functions Language.empty a)) ∧ ∀ (a : ℕ), IsEmpty (Relations Language.empty a) [PROOFSTEP] exact ⟨fun _ => inferInstance, fun _ => inferInstance⟩ [GOAL] L : Language L' : Language i : ℕ ⊢ #(Functions (Language.sum L L') i) = lift #(Functions L i) + lift #(Functions L' i) [PROOFSTEP] simp [Language.sum] [GOAL] L : Language L' : Language i : ℕ ⊢ #(Relations (Language.sum L L') i) = lift #(Relations L i) + lift #(Relations L' i) [PROOFSTEP] simp [Language.sum] [GOAL] L : Language L' : Language ⊢ card (Language.sum L L') = lift (card L) + lift (card L') [PROOFSTEP] simp only [card_eq_card_functions_add_card_relations, card_functions_sum, card_relations_sum, sum_add_distrib', lift_add, lift_sum, lift_lift] [GOAL] L : Language L' : Language ⊢ ((sum fun i => lift #(Functions L i)) + sum fun i => lift #(Functions L' i)) + ((sum fun i => lift #(Relations L i)) + sum fun i => lift #(Relations L' i)) = ((sum fun i => lift #(Functions L i)) + sum fun i => lift #(Relations L i)) + ((sum fun i => lift #(Functions L' i)) + sum fun i => lift #(Relations L' i)) [PROOFSTEP] simp only [add_assoc, add_comm (Cardinal.sum fun i => (#(L'.Functions i)).lift)] [GOAL] L : Language L' : Language c f₁ f₂ : Type u r₁ r₂ : Type v ⊢ card (Language.mk₂ c f₁ f₂ r₁ r₂) = lift #c + lift #f₁ + lift #f₂ + lift #r₁ + lift #r₂ [PROOFSTEP] simp [card_eq_card_functions_add_card_relations, add_assoc] [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q f g : M →[L] N h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q g : M →[L] N toFun✝ : M → N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), toFun✝ (funMap f x) = funMap f (toFun✝ ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r x → RelMap r (toFun✝ ∘ x) h : (mk toFun✝).toFun = g.toFun ⊢ mk toFun✝ = g [PROOFSTEP] cases g [GOAL] case mk.mk L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q toFun✝¹ : M → N map_fun'✝¹ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), toFun✝¹ (funMap f x) = funMap f (toFun✝¹ ∘ x) map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r x → RelMap r (toFun✝¹ ∘ x) toFun✝ : M → N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), toFun✝ (funMap f x) = funMap f (toFun✝ ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r x → RelMap r (toFun✝ ∘ x) h : (mk toFun✝¹).toFun = (mk toFun✝).toFun ⊢ mk toFun✝¹ = mk toFun✝ [PROOFSTEP] cases h [GOAL] case mk.mk.refl L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q toFun✝ : M → N map_fun'✝¹ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), toFun✝ (funMap f x) = funMap f (toFun✝ ∘ x) map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r x → RelMap r (toFun✝ ∘ x) map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), toFun✝ (funMap f x) = funMap f (toFun✝ ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r x → RelMap r (toFun✝ ∘ x) ⊢ mk toFun✝ = mk toFun✝ [PROOFSTEP] rfl [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N →[L] P hmn : M →[L] N n✝ : ℕ x✝¹ : Functions L n✝ x✝ : Fin n✝ → M ⊢ (↑hnp ∘ ↑hmn) (funMap x✝¹ x✝) = funMap x✝¹ ((↑hnp ∘ ↑hmn) ∘ x✝) [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N →[L] P hmn : M →[L] N n✝ : ℕ x✝¹ : Functions L n✝ x✝ : Fin n✝ → M ⊢ funMap x✝¹ (↑hnp ∘ ↑hmn ∘ x✝) = funMap x✝¹ ((↑hnp ∘ ↑hmn) ∘ x✝) [PROOFSTEP] rfl -- Porting note: should be done by autoparam? [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q f g : M ↪[L] N h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q g : M ↪[L] N toEmbedding✝ : M ↪ N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x h : (fun f => f.toFun) (mk toEmbedding✝) = (fun f => f.toFun) g ⊢ mk toEmbedding✝ = g [PROOFSTEP] cases g [GOAL] case mk.mk L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q toEmbedding✝¹ : M ↪ N map_fun'✝¹ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝¹ (funMap f x) = funMap f (toEmbedding✝¹.toFun ∘ x) map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝¹.toFun ∘ x) ↔ RelMap r x toEmbedding✝ : M ↪ N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x h : (fun f => f.toFun) (mk toEmbedding✝¹) = (fun f => f.toFun) (mk toEmbedding✝) ⊢ mk toEmbedding✝¹ = mk toEmbedding✝ [PROOFSTEP] congr [GOAL] case mk.mk.e_toEmbedding L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q toEmbedding✝¹ : M ↪ N map_fun'✝¹ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝¹ (funMap f x) = funMap f (toEmbedding✝¹.toFun ∘ x) map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝¹.toFun ∘ x) ↔ RelMap r x toEmbedding✝ : M ↪ N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x h : (fun f => f.toFun) (mk toEmbedding✝¹) = (fun f => f.toFun) (mk toEmbedding✝) ⊢ toEmbedding✝¹ = toEmbedding✝ [PROOFSTEP] ext x [GOAL] case mk.mk.e_toEmbedding.h L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q toEmbedding✝¹ : M ↪ N map_fun'✝¹ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝¹ (funMap f x) = funMap f (toEmbedding✝¹.toFun ∘ x) map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝¹.toFun ∘ x) ↔ RelMap r x toEmbedding✝ : M ↪ N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x h : (fun f => f.toFun) (mk toEmbedding✝¹) = (fun f => f.toFun) (mk toEmbedding✝) x : M ⊢ ↑toEmbedding✝¹ x = ↑toEmbedding✝ x [PROOFSTEP] exact Function.funext_iff.1 h x [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q f g : M ↪[L] N h : ↑f = ↑g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q g : M ↪[L] N toEmbedding✝ : M ↪ N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x h : ↑(mk toEmbedding✝) = ↑g ⊢ mk toEmbedding✝ = g [PROOFSTEP] cases g [GOAL] case mk.mk L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q toEmbedding✝¹ : M ↪ N map_fun'✝¹ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝¹ (funMap f x) = funMap f (toEmbedding✝¹.toFun ∘ x) map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝¹.toFun ∘ x) ↔ RelMap r x toEmbedding✝ : M ↪ N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x h : ↑(mk toEmbedding✝¹) = ↑(mk toEmbedding✝) ⊢ mk toEmbedding✝¹ = mk toEmbedding✝ [PROOFSTEP] congr [GOAL] case mk.mk.e_toEmbedding L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q toEmbedding✝¹ : M ↪ N map_fun'✝¹ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝¹ (funMap f x) = funMap f (toEmbedding✝¹.toFun ∘ x) map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝¹.toFun ∘ x) ↔ RelMap r x toEmbedding✝ : M ↪ N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x h : ↑(mk toEmbedding✝¹) = ↑(mk toEmbedding✝) ⊢ toEmbedding✝¹ = toEmbedding✝ [PROOFSTEP] ext x [GOAL] case mk.mk.e_toEmbedding.h L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q toEmbedding✝¹ : M ↪ N map_fun'✝¹ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝¹ (funMap f x) = funMap f (toEmbedding✝¹.toFun ∘ x) map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝¹.toFun ∘ x) ↔ RelMap r x toEmbedding✝ : M ↪ N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x h : ↑(mk toEmbedding✝¹) = ↑(mk toEmbedding✝) x : M ⊢ ↑toEmbedding✝¹ x = ↑toEmbedding✝ x [PROOFSTEP] exact Function.funext_iff.1 h x [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝⁴ : Structure L M inst✝³ : Structure L N P : Type u_1 inst✝² : Structure L P Q : Type u_2 inst✝¹ : Structure L Q inst✝ : IsAlgebraic L f : M →[L] N hf : Function.Injective ↑f ⊢ toHom (ofInjective hf) = f [PROOFSTEP] ext [GOAL] case h L : Language L' : Language M : Type w N : Type w' inst✝⁴ : Structure L M inst✝³ : Structure L N P : Type u_1 inst✝² : Structure L P Q : Type u_2 inst✝¹ : Structure L Q inst✝ : IsAlgebraic L f : M →[L] N hf : Function.Injective ↑f x✝ : M ⊢ ↑(toHom (ofInjective hf)) x✝ = ↑f x✝ [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N ↪[L] P hmn : M ↪[L] N ⊢ ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Function.Embedding.toFun { toFun := ↑hnp ∘ ↑hmn, inj' := (_ : Function.Injective (↑hnp ∘ ↑hmn)) } (funMap f x) = funMap f ({ toFun := ↑hnp ∘ ↑hmn, inj' := (_ : Function.Injective (↑hnp ∘ ↑hmn)) }.toFun ∘ x) [PROOFSTEP] intros [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N ↪[L] P hmn : M ↪[L] N n✝ : ℕ f✝ : Functions L n✝ x✝ : Fin n✝ → M ⊢ Function.Embedding.toFun { toFun := ↑hnp ∘ ↑hmn, inj' := (_ : Function.Injective (↑hnp ∘ ↑hmn)) } (funMap f✝ x✝) = funMap f✝ ({ toFun := ↑hnp ∘ ↑hmn, inj' := (_ : Function.Injective (↑hnp ∘ ↑hmn)) }.toFun ∘ x✝) [PROOFSTEP] simp only [Function.comp_apply, map_fun] [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N ↪[L] P hmn : M ↪[L] N n✝ : ℕ f✝ : Functions L n✝ x✝ : Fin n✝ → M ⊢ funMap f✝ (↑hnp ∘ ↑hmn ∘ x✝) = funMap f✝ ((↑hnp ∘ ↑hmn) ∘ x✝) [PROOFSTEP] trivial -- Porting note: should be done by autoparam? [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N ↪[L] P hmn : M ↪[L] N ⊢ ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r ({ toFun := ↑hnp ∘ ↑hmn, inj' := (_ : Function.Injective (↑hnp ∘ ↑hmn)) }.toFun ∘ x) ↔ RelMap r x [PROOFSTEP] intros [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N ↪[L] P hmn : M ↪[L] N n✝ : ℕ r✝ : Relations L n✝ x✝ : Fin n✝ → M ⊢ RelMap r✝ ({ toFun := ↑hnp ∘ ↑hmn, inj' := (_ : Function.Injective (↑hnp ∘ ↑hmn)) }.toFun ∘ x✝) ↔ RelMap r✝ x✝ [PROOFSTEP] rw [Function.comp.assoc, map_rel, map_rel] [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N ↪[L] P hmn : M ↪[L] N ⊢ toHom (comp hnp hmn) = Hom.comp (toHom hnp) (toHom hmn) [PROOFSTEP] ext [GOAL] case h L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N ↪[L] P hmn : M ↪[L] N x✝ : M ⊢ ↑(toHom (comp hnp hmn)) x✝ = ↑(Hom.comp (toHom hnp) (toHom hmn)) x✝ [PROOFSTEP] simp only [coe_toHom, comp_apply, Hom.comp_apply] [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q f g : M ≃[L] N h₁ : (fun f => f.toFun) f = (fun f => f.toFun) g h₂ : (fun f => f.invFun) f = (fun f => f.invFun) g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q g : M ≃[L] N toEquiv✝ : M ≃ N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝ (funMap f x) = funMap f (toEquiv✝.toFun ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝.toFun ∘ x) ↔ RelMap r x h₁ : (fun f => f.toFun) (mk toEquiv✝) = (fun f => f.toFun) g h₂ : (fun f => f.invFun) (mk toEquiv✝) = (fun f => f.invFun) g ⊢ mk toEquiv✝ = g [PROOFSTEP] cases g [GOAL] case mk.mk L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q toEquiv✝¹ : M ≃ N map_fun'✝¹ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝¹ (funMap f x) = funMap f (toEquiv✝¹.toFun ∘ x) map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝¹.toFun ∘ x) ↔ RelMap r x toEquiv✝ : M ≃ N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝ (funMap f x) = funMap f (toEquiv✝.toFun ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝.toFun ∘ x) ↔ RelMap r x h₁ : (fun f => f.toFun) (mk toEquiv✝¹) = (fun f => f.toFun) (mk toEquiv✝) h₂ : (fun f => f.invFun) (mk toEquiv✝¹) = (fun f => f.invFun) (mk toEquiv✝) ⊢ mk toEquiv✝¹ = mk toEquiv✝ [PROOFSTEP] simp only [mk.injEq] [GOAL] case mk.mk L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q toEquiv✝¹ : M ≃ N map_fun'✝¹ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝¹ (funMap f x) = funMap f (toEquiv✝¹.toFun ∘ x) map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝¹.toFun ∘ x) ↔ RelMap r x toEquiv✝ : M ≃ N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝ (funMap f x) = funMap f (toEquiv✝.toFun ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝.toFun ∘ x) ↔ RelMap r x h₁ : (fun f => f.toFun) (mk toEquiv✝¹) = (fun f => f.toFun) (mk toEquiv✝) h₂ : (fun f => f.invFun) (mk toEquiv✝¹) = (fun f => f.invFun) (mk toEquiv✝) ⊢ toEquiv✝¹ = toEquiv✝ [PROOFSTEP] ext x [GOAL] case mk.mk.H L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q toEquiv✝¹ : M ≃ N map_fun'✝¹ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝¹ (funMap f x) = funMap f (toEquiv✝¹.toFun ∘ x) map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝¹.toFun ∘ x) ↔ RelMap r x toEquiv✝ : M ≃ N map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝ (funMap f x) = funMap f (toEquiv✝.toFun ∘ x) map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝.toFun ∘ x) ↔ RelMap r x h₁ : (fun f => f.toFun) (mk toEquiv✝¹) = (fun f => f.toFun) (mk toEquiv✝) h₂ : (fun f => f.invFun) (mk toEquiv✝¹) = (fun f => f.invFun) (mk toEquiv✝) x : M ⊢ ↑toEquiv✝¹ x = ↑toEquiv✝ x [PROOFSTEP] exact Function.funext_iff.1 h₁ x [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q f : M ≃[L] N src✝ : N ≃ M := f.symm n : ℕ f' : Functions L n x : Fin n → N ⊢ Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (funMap f' x) = funMap f' ({ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.toFun ∘ x) [PROOFSTEP] simp only [Equiv.toFun_as_coe] [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q f : M ≃[L] N src✝ : N ≃ M := f.symm n : ℕ f' : Functions L n x : Fin n → N ⊢ ↑f.symm (funMap f' x) = funMap f' (↑f.symm ∘ x) [PROOFSTEP] rw [Equiv.symm_apply_eq] [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q f : M ≃[L] N src✝ : N ≃ M := f.symm n : ℕ f' : Functions L n x : Fin n → N ⊢ funMap f' x = ↑f.toEquiv (funMap f' (↑f.symm ∘ x)) [PROOFSTEP] refine' Eq.trans _ (f.map_fun' f' (f.toEquiv.symm ∘ x)).symm [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q f : M ≃[L] N src✝ : N ≃ M := f.symm n : ℕ f' : Functions L n x : Fin n → N ⊢ funMap f' x = funMap f' (f.toFun ∘ ↑f.symm ∘ x) [PROOFSTEP] rw [← Function.comp.assoc, Equiv.toFun_as_coe, Equiv.self_comp_symm, Function.comp.left_id] [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q f : M ≃[L] N src✝ : N ≃ M := f.symm n : ℕ r : Relations L n x : Fin n → N ⊢ RelMap r ({ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.toFun ∘ x) ↔ RelMap r x [PROOFSTEP] simp only [Equiv.toFun_as_coe] [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q f : M ≃[L] N src✝ : N ≃ M := f.symm n : ℕ r : Relations L n x : Fin n → N ⊢ RelMap r (↑f.symm ∘ x) ↔ RelMap r x [PROOFSTEP] refine' (f.map_rel' r (f.toEquiv.symm ∘ x)).symm.trans _ [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q f : M ≃[L] N src✝ : N ≃ M := f.symm n : ℕ r : Relations L n x : Fin n → N ⊢ RelMap r (f.toFun ∘ ↑f.symm ∘ x) ↔ RelMap r x [PROOFSTEP] rw [← Function.comp.assoc, Equiv.toFun_as_coe, Equiv.self_comp_symm, Function.comp.left_id] [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q x : M ⊢ ↑(refl L M) x = x [PROOFSTEP] simp [refl] [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q x : M ⊢ ↑(mk (_root_.Equiv.refl M)) x = x [PROOFSTEP] rfl [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N ≃[L] P hmn : M ≃[L] N src✝ : M ≃ P := hmn.trans hnp.toEquiv ⊢ ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun { toFun := ↑hnp ∘ ↑hmn, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (funMap f x) = funMap f ({ toFun := ↑hnp ∘ ↑hmn, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.toFun ∘ x) [PROOFSTEP] intros [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N ≃[L] P hmn : M ≃[L] N src✝ : M ≃ P := hmn.trans hnp.toEquiv n✝ : ℕ f✝ : Functions L n✝ x✝ : Fin n✝ → M ⊢ Equiv.toFun { toFun := ↑hnp ∘ ↑hmn, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (funMap f✝ x✝) = funMap f✝ ({ toFun := ↑hnp ∘ ↑hmn, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.toFun ∘ x✝) [PROOFSTEP] simp only [Function.comp_apply, map_fun] [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N ≃[L] P hmn : M ≃[L] N src✝ : M ≃ P := hmn.trans hnp.toEquiv n✝ : ℕ f✝ : Functions L n✝ x✝ : Fin n✝ → M ⊢ funMap f✝ (↑hnp ∘ ↑hmn ∘ x✝) = funMap f✝ ((↑hnp ∘ ↑hmn) ∘ x✝) [PROOFSTEP] trivial -- Porting note: should be done by autoparam? [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N ≃[L] P hmn : M ≃[L] N src✝ : M ≃ P := hmn.trans hnp.toEquiv ⊢ ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r ({ toFun := ↑hnp ∘ ↑hmn, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.toFun ∘ x) ↔ RelMap r x [PROOFSTEP] intros [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q hnp : N ≃[L] P hmn : M ≃[L] N src✝ : M ≃ P := hmn.trans hnp.toEquiv n✝ : ℕ r✝ : Relations L n✝ x✝ : Fin n✝ → M ⊢ RelMap r✝ ({ toFun := ↑hnp ∘ ↑hmn, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.toFun ∘ x✝) ↔ RelMap r✝ x✝ [PROOFSTEP] rw [Function.comp.assoc, map_rel, map_rel] [GOAL] L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q a : Structure Language.empty M ⊢ a = default [PROOFSTEP] ext _ f [GOAL] case funMap.h.h.h L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q a : Structure Language.empty M x✝¹ : ℕ f : Functions Language.empty x✝¹ x✝ : Fin x✝¹ → M ⊢ funMap f x✝ = funMap f x✝ [PROOFSTEP] exact Empty.elim f [GOAL] case RelMap.h.h.h.a L : Language L' : Language M : Type w N : Type w' inst✝³ : Structure L M inst✝² : Structure L N P : Type u_1 inst✝¹ : Structure L P Q : Type u_2 inst✝ : Structure L Q a : Structure Language.empty M x✝¹ : ℕ f : Relations Language.empty x✝¹ x✝ : Fin x✝¹ → M ⊢ RelMap f x✝ ↔ RelMap f x✝ [PROOFSTEP] exact Empty.elim f [GOAL] L : Language M : Type u_1 N : Type u_2 inst✝ : Structure L M e : M ≃ N ⊢ M ≃[L] N [PROOFSTEP] letI : L.Structure N := inducedStructure e [GOAL] L : Language M : Type u_1 N : Type u_2 inst✝ : Structure L M e : M ≃ N this : Structure L N := inducedStructure e ⊢ M ≃[L] N [PROOFSTEP] exact { e with map_fun' := @fun n f x => by simp [← Function.comp.assoc e.symm e x] map_rel' := @fun n r x => by simp [← Function.comp.assoc e.symm e x] } [GOAL] L : Language M : Type u_1 N : Type u_2 inst✝ : Structure L M e : M ≃ N this : Structure L N := inducedStructure e n : ℕ f : Functions L n x : Fin n → M ⊢ toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } (funMap f x) = funMap f ({ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) }.toFun ∘ x) [PROOFSTEP] simp [← Function.comp.assoc e.symm e x] [GOAL] L : Language M : Type u_1 N : Type u_2 inst✝ : Structure L M e : M ≃ N this : Structure L N := inducedStructure e n : ℕ r : Relations L n x : Fin n → M ⊢ RelMap r ({ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) }.toFun ∘ x) ↔ RelMap r x [PROOFSTEP] simp [← Function.comp.assoc e.symm e x] [GOAL] L : Language M : Type u_1 N : Type u_2 inst✝ : Structure L M e : M ≃ N ⊢ (a : N) → (fun x => M) a [PROOFSTEP] letI : L.Structure N := inducedStructure e [GOAL] L : Language M : Type u_1 N : Type u_2 inst✝ : Structure L M e : M ≃ N this : Structure L N := inducedStructure e ⊢ (a : N) → (fun x => M) a [PROOFSTEP] exact FunLike.coe (@inducedStructureEquiv L M N _ e).symm
{"mathlib_filename": "Mathlib.ModelTheory.Basic", "llama_tokens": 14990}
[GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G ⊢ Linear k (FdRep k G) [PROOFSTEP] infer_instance [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G V : FdRep k G ⊢ AddCommGroup (CoeSort.coe V) [PROOFSTEP] change AddCommGroup ((forget₂ (FdRep k G) (FGModuleCat k)).obj V).obj [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G V : FdRep k G ⊢ AddCommGroup ↑((forget₂ (FdRep k G) (FGModuleCat k)).obj V).obj [PROOFSTEP] infer_instance [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G V : FdRep k G ⊢ Module k (CoeSort.coe V) [PROOFSTEP] change Module k ((forget₂ (FdRep k G) (FGModuleCat k)).obj V).obj [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G V : FdRep k G ⊢ Module k ↑((forget₂ (FdRep k G) (FGModuleCat k)).obj V).obj [PROOFSTEP] infer_instance [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G V : FdRep k G ⊢ FiniteDimensional k (CoeSort.coe V) [PROOFSTEP] change FiniteDimensional k ((forget₂ (FdRep k G) (FGModuleCat k)).obj V) [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G V : FdRep k G ⊢ FiniteDimensional k ↑((forget₂ (FdRep k G) (FGModuleCat k)).obj V) [PROOFSTEP] infer_instance [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G V W : FdRep k G i : V ≅ W g : G ⊢ ↑(ρ W) g = ↑(LinearEquiv.conj (isoToLinearEquiv i)) (↑(ρ V) g) [PROOFSTEP] erw [FdRep.isoToLinearEquiv, ← FGModuleCat.Iso.conj_eq_conj, Iso.conj_apply] [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G V W : FdRep k G i : V ≅ W g : G ⊢ ↑(ρ W) g = ((Action.forget (FGModuleCat k) (MonCat.of G)).mapIso i).inv ≫ ↑(ρ V) g ≫ ((Action.forget (FGModuleCat k) (MonCat.of G)).mapIso i).hom [PROOFSTEP] rw [Iso.eq_inv_comp ((Action.forget (FGModuleCat k) (MonCat.of G)).mapIso i)] [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G V W : FdRep k G i : V ≅ W g : G ⊢ ((Action.forget (FGModuleCat k) (MonCat.of G)).mapIso i).hom ≫ ↑(ρ W) g = ↑(ρ V) g ≫ ((Action.forget (FGModuleCat k) (MonCat.of G)).mapIso i).hom [PROOFSTEP] exact (i.hom.comm g).symm [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G V : FdRep k G ⊢ Rep.ρ ((forget₂ (FdRep k G) (Rep k G)).obj V) = ρ V [PROOFSTEP] ext g v [GOAL] case h.h k G : Type u inst✝¹ : Field k inst✝ : Monoid G V : FdRep k G g : G v : CoeSort.coe ((forget₂ (FdRep k G) (Rep k G)).obj V) ⊢ ↑(↑(Rep.ρ ((forget₂ (FdRep k G) (Rep k G)).obj V)) g) v = ↑(↑(ρ V) g) v [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G ⊢ MonoidalCategory (FdRep k G) [PROOFSTEP] infer_instance [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G ⊢ MonoidalPreadditive (FdRep k G) [PROOFSTEP] infer_instance [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G ⊢ MonoidalLinear k (FdRep k G) [PROOFSTEP] infer_instance [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G ⊢ HasKernels (FdRep k G) [PROOFSTEP] infer_instance -- Verify that Schur's lemma applies out of the box. [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G X Y : FdRep k G x✝ : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y ⊢ (fun f => Action.Hom.mk ((forget₂ (FGModuleCat k) (ModuleCat k)).map f.hom)) (AddHom.toFun { toAddHom := { toFun := fun f => Action.Hom.mk f.hom, map_add' := (_ : ∀ (x x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), (fun f => Action.Hom.mk f.hom) (x + x_1) = (fun f => Action.Hom.mk f.hom) (x + x_1)) }, map_smul' := (_ : ∀ (x : k) (x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), AddHom.toFun { toFun := fun f => Action.Hom.mk f.hom, map_add' := (_ : ∀ (x x_2 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), (fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) } (x • x_1) = AddHom.toFun { toFun := fun f => Action.Hom.mk f.hom, map_add' := (_ : ∀ (x x_2 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), (fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) } (x • x_1)) }.toAddHom x✝) = x✝ [PROOFSTEP] ext [GOAL] case h.h k G : Type u inst✝¹ : Field k inst✝ : Monoid G X Y : FdRep k G x✝¹ : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y x✝ : ↑((forget₂ (FdRep k G) (Rep k G)).obj X).V ⊢ ↑((fun f => Action.Hom.mk ((forget₂ (FGModuleCat k) (ModuleCat k)).map f.hom)) (AddHom.toFun { toAddHom := { toFun := fun f => Action.Hom.mk f.hom, map_add' := (_ : ∀ (x x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), (fun f => Action.Hom.mk f.hom) (x + x_1) = (fun f => Action.Hom.mk f.hom) (x + x_1)) }, map_smul' := (_ : ∀ (x : k) (x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), AddHom.toFun { toFun := fun f => Action.Hom.mk f.hom, map_add' := (_ : ∀ (x x_2 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), (fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) } (x • x_1) = AddHom.toFun { toFun := fun f => Action.Hom.mk f.hom, map_add' := (_ : ∀ (x x_2 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), (fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) } (x • x_1)) }.toAddHom x✝¹)).hom x✝ = ↑x✝¹.hom x✝ [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Monoid G X Y : FdRep k G x✝ : X ⟶ Y ⊢ AddHom.toFun { toAddHom := { toFun := fun f => Action.Hom.mk f.hom, map_add' := (_ : ∀ (x x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), (fun f => Action.Hom.mk f.hom) (x + x_1) = (fun f => Action.Hom.mk f.hom) (x + x_1)) }, map_smul' := (_ : ∀ (x : k) (x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), AddHom.toFun { toFun := fun f => Action.Hom.mk f.hom, map_add' := (_ : ∀ (x x_2 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), (fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) } (x • x_1) = AddHom.toFun { toFun := fun f => Action.Hom.mk f.hom, map_add' := (_ : ∀ (x x_2 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), (fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) } (x • x_1)) }.toAddHom ((fun f => Action.Hom.mk ((forget₂ (FGModuleCat k) (ModuleCat k)).map f.hom)) x✝) = x✝ [PROOFSTEP] ext [GOAL] case h.w k G : Type u inst✝¹ : Field k inst✝ : Monoid G X Y : FdRep k G x✝¹ : X ⟶ Y x✝ : (forget (FGModuleCat k)).obj X.V ⊢ ↑(AddHom.toFun { toAddHom := { toFun := fun f => Action.Hom.mk f.hom, map_add' := (_ : ∀ (x x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), (fun f => Action.Hom.mk f.hom) (x + x_1) = (fun f => Action.Hom.mk f.hom) (x + x_1)) }, map_smul' := (_ : ∀ (x : k) (x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), AddHom.toFun { toFun := fun f => Action.Hom.mk f.hom, map_add' := (_ : ∀ (x x_2 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), (fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) } (x • x_1) = AddHom.toFun { toFun := fun f => Action.Hom.mk f.hom, map_add' := (_ : ∀ (x x_2 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y), (fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) } (x • x_1)) }.toAddHom ((fun f => Action.Hom.mk ((forget₂ (FGModuleCat k) (ModuleCat k)).map f.hom)) x✝¹)).hom x✝ = ↑x✝¹.hom x✝ [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Group G ⊢ RightRigidCategory (FdRep k G) [PROOFSTEP] change RightRigidCategory (Action (FGModuleCat k) (GroupCat.of G)) [GOAL] k G : Type u inst✝¹ : Field k inst✝ : Group G ⊢ RightRigidCategory (Action (FGModuleCat k) ((forget₂ GroupCat MonCat).obj (GroupCat.of G))) [PROOFSTEP] infer_instance [GOAL] k G V : Type u inst✝⁴ : Field k inst✝³ : Group G inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : FiniteDimensional k V ρV : Representation k G V W : FdRep k G ⊢ of (dual ρV) ⊗ W ≅ of (linHom ρV (ρ W)) [PROOFSTEP] refine Action.mkIso (dualTensorIsoLinHomAux ρV W) ?_ [GOAL] k G V : Type u inst✝⁴ : Field k inst✝³ : Group G inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : FiniteDimensional k V ρV : Representation k G V W : FdRep k G ⊢ ∀ (g : ↑(MonCat.of G)), ↑(of (dual ρV) ⊗ W).ρ g ≫ (dualTensorIsoLinHomAux ρV W).hom = (dualTensorIsoLinHomAux ρV W).hom ≫ ↑(of (linHom ρV (ρ W))).ρ g [PROOFSTEP] convert dualTensorHom_comm ρV W.ρ
{"mathlib_filename": "Mathlib.RepresentationTheory.FdRep", "llama_tokens": 4528}
[GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 ⊢ ∀ {U V : Opens ↑(ProjectiveSpectrum.top 𝒜)} (i : U ⟶ V) (f : (x : { x // x ∈ V }) → at ↑x), (fun {U} f => IsFraction f) f → (fun {U} f => IsFraction f) fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x) [PROOFSTEP] rintro V U i f ⟨j, r, s, w⟩ [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 V U : Opens ↑(ProjectiveSpectrum.top 𝒜) i : V ⟶ U f : (x : { x // x ∈ U }) → at ↑x j : ℕ r s : { x // x ∈ 𝒜 j } w : ∀ (x : { x // x ∈ U }), ∃ s_nin, f x = Quotient.mk'' { deg := j, num := r, den := s, den_mem := s_nin } ⊢ IsFraction fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x) [PROOFSTEP] exact ⟨j, r, s, fun y => w (i y)⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] rcases ha x with ⟨Va, ma, ia, ja, ⟨ra, ra_mem⟩, ⟨sa, sa_mem⟩, wa⟩ [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] rcases hb x with ⟨Vb, mb, ib, jb, ⟨rb, rb_mem⟩, ⟨sb, sb_mem⟩, wb⟩ [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] refine' ⟨Va ⊓ Vb, ⟨ma, mb⟩, Opens.infLELeft _ _ ≫ ia, ja + jb, ⟨sb * ra + sa * rb, add_mem (add_comm jb ja ▸ mul_mem_graded sb_mem ra_mem : sb * ra ∈ 𝒜 (ja + jb)) (mul_mem_graded sa_mem rb_mem)⟩, ⟨sa * sb, mul_mem_graded sa_mem sb_mem⟩, fun y => ⟨fun h => _, _⟩⟩ [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } h : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal ⊢ False [PROOFSTEP] cases' (y : ProjectiveSpectrum.top 𝒜).isPrime.mem_or_mem h with h h [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inl R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal h : sa ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal ⊢ False [PROOFSTEP] obtain ⟨nin, -⟩ := wa ⟨y, (Opens.infLELeft Va Vb y).2⟩ [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inl.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal h : sa ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal nin : ¬↑{ val := sa, property := sa_mem } ∈ (↑{ val := ↑y, property := (_ : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) ∈ Va) }).asHomogeneousIdeal ⊢ False [PROOFSTEP] exact nin h [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal h : sb ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal ⊢ False [PROOFSTEP] obtain ⟨nin, -⟩ := wb ⟨y, (Opens.infLERight Va Vb y).2⟩ [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inr.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal h : sb ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal nin : ¬↑{ val := sb, property := sb_mem } ∈ (↑{ val := ↑y, property := (_ : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) ∈ Vb) }).asHomogeneousIdeal ⊢ False [PROOFSTEP] exact nin h [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } ⊢ (fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y = Quotient.mk'' { deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) } [PROOFSTEP] simp only [add_mul, map_add, Pi.add_apply, RingHom.map_mul, ext_iff_val, add_val] [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } ⊢ val (a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) + val (b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) = val (Quotient.mk'' { deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }) [PROOFSTEP] obtain ⟨nin1, hy1⟩ := wa (Opens.infLELeft Va Vb y) [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } nin1 : ¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal hy1 : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 } ⊢ val (a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) + val (b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) = val (Quotient.mk'' { deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }) [PROOFSTEP] obtain ⟨nin2, hy2⟩ := wb (Opens.infLERight Va Vb y) [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } nin1 : ¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal hy1 : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 } nin2 : ¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal hy2 : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 } ⊢ val (a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) + val (b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) = val (Quotient.mk'' { deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }) [PROOFSTEP] dsimp only at hy1 hy2 [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } nin1 : ¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal hy1 : a { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Va) } ∈ ↑U.unop) } = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 } nin2 : ¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal hy2 : b { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Vb) } ∈ ↑U.unop) } = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 } ⊢ val (a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) + val (b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) = val (Quotient.mk'' { deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }) [PROOFSTEP] erw [hy1, hy2] [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } nin1 : ¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal hy1 : a { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Va) } ∈ ↑U.unop) } = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 } nin2 : ¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal hy2 : b { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Vb) } ∈ ↑U.unop) } = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 } ⊢ val (Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }) + val (Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 }) = val (Quotient.mk'' { deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }) [PROOFSTEP] simp only [val_mk'', add_mk, add_comm (sa * rb)] [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } nin1 : ¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal hy1 : a { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Va) } ∈ ↑U.unop) } = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 } nin2 : ¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal hy2 : b { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Vb) } ∈ ↑U.unop) } = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 } ⊢ Localization.mk (sb * ra + sa * rb) ({ val := sa, property := (_ : ↑{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) } * { val := sb, property := (_ : ↑{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) }) = Localization.mk (sb * ra + sa * rb) { val := sa * sb, property := (_ : ↑{ deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) } [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a x : { x // x ∈ U.unop } ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] rcases ha x with ⟨V, m, i, j, ⟨r, r_mem⟩, ⟨s, s_mem⟩, w⟩ [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a x : { x // x ∈ U.unop } V : Opens ↑(ProjectiveSpectrum.top 𝒜) m : ↑x ∈ V i : V ⟶ U.unop j : ℕ r : A r_mem : r ∈ 𝒜 j s : A s_mem : s ∈ 𝒜 j w : ∀ (x : { x // x ∈ V }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := j, num := { val := r, property := r_mem }, den := { val := s, property := s_mem }, den_mem := s_nin } ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] choose nin hy using w [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a x : { x // x ∈ U.unop } V : Opens ↑(ProjectiveSpectrum.top 𝒜) m : ↑x ∈ V i : V ⟶ U.unop j : ℕ r : A r_mem : r ∈ 𝒜 j s : A s_mem : s ∈ 𝒜 j nin : ∀ (x : { x // x ∈ V }), ¬↑{ val := s, property := s_mem } ∈ (↑x).asHomogeneousIdeal hy : ∀ (x : { x // x ∈ V }), (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := j, num := { val := r, property := r_mem }, den := { val := s, property := s_mem }, den_mem := (_ : ¬↑{ val := s, property := s_mem } ∈ (↑x).asHomogeneousIdeal) } ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] refine' ⟨V, m, i, j, ⟨-r, Submodule.neg_mem _ r_mem⟩, ⟨s, s_mem⟩, fun y => ⟨nin y, _⟩⟩ [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a x : { x // x ∈ U.unop } V : Opens ↑(ProjectiveSpectrum.top 𝒜) m : ↑x ∈ V i : V ⟶ U.unop j : ℕ r : A r_mem : r ∈ 𝒜 j s : A s_mem : s ∈ 𝒜 j nin : ∀ (x : { x // x ∈ V }), ¬↑{ val := s, property := s_mem } ∈ (↑x).asHomogeneousIdeal hy : ∀ (x : { x // x ∈ V }), (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := j, num := { val := r, property := r_mem }, den := { val := s, property := s_mem }, den_mem := (_ : ¬↑{ val := s, property := s_mem } ∈ (↑x).asHomogeneousIdeal) } y : { x // x ∈ V } ⊢ (fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y = Quotient.mk'' { deg := j, num := { val := -r, property := (_ : -r ∈ 𝒜 j) }, den := { val := s, property := s_mem }, den_mem := (_ : ¬↑{ val := s, property := s_mem } ∈ (↑y).asHomogeneousIdeal) } [PROOFSTEP] simp only [ext_iff_val, val_mk''] at hy [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a x : { x // x ∈ U.unop } V : Opens ↑(ProjectiveSpectrum.top 𝒜) m : ↑x ∈ V i : V ⟶ U.unop j : ℕ r : A r_mem : r ∈ 𝒜 j s : A s_mem : s ∈ 𝒜 j nin : ∀ (x : { x // x ∈ V }), ¬↑{ val := s, property := s_mem } ∈ (↑x).asHomogeneousIdeal y : { x // x ∈ V } hy : ∀ (x : { x // x ∈ V }), val (a { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) = Localization.mk r { val := s, property := (_ : ↑{ deg := j, num := { val := r, property := r_mem }, den := { val := s, property := s_mem }, den_mem := (_ : ¬↑{ val := s, property := s_mem } ∈ (↑x).asHomogeneousIdeal) }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal)) } ⊢ (fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y = Quotient.mk'' { deg := j, num := { val := -r, property := (_ : -r ∈ 𝒜 j) }, den := { val := s, property := s_mem }, den_mem := (_ : ¬↑{ val := s, property := s_mem } ∈ (↑y).asHomogeneousIdeal) } [PROOFSTEP] simp only [Pi.neg_apply, ext_iff_val, neg_val, hy, val_mk'', neg_mk] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] rcases ha x with ⟨Va, ma, ia, ja, ⟨ra, ra_mem⟩, ⟨sa, sa_mem⟩, wa⟩ [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] rcases hb x with ⟨Vb, mb, ib, jb, ⟨rb, rb_mem⟩, ⟨sb, sb_mem⟩, wb⟩ [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } ⊢ ∃ V x i, PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x) [PROOFSTEP] refine' ⟨Va ⊓ Vb, ⟨ma, mb⟩, Opens.infLELeft _ _ ≫ ia, ja + jb, ⟨ra * rb, SetLike.mul_mem_graded ra_mem rb_mem⟩, ⟨sa * sb, SetLike.mul_mem_graded sa_mem sb_mem⟩, fun y => ⟨fun h => _, _⟩⟩ [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } h : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal ⊢ False [PROOFSTEP] cases' (y : ProjectiveSpectrum.top 𝒜).isPrime.mem_or_mem h with h h [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inl R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal h : sa ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal ⊢ False [PROOFSTEP] choose nin _ using wa ⟨y, (Opens.infLELeft Va Vb y).2⟩ [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inl R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal h : sa ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal nin : ¬↑{ val := sa, property := sa_mem } ∈ (↑{ val := ↑y, property := (_ : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) ∈ Va) }).asHomogeneousIdeal x✝ : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) { val := ↑y, property := (_ : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) ∈ Va) } = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin } ⊢ False [PROOFSTEP] exact nin h [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal h : sb ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal ⊢ False [PROOFSTEP] choose nin _ using wb ⟨y, (Opens.infLERight Va Vb y).2⟩ [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inr R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal h : sb ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal nin : ¬↑{ val := sb, property := sb_mem } ∈ (↑{ val := ↑y, property := (_ : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) ∈ Vb) }).asHomogeneousIdeal x✝ : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) { val := ↑y, property := (_ : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) ∈ Vb) } = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin } ⊢ False [PROOFSTEP] exact nin h [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } ⊢ (fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y = Quotient.mk'' { deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) } [PROOFSTEP] simp only [Pi.mul_apply, RingHom.map_mul] [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } ⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } = Quotient.mk'' { deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) } [PROOFSTEP] choose nin1 hy1 using wa (Opens.infLELeft Va Vb y) [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } nin1 : ¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal hy1 : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 } ⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } = Quotient.mk'' { deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) } [PROOFSTEP] choose nin2 hy2 using wb (Opens.infLERight Va Vb y) [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } nin1 : ¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal hy1 : (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 } nin2 : ¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal hy2 : (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 } ⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } = Quotient.mk'' { deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) } [PROOFSTEP] rw [ext_iff_val] at hy1 hy2 ⊢ [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } nin1 : ¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal hy1 : val ((fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)) = val (Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }) nin2 : ¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal hy2 : val ((fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)) = val (Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 }) ⊢ val (a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) = val (Quotient.mk'' { deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }) [PROOFSTEP] erw [mul_val, hy1, hy2] [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } nin1 : ¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal hy1 : val ((fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)) = val (Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }) nin2 : ¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal hy2 : val ((fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)) = val (Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 }) ⊢ val (Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }) * val (Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 }) = val (Quotient.mk'' { deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }) [PROOFSTEP] simp only [val_mk'', mk_mul] [GOAL] case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2 R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ a b : (x : { x // x ∈ U.unop }) → at ↑x ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b x : { x // x ∈ U.unop } Va : Opens ↑(ProjectiveSpectrum.top 𝒜) ma : ↑x ∈ Va ia : Va ⟶ U.unop ja : ℕ ra : A ra_mem : ra ∈ 𝒜 ja sa : A sa_mem : sa ∈ 𝒜 ja wa : ∀ (x : { x // x ∈ Va }), ∃ s_nin, (fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := s_nin } Vb : Opens ↑(ProjectiveSpectrum.top 𝒜) mb : ↑x ∈ Vb ib : Vb ⟶ U.unop jb : ℕ rb : A rb_mem : rb ∈ 𝒜 jb sb : A sb_mem : sb ∈ 𝒜 jb wb : ∀ (x : { x // x ∈ Vb }), ∃ s_nin, (fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x = Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := s_nin } y : { x // x ∈ Va ⊓ Vb } nin1 : ¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal hy1 : val ((fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)) = val (Quotient.mk'' { deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }) nin2 : ¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal hy2 : val ((fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)) = val (Quotient.mk'' { deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 }) ⊢ Localization.mk (ra * rb) ({ val := sa, property := (_ : ↑{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) } * { val := sb, property := (_ : ↑{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) }) = Localization.mk (ra * rb) { val := sa * sb, property := (_ : ↑{ deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) }, den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) }, den_mem := (_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) } [PROOFSTEP] rfl [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 ⊢ ∀ {X Y : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ} (f : X ⟶ Y), (structurePresheafInCommRing 𝒜 ⋙ forget CommRingCat).map f ≫ ((fun U => Iso.refl ((structurePresheafInCommRing 𝒜 ⋙ forget CommRingCat).obj U)) Y).hom = ((fun U => Iso.refl ((structurePresheafInCommRing 𝒜 ⋙ forget CommRingCat).obj U)) X).hom ≫ (structureSheafInType 𝒜).val.map f [PROOFSTEP] aesop_cat [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) f : at x ⊢ x ∈ ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f) [PROOFSTEP] rw [ProjectiveSpectrum.mem_basicOpen] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) f : at x ⊢ ¬HomogeneousLocalization.den f ∈ x.asHomogeneousIdeal [PROOFSTEP] exact f.den_mem [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) z1 z2 : ↑(Presheaf.stalk (Sheaf.presheaf (Proj.structureSheaf 𝒜)) x) eq1 : ↑(stalkToFiberRingHom 𝒜 x) z1 = ↑(stalkToFiberRingHom 𝒜 x) z2 ⊢ z1 = z2 [PROOFSTEP] obtain ⟨u1, memu1, s1, rfl⟩ := (Proj.structureSheaf 𝒜).presheaf.germ_exist x z1 [GOAL] case intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) z2 : ↑(Presheaf.stalk (Sheaf.presheaf (Proj.structureSheaf 𝒜)) x) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) eq1 : ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) = ↑(stalkToFiberRingHom 𝒜 x) z2 ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = z2 [PROOFSTEP] obtain ⟨u2, memu2, s2, rfl⟩ := (Proj.structureSheaf 𝒜).presheaf.germ_exist x z2 [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) = ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2) ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2 [PROOFSTEP] obtain ⟨v1, memv1, i1, ⟨j1, ⟨a1, a1_mem⟩, ⟨b1, b1_mem⟩, hs1⟩⟩ := s1.2 ⟨x, memu1⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) = ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2) v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2 [PROOFSTEP] obtain ⟨v2, memv2, i2, ⟨j2, ⟨a2, a2_mem⟩, ⟨b2, b2_mem⟩, hs2⟩⟩ := s2.2 ⟨x, memu2⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) = ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2) v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2 [PROOFSTEP] obtain ⟨b1_nin_x, eq2⟩ := hs1 ⟨x, memv1⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) = ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2) v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) { val := x, property := memv1 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2 [PROOFSTEP] obtain ⟨b2_nin_x, eq3⟩ := hs2 ⟨x, memv2⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) = ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2) v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) { val := x, property := memv1 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal eq3 : (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) { val := x, property := memv2 } = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2 [PROOFSTEP] dsimp only at eq1 eq2 eq3 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) = ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2) v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s1 { val := x, property := (_ : ↑{ val := x, property := memv1 } ∈ ↑(op u1).unop) } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal eq3 : ↑s2 { val := x, property := (_ : ↑{ val := x, property := memv2 } ∈ ↑(op u2).unop) } = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2 [PROOFSTEP] erw [stalkToFiberRingHom_germ 𝒜 u1 ⟨x, memu1⟩ s1, stalkToFiberRingHom_germ 𝒜 u2 ⟨x, memu2⟩ s2] at eq1 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s1 { val := x, property := (_ : ↑{ val := x, property := memv1 } ∈ ↑(op u1).unop) } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal eq3 : ↑s2 { val := x, property := (_ : ↑{ val := x, property := memv2 } ∈ ↑(op u2).unop) } = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2 [PROOFSTEP] erw [eq1] at eq2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal eq3 : ↑s2 { val := x, property := (_ : ↑{ val := x, property := memv2 } ∈ ↑(op u2).unop) } = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2 [PROOFSTEP] erw [eq2, Quotient.eq''] at eq3 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal eq3 : Setoid.r { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2 [PROOFSTEP] change Localization.mk _ _ = Localization.mk _ _ at eq3 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal eq3 : Localization.mk ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num { val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } = Localization.mk ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num { val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2 [PROOFSTEP] rw [Localization.mk_eq_mk', IsLocalization.eq] at eq3 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal eq3 : ∃ c, ↑c * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑c * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2 [PROOFSTEP] obtain ⟨⟨c, hc⟩, eq3⟩ := eq3 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2 [PROOFSTEP] have eq3' : ∀ (y : ProjectiveSpectrum.top 𝒜) (hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c), (Localization.mk a1 ⟨b1, show b1 ∉ y.asHomogeneousIdeal by rw [← ProjectiveSpectrum.mem_basicOpen] exact leOfHom (Opens.infLELeft _ _ ≫ Opens.infLELeft _ _) hy⟩ : Localization.AtPrime y.1.toIdeal) = Localization.mk a2 ⟨b2, by change b2 ∉ y.asHomogeneousIdeal rw [← ProjectiveSpectrum.mem_basicOpen] exact leOfHom (Opens.infLELeft _ _ ≫ Opens.infLERight _ _) hy⟩ := by intro y hy rw [Localization.mk_eq_mk', IsLocalization.eq] exact ⟨⟨c, show c ∉ y.asHomogeneousIdeal by rw [← ProjectiveSpectrum.mem_basicOpen] exact leOfHom (Opens.infLERight _ _) hy⟩, eq3⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) y : ↑(ProjectiveSpectrum.top 𝒜) hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊢ ¬b1 ∈ y.asHomogeneousIdeal [PROOFSTEP] rw [← ProjectiveSpectrum.mem_basicOpen] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) y : ↑(ProjectiveSpectrum.top 𝒜) hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊢ y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 [PROOFSTEP] exact leOfHom (Opens.infLELeft _ _ ≫ Opens.infLELeft _ _) hy [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) y : ↑(ProjectiveSpectrum.top 𝒜) hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊢ b2 ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal y.asHomogeneousIdeal) [PROOFSTEP] change b2 ∉ y.asHomogeneousIdeal [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) y : ↑(ProjectiveSpectrum.top 𝒜) hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊢ ¬b2 ∈ y.asHomogeneousIdeal [PROOFSTEP] rw [← ProjectiveSpectrum.mem_basicOpen] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) y : ↑(ProjectiveSpectrum.top 𝒜) hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊢ y ∈ ProjectiveSpectrum.basicOpen 𝒜 b2 [PROOFSTEP] exact leOfHom (Opens.infLELeft _ _ ≫ Opens.infLERight _ _) hy [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) ⊢ ∀ (y : ↑(ProjectiveSpectrum.top 𝒜)) (hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c), Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } = Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } [PROOFSTEP] intro y hy [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) y : ↑(ProjectiveSpectrum.top 𝒜) hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊢ Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } = Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } [PROOFSTEP] rw [Localization.mk_eq_mk', IsLocalization.eq] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) y : ↑(ProjectiveSpectrum.top 𝒜) hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊢ ∃ c_1, ↑c_1 * (↑{ val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } * a1) = ↑c_1 * (↑{ val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } * a2) [PROOFSTEP] exact ⟨⟨c, show c ∉ y.asHomogeneousIdeal by rw [← ProjectiveSpectrum.mem_basicOpen] exact leOfHom (Opens.infLERight _ _) hy⟩, eq3⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) y : ↑(ProjectiveSpectrum.top 𝒜) hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊢ ¬c ∈ y.asHomogeneousIdeal [PROOFSTEP] rw [← ProjectiveSpectrum.mem_basicOpen] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) y : ↑(ProjectiveSpectrum.top 𝒜) hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊢ y ∈ ProjectiveSpectrum.basicOpen 𝒜 c [PROOFSTEP] exact leOfHom (Opens.infLERight _ _) hy [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) eq3' : ∀ (y : ↑(ProjectiveSpectrum.top 𝒜)) (hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c), Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } = Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } ⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2 [PROOFSTEP] refine' Presheaf.germ_ext (Proj.structureSheaf 𝒜).1 (ProjectiveSpectrum.basicOpen _ b1 ⊓ ProjectiveSpectrum.basicOpen _ b2 ⊓ ProjectiveSpectrum.basicOpen _ c ⊓ v1 ⊓ v2) ⟨⟨⟨⟨b1_nin_x, b2_nin_x⟩, hc⟩, memv1⟩, memv2⟩ (Opens.infLELeft _ _ ≫ Opens.infLERight _ _ ≫ i1) (Opens.infLERight _ _ ≫ i2) _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) eq3' : ∀ (y : ↑(ProjectiveSpectrum.top 𝒜)) (hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c), Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } = Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } ⊢ ↑((Proj.structureSheaf 𝒜).val.map (infLELeft (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓ v1) v2 ≫ infLERight (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c) v1 ≫ i1).op) s1 = ↑((Proj.structureSheaf 𝒜).val.map (infLERight (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓ v1) v2 ≫ i2).op) s2 [PROOFSTEP] rw [Subtype.ext_iff_val] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) eq3' : ∀ (y : ↑(ProjectiveSpectrum.top 𝒜)) (hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c), Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } = Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } ⊢ ↑(↑((Proj.structureSheaf 𝒜).val.map (infLELeft (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓ v1) v2 ≫ infLERight (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c) v1 ≫ i1).op) s1) = ↑(↑((Proj.structureSheaf 𝒜).val.map (infLERight (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓ v1) v2 ≫ i2).op) s2) [PROOFSTEP] ext1 y [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) eq3' : ∀ (y : ↑(ProjectiveSpectrum.top 𝒜)) (hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c), Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } = Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } y : { x // x ∈ (op (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓ v1 ⊓ v2)).unop } ⊢ ↑(↑((Proj.structureSheaf 𝒜).val.map (infLELeft (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓ v1) v2 ≫ infLERight (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c) v1 ≫ i1).op) s1) y = ↑(↑((Proj.structureSheaf 𝒜).val.map (infLERight (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓ v1) v2 ≫ i2).op) s2) y [PROOFSTEP] simp only [res_apply] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) eq3' : ∀ (y : ↑(ProjectiveSpectrum.top 𝒜)) (hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c), Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } = Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } y : { x // x ∈ (op (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓ v1 ⊓ v2)).unop } ⊢ ↑s1 { val := ↑y, property := (_ : ↑y ∈ ↑(op u1).unop) } = ↑s2 { val := ↑y, property := (_ : ↑y ∈ ↑(op u2).unop) } [PROOFSTEP] obtain ⟨b1_nin_y, eq6⟩ := hs1 ⟨_, leOfHom (Opens.infLELeft _ _ ≫ Opens.infLERight _ _) y.2⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) eq3' : ∀ (y : ↑(ProjectiveSpectrum.top 𝒜)) (hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c), Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } = Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } y : { x // x ∈ (op (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓ v1 ⊓ v2)).unop } b1_nin_y : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) }).asHomogeneousIdeal eq6 : (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) { val := ↑y, property := (_ : ↑y ∈ ↑v1) } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_y } ⊢ ↑s1 { val := ↑y, property := (_ : ↑y ∈ ↑(op u1).unop) } = ↑s2 { val := ↑y, property := (_ : ↑y ∈ ↑(op u2).unop) } [PROOFSTEP] obtain ⟨b2_nin_y, eq7⟩ := hs2 ⟨_, leOfHom (Opens.infLERight _ _) y.2⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) eq3' : ∀ (y : ↑(ProjectiveSpectrum.top 𝒜)) (hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c), Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } = Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } y : { x // x ∈ (op (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓ v1 ⊓ v2)).unop } b1_nin_y : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) }).asHomogeneousIdeal eq6 : (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) { val := ↑y, property := (_ : ↑y ∈ ↑v1) } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_y } b2_nin_y : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) }).asHomogeneousIdeal eq7 : (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) { val := ↑y, property := (_ : ↑y ∈ ↑v2) } = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_y } ⊢ ↑s1 { val := ↑y, property := (_ : ↑y ∈ ↑(op u1).unop) } = ↑s2 { val := ↑y, property := (_ : ↑y ∈ ↑(op u2).unop) } [PROOFSTEP] simp only at eq6 eq7 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) eq3' : ∀ (y : ↑(ProjectiveSpectrum.top 𝒜)) (hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c), Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } = Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } y : { x // x ∈ (op (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓ v1 ⊓ v2)).unop } b1_nin_y : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) }).asHomogeneousIdeal eq6 : ↑s1 { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) } ∈ ↑(op u1).unop) } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_y } b2_nin_y : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) }).asHomogeneousIdeal eq7 : ↑s2 { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) } ∈ ↑(op u2).unop) } = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_y } ⊢ ↑s1 { val := ↑y, property := (_ : ↑y ∈ ↑(op u1).unop) } = ↑s2 { val := ↑y, property := (_ : ↑y ∈ ↑(op u2).unop) } [PROOFSTEP] erw [eq6, eq7, Quotient.eq''] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) eq3' : ∀ (y : ↑(ProjectiveSpectrum.top 𝒜)) (hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c), Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } = Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } y : { x // x ∈ (op (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓ v1 ⊓ v2)).unop } b1_nin_y : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) }).asHomogeneousIdeal eq6 : ↑s1 { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) } ∈ ↑(op u1).unop) } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_y } b2_nin_y : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) }).asHomogeneousIdeal eq7 : ↑s2 { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) } ∈ ↑(op u2).unop) } = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_y } ⊢ Setoid.r { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_y } { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_y } [PROOFSTEP] change Localization.mk _ _ = Localization.mk _ _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h.intro.intro R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) u1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu1 : x ∈ u1 s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1)) u2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memu2 : x ∈ u2 s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2)) eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 } v1 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv1 : ↑{ val := x, property := memu1 } ∈ v1 i1 : v1 ⟶ (op u1).unop j1 : ℕ a1 : A a1_mem : a1 ∈ 𝒜 j1 b1 : A b1_mem : b1 ∈ 𝒜 j1 hs1 : ∀ (x : { x // x ∈ v1 }), ∃ s_nin, (fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := s_nin } v2 : Opens ↑(ProjectiveSpectrum.top 𝒜) memv2 : ↑{ val := x, property := memu2 } ∈ v2 i2 : v2 ⟶ (op u2).unop j2 : ℕ a2 : A a2_mem : a2 ∈ 𝒜 j2 b2 : A b2_mem : b2 ∈ 𝒜 j2 hs2 : ∀ (x : { x // x ∈ v2 }), ∃ s_nin, (fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := s_nin } b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal eq2 : ↑s2 { val := x, property := memu2 } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x } b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal c : A hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal) eq3 : ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.num) = ↑{ val := c, property := hc } * (↑{ val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_x }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } * ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_x }.num) eq3' : ∀ (y : ↑(ProjectiveSpectrum.top 𝒜)) (hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c), Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } = Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } y : { x // x ∈ (op (ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓ v1 ⊓ v2)).unop } b1_nin_y : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) }).asHomogeneousIdeal eq6 : ↑s1 { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) } ∈ ↑(op u1).unop) } = Quotient.mk'' { deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_y } b2_nin_y : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) }).asHomogeneousIdeal eq7 : ↑s2 { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) } ∈ ↑(op u2).unop) } = Quotient.mk'' { deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_y } ⊢ Localization.mk ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_y }.num { val := ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_y }.den, property := (_ : ↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem }, den_mem := b1_nin_y }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) } = Localization.mk ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_y }.num { val := ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_y }.den, property := (_ : ↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem }, den_mem := b2_nin_y }.den ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) } [PROOFSTEP] exact eq3' _ ⟨⟨leOfHom (Opens.infLELeft _ _ ≫ Opens.infLELeft _ _ ≫ Opens.infLELeft _ _ ≫ Opens.infLELeft _ _) y.2, leOfHom (Opens.infLELeft _ _ ≫ Opens.infLELeft _ _ ≫ Opens.infLELeft _ _ ≫ Opens.infLERight _ _) y.2⟩, leOfHom (Opens.infLELeft _ _ ≫ Opens.infLELeft _ _ ≫ Opens.infLERight _ _) y.2⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) f : ↑(CommRingCat.of (at x)) ⊢ ↑(stalkToFiberRingHom 𝒜 x) (homogeneousLocalizationToStalk 𝒜 x f) = f [PROOFSTEP] rw [homogeneousLocalizationToStalk] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) f : ↑(CommRingCat.of (at x)) ⊢ ↑(stalkToFiberRingHom 𝒜 x) (↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := (_ : x ∈ ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f)) }) (sectionInBasicOpen 𝒜 x f)) = f [PROOFSTEP] erw [stalkToFiberRingHom_germ 𝒜 (ProjectiveSpectrum.basicOpen 𝒜 f.den) ⟨x, _⟩ (sectionInBasicOpen _ x f)] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) f : ↑(CommRingCat.of (at x)) ⊢ ↑(sectionInBasicOpen 𝒜 x f) { val := x, property := (_ : x ∈ ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f)) } = f [PROOFSTEP] rw [sectionInBasicOpen, HomogeneousLocalization.ext_iff_val, f.eq_num_div_den] [GOAL] R : Type u_1 A : Type u_2 inst✝³ : CommRing R inst✝² : CommRing A inst✝¹ : Algebra R A 𝒜 : ℕ → Submodule R A inst✝ : GradedAlgebra 𝒜 x : ↑(ProjectiveSpectrum.top 𝒜) f : ↑(CommRingCat.of (at x)) ⊢ HomogeneousLocalization.val (↑{ val := fun y => Quotient.mk'' { deg := HomogeneousLocalization.deg f, num := { val := HomogeneousLocalization.num f, property := (_ : HomogeneousLocalization.num f ∈ 𝒜 (HomogeneousLocalization.deg f)) }, den := { val := HomogeneousLocalization.den f, property := (_ : HomogeneousLocalization.den f ∈ 𝒜 (HomogeneousLocalization.deg f)) }, den_mem := (_ : ↑y ∈ (op (ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f))).unop) }, property := (_ : ∀ (y : { x_1 // x_1 ∈ (op (ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f))).unop }), ∃ V x_1 i, PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x_2 => (fun y => Quotient.mk'' { deg := HomogeneousLocalization.deg f, num := { val := HomogeneousLocalization.num f, property := (_ : HomogeneousLocalization.num f ∈ 𝒜 (HomogeneousLocalization.deg f)) }, den := { val := HomogeneousLocalization.den f, property := (_ : HomogeneousLocalization.den f ∈ 𝒜 (HomogeneousLocalization.deg f)) }, den_mem := (_ : ↑y ∈ (op (ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f))).unop) }) ((fun x_3 => { val := ↑x_3, property := (_ : ↑x_3 ∈ ↑(op (ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f))).unop) }) x_2)) } { val := x, property := (_ : x ∈ ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f)) }) = Localization.mk (HomogeneousLocalization.num f) { val := HomogeneousLocalization.den f, property := (_ : HomogeneousLocalization.den f ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } [PROOFSTEP] simp only [unop_op, HomogeneousLocalization.val_mk'', mk_eq_monoidOf_mk']
{"mathlib_filename": "Mathlib.AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf", "llama_tokens": 85234}
[GOAL] α : Type u_1 β : Type u_2 rα✝ : α → α → Prop rβ✝ : β → β → Prop rα : α → α → Prop rβ : β → β → Prop x y : α × β ⊢ GameAdd rα rβ x y ↔ rα x.fst y.fst ∧ x.snd = y.snd ∨ rβ x.snd y.snd ∧ x.fst = y.fst [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 rα✝ : α → α → Prop rβ✝ : β → β → Prop rα : α → α → Prop rβ : β → β → Prop x y : α × β ⊢ GameAdd rα rβ x y → rα x.fst y.fst ∧ x.snd = y.snd ∨ rβ x.snd y.snd ∧ x.fst = y.fst [PROOFSTEP] rintro (@⟨a₁, a₂, b, h⟩ | @⟨a, b₁, b₂, h⟩) [GOAL] case mp.fst α : Type u_1 β : Type u_2 rα✝ : α → α → Prop rβ✝ : β → β → Prop rα : α → α → Prop rβ : β → β → Prop a₁ a₂ : α b : β h : rα a₁ a₂ ⊢ rα (a₁, b).fst (a₂, b).fst ∧ (a₁, b).snd = (a₂, b).snd ∨ rβ (a₁, b).snd (a₂, b).snd ∧ (a₁, b).fst = (a₂, b).fst case mp.snd α : Type u_1 β : Type u_2 rα✝ : α → α → Prop rβ✝ : β → β → Prop rα : α → α → Prop rβ : β → β → Prop a : α b₁ b₂ : β h : rβ b₁ b₂ ⊢ rα (a, b₁).fst (a, b₂).fst ∧ (a, b₁).snd = (a, b₂).snd ∨ rβ (a, b₁).snd (a, b₂).snd ∧ (a, b₁).fst = (a, b₂).fst [PROOFSTEP] exacts [Or.inl ⟨h, rfl⟩, Or.inr ⟨h, rfl⟩] [GOAL] case mpr α : Type u_1 β : Type u_2 rα✝ : α → α → Prop rβ✝ : β → β → Prop rα : α → α → Prop rβ : β → β → Prop x y : α × β ⊢ rα x.fst y.fst ∧ x.snd = y.snd ∨ rβ x.snd y.snd ∧ x.fst = y.fst → GameAdd rα rβ x y [PROOFSTEP] revert x y [GOAL] case mpr α : Type u_1 β : Type u_2 rα✝ : α → α → Prop rβ✝ : β → β → Prop rα : α → α → Prop rβ : β → β → Prop ⊢ ∀ {x y : α × β}, rα x.fst y.fst ∧ x.snd = y.snd ∨ rβ x.snd y.snd ∧ x.fst = y.fst → GameAdd rα rβ x y [PROOFSTEP] rintro ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ (⟨h, rfl : b₁ = b₂⟩ | ⟨h, rfl : a₁ = a₂⟩) [GOAL] case mpr.mk.mk.inl.intro α : Type u_1 β : Type u_2 rα✝ : α → α → Prop rβ✝ : β → β → Prop rα : α → α → Prop rβ : β → β → Prop a₁ : α b₁ : β a₂ : α h : rα (a₁, b₁).fst (a₂, b₁).fst ⊢ GameAdd rα rβ (a₁, b₁) (a₂, b₁) case mpr.mk.mk.inr.intro α : Type u_1 β : Type u_2 rα✝ : α → α → Prop rβ✝ : β → β → Prop rα : α → α → Prop rβ : β → β → Prop a₁ : α b₁ b₂ : β h : rβ (a₁, b₁).snd (a₁, b₂).snd ⊢ GameAdd rα rβ (a₁, b₁) (a₁, b₂) [PROOFSTEP] exacts [GameAdd.fst h, GameAdd.snd h] [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop x✝¹ x✝ : α × β a₁ : α b₁ : β a₂ : α b₂ : β ⊢ GameAdd rβ rα (swap (a₁, b₁)) (swap (a₂, b₂)) ↔ GameAdd rα rβ (a₁, b₁) (a₂, b₂) [PROOFSTEP] rw [Prod.swap, Prod.swap, gameAdd_mk_iff, gameAdd_mk_iff, or_comm] [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop x✝¹ x✝ : α × β h : RProd rα rβ x✝¹ x✝ ⊢ ∀ {a₁ : α} {b₁ : β} {a₂ : α} {b₂ : β}, rα a₁ a₂ → rβ b₁ b₂ → Relation.TransGen (GameAdd rα rβ) (a₁, b₁) (a₂, b₂) [PROOFSTEP] intro _ _ _ _ hα hβ [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop x✝¹ x✝ : α × β h : RProd rα rβ x✝¹ x✝ a₁✝ : α b₁✝ : β a₂✝ : α b₂✝ : β hα : rα a₁✝ a₂✝ hβ : rβ b₁✝ b₂✝ ⊢ Relation.TransGen (GameAdd rα rβ) (a₁✝, b₁✝) (a₂✝, b₂✝) [PROOFSTEP] exact Relation.TransGen.tail (Relation.TransGen.single $ GameAdd.fst hα) (GameAdd.snd hβ) [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a : α b : β ha : Acc rα a hb : Acc rβ b ⊢ Acc (Prod.GameAdd rα rβ) (a, b) [PROOFSTEP] induction' ha with a _ iha generalizing b [GOAL] case intro α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ : α b✝ : β hb✝ : Acc rβ b✝ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : β}, Acc rβ b → Acc (Prod.GameAdd rα rβ) (y, b) b : β hb : Acc rβ b ⊢ Acc (Prod.GameAdd rα rβ) (a, b) [PROOFSTEP] induction' hb with b hb ihb [GOAL] case intro.intro α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ : α b✝¹ : β hb✝ : Acc rβ b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : β}, Acc rβ b → Acc (Prod.GameAdd rα rβ) (y, b) b✝ b : β hb : ∀ (y : β), rβ y b → Acc rβ y ihb : ∀ (y : β), rβ y b → Acc (Prod.GameAdd rα rβ) (a, y) ⊢ Acc (Prod.GameAdd rα rβ) (a, b) [PROOFSTEP] refine' Acc.intro _ fun h => _ [GOAL] case intro.intro α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ : α b✝¹ : β hb✝ : Acc rβ b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : β}, Acc rβ b → Acc (Prod.GameAdd rα rβ) (y, b) b✝ b : β hb : ∀ (y : β), rβ y b → Acc rβ y ihb : ∀ (y : β), rβ y b → Acc (Prod.GameAdd rα rβ) (a, y) h : α × β ⊢ Prod.GameAdd rα rβ h (a, b) → Acc (Prod.GameAdd rα rβ) h [PROOFSTEP] rintro (⟨ra⟩ | ⟨rb⟩) [GOAL] case intro.intro.fst α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ : α b✝¹ : β hb✝ : Acc rβ b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : β}, Acc rβ b → Acc (Prod.GameAdd rα rβ) (y, b) b✝ b : β hb : ∀ (y : β), rβ y b → Acc rβ y ihb : ∀ (y : β), rβ y b → Acc (Prod.GameAdd rα rβ) (a, y) a₁✝ : α ra : rα a₁✝ a ⊢ Acc (Prod.GameAdd rα rβ) (a₁✝, b) case intro.intro.snd α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ : α b✝¹ : β hb✝ : Acc rβ b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : β}, Acc rβ b → Acc (Prod.GameAdd rα rβ) (y, b) b✝ b : β hb : ∀ (y : β), rβ y b → Acc rβ y ihb : ∀ (y : β), rβ y b → Acc (Prod.GameAdd rα rβ) (a, y) b₁✝ : β rb : rβ b₁✝ b ⊢ Acc (Prod.GameAdd rα rβ) (a, b₁✝) [PROOFSTEP] exacts [iha _ ra (Acc.intro b hb), ihb _ rb] [GOAL] α : Type u_1 β : Type u_2 rα✝ : α → α → Prop rβ : β → β → Prop rα : α → α → Prop a₁ b₁ a₂ b₂ : α ⊢ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁ a₂ b₂ ∧ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ b₂ a₂ [PROOFSTEP] dsimp [GOAL] α : Type u_1 β : Type u_2 rα✝ : α → α → Prop rβ : β → β → Prop rα : α → α → Prop a₁ b₁ a₂ b₂ : α ⊢ (Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) = (Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂)) ∧ (Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) = (Prod.GameAdd rα rα (a₁, b₁) (b₂, a₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (b₂, a₂)) [PROOFSTEP] rw [Prod.gameAdd_swap_swap_mk _ _ b₁ b₂ a₁ a₂, Prod.gameAdd_swap_swap_mk _ _ a₁ b₂ b₁ a₂] [GOAL] α : Type u_1 β : Type u_2 rα✝ : α → α → Prop rβ : β → β → Prop rα : α → α → Prop a₁ b₁ a₂ b₂ : α ⊢ (Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) = (Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂)) ∧ (Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) = (Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂)) [PROOFSTEP] simp [or_comm] [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop ⊢ ∀ {x y : α × α}, GameAdd rα (Quotient.mk (Rel.setoid α) x) (Quotient.mk (Rel.setoid α) y) ↔ Prod.GameAdd rα rα x y ∨ Prod.GameAdd rα rα (Prod.swap x) y [PROOFSTEP] rintro ⟨_, _⟩ ⟨_, _⟩ [GOAL] case mk.mk α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop fst✝¹ snd✝¹ fst✝ snd✝ : α ⊢ GameAdd rα (Quotient.mk (Rel.setoid α) (fst✝¹, snd✝¹)) (Quotient.mk (Rel.setoid α) (fst✝, snd✝)) ↔ Prod.GameAdd rα rα (fst✝¹, snd✝¹) (fst✝, snd✝) ∨ Prod.GameAdd rα rα (Prod.swap (fst✝¹, snd✝¹)) (fst✝, snd✝) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a₁ a₂ b : α h : rα a₁ a₂ ⊢ GameAdd rα (Quotient.mk (Rel.setoid α) (a₁, b)) (Quotient.mk (Rel.setoid α) (b, a₂)) [PROOFSTEP] rw [Sym2.eq_swap] [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a₁ a₂ b : α h : rα a₁ a₂ ⊢ GameAdd rα (Quotient.mk (Rel.setoid α) (b, a₁)) (Quotient.mk (Rel.setoid α) (b, a₂)) [PROOFSTEP] exact GameAdd.snd h [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a₁ a₂ b : α h : rα a₁ a₂ ⊢ GameAdd rα (Quotient.mk (Rel.setoid α) (b, a₁)) (Quotient.mk (Rel.setoid α) (a₂, b)) [PROOFSTEP] rw [Sym2.eq_swap] [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a₁ a₂ b : α h : rα a₁ a₂ ⊢ GameAdd rα (Quotient.mk (Rel.setoid α) (a₁, b)) (Quotient.mk (Rel.setoid α) (a₂, b)) [PROOFSTEP] exact GameAdd.fst h [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a b : α ha : Acc rα a hb : Acc rα b ⊢ Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, b)) [PROOFSTEP] induction' ha with a _ iha generalizing b [GOAL] case intro α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ b✝ : α hb✝ : Acc rα b✝ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b)) b : α hb : Acc rα b ⊢ Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, b)) [PROOFSTEP] induction' hb with b hb ihb [GOAL] case intro.intro α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ b✝¹ : α hb✝ : Acc rα b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b)) b✝ b : α hb : ∀ (y : α), rα y b → Acc rα y ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y)) ⊢ Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, b)) [PROOFSTEP] refine' Acc.intro _ fun s => _ [GOAL] case intro.intro α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ b✝¹ : α hb✝ : Acc rα b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b)) b✝ b : α hb : ∀ (y : α), rα y b → Acc rα y ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y)) s : Sym2 α ⊢ Sym2.GameAdd rα s (Quotient.mk (Sym2.Rel.setoid α) (a, b)) → Acc (Sym2.GameAdd rα) s [PROOFSTEP] induction' s using Sym2.inductionOn with c d [GOAL] case intro.intro.hf α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ b✝¹ : α hb✝ : Acc rα b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b)) b✝ b : α hb : ∀ (y : α), rα y b → Acc rα y ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y)) c d : α ⊢ Sym2.GameAdd rα (Quotient.mk (Sym2.Rel.setoid α) (c, d)) (Quotient.mk (Sym2.Rel.setoid α) (a, b)) → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (c, d)) [PROOFSTEP] rw [Sym2.GameAdd] [GOAL] case intro.intro.hf α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ b✝¹ : α hb✝ : Acc rα b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b)) b✝ b : α hb : ∀ (y : α), rα y b → Acc rα y ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y)) c d : α ⊢ ↑Sym2.lift₂ { val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂), property := (_ : ∀ (a₁ b₁ a₂ b₂ : α), (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁ a₂ b₂ ∧ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ b₂ a₂) } (Quotient.mk (Sym2.Rel.setoid α) (c, d)) (Quotient.mk (Sym2.Rel.setoid α) (a, b)) → Acc (↑Sym2.lift₂ { val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂), property := (_ : ∀ (a₁ b₁ a₂ b₂ : α), (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁ a₂ b₂ ∧ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ b₂ a₂) }) (Quotient.mk (Sym2.Rel.setoid α) (c, d)) [PROOFSTEP] dsimp [GOAL] case intro.intro.hf α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ b✝¹ : α hb✝ : Acc rα b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b)) b✝ b : α hb : ∀ (y : α), rα y b → Acc rα y ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y)) c d : α ⊢ Prod.GameAdd rα rα (c, d) (a, b) ∨ Prod.GameAdd rα rα (d, c) (a, b) → Acc (↑Sym2.lift₂ { val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂), property := (_ : ∀ (a₁ b₁ a₂ b₂ : α), (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁ a₂ b₂ ∧ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ b₂ a₂) }) (Quotient.mk (Sym2.Rel.setoid α) (c, d)) [PROOFSTEP] rintro ((rc | rd) | (rd | rc)) [GOAL] case intro.intro.hf.inl.fst α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ b✝¹ : α hb✝ : Acc rα b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b)) b✝ b : α hb : ∀ (y : α), rα y b → Acc rα y ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y)) c : α rc : rα c a ⊢ Acc (↑Sym2.lift₂ { val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂), property := (_ : ∀ (a₁ b₁ a₂ b₂ : α), (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁ a₂ b₂ ∧ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ b₂ a₂) }) (Quotient.mk (Sym2.Rel.setoid α) (c, b)) [PROOFSTEP] exact iha c rc ⟨b, hb⟩ [GOAL] case intro.intro.hf.inl.snd α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ b✝¹ : α hb✝ : Acc rα b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b)) b✝ b : α hb : ∀ (y : α), rα y b → Acc rα y ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y)) d : α rd : rα d b ⊢ Acc (↑Sym2.lift₂ { val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂), property := (_ : ∀ (a₁ b₁ a₂ b₂ : α), (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁ a₂ b₂ ∧ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ b₂ a₂) }) (Quotient.mk (Sym2.Rel.setoid α) (a, d)) [PROOFSTEP] exact ihb d rd [GOAL] case intro.intro.hf.inr.fst α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ b✝¹ : α hb✝ : Acc rα b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b)) b✝ b : α hb : ∀ (y : α), rα y b → Acc rα y ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y)) d : α rd : rα d a ⊢ Acc (↑Sym2.lift₂ { val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂), property := (_ : ∀ (a₁ b₁ a₂ b₂ : α), (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁ a₂ b₂ ∧ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ b₂ a₂) }) (Quotient.mk (Sym2.Rel.setoid α) (b, d)) [PROOFSTEP] rw [Sym2.eq_swap] [GOAL] case intro.intro.hf.inr.fst α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ b✝¹ : α hb✝ : Acc rα b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b)) b✝ b : α hb : ∀ (y : α), rα y b → Acc rα y ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y)) d : α rd : rα d a ⊢ Acc (↑Sym2.lift₂ { val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂), property := (_ : ∀ (a₁ b₁ a₂ b₂ : α), (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁ a₂ b₂ ∧ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ b₂ a₂) }) (Quotient.mk (Sym2.Rel.setoid α) (d, b)) [PROOFSTEP] exact iha d rd ⟨b, hb⟩ [GOAL] case intro.intro.hf.inr.snd α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ b✝¹ : α hb✝ : Acc rα b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b)) b✝ b : α hb : ∀ (y : α), rα y b → Acc rα y ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y)) c : α rc : rα c b ⊢ Acc (↑Sym2.lift₂ { val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂), property := (_ : ∀ (a₁ b₁ a₂ b₂ : α), (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁ a₂ b₂ ∧ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ b₂ a₂) }) (Quotient.mk (Sym2.Rel.setoid α) (c, a)) [PROOFSTEP] rw [Sym2.eq_swap] [GOAL] case intro.intro.hf.inr.snd α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop a✝ b✝¹ : α hb✝ : Acc rα b✝¹ a : α h✝ : ∀ (y : α), rα y a → Acc rα y iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b)) b✝ b : α hb : ∀ (y : α), rα y b → Acc rα y ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y)) c : α rc : rα c b ⊢ Acc (↑Sym2.lift₂ { val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂), property := (_ : ∀ (a₁ b₁ a₂ b₂ : α), (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁ a₂ b₂ ∧ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ b₂ a₂) }) (Quotient.mk (Sym2.Rel.setoid α) (a, c)) [PROOFSTEP] exact ihb c rc [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop C : α → α → Sort u_3 hr : WellFounded rα IH : (a₁ b₁ : α) → ((a₂ b₂ : α) → GameAdd rα (Quotient.mk (Rel.setoid α) (a₂, b₂)) (Quotient.mk (Rel.setoid α) (a₁, b₁)) → C a₂ b₂) → C a₁ b₁ a b : α ⊢ C a b [PROOFSTEP] have := hr.sym2_gameAdd [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop C : α → α → Sort u_3 hr : WellFounded rα IH : (a₁ b₁ : α) → ((a₂ b₂ : α) → GameAdd rα (Quotient.mk (Rel.setoid α) (a₂, b₂)) (Quotient.mk (Rel.setoid α) (a₁, b₁)) → C a₂ b₂) → C a₁ b₁ a b : α this : WellFounded (GameAdd rα) ⊢ C a b [PROOFSTEP] dsimp only [GameAdd, lift₂, FunLike.coe, EquivLike.coe] at this [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop C : α → α → Sort u_3 hr : WellFounded rα IH : (a₁ b₁ : α) → ((a₂ b₂ : α) → GameAdd rα (Quotient.mk (Rel.setoid α) (a₂, b₂)) (Quotient.mk (Rel.setoid α) (a₁, b₁)) → C a₂ b₂) → C a₁ b₁ a b : α this : WellFounded (Quotient.lift₂ (fun a b => Prod.GameAdd rα rα (a.fst, a.snd) (b.fst, b.snd) ∨ Prod.GameAdd rα rα (a.snd, a.fst) (b.fst, b.snd)) (_ : ∀ (a₁ b₁ a₂ b₂ : α × α), a₁ ≈ a₂ → b₁ ≈ b₂ → (fun a b => ↑{ val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂), property := (_ : ∀ (a₁ b₁ a₂ b₂ : α), (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁ a₂ b₂ ∧ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ b₂ a₂) } a.fst a.snd b.fst b.snd) a₁ b₁ = (fun a b => ↑{ val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂), property := (_ : ∀ (a₁ b₁ a₂ b₂ : α), (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁ a₂ b₂ ∧ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ = (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ b₂ a₂) } a.fst a.snd b.fst b.snd) a₂ b₂)) ⊢ C a b [PROOFSTEP] exact @WellFounded.fix (α × α) (fun x => C x.1 x.2) _ this.of_quotient_lift₂ (fun ⟨x₁, x₂⟩ IH' => IH x₁ x₂ fun a' b' => IH' ⟨a', b'⟩) (a, b) [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop C : α → α → Sort u_3 hr : WellFounded rα IH : (a₁ b₁ : α) → ((a₂ b₂ : α) → GameAdd rα (Quotient.mk (Rel.setoid α) (a₂, b₂)) (Quotient.mk (Rel.setoid α) (a₁, b₁)) → C a₂ b₂) → C a₁ b₁ a b : α ⊢ fix hr IH a b = IH a b fun a' b' x => fix hr IH a' b' [PROOFSTEP] dsimp [GameAdd.fix] [GOAL] α : Type u_1 β : Type u_2 rα : α → α → Prop rβ : β → β → Prop C : α → α → Sort u_3 hr : WellFounded rα IH : (a₁ b₁ : α) → ((a₂ b₂ : α) → GameAdd rα (Quotient.mk (Rel.setoid α) (a₂, b₂)) (Quotient.mk (Rel.setoid α) (a₁, b₁)) → C a₂ b₂) → C a₁ b₁ a b : α ⊢ WellFounded.fix (_ : WellFounded fun a b => Prod.GameAdd rα rα (a.fst, a.snd) (b.fst, b.snd) ∨ Prod.GameAdd rα rα (a.snd, a.fst) (b.fst, b.snd)) (fun x IH' => IH x.fst x.snd fun a' b' => IH' (a', b')) (a, b) = IH a b fun a' b' x => WellFounded.fix (_ : WellFounded fun a b => Prod.GameAdd rα rα (a.fst, a.snd) (b.fst, b.snd) ∨ Prod.GameAdd rα rα (a.snd, a.fst) (b.fst, b.snd)) (fun x IH' => IH x.fst x.snd fun a' b' => IH' (a', b')) (a', b') [PROOFSTEP] exact WellFounded.fix_eq _ _ _
{"mathlib_filename": "Mathlib.Order.GameAdd", "llama_tokens": 14466}
[GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a✝ b✝ c d a b : α ⊢ min a b = a ∧ a ≤ b ∨ min a b = b ∧ b < a [PROOFSTEP] by_cases h : a ≤ b [GOAL] case pos α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a✝ b✝ c d a b : α h : a ≤ b ⊢ min a b = a ∧ a ≤ b ∨ min a b = b ∧ b < a [PROOFSTEP] left [GOAL] case pos.h α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a✝ b✝ c d a b : α h : a ≤ b ⊢ min a b = a ∧ a ≤ b [PROOFSTEP] exact ⟨min_eq_left h, h⟩ [GOAL] case neg α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a✝ b✝ c d a b : α h : ¬a ≤ b ⊢ min a b = a ∧ a ≤ b ∨ min a b = b ∧ b < a [PROOFSTEP] right [GOAL] case neg.h α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a✝ b✝ c d a b : α h : ¬a ≤ b ⊢ min a b = b ∧ b < a [PROOFSTEP] exact ⟨min_eq_right (le_of_lt (not_le.mp h)), not_le.mp h⟩ [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α ⊢ min a b = c ↔ a = c ∧ a ≤ b ∨ b = c ∧ b ≤ a [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α ⊢ min a b = c → a = c ∧ a ≤ b ∨ b = c ∧ b ≤ a [PROOFSTEP] intro h [GOAL] case mp α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α h : min a b = c ⊢ a = c ∧ a ≤ b ∨ b = c ∧ b ≤ a [PROOFSTEP] refine' Or.imp (fun h' => _) (fun h' => _) (le_total a b) [GOAL] case mp.refine'_1 α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α h : min a b = c h' : a ≤ b ⊢ a = c ∧ a ≤ b [PROOFSTEP] exact ⟨by simpa [h'] using h, h'⟩ [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α h : min a b = c h' : a ≤ b ⊢ a = c [PROOFSTEP] simpa [h'] using h [GOAL] case mp.refine'_2 α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α h : min a b = c h' : b ≤ a ⊢ b = c ∧ b ≤ a [PROOFSTEP] exact ⟨by simpa [h'] using h, h'⟩ [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α h : min a b = c h' : b ≤ a ⊢ b = c [PROOFSTEP] simpa [h'] using h [GOAL] case mpr α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α ⊢ a = c ∧ a ≤ b ∨ b = c ∧ b ≤ a → min a b = c [PROOFSTEP] rintro (⟨rfl, h⟩ | ⟨rfl, h⟩) [GOAL] case mpr.inl.intro α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b d : α h : a ≤ b ⊢ min a b = a [PROOFSTEP] simp [h] [GOAL] case mpr.inr.intro α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b d : α h : b ≤ a ⊢ min a b = b [PROOFSTEP] simp [h] [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α ⊢ min a c < min b c ↔ a < b ∧ a < c [PROOFSTEP] simp_rw [lt_min_iff, min_lt_iff, or_iff_left (lt_irrefl _)] [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α ⊢ (a < b ∨ c < b) ∧ a < c ↔ a < b ∧ a < c [PROOFSTEP] exact and_congr_left fun h => or_iff_left_of_imp h.trans [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α ⊢ min a b < min a c ↔ b < c ∧ b < a [PROOFSTEP] simp_rw [min_comm a, min_lt_min_left_iff] [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α ⊢ ∀ (a : α), max a a = a [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α ⊢ ∀ (a : α), min a a = a [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α hf : MonotoneOn f s ha : a ∈ s hb : b ∈ s ⊢ f (max a b) = max (f a) (f b) [PROOFSTEP] cases' le_total a b with h h [GOAL] case inl α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α hf : MonotoneOn f s ha : a ∈ s hb : b ∈ s h : a ≤ b ⊢ f (max a b) = max (f a) (f b) [PROOFSTEP] simp only [max_eq_right, max_eq_left, hf ha hb, hf hb ha, h] [GOAL] case inr α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α hf : MonotoneOn f s ha : a ∈ s hb : b ∈ s h : b ≤ a ⊢ f (max a b) = max (f a) (f b) [PROOFSTEP] simp only [max_eq_right, max_eq_left, hf ha hb, hf hb ha, h] [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α hf : Monotone f ⊢ f (max a b) = max (f a) (f b) [PROOFSTEP] cases' le_total a b with h h [GOAL] case inl α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α hf : Monotone f h : a ≤ b ⊢ f (max a b) = max (f a) (f b) [PROOFSTEP] simp [h, hf h] [GOAL] case inr α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α hf : Monotone f h : b ≤ a ⊢ f (max a b) = max (f a) (f b) [PROOFSTEP] simp [h, hf h] [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α hf : Antitone f ⊢ f (max a b) = min (f a) (f b) [PROOFSTEP] cases' le_total a b with h h [GOAL] case inl α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α hf : Antitone f h : a ≤ b ⊢ f (max a b) = min (f a) (f b) [PROOFSTEP] simp [h, hf h] [GOAL] case inr α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a b c d : α hf : Antitone f h : b ≤ a ⊢ f (max a b) = min (f a) (f b) [PROOFSTEP] simp [h, hf h] [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a✝ b✝ c d a b : α ⊢ min a b = a ∨ min a b = b [PROOFSTEP] cases le_total a b [GOAL] case inl α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a✝ b✝ c d a b : α h✝ : a ≤ b ⊢ min a b = a ∨ min a b = b [PROOFSTEP] simp [*] [GOAL] case inr α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β s : Set α a✝ b✝ c d a b : α h✝ : b ≤ a ⊢ min a b = a ∨ min a b = b [PROOFSTEP] simp [*]
{"mathlib_filename": "Mathlib.Order.MinMax", "llama_tokens": 3352}
[GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f g : M ↪ₑ[L] N h : (fun f => ↑f) f = (fun f => ↑f) g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q g : M ↪ₑ[L] N toFun✝ : M → N map_formula'✝ : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝ ∘ x) ↔ Formula.Realize φ x h : (fun f => ↑f) (mk toFun✝) = (fun f => ↑f) g ⊢ mk toFun✝ = g [PROOFSTEP] cases g [GOAL] case mk.mk L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q toFun✝¹ : M → N map_formula'✝¹ : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝¹ ∘ x) ↔ Formula.Realize φ x toFun✝ : M → N map_formula'✝ : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝ ∘ x) ↔ Formula.Realize φ x h : (fun f => ↑f) (mk toFun✝¹) = (fun f => ↑f) (mk toFun✝) ⊢ mk toFun✝¹ = mk toFun✝ [PROOFSTEP] simp only [ElementaryEmbedding.mk.injEq] [GOAL] case mk.mk L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q toFun✝¹ : M → N map_formula'✝¹ : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝¹ ∘ x) ↔ Formula.Realize φ x toFun✝ : M → N map_formula'✝ : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝ ∘ x) ↔ Formula.Realize φ x h : (fun f => ↑f) (mk toFun✝¹) = (fun f => ↑f) (mk toFun✝) ⊢ toFun✝¹ = toFun✝ [PROOFSTEP] ext x [GOAL] case mk.mk.h L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q toFun✝¹ : M → N map_formula'✝¹ : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝¹ ∘ x) ↔ Formula.Realize φ x toFun✝ : M → N map_formula'✝ : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝ ∘ x) ↔ Formula.Realize φ x h : (fun f => ↑f) (mk toFun✝¹) = (fun f => ↑f) (mk toFun✝) x : M ⊢ toFun✝¹ x = toFun✝ x [PROOFSTEP] exact Function.funext_iff.1 h x [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪ₑ[L] N α : Type u_5 n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M ⊢ BoundedFormula.Realize φ (↑f ∘ v) (↑f ∘ xs) ↔ BoundedFormula.Realize φ v xs [PROOFSTEP] classical rw [← BoundedFormula.realize_restrictFreeVar Set.Subset.rfl, Set.inclusion_eq_id, iff_eq_eq] have h := f.map_formula' ((φ.restrictFreeVar id).toFormula.relabel (Fintype.equivFin _)) (Sum.elim (v ∘ (↑)) xs ∘ (Fintype.equivFin _).symm) simp only [Formula.realize_relabel, BoundedFormula.realize_toFormula, iff_eq_eq] at h rw [← Function.comp.assoc _ _ (Fintype.equivFin _).symm, Function.comp.assoc _ (Fintype.equivFin _).symm (Fintype.equivFin _), Equiv.symm_comp_self, Function.comp.right_id, Function.comp.assoc, Sum.elim_comp_inl, Function.comp.assoc _ _ Sum.inr, Sum.elim_comp_inr, ← Function.comp.assoc] at h refine' h.trans _ erw [Function.comp.assoc _ _ (Fintype.equivFin _), Equiv.symm_comp_self, Function.comp.right_id, Sum.elim_comp_inl, Sum.elim_comp_inr (v ∘ Subtype.val) xs, ← Set.inclusion_eq_id (s := (BoundedFormula.freeVarFinset φ : Set α)) Set.Subset.rfl, BoundedFormula.realize_restrictFreeVar Set.Subset.rfl] [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪ₑ[L] N α : Type u_5 n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M ⊢ BoundedFormula.Realize φ (↑f ∘ v) (↑f ∘ xs) ↔ BoundedFormula.Realize φ v xs [PROOFSTEP] rw [← BoundedFormula.realize_restrictFreeVar Set.Subset.rfl, Set.inclusion_eq_id, iff_eq_eq] [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪ₑ[L] N α : Type u_5 n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M ⊢ BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) ((↑f ∘ v) ∘ Subtype.val) (↑f ∘ xs) = BoundedFormula.Realize φ v xs [PROOFSTEP] have h := f.map_formula' ((φ.restrictFreeVar id).toFormula.relabel (Fintype.equivFin _)) (Sum.elim (v ∘ (↑)) xs ∘ (Fintype.equivFin _).symm) [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪ₑ[L] N α : Type u_5 n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M h : Formula.Realize (Formula.relabel (↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) (BoundedFormula.toFormula (BoundedFormula.restrictFreeVar φ id))) (↑f ∘ Sum.elim (v ∘ Subtype.val) xs ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ↔ Formula.Realize (Formula.relabel (↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) (BoundedFormula.toFormula (BoundedFormula.restrictFreeVar φ id))) (Sum.elim (v ∘ Subtype.val) xs ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ⊢ BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) ((↑f ∘ v) ∘ Subtype.val) (↑f ∘ xs) = BoundedFormula.Realize φ v xs [PROOFSTEP] simp only [Formula.realize_relabel, BoundedFormula.realize_toFormula, iff_eq_eq] at h [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪ₑ[L] N α : Type u_5 n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M h : BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) (((↑f ∘ Sum.elim (v ∘ Subtype.val) xs ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘ Sum.inl) (((↑f ∘ Sum.elim (v ∘ Subtype.val) xs ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘ Sum.inr) = BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) (((Sum.elim (v ∘ Subtype.val) xs ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘ Sum.inl) (((Sum.elim (v ∘ Subtype.val) xs ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘ Sum.inr) ⊢ BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) ((↑f ∘ v) ∘ Subtype.val) (↑f ∘ xs) = BoundedFormula.Realize φ v xs [PROOFSTEP] rw [← Function.comp.assoc _ _ (Fintype.equivFin _).symm, Function.comp.assoc _ (Fintype.equivFin _).symm (Fintype.equivFin _), Equiv.symm_comp_self, Function.comp.right_id, Function.comp.assoc, Sum.elim_comp_inl, Function.comp.assoc _ _ Sum.inr, Sum.elim_comp_inr, ← Function.comp.assoc] at h [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪ₑ[L] N α : Type u_5 n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M h : BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) ((↑f ∘ v) ∘ Subtype.val) (↑f ∘ xs) = BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) (((Sum.elim (v ∘ Subtype.val) xs ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘ Sum.inl) (((Sum.elim (v ∘ Subtype.val) xs ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘ Sum.inr) ⊢ BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) ((↑f ∘ v) ∘ Subtype.val) (↑f ∘ xs) = BoundedFormula.Realize φ v xs [PROOFSTEP] refine' h.trans _ [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪ₑ[L] N α : Type u_5 n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M h : BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) ((↑f ∘ v) ∘ Subtype.val) (↑f ∘ xs) = BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) (((Sum.elim (v ∘ Subtype.val) xs ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘ Sum.inl) (((Sum.elim (v ∘ Subtype.val) xs ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘ Sum.inr) ⊢ BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) (((Sum.elim (v ∘ Subtype.val) xs ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘ Sum.inl) (((Sum.elim (v ∘ Subtype.val) xs ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘ Sum.inr) = BoundedFormula.Realize φ v xs [PROOFSTEP] erw [Function.comp.assoc _ _ (Fintype.equivFin _), Equiv.symm_comp_self, Function.comp.right_id, Sum.elim_comp_inl, Sum.elim_comp_inr (v ∘ Subtype.val) xs, ← Set.inclusion_eq_id (s := (BoundedFormula.freeVarFinset φ : Set α)) Set.Subset.rfl, BoundedFormula.realize_restrictFreeVar Set.Subset.rfl] [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪ₑ[L] N α : Type u_5 φ : Formula L α x : α → M ⊢ Formula.Realize φ (↑f ∘ x) ↔ Formula.Realize φ x [PROOFSTEP] rw [Formula.Realize, Formula.Realize, ← f.map_boundedFormula, Unique.eq_default (f ∘ default)] [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪ₑ[L] N φ : Sentence L ⊢ M ⊨ φ ↔ N ⊨ φ [PROOFSTEP] rw [Sentence.Realize, Sentence.Realize, ← f.map_formula, Unique.eq_default (f ∘ default)] [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪ₑ[L] N T : Theory L ⊢ M ⊨ T ↔ N ⊨ T [PROOFSTEP] simp only [Theory.model_iff, f.map_sentence] [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q φ : M ↪ₑ[L] N ⊢ Function.Injective ↑φ [PROOFSTEP] intro x y [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q φ : M ↪ₑ[L] N x y : M ⊢ ↑φ x = ↑φ y → x = y [PROOFSTEP] have h := φ.map_formula ((var 0).equal (var 1) : L.Formula (Fin 2)) fun i => if i = 0 then x else y [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q φ : M ↪ₑ[L] N x y : M h : Formula.Realize (Term.equal (var 0) (var 1)) (↑φ ∘ fun i => if i = 0 then x else y) ↔ Formula.Realize (Term.equal (var 0) (var 1)) fun i => if i = 0 then x else y ⊢ ↑φ x = ↑φ y → x = y [PROOFSTEP] rw [Formula.realize_equal, Formula.realize_equal] at h [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q φ : M ↪ₑ[L] N x y : M h : Term.realize (↑φ ∘ fun i => if i = 0 then x else y) (var 0) = Term.realize (↑φ ∘ fun i => if i = 0 then x else y) (var 1) ↔ Term.realize (fun i => if i = 0 then x else y) (var 0) = Term.realize (fun i => if i = 0 then x else y) (var 1) ⊢ ↑φ x = ↑φ y → x = y [PROOFSTEP] simp only [Nat.one_ne_zero, Term.realize, Fin.one_eq_zero_iff, if_true, eq_self_iff_true, Function.comp_apply, if_false] at h [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q φ : M ↪ₑ[L] N x y : M h : ↑φ x = ↑φ y ↔ x = y ⊢ ↑φ x = ↑φ y → x = y [PROOFSTEP] exact h.1 [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q φ : M ↪ₑ[L] N n : ℕ f : Functions L n x : Fin n → M ⊢ ↑φ (funMap f x) = funMap f (↑φ ∘ x) [PROOFSTEP] have h := φ.map_formula (Formula.graph f) (Fin.cons (funMap f x) x) [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q φ : M ↪ₑ[L] N n : ℕ f : Functions L n x : Fin n → M h : Formula.Realize (Formula.graph f) (↑φ ∘ Fin.cons (funMap f x) x) ↔ Formula.Realize (Formula.graph f) (Fin.cons (funMap f x) x) ⊢ ↑φ (funMap f x) = funMap f (↑φ ∘ x) [PROOFSTEP] rw [Formula.realize_graph, Fin.comp_cons, Formula.realize_graph] at h [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q φ : M ↪ₑ[L] N n : ℕ f : Functions L n x : Fin n → M h : funMap f (↑φ ∘ x) = ↑φ (funMap f x) ↔ funMap f x = funMap f x ⊢ ↑φ (funMap f x) = funMap f (↑φ ∘ x) [PROOFSTEP] rw [eq_comm, h] [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f✝ : M ↪ₑ[L] N x✝ : ℕ f : Functions L x✝ x : Fin x✝ → M ⊢ Function.Embedding.toFun { toFun := ↑f✝, inj' := (_ : Function.Injective ↑f✝) } (funMap f x) = funMap f ({ toFun := ↑f✝, inj' := (_ : Function.Injective ↑f✝) }.toFun ∘ x) [PROOFSTEP] aesop [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪ₑ[L] N x✝ : ℕ R : Relations L x✝ x : Fin x✝ → M ⊢ RelMap R ({ toFun := ↑f, inj' := (_ : Function.Injective ↑f) }.toFun ∘ x) ↔ RelMap R x [PROOFSTEP] aesop [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f✝ : M ↪ₑ[L] N x✝ : ℕ f : Functions L x✝ x : Fin x✝ → M ⊢ ↑f✝ (funMap f x) = funMap f (↑f✝ ∘ x) [PROOFSTEP] aesop [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪ₑ[L] N x✝ : ℕ R : Relations L x✝ x : Fin x✝ → M ⊢ RelMap R x → RelMap R (↑f ∘ x) [PROOFSTEP] aesop [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q hnp : N ↪ₑ[L] P hmn : M ↪ₑ[L] N n : ℕ φ : Formula L (Fin n) x : Fin n → M ⊢ Formula.Realize φ ((↑hnp ∘ ↑hmn) ∘ x) ↔ Formula.Realize φ x [PROOFSTEP] cases' hnp with _ hhnp [GOAL] case mk L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q hmn : M ↪ₑ[L] N n : ℕ φ : Formula L (Fin n) x : Fin n → M toFun✝ : N → P hhnp : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → N), Formula.Realize φ (toFun✝ ∘ x) ↔ Formula.Realize φ x ⊢ Formula.Realize φ ((↑(mk toFun✝) ∘ ↑hmn) ∘ x) ↔ Formula.Realize φ x [PROOFSTEP] cases' hmn with _ hhmn [GOAL] case mk.mk L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q n : ℕ φ : Formula L (Fin n) x : Fin n → M toFun✝¹ : N → P hhnp : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → N), Formula.Realize φ (toFun✝¹ ∘ x) ↔ Formula.Realize φ x toFun✝ : M → N hhmn : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝ ∘ x) ↔ Formula.Realize φ x ⊢ Formula.Realize φ ((↑(mk toFun✝¹) ∘ ↑(mk toFun✝)) ∘ x) ↔ Formula.Realize φ x [PROOFSTEP] erw [hhnp, hhmn] [GOAL] L : Language M : Type u_1 N✝ : Type u_2 P : Type u_3 Q : Type u_4 inst✝⁷ : Structure L M inst✝⁶ : Structure L N✝ inst✝⁵ : Structure L P inst✝⁴ : Structure L Q N : Type u_5 inst✝³ : Structure L N inst✝² : Structure (L[[M]]) N inst✝¹ : LHom.IsExpansionOn (lhomWithConstants L M) N inst✝ : N ⊨ elementaryDiagram L M n : ℕ φ : Formula L (Fin n) x : Fin n → M ⊢ Formula.Realize φ ((constantMap ∘ Sum.inr) ∘ x) ↔ Formula.Realize φ x [PROOFSTEP] refine' _root_.trans _ ((realize_iff_of_model_completeTheory M N (((L.lhomWithConstants M).onBoundedFormula φ).subst (Constants.term ∘ Sum.inr ∘ x)).alls).trans _) [GOAL] case refine'_1 L : Language M : Type u_1 N✝ : Type u_2 P : Type u_3 Q : Type u_4 inst✝⁷ : Structure L M inst✝⁶ : Structure L N✝ inst✝⁵ : Structure L P inst✝⁴ : Structure L Q N : Type u_5 inst✝³ : Structure L N inst✝² : Structure (L[[M]]) N inst✝¹ : LHom.IsExpansionOn (lhomWithConstants L M) N inst✝ : N ⊨ elementaryDiagram L M n : ℕ φ : Formula L (Fin n) x : Fin n → M ⊢ Formula.Realize φ ((constantMap ∘ Sum.inr) ∘ x) ↔ N ⊨ BoundedFormula.alls (BoundedFormula.subst (LHom.onBoundedFormula (lhomWithConstants L M) φ) (Constants.term ∘ Sum.inr ∘ x)) [PROOFSTEP] simp_rw [Sentence.Realize, BoundedFormula.realize_alls, BoundedFormula.realize_subst, LHom.realize_onBoundedFormula, Formula.Realize, Unique.forall_iff, Function.comp, Term.realize_constants] [GOAL] case refine'_2 L : Language M : Type u_1 N✝ : Type u_2 P : Type u_3 Q : Type u_4 inst✝⁷ : Structure L M inst✝⁶ : Structure L N✝ inst✝⁵ : Structure L P inst✝⁴ : Structure L Q N : Type u_5 inst✝³ : Structure L N inst✝² : Structure (L[[M]]) N inst✝¹ : LHom.IsExpansionOn (lhomWithConstants L M) N inst✝ : N ⊨ elementaryDiagram L M n : ℕ φ : Formula L (Fin n) x : Fin n → M ⊢ M ⊨ BoundedFormula.alls (BoundedFormula.subst (LHom.onBoundedFormula (lhomWithConstants L M) φ) (Constants.term ∘ Sum.inr ∘ x)) ↔ Formula.Realize φ x [PROOFSTEP] simp_rw [Sentence.Realize, BoundedFormula.realize_alls, BoundedFormula.realize_subst, LHom.realize_onBoundedFormula, Formula.Realize, Unique.forall_iff] [GOAL] case refine'_2 L : Language M : Type u_1 N✝ : Type u_2 P : Type u_3 Q : Type u_4 inst✝⁷ : Structure L M inst✝⁶ : Structure L N✝ inst✝⁵ : Structure L P inst✝⁴ : Structure L Q N : Type u_5 inst✝³ : Structure L N inst✝² : Structure (L[[M]]) N inst✝¹ : LHom.IsExpansionOn (lhomWithConstants L M) N inst✝ : N ⊨ elementaryDiagram L M n : ℕ φ : Formula L (Fin n) x : Fin n → M ⊢ BoundedFormula.Realize φ (fun a => Term.realize default ((Constants.term ∘ Sum.inr ∘ x) a)) default ↔ BoundedFormula.Realize φ x default [PROOFSTEP] rfl [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) ⊢ ∀ {n : ℕ} (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (↑f ∘ x) ↔ Formula.Realize φ x [PROOFSTEP] suffices h : ∀ (n : ℕ) (φ : L.BoundedFormula Empty n) (xs : Fin n → M), φ.Realize (f ∘ default) (f ∘ xs) ↔ φ.Realize default xs [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) h : ∀ (n : ℕ) (φ : BoundedFormula L Empty n) (xs : Fin n → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs ⊢ ∀ {n : ℕ} (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (↑f ∘ x) ↔ Formula.Realize φ x [PROOFSTEP] intro n φ x [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) h : ∀ (n : ℕ) (φ : BoundedFormula L Empty n) (xs : Fin n → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs n : ℕ φ : Formula L (Fin n) x : Fin n → M ⊢ Formula.Realize φ (↑f ∘ x) ↔ Formula.Realize φ x [PROOFSTEP] refine' φ.realize_relabel_sum_inr.symm.trans (_root_.trans (h n _ _) φ.realize_relabel_sum_inr) [GOAL] case h L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) ⊢ ∀ (n : ℕ) (φ : BoundedFormula L Empty n) (xs : Fin n → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs [PROOFSTEP] refine' fun n φ => φ.recOn _ _ _ _ _ [GOAL] case h.refine'_1 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n : ℕ φ : BoundedFormula L Empty n ⊢ ∀ {n : ℕ} (xs : Fin n → M), BoundedFormula.Realize BoundedFormula.falsum (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize BoundedFormula.falsum default xs [PROOFSTEP] exact fun {_} _ => Iff.rfl [GOAL] case h.refine'_2 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n : ℕ φ : BoundedFormula L Empty n ⊢ ∀ {n : ℕ} (t₁ t₂ : Term L (Empty ⊕ Fin n)) (xs : Fin n → M), BoundedFormula.Realize (BoundedFormula.equal t₁ t₂) (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize (BoundedFormula.equal t₁ t₂) default xs [PROOFSTEP] intros [GOAL] case h.refine'_2 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n : ℕ φ : BoundedFormula L Empty n n✝ : ℕ t₁✝ t₂✝ : Term L (Empty ⊕ Fin n✝) xs✝ : Fin n✝ → M ⊢ BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) (↑f ∘ default) (↑f ∘ xs✝) ↔ BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) default xs✝ [PROOFSTEP] simp [BoundedFormula.Realize, ← Sum.comp_elim, Embedding.realize_term] [GOAL] case h.refine'_3 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n : ℕ φ : BoundedFormula L Empty n ⊢ ∀ {n l : ℕ} (R : Relations L l) (ts : Fin l → Term L (Empty ⊕ Fin n)) (xs : Fin n → M), BoundedFormula.Realize (BoundedFormula.rel R ts) (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize (BoundedFormula.rel R ts) default xs [PROOFSTEP] intros [GOAL] case h.refine'_3 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n : ℕ φ : BoundedFormula L Empty n n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (Empty ⊕ Fin n✝) xs✝ : Fin n✝ → M ⊢ BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) (↑f ∘ default) (↑f ∘ xs✝) ↔ BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) default xs✝ [PROOFSTEP] simp [BoundedFormula.Realize, ← Sum.comp_elim, Embedding.realize_term] [GOAL] case h.refine'_3 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n : ℕ φ : BoundedFormula L Empty n n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (Empty ⊕ Fin n✝) xs✝ : Fin n✝ → M ⊢ (RelMap R✝ fun i => ↑f (Term.realize (Sum.elim default xs✝) (ts✝ i))) ↔ RelMap R✝ fun i => Term.realize (Sum.elim default xs✝) (ts✝ i) [PROOFSTEP] erw [map_rel f] [GOAL] case h.refine'_4 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n : ℕ φ : BoundedFormula L Empty n ⊢ ∀ {n : ℕ} (f₁ f₂ : BoundedFormula L Empty n), (∀ (xs : Fin n → M), BoundedFormula.Realize f₁ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize f₁ default xs) → (∀ (xs : Fin n → M), BoundedFormula.Realize f₂ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize f₂ default xs) → ∀ (xs : Fin n → M), BoundedFormula.Realize (f₁ ⟹ f₂) (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize (f₁ ⟹ f₂) default xs [PROOFSTEP] intro _ _ _ ih1 ih2 _ [GOAL] case h.refine'_4 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n : ℕ φ : BoundedFormula L Empty n n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L Empty n✝ ih1 : ∀ (xs : Fin n✝ → M), BoundedFormula.Realize f₁✝ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize f₁✝ default xs ih2 : ∀ (xs : Fin n✝ → M), BoundedFormula.Realize f₂✝ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize f₂✝ default xs xs✝ : Fin n✝ → M ⊢ BoundedFormula.Realize (f₁✝ ⟹ f₂✝) (↑f ∘ default) (↑f ∘ xs✝) ↔ BoundedFormula.Realize (f₁✝ ⟹ f₂✝) default xs✝ [PROOFSTEP] simp [ih1, ih2] [GOAL] case h.refine'_5 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n : ℕ φ : BoundedFormula L Empty n ⊢ ∀ {n : ℕ} (f_1 : BoundedFormula L Empty (n + 1)), (∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize f_1 (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize f_1 default xs) → ∀ (xs : Fin n → M), BoundedFormula.Realize (∀'f_1) (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize (∀'f_1) default xs [PROOFSTEP] intro n φ ih xs [GOAL] case h.refine'_5 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n✝ : ℕ φ✝ : BoundedFormula L Empty n✝ n : ℕ φ : BoundedFormula L Empty (n + 1) ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs xs : Fin n → M ⊢ BoundedFormula.Realize (∀'φ) (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize (∀'φ) default xs [PROOFSTEP] simp only [BoundedFormula.realize_all] [GOAL] case h.refine'_5 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n✝ : ℕ φ✝ : BoundedFormula L Empty n✝ n : ℕ φ : BoundedFormula L Empty (n + 1) ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs xs : Fin n → M ⊢ (∀ (a : N), BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a)) ↔ ∀ (a : M), BoundedFormula.Realize φ default (Fin.snoc xs a) [PROOFSTEP] refine' ⟨fun h a => _, _⟩ [GOAL] case h.refine'_5.refine'_1 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n✝ : ℕ φ✝ : BoundedFormula L Empty n✝ n : ℕ φ : BoundedFormula L Empty (n + 1) ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs xs : Fin n → M h : ∀ (a : N), BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a) a : M ⊢ BoundedFormula.Realize φ default (Fin.snoc xs a) [PROOFSTEP] rw [← ih, Fin.comp_snoc] [GOAL] case h.refine'_5.refine'_1 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n✝ : ℕ φ✝ : BoundedFormula L Empty n✝ n : ℕ φ : BoundedFormula L Empty (n + 1) ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs xs : Fin n → M h : ∀ (a : N), BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a) a : M ⊢ BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) (↑f a)) [PROOFSTEP] exact h (f a) [GOAL] case h.refine'_5.refine'_2 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n✝ : ℕ φ✝ : BoundedFormula L Empty n✝ n : ℕ φ : BoundedFormula L Empty (n + 1) ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs xs : Fin n → M ⊢ (∀ (a : M), BoundedFormula.Realize φ default (Fin.snoc xs a)) → ∀ (a : N), BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a) [PROOFSTEP] contrapose! [GOAL] case h.refine'_5.refine'_2 L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n✝ : ℕ φ✝ : BoundedFormula L Empty n✝ n : ℕ φ : BoundedFormula L Empty (n + 1) ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs xs : Fin n → M ⊢ (∃ a, ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a)) → ∃ a, ¬BoundedFormula.Realize φ default (Fin.snoc xs a) [PROOFSTEP] rintro ⟨a, ha⟩ [GOAL] case h.refine'_5.refine'_2.intro L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n✝ : ℕ φ✝ : BoundedFormula L Empty n✝ n : ℕ φ : BoundedFormula L Empty (n + 1) ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs xs : Fin n → M a : N ha : ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a) ⊢ ∃ a, ¬BoundedFormula.Realize φ default (Fin.snoc xs a) [PROOFSTEP] obtain ⟨b, hb⟩ := htv n φ.not xs a (by rw [BoundedFormula.realize_not, ← Unique.eq_default (f ∘ default)] exact ha) [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n✝ : ℕ φ✝ : BoundedFormula L Empty n✝ n : ℕ φ : BoundedFormula L Empty (n + 1) ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs xs : Fin n → M a : N ha : ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a) ⊢ BoundedFormula.Realize (∼φ) default (Fin.snoc (↑f ∘ xs) a) [PROOFSTEP] rw [BoundedFormula.realize_not, ← Unique.eq_default (f ∘ default)] [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n✝ : ℕ φ✝ : BoundedFormula L Empty n✝ n : ℕ φ : BoundedFormula L Empty (n + 1) ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs xs : Fin n → M a : N ha : ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a) ⊢ ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a) [PROOFSTEP] exact ha [GOAL] case h.refine'_5.refine'_2.intro.intro L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n✝ : ℕ φ✝ : BoundedFormula L Empty n✝ n : ℕ φ : BoundedFormula L Empty (n + 1) ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs xs : Fin n → M a : N ha : ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a) b : M hb : BoundedFormula.Realize (∼φ) default (Fin.snoc (↑f ∘ xs) (↑f b)) ⊢ ∃ a, ¬BoundedFormula.Realize φ default (Fin.snoc xs a) [PROOFSTEP] refine' ⟨b, fun h => hb (Eq.mp _ ((ih _).2 h))⟩ [GOAL] case h.refine'_5.refine'_2.intro.intro L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ↪[L] N htv : ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N), BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) → ∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b)) n✝ : ℕ φ✝ : BoundedFormula L Empty n✝ n : ℕ φ : BoundedFormula L Empty (n + 1) ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs xs : Fin n → M a : N ha : ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a) b : M hb : BoundedFormula.Realize (∼φ) default (Fin.snoc (↑f ∘ xs) (↑f b)) h : BoundedFormula.Realize φ default (Fin.snoc xs b) ⊢ BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ Fin.snoc xs b) = BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ xs) (↑f b)) [PROOFSTEP] rw [Unique.eq_default (f ∘ default), Fin.comp_snoc] [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q f : M ≃[L] N n : ℕ φ : Formula L (Fin n) x : Fin n → M ⊢ Formula.Realize φ (↑f ∘ x) ↔ Formula.Realize φ x [PROOFSTEP] aesop [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q α : Type u_5 n : ℕ φ : BoundedFormula L α n v : α → { x // x ∈ ⊤ } xs : Fin n → { x // x ∈ ⊤ } ⊢ BoundedFormula.Realize φ v xs ↔ BoundedFormula.Realize φ (Subtype.val ∘ v) (Subtype.val ∘ xs) [PROOFSTEP] rw [← Substructure.topEquiv.realize_boundedFormula φ] [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q α : Type u_5 n : ℕ φ : BoundedFormula L α n v : α → { x // x ∈ ⊤ } xs : Fin n → { x // x ∈ ⊤ } ⊢ BoundedFormula.Realize φ (↑topEquiv ∘ v) (↑topEquiv ∘ xs) ↔ BoundedFormula.Realize φ (Subtype.val ∘ v) (Subtype.val ∘ xs) [PROOFSTEP] simp [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q α : Type u_5 φ : Formula L α v : α → { x // x ∈ ⊤ } ⊢ Formula.Realize φ v ↔ Formula.Realize φ (Subtype.val ∘ v) [PROOFSTEP] rw [← Substructure.topEquiv.realize_formula φ] [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q α : Type u_5 φ : Formula L α v : α → { x // x ∈ ⊤ } ⊢ Formula.Realize φ (↑topEquiv ∘ v) ↔ Formula.Realize φ (Subtype.val ∘ v) [PROOFSTEP] simp [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q x✝² x✝¹ : ElementarySubstructure L M s : Set M hs1 : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f s hs2 : Substructure.IsElementary { carrier := s, fun_mem := hs1 } t : Set M ht1 : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f t isElementary'✝ : Substructure.IsElementary { carrier := t, fun_mem := ht1 } x✝ : (fun x => ↑↑x) { toSubstructure := { carrier := s, fun_mem := hs1 }, isElementary' := hs2 } = (fun x => ↑↑x) { toSubstructure := { carrier := t, fun_mem := ht1 }, isElementary' := isElementary'✝ } ⊢ { toSubstructure := { carrier := s, fun_mem := hs1 }, isElementary' := hs2 } = { toSubstructure := { carrier := t, fun_mem := ht1 }, isElementary' := isElementary'✝ } [PROOFSTEP] congr [GOAL] L : Language M : Type u_1 N : Type u_2 P : Type u_3 Q : Type u_4 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P inst✝ : Structure L Q S : ElementarySubstructure L M T : Theory L ⊢ { x // x ∈ S } ⊨ T ↔ M ⊨ T [PROOFSTEP] simp only [Theory.model_iff, realize_sentence]
{"mathlib_filename": "Mathlib.ModelTheory.ElementaryMaps", "llama_tokens": 20070}
[GOAL] α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α m n : ℕ h : m ≤ n ⊢ f m ≤ ↑(partialSups f) n [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α m n : ℕ h✝ : m ≤ n h : m ≤ Nat.zero ⊢ f m ≤ ↑(partialSups f) Nat.zero [PROOFSTEP] rw [nonpos_iff_eq_zero.mp h, partialSups_zero] [GOAL] case succ α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α m n✝ : ℕ h✝ : m ≤ n✝ n : ℕ ih : m ≤ n → f m ≤ ↑(partialSups f) n h : m ≤ Nat.succ n ⊢ f m ≤ ↑(partialSups f) (Nat.succ n) [PROOFSTEP] cases' h with h h [GOAL] case succ.refl α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α n✝ n : ℕ h : Nat.succ n ≤ n✝ ih : Nat.succ n ≤ n → f (Nat.succ n) ≤ ↑(partialSups f) n ⊢ f (Nat.succ n) ≤ ↑(partialSups f) (Nat.succ n) [PROOFSTEP] exact le_sup_right [GOAL] case succ.step α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α m n✝ : ℕ h✝ : m ≤ n✝ n : ℕ ih : m ≤ n → f m ≤ ↑(partialSups f) n h : Nat.le m n ⊢ f m ≤ ↑(partialSups f) (Nat.succ n) [PROOFSTEP] exact (ih h).trans le_sup_left [GOAL] α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α n : ℕ a : α w : ∀ (m : ℕ), m ≤ n → f m ≤ a ⊢ ↑(partialSups f) n ≤ a [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α n : ℕ a : α w✝ : ∀ (m : ℕ), m ≤ n → f m ≤ a w : ∀ (m : ℕ), m ≤ Nat.zero → f m ≤ a ⊢ ↑(partialSups f) Nat.zero ≤ a [PROOFSTEP] apply w 0 le_rfl [GOAL] case succ α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α n✝ : ℕ a : α w✝ : ∀ (m : ℕ), m ≤ n✝ → f m ≤ a n : ℕ ih : (∀ (m : ℕ), m ≤ n → f m ≤ a) → ↑(partialSups f) n ≤ a w : ∀ (m : ℕ), m ≤ Nat.succ n → f m ≤ a ⊢ ↑(partialSups f) (Nat.succ n) ≤ a [PROOFSTEP] exact sup_le (ih fun m p => w m (Nat.le_succ_of_le p)) (w (n + 1) le_rfl) [GOAL] α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α ⊢ BddAbove (Set.range ↑(partialSups f)) ↔ BddAbove (Set.range f) [PROOFSTEP] apply exists_congr fun a => _ [GOAL] α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α ⊢ ∀ (a : α), a ∈ upperBounds (Set.range ↑(partialSups f)) ↔ a ∈ upperBounds (Set.range f) [PROOFSTEP] intro a [GOAL] α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α a : α ⊢ a ∈ upperBounds (Set.range ↑(partialSups f)) ↔ a ∈ upperBounds (Set.range f) [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α a : α ⊢ a ∈ upperBounds (Set.range ↑(partialSups f)) → a ∈ upperBounds (Set.range f) [PROOFSTEP] rintro h b ⟨i, rfl⟩ [GOAL] case mp.intro α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α a : α h : a ∈ upperBounds (Set.range ↑(partialSups f)) i : ℕ ⊢ f i ≤ a [PROOFSTEP] exact (le_partialSups _ _).trans (h (Set.mem_range_self i)) [GOAL] case mpr α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α a : α ⊢ a ∈ upperBounds (Set.range f) → a ∈ upperBounds (Set.range ↑(partialSups f)) [PROOFSTEP] rintro h b ⟨i, rfl⟩ [GOAL] case mpr.intro α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α a : α h : a ∈ upperBounds (Set.range f) i : ℕ ⊢ ↑(partialSups f) i ≤ a [PROOFSTEP] exact partialSups_le _ _ _ fun _ _ => h (Set.mem_range_self _) [GOAL] α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α hf : Monotone f ⊢ ↑(partialSups f) = f [PROOFSTEP] ext n [GOAL] case h α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α hf : Monotone f n : ℕ ⊢ ↑(partialSups f) n = f n [PROOFSTEP] induction' n with n ih [GOAL] case h.zero α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α hf : Monotone f ⊢ ↑(partialSups f) Nat.zero = f Nat.zero [PROOFSTEP] rfl [GOAL] case h.succ α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α hf : Monotone f n : ℕ ih : ↑(partialSups f) n = f n ⊢ ↑(partialSups f) (Nat.succ n) = f (Nat.succ n) [PROOFSTEP] rw [partialSups_succ, ih, sup_eq_right.2 (hf (Nat.le_succ _))] [GOAL] α : Type u_1 inst✝ : SemilatticeSup α ⊢ Monotone partialSups [PROOFSTEP] rintro f g h n [GOAL] α : Type u_1 inst✝ : SemilatticeSup α f g : ℕ → α h : f ≤ g n : ℕ ⊢ OrderHom.toFun (partialSups f) n ≤ OrderHom.toFun (partialSups g) n [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 inst✝ : SemilatticeSup α f g : ℕ → α h : f ≤ g ⊢ OrderHom.toFun (partialSups f) Nat.zero ≤ OrderHom.toFun (partialSups g) Nat.zero [PROOFSTEP] exact h 0 [GOAL] case succ α : Type u_1 inst✝ : SemilatticeSup α f g : ℕ → α h : f ≤ g n : ℕ ih : OrderHom.toFun (partialSups f) n ≤ OrderHom.toFun (partialSups g) n ⊢ OrderHom.toFun (partialSups f) (Nat.succ n) ≤ OrderHom.toFun (partialSups g) (Nat.succ n) [PROOFSTEP] exact sup_le_sup ih (h _) [GOAL] α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α h : ↑(partialSups f) ≤ f ⊢ Monotone f [PROOFSTEP] convert (partialSups f).monotone using 1 [GOAL] case h.e'_5 α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α h : ↑(partialSups f) ≤ f ⊢ f = ↑(partialSups f) [PROOFSTEP] exact (le_partialSups f).antisymm h [GOAL] α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α g : ℕ →o α ⊢ partialSups f ≤ g ↔ f ≤ ↑g [PROOFSTEP] refine' ⟨(le_partialSups f).trans, fun h => _⟩ [GOAL] α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α g : ℕ →o α h : f ≤ ↑g ⊢ partialSups f ≤ g [PROOFSTEP] convert partialSups_mono h [GOAL] case h.e'_4 α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α g : ℕ →o α h : f ≤ ↑g ⊢ g = partialSups ↑g [PROOFSTEP] exact OrderHom.ext _ _ g.monotone.partialSups_eq.symm [GOAL] α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α n : ℕ ⊢ ↑(partialSups f) n = Finset.sup' (Finset.range (n + 1)) (_ : ∃ x, x ∈ Finset.range (n + 1)) f [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α ⊢ ↑(partialSups f) Nat.zero = Finset.sup' (Finset.range (Nat.zero + 1)) (_ : ∃ x, x ∈ Finset.range (Nat.zero + 1)) f [PROOFSTEP] simp [GOAL] case succ α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α n : ℕ ih : ↑(partialSups f) n = Finset.sup' (Finset.range (n + 1)) (_ : ∃ x, x ∈ Finset.range (n + 1)) f ⊢ ↑(partialSups f) (Nat.succ n) = Finset.sup' (Finset.range (Nat.succ n + 1)) (_ : ∃ x, x ∈ Finset.range (Nat.succ n + 1)) f [PROOFSTEP] dsimp [partialSups] at ih ⊢ [GOAL] case succ α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α n : ℕ ih : Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n = Finset.sup' (Finset.range (n + 1)) (_ : ∃ x, x ∈ Finset.range (n + 1)) f ⊢ Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n ⊔ f (n + 1) = Finset.sup' (Finset.range (Nat.succ n + 1)) (_ : ∃ x, x ∈ Finset.range (Nat.succ n + 1)) f [PROOFSTEP] simp_rw [@Finset.range_succ n.succ] [GOAL] case succ α : Type u_1 inst✝ : SemilatticeSup α f : ℕ → α n : ℕ ih : Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n = Finset.sup' (Finset.range (n + 1)) (_ : ∃ x, x ∈ Finset.range (n + 1)) f ⊢ Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n ⊔ f (n + 1) = Finset.sup' (insert (Nat.succ n) (Finset.range (Nat.succ n))) (_ : Finset.Nonempty (insert (Nat.succ n) (Finset.range (Nat.succ n)))) fun x => f x [PROOFSTEP] rw [ih, Finset.sup'_insert, sup_comm] [GOAL] α : Type u_1 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α f : ℕ → α n : ℕ ⊢ ↑(partialSups f) n = Finset.sup (Finset.range (n + 1)) f [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α f : ℕ → α ⊢ ↑(partialSups f) Nat.zero = Finset.sup (Finset.range (Nat.zero + 1)) f [PROOFSTEP] simp [GOAL] case succ α : Type u_1 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α f : ℕ → α n : ℕ ih : ↑(partialSups f) n = Finset.sup (Finset.range (n + 1)) f ⊢ ↑(partialSups f) (Nat.succ n) = Finset.sup (Finset.range (Nat.succ n + 1)) f [PROOFSTEP] dsimp [partialSups] at ih ⊢ [GOAL] case succ α : Type u_1 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α f : ℕ → α n : ℕ ih : Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n = Finset.sup (Finset.range (n + 1)) f ⊢ Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n ⊔ f (n + 1) = Finset.sup (Finset.range (Nat.succ n + 1)) f [PROOFSTEP] rw [Finset.range_succ, Finset.sup_insert, sup_comm, ih] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α f : ℕ → α h : Pairwise (Disjoint on f) m n : ℕ hmn : m < n ⊢ Disjoint (↑(partialSups f) m) (f n) [PROOFSTEP] induction' m with m ih [GOAL] case zero α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α f : ℕ → α h : Pairwise (Disjoint on f) m n : ℕ hmn✝ : m < n hmn : Nat.zero < n ⊢ Disjoint (↑(partialSups f) Nat.zero) (f n) [PROOFSTEP] exact h hmn.ne [GOAL] case succ α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α f : ℕ → α h : Pairwise (Disjoint on f) m✝ n : ℕ hmn✝ : m✝ < n m : ℕ ih : m < n → Disjoint (↑(partialSups f) m) (f n) hmn : Nat.succ m < n ⊢ Disjoint (↑(partialSups f) (Nat.succ m)) (f n) [PROOFSTEP] rw [partialSups_succ, disjoint_sup_left] [GOAL] case succ α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α f : ℕ → α h : Pairwise (Disjoint on f) m✝ n : ℕ hmn✝ : m✝ < n m : ℕ ih : m < n → Disjoint (↑(partialSups f) m) (f n) hmn : Nat.succ m < n ⊢ Disjoint (↑(partialSups f) m) (f n) ∧ Disjoint (f (m + 1)) (f n) [PROOFSTEP] exact ⟨ih (Nat.lt_of_succ_lt hmn), h hmn.ne⟩ [GOAL] α : Type u_1 inst✝ : ConditionallyCompleteLattice α f : ℕ → α n : ℕ ⊢ ↑(partialSups f) n = ⨆ (i : ↑(Set.Iic n)), f ↑i [PROOFSTEP] have : Set.Iio (n + 1) = Set.Iic n := Set.ext fun _ => Nat.lt_succ_iff [GOAL] α : Type u_1 inst✝ : ConditionallyCompleteLattice α f : ℕ → α n : ℕ this : Set.Iio (n + 1) = Set.Iic n ⊢ ↑(partialSups f) n = ⨆ (i : ↑(Set.Iic n)), f ↑i [PROOFSTEP] rw [partialSups_eq_sup'_range, Finset.sup'_eq_csSup_image, Finset.coe_range, iSup, this] [GOAL] α : Type u_1 inst✝ : ConditionallyCompleteLattice α f : ℕ → α n : ℕ this : Set.Iio (n + 1) = Set.Iic n ⊢ sSup (f '' Set.Iic n) = sSup (Set.range fun i => f ↑i) [PROOFSTEP] simp only [Set.range, Subtype.exists, Set.mem_Iic, exists_prop, (· '' ·)] [GOAL] α : Type u_1 inst✝ : ConditionallyCompleteLattice α f : ℕ → α h : BddAbove (Set.range f) ⊢ ⨆ (n : ℕ), ↑(partialSups f) n = ⨆ (n : ℕ), f n [PROOFSTEP] refine' (ciSup_le fun n => _).antisymm (ciSup_mono _ <| le_partialSups f) [GOAL] case refine'_1 α : Type u_1 inst✝ : ConditionallyCompleteLattice α f : ℕ → α h : BddAbove (Set.range f) n : ℕ ⊢ ↑(partialSups f) n ≤ ⨆ (n : ℕ), f n [PROOFSTEP] rw [partialSups_eq_ciSup_Iic] [GOAL] case refine'_1 α : Type u_1 inst✝ : ConditionallyCompleteLattice α f : ℕ → α h : BddAbove (Set.range f) n : ℕ ⊢ ⨆ (i : ↑(Set.Iic n)), f ↑i ≤ ⨆ (n : ℕ), f n [PROOFSTEP] exact ciSup_le fun i => le_ciSup h _ [GOAL] case refine'_2 α : Type u_1 inst✝ : ConditionallyCompleteLattice α f : ℕ → α h : BddAbove (Set.range f) ⊢ BddAbove (Set.range fun n => ↑(partialSups f) n) [PROOFSTEP] rwa [bddAbove_range_partialSups] [GOAL] α : Type u_1 inst✝ : CompleteLattice α f : ℕ → α n : ℕ ⊢ ↑(partialSups f) n = ⨆ (i : ℕ) (_ : i ≤ n), f i [PROOFSTEP] simpa only [iSup_subtype] using partialSups_eq_ciSup_Iic f n [GOAL] α : Type u_1 inst✝ : CompleteLattice α f g : ℕ → α h : partialSups f ≤ partialSups g ⊢ ⨆ (n : ℕ), f n ≤ ⨆ (n : ℕ), g n [PROOFSTEP] rw [← iSup_partialSups_eq f, ← iSup_partialSups_eq g] [GOAL] α : Type u_1 inst✝ : CompleteLattice α f g : ℕ → α h : partialSups f ≤ partialSups g ⊢ ⨆ (n : ℕ), ↑(partialSups f) n ≤ ⨆ (n : ℕ), ↑(partialSups g) n [PROOFSTEP] exact iSup_mono h [GOAL] α : Type u_1 inst✝ : CompleteLattice α f g : ℕ → α h : partialSups f = partialSups g ⊢ ⨆ (n : ℕ), f n = ⨆ (n : ℕ), g n [PROOFSTEP] simp_rw [← iSup_partialSups_eq f, ← iSup_partialSups_eq g, h]
{"mathlib_filename": "Mathlib.Order.PartialSups", "llama_tokens": 5837}
[GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List (Term L α) ⊢ listDecode (List.bind l listEncode) = List.map some l [PROOFSTEP] suffices h : ∀ (t : L.Term α) (l : List (Sum α (Σ i, L.Functions i))), listDecode (t.listEncode ++ l) = some t :: listDecode l [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List (Term L α) h : ∀ (t : Term L α) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode t ++ l) = some t :: listDecode l ⊢ listDecode (List.bind l listEncode) = List.map some l [PROOFSTEP] induction' l with t l lih [GOAL] case nil L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' h : ∀ (t : Term L α) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode t ++ l) = some t :: listDecode l ⊢ listDecode (List.bind [] listEncode) = List.map some [] [PROOFSTEP] rfl [GOAL] case cons L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' h : ∀ (t : Term L α) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode t ++ l) = some t :: listDecode l t : Term L α l : List (Term L α) lih : listDecode (List.bind l listEncode) = List.map some l ⊢ listDecode (List.bind (t :: l) listEncode) = List.map some (t :: l) [PROOFSTEP] rw [cons_bind, h t (l.bind listEncode), lih, List.map] [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List (Term L α) ⊢ ∀ (t : Term L α) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode t ++ l) = some t :: listDecode l [PROOFSTEP] intro t [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List (Term L α) t : Term L α ⊢ ∀ (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode t ++ l) = some t :: listDecode l [PROOFSTEP] induction' t with a n f ts ih [GOAL] case h.var L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List (Term L α) a : α ⊢ ∀ (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (var a) ++ l) = some (var a) :: listDecode l [PROOFSTEP] intro l [GOAL] case h.func L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l ⊢ ∀ (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (func f ts) ++ l) = some (func f ts) :: listDecode l [PROOFSTEP] intro l [GOAL] case h.var L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) a : α l : List (α ⊕ (i : ℕ) × Functions L i) ⊢ listDecode (listEncode (var a) ++ l) = some (var a) :: listDecode l [PROOFSTEP] rw [listEncode, singleton_append, listDecode] [GOAL] case h.func L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) ⊢ listDecode (listEncode (func f ts) ++ l) = some (func f ts) :: listDecode l [PROOFSTEP] rw [listEncode, cons_append, listDecode] [GOAL] case h.func L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) ⊢ (if h : ∀ (i : Fin n), Option.isSome (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) = true then some (func f fun i => Option.get (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) = true)) :: drop n (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) else [none]) = some (func f ts) :: listDecode l [PROOFSTEP] have h : listDecode (((finRange n).bind fun i : Fin n => (ts i).listEncode) ++ l) = (finRange n).map (Option.some ∘ ts) ++ listDecode l := by induction' finRange n with i l' l'ih · rfl · rw [cons_bind, List.append_assoc, ih, map_cons, l'ih, cons_append, Function.comp] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) ⊢ listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l [PROOFSTEP] induction' finRange n with i l' l'ih [GOAL] case nil L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) ⊢ listDecode ((List.bind [] fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) [] ++ listDecode l [PROOFSTEP] rfl [GOAL] case cons L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) i : Fin n l' : List (Fin n) l'ih : listDecode ((List.bind l' fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) l' ++ listDecode l ⊢ listDecode ((List.bind (i :: l') fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (i :: l') ++ listDecode l [PROOFSTEP] rw [cons_bind, List.append_assoc, ih, map_cons, l'ih, cons_append, Function.comp] [GOAL] case h.func L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l ⊢ (if h : ∀ (i : Fin n), Option.isSome (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) = true then some (func f fun i => Option.get (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) = true)) :: drop n (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) else [none]) = some (func f ts) :: listDecode l [PROOFSTEP] have h' : ∀ i : Fin n, (listDecode (((finRange n).bind fun i : Fin n => (ts i).listEncode) ++ l)).get? ↑i = some (some (ts i)) := by intro i rw [h, get?_append, get?_map] · simp only [Option.map_eq_some', Function.comp_apply, get?_eq_some] refine' ⟨i, ⟨lt_of_lt_of_le i.2 (ge_of_eq (length_finRange _)), _⟩, rfl⟩ rw [get_finRange, Fin.eta] · refine' lt_of_lt_of_le i.2 _ simp [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l ⊢ ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i)) [PROOFSTEP] intro i [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l i : Fin n ⊢ get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i)) [PROOFSTEP] rw [h, get?_append, get?_map] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l i : Fin n ⊢ Option.map (some ∘ ts) (get? (finRange n) ↑i) = some (some (ts i)) [PROOFSTEP] simp only [Option.map_eq_some', Function.comp_apply, get?_eq_some] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l i : Fin n ⊢ ∃ a, (∃ h, List.get (finRange n) { val := ↑i, isLt := h } = a) ∧ some (ts a) = some (ts i) [PROOFSTEP] refine' ⟨i, ⟨lt_of_lt_of_le i.2 (ge_of_eq (length_finRange _)), _⟩, rfl⟩ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l i : Fin n ⊢ List.get (finRange n) { val := ↑i, isLt := (_ : ↑i < length (finRange n)) } = i [PROOFSTEP] rw [get_finRange, Fin.eta] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l i : Fin n ⊢ ↑i < length (List.map (some ∘ ts) (finRange n)) [PROOFSTEP] refine' lt_of_lt_of_le i.2 _ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l i : Fin n ⊢ n ≤ length (List.map (some ∘ ts) (finRange n)) [PROOFSTEP] simp [GOAL] case h.func L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l h' : ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i)) ⊢ (if h : ∀ (i : Fin n), Option.isSome (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) = true then some (func f fun i => Option.get (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) = true)) :: drop n (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) else [none]) = some (func f ts) :: listDecode l [PROOFSTEP] refine' (dif_pos fun i => Option.isSome_iff_exists.2 ⟨ts i, _⟩).trans _ [GOAL] case h.func.refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l h' : ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i)) i : Fin n ⊢ Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i) = some (ts i) [PROOFSTEP] rw [Option.join_eq_some, h'] [GOAL] case h.func.refine'_2 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l h' : ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i)) ⊢ some (func f fun i => Option.get (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) = true)) :: drop n (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) = some (func f ts) :: listDecode l [PROOFSTEP] refine' congr (congr rfl (congr rfl (congr rfl (funext fun i => Option.get_of_mem _ _)))) _ [GOAL] case h.func.refine'_2.refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l h' : ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i)) i : Fin n ⊢ ts i ∈ Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i) [PROOFSTEP] simp [h'] [GOAL] case h.func.refine'_2.refine'_2 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l h' : ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i)) ⊢ drop n (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) = listDecode l [PROOFSTEP] rw [h, drop_left'] [GOAL] case h.func.refine'_2.refine'_2 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List (Term L α) n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l l : List (α ⊕ (i : ℕ) × Functions L i) h : listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (finRange n) ++ listDecode l h' : ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i)) ⊢ length (List.map (some ∘ ts) (finRange n)) = n [PROOFSTEP] rw [length_map, length_finRange] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' t : Term L α ⊢ (fun l => Option.join (head? (listDecode l))) (listEncode t) = some t [PROOFSTEP] have h := listDecode_encode_list [t] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' t : Term L α h : listDecode (List.bind [t] listEncode) = List.map some [t] ⊢ (fun l => Option.join (head? (listDecode l))) (listEncode t) = some t [PROOFSTEP] rw [bind_singleton] at h [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' t : Term L α h : listDecode (listEncode t) = List.map some [t] ⊢ (fun l => Option.join (head? (listDecode l))) (listEncode t) = some t [PROOFSTEP] simp only [h, Option.join, head?, List.map, Option.some_bind, id.def] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ #((n : ℕ) × Term L (α ⊕ Fin n)) = max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i) [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ #((n : ℕ) × Term L (α ⊕ Fin n)) ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i) [PROOFSTEP] rw [mk_sigma] [GOAL] case refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ (Cardinal.sum fun i => #(Term L (α ⊕ Fin i))) ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i) [PROOFSTEP] refine' (sum_le_iSup_lift _).trans _ [GOAL] case refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ lift #ℕ * ⨆ (i : ℕ), #(Term L (α ⊕ Fin i)) ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i) [PROOFSTEP] rw [mk_nat, lift_aleph0, mul_eq_max_of_aleph0_le_left le_rfl, max_le_iff, ciSup_le_iff' (bddAbove_range _)] [GOAL] case refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ ℵ₀ ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i) ∧ ∀ (i : ℕ), #(Term L (α ⊕ Fin i)) ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i) [PROOFSTEP] refine' ⟨le_max_left _ _, fun i => card_le.trans _⟩ [GOAL] case refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' i : ℕ ⊢ max ℵ₀ #((α ⊕ Fin i) ⊕ (i : ℕ) × Functions L i) ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i) [PROOFSTEP] refine' max_le (le_max_left _ _) _ [GOAL] case refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' i : ℕ ⊢ #((α ⊕ Fin i) ⊕ (i : ℕ) × Functions L i) ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i) [PROOFSTEP] rw [← add_eq_max le_rfl, mk_sum, mk_sum, mk_sum, add_comm (Cardinal.lift #α), lift_add, add_assoc, lift_lift, lift_lift, mk_fin, lift_natCast] [GOAL] case refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' i : ℕ ⊢ ↑i + (lift #α + lift #((i : ℕ) × Functions L i)) ≤ ℵ₀ + (lift #α + lift #((i : ℕ) × Functions L i)) [PROOFSTEP] exact add_le_add_right (nat_lt_aleph0 _).le _ [GOAL] case refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ ⨆ (i : ℕ), #(Term L (α ⊕ Fin i)) ≠ 0 [PROOFSTEP] rw [← one_le_iff_ne_zero] [GOAL] case refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ 1 ≤ ⨆ (i : ℕ), #(Term L (α ⊕ Fin i)) [PROOFSTEP] refine' _root_.trans _ (le_ciSup (bddAbove_range _) 1) [GOAL] case refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ 1 ≤ #(Term L (α ⊕ Fin 1)) [PROOFSTEP] rw [one_le_iff_ne_zero, mk_ne_zero_iff] [GOAL] case refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ Nonempty (Term L (α ⊕ Fin 1)) [PROOFSTEP] exact ⟨var (Sum.inr 0)⟩ [GOAL] case refine'_2 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i) ≤ #((n : ℕ) × Term L (α ⊕ Fin n)) [PROOFSTEP] rw [max_le_iff, ← infinite_iff] [GOAL] case refine'_2 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ Infinite ((n : ℕ) × Term L (α ⊕ Fin n)) ∧ #(α ⊕ (i : ℕ) × Functions L i) ≤ #((n : ℕ) × Term L (α ⊕ Fin n)) [PROOFSTEP] refine' ⟨Infinite.of_injective (fun i => ⟨i + 1, var (Sum.inr i)⟩) fun i j ij => _, _⟩ [GOAL] case refine'_2.refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' i j : ℕ ij : (fun i => { fst := i + 1, snd := var (Sum.inr ↑i) }) i = (fun i => { fst := i + 1, snd := var (Sum.inr ↑i) }) j ⊢ i = j [PROOFSTEP] cases ij [GOAL] case refine'_2.refine'_1.refl L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' i : ℕ ⊢ i = i [PROOFSTEP] rfl [GOAL] case refine'_2.refine'_2 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ #(α ⊕ (i : ℕ) × Functions L i) ≤ #((n : ℕ) × Term L (α ⊕ Fin n)) [PROOFSTEP] rw [Cardinal.le_def] [GOAL] case refine'_2.refine'_2 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ Nonempty (α ⊕ (i : ℕ) × Functions L i ↪ (n : ℕ) × Term L (α ⊕ Fin n)) [PROOFSTEP] refine' ⟨⟨Sum.elim (fun i => ⟨0, var (Sum.inl i)⟩) fun F => ⟨1, func F.2 fun _ => var (Sum.inr 0)⟩, _⟩⟩ [GOAL] case refine'_2.refine'_2 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ Function.Injective (Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) }) fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) [PROOFSTEP] rintro (a | a) (b | b) h [GOAL] case refine'_2.refine'_2.inl.inl L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' a b : α h : Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) }) (fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inl a) = Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) }) (fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inl b) ⊢ Sum.inl a = Sum.inl b [PROOFSTEP] simp only [Sum.elim_inl, Sigma.mk.inj_iff, heq_eq_eq, var.injEq, Sum.inl.injEq, true_and] at h [GOAL] case refine'_2.refine'_2.inl.inl L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' a b : α h : a = b ⊢ Sum.inl a = Sum.inl b [PROOFSTEP] rw [h] [GOAL] case refine'_2.refine'_2.inl.inr L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' a : α b : (i : ℕ) × Functions L i h : Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) }) (fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inl a) = Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) }) (fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inr b) ⊢ Sum.inl a = Sum.inr b [PROOFSTEP] simp only [Sum.elim_inl, Sum.elim_inr, Sigma.mk.inj_iff, false_and] at h [GOAL] case refine'_2.refine'_2.inr.inl L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' a : (i : ℕ) × Functions L i b : α h : Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) }) (fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inr a) = Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) }) (fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inl b) ⊢ Sum.inr a = Sum.inl b [PROOFSTEP] simp only [Sum.elim_inr, Sum.elim_inl, Sigma.mk.inj_iff, false_and] at h [GOAL] case refine'_2.refine'_2.inr.inr L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' a b : (i : ℕ) × Functions L i h : Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) }) (fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inr a) = Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) }) (fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inr b) ⊢ Sum.inr a = Sum.inr b [PROOFSTEP] simp only [Sum.elim_inr, Sigma.mk.inj_iff, heq_eq_eq, func.injEq, true_and] at h [GOAL] case refine'_2.refine'_2.inr.inr L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' a b : (i : ℕ) × Functions L i h : a.fst = b.fst ∧ HEq a.snd b.snd ∧ HEq (fun x => var (Sum.inr 0)) fun x => var (Sum.inr 0) ⊢ Sum.inr a = Sum.inr b [PROOFSTEP] rw [Sigma.ext_iff.2 ⟨h.1, h.2.1⟩] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Encodable α inst✝ : Encodable ((i : ℕ) × Functions L i) t : Term L α ⊢ (fun l => Option.join (head? (listDecode l))) (listEncode t) = some t [PROOFSTEP] simp only [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Encodable α inst✝ : Encodable ((i : ℕ) × Functions L i) t : Term L α ⊢ Option.join (head? (listDecode (listEncode t))) = some t [PROOFSTEP] rw [← bind_singleton listEncode, listDecode_encode_list] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Encodable α inst✝ : Encodable ((i : ℕ) × Functions L i) t : Term L α ⊢ Option.join (head? (List.map some [t])) = some t [PROOFSTEP] simp only [Option.join, head?, List.map, Option.some_bind, id.def] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' h1 : Countable α h2 : Countable ((l : ℕ) × Functions L l) ⊢ Countable (Term L α) [PROOFSTEP] refine' mk_le_aleph0_iff.1 (card_le.trans (max_le_iff.2 _)) [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' h1 : Countable α h2 : Countable ((l : ℕ) × Functions L l) ⊢ ℵ₀ ≤ ℵ₀ ∧ #(α ⊕ (i : ℕ) × Functions L i) ≤ ℵ₀ [PROOFSTEP] simp only [le_refl, mk_sum, add_le_aleph0, lift_le_aleph0, true_and_iff] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' h1 : Countable α h2 : Countable ((l : ℕ) × Functions L l) ⊢ #α ≤ ℵ₀ ∧ #((i : ℕ) × Functions L i) ≤ ℵ₀ [PROOFSTEP] exact ⟨Cardinal.mk_le_aleph0, Cardinal.mk_le_aleph0⟩ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' m : ℕ φ : BoundedFormula L α m n : ℕ ψ : BoundedFormula L α n h : m = n ⊢ BoundedFormula L α n = BoundedFormula L α m [PROOFSTEP] rw [h] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n₁ : ℕ t₁ : Term L (α ⊕ Fin n₁) n₂ : ℕ t₂ : Term L (α ⊕ Fin n₂) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : n₁ = n₂ ⊢ Term L (α ⊕ Fin n₂) = Term L (α ⊕ Fin n₁) [PROOFSTEP] rw [h] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n₁ : ℕ t₁ : Term L (α ⊕ Fin n₁) n₂ : ℕ t₂ : Term L (α ⊕ Fin n₂) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ sizeOf l ≤ max 1 (sizeOf (Sum.inl { fst := n₁, snd := t₁ } :: Sum.inl { fst := n₂, snd := t₂ } :: l)) [PROOFSTEP] simp only [SizeOf.sizeOf, List._sizeOf_1, ← add_assoc] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n₁ : ℕ t₁ : Term L (α ⊕ Fin n₁) n₂ : ℕ t₂ : Term L (α ⊕ Fin n₂) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ List.rec 1 (fun head tail tail_ih => 1 + Sum._sizeOf_1 head + tail_ih) l ≤ max 1 (1 + Sum._sizeOf_1 (Sum.inl { fst := n₁, snd := t₁ }) + 1 + Sum._sizeOf_1 (Sum.inl { fst := n₂, snd := t₂ }) + List.rec 1 (fun head tail tail_ih => 1 + Sum._sizeOf_1 head + tail_ih) l) [PROOFSTEP] exact le_max_of_le_right le_add_self [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ R : Relations L n k : ℕ l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin n), Option.isSome (Option.join (get? (List.map Sum.getLeft? l) ↑i)) = true h' : ∀ (i : Fin n), (Option.get (Option.join (get? (List.map Sum.getLeft? l) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? l) ↑i)) = true)).fst = k i : Fin n ⊢ Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? l) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? l) ↑i)) = true)).fst) = Term L (α ⊕ Fin k) [PROOFSTEP] rw [h' i] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ sizeOf ↑(listDecode l).snd < 1 + (1 + 1) + sizeOf l [PROOFSTEP] refine' lt_of_le_of_lt (listDecode l).2.2 (max_lt _ (Nat.lt_add_of_pos_left (by decide))) [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ 0 < 1 + (1 + 1) [PROOFSTEP] decide [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ 1 < 1 + (1 + 1) + sizeOf l [PROOFSTEP] rw [add_assoc, lt_add_iff_pos_right, add_pos_iff] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ 0 < 1 + 1 ∨ 0 < sizeOf l [PROOFSTEP] exact Or.inl zero_lt_two [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List ((n : ℕ) × BoundedFormula L α n) ⊢ (listDecode (List.bind l fun φ => listEncode φ.snd)).fst = headI l [PROOFSTEP] suffices h : ∀ (φ : Σ n, L.BoundedFormula α n) (l), (listDecode (listEncode φ.2 ++ l)).1 = φ ∧ (listDecode (listEncode φ.2 ++ l)).2.1 = l [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List ((n : ℕ) × BoundedFormula L α n) h : ∀ (φ : (n : ℕ) × BoundedFormula L α n) (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode φ.snd ++ l)).fst = φ ∧ ↑(listDecode (listEncode φ.snd ++ l)).snd = l ⊢ (listDecode (List.bind l fun φ => listEncode φ.snd)).fst = headI l [PROOFSTEP] induction' l with φ l _ [GOAL] case nil L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' h : ∀ (φ : (n : ℕ) × BoundedFormula L α n) (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode φ.snd ++ l)).fst = φ ∧ ↑(listDecode (listEncode φ.snd ++ l)).snd = l ⊢ (listDecode (List.bind [] fun φ => listEncode φ.snd)).fst = headI [] [PROOFSTEP] rw [List.nil_bind] [GOAL] case nil L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' h : ∀ (φ : (n : ℕ) × BoundedFormula L α n) (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode φ.snd ++ l)).fst = φ ∧ ↑(listDecode (listEncode φ.snd ++ l)).snd = l ⊢ (listDecode []).fst = headI [] [PROOFSTEP] simp [listDecode] [GOAL] case cons L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' h : ∀ (φ : (n : ℕ) × BoundedFormula L α n) (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode φ.snd ++ l)).fst = φ ∧ ↑(listDecode (listEncode φ.snd ++ l)).snd = l φ : (n : ℕ) × BoundedFormula L α n l : List ((n : ℕ) × BoundedFormula L α n) tail_ih✝ : (listDecode (List.bind l fun φ => listEncode φ.snd)).fst = headI l ⊢ (listDecode (List.bind (φ :: l) fun φ => listEncode φ.snd)).fst = headI (φ :: l) [PROOFSTEP] rw [cons_bind, (h φ _).1, headI_cons] [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List ((n : ℕ) × BoundedFormula L α n) ⊢ ∀ (φ : (n : ℕ) × BoundedFormula L α n) (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode φ.snd ++ l)).fst = φ ∧ ↑(listDecode (listEncode φ.snd ++ l)).snd = l [PROOFSTEP] rintro ⟨n, φ⟩ [GOAL] case h.mk L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List ((n : ℕ) × BoundedFormula L α n) n : ℕ φ : BoundedFormula L α n ⊢ ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n, snd := φ }.snd ++ l)).fst = { fst := n, snd := φ } ∧ ↑(listDecode (listEncode { fst := n, snd := φ }.snd ++ l)).snd = l [PROOFSTEP] induction' φ with _ _ _ _ φ_n φ_l φ_R ts _ _ _ ih1 ih2 _ _ ih [GOAL] case h.mk.falsum L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ ⊢ ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝, snd := falsum }.snd ++ l)).fst = { fst := n✝, snd := falsum } ∧ ↑(listDecode (listEncode { fst := n✝, snd := falsum }.snd ++ l)).snd = l [PROOFSTEP] intro l [GOAL] case h.mk.equal L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) ⊢ ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝, snd := equal t₁✝ t₂✝ }.snd ++ l)).fst = { fst := n✝, snd := equal t₁✝ t₂✝ } ∧ ↑(listDecode (listEncode { fst := n✝, snd := equal t₁✝ t₂✝ }.snd ++ l)).snd = l [PROOFSTEP] intro l [GOAL] case h.mk.rel L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) ⊢ ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := φ_n, snd := rel φ_R ts }.snd ++ l)).fst = { fst := φ_n, snd := rel φ_R ts } ∧ ↑(listDecode (listEncode { fst := φ_n, snd := rel φ_R ts }.snd ++ l)).snd = l [PROOFSTEP] intro l [GOAL] case h.mk.imp L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝, snd := f₁✝ }.snd ++ l)).fst = { fst := n✝, snd := f₁✝ } ∧ ↑(listDecode (listEncode { fst := n✝, snd := f₁✝ }.snd ++ l)).snd = l ih2 : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝, snd := f₂✝ }.snd ++ l)).fst = { fst := n✝, snd := f₂✝ } ∧ ↑(listDecode (listEncode { fst := n✝, snd := f₂✝ }.snd ++ l)).snd = l ⊢ ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝, snd := f₁✝ ⟹ f₂✝ }.snd ++ l)).fst = { fst := n✝, snd := f₁✝ ⟹ f₂✝ } ∧ ↑(listDecode (listEncode { fst := n✝, snd := f₁✝ ⟹ f₂✝ }.snd ++ l)).snd = l [PROOFSTEP] intro l [GOAL] case h.mk.all L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).fst = { fst := n✝ + 1, snd := f✝ } ∧ ↑(listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).snd = l ⊢ ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝, snd := ∀'f✝ }.snd ++ l)).fst = { fst := n✝, snd := ∀'f✝ } ∧ ↑(listDecode (listEncode { fst := n✝, snd := ∀'f✝ }.snd ++ l)).snd = l [PROOFSTEP] intro l [GOAL] case h.mk.falsum L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ (listDecode (listEncode { fst := n✝, snd := falsum }.snd ++ l)).fst = { fst := n✝, snd := falsum } ∧ ↑(listDecode (listEncode { fst := n✝, snd := falsum }.snd ++ l)).snd = l [PROOFSTEP] rw [listEncode, singleton_append, listDecode] [GOAL] case h.mk.falsum L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ ({ fst := { fst := n✝, snd := falsum }.fst, snd := falsum }, { val := l, property := (_ : sizeOf l ≤ max 1 (sizeOf (Sum.inr (Sum.inr ({ fst := n✝, snd := falsum }.fst + 2)) :: l))) }).fst = { fst := n✝, snd := falsum } ∧ ↑({ fst := { fst := n✝, snd := falsum }.fst, snd := falsum }, { val := l, property := (_ : sizeOf l ≤ max 1 (sizeOf (Sum.inr (Sum.inr ({ fst := n✝, snd := falsum }.fst + 2)) :: l))) }).snd = l [PROOFSTEP] simp only [eq_self_iff_true, heq_iff_eq, and_self_iff] [GOAL] case h.mk.equal L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ (listDecode (listEncode { fst := n✝, snd := equal t₁✝ t₂✝ }.snd ++ l)).fst = { fst := n✝, snd := equal t₁✝ t₂✝ } ∧ ↑(listDecode (listEncode { fst := n✝, snd := equal t₁✝ t₂✝ }.snd ++ l)).snd = l [PROOFSTEP] rw [listEncode, cons_append, cons_append, listDecode, dif_pos] [GOAL] case h.mk.equal L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ ({ fst := { fst := n✝, snd := equal t₁✝ t₂✝ }.fst, snd := equal t₁✝ (Eq.mp (_ : Term L (α ⊕ Fin { fst := n✝, snd := equal t₁✝ t₂✝ }.fst) = Term L (α ⊕ Fin { fst := n✝, snd := equal t₁✝ t₂✝ }.fst)) t₂✝) }, { val := [] ++ l, property := (_ : sizeOf ([] ++ l) ≤ max 1 (sizeOf (Sum.inl { fst := { fst := n✝, snd := equal t₁✝ t₂✝ }.fst, snd := t₁✝ } :: Sum.inl { fst := { fst := n✝, snd := equal t₁✝ t₂✝ }.fst, snd := t₂✝ } :: ([] ++ l)))) }).fst = { fst := n✝, snd := equal t₁✝ t₂✝ } ∧ ↑({ fst := { fst := n✝, snd := equal t₁✝ t₂✝ }.fst, snd := equal t₁✝ (Eq.mp (_ : Term L (α ⊕ Fin { fst := n✝, snd := equal t₁✝ t₂✝ }.fst) = Term L (α ⊕ Fin { fst := n✝, snd := equal t₁✝ t₂✝ }.fst)) t₂✝) }, { val := [] ++ l, property := (_ : sizeOf ([] ++ l) ≤ max 1 (sizeOf (Sum.inl { fst := { fst := n✝, snd := equal t₁✝ t₂✝ }.fst, snd := t₁✝ } :: Sum.inl { fst := { fst := n✝, snd := equal t₁✝ t₂✝ }.fst, snd := t₂✝ } :: ([] ++ l)))) }).snd = l [PROOFSTEP] simp only [eq_mp_eq_cast, cast_eq, eq_self_iff_true, heq_iff_eq, and_self_iff, nil_append] [GOAL] case h.mk.equal.hc L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ { fst := n✝, snd := equal t₁✝ t₂✝ }.fst = { fst := n✝, snd := equal t₁✝ t₂✝ }.fst [PROOFSTEP] simp only [eq_self_iff_true, heq_iff_eq, and_self_iff] [GOAL] case h.mk.rel L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ (listDecode (listEncode { fst := φ_n, snd := rel φ_R ts }.snd ++ l)).fst = { fst := φ_n, snd := rel φ_R ts } ∧ ↑(listDecode (listEncode { fst := φ_n, snd := rel φ_R ts }.snd ++ l)).snd = l [PROOFSTEP] rw [listEncode, cons_append, cons_append, singleton_append, cons_append, listDecode] [GOAL] case h.mk.rel L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ (if h : ∀ (i : Fin φ_l), Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true then if h' : ∀ (i : Fin φ_l), (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst = { fst := φ_n, snd := rel φ_R ts }.fst then { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := rel φ_R fun i => Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd } else default else default, { val := drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l), property := (_ : sizeOf (drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ≤ max 1 (sizeOf (Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) :: Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) :: (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)))) }).fst = { fst := φ_n, snd := rel φ_R ts } ∧ ↑(if h : ∀ (i : Fin φ_l), Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true then if h' : ∀ (i : Fin φ_l), (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst = { fst := φ_n, snd := rel φ_R ts }.fst then { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := rel φ_R fun i => Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd } else default else default, { val := drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l), property := (_ : sizeOf (drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ≤ max 1 (sizeOf (Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) :: Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) :: (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)))) }).snd = l [PROOFSTEP] have h : ∀ i : Fin φ_l, ((List.map Sum.getLeft? (List.map (fun i : Fin φ_l => Sum.inl (⟨(⟨φ_n, rel φ_R ts⟩ : Σ n, L.BoundedFormula α n).fst, ts i⟩ : Σ n, L.Term (Sum α (Fin n)))) (finRange φ_l) ++ l)).get? ↑i).join = some ⟨_, ts i⟩ := by intro i simp only [Option.join, map_append, map_map, Option.bind_eq_some, id.def, exists_eq_right, get?_eq_some, length_append, length_map, length_finRange] refine' ⟨lt_of_lt_of_le i.2 le_self_add, _⟩ rw [get_append, get_map] · simp only [Sum.getLeft?, get_finRange, Fin.eta, Function.comp_apply, eq_self_iff_true, heq_iff_eq, and_self_iff] · simp only [length_map, length_finRange, is_lt] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } [PROOFSTEP] intro i [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) i : Fin φ_l ⊢ Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } [PROOFSTEP] simp only [Option.join, map_append, map_map, Option.bind_eq_some, id.def, exists_eq_right, get?_eq_some, length_append, length_map, length_finRange] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) i : Fin φ_l ⊢ ∃ h, List.get (List.map (Sum.getLeft? ∘ fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ List.map Sum.getLeft? l) { val := ↑i, isLt := (_ : ↑i < length (List.map (Sum.getLeft? ∘ fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ List.map Sum.getLeft? l)) } = some { fst := φ_n, snd := ts i } [PROOFSTEP] refine' ⟨lt_of_lt_of_le i.2 le_self_add, _⟩ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) i : Fin φ_l ⊢ List.get (List.map (Sum.getLeft? ∘ fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ List.map Sum.getLeft? l) { val := ↑i, isLt := (_ : ↑i < length (List.map (Sum.getLeft? ∘ fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ List.map Sum.getLeft? l)) } = some { fst := φ_n, snd := ts i } [PROOFSTEP] rw [get_append, get_map] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) i : Fin φ_l ⊢ (Sum.getLeft? ∘ fun i => Sum.inl { fst := φ_n, snd := ts i }) (List.get (finRange φ_l) { val := ↑{ val := ↑i, isLt := ?h }, isLt := (_ : ↑{ val := ↑i, isLt := ?h } < length (finRange φ_l)) }) = some { fst := φ_n, snd := ts i } [PROOFSTEP] simp only [Sum.getLeft?, get_finRange, Fin.eta, Function.comp_apply, eq_self_iff_true, heq_iff_eq, and_self_iff] [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) i : Fin φ_l ⊢ ↑i < length (List.map (Sum.getLeft? ∘ fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l)) [PROOFSTEP] simp only [length_map, length_finRange, is_lt] [GOAL] case h.mk.rel L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } ⊢ (if h : ∀ (i : Fin φ_l), Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true then if h' : ∀ (i : Fin φ_l), (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst = { fst := φ_n, snd := rel φ_R ts }.fst then { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := rel φ_R fun i => Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd } else default else default, { val := drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l), property := (_ : sizeOf (drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ≤ max 1 (sizeOf (Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) :: Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) :: (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)))) }).fst = { fst := φ_n, snd := rel φ_R ts } ∧ ↑(if h : ∀ (i : Fin φ_l), Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true then if h' : ∀ (i : Fin φ_l), (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst = { fst := φ_n, snd := rel φ_R ts }.fst then { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := rel φ_R fun i => Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd } else default else default, { val := drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l), property := (_ : sizeOf (drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ≤ max 1 (sizeOf (Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) :: Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) :: (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)))) }).snd = l [PROOFSTEP] rw [dif_pos] [GOAL] case h.mk.rel L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } ⊢ (if h' : ∀ (i : Fin φ_l), (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst = { fst := φ_n, snd := rel φ_R ts }.fst then { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := rel φ_R fun i => Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd } else default, { val := drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l), property := (_ : sizeOf (drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ≤ max 1 (sizeOf (Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) :: Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) :: (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)))) }).fst = { fst := φ_n, snd := rel φ_R ts } ∧ ↑(if h' : ∀ (i : Fin φ_l), (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst = { fst := φ_n, snd := rel φ_R ts }.fst then { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := rel φ_R fun i => Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd } else default, { val := drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l), property := (_ : sizeOf (drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ≤ max 1 (sizeOf (Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) :: Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) :: (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)))) }).snd = l case h.mk.rel.hc L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } ⊢ ∀ (i : Fin φ_l), Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true [PROOFSTEP] swap [GOAL] case h.mk.rel.hc L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } ⊢ ∀ (i : Fin φ_l), Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true [PROOFSTEP] exact fun i => Option.isSome_iff_exists.2 ⟨⟨_, ts i⟩, h i⟩ [GOAL] case h.mk.rel L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } ⊢ (if h' : ∀ (i : Fin φ_l), (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst = { fst := φ_n, snd := rel φ_R ts }.fst then { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := rel φ_R fun i => Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd } else default, { val := drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l), property := (_ : sizeOf (drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ≤ max 1 (sizeOf (Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) :: Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) :: (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)))) }).fst = { fst := φ_n, snd := rel φ_R ts } ∧ ↑(if h' : ∀ (i : Fin φ_l), (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst = { fst := φ_n, snd := rel φ_R ts }.fst then { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := rel φ_R fun i => Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd } else default, { val := drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l), property := (_ : sizeOf (drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ≤ max 1 (sizeOf (Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) :: Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) :: (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)))) }).snd = l [PROOFSTEP] rw [dif_pos] [GOAL] case h.mk.rel L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } ⊢ ({ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := rel φ_R fun i => Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd }, { val := drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l), property := (_ : sizeOf (drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ≤ max 1 (sizeOf (Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) :: Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) :: (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)))) }).fst = { fst := φ_n, snd := rel φ_R ts } ∧ ↑({ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := rel φ_R fun i => Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd }, { val := drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l), property := (_ : sizeOf (drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ≤ max 1 (sizeOf (Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) :: Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) :: (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)))) }).snd = l case h.mk.rel.hc L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } ⊢ ∀ (i : Fin φ_l), (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst = { fst := φ_n, snd := rel φ_R ts }.fst [PROOFSTEP] swap [GOAL] case h.mk.rel.hc L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } ⊢ ∀ (i : Fin φ_l), (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst = { fst := φ_n, snd := rel φ_R ts }.fst [PROOFSTEP] intro i [GOAL] case h.mk.rel.hc L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } i : Fin φ_l ⊢ (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst = { fst := φ_n, snd := rel φ_R ts }.fst [PROOFSTEP] obtain ⟨h1, h2⟩ := Option.eq_some_iff_get_eq.1 (h i) [GOAL] case h.mk.rel.hc.intro L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } i : Fin φ_l h1 : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true h2 : Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) h1 = { fst := φ_n, snd := ts i } ⊢ (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst = { fst := φ_n, snd := rel φ_R ts }.fst [PROOFSTEP] rw [h2] [GOAL] case h.mk.rel L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } ⊢ ({ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := rel φ_R fun i => Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd }, { val := drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l), property := (_ : sizeOf (drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ≤ max 1 (sizeOf (Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) :: Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) :: (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)))) }).fst = { fst := φ_n, snd := rel φ_R ts } ∧ ↑({ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := rel φ_R fun i => Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd }, { val := drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l), property := (_ : sizeOf (drop φ_l (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ≤ max 1 (sizeOf (Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) :: Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) :: (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)))) }).snd = l [PROOFSTEP] simp only [Sigma.mk.inj_iff, heq_eq_eq, rel.injEq, true_and] [GOAL] case h.mk.rel L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } ⊢ (fun i => Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd) = ts ∧ drop φ_l (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l) = l [PROOFSTEP] refine' ⟨funext fun i => _, _⟩ [GOAL] case h.mk.rel.refine'_1 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } i : Fin φ_l ⊢ Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd = ts i [PROOFSTEP] obtain ⟨h1, h2⟩ := Option.eq_some_iff_get_eq.1 (h i) [GOAL] case h.mk.rel.refine'_1.intro L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } i : Fin φ_l h1 : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true h2 : Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) h1 = { fst := φ_n, snd := ts i } ⊢ Eq.mp (_ : Term L (α ⊕ Fin (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).fst) = Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst)) (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd = ts i [PROOFSTEP] rw [eq_mp_eq_cast, cast_eq_iff_heq] [GOAL] case h.mk.rel.refine'_1.intro L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } i : Fin φ_l h1 : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true h2 : Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) h1 = { fst := φ_n, snd := ts i } ⊢ HEq (Option.get (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) (_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l)) ↑i)) = true)).snd (ts i) [PROOFSTEP] exact (Sigma.ext_iff.1 ((Sigma.eta (Option.get _ h1)).trans h2)).2 [GOAL] case h.mk.rel.refine'_2 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } ⊢ drop φ_l (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l) = l [PROOFSTEP] rw [List.drop_append_eq_append_drop, length_map, length_finRange, Nat.sub_self, drop, drop_eq_nil_of_le, nil_append] [GOAL] case h.mk.rel.refine'_2 L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n φ_n φ_l : ℕ φ_R : Relations L φ_l ts : Fin φ_l → Term L (α ⊕ Fin φ_n) l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) h : ∀ (i : Fin φ_l), Option.join (get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++ l)) ↑i) = some { fst := φ_n, snd := ts i } ⊢ length (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l)) ≤ φ_l [PROOFSTEP] rw [length_map, length_finRange] [GOAL] case h.mk.imp L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝, snd := f₁✝ }.snd ++ l)).fst = { fst := n✝, snd := f₁✝ } ∧ ↑(listDecode (listEncode { fst := n✝, snd := f₁✝ }.snd ++ l)).snd = l ih2 : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝, snd := f₂✝ }.snd ++ l)).fst = { fst := n✝, snd := f₂✝ } ∧ ↑(listDecode (listEncode { fst := n✝, snd := f₂✝ }.snd ++ l)).snd = l l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ (listDecode (listEncode { fst := n✝, snd := f₁✝ ⟹ f₂✝ }.snd ++ l)).fst = { fst := n✝, snd := f₁✝ ⟹ f₂✝ } ∧ ↑(listDecode (listEncode { fst := n✝, snd := f₁✝ ⟹ f₂✝ }.snd ++ l)).snd = l [PROOFSTEP] rw [listEncode, List.append_assoc, cons_append, listDecode] [GOAL] case h.mk.imp L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝, snd := f₁✝ }.snd ++ l)).fst = { fst := n✝, snd := f₁✝ } ∧ ↑(listDecode (listEncode { fst := n✝, snd := f₁✝ }.snd ++ l)).snd = l ih2 : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝, snd := f₂✝ }.snd ++ l)).fst = { fst := n✝, snd := f₂✝ } ∧ ↑(listDecode (listEncode { fst := n✝, snd := f₂✝ }.snd ++ l)).snd = l l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ ((fun this => (sigmaImp (listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).fst (listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).fst, { val := ↑(listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).snd, property := (_ : sizeOf ↑(listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).snd ≤ max 1 (sizeOf (Sum.inr (Sum.inr 0) :: (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))))) })) (_ : sizeOf ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd < 1 + (1 + 1) + sizeOf (listEncode f₁✝ ++ (listEncode f₂✝ ++ l)))).fst = { fst := n✝, snd := f₁✝ ⟹ f₂✝ } ∧ ↑((fun this => (sigmaImp (listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).fst (listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).fst, { val := ↑(listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).snd, property := (_ : sizeOf ↑(listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).snd ≤ max 1 (sizeOf (Sum.inr (Sum.inr 0) :: (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))))) })) (_ : sizeOf ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd < 1 + (1 + 1) + sizeOf (listEncode f₁✝ ++ (listEncode f₂✝ ++ l)))).snd = l [PROOFSTEP] simp only [] at * [GOAL] case h.mk.imp L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode f₁✝ ++ l)).fst = { fst := n✝, snd := f₁✝ } ∧ ↑(listDecode (listEncode f₁✝ ++ l)).snd = l ih2 : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode f₂✝ ++ l)).fst = { fst := n✝, snd := f₂✝ } ∧ ↑(listDecode (listEncode f₂✝ ++ l)).snd = l l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ sigmaImp (listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).fst (listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).fst = { fst := n✝, snd := f₁✝ ⟹ f₂✝ } ∧ ↑(listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).snd = l [PROOFSTEP] rw [(ih1 _).1, (ih1 _).2, (ih2 _).1, (ih2 _).2, sigmaImp] [GOAL] case h.mk.imp L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode f₁✝ ++ l)).fst = { fst := n✝, snd := f₁✝ } ∧ ↑(listDecode (listEncode f₁✝ ++ l)).snd = l ih2 : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode f₂✝ ++ l)).fst = { fst := n✝, snd := f₂✝ } ∧ ↑(listDecode (listEncode f₂✝ ++ l)).snd = l l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ (match { fst := n✝, snd := f₁✝ }, { fst := n✝, snd := f₂✝ } with | { fst := m, snd := φ }, { fst := n, snd := ψ } => if h : m = n then { fst := m, snd := φ ⟹ Eq.mp (_ : BoundedFormula L α n = BoundedFormula L α m) ψ } else default) = { fst := n✝, snd := f₁✝ ⟹ f₂✝ } ∧ l = l [PROOFSTEP] simp only [dite_true] [GOAL] case h.mk.imp L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode f₁✝ ++ l)).fst = { fst := n✝, snd := f₁✝ } ∧ ↑(listDecode (listEncode f₁✝ ++ l)).snd = l ih2 : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode f₂✝ ++ l)).fst = { fst := n✝, snd := f₂✝ } ∧ ↑(listDecode (listEncode f₂✝ ++ l)).snd = l l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ { fst := n✝, snd := f₁✝ ⟹ Eq.mp (_ : BoundedFormula L α n✝ = BoundedFormula L α n✝) f₂✝ } = { fst := n✝, snd := f₁✝ ⟹ f₂✝ } ∧ True [PROOFSTEP] exact ⟨rfl, trivial⟩ [GOAL] case h.mk.all L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).fst = { fst := n✝ + 1, snd := f✝ } ∧ ↑(listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).snd = l l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ (listDecode (listEncode { fst := n✝, snd := ∀'f✝ }.snd ++ l)).fst = { fst := n✝, snd := ∀'f✝ } ∧ ↑(listDecode (listEncode { fst := n✝, snd := ∀'f✝ }.snd ++ l)).snd = l [PROOFSTEP] rw [listEncode, cons_append, listDecode] [GOAL] case h.mk.all L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).fst = { fst := n✝ + 1, snd := f✝ } ∧ ↑(listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).snd = l l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ (sigmaAll (listDecode (listEncode f✝ ++ l)).fst, { val := ↑(listDecode (listEncode f✝ ++ l)).snd, property := (_ : sizeOf ↑(listDecode (listEncode f✝ ++ l)).snd ≤ max 1 (sizeOf (Sum.inr (Sum.inr 1) :: (listEncode f✝ ++ l)))) }).fst = { fst := n✝, snd := ∀'f✝ } ∧ ↑(sigmaAll (listDecode (listEncode f✝ ++ l)).fst, { val := ↑(listDecode (listEncode f✝ ++ l)).snd, property := (_ : sizeOf ↑(listDecode (listEncode f✝ ++ l)).snd ≤ max 1 (sizeOf (Sum.inr (Sum.inr 1) :: (listEncode f✝ ++ l)))) }).snd = l [PROOFSTEP] simp only [GOAL] case h.mk.all L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).fst = { fst := n✝ + 1, snd := f✝ } ∧ ↑(listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).snd = l l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ sigmaAll (listDecode (listEncode f✝ ++ l)).fst = { fst := n✝, snd := ∀'f✝ } ∧ ↑(listDecode (listEncode f✝ ++ l)).snd = l [PROOFSTEP] simp only [] at * [GOAL] case h.mk.all L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode f✝ ++ l)).fst = { fst := n✝ + 1, snd := f✝ } ∧ ↑(listDecode (listEncode f✝ ++ l)).snd = l l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ sigmaAll (listDecode (listEncode f✝ ++ l)).fst = { fst := n✝, snd := ∀'f✝ } ∧ ↑(listDecode (listEncode f✝ ++ l)).snd = l [PROOFSTEP] rw [(ih _).1, (ih _).2, sigmaAll] [GOAL] case h.mk.all L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' l✝ : List ((n : ℕ) × BoundedFormula L α n) n n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih : ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)), (listDecode (listEncode f✝ ++ l)).fst = { fst := n✝ + 1, snd := f✝ } ∧ ↑(listDecode (listEncode f✝ ++ l)).snd = l l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ⊢ (match { fst := n✝ + 1, snd := f✝ } with | { fst := Nat.succ n, snd := φ } => { fst := n, snd := ∀'φ } | x => default) = { fst := n✝, snd := ∀'f✝ } ∧ l = l [PROOFSTEP] exact ⟨rfl, rfl⟩ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' φ : (n : ℕ) × BoundedFormula L α n ⊢ (fun l => some (listDecode l).fst) ((fun φ => listEncode φ.snd) φ) = some φ [PROOFSTEP] have h := listDecode_encode_list [φ] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' φ : (n : ℕ) × BoundedFormula L α n h : (listDecode (List.bind [φ] fun φ => listEncode φ.snd)).fst = headI [φ] ⊢ (fun l => some (listDecode l).fst) ((fun φ => listEncode φ.snd) φ) = some φ [PROOFSTEP] rw [bind_singleton] at h [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' φ : (n : ℕ) × BoundedFormula L α n h : (listDecode (listEncode φ.snd)).fst = headI [φ] ⊢ (fun l => some (listDecode l).fst) ((fun φ => listEncode φ.snd) φ) = some φ [PROOFSTEP] simp only [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' φ : (n : ℕ) × BoundedFormula L α n h : (listDecode (listEncode φ.snd)).fst = headI [φ] ⊢ some (listDecode (listEncode φ.snd)).fst = some φ [PROOFSTEP] rw [h] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' φ : (n : ℕ) × BoundedFormula L α n h : (listDecode (listEncode φ.snd)).fst = headI [φ] ⊢ some (headI [φ]) = some φ [PROOFSTEP] rfl [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ #((n : ℕ) × BoundedFormula L α n) ≤ max ℵ₀ (lift #α + lift (card L)) [PROOFSTEP] refine' lift_le.1 (BoundedFormula.encoding.card_le_card_list.trans _) [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ lift #(List BoundedFormula.encoding.Γ) ≤ lift (max ℵ₀ (lift #α + lift (card L))) [PROOFSTEP] rw [encoding_Γ, mk_list_eq_max_mk_aleph0, lift_max, lift_aleph0, lift_max, lift_aleph0, max_le_iff] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ lift #((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ≤ max ℵ₀ (lift (lift #α + lift (card L))) ∧ ℵ₀ ≤ max ℵ₀ (lift (lift #α + lift (card L))) [PROOFSTEP] refine' ⟨_, le_max_left _ _⟩ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ lift #((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ≤ max ℵ₀ (lift (lift #α + lift (card L))) [PROOFSTEP] rw [mk_sum, Term.card_sigma, mk_sum, ← add_eq_max le_rfl, mk_sum, mk_nat] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ lift (lift (ℵ₀ + (lift #α + lift #((i : ℕ) × Functions L i))) + lift (lift #((n : ℕ) × Relations L n) + lift ℵ₀)) ≤ max ℵ₀ (lift (lift #α + lift (card L))) [PROOFSTEP] simp only [lift_add, lift_lift, lift_aleph0] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' ⊢ ℵ₀ + (lift #α + lift #((i : ℕ) × Functions L i)) + (lift #((n : ℕ) × Relations L n) + ℵ₀) ≤ max ℵ₀ (lift #α + lift (card L)) [PROOFSTEP] rw [← add_assoc, add_comm, ← add_assoc, ← add_assoc, aleph0_add_aleph0, add_assoc, add_eq_max le_rfl, add_assoc, card, Symbols, mk_sum, lift_add, lift_lift, lift_lift]
{"mathlib_filename": "Mathlib.ModelTheory.Encoding", "llama_tokens": 55009}
[GOAL] α : Type u_1 β✝ : Type u_2 γ✝ : Type u_3 inst✝² : Preorder α inst✝¹ : Preorder β✝ inst✝ : Preorder γ✝ β γ : Type ?u.55 f : α →o Part β g : α →o β → Part γ ⊢ Monotone fun x => ↑f x >>= ↑g x [PROOFSTEP] intro x y h a [GOAL] α : Type u_1 β✝ : Type u_2 γ✝ : Type u_3 inst✝² : Preorder α inst✝¹ : Preorder β✝ inst✝ : Preorder γ✝ β γ : Type ?u.55 f : α →o Part β g : α →o β → Part γ x y : α h : x ≤ y a : γ ⊢ a ∈ (fun x => ↑f x >>= ↑g x) x → a ∈ (fun x => ↑f x >>= ↑g x) y [PROOFSTEP] simp only [and_imp, exists_prop, Part.bind_eq_bind, Part.mem_bind_iff, exists_imp] [GOAL] α : Type u_1 β✝ : Type u_2 γ✝ : Type u_3 inst✝² : Preorder α inst✝¹ : Preorder β✝ inst✝ : Preorder γ✝ β γ : Type ?u.55 f : α →o Part β g : α →o β → Part γ x y : α h : x ≤ y a : γ ⊢ ∀ (x_1 : β), x_1 ∈ ↑f x → a ∈ ↑g x x_1 → ∃ a_3, a_3 ∈ ↑f y ∧ a ∈ ↑g y a_3 [PROOFSTEP] intro b hb ha [GOAL] α : Type u_1 β✝ : Type u_2 γ✝ : Type u_3 inst✝² : Preorder α inst✝¹ : Preorder β✝ inst✝ : Preorder γ✝ β γ : Type ?u.55 f : α →o Part β g : α →o β → Part γ x y : α h : x ≤ y a : γ b : β hb : b ∈ ↑f x ha : a ∈ ↑g x b ⊢ ∃ a_1, a_1 ∈ ↑f y ∧ a ∈ ↑g y a_1 [PROOFSTEP] refine' ⟨b, f.monotone h _ hb, g.monotone h _ _ ha⟩ [GOAL] α : Type u β : Type v γ : Type u_1 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ c c' : Chain α f : α →o β g : β →o γ b : β h : ∃ a, a ∈ c ∧ ↑f a = b ⊢ b ∈ map c f [PROOFSTEP] rcases h with ⟨w, h, h'⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type u_1 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ c c' : Chain α f : α →o β g : β →o γ b : β w : α h : w ∈ c h' : ↑f w = b ⊢ b ∈ map c f [PROOFSTEP] subst b [GOAL] case intro.intro α : Type u β : Type v γ : Type u_1 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ c c' : Chain α f : α →o β g : β →o γ w : α h : w ∈ c ⊢ ↑f w ∈ map c f [PROOFSTEP] apply mem_map c _ h [GOAL] α : Type u β : Type v γ : Type u_1 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ c c' : Chain α f : α →o β g✝ : β →o γ g : α →o β h : f ≤ g i : ℕ ⊢ ∃ j, ↑(map c f) i ≤ ↑(map c g) j [PROOFSTEP] simp [mem_map_iff] [GOAL] α : Type u β : Type v γ : Type u_1 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ c c' : Chain α f : α →o β g✝ : β →o γ g : α →o β h : f ≤ g i : ℕ ⊢ ∃ j, ↑f (↑c i) ≤ ↑g (↑c j) [PROOFSTEP] intros [GOAL] α : Type u β : Type v γ : Type u_1 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ c c' : Chain α f : α →o β g✝ : β →o γ g : α →o β h : f ≤ g i : ℕ ⊢ ∃ j, ↑f (↑c i) ≤ ↑g (↑c j) [PROOFSTEP] exists i [GOAL] α : Type u β : Type v γ : Type u_1 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ c c' : Chain α f : α →o β g✝ : β →o γ g : α →o β h : f ≤ g i : ℕ ⊢ ↑f (↑c i) ≤ ↑g (↑c i) [PROOFSTEP] apply h [GOAL] α : Type u β : Type v γ : Type u_1 inst✝¹ : OmegaCompletePartialOrder α inst✝ : PartialOrder β f : β →o α ωSup₀ : Chain β → β h : ∀ (x y : β), ↑f x ≤ ↑f y → x ≤ y h' : ∀ (c : Chain β), ↑f (ωSup₀ c) = ωSup (Chain.map c f) c : Chain β i : ℕ ⊢ ↑f (↑c i) ≤ ↑f (ωSup₀ c) [PROOFSTEP] rw [h'] [GOAL] α : Type u β : Type v γ : Type u_1 inst✝¹ : OmegaCompletePartialOrder α inst✝ : PartialOrder β f : β →o α ωSup₀ : Chain β → β h : ∀ (x y : β), ↑f x ≤ ↑f y → x ≤ y h' : ∀ (c : Chain β), ↑f (ωSup₀ c) = ωSup (Chain.map c f) c : Chain β i : ℕ ⊢ ↑f (↑c i) ≤ ωSup (Chain.map c f) [PROOFSTEP] apply le_ωSup (c.map f) [GOAL] α : Type u β : Type v γ : Type u_1 inst✝¹ : OmegaCompletePartialOrder α inst✝ : PartialOrder β f : β →o α ωSup₀ : Chain β → β h : ∀ (x y : β), ↑f x ≤ ↑f y → x ≤ y h' : ∀ (c : Chain β), ↑f (ωSup₀ c) = ωSup (Chain.map c f) c : Chain β x : β hx : ∀ (i : ℕ), ↑c i ≤ x ⊢ ↑f (ωSup₀ c) ≤ ↑f x [PROOFSTEP] rw [h'] [GOAL] α : Type u β : Type v γ : Type u_1 inst✝¹ : OmegaCompletePartialOrder α inst✝ : PartialOrder β f : β →o α ωSup₀ : Chain β → β h : ∀ (x y : β), ↑f x ≤ ↑f y → x ≤ y h' : ∀ (c : Chain β), ↑f (ωSup₀ c) = ωSup (Chain.map c f) c : Chain β x : β hx : ∀ (i : ℕ), ↑c i ≤ x ⊢ ωSup (Chain.map c f) ≤ ↑f x [PROOFSTEP] apply ωSup_le [GOAL] case a α : Type u β : Type v γ : Type u_1 inst✝¹ : OmegaCompletePartialOrder α inst✝ : PartialOrder β f : β →o α ωSup₀ : Chain β → β h : ∀ (x y : β), ↑f x ≤ ↑f y → x ≤ y h' : ∀ (c : Chain β), ↑f (ωSup₀ c) = ωSup (Chain.map c f) c : Chain β x : β hx : ∀ (i : ℕ), ↑c i ≤ x ⊢ ∀ (i : ℕ), ↑(Chain.map c f) i ≤ ↑f x [PROOFSTEP] intro i [GOAL] case a α : Type u β : Type v γ : Type u_1 inst✝¹ : OmegaCompletePartialOrder α inst✝ : PartialOrder β f : β →o α ωSup₀ : Chain β → β h : ∀ (x y : β), ↑f x ≤ ↑f y → x ≤ y h' : ∀ (c : Chain β), ↑f (ωSup₀ c) = ωSup (Chain.map c f) c : Chain β x : β hx : ∀ (i : ℕ), ↑c i ≤ x i : ℕ ⊢ ↑(Chain.map c f) i ≤ ↑f x [PROOFSTEP] apply f.monotone (hx i) [GOAL] α : Type u β : Type v γ : Type u_1 inst✝ : OmegaCompletePartialOrder α c : Chain α x : α h : ∀ (i : ℕ), ↑c i ≤ x ∨ x ≤ ↑c i this : ¬∀ (i : ℕ), ↑c i ≤ x ⊢ ∃ i, ¬↑c i ≤ x [PROOFSTEP] simp only [not_forall] at this ⊢ [GOAL] α : Type u β : Type v γ : Type u_1 inst✝ : OmegaCompletePartialOrder α c : Chain α x : α h : ∀ (i : ℕ), ↑c i ≤ x ∨ x ≤ ↑c i this : ∃ x_1, ¬↑c x_1 ≤ x ⊢ ∃ i, ¬↑c i ≤ x [PROOFSTEP] assumption [GOAL] α : Type u β : Type v γ : Type u_1 inst✝ : OmegaCompletePartialOrder α c₀ c₁ : Chain α h : c₀ ≤ c₁ i : ℕ ⊢ ↑c₀ i ≤ ωSup c₁ [PROOFSTEP] obtain ⟨_, h⟩ := h i [GOAL] case intro α : Type u β : Type v γ : Type u_1 inst✝ : OmegaCompletePartialOrder α c₀ c₁ : Chain α h✝ : c₀ ≤ c₁ i w✝ : ℕ h : ↑c₀ i ≤ ↑c₁ w✝ ⊢ ↑c₀ i ≤ ωSup c₁ [PROOFSTEP] exact le_trans h (le_ωSup _ _) [GOAL] α : Type u β : Type v γ : Type u_1 inst✝ : OmegaCompletePartialOrder α c : Chain α x : α ⊢ ωSup c ≤ x ↔ ∀ (i : ℕ), ↑c i ≤ x [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type u_1 inst✝ : OmegaCompletePartialOrder α c : Chain α x : α ⊢ ωSup c ≤ x → ∀ (i : ℕ), ↑c i ≤ x [PROOFSTEP] intros [GOAL] case mpr α : Type u β : Type v γ : Type u_1 inst✝ : OmegaCompletePartialOrder α c : Chain α x : α ⊢ (∀ (i : ℕ), ↑c i ≤ x) → ωSup c ≤ x [PROOFSTEP] intros [GOAL] case mp α : Type u β : Type v γ : Type u_1 inst✝ : OmegaCompletePartialOrder α c : Chain α x : α a✝ : ωSup c ≤ x i✝ : ℕ ⊢ ↑c i✝ ≤ x [PROOFSTEP] trans ωSup c [GOAL] α : Type u β : Type v γ : Type u_1 inst✝ : OmegaCompletePartialOrder α c : Chain α x : α a✝ : ωSup c ≤ x i✝ : ℕ ⊢ ↑c i✝ ≤ ωSup c α : Type u β : Type v γ : Type u_1 inst✝ : OmegaCompletePartialOrder α c : Chain α x : α a✝ : ωSup c ≤ x i✝ : ℕ ⊢ ωSup c ≤ x [PROOFSTEP] exact le_ωSup _ _ [GOAL] α : Type u β : Type v γ : Type u_1 inst✝ : OmegaCompletePartialOrder α c : Chain α x : α a✝ : ωSup c ≤ x i✝ : ℕ ⊢ ωSup c ≤ x [PROOFSTEP] assumption [GOAL] case mpr α : Type u β : Type v γ : Type u_1 inst✝ : OmegaCompletePartialOrder α c : Chain α x : α a✝ : ∀ (i : ℕ), ↑c i ≤ x ⊢ ωSup c ≤ x [PROOFSTEP] exact ωSup_le _ _ ‹_› [GOAL] α : Type u β : Type v γ : Type u_1 inst✝² : OmegaCompletePartialOrder α inst✝¹ : OmegaCompletePartialOrder β inst✝ : OmegaCompletePartialOrder γ f : α →o β g : β →o γ ⊢ Continuous OrderHom.id [PROOFSTEP] intro c [GOAL] α : Type u β : Type v γ : Type u_1 inst✝² : OmegaCompletePartialOrder α inst✝¹ : OmegaCompletePartialOrder β inst✝ : OmegaCompletePartialOrder γ f : α →o β g : β →o γ c : Chain α ⊢ ↑OrderHom.id (ωSup c) = ωSup (map c OrderHom.id) [PROOFSTEP] rw [c.map_id] [GOAL] α : Type u β : Type v γ : Type u_1 inst✝² : OmegaCompletePartialOrder α inst✝¹ : OmegaCompletePartialOrder β inst✝ : OmegaCompletePartialOrder γ f : α →o β g : β →o γ c : Chain α ⊢ ↑OrderHom.id (ωSup c) = ωSup c [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type u_1 inst✝² : OmegaCompletePartialOrder α inst✝¹ : OmegaCompletePartialOrder β inst✝ : OmegaCompletePartialOrder γ f : α →o β g : β →o γ hfc : Continuous f hgc : Continuous g ⊢ Continuous (OrderHom.comp g f) [PROOFSTEP] dsimp [Continuous] at * [GOAL] α : Type u β : Type v γ : Type u_1 inst✝² : OmegaCompletePartialOrder α inst✝¹ : OmegaCompletePartialOrder β inst✝ : OmegaCompletePartialOrder γ f : α →o β g : β →o γ hfc : ∀ (c : Chain α), ↑f (ωSup c) = ωSup (map c f) hgc : ∀ (c : Chain β), ↑g (ωSup c) = ωSup (map c g) ⊢ ∀ (c : Chain α), ↑g (↑f (ωSup c)) = ωSup (map c (OrderHom.comp g f)) [PROOFSTEP] intro [GOAL] α : Type u β : Type v γ : Type u_1 inst✝² : OmegaCompletePartialOrder α inst✝¹ : OmegaCompletePartialOrder β inst✝ : OmegaCompletePartialOrder γ f : α →o β g : β →o γ hfc : ∀ (c : Chain α), ↑f (ωSup c) = ωSup (map c f) hgc : ∀ (c : Chain β), ↑g (ωSup c) = ωSup (map c g) c✝ : Chain α ⊢ ↑g (↑f (ωSup c✝)) = ωSup (map c✝ (OrderHom.comp g f)) [PROOFSTEP] rw [hfc, hgc, Chain.map_comp] [GOAL] α : Type u β : Type v γ : Type u_1 inst✝² : OmegaCompletePartialOrder α inst✝¹ : OmegaCompletePartialOrder β inst✝ : OmegaCompletePartialOrder γ f : α →o β g : β →o γ x : β c : Chain α z : β ⊢ ↑(↑(OrderHom.const α) x) (ωSup c) ≤ z ↔ ωSup (map c (↑(OrderHom.const α) x)) ≤ z [PROOFSTEP] rw [ωSup_le_iff, Chain.map_coe, OrderHom.const_coe_coe] [GOAL] α : Type u β : Type v γ : Type u_1 inst✝² : OmegaCompletePartialOrder α inst✝¹ : OmegaCompletePartialOrder β inst✝ : OmegaCompletePartialOrder γ f : α →o β g : β →o γ x : β c : Chain α z : β ⊢ Function.const α x (ωSup c) ≤ z ↔ ∀ (i : ℕ), (Function.const α x ∘ ↑c) i ≤ z [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a b : α ha : some a ∈ c hb : some b ∈ c ⊢ a = b [PROOFSTEP] cases' ha with i ha [GOAL] case intro α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a b : α hb : some b ∈ c i : ℕ ha : some a = ↑c i ⊢ a = b [PROOFSTEP] replace ha := ha.symm [GOAL] case intro α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a b : α hb : some b ∈ c i : ℕ ha : ↑c i = some a ⊢ a = b [PROOFSTEP] cases' hb with j hb [GOAL] case intro.intro α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a b : α i : ℕ ha : ↑c i = some a j : ℕ hb : some b = ↑c j ⊢ a = b [PROOFSTEP] replace hb := hb.symm [GOAL] case intro.intro α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a b : α i : ℕ ha : ↑c i = some a j : ℕ hb : ↑c j = some b ⊢ a = b [PROOFSTEP] rw [eq_some_iff] at ha hb [GOAL] case intro.intro α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a b : α i : ℕ ha : a ∈ ↑c i j : ℕ hb : b ∈ ↑c j ⊢ a = b [PROOFSTEP] cases' le_total i j with hij hji [GOAL] case intro.intro.inl α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a b : α i : ℕ ha : a ∈ ↑c i j : ℕ hb : b ∈ ↑c j hij : i ≤ j ⊢ a = b [PROOFSTEP] have := c.monotone hij _ ha [GOAL] case intro.intro.inl α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a b : α i : ℕ ha : a ∈ ↑c i j : ℕ hb : b ∈ ↑c j hij : i ≤ j this : a ∈ ↑c j ⊢ a = b [PROOFSTEP] apply mem_unique this hb [GOAL] case intro.intro.inr α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a b : α i : ℕ ha : a ∈ ↑c i j : ℕ hb : b ∈ ↑c j hji : j ≤ i ⊢ a = b [PROOFSTEP] have := c.monotone hji _ hb [GOAL] case intro.intro.inr α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a b : α i : ℕ ha : a ∈ ↑c i j : ℕ hb : b ∈ ↑c j hji : j ≤ i this : b ∈ ↑c i ⊢ a = b [PROOFSTEP] apply Eq.symm [GOAL] case intro.intro.inr.h α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a b : α i : ℕ ha : a ∈ ↑c i j : ℕ hb : b ∈ ↑c j hji : j ≤ i this : b ∈ ↑c i ⊢ b = a [PROOFSTEP] apply mem_unique this ha [GOAL] α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a : α h : a ∈ Part.ωSup c ⊢ some a ∈ c [PROOFSTEP] simp only [Part.ωSup] at h [GOAL] α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a : α h : a ∈ if h : ∃ a, some a ∈ c then some (choose h) else none ⊢ some a ∈ c [PROOFSTEP] split_ifs at h with h_1 [GOAL] case pos α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a : α h_1 : ∃ a, some a ∈ c h : a ∈ some (choose h_1) ⊢ some a ∈ c [PROOFSTEP] have h' := Classical.choose_spec h_1 [GOAL] case pos α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a : α h_1 : ∃ a, some a ∈ c h : a ∈ some (choose h_1) h' : some (choose h_1) ∈ c ⊢ some a ∈ c [PROOFSTEP] rw [← eq_some_iff] at h [GOAL] case pos α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a : α h_1 : ∃ a, some a ∈ c h : some (choose h_1) = some a h' : some (choose h_1) ∈ c ⊢ some a ∈ c [PROOFSTEP] rw [← h] [GOAL] case pos α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a : α h_1 : ∃ a, some a ∈ c h : some (choose h_1) = some a h' : some (choose h_1) ∈ c ⊢ some (choose h_1) ∈ c [PROOFSTEP] exact h' [GOAL] case neg α : Type u β : Type v γ : Type u_1 c : Chain (Part α) a : α h_1 : ¬∃ a, some a ∈ c h : a ∈ none ⊢ some a ∈ c [PROOFSTEP] rcases h with ⟨⟨⟩⟩ [GOAL] α : Type u β : Type v γ : Type u_1 c : Chain (Part α) i : ℕ ⊢ ↑c i ≤ Part.ωSup c [PROOFSTEP] intro x hx [GOAL] α : Type u β : Type v γ : Type u_1 c : Chain (Part α) i : ℕ x : α hx : x ∈ ↑c i ⊢ x ∈ Part.ωSup c [PROOFSTEP] rw [← eq_some_iff] at hx ⊢ [GOAL] α : Type u β : Type v γ : Type u_1 c : Chain (Part α) i : ℕ x : α hx : ↑c i = some x ⊢ Part.ωSup c = some x [PROOFSTEP] rw [ωSup_eq_some, ← hx] [GOAL] α : Type u β : Type v γ : Type u_1 c : Chain (Part α) i : ℕ x : α hx : ↑c i = some x ⊢ some x ∈ c [PROOFSTEP] rw [← hx] [GOAL] α : Type u β : Type v γ : Type u_1 c : Chain (Part α) i : ℕ x : α hx : ↑c i = some x ⊢ ↑c i ∈ c [PROOFSTEP] exact ⟨i, rfl⟩ [GOAL] α : Type u β : Type v γ : Type u_1 ⊢ ∀ (c : Chain (Part α)) (x : Part α), (∀ (i : ℕ), ↑c i ≤ x) → Part.ωSup c ≤ x [PROOFSTEP] rintro c x hx a ha [GOAL] α : Type u β : Type v γ : Type u_1 c : Chain (Part α) x : Part α hx : ∀ (i : ℕ), ↑c i ≤ x a : α ha : a ∈ Part.ωSup c ⊢ a ∈ x [PROOFSTEP] replace ha := mem_chain_of_mem_ωSup ha [GOAL] α : Type u β : Type v γ : Type u_1 c : Chain (Part α) x : Part α hx : ∀ (i : ℕ), ↑c i ≤ x a : α ha : some a ∈ c ⊢ a ∈ x [PROOFSTEP] cases' ha with i ha [GOAL] case intro α : Type u β : Type v γ : Type u_1 c : Chain (Part α) x : Part α hx : ∀ (i : ℕ), ↑c i ≤ x a : α i : ℕ ha : some a = ↑c i ⊢ a ∈ x [PROOFSTEP] apply hx i [GOAL] case intro.a α : Type u β : Type v γ : Type u_1 c : Chain (Part α) x : Part α hx : ∀ (i : ℕ), ↑c i ≤ x a : α i : ℕ ha : some a = ↑c i ⊢ a ∈ ↑c i [PROOFSTEP] rw [← ha] [GOAL] case intro.a α : Type u β : Type v γ : Type u_1 c : Chain (Part α) x : Part α hx : ∀ (i : ℕ), ↑c i ≤ x a : α i : ℕ ha : some a = ↑c i ⊢ a ∈ some a [PROOFSTEP] apply mem_some [GOAL] α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) ⊢ x ∈ ωSup c ↔ some x ∈ c [PROOFSTEP] simp [OmegaCompletePartialOrder.ωSup, Part.ωSup] [GOAL] α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) ⊢ (x ∈ if h : ∃ a, some a ∈ c then some (choose h) else none) ↔ some x ∈ c [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) ⊢ (x ∈ if h : ∃ a, some a ∈ c then some (choose h) else none) → some x ∈ c [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : ∃ a, some a ∈ c ⊢ x ∈ some (choose h) → some x ∈ c case neg α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : ¬∃ a, some a ∈ c ⊢ x ∈ none → some x ∈ c [PROOFSTEP] swap [GOAL] case neg α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : ¬∃ a, some a ∈ c ⊢ x ∈ none → some x ∈ c case pos α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : ∃ a, some a ∈ c ⊢ x ∈ some (choose h) → some x ∈ c [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case pos α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : ∃ a, some a ∈ c ⊢ x ∈ some (choose h) → some x ∈ c [PROOFSTEP] intro h' [GOAL] case pos α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : ∃ a, some a ∈ c h' : x ∈ some (choose h) ⊢ some x ∈ c [PROOFSTEP] have hh := Classical.choose_spec h [GOAL] case pos α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : ∃ a, some a ∈ c h' : x ∈ some (choose h) hh : some (choose h) ∈ c ⊢ some x ∈ c [PROOFSTEP] simp only [mem_some_iff] at h' [GOAL] case pos α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : ∃ a, some a ∈ c hh : some (choose h) ∈ c h' : x = choose h ⊢ some x ∈ c [PROOFSTEP] subst x [GOAL] case pos α : Type u β : Type v γ : Type u_1 c : Chain (Part α) h : ∃ a, some a ∈ c hh : some (choose h) ∈ c ⊢ some (choose h) ∈ c [PROOFSTEP] exact hh [GOAL] case mpr α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) ⊢ some x ∈ c → x ∈ if h : ∃ a, some a ∈ c then some (choose h) else none [PROOFSTEP] intro h [GOAL] case mpr α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : some x ∈ c ⊢ x ∈ if h : ∃ a, some a ∈ c then some (choose h) else none [PROOFSTEP] have h' : ∃ a : α, some a ∈ c := ⟨_, h⟩ [GOAL] case mpr α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : some x ∈ c h' : ∃ a, some a ∈ c ⊢ x ∈ if h : ∃ a, some a ∈ c then some (choose h) else none [PROOFSTEP] rw [dif_pos h'] [GOAL] case mpr α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : some x ∈ c h' : ∃ a, some a ∈ c ⊢ x ∈ some (choose h') [PROOFSTEP] have hh := Classical.choose_spec h' [GOAL] case mpr α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : some x ∈ c h' : ∃ a, some a ∈ c hh : some (choose h') ∈ c ⊢ x ∈ some (choose h') [PROOFSTEP] rw [eq_of_chain hh h] [GOAL] case mpr α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : some x ∈ c h' : ∃ a, some a ∈ c hh : some (choose h') ∈ c ⊢ x ∈ some x [PROOFSTEP] simp [GOAL] α : Type u_1 β : α → Type u_2 γ : Type u_3 inst✝ : (a : α) → OmegaCompletePartialOrder (β a) c : Chain ((a : α) → β a) f : (a : α) → β a hf : ∀ (i : ℕ), ↑c i ≤ f a : α ⊢ ∀ (i : ℕ), ↑(map c (evalOrderHom a)) i ≤ f a [PROOFSTEP] rintro i [GOAL] α : Type u_1 β : α → Type u_2 γ : Type u_3 inst✝ : (a : α) → OmegaCompletePartialOrder (β a) c : Chain ((a : α) → β a) f : (a : α) → β a hf : ∀ (i : ℕ), ↑c i ≤ f a : α i : ℕ ⊢ ↑(map c (evalOrderHom a)) i ≤ f a [PROOFSTEP] apply hf [GOAL] α : Type u_1 β : α → Type u_2 γ : Type u_3 inst✝¹ : (x : α) → OmegaCompletePartialOrder (β x) inst✝ : OmegaCompletePartialOrder γ f : γ → (x : α) → β x hf : ∀ (x : α), Continuous' fun g => f g x ⊢ Continuous { toFun := f, monotone' := (_ : ∀ (x y : γ), x ≤ y → ∀ (a : α), (fun g => f g a) x ≤ (fun g => f g a) y) } [PROOFSTEP] intro c [GOAL] α : Type u_1 β : α → Type u_2 γ : Type u_3 inst✝¹ : (x : α) → OmegaCompletePartialOrder (β x) inst✝ : OmegaCompletePartialOrder γ f : γ → (x : α) → β x hf : ∀ (x : α), Continuous' fun g => f g x c : Chain γ ⊢ ↑{ toFun := f, monotone' := (_ : ∀ (x y : γ), x ≤ y → ∀ (a : α), (fun g => f g a) x ≤ (fun g => f g a) y) } (ωSup c) = ωSup (map c { toFun := f, monotone' := (_ : ∀ (x y : γ), x ≤ y → ∀ (a : α), (fun g => f g a) x ≤ (fun g => f g a) y) }) [PROOFSTEP] ext a [GOAL] case h α : Type u_1 β : α → Type u_2 γ : Type u_3 inst✝¹ : (x : α) → OmegaCompletePartialOrder (β x) inst✝ : OmegaCompletePartialOrder γ f : γ → (x : α) → β x hf : ∀ (x : α), Continuous' fun g => f g x c : Chain γ a : α ⊢ ↑{ toFun := f, monotone' := (_ : ∀ (x y : γ), x ≤ y → ∀ (a : α), (fun g => f g a) x ≤ (fun g => f g a) y) } (ωSup c) a = ωSup (map c { toFun := f, monotone' := (_ : ∀ (x y : γ), x ≤ y → ∀ (a : α), (fun g => f g a) x ≤ (fun g => f g a) y) }) a [PROOFSTEP] apply (hf a).to_bundled _ c [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : OmegaCompletePartialOrder α inst✝¹ : OmegaCompletePartialOrder β inst✝ : OmegaCompletePartialOrder γ c₀ : Chain α c₁ : Chain β ⊢ ωSup (Chain.zip c₀ c₁) = (ωSup c₀, ωSup c₁) [PROOFSTEP] apply eq_of_forall_ge_iff [GOAL] case H α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : OmegaCompletePartialOrder α inst✝¹ : OmegaCompletePartialOrder β inst✝ : OmegaCompletePartialOrder γ c₀ : Chain α c₁ : Chain β ⊢ ∀ (c : α × β), ωSup (Chain.zip c₀ c₁) ≤ c ↔ (ωSup c₀, ωSup c₁) ≤ c [PROOFSTEP] rintro ⟨z₁, z₂⟩ [GOAL] case H.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : OmegaCompletePartialOrder α inst✝¹ : OmegaCompletePartialOrder β inst✝ : OmegaCompletePartialOrder γ c₀ : Chain α c₁ : Chain β z₁ : α z₂ : β ⊢ ωSup (Chain.zip c₀ c₁) ≤ (z₁, z₂) ↔ (ωSup c₀, ωSup c₁) ≤ (z₁, z₂) [PROOFSTEP] simp [ωSup_le_iff, forall_and] [GOAL] α : Type u inst✝ : CompleteLattice α x✝ : Chain α i : ℕ c : ℕ → α monotone'✝ : Monotone c ⊢ ↑{ toFun := c, monotone' := monotone'✝ } i ≤ (fun c => ⨆ (i : ℕ), ↑c i) { toFun := c, monotone' := monotone'✝ } [PROOFSTEP] simp only [OrderHom.coe_mk] [GOAL] α : Type u inst✝ : CompleteLattice α x✝ : Chain α i : ℕ c : ℕ → α monotone'✝ : Monotone c ⊢ ↑{ toFun := c, monotone' := monotone'✝ } i ≤ ⨆ (i : ℕ), ↑{ toFun := c, monotone' := monotone'✝ } i [PROOFSTEP] apply le_iSup_of_le i [GOAL] α : Type u inst✝ : CompleteLattice α x✝ : Chain α i : ℕ c : ℕ → α monotone'✝ : Monotone c ⊢ ↑{ toFun := c, monotone' := monotone'✝ } i ≤ ↑{ toFun := c, monotone' := monotone'✝ } i [PROOFSTEP] rfl [GOAL] α : Type u inst✝ : CompleteLattice α x✝ : Chain α s : α c : ℕ → α monotone'✝ : Monotone c hs : ∀ (i : ℕ), ↑{ toFun := c, monotone' := monotone'✝ } i ≤ s ⊢ (fun c => ⨆ (i : ℕ), ↑c i) { toFun := c, monotone' := monotone'✝ } ≤ s [PROOFSTEP] simp only [iSup_le_iff, OrderHom.coe_mk] at hs ⊢ [GOAL] α : Type u inst✝ : CompleteLattice α x✝ : Chain α s : α c : ℕ → α monotone'✝ : Monotone c hs : ∀ (i : ℕ), ↑{ toFun := c, monotone' := monotone'✝ } i ≤ s ⊢ ∀ (i : ℕ), ↑{ toFun := c, monotone' := monotone'✝ } i ≤ s [PROOFSTEP] intro i [GOAL] α : Type u inst✝ : CompleteLattice α x✝ : Chain α s : α c : ℕ → α monotone'✝ : Monotone c hs : ∀ (i : ℕ), ↑{ toFun := c, monotone' := monotone'✝ } i ≤ s i : ℕ ⊢ ↑{ toFun := c, monotone' := monotone'✝ } i ≤ s [PROOFSTEP] apply hs i [GOAL] α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β s : Set (α →o β) hs : ∀ (f : α →o β), f ∈ s → Continuous f ⊢ Continuous (sSup s) [PROOFSTEP] intro c [GOAL] α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β s : Set (α →o β) hs : ∀ (f : α →o β), f ∈ s → Continuous f c : Chain α ⊢ ↑(sSup s) (ωSup c) = ωSup (Chain.map c (sSup s)) [PROOFSTEP] apply eq_of_forall_ge_iff [GOAL] case H α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β s : Set (α →o β) hs : ∀ (f : α →o β), f ∈ s → Continuous f c : Chain α ⊢ ∀ (c_1 : β), ↑(sSup s) (ωSup c) ≤ c_1 ↔ ωSup (Chain.map c (sSup s)) ≤ c_1 [PROOFSTEP] intro z [GOAL] case H α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β s : Set (α →o β) hs : ∀ (f : α →o β), f ∈ s → Continuous f c : Chain α z : β ⊢ ↑(sSup s) (ωSup c) ≤ z ↔ ωSup (Chain.map c (sSup s)) ≤ z [PROOFSTEP] suffices (∀ f ∈ s, ∀ (n), (f : _) (c n) ≤ z) ↔ ∀ (n), ∀ f ∈ s, (f : _) (c n) ≤ z by simpa (config := { contextual := true }) [ωSup_le_iff, hs _ _ _] using this [GOAL] α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β s : Set (α →o β) hs : ∀ (f : α →o β), f ∈ s → Continuous f c : Chain α z : β this : (∀ (f : α →o β), f ∈ s → ∀ (n : ℕ), ↑f (↑c n) ≤ z) ↔ ∀ (n : ℕ) (f : α →o β), f ∈ s → ↑f (↑c n) ≤ z ⊢ ↑(sSup s) (ωSup c) ≤ z ↔ ωSup (Chain.map c (sSup s)) ≤ z [PROOFSTEP] simpa (config := { contextual := true }) [ωSup_le_iff, hs _ _ _] using this [GOAL] case H α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β s : Set (α →o β) hs : ∀ (f : α →o β), f ∈ s → Continuous f c : Chain α z : β ⊢ (∀ (f : α →o β), f ∈ s → ∀ (n : ℕ), ↑f (↑c n) ≤ z) ↔ ∀ (n : ℕ) (f : α →o β), f ∈ s → ↑f (↑c n) ≤ z [PROOFSTEP] exact ⟨fun H n f hf => H f hf n, fun H f hf n => H n f hf⟩ [GOAL] α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β s : Set (α → β) hc : ∀ (f : α → β), f ∈ s → Continuous' f ⊢ Continuous' (sSup s) [PROOFSTEP] lift s to Set (α →o β) using fun f hf => (hc f hf).to_monotone [GOAL] case intro α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β s : Set (α →o β) hc : ∀ (f : α → β), f ∈ (fun x x_1 => x '' x_1) FunLike.coe s → Continuous' f ⊢ Continuous' (sSup ((fun x x_1 => x '' x_1) FunLike.coe s)) [PROOFSTEP] simp only [Set.ball_image_iff, continuous'_coe] at hc [GOAL] case intro α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β s : Set (α →o β) hc : ∀ (x : α →o β), x ∈ s → Continuous x ⊢ Continuous' (sSup ((fun x x_1 => x '' x_1) FunLike.coe s)) [PROOFSTEP] rw [sSup_image] [GOAL] case intro α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β s : Set (α →o β) hc : ∀ (x : α →o β), x ∈ s → Continuous x ⊢ Continuous' (⨆ (a : α →o β) (_ : a ∈ s), ↑a) [PROOFSTEP] norm_cast [GOAL] case intro α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β s : Set (α →o β) hc : ∀ (x : α →o β), x ∈ s → Continuous x ⊢ Continuous (⨆ (i : α →o β) (_ : i ∈ s), i) [PROOFSTEP] exact iSup_continuous fun f => iSup_continuous fun hf => hc f hf [GOAL] α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β f g : α →o β hf : Continuous f hg : Continuous g ⊢ Continuous (f ⊔ g) [PROOFSTEP] rw [← sSup_pair] [GOAL] α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β f g : α →o β hf : Continuous f hg : Continuous g ⊢ Continuous (sSup {f, g}) [PROOFSTEP] apply sSup_continuous [GOAL] case hs α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β f g : α →o β hf : Continuous f hg : Continuous g ⊢ ∀ (f_1 : α →o β), f_1 ∈ {f, g} → Continuous f_1 [PROOFSTEP] rintro f (rfl | rfl | _) [GOAL] case hs.inl α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β g : α →o β hg : Continuous g f : α →o β hf : Continuous f ⊢ Continuous f [PROOFSTEP] assumption [GOAL] case hs.inr.refl α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β f g : α →o β hf : Continuous f hg : Continuous g ⊢ Continuous g [PROOFSTEP] assumption [GOAL] α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β ⊢ Continuous ⊤ [PROOFSTEP] intro c [GOAL] α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β c : Chain α ⊢ ↑⊤ (ωSup c) = ωSup (Chain.map c ⊤) [PROOFSTEP] apply eq_of_forall_ge_iff [GOAL] case H α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β c : Chain α ⊢ ∀ (c_1 : β), ↑⊤ (ωSup c) ≤ c_1 ↔ ωSup (Chain.map c ⊤) ≤ c_1 [PROOFSTEP] intro z [GOAL] case H α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β c : Chain α z : β ⊢ ↑⊤ (ωSup c) ≤ z ↔ ωSup (Chain.map c ⊤) ≤ z [PROOFSTEP] simp only [OrderHom.instTopOrderHom_top, OrderHom.const_coe_coe, Function.const, top_le_iff, ωSup_le_iff, Chain.map_coe, Function.comp, forall_const] [GOAL] α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β ⊢ Continuous ⊥ [PROOFSTEP] rw [← sSup_empty] [GOAL] α : Type u β : Type v inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLattice β ⊢ Continuous (sSup ∅) [PROOFSTEP] exact sSup_continuous _ fun f hf => hf.elim [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLinearOrder β f g : α →o β hf : Continuous f hg : Continuous g ⊢ Continuous (f ⊓ g) [PROOFSTEP] refine' fun c => eq_of_forall_ge_iff fun z => _ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLinearOrder β f g : α →o β hf : Continuous f hg : Continuous g c : Chain α z : β ⊢ ↑(f ⊓ g) (ωSup c) ≤ z ↔ ωSup (Chain.map c (f ⊓ g)) ≤ z [PROOFSTEP] simp only [inf_le_iff, hf c, hg c, ωSup_le_iff, ← forall_or_left, ← forall_or_right, Chain.map_coe, OrderHom.coe_inf, ge_iff_le, Pi.inf_apply, Function.comp] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : OmegaCompletePartialOrder α inst✝ : CompleteLinearOrder β f g : α →o β hf : Continuous f hg : Continuous g c : Chain α z : β ⊢ (∀ (x x_1 : ℕ), ↑f (↑c x_1) ≤ z ∨ ↑g (↑c x) ≤ z) ↔ ∀ (i : ℕ), ↑f (↑c i) ≤ z ∨ ↑g (↑c i) ≤ z [PROOFSTEP] exact ⟨λ h _ => h _ _, λ h i j => (h (max j i)).imp (le_trans $ f.mono $ c.mono $ le_max_left _ _) (le_trans $ g.mono $ c.mono $ le_max_right _ _)⟩ [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' ⊢ Function.Injective fun f => f.toFun [PROOFSTEP] rintro ⟨⟩ ⟨⟩ h [GOAL] case mk.mk α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' toOrderHom✝¹ : α →o β cont✝¹ : Continuous toOrderHom✝¹ toOrderHom✝ : α →o β cont✝ : Continuous toOrderHom✝ h : (fun f => f.toFun) { toOrderHom := toOrderHom✝¹, cont := cont✝¹ } = (fun f => f.toFun) { toOrderHom := toOrderHom✝, cont := cont✝ } ⊢ { toOrderHom := toOrderHom✝¹, cont := cont✝¹ } = { toOrderHom := toOrderHom✝, cont := cont✝ } [PROOFSTEP] congr [GOAL] case mk.mk.e_toOrderHom α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' toOrderHom✝¹ : α →o β cont✝¹ : Continuous toOrderHom✝¹ toOrderHom✝ : α →o β cont✝ : Continuous toOrderHom✝ h : (fun f => f.toFun) { toOrderHom := toOrderHom✝¹, cont := cont✝¹ } = (fun f => f.toFun) { toOrderHom := toOrderHom✝, cont := cont✝ } ⊢ toOrderHom✝¹ = toOrderHom✝ [PROOFSTEP] exact FunLike.ext' h [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' ⊢ Function.Injective fun f => f.toFun [PROOFSTEP] rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ h [GOAL] case mk.mk.mk.mk α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' toFun✝¹ : α → β monotone'✝¹ : Monotone toFun✝¹ cont✝¹ : Continuous { toFun := toFun✝¹, monotone' := monotone'✝¹ } toFun✝ : α → β monotone'✝ : Monotone toFun✝ cont✝ : Continuous { toFun := toFun✝, monotone' := monotone'✝ } h : (fun f => f.toFun) { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, cont := cont✝¹ } = (fun f => f.toFun) { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, cont := cont✝ } ⊢ { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, cont := cont✝¹ } = { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, cont := cont✝ } [PROOFSTEP] congr [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' p : Prop hp : Decidable p f g : α → β hf : Continuous' f hg : Continuous' g ⊢ Continuous' fun x => if p then f x else g x [PROOFSTEP] split_ifs [GOAL] case pos α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' p : Prop hp : Decidable p f g : α → β hf : Continuous' f hg : Continuous' g h✝ : p ⊢ Continuous' fun x => f x [PROOFSTEP] simp [*] [GOAL] case neg α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' p : Prop hp : Decidable p f g : α → β hf : Continuous' f hg : Continuous' g h✝ : ¬p ⊢ Continuous' fun x => g x [PROOFSTEP] simp [*] [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ ⊢ ωSup (Chain.map c (OrderHom.bind f g)) = ωSup (Chain.map c f) >>= ωSup (Chain.map c g) [PROOFSTEP] apply eq_of_forall_ge_iff [GOAL] case H α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ ⊢ ∀ (c_1 : Part γ), ωSup (Chain.map c (OrderHom.bind f g)) ≤ c_1 ↔ ωSup (Chain.map c f) >>= ωSup (Chain.map c g) ≤ c_1 [PROOFSTEP] intro x [GOAL] case H α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ ⊢ ωSup (Chain.map c (OrderHom.bind f g)) ≤ x ↔ ωSup (Chain.map c f) >>= ωSup (Chain.map c g) ≤ x [PROOFSTEP] simp only [ωSup_le_iff, Part.bind_le, Chain.mem_map_iff, and_imp, OrderHom.bind_coe, exists_imp] [GOAL] case H α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ ⊢ (∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x) ↔ ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x [PROOFSTEP] constructor [GOAL] case H.mp α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ ⊢ (∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x) → ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x [PROOFSTEP] intro h''' [GOAL] case H.mpr α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ ⊢ (∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x) → ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x [PROOFSTEP] intro h''' [GOAL] case H.mp α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x ⊢ ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x [PROOFSTEP] intro b hb [GOAL] case H.mp α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x b : β hb : b ∈ ωSup (Chain.map c f) ⊢ ωSup (Chain.map c g) b ≤ x [PROOFSTEP] apply ωSup_le _ _ _ [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x b : β hb : b ∈ ωSup (Chain.map c f) ⊢ ∀ (i : ℕ), ↑(Chain.map (Chain.map c g) (Pi.evalOrderHom b)) i ≤ x [PROOFSTEP] rintro i y hy [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x b : β hb : b ∈ ωSup (Chain.map c f) i : ℕ y : γ hy : y ∈ ↑(Chain.map (Chain.map c g) (Pi.evalOrderHom b)) i ⊢ y ∈ x [PROOFSTEP] simp only [Part.mem_ωSup] at hb [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x b : β i : ℕ y : γ hy : y ∈ ↑(Chain.map (Chain.map c g) (Pi.evalOrderHom b)) i hb : Part.some b ∈ Chain.map c f ⊢ y ∈ x [PROOFSTEP] rcases hb with ⟨j, hb⟩ [GOAL] case intro α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x b : β i : ℕ y : γ hy : y ∈ ↑(Chain.map (Chain.map c g) (Pi.evalOrderHom b)) i j : ℕ hb : Part.some b = ↑(Chain.map c f) j ⊢ y ∈ x [PROOFSTEP] replace hb := hb.symm [GOAL] case intro α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x b : β i : ℕ y : γ hy : y ∈ ↑(Chain.map (Chain.map c g) (Pi.evalOrderHom b)) i j : ℕ hb : ↑(Chain.map c f) j = Part.some b ⊢ y ∈ x [PROOFSTEP] simp only [Part.eq_some_iff, Chain.map_coe, Function.comp_apply, OrderHom.apply_coe] at hy hb [GOAL] case intro α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x b : β i : ℕ y : γ hy : y ∈ ↑(Pi.evalOrderHom b) (↑g (↑c i)) j : ℕ hb : b ∈ ↑(Chain.map c f) j ⊢ y ∈ x [PROOFSTEP] replace hb : b ∈ f (c (max i j)) := f.mono (c.mono (le_max_right i j)) _ hb [GOAL] case intro α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x b : β i : ℕ y : γ hy : y ∈ ↑(Pi.evalOrderHom b) (↑g (↑c i)) j : ℕ hb : b ∈ ↑f (↑c (max i j)) ⊢ y ∈ x [PROOFSTEP] replace hy : y ∈ g (c (max i j)) b := g.mono (c.mono (le_max_left i j)) _ _ hy [GOAL] case intro α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x b : β i : ℕ y : γ j : ℕ hb : b ∈ ↑f (↑c (max i j)) hy : y ∈ ↑g (↑c (max i j)) b ⊢ y ∈ x [PROOFSTEP] apply h''' (max i j) [GOAL] case intro.a α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x b : β i : ℕ y : γ j : ℕ hb : b ∈ ↑f (↑c (max i j)) hy : y ∈ ↑g (↑c (max i j)) b ⊢ y ∈ ↑(Chain.map c (OrderHom.bind f g)) (max i j) [PROOFSTEP] simp only [exists_prop, Part.bind_eq_bind, Part.mem_bind_iff, Chain.map_coe, Function.comp_apply, OrderHom.bind_coe] [GOAL] case intro.a α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x b : β i : ℕ y : γ j : ℕ hb : b ∈ ↑f (↑c (max i j)) hy : y ∈ ↑g (↑c (max i j)) b ⊢ ∃ a, a ∈ ↑f (↑c (max i j)) ∧ y ∈ ↑g (↑c (max i j)) a [PROOFSTEP] exact ⟨_, hb, hy⟩ [GOAL] case H.mpr α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x ⊢ ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x [PROOFSTEP] intro i [GOAL] case H.mpr α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x i : ℕ ⊢ ↑(Chain.map c (OrderHom.bind f g)) i ≤ x [PROOFSTEP] intro y hy [GOAL] case H.mpr α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x i : ℕ y : γ hy : y ∈ ↑(Chain.map c (OrderHom.bind f g)) i ⊢ y ∈ x [PROOFSTEP] simp only [exists_prop, Part.bind_eq_bind, Part.mem_bind_iff, Chain.map_coe, Function.comp_apply, OrderHom.bind_coe] at hy [GOAL] case H.mpr α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x i : ℕ y : γ hy : ∃ a, a ∈ ↑f (↑c i) ∧ y ∈ ↑g (↑c i) a ⊢ y ∈ x [PROOFSTEP] rcases hy with ⟨b, hb₀, hb₁⟩ [GOAL] case H.mpr.intro.intro α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x i : ℕ y : γ b : β hb₀ : b ∈ ↑f (↑c i) hb₁ : y ∈ ↑g (↑c i) b ⊢ y ∈ x [PROOFSTEP] apply h''' b _ [GOAL] case H.mpr.intro.intro.a α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x i : ℕ y : γ b : β hb₀ : b ∈ ↑f (↑c i) hb₁ : y ∈ ↑g (↑c i) b ⊢ y ∈ ωSup (Chain.map c g) b [PROOFSTEP] apply le_ωSup (c.map g) _ _ _ hb₁ [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v c : Chain α f : α →o Part β g : α →o β → Part γ x : Part γ h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x i : ℕ y : γ b : β hb₀ : b ∈ ↑f (↑c i) hb₁ : y ∈ ↑g (↑c i) b ⊢ b ∈ ωSup (Chain.map c f) [PROOFSTEP] apply le_ωSup (c.map f) i _ hb₀ [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : α → Part β g : α → β → Part γ hf : Monotone f hf' : Continuous { toFun := f, monotone' := hf } hg : Monotone g hg' : Continuous { toFun := g, monotone' := hg } ⊢ Continuous (OrderHom.bind { toFun := f, monotone' := hf } { toFun := g, monotone' := hg }) [PROOFSTEP] intro c [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : α → Part β g : α → β → Part γ hf : Monotone f hf' : Continuous { toFun := f, monotone' := hf } hg : Monotone g hg' : Continuous { toFun := g, monotone' := hg } c : Chain α ⊢ ↑(OrderHom.bind { toFun := f, monotone' := hf } { toFun := g, monotone' := hg }) (ωSup c) = ωSup (Chain.map c (OrderHom.bind { toFun := f, monotone' := hf } { toFun := g, monotone' := hg })) [PROOFSTEP] rw [ωSup_bind, ← hf', ← hg'] [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : α → Part β g : α → β → Part γ hf : Monotone f hf' : Continuous { toFun := f, monotone' := hf } hg : Monotone g hg' : Continuous { toFun := g, monotone' := hg } c : Chain α ⊢ ↑(OrderHom.bind { toFun := f, monotone' := hf } { toFun := g, monotone' := hg }) (ωSup c) = ↑{ toFun := f, monotone' := hf } (ωSup c) >>= ↑{ toFun := g, monotone' := hg } (ωSup c) [PROOFSTEP] rfl [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : β → γ g : α → Part β hg : Continuous' g ⊢ Continuous' fun x => f <$> g x [PROOFSTEP] simp only [map_eq_bind_pure_comp] [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : β → γ g : α → Part β hg : Continuous' g ⊢ Continuous' fun x => g x >>= pure ∘ f [PROOFSTEP] apply bind_continuous' _ _ hg [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : β → γ g : α → Part β hg : Continuous' g ⊢ Continuous' fun x => pure ∘ f [PROOFSTEP] apply const_continuous' [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : α → Part (β → γ) g : α → Part β hf : Continuous' f hg : Continuous' g ⊢ Continuous' fun x => Seq.seq (f x) fun x_1 => g x [PROOFSTEP] simp only [seq_eq_bind_map] [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : α → Part (β → γ) g : α → Part β hf : Continuous' f hg : Continuous' g ⊢ Continuous' fun x => do let x_1 ← f x x_1 <$> g x [PROOFSTEP] apply bind_continuous' _ _ hf [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : α → Part (β → γ) g : α → Part β hf : Continuous' f hg : Continuous' g ⊢ Continuous' fun x x_1 => x_1 <$> g x [PROOFSTEP] apply Pi.OmegaCompletePartialOrder.flip₂_continuous' [GOAL] case hf α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : α → Part (β → γ) g : α → Part β hf : Continuous' f hg : Continuous' g ⊢ ∀ (x : β → γ), Continuous' fun g_1 => x <$> g g_1 [PROOFSTEP] intro [GOAL] case hf α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : α → Part (β → γ) g : α → Part β hf : Continuous' f hg : Continuous' g x✝ : β → γ ⊢ Continuous' fun g_1 => x✝ <$> g g_1 [PROOFSTEP] apply map_continuous' _ _ hg [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' f : α → β g : α →𝒄 β h : f = ↑g ⊢ Continuous (OrderHom.copy g.toOrderHom f h) [PROOFSTEP] rw [OrderHom.copy_eq] [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' f : α → β g : α →𝒄 β h : f = ↑g ⊢ Continuous g.toOrderHom [PROOFSTEP] exact g.cont [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c₀ : Chain (α →𝒄 β) c₁ : Chain α z : β ⊢ (∀ (i j : ℕ), ↑(↑c₀ i) (↑c₁ j) ≤ z) ↔ ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z [PROOFSTEP] constructor [GOAL] case mp α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c₀ : Chain (α →𝒄 β) c₁ : Chain α z : β ⊢ (∀ (i j : ℕ), ↑(↑c₀ i) (↑c₁ j) ≤ z) → ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z [PROOFSTEP] introv h [GOAL] case mpr α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c₀ : Chain (α →𝒄 β) c₁ : Chain α z : β ⊢ (∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z) → ∀ (i j : ℕ), ↑(↑c₀ i) (↑c₁ j) ≤ z [PROOFSTEP] introv h [GOAL] case mp α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c₀ : Chain (α →𝒄 β) c₁ : Chain α z : β h : ∀ (i j : ℕ), ↑(↑c₀ i) (↑c₁ j) ≤ z i : ℕ ⊢ ↑(↑c₀ i) (↑c₁ i) ≤ z [PROOFSTEP] apply h [GOAL] case mpr α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c₀ : Chain (α →𝒄 β) c₁ : Chain α z : β h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z i j : ℕ ⊢ ↑(↑c₀ i) (↑c₁ j) ≤ z [PROOFSTEP] apply le_trans _ (h (max i j)) [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c₀ : Chain (α →𝒄 β) c₁ : Chain α z : β h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z i j : ℕ ⊢ ↑(↑c₀ i) (↑c₁ j) ≤ ↑(↑c₀ (max i j)) (↑c₁ (max i j)) [PROOFSTEP] trans c₀ i (c₁ (max i j)) [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c₀ : Chain (α →𝒄 β) c₁ : Chain α z : β h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z i j : ℕ ⊢ ↑(↑c₀ i) (↑c₁ j) ≤ ↑(↑c₀ i) (↑c₁ (max i j)) [PROOFSTEP] apply (c₀ i).monotone [GOAL] case a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c₀ : Chain (α →𝒄 β) c₁ : Chain α z : β h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z i j : ℕ ⊢ ↑c₁ j ≤ ↑c₁ (max i j) [PROOFSTEP] apply c₁.monotone [GOAL] case a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c₀ : Chain (α →𝒄 β) c₁ : Chain α z : β h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z i j : ℕ ⊢ j ≤ max i j [PROOFSTEP] apply le_max_right [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c₀ : Chain (α →𝒄 β) c₁ : Chain α z : β h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z i j : ℕ ⊢ ↑(↑c₀ i) (↑c₁ (max i j)) ≤ ↑(↑c₀ (max i j)) (↑c₁ (max i j)) [PROOFSTEP] apply c₀.monotone [GOAL] case a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c₀ : Chain (α →𝒄 β) c₁ : Chain α z : β h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z i j : ℕ ⊢ i ≤ max i j [PROOFSTEP] apply le_max_left [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c₀ : Chain (α →𝒄 β) c₁ : Chain α z : β ⊢ (∀ (j i : ℕ), ↑(↑c₀ i) (↑c₁ j) ≤ z) ↔ ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z [PROOFSTEP] rw [forall_swap, forall_forall_merge] [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain (α →𝒄 β) c' : Chain α ⊢ ↑(ωSup (Chain.map c toMono)) (ωSup c') = ωSup (Chain.map c' (ωSup (Chain.map c toMono))) [PROOFSTEP] apply eq_of_forall_ge_iff [GOAL] case H α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain (α →𝒄 β) c' : Chain α ⊢ ∀ (c_1 : β), ↑(ωSup (Chain.map c toMono)) (ωSup c') ≤ c_1 ↔ ωSup (Chain.map c' (ωSup (Chain.map c toMono))) ≤ c_1 [PROOFSTEP] intro z [GOAL] case H α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain (α →𝒄 β) c' : Chain α z : β ⊢ ↑(ωSup (Chain.map c toMono)) (ωSup c') ≤ z ↔ ωSup (Chain.map c' (ωSup (Chain.map c toMono))) ≤ z [PROOFSTEP] simp only [ωSup_le_iff, (c _).continuous, Chain.map_coe, OrderHom.apply_coe, toMono_coe, OrderHom.omegaCompletePartialOrder_ωSup_coe, forall_forall_merge, OrderHomClass.coe_coe, forall_forall_merge', (· ∘ ·), Function.eval] [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' x y : (α →𝒄 β) × α h : x ≤ y ⊢ (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y [PROOFSTEP] dsimp [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' x y : (α →𝒄 β) × α h : x ≤ y ⊢ ↑x.fst x.snd ≤ ↑y.fst y.snd [PROOFSTEP] trans y.fst x.snd <;> [apply h.1; apply y.1.monotone h.2] [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' x y : (α →𝒄 β) × α h : x ≤ y ⊢ ↑x.fst x.snd ≤ ↑y.fst y.snd [PROOFSTEP] trans y.fst x.snd [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' x y : (α →𝒄 β) × α h : x ≤ y ⊢ ↑x.fst x.snd ≤ ↑y.fst x.snd [PROOFSTEP] apply h.1 [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' x y : (α →𝒄 β) × α h : x ≤ y ⊢ ↑y.fst x.snd ≤ ↑y.fst y.snd [PROOFSTEP] apply y.1.monotone h.2 [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' ⊢ Continuous { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) } [PROOFSTEP] intro c [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) ⊢ ↑{ toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) } (ωSup c) = ωSup (Chain.map c { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }) [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) ⊢ ↑{ toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) } (ωSup c) ≤ ωSup (Chain.map c { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }) [PROOFSTEP] apply ωSup_le [GOAL] case a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) ⊢ ∀ (i : ℕ), ↑(Chain.map (Chain.map (Chain.map c OrderHom.fst) toMono) (OrderHom.apply (ωSup c).snd)) i ≤ ωSup (Chain.map c { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }) [PROOFSTEP] intro i [GOAL] case a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i : ℕ ⊢ ↑(Chain.map (Chain.map (Chain.map c OrderHom.fst) toMono) (OrderHom.apply (ωSup c).snd)) i ≤ ωSup (Chain.map c { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }) [PROOFSTEP] dsimp [GOAL] case a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i : ℕ ⊢ ↑(↑c i).fst (ωSup (Chain.map c OrderHom.snd)) ≤ ωSup (Chain.map c { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → ↑x.fst x.snd ≤ ↑y.fst y.snd) }) [PROOFSTEP] rw [(c _).fst.continuous] [GOAL] case a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i : ℕ ⊢ ωSup (Chain.map (Chain.map c OrderHom.snd) ↑(↑c i).fst) ≤ ωSup (Chain.map c { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → ↑x.fst x.snd ≤ ↑y.fst y.snd) }) [PROOFSTEP] apply ωSup_le [GOAL] case a.a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i : ℕ ⊢ ∀ (i_1 : ℕ), ↑(Chain.map (Chain.map c OrderHom.snd) ↑(↑c i).fst) i_1 ≤ ωSup (Chain.map c { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → ↑x.fst x.snd ≤ ↑y.fst y.snd) }) [PROOFSTEP] intro j [GOAL] case a.a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i j : ℕ ⊢ ↑(Chain.map (Chain.map c OrderHom.snd) ↑(↑c i).fst) j ≤ ωSup (Chain.map c { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → ↑x.fst x.snd ≤ ↑y.fst y.snd) }) [PROOFSTEP] apply le_ωSup_of_le (max i j) [GOAL] case a.a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i j : ℕ ⊢ ↑(Chain.map (Chain.map c OrderHom.snd) ↑(↑c i).fst) j ≤ ↑(Chain.map c { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → ↑x.fst x.snd ≤ ↑y.fst y.snd) }) (max i j) [PROOFSTEP] apply apply_mono [GOAL] case a.a.a.h₁ α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i j : ℕ ⊢ (↑c i).fst ≤ (↑c (max i j)).fst case a.a.a.h₂ α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i j : ℕ ⊢ ↑(Chain.map c OrderHom.snd) j ≤ (↑c (max i j)).snd [PROOFSTEP] exact monotone_fst (OrderHom.mono _ (le_max_left _ _)) [GOAL] case a.a.a.h₂ α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i j : ℕ ⊢ ↑(Chain.map c OrderHom.snd) j ≤ (↑c (max i j)).snd [PROOFSTEP] exact monotone_snd (OrderHom.mono _ (le_max_right _ _)) [GOAL] case a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) ⊢ ωSup (Chain.map c { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }) ≤ ↑{ toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) } (ωSup c) [PROOFSTEP] apply ωSup_le [GOAL] case a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) ⊢ ∀ (i : ℕ), ↑(Chain.map c { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }) i ≤ ↑{ toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) } (ωSup c) [PROOFSTEP] intro i [GOAL] case a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i : ℕ ⊢ ↑(Chain.map c { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }) i ≤ ↑{ toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) } (ωSup c) [PROOFSTEP] apply le_ωSup_of_le i [GOAL] case a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i : ℕ ⊢ ↑(Chain.map c { toFun := fun f => ↑f.fst f.snd, monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }) i ≤ ↑(Chain.map (Chain.map (Chain.map c OrderHom.fst) toMono) (OrderHom.apply (ωSup c).snd)) i [PROOFSTEP] dsimp [GOAL] case a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i : ℕ ⊢ ↑(↑c i).fst (↑c i).snd ≤ ↑(↑c i).fst (ωSup (Chain.map c OrderHom.snd)) [PROOFSTEP] apply OrderHom.mono _ [GOAL] case a.a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i : ℕ ⊢ (↑c i).snd ≤ ωSup (Chain.map c OrderHom.snd) [PROOFSTEP] apply le_ωSup_of_le i [GOAL] case a.a.a α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c : Chain ((α →𝒄 β) × α) i : ℕ ⊢ (↑c i).snd ≤ ↑(Chain.map c OrderHom.snd) i [PROOFSTEP] rfl [GOAL] α : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' c₀ : Chain (α →𝒄 β) c₁ : Chain α ⊢ ↑(ωSup c₀) (ωSup c₁) = ↑Prod.apply (ωSup (Chain.zip c₀ c₁)) [PROOFSTEP] simp [Prod.apply_apply, Prod.ωSup_zip] [GOAL] α✝ : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α✝ inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' α : Type u_5 f : α → β →𝒄 γ ⊢ Continuous { toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) } [PROOFSTEP] intro _ [GOAL] α✝ : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α✝ inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' α : Type u_5 f : α → β →𝒄 γ c✝ : Chain β ⊢ ↑{ toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) } (ωSup c✝) = ωSup (Chain.map c✝ { toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) }) [PROOFSTEP] ext x [GOAL] case h α✝ : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α✝ inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' α : Type u_5 f : α → β →𝒄 γ c✝ : Chain β x : α ⊢ ↑{ toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) } (ωSup c✝) x = ωSup (Chain.map c✝ { toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) }) x [PROOFSTEP] change f _ _ = _ [GOAL] case h α✝ : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α✝ inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' α : Type u_5 f : α → β →𝒄 γ c✝ : Chain β x : α ⊢ ↑(f x) (ωSup c✝) = ωSup (Chain.map c✝ { toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) }) x [PROOFSTEP] rw [(f _).continuous] [GOAL] case h α✝ : Type u α' : Type u_1 β : Type v β' : Type u_2 γ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α✝ inst✝⁴ : OmegaCompletePartialOrder β inst✝³ : OmegaCompletePartialOrder γ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' α : Type u_5 f : α → β →𝒄 γ c✝ : Chain β x : α ⊢ ωSup (Chain.map c✝ ↑(f x)) = ωSup (Chain.map c✝ { toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) }) x [PROOFSTEP] rfl [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : α →𝒄 Part β g : α →𝒄 β → Part γ c : Chain α ⊢ ↑(OrderHom.bind (↑f) g.toOrderHom) (ωSup c) = ωSup (Chain.map c (OrderHom.bind (↑f) g.toOrderHom)) [PROOFSTEP] rw [ωSup_bind, ← f.continuous, g.toOrderHom_eq_coe, ← g.continuous] [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : α →𝒄 Part β g : α →𝒄 β → Part γ c : Chain α ⊢ ↑(OrderHom.bind ↑f ↑g) (ωSup c) = ↑f (ωSup c) >>= ↑g (ωSup c) [PROOFSTEP] rfl [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : β → γ g : α →𝒄 Part β ⊢ (fun x => f <$> ↑g x) = ↑(bind g (const (pure ∘ f))) [PROOFSTEP] ext1 [GOAL] case h α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : β → γ g : α →𝒄 Part β x✝ : α ⊢ f <$> ↑g x✝ = ↑(bind g (const (pure ∘ f))) x✝ [PROOFSTEP] simp only [map_eq_bind_pure_comp, bind, coe_mk, OrderHom.bind_coe, coe_apply, coe_toOrderHom, const_apply] [GOAL] α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : α →𝒄 Part (β → γ) g : α →𝒄 Part β ⊢ (fun x => Seq.seq (↑f x) fun x_1 => ↑g x) = ↑(bind f (flip (_root_.flip map g))) [PROOFSTEP] ext [GOAL] case h.H α : Type u α' : Type u_1 β✝ : Type v β' : Type u_2 γ✝ : Type u_3 φ : Type u_4 inst✝⁵ : OmegaCompletePartialOrder α inst✝⁴ : OmegaCompletePartialOrder β✝ inst✝³ : OmegaCompletePartialOrder γ✝ inst✝² : OmegaCompletePartialOrder φ inst✝¹ : OmegaCompletePartialOrder α' inst✝ : OmegaCompletePartialOrder β' β γ : Type v f : α →𝒄 Part (β → γ) g : α →𝒄 Part β x✝ : α a✝ : γ ⊢ (a✝ ∈ Seq.seq (↑f x✝) fun x => ↑g x✝) ↔ a✝ ∈ ↑(bind f (flip (_root_.flip map g))) x✝ [PROOFSTEP] simp only [seq_eq_bind_map, Part.bind_eq_bind, Part.mem_bind_iff, flip_apply, _root_.flip, map_apply, bind_apply]
{"mathlib_filename": "Mathlib.Order.OmegaCompletePartialOrder", "llama_tokens": 41193}
[GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J ⊢ v 𝒰 f g i j ⟶ v 𝒰 f g j i [PROOFSTEP] haveI : HasPullback (pullback.snd ≫ 𝒰.map i ≫ f) g := hasPullback_assoc_symm (𝒰.map j) (𝒰.map i) (𝒰.map i ≫ f) g [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g ⊢ v 𝒰 f g i j ⟶ v 𝒰 f g j i [PROOFSTEP] haveI : HasPullback (pullback.snd ≫ 𝒰.map j ≫ f) g := hasPullback_assoc_symm (𝒰.map i) (𝒰.map j) (𝒰.map j ≫ f) g [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g ⊢ v 𝒰 f g i j ⟶ v 𝒰 f g j i [PROOFSTEP] refine' (pullbackSymmetry _ _).hom ≫ _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g ⊢ pullback (OpenCover.map 𝒰 j) (pullback.fst ≫ OpenCover.map 𝒰 i) ⟶ v 𝒰 f g j i [PROOFSTEP] refine' (pullbackAssoc _ _ _ _).inv ≫ _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g ⊢ pullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g ⟶ v 𝒰 f g j i [PROOFSTEP] change pullback _ _ ⟶ pullback _ _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g ⊢ pullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g ⟶ pullback (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) [PROOFSTEP] refine' _ ≫ (pullbackSymmetry _ _).hom [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g ⊢ pullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g ⟶ pullback (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j) [PROOFSTEP] refine' _ ≫ (pullbackAssoc _ _ _ _).hom [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g ⊢ pullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g ⟶ pullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g [PROOFSTEP] refine' pullback.map _ _ _ _ (pullbackSymmetry _ _).hom (𝟙 _) (𝟙 _) _ _ [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g ⊢ (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫ pullback.snd ≫ OpenCover.map 𝒰 j ≫ f case refine'_2 C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g ⊢ g ≫ 𝟙 Z = 𝟙 Y ≫ g [PROOFSTEP] rw [pullbackSymmetry_hom_comp_snd_assoc, pullback.condition_assoc, Category.comp_id] [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g ⊢ g ≫ 𝟙 Z = 𝟙 Y ≫ g [PROOFSTEP] rw [Category.comp_id, Category.id_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J ⊢ t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst = pullback.snd [PROOFSTEP] delta t [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J ⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫ (pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫ let_fun this := (pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫ pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ (pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫ (pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom; this) ≫ pullback.fst ≫ pullback.fst = pullback.snd [PROOFSTEP] haveI : HasPullback (pullback.snd ≫ 𝒰.map i ≫ f) g := hasPullback_assoc_symm (𝒰.map j) (𝒰.map i) (𝒰.map i ≫ f) g [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g ⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫ (pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫ let_fun this := (pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫ pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ (pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫ (pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom; this) ≫ pullback.fst ≫ pullback.fst = pullback.snd [PROOFSTEP] haveI : HasPullback (pullback.snd ≫ 𝒰.map j ≫ f) g := hasPullback_assoc_symm (𝒰.map i) (𝒰.map j) (𝒰.map j ≫ f) g [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g ⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫ (pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫ let_fun this := (pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫ pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ (pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫ (pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom; this) ≫ pullback.fst ≫ pullback.fst = pullback.snd [PROOFSTEP] simp only [Category.assoc, id.def, pullbackSymmetry_hom_comp_fst_assoc, pullbackAssoc_hom_snd_fst, pullback.lift_fst_assoc, pullbackSymmetry_hom_comp_snd, pullbackAssoc_inv_fst_fst, pullbackSymmetry_hom_comp_fst] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J ⊢ t 𝒰 f g i j ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] delta t [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J ⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫ (pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫ let_fun this := (pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫ pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ (pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫ (pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom; this) ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] haveI : HasPullback (pullback.snd ≫ 𝒰.map i ≫ f) g := hasPullback_assoc_symm (𝒰.map j) (𝒰.map i) (𝒰.map i ≫ f) g [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g ⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫ (pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫ let_fun this := (pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫ pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ (pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫ (pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom; this) ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] haveI : HasPullback (pullback.snd ≫ 𝒰.map j ≫ f) g := hasPullback_assoc_symm (𝒰.map i) (𝒰.map j) (𝒰.map j ≫ f) g [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g ⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫ (pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫ let_fun this := (pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫ pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ (pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫ (pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom; this) ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] simp only [pullbackSymmetry_hom_comp_snd_assoc, Category.comp_id, Category.assoc, id.def, pullbackSymmetry_hom_comp_fst_assoc, pullbackAssoc_hom_snd_snd, pullback.lift_snd, pullbackAssoc_inv_snd] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J ⊢ t 𝒰 f g i j ≫ pullback.snd = pullback.fst ≫ pullback.fst [PROOFSTEP] delta t [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J ⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫ (pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫ let_fun this := (pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫ pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ (pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫ (pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom; this) ≫ pullback.snd = pullback.fst ≫ pullback.fst [PROOFSTEP] haveI : HasPullback (pullback.snd ≫ 𝒰.map i ≫ f) g := hasPullback_assoc_symm (𝒰.map j) (𝒰.map i) (𝒰.map i ≫ f) g [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g ⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫ (pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫ let_fun this := (pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫ pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ (pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫ (pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom; this) ≫ pullback.snd = pullback.fst ≫ pullback.fst [PROOFSTEP] haveI : HasPullback (pullback.snd ≫ 𝒰.map j ≫ f) g := hasPullback_assoc_symm (𝒰.map i) (𝒰.map j) (𝒰.map j ≫ f) g [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : 𝒰.J this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g ⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫ (pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫ let_fun this := (pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = (pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫ pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ (pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫ (pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom; this) ≫ pullback.snd = pullback.fst ≫ pullback.fst [PROOFSTEP] simp only [pullbackSymmetry_hom_comp_snd_assoc, Category.assoc, id.def, pullbackSymmetry_hom_comp_snd, pullbackAssoc_hom_fst, pullback.lift_fst_assoc, pullbackSymmetry_hom_comp_fst, pullbackAssoc_inv_fst_snd] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i : 𝒰.J ⊢ t 𝒰 f g i i = 𝟙 (v 𝒰 f g i i) [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i : 𝒰.J ⊢ t 𝒰 f g i i ≫ pullback.fst = 𝟙 (v 𝒰 f g i i) ≫ pullback.fst [PROOFSTEP] rw [Category.id_comp] [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i : 𝒰.J ⊢ t 𝒰 f g i i ≫ pullback.snd = 𝟙 (v 𝒰 f g i i) ≫ pullback.snd [PROOFSTEP] rw [Category.id_comp] [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i : 𝒰.J ⊢ t 𝒰 f g i i ≫ pullback.fst = pullback.fst case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i : 𝒰.J ⊢ t 𝒰 f g i i ≫ pullback.snd = pullback.snd [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i : 𝒰.J ⊢ (t 𝒰 f g i i ≫ pullback.fst) ≫ pullback.fst = pullback.fst ≫ pullback.fst [PROOFSTEP] rw [← cancel_mono (𝒰.map i)] [GOAL] case h₀.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i : 𝒰.J ⊢ ((t 𝒰 f g i i ≫ pullback.fst) ≫ pullback.fst) ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ OpenCover.map 𝒰 i [PROOFSTEP] simp only [pullback.condition, Category.assoc, t_fst_fst] [GOAL] case h₀.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i : 𝒰.J ⊢ (t 𝒰 f g i i ≫ pullback.fst) ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] simp only [Category.assoc, t_fst_snd] [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i : 𝒰.J ⊢ t 𝒰 f g i i ≫ pullback.snd = pullback.snd [PROOFSTEP] rw [← cancel_mono (𝒰.map i)] [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i : 𝒰.J ⊢ (t 𝒰 f g i i ≫ pullback.snd) ≫ OpenCover.map 𝒰 i = pullback.snd ≫ OpenCover.map 𝒰 i [PROOFSTEP] simp only [pullback.condition, t_snd, Category.assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ pullback (fV 𝒰 f g i j) (fV 𝒰 f g i k) ⟶ pullback (fV 𝒰 f g j k) (fV 𝒰 f g j i) [PROOFSTEP] refine' (pullbackRightPullbackFstIso _ _ _).hom ≫ _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ pullback (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) ⟶ pullback (fV 𝒰 f g j k) (fV 𝒰 f g j i) [PROOFSTEP] refine' _ ≫ (pullbackSymmetry _ _).hom [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ pullback (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) ⟶ pullback (fV 𝒰 f g j i) (fV 𝒰 f g j k) [PROOFSTEP] refine' _ ≫ (pullbackRightPullbackFstIso _ _ _).inv [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ pullback (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) ⟶ pullback (fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) [PROOFSTEP] refine' pullback.map _ _ _ _ (t 𝒰 f g i j) (𝟙 _) (𝟙 _) _ _ [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X = t 𝒰 f g i j ≫ fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j [PROOFSTEP] simp only [← pullback.condition, Category.comp_id, t_fst_fst_assoc] [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k [PROOFSTEP] simp only [Category.comp_id, Category.id_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ pullback.fst ≫ pullback.fst ≫ pullback.fst = pullback.fst ≫ pullback.snd [PROOFSTEP] delta t' [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g i j)).hom ≫ (pullback.map (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (t 𝒰 f g i j) (𝟙 (OpenCover.obj 𝒰 k)) (𝟙 X) (_ : (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X = t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (_ : OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k) ≫ (pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i)).inv) ≫ (pullbackSymmetry (fV 𝒰 f g j i) (fV 𝒰 f g j k)).hom) ≫ pullback.fst ≫ pullback.fst ≫ pullback.fst = pullback.fst ≫ pullback.snd [PROOFSTEP] simp only [Category.assoc, pullbackSymmetry_hom_comp_fst_assoc, pullbackRightPullbackFstIso_inv_snd_fst_assoc, pullback.lift_fst_assoc, t_fst_fst, pullbackRightPullbackFstIso_hom_fst_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ pullback.fst ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.fst ≫ pullback.snd [PROOFSTEP] delta t' [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g i j)).hom ≫ (pullback.map (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (t 𝒰 f g i j) (𝟙 (OpenCover.obj 𝒰 k)) (𝟙 X) (_ : (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X = t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (_ : OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k) ≫ (pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i)).inv) ≫ (pullbackSymmetry (fV 𝒰 f g j i) (fV 𝒰 f g j k)).hom) ≫ pullback.fst ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.fst ≫ pullback.snd [PROOFSTEP] simp only [Category.assoc, pullbackSymmetry_hom_comp_fst_assoc, pullbackRightPullbackFstIso_inv_snd_fst_assoc, pullback.lift_fst_assoc, t_fst_snd, pullbackRightPullbackFstIso_hom_fst_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ pullback.fst ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] delta t' [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g i j)).hom ≫ (pullback.map (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (t 𝒰 f g i j) (𝟙 (OpenCover.obj 𝒰 k)) (𝟙 X) (_ : (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X = t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (_ : OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k) ≫ (pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i)).inv) ≫ (pullbackSymmetry (fV 𝒰 f g j i) (fV 𝒰 f g j k)).hom) ≫ pullback.fst ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] simp only [Category.comp_id, Category.assoc, pullbackSymmetry_hom_comp_fst_assoc, pullbackRightPullbackFstIso_inv_snd_snd, pullback.lift_snd, pullbackRightPullbackFstIso_hom_snd] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ pullback.snd ≫ pullback.fst ≫ pullback.fst = pullback.fst ≫ pullback.snd [PROOFSTEP] delta t' [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g i j)).hom ≫ (pullback.map (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (t 𝒰 f g i j) (𝟙 (OpenCover.obj 𝒰 k)) (𝟙 X) (_ : (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X = t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (_ : OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k) ≫ (pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i)).inv) ≫ (pullbackSymmetry (fV 𝒰 f g j i) (fV 𝒰 f g j k)).hom) ≫ pullback.snd ≫ pullback.fst ≫ pullback.fst = pullback.fst ≫ pullback.snd [PROOFSTEP] simp only [Category.assoc, pullbackSymmetry_hom_comp_snd_assoc, pullbackRightPullbackFstIso_inv_fst_assoc, pullback.lift_fst_assoc, t_fst_fst, pullbackRightPullbackFstIso_hom_fst_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ pullback.snd ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.fst ≫ pullback.snd [PROOFSTEP] delta t' [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g i j)).hom ≫ (pullback.map (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (t 𝒰 f g i j) (𝟙 (OpenCover.obj 𝒰 k)) (𝟙 X) (_ : (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X = t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (_ : OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k) ≫ (pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i)).inv) ≫ (pullbackSymmetry (fV 𝒰 f g j i) (fV 𝒰 f g j k)).hom) ≫ pullback.snd ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.fst ≫ pullback.snd [PROOFSTEP] simp only [Category.assoc, pullbackSymmetry_hom_comp_snd_assoc, pullbackRightPullbackFstIso_inv_fst_assoc, pullback.lift_fst_assoc, t_fst_snd, pullbackRightPullbackFstIso_hom_fst_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.fst ≫ pullback.fst [PROOFSTEP] delta t' [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g i j)).hom ≫ (pullback.map (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (t 𝒰 f g i j) (𝟙 (OpenCover.obj 𝒰 k)) (𝟙 X) (_ : (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X = t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (_ : OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k) ≫ (pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i)).inv) ≫ (pullbackSymmetry (fV 𝒰 f g j i) (fV 𝒰 f g j k)).hom) ≫ pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.fst ≫ pullback.fst [PROOFSTEP] simp only [Category.assoc, pullbackSymmetry_hom_comp_snd_assoc, pullbackRightPullbackFstIso_inv_fst_assoc, pullback.lift_fst_assoc, t_snd, pullbackRightPullbackFstIso_hom_fst_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.fst ≫ pullback.fst ≫ pullback.fst = pullback.fst ≫ pullback.fst ≫ pullback.fst [PROOFSTEP] simp only [t'_fst_fst_fst, t'_fst_snd, t'_snd_snd] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.fst ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.fst ≫ pullback.snd [PROOFSTEP] simp only [t'_fst_fst_snd] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] simp only [t'_fst_snd, t'_snd_snd, t'_fst_fst_fst] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.fst ≫ pullback.fst = pullback.snd ≫ pullback.fst ≫ pullback.fst [PROOFSTEP] rw [← cancel_mono (𝒰.map i)] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.fst ≫ pullback.fst) ≫ OpenCover.map 𝒰 i = (pullback.snd ≫ pullback.fst ≫ pullback.fst) ≫ OpenCover.map 𝒰 i [PROOFSTEP] simp only [pullback.condition_assoc, t'_snd_fst_fst, t'_fst_snd, t'_snd_snd] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.fst ≫ pullback.snd = pullback.snd ≫ pullback.fst ≫ pullback.snd [PROOFSTEP] simp only [pullback.condition_assoc, t'_snd_fst_snd] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] simp only [t'_snd_snd, t'_fst_fst_fst, t'_fst_snd] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j = 𝟙 (pullback (fV 𝒰 f g i j) (fV 𝒰 f g i k)) [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.fst = 𝟙 (pullback (fV 𝒰 f g i j) (fV 𝒰 f g i k)) ≫ pullback.fst [PROOFSTEP] rw [Category.id_comp] [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.snd = 𝟙 (pullback (fV 𝒰 f g i j) (fV 𝒰 f g i k)) ≫ pullback.snd [PROOFSTEP] rw [Category.id_comp] [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.fst = pullback.fst [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.fst) ≫ pullback.fst = pullback.fst ≫ pullback.fst [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀.h₀.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.fst) ≫ pullback.fst) ≫ pullback.fst = (pullback.fst ≫ pullback.fst) ≫ pullback.fst [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h₀.h₀.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.fst ≫ pullback.fst ≫ pullback.fst = pullback.fst ≫ pullback.fst ≫ pullback.fst [PROOFSTEP] exact cocycle_fst_fst_fst 𝒰 f g i j k [GOAL] case h₀.h₀.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.fst) ≫ pullback.fst) ≫ pullback.snd = (pullback.fst ≫ pullback.fst) ≫ pullback.snd [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h₀.h₀.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.fst ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.fst ≫ pullback.snd [PROOFSTEP] exact cocycle_fst_fst_snd 𝒰 f g i j k [GOAL] case h₀.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.fst) ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h₀.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] exact cocycle_fst_snd 𝒰 f g i j k [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.snd = pullback.snd [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₁.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.snd) ≫ pullback.fst = pullback.snd ≫ pullback.fst [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₁.h₀.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.snd) ≫ pullback.fst) ≫ pullback.fst = (pullback.snd ≫ pullback.fst) ≫ pullback.fst [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h₁.h₀.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.fst ≫ pullback.fst = pullback.snd ≫ pullback.fst ≫ pullback.fst [PROOFSTEP] exact cocycle_snd_fst_fst 𝒰 f g i j k [GOAL] case h₁.h₀.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.snd) ≫ pullback.fst) ≫ pullback.snd = (pullback.snd ≫ pullback.fst) ≫ pullback.snd [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h₁.h₀.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.fst ≫ pullback.snd = pullback.snd ≫ pullback.fst ≫ pullback.snd [PROOFSTEP] exact cocycle_snd_fst_snd 𝒰 f g i j k [GOAL] case h₁.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.snd) ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h₁.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] exact cocycle_snd_snd 𝒰 f g i j k [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd = pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.fst = (pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.fst case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.snd = (pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.snd [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.fst) ≫ pullback.fst = ((pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.fst) ≫ pullback.fst case h₀.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.fst) ≫ pullback.snd = ((pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.fst) ≫ pullback.snd case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.snd = (pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.snd [PROOFSTEP] all_goals simp only [t'_snd_fst_fst, t'_snd_fst_snd, t'_snd_snd, t_fst_fst, t_fst_snd, t_snd, Category.assoc] [GOAL] case h₀.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.fst) ≫ pullback.fst = ((pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.fst) ≫ pullback.fst [PROOFSTEP] simp only [t'_snd_fst_fst, t'_snd_fst_snd, t'_snd_snd, t_fst_fst, t_fst_snd, t_snd, Category.assoc] [GOAL] case h₀.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ (((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.fst) ≫ pullback.snd = ((pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.fst) ≫ pullback.snd [PROOFSTEP] simp only [t'_snd_fst_fst, t'_snd_fst_snd, t'_snd_snd, t_fst_fst, t_fst_snd, t_snd, Category.assoc] [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j k : 𝒰.J ⊢ ((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.snd = (pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.snd [PROOFSTEP] simp only [t'_snd_fst_fst, t'_snd_fst_snd, t'_snd_snd, t_fst_fst, t_fst_snd, t_snd, Category.assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g ⊢ GlueData.glued (gluing 𝒰 f g) ⟶ X [PROOFSTEP] fapply Multicoequalizer.desc [GOAL] case k C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g ⊢ (b : (GlueData.diagram (gluing 𝒰 f g).toGlueData).R) → MultispanIndex.right (GlueData.diagram (gluing 𝒰 f g).toGlueData) b ⟶ X case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g ⊢ ∀ (a : (GlueData.diagram (gluing 𝒰 f g).toGlueData).L), MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ ?k (MultispanIndex.fstFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a) = MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ ?k (MultispanIndex.sndFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a) [PROOFSTEP] exact fun i => pullback.fst ≫ 𝒰.map i [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g ⊢ ∀ (a : (GlueData.diagram (gluing 𝒰 f g).toGlueData).L), MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ pullback.fst ≫ OpenCover.map 𝒰 (MultispanIndex.fstFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a) = MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ pullback.fst ≫ OpenCover.map 𝒰 (MultispanIndex.sndFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a) [PROOFSTEP] rintro ⟨i, j⟩ [GOAL] case h.mk C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : (gluing 𝒰 f g).toGlueData.J ⊢ MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) (i, j) ≫ pullback.fst ≫ OpenCover.map 𝒰 (MultispanIndex.fstFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) (i, j)) = MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) (i, j) ≫ pullback.fst ≫ OpenCover.map 𝒰 (MultispanIndex.sndFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) (i, j)) [PROOFSTEP] change pullback.fst ≫ _ ≫ 𝒰.map i = (_ ≫ _) ≫ _ ≫ 𝒰.map j [GOAL] case h.mk C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : (gluing 𝒰 f g).toGlueData.J ⊢ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 i = (GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i) ≫ pullback.fst ≫ OpenCover.map 𝒰 j [PROOFSTEP] erw [pullback.condition] [GOAL] case h.mk C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : (gluing 𝒰 f g).toGlueData.J ⊢ pullback.snd ≫ OpenCover.map 𝒰 j = (GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i) ≫ pullback.fst ≫ OpenCover.map 𝒰 j [PROOFSTEP] rw [← Category.assoc] [GOAL] case h.mk C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : (gluing 𝒰 f g).toGlueData.J ⊢ pullback.snd ≫ OpenCover.map 𝒰 j = ((GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i) ≫ pullback.fst) ≫ OpenCover.map 𝒰 j [PROOFSTEP] congr 1 [GOAL] case h.mk.e_a C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : (gluing 𝒰 f g).toGlueData.J ⊢ pullback.snd = (GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i) ≫ pullback.fst [PROOFSTEP] rw [Category.assoc] [GOAL] case h.mk.e_a C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : (gluing 𝒰 f g).toGlueData.J ⊢ pullback.snd = GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ pullback.fst [PROOFSTEP] exact (t_fst_fst _ _ _ _ _).symm [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g ⊢ GlueData.glued (gluing 𝒰 f g) ⟶ Y [PROOFSTEP] fapply Multicoequalizer.desc [GOAL] case k C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g ⊢ (b : (GlueData.diagram (gluing 𝒰 f g).toGlueData).R) → MultispanIndex.right (GlueData.diagram (gluing 𝒰 f g).toGlueData) b ⟶ Y case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g ⊢ ∀ (a : (GlueData.diagram (gluing 𝒰 f g).toGlueData).L), MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ ?k (MultispanIndex.fstFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a) = MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ ?k (MultispanIndex.sndFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a) [PROOFSTEP] exact fun i => pullback.snd [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g ⊢ ∀ (a : (GlueData.diagram (gluing 𝒰 f g).toGlueData).L), MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ pullback.snd = MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ pullback.snd [PROOFSTEP] rintro ⟨i, j⟩ [GOAL] case h.mk C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : (gluing 𝒰 f g).toGlueData.J ⊢ MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) (i, j) ≫ pullback.snd = MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) (i, j) ≫ pullback.snd [PROOFSTEP] change pullback.fst ≫ _ = (_ ≫ _) ≫ _ [GOAL] case h.mk C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : (gluing 𝒰 f g).toGlueData.J ⊢ pullback.fst ≫ pullback.snd = (GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i) ≫ pullback.snd [PROOFSTEP] rw [Category.assoc] [GOAL] case h.mk C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i j : (gluing 𝒰 f g).toGlueData.J ⊢ pullback.fst ≫ pullback.snd = GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ pullback.snd [PROOFSTEP] exact (t_fst_snd _ _ _ _ _).symm [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g ⊢ p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g [PROOFSTEP] apply Multicoequalizer.hom_ext [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g ⊢ ∀ (b : (GlueData.diagram (gluing 𝒰 f g).toGlueData).R), Multicoequalizer.π (GlueData.diagram (gluing 𝒰 f g).toGlueData) b ≫ p1 𝒰 f g ≫ f = Multicoequalizer.π (GlueData.diagram (gluing 𝒰 f g).toGlueData) b ≫ p2 𝒰 f g ≫ g [PROOFSTEP] intro i [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i : (GlueData.diagram (gluing 𝒰 f g).toGlueData).R ⊢ Multicoequalizer.π (GlueData.diagram (gluing 𝒰 f g).toGlueData) i ≫ p1 𝒰 f g ≫ f = Multicoequalizer.π (GlueData.diagram (gluing 𝒰 f g).toGlueData) i ≫ p2 𝒰 f g ≫ g [PROOFSTEP] erw [Multicoequalizer.π_desc_assoc, Multicoequalizer.π_desc_assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g i : (GlueData.diagram (gluing 𝒰 f g).toGlueData).R ⊢ (pullback.fst ≫ OpenCover.map 𝒰 i) ≫ f = pullback.snd ≫ g [PROOFSTEP] rw [Category.assoc, pullback.condition] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ pullback (OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) i) (OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) j) ⟶ GlueData.V (gluing 𝒰 f g).toGlueData (i, j) [PROOFSTEP] change pullback pullback.fst pullback.fst ⟶ pullback _ _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ pullback pullback.fst pullback.fst ⟶ pullback (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) [PROOFSTEP] refine' (pullbackRightPullbackFstIso _ _ _).hom ≫ _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ pullback (pullback.fst ≫ PullbackCone.fst s) (OpenCover.map 𝒰 j) ⟶ pullback (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) [PROOFSTEP] refine' pullback.map _ _ _ _ _ (𝟙 _) (𝟙 _) _ _ [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i) ⟶ pullback (OpenCover.map 𝒰 i ≫ f) g [PROOFSTEP] exact (pullbackSymmetry _ _).hom ≫ pullback.map _ _ _ _ (𝟙 _) s.snd f (Category.id_comp _).symm s.condition [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ (pullback.fst ≫ PullbackCone.fst s) ≫ 𝟙 X = ((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ pullback.fst ≫ OpenCover.map 𝒰 i [PROOFSTEP] simpa using pullback.condition [GOAL] case refine'_3 C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ OpenCover.map 𝒰 j ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j [PROOFSTEP] simp only [Category.comp_id, Category.id_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ pullback.fst = pullback.fst ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) [PROOFSTEP] delta gluedLiftPullbackMap [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ (let_fun this := (pullbackRightPullbackFstIso (PullbackCone.fst s) (OpenCover.map 𝒰 j) pullback.fst).hom ≫ pullback.map (pullback.fst ≫ PullbackCone.fst s) (OpenCover.map 𝒰 j) (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) ((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) (𝟙 (OpenCover.obj 𝒰 j)) (𝟙 X) (_ : (pullback.fst ≫ PullbackCone.fst s) ≫ 𝟙 X = ((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (_ : OpenCover.map 𝒰 j ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j); this) ≫ pullback.fst = pullback.fst ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] delta gluedLiftPullbackMap [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ (let_fun this := (pullbackRightPullbackFstIso (PullbackCone.fst s) (OpenCover.map 𝒰 j) pullback.fst).hom ≫ pullback.map (pullback.fst ≫ PullbackCone.fst s) (OpenCover.map 𝒰 j) (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) ((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) (𝟙 (OpenCover.obj 𝒰 j)) (𝟙 X) (_ : (pullback.fst ≫ PullbackCone.fst s) ≫ 𝟙 X = ((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (_ : OpenCover.map 𝒰 j ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j); this) ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g ⊢ s.pt ⟶ GlueData.glued (gluing 𝒰 f g) [PROOFSTEP] fapply (𝒰.pullbackCover s.fst).glueMorphisms [GOAL] case f C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g ⊢ (x : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J) → OpenCover.obj (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) x ⟶ GlueData.glued (gluing 𝒰 f g) [PROOFSTEP] exact fun i => (pullbackSymmetry _ _).hom ≫ pullback.map _ _ _ _ (𝟙 _) s.snd f (Category.id_comp _).symm s.condition ≫ (gluing 𝒰 f g).ι i [GOAL] case hf C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g ⊢ ∀ (x y : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J), pullback.fst ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 x)).hom ≫ pullback.map (OpenCover.map 𝒰 x) (PullbackCone.fst s) (OpenCover.map 𝒰 x ≫ f) g (𝟙 (OpenCover.obj 𝒰 x)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 x ≫ f = 𝟙 (OpenCover.obj 𝒰 x) ≫ OpenCover.map 𝒰 x ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) x = pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 y)).hom ≫ pullback.map (OpenCover.map 𝒰 y) (PullbackCone.fst s) (OpenCover.map 𝒰 y ≫ f) g (𝟙 (OpenCover.obj 𝒰 y)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 y ≫ f = 𝟙 (OpenCover.obj 𝒰 y) ≫ OpenCover.map 𝒰 y ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) y [PROOFSTEP] intro i j [GOAL] case hf C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J ⊢ pullback.fst ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i = pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) j [PROOFSTEP] rw [← gluedLiftPullbackMap_fst_assoc] [GOAL] case hf C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J ⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i = pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) j [PROOFSTEP] have : _ = pullback.fst ≫ _ := (gluing 𝒰 f g).glue_condition i j [GOAL] case hf C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i = pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) j [PROOFSTEP] rw [← this, gluing_t, gluing_f] [GOAL] case hf C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j ≫ pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) j [PROOFSTEP] simp_rw [← Category.assoc] [GOAL] case hf C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ ((gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j) ≫ pullback.fst) ≫ GlueData.ι (gluing 𝒰 f g) j = ((pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom) ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ GlueData.ι (gluing 𝒰 f g) j [PROOFSTEP] congr 1 [GOAL] case hf.e_a C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ (gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j) ≫ pullback.fst = (pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom) ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) [PROOFSTEP] apply pullback.hom_ext [GOAL] case hf.e_a.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ ((gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j) ≫ pullback.fst) ≫ pullback.fst = ((pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom) ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ pullback.fst [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case hf.e_a.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ ((gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j) ≫ pullback.fst) ≫ pullback.snd = ((pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom) ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ pullback.snd [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case hf.e_a.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst = pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ pullback.fst [PROOFSTEP] rw [t_fst_fst, gluedLiftPullbackMap_snd] [GOAL] case hf.e_a.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ pullback.snd ≫ pullback.snd = pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ pullback.fst [PROOFSTEP] congr 1 [GOAL] case hf.e_a.h₀.e_a C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ pullback.snd = (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ pullback.fst [PROOFSTEP] rw [← Iso.inv_comp_eq, pullbackSymmetry_inv_comp_snd] [GOAL] case hf.e_a.h₀.e_a C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ pullback.fst = pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ pullback.fst [PROOFSTEP] erw [pullback.lift_fst] [GOAL] case hf.e_a.h₀.e_a C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ pullback.fst = pullback.fst ≫ 𝟙 (OpenCover.obj 𝒰 j) [PROOFSTEP] rw [Category.comp_id] [GOAL] case hf.e_a.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j ≫ pullback.fst ≫ pullback.snd = pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ pullback.snd [PROOFSTEP] rw [t_fst_snd, gluedLiftPullbackMap_fst_assoc] [GOAL] case hf.e_a.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ pullback.fst ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ pullback.snd = pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ pullback.snd [PROOFSTEP] erw [pullback.lift_snd, pullback.lift_snd] [GOAL] case hf.e_a.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ pullback.fst ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.snd ≫ PullbackCone.snd s = pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫ pullback.snd ≫ PullbackCone.snd s [PROOFSTEP] rw [pullbackSymmetry_hom_comp_snd_assoc, pullbackSymmetry_hom_comp_snd_assoc] [GOAL] case hf.e_a.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i ⊢ pullback.fst ≫ pullback.fst ≫ PullbackCone.snd s = pullback.snd ≫ pullback.fst ≫ PullbackCone.snd s [PROOFSTEP] exact pullback.condition_assoc _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g ⊢ gluedLift 𝒰 f g s ≫ p1 𝒰 f g = PullbackCone.fst s [PROOFSTEP] rw [← cancel_epi (𝒰.pullbackCover s.fst).fromGlued] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g ⊢ OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ gluedLift 𝒰 f g s ≫ p1 𝒰 f g = OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ PullbackCone.fst s [PROOFSTEP] apply Multicoequalizer.hom_ext [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g ⊢ ∀ (b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R), Multicoequalizer.π (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫ OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ gluedLift 𝒰 f g s ≫ p1 𝒰 f g = Multicoequalizer.π (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫ OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ PullbackCone.fst s [PROOFSTEP] intro b [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ Multicoequalizer.π (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫ OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ gluedLift 𝒰 f g s ≫ p1 𝒰 f g = Multicoequalizer.π (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫ OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ PullbackCone.fst s [PROOFSTEP] erw [Multicoequalizer.π_desc_assoc, Multicoequalizer.π_desc_assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ gluedLift 𝒰 f g s ≫ p1 𝒰 f g = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s [PROOFSTEP] delta gluedLift [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ OpenCover.glueMorphisms (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) (fun i => (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i) (_ : ∀ (i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J), pullback.fst ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i = pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) j) ≫ p1 𝒰 f g = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s [PROOFSTEP] simp_rw [← Category.assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ (OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ OpenCover.glueMorphisms (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) (fun i => ((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ GlueData.ι (gluing 𝒰 f g) i) (_ : ∀ (x y : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J), pullback.fst ≫ (fun i => ((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ GlueData.ι (gluing 𝒰 f g) i) x = pullback.snd ≫ (fun i => ((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ GlueData.ι (gluing 𝒰 f g) i) y)) ≫ p1 𝒰 f g = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s [PROOFSTEP] rw [(𝒰.pullbackCover s.fst).ι_glueMorphisms] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ (((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 b)).hom ≫ pullback.map (OpenCover.map 𝒰 b) (PullbackCone.fst s) (OpenCover.map 𝒰 b ≫ f) g (𝟙 (OpenCover.obj 𝒰 b)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 b ≫ f = 𝟙 (OpenCover.obj 𝒰 b) ≫ OpenCover.map 𝒰 b ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ GlueData.ι (gluing 𝒰 f g) b) ≫ p1 𝒰 f g = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s [PROOFSTEP] simp_rw [Category.assoc] -- Porting note : `Category.comp_id` is no longer necessary, don't know where `𝟙 _` has gone [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 b)).hom ≫ pullback.map (OpenCover.map 𝒰 b) (PullbackCone.fst s) (OpenCover.map 𝒰 b ≫ f) g (𝟙 (OpenCover.obj 𝒰 b)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 b ≫ f = 𝟙 (OpenCover.obj 𝒰 b) ≫ OpenCover.map 𝒰 b ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) b ≫ p1 𝒰 f g = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s [PROOFSTEP] erw [Multicoequalizer.π_desc, pullback.lift_fst_assoc, pullback.condition] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 b)).hom ≫ pullback.snd ≫ PullbackCone.fst s = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s [PROOFSTEP] rw [pullbackSymmetry_hom_comp_snd_assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ pullback.fst ≫ PullbackCone.fst s = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g ⊢ gluedLift 𝒰 f g s ≫ p2 𝒰 f g = PullbackCone.snd s [PROOFSTEP] rw [← cancel_epi (𝒰.pullbackCover s.fst).fromGlued] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g ⊢ OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ gluedLift 𝒰 f g s ≫ p2 𝒰 f g = OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ PullbackCone.snd s [PROOFSTEP] apply Multicoequalizer.hom_ext [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g ⊢ ∀ (b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R), Multicoequalizer.π (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫ OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ gluedLift 𝒰 f g s ≫ p2 𝒰 f g = Multicoequalizer.π (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫ OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ PullbackCone.snd s [PROOFSTEP] intro b [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ Multicoequalizer.π (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫ OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ gluedLift 𝒰 f g s ≫ p2 𝒰 f g = Multicoequalizer.π (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫ OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ PullbackCone.snd s [PROOFSTEP] erw [Multicoequalizer.π_desc_assoc, Multicoequalizer.π_desc_assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ gluedLift 𝒰 f g s ≫ p2 𝒰 f g = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s [PROOFSTEP] delta gluedLift [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ OpenCover.glueMorphisms (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) (fun i => (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i) (_ : ∀ (i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J), pullback.fst ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i = pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫ pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) j) ≫ p2 𝒰 f g = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s [PROOFSTEP] simp_rw [← Category.assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ (OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ OpenCover.glueMorphisms (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) (fun i => ((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ GlueData.ι (gluing 𝒰 f g) i) (_ : ∀ (x y : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J), pullback.fst ≫ (fun i => ((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ GlueData.ι (gluing 𝒰 f g) i) x = pullback.snd ≫ (fun i => ((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ GlueData.ι (gluing 𝒰 f g) i) y)) ≫ p2 𝒰 f g = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s [PROOFSTEP] rw [(𝒰.pullbackCover s.fst).ι_glueMorphisms] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ (((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 b)).hom ≫ pullback.map (OpenCover.map 𝒰 b) (PullbackCone.fst s) (OpenCover.map 𝒰 b ≫ f) g (𝟙 (OpenCover.obj 𝒰 b)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 b ≫ f = 𝟙 (OpenCover.obj 𝒰 b) ≫ OpenCover.map 𝒰 b ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ GlueData.ι (gluing 𝒰 f g) b) ≫ p2 𝒰 f g = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 b)).hom ≫ pullback.map (OpenCover.map 𝒰 b) (PullbackCone.fst s) (OpenCover.map 𝒰 b ≫ f) g (𝟙 (OpenCover.obj 𝒰 b)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 b ≫ f = 𝟙 (OpenCover.obj 𝒰 b) ≫ OpenCover.map 𝒰 b ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) b ≫ p2 𝒰 f g = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s [PROOFSTEP] erw [Multicoequalizer.π_desc, pullback.lift_snd] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 b)).hom ≫ pullback.snd ≫ PullbackCone.snd s = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s [PROOFSTEP] rw [pullbackSymmetry_hom_comp_snd_assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R ⊢ pullback.fst ≫ PullbackCone.snd s = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ pullbackFstιToV 𝒰 f g i j ≫ pullback.fst = pullback.snd [PROOFSTEP] delta pullbackFstιToV [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ ((pullbackSymmetry pullback.fst (GlueData.ι (gluing 𝒰 f g) j) ≪≫ pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) (GlueData.ι (gluing 𝒰 f g) j)).hom ≫ (pullback.congrHom (_ : Multicoequalizer.π (GlueData.diagram (gluing 𝒰 f g).toGlueData) j ≫ Multicoequalizer.desc (GlueData.diagram (gluing 𝒰 f g).toGlueData) X (fun i => pullback.fst ≫ OpenCover.map 𝒰 i) (_ : ∀ (a : (GlueData.diagram (gluing 𝒰 f g).toGlueData).L), MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ pullback.fst ≫ OpenCover.map 𝒰 (MultispanIndex.fstFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a) = MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ pullback.fst ≫ OpenCover.map 𝒰 (MultispanIndex.sndFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a)) = pullback.fst ≫ OpenCover.map 𝒰 j) (_ : OpenCover.map 𝒰 i = OpenCover.map 𝒰 i)).hom) ≫ pullback.fst = pullback.snd [PROOFSTEP] simp only [Iso.trans_hom, pullback.congrHom_hom, Category.assoc, pullback.lift_fst, Category.comp_id] -- Porting note : `pullbackRightPullbackFstIso_hom_fst` is not used in `simp` even though -- instructed, forcing `pullbackSymmetry_hom_comp_fst` to be manually `rw`ed as well. [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ (pullbackSymmetry pullback.fst (GlueData.ι (gluing 𝒰 f g) j)).hom ≫ (pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) (GlueData.ι (gluing 𝒰 f g) j)).hom ≫ pullback.fst = pullback.snd [PROOFSTEP] erw [pullbackRightPullbackFstIso_hom_fst] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ (pullbackSymmetry pullback.fst (GlueData.ι (gluing 𝒰 f g) j)).hom ≫ pullback.fst = pullback.snd [PROOFSTEP] rw [pullbackSymmetry_hom_comp_fst] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ pullbackFstιToV 𝒰 f g i j ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] delta pullbackFstιToV [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ ((pullbackSymmetry pullback.fst (GlueData.ι (gluing 𝒰 f g) j) ≪≫ pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) (GlueData.ι (gluing 𝒰 f g) j)).hom ≫ (pullback.congrHom (_ : Multicoequalizer.π (GlueData.diagram (gluing 𝒰 f g).toGlueData) j ≫ Multicoequalizer.desc (GlueData.diagram (gluing 𝒰 f g).toGlueData) X (fun i => pullback.fst ≫ OpenCover.map 𝒰 i) (_ : ∀ (a : (GlueData.diagram (gluing 𝒰 f g).toGlueData).L), MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ pullback.fst ≫ OpenCover.map 𝒰 (MultispanIndex.fstFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a) = MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ pullback.fst ≫ OpenCover.map 𝒰 (MultispanIndex.sndFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a)) = pullback.fst ≫ OpenCover.map 𝒰 j) (_ : OpenCover.map 𝒰 i = OpenCover.map 𝒰 i)).hom) ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] simp only [Iso.trans_hom, pullback.congrHom_hom, Category.assoc, pullback.lift_snd, Category.comp_id] -- Porting note : `pullbackRightPullbackFstIso_hom_snd` is not used in `simp` even though -- instructed, forcing `pullbackSymmetry_hom_comp_snd_assoc` to be manually `rw`ed as well. [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ (pullbackSymmetry pullback.fst (GlueData.ι (gluing 𝒰 f g) j)).hom ≫ (pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) (GlueData.ι (gluing 𝒰 f g) j)).hom ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] erw [pullbackRightPullbackFstIso_hom_snd] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i j : 𝒰.J ⊢ (pullbackSymmetry pullback.fst (GlueData.ι (gluing 𝒰 f g) j)).hom ≫ pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] rw [pullbackSymmetry_hom_comp_snd_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g [PROOFSTEP] rw [← pullback.condition_assoc, Category.assoc, p_comm] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i = pullback.fst [PROOFSTEP] apply ((gluing 𝒰 f g).openCover.pullbackCover pullback.fst).hom_ext [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ ∀ (x : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J), OpenCover.map (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst) x ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i = OpenCover.map (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst) x ≫ pullback.fst [PROOFSTEP] intro j [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ OpenCover.map (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst) j ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i = OpenCover.map (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst) j ≫ pullback.fst [PROOFSTEP] dsimp only [OpenCover.pullbackCover] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullback.fst ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i = pullback.fst ≫ pullback.fst [PROOFSTEP] trans pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i ≫ (gluing 𝒰 f g).ι _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullback.fst ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i = pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i ≫ GlueData.ι (gluing 𝒰 f g) j [PROOFSTEP] rw [← show _ = fV 𝒰 f g j i ≫ _ from (gluing 𝒰 f g).glue_condition j i] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullback.fst ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i = pullbackFstιToV 𝒰 f g i j ≫ GlueData.t (gluing 𝒰 f g).toGlueData j i ≫ GlueData.f (gluing 𝒰 f g).toGlueData i j ≫ GlueData.ι (gluing 𝒰 f g) i [PROOFSTEP] simp_rw [← Category.assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ (pullback.fst ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) ≫ GlueData.ι (gluing 𝒰 f g) i = ((pullbackFstιToV 𝒰 f g i j ≫ GlueData.t (gluing 𝒰 f g).toGlueData j i) ≫ GlueData.f (gluing 𝒰 f g).toGlueData i j) ≫ GlueData.ι (gluing 𝒰 f g) i [PROOFSTEP] congr 1 [GOAL] case e_a C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullback.fst ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) = (pullbackFstιToV 𝒰 f g i j ≫ GlueData.t (gluing 𝒰 f g).toGlueData j i) ≫ GlueData.f (gluing 𝒰 f g).toGlueData i j [PROOFSTEP] rw [gluing_f, gluing_t] [GOAL] case e_a C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullback.fst ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) = (pullbackFstιToV 𝒰 f g i j ≫ t 𝒰 f g j i) ≫ pullback.fst [PROOFSTEP] apply pullback.hom_ext [GOAL] case e_a.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ (pullback.fst ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) ≫ pullback.fst = ((pullbackFstιToV 𝒰 f g i j ≫ t 𝒰 f g j i) ≫ pullback.fst) ≫ pullback.fst [PROOFSTEP] simp_rw [Category.assoc] -- Porting note : in the following two bullet points, `rfl` was not necessary [GOAL] case e_a.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ (pullback.fst ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) ≫ pullback.snd = ((pullbackFstιToV 𝒰 f g i j ≫ t 𝒰 f g j i) ≫ pullback.fst) ≫ pullback.snd [PROOFSTEP] simp_rw [Category.assoc] -- Porting note : in the following two bullet points, `rfl` was not necessary [GOAL] case e_a.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullback.fst ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫ pullback.fst = pullbackFstιToV 𝒰 f g i j ≫ t 𝒰 f g j i ≫ pullback.fst ≫ pullback.fst [PROOFSTEP] rw [t_fst_fst, pullback.lift_fst, pullbackFstιToV_snd] [GOAL] case e_a.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.snd [PROOFSTEP] rfl [GOAL] case e_a.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullback.fst ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫ pullback.snd = pullbackFstιToV 𝒰 f g i j ≫ t 𝒰 f g j i ≫ pullback.fst ≫ pullback.snd [PROOFSTEP] rw [t_fst_snd, pullback.lift_snd, pullbackFstιToV_fst_assoc, pullback.condition_assoc] [GOAL] case e_a.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullback.snd ≫ OpenCover.map (GlueData.openCover (gluing 𝒰 f g)) j ≫ p2 𝒰 f g = pullback.snd ≫ pullback.snd [PROOFSTEP] erw [Multicoequalizer.π_desc] [GOAL] case e_a.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullback.snd ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ pullback.fst [PROOFSTEP] rw [pullback.condition, ← Category.assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ (pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i) ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.snd ≫ OpenCover.map (GlueData.openCover (gluing 𝒰 f g)) j [PROOFSTEP] congr 1 [GOAL] case e_a C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i = pullback.snd [PROOFSTEP] apply pullback.hom_ext [GOAL] case e_a.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ (pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i) ≫ pullback.fst = pullback.snd ≫ pullback.fst [PROOFSTEP] simp only [pullbackFstιToV_fst] [GOAL] case e_a.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullback.snd ≫ pullback.fst = pullback.snd ≫ pullback.fst [PROOFSTEP] rfl [GOAL] case e_a.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ (pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i) ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] simp only [pullbackFstιToV_fst] [GOAL] case e_a.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J ⊢ pullback.snd ≫ pullback.snd = pullback.snd ≫ pullback.snd [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i) ≅ pullback (OpenCover.map 𝒰 i ≫ f) g [PROOFSTEP] fconstructor [GOAL] case hom C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i) ⟶ pullback (OpenCover.map 𝒰 i ≫ f) g case inv C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ pullback (OpenCover.map 𝒰 i ≫ f) g ⟶ pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i) case hom_inv_id C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ autoParam (?hom ≫ ?inv = 𝟙 (pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i))) _auto✝ case inv_hom_id C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ autoParam (?inv ≫ ?hom = 𝟙 (pullback (OpenCover.map 𝒰 i ≫ f) g)) _auto✝ [PROOFSTEP] exact pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (by rw [← pullback.condition_assoc, Category.assoc, p_comm]) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g [PROOFSTEP] rw [← pullback.condition_assoc, Category.assoc, p_comm] [GOAL] case inv C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ pullback (OpenCover.map 𝒰 i ≫ f) g ⟶ pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i) case hom_inv_id C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ autoParam (pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫ ?inv = 𝟙 (pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i))) _auto✝ case inv_hom_id C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ autoParam (?inv ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) = 𝟙 (pullback (OpenCover.map 𝒰 i ≫ f) g)) _auto✝ [PROOFSTEP] refine' pullback.lift ((gluing 𝒰 f g).ι i) pullback.fst (by erw [Multicoequalizer.π_desc]) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i [PROOFSTEP] erw [Multicoequalizer.π_desc] [GOAL] case hom_inv_id C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ autoParam (pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫ pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst (_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i) = 𝟙 (pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i))) _auto✝ [PROOFSTEP] apply pullback.hom_ext [GOAL] case hom_inv_id.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ (pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫ pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst (_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i)) ≫ pullback.fst = 𝟙 (pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i)) ≫ pullback.fst [PROOFSTEP] simpa using lift_comp_ι 𝒰 f g i [GOAL] case hom_inv_id.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ (pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫ pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst (_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i)) ≫ pullback.snd = 𝟙 (pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i)) ≫ pullback.snd [PROOFSTEP] simp only [Category.assoc, pullback.lift_snd, pullback.lift_fst, Category.id_comp] [GOAL] case inv_hom_id C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ autoParam (pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst (_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i) ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) = 𝟙 (pullback (OpenCover.map 𝒰 i ≫ f) g)) _auto✝ [PROOFSTEP] apply pullback.hom_ext [GOAL] case inv_hom_id.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ (pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst (_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i) ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) ≫ pullback.fst = 𝟙 (pullback (OpenCover.map 𝒰 i ≫ f) g) ≫ pullback.fst [PROOFSTEP] simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, Category.id_comp] [GOAL] case inv_hom_id.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ (pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst (_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i) ≫ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) ≫ pullback.snd = 𝟙 (pullback (OpenCover.map 𝒰 i ≫ f) g) ≫ pullback.snd [PROOFSTEP] simp only [Category.assoc, pullback.lift_snd, pullback.lift_fst_assoc, Category.id_comp] [GOAL] case inv_hom_id.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ GlueData.ι (gluing 𝒰 f g) i ≫ p2 𝒰 f g = pullback.snd [PROOFSTEP] erw [Multicoequalizer.π_desc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ (pullbackP1Iso 𝒰 f g i).hom ≫ pullback.fst = pullback.snd [PROOFSTEP] delta pullbackP1Iso [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ (Iso.mk (pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) (pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst (_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i))).hom ≫ pullback.fst = pullback.snd [PROOFSTEP] simp only [pullback.lift_fst] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ (pullbackP1Iso 𝒰 f g i).hom ≫ pullback.snd = pullback.fst ≫ p2 𝒰 f g [PROOFSTEP] delta pullbackP1Iso [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ (Iso.mk (pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) (pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst (_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i))).hom ≫ pullback.snd = pullback.fst ≫ p2 𝒰 f g [PROOFSTEP] simp only [pullback.lift_snd] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ (pullbackP1Iso 𝒰 f g i).inv ≫ pullback.fst = GlueData.ι (gluing 𝒰 f g) i [PROOFSTEP] delta pullbackP1Iso [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ (Iso.mk (pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) (pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst (_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i))).inv ≫ pullback.fst = GlueData.ι (gluing 𝒰 f g) i [PROOFSTEP] simp only [pullback.lift_fst] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ (pullbackP1Iso 𝒰 f g i).inv ≫ pullback.snd = pullback.fst [PROOFSTEP] delta pullbackP1Iso [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ (Iso.mk (pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) (pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst (_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i))).inv ≫ pullback.snd = pullback.fst [PROOFSTEP] simp only [pullback.lift_snd] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g i : 𝒰.J ⊢ (pullbackP1Iso 𝒰 f g i).hom ≫ GlueData.ι (gluing 𝒰 f g) i = pullback.fst [PROOFSTEP] rw [← pullbackP1Iso_inv_fst, Iso.hom_inv_id_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g ⊢ IsLimit (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) [PROOFSTEP] apply PullbackCone.isLimitAux' [GOAL] case create C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s : PullbackCone f g ⊢ (s : PullbackCone f g) → { l // l ≫ PullbackCone.fst (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.fst s ∧ l ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.snd s ∧ ∀ {m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt}, m ≫ PullbackCone.fst (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.fst s → m ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.snd s → m = l } [PROOFSTEP] intro s [GOAL] case create C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g ⊢ { l // l ≫ PullbackCone.fst (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.fst s ∧ l ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.snd s ∧ ∀ {m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt}, m ≫ PullbackCone.fst (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.fst s → m ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.snd s → m = l } [PROOFSTEP] refine' ⟨gluedLift 𝒰 f g s, gluedLift_p1 𝒰 f g s, gluedLift_p2 𝒰 f g s, _⟩ [GOAL] case create C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g ⊢ ∀ {m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt}, m ≫ PullbackCone.fst (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.fst s → m ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.snd s → m = gluedLift 𝒰 f g s [PROOFSTEP] intro m h₁ h₂ [GOAL] case create C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ PullbackCone.fst (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.snd s ⊢ m = gluedLift 𝒰 f g s [PROOFSTEP] change m ≫ p1 𝒰 f g = _ at h₁ [GOAL] case create C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₂ : m ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.snd s h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s ⊢ m = gluedLift 𝒰 f g s [PROOFSTEP] change m ≫ p2 𝒰 f g = _ at h₂ [GOAL] case create C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s ⊢ m = gluedLift 𝒰 f g s [PROOFSTEP] apply (𝒰.pullbackCover s.fst).hom_ext [GOAL] case create.h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s ⊢ ∀ (x : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J), OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) x ≫ m = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) x ≫ gluedLift 𝒰 f g s [PROOFSTEP] intro i [GOAL] case create.h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J ⊢ OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) i ≫ m = OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) i ≫ gluedLift 𝒰 f g s [PROOFSTEP] rw [OpenCover.pullbackCover_map] [GOAL] case create.h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J ⊢ pullback.fst ≫ m = pullback.fst ≫ gluedLift 𝒰 f g s [PROOFSTEP] have := pullbackRightPullbackFstIso (p1 𝒰 f g) (𝒰.map i) m ≪≫ pullback.congrHom h₁ rfl [GOAL] case create.h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i) ⊢ pullback.fst ≫ m = pullback.fst ≫ gluedLift 𝒰 f g s [PROOFSTEP] erw [(𝒰.pullbackCover s.fst).ι_glueMorphisms] [GOAL] case create.h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i) ⊢ pullback.fst ≫ m = (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i [PROOFSTEP] rw [← cancel_epi (pullbackRightPullbackFstIso (p1 𝒰 f g) (𝒰.map i) m ≪≫ pullback.congrHom h₁ rfl).hom, Iso.trans_hom, Category.assoc, pullback.congrHom_hom, pullback.lift_fst_assoc, Category.comp_id, pullbackRightPullbackFstIso_hom_fst_assoc, pullback.condition] [GOAL] case create.h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i) ⊢ pullback.snd ≫ pullback.fst = ((pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) m).hom ≫ pullback.map (m ≫ p1 𝒰 f g) (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i) (𝟙 s.pt) (𝟙 (OpenCover.obj 𝒰 i)) (𝟙 X) (_ : (m ≫ p1 𝒰 f g) ≫ 𝟙 X = 𝟙 s.pt ≫ PullbackCone.fst s) (_ : OpenCover.map 𝒰 i ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i)) ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i [PROOFSTEP] trans pullback.snd ≫ (pullbackP1Iso 𝒰 f g _).hom ≫ (gluing 𝒰 f g).ι _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i) ⊢ pullback.snd ≫ pullback.fst = pullback.snd ≫ (pullbackP1Iso 𝒰 f g i).hom ≫ GlueData.ι (gluing 𝒰 f g) i [PROOFSTEP] congr 1 [GOAL] case e_a C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i) ⊢ pullback.fst = (pullbackP1Iso 𝒰 f g i).hom ≫ GlueData.ι (gluing 𝒰 f g) i [PROOFSTEP] rw [← pullbackP1Iso_hom_ι] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i) ⊢ pullback.snd ≫ (pullbackP1Iso 𝒰 f g i).hom ≫ GlueData.ι (gluing 𝒰 f g) i = ((pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) m).hom ≫ pullback.map (m ≫ p1 𝒰 f g) (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i) (𝟙 s.pt) (𝟙 (OpenCover.obj 𝒰 i)) (𝟙 X) (_ : (m ≫ p1 𝒰 f g) ≫ 𝟙 X = 𝟙 s.pt ≫ PullbackCone.fst s) (_ : OpenCover.map 𝒰 i ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i)) ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫ GlueData.ι (gluing 𝒰 f g) i [PROOFSTEP] simp_rw [← Category.assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i) ⊢ (pullback.snd ≫ (pullbackP1Iso 𝒰 f g i).hom) ≫ GlueData.ι (gluing 𝒰 f g) i = ((((pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) m).hom ≫ pullback.map (m ≫ p1 𝒰 f g) (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i) (𝟙 s.pt) (𝟙 (OpenCover.obj 𝒰 i)) (𝟙 X) (_ : (m ≫ p1 𝒰 f g) ≫ 𝟙 X = 𝟙 s.pt ≫ PullbackCone.fst s) (_ : OpenCover.map 𝒰 i ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i)) ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom) ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ GlueData.ι (gluing 𝒰 f g) i [PROOFSTEP] congr 1 [GOAL] case e_a C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i) ⊢ pullback.snd ≫ (pullbackP1Iso 𝒰 f g i).hom = (((pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) m).hom ≫ pullback.map (m ≫ p1 𝒰 f g) (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i) (𝟙 s.pt) (𝟙 (OpenCover.obj 𝒰 i)) (𝟙 X) (_ : (m ≫ p1 𝒰 f g) ≫ 𝟙 X = 𝟙 s.pt ≫ PullbackCone.fst s) (_ : OpenCover.map 𝒰 i ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i)) ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom) ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) [PROOFSTEP] apply pullback.hom_ext [GOAL] case e_a.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i) ⊢ (pullback.snd ≫ (pullbackP1Iso 𝒰 f g i).hom) ≫ pullback.fst = ((((pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) m).hom ≫ pullback.map (m ≫ p1 𝒰 f g) (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i) (𝟙 s.pt) (𝟙 (OpenCover.obj 𝒰 i)) (𝟙 X) (_ : (m ≫ p1 𝒰 f g) ≫ 𝟙 X = 𝟙 s.pt ≫ PullbackCone.fst s) (_ : OpenCover.map 𝒰 i ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i)) ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom) ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ pullback.fst [PROOFSTEP] simp only [Category.comp_id, pullbackRightPullbackFstIso_hom_snd, Category.assoc, pullbackP1Iso_hom_fst, pullback.lift_snd, pullback.lift_fst, pullbackSymmetry_hom_comp_fst] [GOAL] case e_a.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i) ⊢ (pullback.snd ≫ (pullbackP1Iso 𝒰 f g i).hom) ≫ pullback.snd = ((((pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) m).hom ≫ pullback.map (m ≫ p1 𝒰 f g) (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i) (𝟙 s.pt) (𝟙 (OpenCover.obj 𝒰 i)) (𝟙 X) (_ : (m ≫ p1 𝒰 f g) ≫ 𝟙 X = 𝟙 s.pt ≫ PullbackCone.fst s) (_ : OpenCover.map 𝒰 i ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i)) ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom) ≫ pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f) (_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫ pullback.snd [PROOFSTEP] simp only [Category.comp_id, pullbackRightPullbackFstIso_hom_fst_assoc, pullbackP1Iso_hom_snd, Category.assoc, pullback.lift_fst_assoc, pullbackSymmetry_hom_comp_snd_assoc, pullback.lift_snd] [GOAL] case e_a.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g s✝ s : PullbackCone f g m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i) ⊢ pullback.snd ≫ pullback.fst ≫ p2 𝒰 f g = pullback.fst ≫ PullbackCone.snd s [PROOFSTEP] rw [← pullback.condition_assoc, h₂] [GOAL] C✝ : Type u inst✝¹ : Category.{v, u} C✝ X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ A B C : CommRingCat f : Spec.obj (Opposite.op A) ⟶ Spec.obj (Opposite.op C) g : Spec.obj (Opposite.op B) ⟶ Spec.obj (Opposite.op C) ⊢ HasPullback f g [PROOFSTEP] rw [← Spec.image_preimage f, ← Spec.image_preimage g] [GOAL] C✝ : Type u inst✝¹ : Category.{v, u} C✝ X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ A B C : CommRingCat f : Spec.obj (Opposite.op A) ⟶ Spec.obj (Opposite.op C) g : Spec.obj (Opposite.op B) ⟶ Spec.obj (Opposite.op C) ⊢ HasPullback (Spec.map (Spec.preimage f)) (Spec.map (Spec.preimage g)) [PROOFSTEP] exact ⟨⟨⟨_, isLimitOfHasPullbackOfPreservesLimit Spec (Spec.preimage f) (Spec.preimage g)⟩⟩⟩ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y✝ Z✝ : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z✝ g✝ : Y✝ ⟶ Z✝ inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z i : (affineCover Z).J ⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g [PROOFSTEP] let Xᵢ := pullback f (Z.affineCover.map i) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y✝ Z✝ : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z✝ g✝ : Y✝ ⟶ Z✝ inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z i : (affineCover Z).J Xᵢ : Scheme := pullback f (OpenCover.map (affineCover Z) i) ⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g [PROOFSTEP] let Yᵢ := pullback g (Z.affineCover.map i) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y✝ Z✝ : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z✝ g✝ : Y✝ ⟶ Z✝ inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z i : (affineCover Z).J Xᵢ : Scheme := pullback f (OpenCover.map (affineCover Z) i) Yᵢ : Scheme := pullback g (OpenCover.map (affineCover Z) i) ⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g [PROOFSTEP] let W := pullback (pullback.snd : Yᵢ ⟶ _) (pullback.snd : Xᵢ ⟶ _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y✝ Z✝ : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z✝ g✝ : Y✝ ⟶ Z✝ inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z i : (affineCover Z).J Xᵢ : Scheme := pullback f (OpenCover.map (affineCover Z) i) Yᵢ : Scheme := pullback g (OpenCover.map (affineCover Z) i) W : Scheme := pullback pullback.snd pullback.snd ⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g [PROOFSTEP] have := bigSquareIsPullback (pullback.fst : W ⟶ _) (pullback.fst : Yᵢ ⟶ _) (pullback.snd : Xᵢ ⟶ _) (Z.affineCover.map i) pullback.snd pullback.snd g pullback.condition.symm pullback.condition.symm (PullbackCone.flipIsLimit <| pullbackIsPullback _ _) (PullbackCone.flipIsLimit <| pullbackIsPullback _ _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y✝ Z✝ : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z✝ g✝ : Y✝ ⟶ Z✝ inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z i : (affineCover Z).J Xᵢ : Scheme := pullback f (OpenCover.map (affineCover Z) i) Yᵢ : Scheme := pullback g (OpenCover.map (affineCover Z) i) W : Scheme := pullback pullback.snd pullback.snd this : IsLimit (PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map (affineCover Z) i = (pullback.fst ≫ pullback.fst) ≫ g)) ⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g [PROOFSTEP] have : HasPullback (pullback.snd ≫ Z.affineCover.map i : Xᵢ ⟶ _) g := ⟨⟨⟨_, this⟩⟩⟩ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y✝ Z✝ : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z✝ g✝ : Y✝ ⟶ Z✝ inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z i : (affineCover Z).J Xᵢ : Scheme := pullback f (OpenCover.map (affineCover Z) i) Yᵢ : Scheme := pullback g (OpenCover.map (affineCover Z) i) W : Scheme := pullback pullback.snd pullback.snd this✝ : IsLimit (PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map (affineCover Z) i = (pullback.fst ≫ pullback.fst) ≫ g)) this : HasPullback (pullback.snd ≫ OpenCover.map (affineCover Z) i) g ⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g [PROOFSTEP] rw [← pullback.condition] at this [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y✝ Z✝ : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z✝ g✝ : Y✝ ⟶ Z✝ inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z i : (affineCover Z).J Xᵢ : Scheme := pullback f (OpenCover.map (affineCover Z) i) Yᵢ : Scheme := pullback g (OpenCover.map (affineCover Z) i) W : Scheme := pullback pullback.snd pullback.snd this✝ : IsLimit (PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map (affineCover Z) i = (pullback.fst ≫ pullback.fst) ≫ g)) this : HasPullback (pullback.fst ≫ f) g ⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g [PROOFSTEP] exact this [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z ⊢ OpenCover (pullback f g) [PROOFSTEP] fapply ((gluing 𝒰 f g).openCover.pushforwardIso (limit.isoLimitCone ⟨_, gluedIsLimit 𝒰 f g⟩).inv).copy 𝒰.J (fun i => pullback (𝒰.map i ≫ f) g) (fun i => pullback.map _ _ _ _ (𝒰.map i) (𝟙 _) (𝟙 _) (Category.comp_id _) (by simp)) (Equiv.refl 𝒰.J) fun _ => Iso.refl _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ g ≫ 𝟙 Z = 𝟙 Y ≫ g [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z ⊢ ∀ (i : 𝒰.J), pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) = (Iso.refl ((fun i => pullback (OpenCover.map 𝒰 i ≫ f) g) i)).hom ≫ OpenCover.map (OpenCover.pushforwardIso (GlueData.openCover (gluing 𝒰 f g)) (limit.isoLimitCone { cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g), isLimit := gluedIsLimit 𝒰 f g }).inv) (↑(Equiv.refl 𝒰.J) i) [PROOFSTEP] rintro (i : 𝒰.J) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) = (Iso.refl ((fun i => pullback (OpenCover.map 𝒰 i ≫ f) g) i)).hom ≫ OpenCover.map (OpenCover.pushforwardIso (GlueData.openCover (gluing 𝒰 f g)) (limit.isoLimitCone { cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g), isLimit := gluedIsLimit 𝒰 f g }).inv) (↑(Equiv.refl 𝒰.J) i) [PROOFSTEP] change pullback.map _ _ _ _ _ _ _ _ _ = 𝟙 _ ≫ (gluing 𝒰 f g).ι i ≫ _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) = 𝟙 (GlueData.U (gluing 𝒰 f g).toGlueData i) ≫ GlueData.ι (gluing 𝒰 f g) i ≫ OpenCover.map (openCoverOfIsIso (limit.isoLimitCone { cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g), isLimit := gluedIsLimit 𝒰 f g }).inv) (↑((Equiv.punitProd (GlueData.openCover (gluing 𝒰 f g)).J).symm.trans (Equiv.sigmaEquivProd PUnit (GlueData.openCover (gluing 𝒰 f g)).J).symm) (↑(Equiv.refl 𝒰.J) i)).fst [PROOFSTEP] refine' Eq.trans _ (Category.id_comp _).symm [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) = GlueData.ι (gluing 𝒰 f g) i ≫ OpenCover.map (openCoverOfIsIso (limit.isoLimitCone { cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g), isLimit := gluedIsLimit 𝒰 f g }).inv) (↑((Equiv.punitProd (GlueData.openCover (gluing 𝒰 f g)).J).symm.trans (Equiv.sigmaEquivProd PUnit (GlueData.openCover (gluing 𝒰 f g)).J).symm) (↑(Equiv.refl 𝒰.J) i)).fst [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ pullback.fst = (GlueData.ι (gluing 𝒰 f g) i ≫ OpenCover.map (openCoverOfIsIso (limit.isoLimitCone { cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g), isLimit := gluedIsLimit 𝒰 f g }).inv) (↑((Equiv.punitProd (GlueData.openCover (gluing 𝒰 f g)).J).symm.trans (Equiv.sigmaEquivProd PUnit (GlueData.openCover (gluing 𝒰 f g)).J).symm) (↑(Equiv.refl 𝒰.J) i)).fst) ≫ pullback.fst case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ pullback.snd = (GlueData.ι (gluing 𝒰 f g) i ≫ OpenCover.map (openCoverOfIsIso (limit.isoLimitCone { cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g), isLimit := gluedIsLimit 𝒰 f g }).inv) (↑((Equiv.punitProd (GlueData.openCover (gluing 𝒰 f g)).J).symm.trans (Equiv.sigmaEquivProd PUnit (GlueData.openCover (gluing 𝒰 f g)).J).symm) (↑(Equiv.refl 𝒰.J) i)).fst) ≫ pullback.snd [PROOFSTEP] all_goals dsimp simp only [limit.isoLimitCone_inv_π, PullbackCone.mk_π_app_left, Category.comp_id, PullbackCone.mk_π_app_right, Category.assoc, pullback.lift_fst, pullback.lift_snd] symm exact Multicoequalizer.π_desc _ _ _ _ _ [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ pullback.fst = (GlueData.ι (gluing 𝒰 f g) i ≫ OpenCover.map (openCoverOfIsIso (limit.isoLimitCone { cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g), isLimit := gluedIsLimit 𝒰 f g }).inv) (↑((Equiv.punitProd (GlueData.openCover (gluing 𝒰 f g)).J).symm.trans (Equiv.sigmaEquivProd PUnit (GlueData.openCover (gluing 𝒰 f g)).J).symm) (↑(Equiv.refl 𝒰.J) i)).fst) ≫ pullback.fst [PROOFSTEP] dsimp [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ pullback.fst = (GlueData.ι (gluing 𝒰 f g) i ≫ (limit.isoLimitCone { cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g), isLimit := gluedIsLimit 𝒰 f g }).inv) ≫ pullback.fst [PROOFSTEP] simp only [limit.isoLimitCone_inv_π, PullbackCone.mk_π_app_left, Category.comp_id, PullbackCone.mk_π_app_right, Category.assoc, pullback.lift_fst, pullback.lift_snd] [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.fst ≫ OpenCover.map 𝒰 i = GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g [PROOFSTEP] symm [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i [PROOFSTEP] exact Multicoequalizer.π_desc _ _ _ _ _ [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ pullback.snd = (GlueData.ι (gluing 𝒰 f g) i ≫ OpenCover.map (openCoverOfIsIso (limit.isoLimitCone { cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g), isLimit := gluedIsLimit 𝒰 f g }).inv) (↑((Equiv.punitProd (GlueData.openCover (gluing 𝒰 f g)).J).symm.trans (Equiv.sigmaEquivProd PUnit (GlueData.openCover (gluing 𝒰 f g)).J).symm) (↑(Equiv.refl 𝒰.J) i)).fst) ≫ pullback.snd [PROOFSTEP] dsimp [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ pullback.snd = (GlueData.ι (gluing 𝒰 f g) i ≫ (limit.isoLimitCone { cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g), isLimit := gluedIsLimit 𝒰 f g }).inv) ≫ pullback.snd [PROOFSTEP] simp only [limit.isoLimitCone_inv_π, PullbackCone.mk_π_app_left, Category.comp_id, PullbackCone.mk_π_app_right, Category.assoc, pullback.lift_fst, pullback.lift_snd] [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.snd = GlueData.ι (gluing 𝒰 f g) i ≫ p2 𝒰 f g [PROOFSTEP] symm [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ GlueData.ι (gluing 𝒰 f g) i ≫ p2 𝒰 f g = pullback.snd [PROOFSTEP] exact Multicoequalizer.π_desc _ _ _ _ _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Y f : X ⟶ Z g : Y ⟶ Z ⊢ OpenCover (pullback f g) [PROOFSTEP] fapply ((openCoverOfLeft 𝒰 g f).pushforwardIso (pullbackSymmetry _ _).hom).copy 𝒰.J (fun i => pullback f (𝒰.map i ≫ g)) (fun i => pullback.map _ _ _ _ (𝟙 _) (𝒰.map i) (𝟙 _) (by simp) (Category.comp_id _)) (Equiv.refl _) fun i => pullbackSymmetry _ _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Y f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ f ≫ 𝟙 Z = 𝟙 X ≫ f [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Y f : X ⟶ Z g : Y ⟶ Z ⊢ ∀ (i : 𝒰.J), pullback.map f (OpenCover.map 𝒰 i ≫ g) f g (𝟙 X) (OpenCover.map 𝒰 i) (𝟙 Z) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f) (_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) = (pullbackSymmetry f (OpenCover.map 𝒰 i ≫ g)).hom ≫ OpenCover.map (OpenCover.pushforwardIso (openCoverOfLeft 𝒰 g f) (pullbackSymmetry g f).hom) (↑(Equiv.refl 𝒰.J) i) [PROOFSTEP] intro i [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Y f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map f (OpenCover.map 𝒰 i ≫ g) f g (𝟙 X) (OpenCover.map 𝒰 i) (𝟙 Z) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f) (_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) = (pullbackSymmetry f (OpenCover.map 𝒰 i ≫ g)).hom ≫ OpenCover.map (OpenCover.pushforwardIso (openCoverOfLeft 𝒰 g f) (pullbackSymmetry g f).hom) (↑(Equiv.refl 𝒰.J) i) [PROOFSTEP] dsimp [OpenCover.bind] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Y f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map f (OpenCover.map 𝒰 i ≫ g) f g (𝟙 X) (OpenCover.map 𝒰 i) (𝟙 Z) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f) (_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) = (pullbackSymmetry f (OpenCover.map 𝒰 i ≫ g)).hom ≫ pullback.map (OpenCover.map 𝒰 i ≫ g) f g f (OpenCover.map 𝒰 i) (𝟙 X) (𝟙 Z) (_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f) ≫ (pullbackSymmetry g f).hom [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Y f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map f (OpenCover.map 𝒰 i ≫ g) f g (𝟙 X) (OpenCover.map 𝒰 i) (𝟙 Z) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f) (_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) ≫ pullback.fst = ((pullbackSymmetry f (OpenCover.map 𝒰 i ≫ g)).hom ≫ pullback.map (OpenCover.map 𝒰 i ≫ g) f g f (OpenCover.map 𝒰 i) (𝟙 X) (𝟙 Z) (_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f) ≫ (pullbackSymmetry g f).hom) ≫ pullback.fst [PROOFSTEP] simp [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Y f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map f (OpenCover.map 𝒰 i ≫ g) f g (𝟙 X) (OpenCover.map 𝒰 i) (𝟙 Z) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f) (_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) ≫ pullback.snd = ((pullbackSymmetry f (OpenCover.map 𝒰 i ≫ g)).hom ≫ pullback.map (OpenCover.map 𝒰 i ≫ g) f g f (OpenCover.map 𝒰 i) (𝟙 X) (𝟙 Z) (_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f) ≫ (pullbackSymmetry g f).hom) ≫ pullback.snd [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰X : OpenCover X 𝒰Y : OpenCover Y f : X ⟶ Z g : Y ⟶ Z ⊢ OpenCover (pullback f g) [PROOFSTEP] fapply ((openCoverOfLeft 𝒰X f g).bind fun x => openCoverOfRight 𝒰Y (𝒰X.map x ≫ f) g).copy (𝒰X.J × 𝒰Y.J) (fun ij => pullback (𝒰X.map ij.1 ≫ f) (𝒰Y.map ij.2 ≫ g)) (fun ij => pullback.map _ _ _ _ (𝒰X.map ij.1) (𝒰Y.map ij.2) (𝟙 _) (Category.comp_id _) (Category.comp_id _)) (Equiv.sigmaEquivProd _ _).symm fun _ => Iso.refl _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰X : OpenCover X 𝒰Y : OpenCover Y f : X ⟶ Z g : Y ⟶ Z ⊢ ∀ (i : 𝒰X.J × 𝒰Y.J), pullback.map (OpenCover.map 𝒰X i.fst ≫ f) (OpenCover.map 𝒰Y i.snd ≫ g) f g (OpenCover.map 𝒰X i.fst) (OpenCover.map 𝒰Y i.snd) (𝟙 Z) (_ : (OpenCover.map 𝒰X i.fst ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰X i.fst ≫ f) (_ : (OpenCover.map 𝒰Y i.snd ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰Y i.snd ≫ g) = (Iso.refl ((fun ij => pullback (OpenCover.map 𝒰X ij.fst ≫ f) (OpenCover.map 𝒰Y ij.snd ≫ g)) i)).hom ≫ OpenCover.map (OpenCover.bind (openCoverOfLeft 𝒰X f g) fun x => openCoverOfRight 𝒰Y (OpenCover.map 𝒰X x ≫ f) g) (↑(Equiv.sigmaEquivProd 𝒰X.J 𝒰Y.J).symm i) [PROOFSTEP] rintro ⟨i, j⟩ [GOAL] case mk C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰X : OpenCover X 𝒰Y : OpenCover Y f : X ⟶ Z g : Y ⟶ Z i : 𝒰X.J j : 𝒰Y.J ⊢ pullback.map (OpenCover.map 𝒰X (i, j).fst ≫ f) (OpenCover.map 𝒰Y (i, j).snd ≫ g) f g (OpenCover.map 𝒰X (i, j).fst) (OpenCover.map 𝒰Y (i, j).snd) (𝟙 Z) (_ : (OpenCover.map 𝒰X (i, j).fst ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰X (i, j).fst ≫ f) (_ : (OpenCover.map 𝒰Y (i, j).snd ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰Y (i, j).snd ≫ g) = (Iso.refl ((fun ij => pullback (OpenCover.map 𝒰X ij.fst ≫ f) (OpenCover.map 𝒰Y ij.snd ≫ g)) (i, j))).hom ≫ OpenCover.map (OpenCover.bind (openCoverOfLeft 𝒰X f g) fun x => openCoverOfRight 𝒰Y (OpenCover.map 𝒰X x ≫ f) g) (↑(Equiv.sigmaEquivProd 𝒰X.J 𝒰Y.J).symm (i, j)) [PROOFSTEP] apply pullback.hom_ext [GOAL] case mk.h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰X : OpenCover X 𝒰Y : OpenCover Y f : X ⟶ Z g : Y ⟶ Z i : 𝒰X.J j : 𝒰Y.J ⊢ pullback.map (OpenCover.map 𝒰X (i, j).fst ≫ f) (OpenCover.map 𝒰Y (i, j).snd ≫ g) f g (OpenCover.map 𝒰X (i, j).fst) (OpenCover.map 𝒰Y (i, j).snd) (𝟙 Z) (_ : (OpenCover.map 𝒰X (i, j).fst ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰X (i, j).fst ≫ f) (_ : (OpenCover.map 𝒰Y (i, j).snd ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰Y (i, j).snd ≫ g) ≫ pullback.fst = ((Iso.refl ((fun ij => pullback (OpenCover.map 𝒰X ij.fst ≫ f) (OpenCover.map 𝒰Y ij.snd ≫ g)) (i, j))).hom ≫ OpenCover.map (OpenCover.bind (openCoverOfLeft 𝒰X f g) fun x => openCoverOfRight 𝒰Y (OpenCover.map 𝒰X x ≫ f) g) (↑(Equiv.sigmaEquivProd 𝒰X.J 𝒰Y.J).symm (i, j))) ≫ pullback.fst [PROOFSTEP] simp [GOAL] case mk.h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰X : OpenCover X 𝒰Y : OpenCover Y f : X ⟶ Z g : Y ⟶ Z i : 𝒰X.J j : 𝒰Y.J ⊢ pullback.map (OpenCover.map 𝒰X (i, j).fst ≫ f) (OpenCover.map 𝒰Y (i, j).snd ≫ g) f g (OpenCover.map 𝒰X (i, j).fst) (OpenCover.map 𝒰Y (i, j).snd) (𝟙 Z) (_ : (OpenCover.map 𝒰X (i, j).fst ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰X (i, j).fst ≫ f) (_ : (OpenCover.map 𝒰Y (i, j).snd ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰Y (i, j).snd ≫ g) ≫ pullback.snd = ((Iso.refl ((fun ij => pullback (OpenCover.map 𝒰X ij.fst ≫ f) (OpenCover.map 𝒰Y ij.snd ≫ g)) (i, j))).hom ≫ OpenCover.map (OpenCover.bind (openCoverOfLeft 𝒰X f g) fun x => openCoverOfRight 𝒰Y (OpenCover.map 𝒰X x ≫ f) g) (↑(Equiv.sigmaEquivProd 𝒰X.J 𝒰Y.J).symm (i, j))) ≫ pullback.snd [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z ⊢ OpenCover (pullback f g) [PROOFSTEP] apply (openCoverOfLeft (𝒰.pullbackCover f) f g).bind [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z ⊢ (x : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J) → OpenCover (OpenCover.obj (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g) x) [PROOFSTEP] intro i [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J ⊢ OpenCover (OpenCover.obj (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g) i) [PROOFSTEP] let Xᵢ := pullback f (𝒰.map i) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i) ⊢ OpenCover (OpenCover.obj (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g) i) [PROOFSTEP] let Yᵢ := pullback g (𝒰.map i) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i) Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i) ⊢ OpenCover (OpenCover.obj (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g) i) [PROOFSTEP] let W := pullback (pullback.snd : Yᵢ ⟶ _) (pullback.snd : Xᵢ ⟶ _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i) Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i) W : Scheme := pullback pullback.snd pullback.snd ⊢ OpenCover (OpenCover.obj (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g) i) [PROOFSTEP] have := bigSquareIsPullback (pullback.fst : W ⟶ _) (pullback.fst : Yᵢ ⟶ _) (pullback.snd : Xᵢ ⟶ _) (𝒰.map i) pullback.snd pullback.snd g pullback.condition.symm pullback.condition.symm (PullbackCone.flipIsLimit <| pullbackIsPullback _ _) (PullbackCone.flipIsLimit <| pullbackIsPullback _ _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i) Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i) W : Scheme := pullback pullback.snd pullback.snd this : IsLimit (PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ g)) ⊢ OpenCover (OpenCover.obj (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g) i) [PROOFSTEP] refine' @openCoverOfIsIso (f := (pullbackSymmetry _ _).hom ≫ (limit.isoLimitCone ⟨_, this⟩).inv ≫ pullback.map _ _ _ _ (𝟙 _) (𝟙 _) (𝟙 _) _ _) ?_ [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i) Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i) W : Scheme := pullback pullback.snd pullback.snd this : IsLimit (PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ g)) ⊢ (pullback.snd ≫ OpenCover.map 𝒰 i) ≫ 𝟙 Z = 𝟙 (pullback f (OpenCover.map 𝒰 i)) ≫ OpenCover.map (OpenCover.pullbackCover 𝒰 f) i ≫ f [PROOFSTEP] simp only [Category.comp_id, Category.id_comp, ← pullback.condition] -- Porting note : `simpa` failed, but this is indeed `rfl` [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i) Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i) W : Scheme := pullback pullback.snd pullback.snd this : IsLimit (PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ g)) ⊢ pullback.fst ≫ f = OpenCover.map (OpenCover.pullbackCover 𝒰 f) i ≫ f [PROOFSTEP] rfl [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i) Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i) W : Scheme := pullback pullback.snd pullback.snd this : IsLimit (PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ g)) ⊢ g ≫ 𝟙 Z = 𝟙 Y ≫ g [PROOFSTEP] simp only [Category.comp_id, Category.id_comp] -- Porting note : this `IsIso` instance was `inferInstance` [GOAL] case refine'_3 C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i) Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i) W : Scheme := pullback pullback.snd pullback.snd this : IsLimit (PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ g)) ⊢ IsIso ((pullbackSymmetry pullback.snd pullback.snd).hom ≫ (limit.isoLimitCone { cone := PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ g), isLimit := this }).inv ≫ pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i) g (OpenCover.map (OpenCover.pullbackCover 𝒰 f) i ≫ f) g (𝟙 (pullback f (OpenCover.map 𝒰 i))) (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 i) ≫ 𝟙 Z = 𝟙 (pullback f (OpenCover.map 𝒰 i)) ≫ OpenCover.map (OpenCover.pullbackCover 𝒰 f) i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g)) [PROOFSTEP] apply IsIso.comp_isIso [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z ⊢ OpenCover (pullback f g) [PROOFSTEP] apply (openCoverOfBase'.{u, u} 𝒰 f g).copy 𝒰.J (fun i => pullback (pullback.snd : pullback f (𝒰.map i) ⟶ _) (pullback.snd : pullback g (𝒰.map i) ⟶ _)) (fun i => pullback.map _ _ _ _ pullback.fst pullback.fst (𝒰.map i) pullback.condition.symm pullback.condition.symm) ((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) fun _ => Iso.refl _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z ⊢ ∀ (i : 𝒰.J), pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) = (Iso.refl ((fun i => pullback pullback.snd pullback.snd) i)).hom ≫ OpenCover.map (openCoverOfBase' 𝒰 f g) (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i) [PROOFSTEP] intro i [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) = (Iso.refl ((fun i => pullback pullback.snd pullback.snd) i)).hom ≫ OpenCover.map (openCoverOfBase' 𝒰 f g) (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i) [PROOFSTEP] rw [Iso.refl_hom, Category.id_comp, openCoverOfBase'_map] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) = (pullbackSymmetry pullback.snd pullback.snd).hom ≫ (limit.isoLimitCone { cone := PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : (pullback.snd ≫ pullback.snd) ≫ OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst = (pullback.fst ≫ pullback.fst) ≫ g), isLimit := bigSquareIsPullback pullback.fst pullback.fst pullback.snd (OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst) pullback.snd pullback.snd g (_ : pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.snd) (_ : pullback.snd ≫ OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst = pullback.fst ≫ g) (PullbackCone.flipIsLimit (pullbackIsPullback g (OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst))) (PullbackCone.flipIsLimit (pullbackIsPullback pullback.snd pullback.snd)) }).inv ≫ pullback.map (pullback.snd ≫ OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst) g (pullback.fst ≫ f) g (𝟙 (pullback f (OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst))) (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst) ≫ 𝟙 Z = 𝟙 (pullback f (OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)) ≫ pullback.fst ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ pullback.map (pullback.fst ≫ f) g f g pullback.fst (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map (OpenCover.pullbackCover 𝒰 f) (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst ≫ f) ≫ 𝟙 Z = OpenCover.map (OpenCover.pullbackCover 𝒰 f) (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) [PROOFSTEP] apply pullback.hom_ext [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) ≫ pullback.fst = ((pullbackSymmetry pullback.snd pullback.snd).hom ≫ (limit.isoLimitCone { cone := PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : (pullback.snd ≫ pullback.snd) ≫ OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst = (pullback.fst ≫ pullback.fst) ≫ g), isLimit := bigSquareIsPullback pullback.fst pullback.fst pullback.snd (OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst) pullback.snd pullback.snd g (_ : pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.snd) (_ : pullback.snd ≫ OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst = pullback.fst ≫ g) (PullbackCone.flipIsLimit (pullbackIsPullback g (OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst))) (PullbackCone.flipIsLimit (pullbackIsPullback pullback.snd pullback.snd)) }).inv ≫ pullback.map (pullback.snd ≫ OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst) g (pullback.fst ≫ f) g (𝟙 (pullback f (OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst))) (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst) ≫ 𝟙 Z = 𝟙 (pullback f (OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)) ≫ pullback.fst ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ pullback.map (pullback.fst ≫ f) g f g pullback.fst (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map (OpenCover.pullbackCover 𝒰 f) (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst ≫ f) ≫ 𝟙 Z = OpenCover.map (OpenCover.pullbackCover 𝒰 f) (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g)) ≫ pullback.fst [PROOFSTEP] dsimp [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) ≫ pullback.snd = ((pullbackSymmetry pullback.snd pullback.snd).hom ≫ (limit.isoLimitCone { cone := PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : (pullback.snd ≫ pullback.snd) ≫ OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst = (pullback.fst ≫ pullback.fst) ≫ g), isLimit := bigSquareIsPullback pullback.fst pullback.fst pullback.snd (OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst) pullback.snd pullback.snd g (_ : pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.snd) (_ : pullback.snd ≫ OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst = pullback.fst ≫ g) (PullbackCone.flipIsLimit (pullbackIsPullback g (OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst))) (PullbackCone.flipIsLimit (pullbackIsPullback pullback.snd pullback.snd)) }).inv ≫ pullback.map (pullback.snd ≫ OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst) g (pullback.fst ≫ f) g (𝟙 (pullback f (OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst))) (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst) ≫ 𝟙 Z = 𝟙 (pullback f (OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)) ≫ pullback.fst ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ pullback.map (pullback.fst ≫ f) g f g pullback.fst (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map (OpenCover.pullbackCover 𝒰 f) (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst ≫ f) ≫ 𝟙 Z = OpenCover.map (OpenCover.pullbackCover 𝒰 f) (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g)) ≫ pullback.snd [PROOFSTEP] dsimp [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) ≫ pullback.fst = ((pullbackSymmetry pullback.snd pullback.snd).hom ≫ (limit.isoLimitCone { cone := PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : (pullback.snd ≫ pullback.snd) ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst = (pullback.fst ≫ pullback.fst) ≫ g), isLimit := bigSquareIsPullback pullback.fst pullback.fst pullback.snd (OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst) pullback.snd pullback.snd g (_ : pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.snd) (_ : pullback.snd ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst = pullback.fst ≫ g) (PullbackCone.flipIsLimit (pullbackIsPullback g (OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst))) (PullbackCone.flipIsLimit (pullbackIsPullback pullback.snd pullback.snd)) }).inv ≫ pullback.map (pullback.snd ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst) g (pullback.fst ≫ f) g (𝟙 (pullback f (OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst))) (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst) ≫ 𝟙 Z = 𝟙 (pullback f (OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst)) ≫ pullback.fst ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ pullback.map (pullback.fst ≫ f) g f g pullback.fst (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map (OpenCover.pullbackCover 𝒰 f) (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst ≫ f) ≫ 𝟙 Z = OpenCover.map (OpenCover.pullbackCover 𝒰 f) (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g)) ≫ pullback.fst [PROOFSTEP] simp only [limit.lift_π, PullbackCone.mk_pt, PullbackCone.mk_π_app, Category.assoc, limit.lift_π_assoc, cospan_left, Category.comp_id, limit.isoLimitCone_inv_π, limit.isoLimitCone_inv_π_assoc, pullbackSymmetry_hom_comp_fst_assoc, pullbackSymmetry_hom_comp_snd_assoc] [GOAL] case h₀ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.fst ≫ pullback.fst = pullback.fst ≫ pullback.fst [PROOFSTEP] rfl [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f) (_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) ≫ pullback.snd = ((pullbackSymmetry pullback.snd pullback.snd).hom ≫ (limit.isoLimitCone { cone := PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst) (_ : (pullback.snd ≫ pullback.snd) ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst = (pullback.fst ≫ pullback.fst) ≫ g), isLimit := bigSquareIsPullback pullback.fst pullback.fst pullback.snd (OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst) pullback.snd pullback.snd g (_ : pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.snd) (_ : pullback.snd ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst = pullback.fst ≫ g) (PullbackCone.flipIsLimit (pullbackIsPullback g (OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst))) (PullbackCone.flipIsLimit (pullbackIsPullback pullback.snd pullback.snd)) }).inv ≫ pullback.map (pullback.snd ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst) g (pullback.fst ≫ f) g (𝟙 (pullback f (OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst))) (𝟙 Y) (𝟙 Z) (_ : (pullback.snd ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst) ≫ 𝟙 Z = 𝟙 (pullback f (OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst)) ≫ pullback.fst ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫ pullback.map (pullback.fst ≫ f) g f g pullback.fst (𝟙 Y) (𝟙 Z) (_ : (OpenCover.map (OpenCover.pullbackCover 𝒰 f) (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst ≫ f) ≫ 𝟙 Z = OpenCover.map (OpenCover.pullbackCover 𝒰 f) (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g)) ≫ pullback.snd [PROOFSTEP] simp only [limit.lift_π, PullbackCone.mk_pt, PullbackCone.mk_π_app, Category.assoc, limit.lift_π_assoc, cospan_left, Category.comp_id, limit.isoLimitCone_inv_π, limit.isoLimitCone_inv_π_assoc, pullbackSymmetry_hom_comp_fst_assoc, pullbackSymmetry_hom_comp_snd_assoc] [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰✝ : OpenCover X f✝ : X ⟶ Z g✝ : Y ⟶ Z inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝ s : PullbackCone f✝ g✝ 𝒰 : OpenCover Z f : X ⟶ Z g : Y ⟶ Z i : 𝒰.J ⊢ pullback.snd ≫ pullback.fst = pullback.snd ≫ pullback.fst [PROOFSTEP] rfl [GOAL] X Y S X' Y' S' : Scheme f : X ⟶ S g : Y ⟶ S f' : X' ⟶ S' g' : Y' ⟶ S' i₁ : X ⟶ X' i₂ : Y ⟶ Y' i₃ : S ⟶ S' e₁ : f ≫ i₃ = i₁ ≫ f' e₂ : g ≫ i₃ = i₂ ≫ g' inst✝² : IsOpenImmersion i₁ inst✝¹ : IsOpenImmersion i₂ inst✝ : Mono i₃ ⊢ IsOpenImmersion (pullback.map f g f' g' i₁ i₂ i₃ e₁ e₂) [PROOFSTEP] rw [pullback_map_eq_pullbackFstFstIso_inv] -- Porting note : was automatic [GOAL] X Y S X' Y' S' : Scheme f : X ⟶ S g : Y ⟶ S f' : X' ⟶ S' g' : Y' ⟶ S' i₁ : X ⟶ X' i₂ : Y ⟶ Y' i₃ : S ⟶ S' e₁ : f ≫ i₃ = i₁ ≫ f' e₂ : g ≫ i₃ = i₂ ≫ g' inst✝² : IsOpenImmersion i₁ inst✝¹ : IsOpenImmersion i₂ inst✝ : Mono i₃ ⊢ IsOpenImmersion ((pullbackFstFstIso f g f' g' i₁ i₂ i₃ e₁ e₂).inv ≫ pullback.snd ≫ pullback.fst) [PROOFSTEP] exact PresheafedSpace.IsOpenImmersion.comp _ (hg := PresheafedSpace.IsOpenImmersion.comp _ _)
{"mathlib_filename": "Mathlib.AlgebraicGeometry.Pullbacks", "llama_tokens": 109064}
[GOAL] α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n : ℕ h₀ : x 0 ≤ y 0 hx : ∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k) hy : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1) ⊢ x n ≤ y n [PROOFSTEP] induction' n with n ihn [GOAL] case zero α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n : ℕ h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k) hy✝ : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1) hx : ∀ (k : ℕ), k < Nat.zero → x (k + 1) ≤ f (x k) hy : ∀ (k : ℕ), k < Nat.zero → f (y k) ≤ y (k + 1) ⊢ x Nat.zero ≤ y Nat.zero [PROOFSTEP] exact h₀ [GOAL] case succ α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n✝ : ℕ h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) ≤ f (x k) hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1) n : ℕ ihn : (∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n ≤ y n hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) ≤ f (x k) hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1) ⊢ x (Nat.succ n) ≤ y (Nat.succ n) [PROOFSTEP] refine' (hx _ n.lt_succ_self).trans ((hf $ ihn _ _).trans (hy _ n.lt_succ_self)) [GOAL] case succ.refine'_1 α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n✝ : ℕ h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) ≤ f (x k) hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1) n : ℕ ihn : (∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n ≤ y n hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) ≤ f (x k) hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1) ⊢ ∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k) case succ.refine'_2 α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n✝ : ℕ h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) ≤ f (x k) hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1) n : ℕ ihn : (∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n ≤ y n hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) ≤ f (x k) hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1) ⊢ ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1) [PROOFSTEP] exact fun k hk => hx _ (hk.trans n.lt_succ_self) [GOAL] case succ.refine'_2 α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n✝ : ℕ h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) ≤ f (x k) hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1) n : ℕ ihn : (∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n ≤ y n hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) ≤ f (x k) hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1) ⊢ ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1) [PROOFSTEP] exact fun k hk => hy _ (hk.trans n.lt_succ_self) [GOAL] α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n : ℕ hn : 0 < n h₀ : x 0 ≤ y 0 hx : ∀ (k : ℕ), k < n → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1) ⊢ x n < y n [PROOFSTEP] induction' n with n ihn [GOAL] case zero α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n : ℕ hn✝ : 0 < n h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n → x (k + 1) < f (x k) hy✝ : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1) hn : 0 < Nat.zero hx : ∀ (k : ℕ), k < Nat.zero → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < Nat.zero → f (y k) ≤ y (k + 1) ⊢ x Nat.zero < y Nat.zero [PROOFSTEP] exact hn.false.elim [GOAL] case succ α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n✝ : ℕ hn✝ : 0 < n✝ h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k) hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1) n : ℕ ihn : 0 < n → (∀ (k : ℕ), k < n → x (k + 1) < f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n < y n hn : 0 < Nat.succ n hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1) ⊢ x (Nat.succ n) < y (Nat.succ n) [PROOFSTEP] suffices x n ≤ y n from (hx n n.lt_succ_self).trans_le ((hf this).trans $ hy n n.lt_succ_self) [GOAL] case succ α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n✝ : ℕ hn✝ : 0 < n✝ h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k) hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1) n : ℕ ihn : 0 < n → (∀ (k : ℕ), k < n → x (k + 1) < f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n < y n hn : 0 < Nat.succ n hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1) ⊢ x n ≤ y n [PROOFSTEP] cases n with | zero => exact h₀ | succ n => refine' (ihn n.zero_lt_succ (fun k hk => hx _ _) fun k hk => hy _ _).le <;> exact hk.trans n.succ.lt_succ_self [GOAL] case succ α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n✝ : ℕ hn✝ : 0 < n✝ h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k) hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1) n : ℕ ihn : 0 < n → (∀ (k : ℕ), k < n → x (k + 1) < f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n < y n hn : 0 < Nat.succ n hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1) ⊢ x n ≤ y n [PROOFSTEP] cases n with | zero => exact h₀ | succ n => refine' (ihn n.zero_lt_succ (fun k hk => hx _ _) fun k hk => hy _ _).le <;> exact hk.trans n.succ.lt_succ_self [GOAL] case succ.zero α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n : ℕ hn✝ : 0 < n h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n → x (k + 1) < f (x k) hy✝ : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1) ihn : 0 < Nat.zero → (∀ (k : ℕ), k < Nat.zero → x (k + 1) < f (x k)) → (∀ (k : ℕ), k < Nat.zero → f (y k) ≤ y (k + 1)) → x Nat.zero < y Nat.zero hn : 0 < Nat.succ Nat.zero hx : ∀ (k : ℕ), k < Nat.succ Nat.zero → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < Nat.succ Nat.zero → f (y k) ≤ y (k + 1) ⊢ x Nat.zero ≤ y Nat.zero [PROOFSTEP] | zero => exact h₀ [GOAL] case succ.zero α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n : ℕ hn✝ : 0 < n h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n → x (k + 1) < f (x k) hy✝ : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1) ihn : 0 < Nat.zero → (∀ (k : ℕ), k < Nat.zero → x (k + 1) < f (x k)) → (∀ (k : ℕ), k < Nat.zero → f (y k) ≤ y (k + 1)) → x Nat.zero < y Nat.zero hn : 0 < Nat.succ Nat.zero hx : ∀ (k : ℕ), k < Nat.succ Nat.zero → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < Nat.succ Nat.zero → f (y k) ≤ y (k + 1) ⊢ x Nat.zero ≤ y Nat.zero [PROOFSTEP] exact h₀ [GOAL] case succ.succ α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n✝ : ℕ hn✝ : 0 < n✝ h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k) hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1) n : ℕ ihn : 0 < Nat.succ n → (∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k)) → (∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)) → x (Nat.succ n) < y (Nat.succ n) hn : 0 < Nat.succ (Nat.succ n) hx : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → f (y k) ≤ y (k + 1) ⊢ x (Nat.succ n) ≤ y (Nat.succ n) [PROOFSTEP] | succ n => refine' (ihn n.zero_lt_succ (fun k hk => hx _ _) fun k hk => hy _ _).le <;> exact hk.trans n.succ.lt_succ_self [GOAL] case succ.succ α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n✝ : ℕ hn✝ : 0 < n✝ h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k) hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1) n : ℕ ihn : 0 < Nat.succ n → (∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k)) → (∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)) → x (Nat.succ n) < y (Nat.succ n) hn : 0 < Nat.succ (Nat.succ n) hx : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → f (y k) ≤ y (k + 1) ⊢ x (Nat.succ n) ≤ y (Nat.succ n) [PROOFSTEP] refine' (ihn n.zero_lt_succ (fun k hk => hx _ _) fun k hk => hy _ _).le [GOAL] case succ.succ.refine'_1 α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n✝ : ℕ hn✝ : 0 < n✝ h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k) hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1) n : ℕ ihn : 0 < Nat.succ n → (∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k)) → (∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)) → x (Nat.succ n) < y (Nat.succ n) hn : 0 < Nat.succ (Nat.succ n) hx : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → f (y k) ≤ y (k + 1) k : ℕ hk : k < Nat.succ n ⊢ k < Nat.succ (Nat.succ n) [PROOFSTEP] exact hk.trans n.succ.lt_succ_self [GOAL] case succ.succ.refine'_2 α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n✝ : ℕ hn✝ : 0 < n✝ h₀ : x 0 ≤ y 0 hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k) hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1) n : ℕ ihn : 0 < Nat.succ n → (∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k)) → (∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)) → x (Nat.succ n) < y (Nat.succ n) hn : 0 < Nat.succ (Nat.succ n) hx : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → f (y k) ≤ y (k + 1) k : ℕ hk : k < Nat.succ n ⊢ k < Nat.succ (Nat.succ n) [PROOFSTEP] exact hk.trans n.succ.lt_succ_self [GOAL] α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f n : ℕ h₀ : x 0 < y 0 hx : ∀ (k : ℕ), k < n → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1) ⊢ x n < y n [PROOFSTEP] cases n [GOAL] case zero α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f h₀ : x 0 < y 0 hx : ∀ (k : ℕ), k < Nat.zero → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < Nat.zero → f (y k) ≤ y (k + 1) ⊢ x Nat.zero < y Nat.zero case succ α : Type u_1 inst✝ : Preorder α f : α → α x y : ℕ → α hf : Monotone f h₀ : x 0 < y 0 n✝ : ℕ hx : ∀ (k : ℕ), k < Nat.succ n✝ → x (k + 1) < f (x k) hy : ∀ (k : ℕ), k < Nat.succ n✝ → f (y k) ≤ y (k + 1) ⊢ x (Nat.succ n✝) < y (Nat.succ n✝) [PROOFSTEP] exacts [h₀, hf.seq_pos_lt_seq_of_lt_of_le (Nat.zero_lt_succ _) h₀.le hx hy] [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α f : α → α x✝ y : ℕ → α g : β → β h : β → α hf : Monotone f H : h ∘ g ≤ f ∘ h n : ℕ x : β ⊢ (h ∘ g^[n]) x ≤ (f^[n] ∘ h) x [PROOFSTEP] apply hf.seq_le_seq n [GOAL] case h₀ α : Type u_1 β : Type u_2 inst✝ : Preorder α f : α → α x✝ y : ℕ → α g : β → β h : β → α hf : Monotone f H : h ∘ g ≤ f ∘ h n : ℕ x : β ⊢ (h ∘ g^[0]) x ≤ (f^[0] ∘ h) x [PROOFSTEP] intros [GOAL] case hx α : Type u_1 β : Type u_2 inst✝ : Preorder α f : α → α x✝ y : ℕ → α g : β → β h : β → α hf : Monotone f H : h ∘ g ≤ f ∘ h n : ℕ x : β ⊢ ∀ (k : ℕ), k < n → (h ∘ g^[k + 1]) x ≤ f ((h ∘ g^[k]) x) [PROOFSTEP] intros [GOAL] case hy α : Type u_1 β : Type u_2 inst✝ : Preorder α f : α → α x✝ y : ℕ → α g : β → β h : β → α hf : Monotone f H : h ∘ g ≤ f ∘ h n : ℕ x : β ⊢ ∀ (k : ℕ), k < n → f ((f^[k] ∘ h) x) ≤ (f^[k + 1] ∘ h) x [PROOFSTEP] intros [GOAL] case h₀ α : Type u_1 β : Type u_2 inst✝ : Preorder α f : α → α x✝ y : ℕ → α g : β → β h : β → α hf : Monotone f H : h ∘ g ≤ f ∘ h n : ℕ x : β ⊢ (h ∘ g^[0]) x ≤ (f^[0] ∘ h) x [PROOFSTEP] simp [iterate_succ', -iterate_succ, comp_apply, id_eq, le_refl] [GOAL] case hx α : Type u_1 β : Type u_2 inst✝ : Preorder α f : α → α x✝ y : ℕ → α g : β → β h : β → α hf : Monotone f H : h ∘ g ≤ f ∘ h n : ℕ x : β k✝ : ℕ a✝ : k✝ < n ⊢ (h ∘ g^[k✝ + 1]) x ≤ f ((h ∘ g^[k✝]) x) [PROOFSTEP] simp [iterate_succ', -iterate_succ, comp_apply, id_eq, le_refl] [GOAL] case hy α : Type u_1 β : Type u_2 inst✝ : Preorder α f : α → α x✝ y : ℕ → α g : β → β h : β → α hf : Monotone f H : h ∘ g ≤ f ∘ h n : ℕ x : β k✝ : ℕ a✝ : k✝ < n ⊢ f ((f^[k✝] ∘ h) x) ≤ (f^[k✝ + 1] ∘ h) x [PROOFSTEP] simp [iterate_succ', -iterate_succ, comp_apply, id_eq, le_refl] [GOAL] case hx α : Type u_1 β : Type u_2 inst✝ : Preorder α f : α → α x✝ y : ℕ → α g : β → β h : β → α hf : Monotone f H : h ∘ g ≤ f ∘ h n : ℕ x : β k✝ : ℕ a✝ : k✝ < n ⊢ h (g (g^[k✝] x)) ≤ f (h (g^[k✝] x)) [PROOFSTEP] case hx => exact H _ [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α f : α → α x✝ y : ℕ → α g : β → β h : β → α hf : Monotone f H : h ∘ g ≤ f ∘ h n : ℕ x : β k✝ : ℕ a✝ : k✝ < n ⊢ h (g (g^[k✝] x)) ≤ f (h (g^[k✝] x)) [PROOFSTEP] case hx => exact H _ [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α f : α → α x✝ y : ℕ → α g : β → β h : β → α hf : Monotone f H : h ∘ g ≤ f ∘ h n : ℕ x : β k✝ : ℕ a✝ : k✝ < n ⊢ h (g (g^[k✝] x)) ≤ f (h (g^[k✝] x)) [PROOFSTEP] exact H _ [GOAL] α : Type u_1 inst✝ : Preorder α f : α → α h : id ≤ f n : ℕ ⊢ id ≤ f^[n] [PROOFSTEP] simpa only [iterate_id] using monotone_id.iterate_le_of_le h n [GOAL] α : Type u_1 inst✝ : Preorder α f : α → α h : id ≤ f n : ℕ x : α ⊢ f^[n] x ≤ f^[n + 1] x [PROOFSTEP] rw [iterate_succ_apply'] [GOAL] α : Type u_1 inst✝ : Preorder α f : α → α h : id ≤ f n : ℕ x : α ⊢ f^[n] x ≤ f (f^[n] x) [PROOFSTEP] exact h _ [GOAL] α : Type u_1 inst✝ : Preorder α f g : α → α h : Commute f g hf : Monotone f hg : Monotone g x : α hx : f x ≤ g x n : ℕ ⊢ f^[n] x ≤ g^[n] x [PROOFSTEP] apply hf.seq_le_seq n [GOAL] case h₀ α : Type u_1 inst✝ : Preorder α f g : α → α h : Commute f g hf : Monotone f hg : Monotone g x : α hx : f x ≤ g x n : ℕ ⊢ f^[0] x ≤ g^[0] x [PROOFSTEP] rfl [GOAL] case hx α : Type u_1 inst✝ : Preorder α f g : α → α h : Commute f g hf : Monotone f hg : Monotone g x : α hx : f x ≤ g x n : ℕ ⊢ ∀ (k : ℕ), k < n → f^[k + 1] x ≤ f (f^[k] x) [PROOFSTEP] intros [GOAL] case hx α : Type u_1 inst✝ : Preorder α f g : α → α h : Commute f g hf : Monotone f hg : Monotone g x : α hx : f x ≤ g x n k✝ : ℕ a✝ : k✝ < n ⊢ f^[k✝ + 1] x ≤ f (f^[k✝] x) [PROOFSTEP] rw [iterate_succ_apply'] [GOAL] case hy α : Type u_1 inst✝ : Preorder α f g : α → α h : Commute f g hf : Monotone f hg : Monotone g x : α hx : f x ≤ g x n : ℕ ⊢ ∀ (k : ℕ), k < n → f (g^[k] x) ≤ g^[k + 1] x [PROOFSTEP] intros [GOAL] case hy α : Type u_1 inst✝ : Preorder α f g : α → α h : Commute f g hf : Monotone f hg : Monotone g x : α hx : f x ≤ g x n k✝ : ℕ a✝ : k✝ < n ⊢ f (g^[k✝] x) ≤ g^[k✝ + 1] x [PROOFSTEP] simp [h.iterate_right _ _, hg.iterate _ hx] [GOAL] α : Type u_1 inst✝ : Preorder α f g : α → α h : Commute f g hf : Monotone f hg : StrictMono g x : α hx : f x < g x n : ℕ hn : 0 < n ⊢ f^[n] x < g^[n] x [PROOFSTEP] apply hf.seq_pos_lt_seq_of_le_of_lt hn [GOAL] case h₀ α : Type u_1 inst✝ : Preorder α f g : α → α h : Commute f g hf : Monotone f hg : StrictMono g x : α hx : f x < g x n : ℕ hn : 0 < n ⊢ f^[0] x ≤ g^[0] x [PROOFSTEP] rfl [GOAL] case hx α : Type u_1 inst✝ : Preorder α f g : α → α h : Commute f g hf : Monotone f hg : StrictMono g x : α hx : f x < g x n : ℕ hn : 0 < n ⊢ ∀ (k : ℕ), k < n → f^[k + 1] x ≤ f (f^[k] x) [PROOFSTEP] intros [GOAL] case hx α : Type u_1 inst✝ : Preorder α f g : α → α h : Commute f g hf : Monotone f hg : StrictMono g x : α hx : f x < g x n : ℕ hn : 0 < n k✝ : ℕ a✝ : k✝ < n ⊢ f^[k✝ + 1] x ≤ f (f^[k✝] x) [PROOFSTEP] rw [iterate_succ_apply'] [GOAL] case hy α : Type u_1 inst✝ : Preorder α f g : α → α h : Commute f g hf : Monotone f hg : StrictMono g x : α hx : f x < g x n : ℕ hn : 0 < n ⊢ ∀ (k : ℕ), k < n → f (g^[k] x) < g^[k + 1] x [PROOFSTEP] intros [GOAL] case hy α : Type u_1 inst✝ : Preorder α f g : α → α h : Commute f g hf : Monotone f hg : StrictMono g x : α hx : f x < g x n : ℕ hn : 0 < n k✝ : ℕ a✝ : k✝ < n ⊢ f (g^[k✝] x) < g^[k✝ + 1] x [PROOFSTEP] simp [h.iterate_right _ _, hg.iterate _ hx] [GOAL] α : Type u_1 inst✝ : LinearOrder α f g : α → α h : Commute f g hf : Monotone f hg : StrictMono g x : α n : ℕ hn : 0 < n ⊢ f^[n] x < g^[n] x ↔ f x < g x [PROOFSTEP] rcases lt_trichotomy (f x) (g x) with (H | H | H) [GOAL] case inl α : Type u_1 inst✝ : LinearOrder α f g : α → α h : Commute f g hf : Monotone f hg : StrictMono g x : α n : ℕ hn : 0 < n H : f x < g x ⊢ f^[n] x < g^[n] x ↔ f x < g x [PROOFSTEP] simp only [*, iterate_pos_lt_of_map_lt] [GOAL] case inr.inl α : Type u_1 inst✝ : LinearOrder α f g : α → α h : Commute f g hf : Monotone f hg : StrictMono g x : α n : ℕ hn : 0 < n H : f x = g x ⊢ f^[n] x < g^[n] x ↔ f x < g x [PROOFSTEP] simp only [*, h.iterate_eq_of_map_eq, lt_irrefl] [GOAL] case inr.inr α : Type u_1 inst✝ : LinearOrder α f g : α → α h : Commute f g hf : Monotone f hg : StrictMono g x : α n : ℕ hn : 0 < n H : g x < f x ⊢ f^[n] x < g^[n] x ↔ f x < g x [PROOFSTEP] simp only [lt_asymm H, lt_asymm (h.symm.iterate_pos_lt_of_map_lt' hg hf H hn)] [GOAL] α : Type u_1 inst✝ : LinearOrder α f g : α → α h : Commute f g hf : Monotone f hg : StrictMono g x : α n : ℕ hn : 0 < n ⊢ f^[n] x ≤ g^[n] x ↔ f x ≤ g x [PROOFSTEP] simpa only [not_lt] using not_congr (h.symm.iterate_pos_lt_iff_map_lt' hg hf hn) [GOAL] α : Type u_1 inst✝ : LinearOrder α f g : α → α h : Commute f g hf : StrictMono f hg : Monotone g x : α n : ℕ hn : 0 < n ⊢ f^[n] x ≤ g^[n] x ↔ f x ≤ g x [PROOFSTEP] simpa only [not_lt] using not_congr (h.symm.iterate_pos_lt_iff_map_lt hg hf hn) [GOAL] α : Type u_1 inst✝ : LinearOrder α f g : α → α h : Commute f g hf : Monotone f hg : StrictMono g x : α n : ℕ hn : 0 < n ⊢ f^[n] x = g^[n] x ↔ f x = g x [PROOFSTEP] simp only [le_antisymm_iff, h.iterate_pos_le_iff_map_le hf hg hn, h.symm.iterate_pos_le_iff_map_le' hg hf hn] [GOAL] α : Type u_1 inst✝ : Preorder α f : α → α x : α hf : Monotone f hx : x ≤ f x n : ℕ ⊢ f^[n] x ≤ f^[n + 1] x [PROOFSTEP] rw [iterate_succ_apply] [GOAL] α : Type u_1 inst✝ : Preorder α f : α → α x : α hf : Monotone f hx : x ≤ f x n : ℕ ⊢ f^[n] x ≤ f^[n] (f x) [PROOFSTEP] exact hf.iterate n hx [GOAL] α : Type u_1 inst✝ : Preorder α f : α → α x : α hf : StrictMono f hx : x < f x n : ℕ ⊢ f^[n] x < f^[n + 1] x [PROOFSTEP] rw [iterate_succ_apply] [GOAL] α : Type u_1 inst✝ : Preorder α f : α → α x : α hf : StrictMono f hx : x < f x n : ℕ ⊢ f^[n] x < f^[n] (f x) [PROOFSTEP] exact hf.iterate n hx
{"mathlib_filename": "Mathlib.Order.Iterate", "llama_tokens": 10646}
[GOAL] ι : Type u_1 α : Type u_2 inst✝ : SemilatticeSup α a b c : α ⊢ ¬SupIrred a ↔ IsMin a ∨ ∃ b c, b ⊔ c = a ∧ b < a ∧ c < a [PROOFSTEP] rw [SupIrred, not_and_or] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : SemilatticeSup α a b c : α ⊢ (¬¬IsMin a ∨ ¬∀ ⦃b c : α⦄, b ⊔ c = a → b = a ∨ c = a) ↔ IsMin a ∨ ∃ b c, b ⊔ c = a ∧ b < a ∧ c < a [PROOFSTEP] push_neg [GOAL] ι : Type u_1 α : Type u_2 inst✝ : SemilatticeSup α a b c : α ⊢ (IsMin a ∨ Exists fun ⦃b⦄ => Exists fun ⦃c⦄ => b ⊔ c = a ∧ b ≠ a ∧ c ≠ a) ↔ IsMin a ∨ ∃ b c, b ⊔ c = a ∧ b < a ∧ c < a [PROOFSTEP] rw [exists₂_congr] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : SemilatticeSup α a b c : α ⊢ ∀ (a_1 b : α), a_1 ⊔ b = a ∧ a_1 ≠ a ∧ b ≠ a ↔ a_1 ⊔ b = a ∧ a_1 < a ∧ b < a [PROOFSTEP] simp (config := { contextual := true }) [@eq_comm _ _ a] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : SemilatticeSup α a b c : α ⊢ ¬SupPrime a ↔ IsMin a ∨ ∃ b c, a ≤ b ⊔ c ∧ ¬a ≤ b ∧ ¬a ≤ c [PROOFSTEP] rw [SupPrime, not_and_or] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : SemilatticeSup α a b c : α ⊢ (¬¬IsMin a ∨ ¬∀ ⦃b c : α⦄, a ≤ b ⊔ c → a ≤ b ∨ a ≤ c) ↔ IsMin a ∨ ∃ b c, a ≤ b ⊔ c ∧ ¬a ≤ b ∧ ¬a ≤ c [PROOFSTEP] push_neg [GOAL] ι : Type u_1 α : Type u_2 inst✝ : SemilatticeSup α a b c : α ⊢ (IsMin a ∨ Exists fun ⦃b⦄ => Exists fun ⦃c⦄ => a ≤ b ⊔ c ∧ ¬a ≤ b ∧ ¬a ≤ c) ↔ IsMin a ∨ ∃ b c, a ≤ b ⊔ c ∧ ¬a ≤ b ∧ ¬a ≤ c [PROOFSTEP] rfl [GOAL] ι : Type u_1 α : Type u_2 inst✝ : SemilatticeSup α a b✝ c✝ : α h : ∀ ⦃b c : α⦄, a ≤ b ⊔ c → a ≤ b ∨ a ≤ c b c : α ha : b ⊔ c = a ⊢ b = a ∨ c = a [PROOFSTEP] simpa [← ha] using h ha.ge [GOAL] ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α a b c : α inst✝ : OrderBot α s : Finset ι f : ι → α ha : SupIrred a ⊢ a ≠ ⊥ [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α b c : α inst✝ : OrderBot α s : Finset ι f : ι → α ha : SupIrred ⊥ ⊢ False [PROOFSTEP] exact not_supIrred_bot ha [GOAL] ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α a b c : α inst✝ : OrderBot α s : Finset ι f : ι → α ha : SupPrime a ⊢ a ≠ ⊥ [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α b c : α inst✝ : OrderBot α s : Finset ι f : ι → α ha : SupPrime ⊥ ⊢ False [PROOFSTEP] exact not_supPrime_bot ha [GOAL] ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α a b c : α inst✝ : OrderBot α s : Finset ι f : ι → α ha : SupIrred a h : sup s f = a ⊢ ∃ i, i ∈ s ∧ f i = a [PROOFSTEP] classical induction' s using Finset.induction with i s _ ih · simpa [ha.ne_bot] using h.symm simp only [exists_prop, exists_mem_insert] at ih ⊢ rw [sup_insert] at h exact (ha.2 h).imp_right ih [GOAL] ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α a b c : α inst✝ : OrderBot α s : Finset ι f : ι → α ha : SupIrred a h : sup s f = a ⊢ ∃ i, i ∈ s ∧ f i = a [PROOFSTEP] induction' s using Finset.induction with i s _ ih [GOAL] case empty ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α a b c : α inst✝ : OrderBot α s : Finset ι f : ι → α ha : SupIrred a h✝ : sup s f = a h : sup ∅ f = a ⊢ ∃ i, i ∈ ∅ ∧ f i = a [PROOFSTEP] simpa [ha.ne_bot] using h.symm [GOAL] case insert ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α a b c : α inst✝ : OrderBot α s✝ : Finset ι f : ι → α ha : SupIrred a h✝ : sup s✝ f = a i : ι s : Finset ι a✝ : ¬i ∈ s ih : sup s f = a → ∃ i, i ∈ s ∧ f i = a h : sup (insert i s) f = a ⊢ ∃ i_1, i_1 ∈ insert i s ∧ f i_1 = a [PROOFSTEP] simp only [exists_prop, exists_mem_insert] at ih ⊢ [GOAL] case insert ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α a b c : α inst✝ : OrderBot α s✝ : Finset ι f : ι → α ha : SupIrred a h✝ : sup s✝ f = a i : ι s : Finset ι a✝ : ¬i ∈ s ih : sup s f = a → ∃ i, i ∈ s ∧ f i = a h : sup (insert i s) f = a ⊢ f i = a ∨ ∃ x, x ∈ s ∧ f x = a [PROOFSTEP] rw [sup_insert] at h [GOAL] case insert ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α a b c : α inst✝ : OrderBot α s✝ : Finset ι f : ι → α ha : SupIrred a h✝ : sup s✝ f = a i : ι s : Finset ι a✝ : ¬i ∈ s ih : sup s f = a → ∃ i, i ∈ s ∧ f i = a h : f i ⊔ sup s f = a ⊢ f i = a ∨ ∃ x, x ∈ s ∧ f x = a [PROOFSTEP] exact (ha.2 h).imp_right ih [GOAL] ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α a b c : α inst✝ : OrderBot α s : Finset ι f : ι → α ha : SupPrime a ⊢ a ≤ sup s f ↔ ∃ i, i ∈ s ∧ a ≤ f i [PROOFSTEP] classical induction' s using Finset.induction with i s _ ih · simp [ha.ne_bot] · simp only [exists_prop, exists_mem_insert, sup_insert, ha.le_sup, ih] [GOAL] ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α a b c : α inst✝ : OrderBot α s : Finset ι f : ι → α ha : SupPrime a ⊢ a ≤ sup s f ↔ ∃ i, i ∈ s ∧ a ≤ f i [PROOFSTEP] induction' s using Finset.induction with i s _ ih [GOAL] case empty ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α a b c : α inst✝ : OrderBot α s : Finset ι f : ι → α ha : SupPrime a ⊢ a ≤ sup ∅ f ↔ ∃ i, i ∈ ∅ ∧ a ≤ f i [PROOFSTEP] simp [ha.ne_bot] [GOAL] case insert ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeSup α a b c : α inst✝ : OrderBot α s✝ : Finset ι f : ι → α ha : SupPrime a i : ι s : Finset ι a✝ : ¬i ∈ s ih : a ≤ sup s f ↔ ∃ i, i ∈ s ∧ a ≤ f i ⊢ a ≤ sup (insert i s) f ↔ ∃ i_1, i_1 ∈ insert i s ∧ a ≤ f i_1 [PROOFSTEP] simp only [exists_prop, exists_mem_insert, sup_insert, ha.le_sup, ih] [GOAL] ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a✝ b c : α inst✝¹ : OrderBot α s : Finset ι f : ι → α inst✝ : WellFoundedLT α a : α ⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b [PROOFSTEP] classical apply WellFoundedLT.induction a _ clear a rintro a ih by_cases ha : SupIrred a · exact ⟨{ a }, by simp [ha]⟩ rw [not_supIrred] at ha obtain ha | ⟨b, c, rfl, hb, hc⟩ := ha · exact ⟨∅, by simp [ha.eq_bot]⟩ obtain ⟨s, rfl, hs⟩ := ih _ hb obtain ⟨t, rfl, ht⟩ := ih _ hc exact ⟨s ∪ t, sup_union, forall_mem_union.2 ⟨hs, ht⟩⟩ [GOAL] ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a✝ b c : α inst✝¹ : OrderBot α s : Finset ι f : ι → α inst✝ : WellFoundedLT α a : α ⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b [PROOFSTEP] apply WellFoundedLT.induction a _ [GOAL] ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a✝ b c : α inst✝¹ : OrderBot α s : Finset ι f : ι → α inst✝ : WellFoundedLT α a : α ⊢ ∀ (x : α), (∀ (y : α), y < x → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b) → ∃ s, sup s id = x ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b [PROOFSTEP] clear a [GOAL] ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a b c : α inst✝¹ : OrderBot α s : Finset ι f : ι → α inst✝ : WellFoundedLT α ⊢ ∀ (x : α), (∀ (y : α), y < x → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b) → ∃ s, sup s id = x ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b [PROOFSTEP] rintro a ih [GOAL] ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a✝ b c : α inst✝¹ : OrderBot α s : Finset ι f : ι → α inst✝ : WellFoundedLT α a : α ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b ⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b [PROOFSTEP] by_cases ha : SupIrred a [GOAL] case pos ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a✝ b c : α inst✝¹ : OrderBot α s : Finset ι f : ι → α inst✝ : WellFoundedLT α a : α ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b ha : SupIrred a ⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b [PROOFSTEP] exact ⟨{ a }, by simp [ha]⟩ [GOAL] ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a✝ b c : α inst✝¹ : OrderBot α s : Finset ι f : ι → α inst✝ : WellFoundedLT α a : α ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b ha : SupIrred a ⊢ sup {a} id = a ∧ ∀ ⦃b : α⦄, b ∈ {a} → SupIrred b [PROOFSTEP] simp [ha] [GOAL] case neg ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a✝ b c : α inst✝¹ : OrderBot α s : Finset ι f : ι → α inst✝ : WellFoundedLT α a : α ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b ha : ¬SupIrred a ⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b [PROOFSTEP] rw [not_supIrred] at ha [GOAL] case neg ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a✝ b c : α inst✝¹ : OrderBot α s : Finset ι f : ι → α inst✝ : WellFoundedLT α a : α ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b ha : IsMin a ∨ ∃ b c, b ⊔ c = a ∧ b < a ∧ c < a ⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b [PROOFSTEP] obtain ha | ⟨b, c, rfl, hb, hc⟩ := ha [GOAL] case neg.inl ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a✝ b c : α inst✝¹ : OrderBot α s : Finset ι f : ι → α inst✝ : WellFoundedLT α a : α ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b ha : IsMin a ⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b [PROOFSTEP] exact ⟨∅, by simp [ha.eq_bot]⟩ [GOAL] ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a✝ b c : α inst✝¹ : OrderBot α s : Finset ι f : ι → α inst✝ : WellFoundedLT α a : α ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b ha : IsMin a ⊢ sup ∅ id = a ∧ ∀ ⦃b : α⦄, b ∈ ∅ → SupIrred b [PROOFSTEP] simp [ha.eq_bot] [GOAL] case neg.inr.intro.intro.intro.intro ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a b✝ c✝ : α inst✝¹ : OrderBot α s : Finset ι f : ι → α inst✝ : WellFoundedLT α b c : α ih : ∀ (y : α), y < b ⊔ c → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b hb : b < b ⊔ c hc : c < b ⊔ c ⊢ ∃ s, sup s id = b ⊔ c ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b [PROOFSTEP] obtain ⟨s, rfl, hs⟩ := ih _ hb [GOAL] case neg.inr.intro.intro.intro.intro.intro.intro ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a b c✝ : α inst✝¹ : OrderBot α s✝ : Finset ι f : ι → α inst✝ : WellFoundedLT α c : α s : Finset α hs : ∀ ⦃b : α⦄, b ∈ s → SupIrred b ih : ∀ (y : α), y < sup s id ⊔ c → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b hb : sup s id < sup s id ⊔ c hc : c < sup s id ⊔ c ⊢ ∃ s_1, sup s_1 id = sup s id ⊔ c ∧ ∀ ⦃b : α⦄, b ∈ s_1 → SupIrred b [PROOFSTEP] obtain ⟨t, rfl, ht⟩ := ih _ hc [GOAL] case neg.inr.intro.intro.intro.intro.intro.intro.intro.intro ι : Type u_1 α : Type u_2 inst✝² : SemilatticeSup α a b c : α inst✝¹ : OrderBot α s✝ : Finset ι f : ι → α inst✝ : WellFoundedLT α s : Finset α hs : ∀ ⦃b : α⦄, b ∈ s → SupIrred b t : Finset α ht : ∀ ⦃b : α⦄, b ∈ t → SupIrred b ih : ∀ (y : α), y < sup s id ⊔ sup t id → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b hb : sup s id < sup s id ⊔ sup t id hc : sup t id < sup s id ⊔ sup t id ⊢ ∃ s_1, sup s_1 id = sup s id ⊔ sup t id ∧ ∀ ⦃b : α⦄, b ∈ s_1 → SupIrred b [PROOFSTEP] exact ⟨s ∪ t, sup_union, forall_mem_union.2 ⟨hs, ht⟩⟩ [GOAL] ι : Type u_1 α : Type u_2 inst✝ : SemilatticeInf α a b✝ c✝ : α h : ∀ ⦃b c : α⦄, b ⊓ c ≤ a → b ≤ a ∨ c ≤ a b c : α ha : b ⊓ c = a ⊢ b = a ∨ c = a [PROOFSTEP] simpa [← ha] using h ha.le [GOAL] ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeInf α a b c : α inst✝ : OrderTop α s : Finset ι f : ι → α ha : InfIrred a ⊢ a ≠ ⊤ [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeInf α b c : α inst✝ : OrderTop α s : Finset ι f : ι → α ha : InfIrred ⊤ ⊢ False [PROOFSTEP] exact not_infIrred_top ha [GOAL] ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeInf α a b c : α inst✝ : OrderTop α s : Finset ι f : ι → α ha : InfPrime a ⊢ a ≠ ⊤ [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 α : Type u_2 inst✝¹ : SemilatticeInf α b c : α inst✝ : OrderTop α s : Finset ι f : ι → α ha : InfPrime ⊤ ⊢ False [PROOFSTEP] exact not_infPrime_top ha [GOAL] ι : Type u_1 α : Type u_2 inst✝ : DistribLattice α a b✝ c✝ : α h : ∀ ⦃b c : α⦄, b ⊔ c = a → b = a ∨ c = a b c : α ⊢ a ≤ b ⊔ c → a ≤ b ∨ a ≤ c [PROOFSTEP] simp_rw [← inf_eq_left, inf_sup_left] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : DistribLattice α a b✝ c✝ : α h : ∀ ⦃b c : α⦄, b ⊔ c = a → b = a ∨ c = a b c : α ⊢ a ⊓ b ⊔ a ⊓ c = a → a ⊓ b = a ∨ a ⊓ c = a [PROOFSTEP] exact @h _ _ [GOAL] ι : Type u_1 α : Type u_2 inst✝ : DistribLattice α a b✝ c✝ : α h : ∀ ⦃b c : α⦄, b ⊓ c = a → b = a ∨ c = a b c : α ⊢ b ⊓ c ≤ a → b ≤ a ∨ c ≤ a [PROOFSTEP] simp_rw [← sup_eq_left, sup_inf_left] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : DistribLattice α a b✝ c✝ : α h : ∀ ⦃b c : α⦄, b ⊓ c = a → b = a ∨ c = a b c : α ⊢ (a ⊔ b) ⊓ (a ⊔ c) = a → a ⊔ b = a ∨ a ⊔ c = a [PROOFSTEP] exact @h _ _ [GOAL] ι : Type u_1 α : Type u_2 inst✝ : LinearOrder α a : α ⊢ ∀ ⦃b c : α⦄, a ≤ b ⊔ c → a ≤ b ∨ a ≤ c [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 inst✝ : LinearOrder α a : α ⊢ ∀ ⦃b c : α⦄, b ⊓ c ≤ a → b ≤ a ∨ c ≤ a [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 inst✝ : LinearOrder α a x✝¹ x✝ : α ⊢ x✝¹ ⊔ x✝ = a → x✝¹ = a ∨ x✝ = a [PROOFSTEP] simpa only [sup_eq_max, max_eq_iff] using Or.imp And.left And.left [GOAL] ι : Type u_1 α : Type u_2 inst✝ : LinearOrder α a x✝¹ x✝ : α ⊢ x✝¹ ⊓ x✝ = a → x✝¹ = a ∨ x✝ = a [PROOFSTEP] simpa only [inf_eq_min, min_eq_iff] using Or.imp And.left And.left
{"mathlib_filename": "Mathlib.Order.Irreducible", "llama_tokens": 7347}
[GOAL] L : Language T : Theory L α : Type w n : ℕ T' : Theory L L' : Language φ : L →ᴸ L' h : LHom.Injective φ ⊢ IsSatisfiable (LHom.onTheory φ T) ↔ IsSatisfiable T [PROOFSTEP] classical refine' ⟨isSatisfiable_of_isSatisfiable_onTheory φ, fun h' => _⟩ haveI : Inhabited h'.some := Classical.inhabited_of_nonempty' exact Model.isSatisfiable (h'.some.defaultExpansion h) [GOAL] L : Language T : Theory L α : Type w n : ℕ T' : Theory L L' : Language φ : L →ᴸ L' h : LHom.Injective φ ⊢ IsSatisfiable (LHom.onTheory φ T) ↔ IsSatisfiable T [PROOFSTEP] refine' ⟨isSatisfiable_of_isSatisfiable_onTheory φ, fun h' => _⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ T' : Theory L L' : Language φ : L →ᴸ L' h : LHom.Injective φ h' : IsSatisfiable T ⊢ IsSatisfiable (LHom.onTheory φ T) [PROOFSTEP] haveI : Inhabited h'.some := Classical.inhabited_of_nonempty' [GOAL] L : Language T : Theory L α : Type w n : ℕ T' : Theory L L' : Language φ : L →ᴸ L' h : LHom.Injective φ h' : IsSatisfiable T this : Inhabited ↑(Nonempty.some h') ⊢ IsSatisfiable (LHom.onTheory φ T) [PROOFSTEP] exact Model.isSatisfiable (h'.some.defaultExpansion h) [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L h : IsFinitelySatisfiable T ⊢ IsSatisfiable T [PROOFSTEP] classical set M : Finset T → Type max u v := fun T0 : Finset T => (h (T0.map (Function.Embedding.subtype fun x => x ∈ T)) T0.map_subtype_subset).some.Carrier let M' := Filter.Product (Ultrafilter.of (Filter.atTop : Filter (Finset T))) M have h' : M' ⊨ T := by refine' ⟨fun φ hφ => _⟩ rw [Ultraproduct.sentence_realize] refine' Filter.Eventually.filter_mono (Ultrafilter.of_le _) (Filter.eventually_atTop.2 ⟨{⟨φ, hφ⟩}, fun s h' => Theory.realize_sentence_of_mem (s.map (Function.Embedding.subtype fun x => x ∈ T)) _⟩) simp only [Finset.coe_map, Function.Embedding.coe_subtype, Set.mem_image, Finset.mem_coe, Subtype.exists, Subtype.coe_mk, exists_and_right, exists_eq_right] exact ⟨hφ, h' (Finset.mem_singleton_self _)⟩ exact ⟨ModelType.of T M'⟩ [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L h : IsFinitelySatisfiable T ⊢ IsSatisfiable T [PROOFSTEP] set M : Finset T → Type max u v := fun T0 : Finset T => (h (T0.map (Function.Embedding.subtype fun x => x ∈ T)) T0.map_subtype_subset).some.Carrier [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L h : IsFinitelySatisfiable T M : Finset ↑T → Type (max u v) := fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0))) ⊢ IsSatisfiable T [PROOFSTEP] let M' := Filter.Product (Ultrafilter.of (Filter.atTop : Filter (Finset T))) M [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L h : IsFinitelySatisfiable T M : Finset ↑T → Type (max u v) := fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0))) M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M ⊢ IsSatisfiable T [PROOFSTEP] have h' : M' ⊨ T := by refine' ⟨fun φ hφ => _⟩ rw [Ultraproduct.sentence_realize] refine' Filter.Eventually.filter_mono (Ultrafilter.of_le _) (Filter.eventually_atTop.2 ⟨{⟨φ, hφ⟩}, fun s h' => Theory.realize_sentence_of_mem (s.map (Function.Embedding.subtype fun x => x ∈ T)) _⟩) simp only [Finset.coe_map, Function.Embedding.coe_subtype, Set.mem_image, Finset.mem_coe, Subtype.exists, Subtype.coe_mk, exists_and_right, exists_eq_right] exact ⟨hφ, h' (Finset.mem_singleton_self _)⟩ [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L h : IsFinitelySatisfiable T M : Finset ↑T → Type (max u v) := fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0))) M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M ⊢ M' ⊨ T [PROOFSTEP] refine' ⟨fun φ hφ => _⟩ [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L h : IsFinitelySatisfiable T M : Finset ↑T → Type (max u v) := fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0))) M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M φ : Sentence L hφ : φ ∈ T ⊢ M' ⊨ φ [PROOFSTEP] rw [Ultraproduct.sentence_realize] [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L h : IsFinitelySatisfiable T M : Finset ↑T → Type (max u v) := fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0))) M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M φ : Sentence L hφ : φ ∈ T ⊢ ∀ᶠ (a : Finset ↑T) in ↑(Ultrafilter.of Filter.atTop), M a ⊨ φ [PROOFSTEP] refine' Filter.Eventually.filter_mono (Ultrafilter.of_le _) (Filter.eventually_atTop.2 ⟨{⟨φ, hφ⟩}, fun s h' => Theory.realize_sentence_of_mem (s.map (Function.Embedding.subtype fun x => x ∈ T)) _⟩) [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L h : IsFinitelySatisfiable T M : Finset ↑T → Type (max u v) := fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0))) M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M φ : Sentence L hφ : φ ∈ T s : Finset ↑T h' : s ≥ {{ val := φ, property := hφ }} ⊢ φ ∈ ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) s) [PROOFSTEP] simp only [Finset.coe_map, Function.Embedding.coe_subtype, Set.mem_image, Finset.mem_coe, Subtype.exists, Subtype.coe_mk, exists_and_right, exists_eq_right] [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L h : IsFinitelySatisfiable T M : Finset ↑T → Type (max u v) := fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0))) M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M φ : Sentence L hφ : φ ∈ T s : Finset ↑T h' : s ≥ {{ val := φ, property := hφ }} ⊢ ∃ x, { val := φ, property := (_ : φ ∈ T) } ∈ s [PROOFSTEP] exact ⟨hφ, h' (Finset.mem_singleton_self _)⟩ [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L h : IsFinitelySatisfiable T M : Finset ↑T → Type (max u v) := fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0))) M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M h' : M' ⊨ T ⊢ IsSatisfiable T [PROOFSTEP] exact ⟨ModelType.of T M'⟩ [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' : Theory L ι : Type u_1 inst✝ : Nonempty ι T : ι → Theory L h : Directed (fun x x_1 => x ⊆ x_1) T ⊢ IsSatisfiable (⋃ (i : ι), T i) ↔ ∀ (i : ι), IsSatisfiable (T i) [PROOFSTEP] refine' ⟨fun h' i => h'.mono (Set.subset_iUnion _ _), fun h' => _⟩ [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' : Theory L ι : Type u_1 inst✝ : Nonempty ι T : ι → Theory L h : Directed (fun x x_1 => x ⊆ x_1) T h' : ∀ (i : ι), IsSatisfiable (T i) ⊢ IsSatisfiable (⋃ (i : ι), T i) [PROOFSTEP] rw [isSatisfiable_iff_isFinitelySatisfiable, IsFinitelySatisfiable] [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' : Theory L ι : Type u_1 inst✝ : Nonempty ι T : ι → Theory L h : Directed (fun x x_1 => x ⊆ x_1) T h' : ∀ (i : ι), IsSatisfiable (T i) ⊢ ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ ⋃ (i : ι), T i → IsSatisfiable ↑T0 [PROOFSTEP] intro T0 hT0 [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' : Theory L ι : Type u_1 inst✝ : Nonempty ι T : ι → Theory L h : Directed (fun x x_1 => x ⊆ x_1) T h' : ∀ (i : ι), IsSatisfiable (T i) T0 : Finset (Sentence L) hT0 : ↑T0 ⊆ ⋃ (i : ι), T i ⊢ IsSatisfiable ↑T0 [PROOFSTEP] obtain ⟨i, hi⟩ := h.exists_mem_subset_of_finset_subset_biUnion hT0 [GOAL] case intro L : Language T✝ : Theory L α : Type w n : ℕ T' : Theory L ι : Type u_1 inst✝ : Nonempty ι T : ι → Theory L h : Directed (fun x x_1 => x ⊆ x_1) T h' : ∀ (i : ι), IsSatisfiable (T i) T0 : Finset (Sentence L) hT0 : ↑T0 ⊆ ⋃ (i : ι), T i i : ι hi : ↑T0 ⊆ T i ⊢ IsSatisfiable ↑T0 [PROOFSTEP] exact (h' i).mono hi [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Nonempty M inst✝¹ : Structure L M inst✝ : M ⊨ T h : lift #↑s ≤ lift #M ⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s) [PROOFSTEP] haveI : Inhabited M := Classical.inhabited_of_nonempty inferInstance [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Nonempty M inst✝¹ : Structure L M inst✝ : M ⊨ T h : lift #↑s ≤ lift #M this : Inhabited M ⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s) [PROOFSTEP] rw [Cardinal.lift_mk_le'] at h [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Nonempty M inst✝¹ : Structure L M inst✝ : M ⊨ T h : Nonempty (↑s ↪ M) this : Inhabited M ⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s) [PROOFSTEP] letI : (constantsOn α).Structure M := constantsOn.structure (Function.extend (↑) h.some default) [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Nonempty M inst✝¹ : Structure L M inst✝ : M ⊨ T h : Nonempty (↑s ↪ M) this✝ : Inhabited M this : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default) ⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s) [PROOFSTEP] have : M ⊨ (L.lhomWithConstants α).onTheory T ∪ L.distinctConstantsTheory s := by refine' ((LHom.onTheory_model _ _).2 inferInstance).union _ rw [model_distinctConstantsTheory] refine' fun a as b bs ab => _ rw [← Subtype.coe_mk a as, ← Subtype.coe_mk b bs, ← Subtype.ext_iff] exact h.some.injective ((Subtype.coe_injective.extend_apply h.some default ⟨a, as⟩).symm.trans (ab.trans (Subtype.coe_injective.extend_apply h.some default ⟨b, bs⟩))) [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Nonempty M inst✝¹ : Structure L M inst✝ : M ⊨ T h : Nonempty (↑s ↪ M) this✝ : Inhabited M this : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default) ⊢ M ⊨ LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s [PROOFSTEP] refine' ((LHom.onTheory_model _ _).2 inferInstance).union _ [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Nonempty M inst✝¹ : Structure L M inst✝ : M ⊨ T h : Nonempty (↑s ↪ M) this✝ : Inhabited M this : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default) ⊢ M ⊨ distinctConstantsTheory L s [PROOFSTEP] rw [model_distinctConstantsTheory] [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Nonempty M inst✝¹ : Structure L M inst✝ : M ⊨ T h : Nonempty (↑s ↪ M) this✝ : Inhabited M this : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default) ⊢ Set.InjOn (fun i => ↑(Language.con L i)) s [PROOFSTEP] refine' fun a as b bs ab => _ [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Nonempty M inst✝¹ : Structure L M inst✝ : M ⊨ T h : Nonempty (↑s ↪ M) this✝ : Inhabited M this : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default) a : α as : a ∈ s b : α bs : b ∈ s ab : (fun i => ↑(Language.con L i)) a = (fun i => ↑(Language.con L i)) b ⊢ a = b [PROOFSTEP] rw [← Subtype.coe_mk a as, ← Subtype.coe_mk b bs, ← Subtype.ext_iff] [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Nonempty M inst✝¹ : Structure L M inst✝ : M ⊨ T h : Nonempty (↑s ↪ M) this✝ : Inhabited M this : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default) a : α as : a ∈ s b : α bs : b ∈ s ab : (fun i => ↑(Language.con L i)) a = (fun i => ↑(Language.con L i)) b ⊢ { val := a, property := as } = { val := b, property := bs } [PROOFSTEP] exact h.some.injective ((Subtype.coe_injective.extend_apply h.some default ⟨a, as⟩).symm.trans (ab.trans (Subtype.coe_injective.extend_apply h.some default ⟨b, bs⟩))) [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Nonempty M inst✝¹ : Structure L M inst✝ : M ⊨ T h : Nonempty (↑s ↪ M) this✝¹ : Inhabited M this✝ : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default) this : M ⊨ LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s ⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s) [PROOFSTEP] exact Model.isSatisfiable M [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M ⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s) [PROOFSTEP] classical rw [distinctConstantsTheory_eq_iUnion, Set.union_iUnion, isSatisfiable_directed_union_iff] · exact fun t => isSatisfiable_union_distinctConstantsTheory_of_card_le T _ M ((lift_le_aleph0.2 (finset_card_lt_aleph0 _).le).trans (aleph0_le_lift.2 (aleph0_le_mk M))) · apply Monotone.directed_le refine' monotone_const.union (monotone_distinctConstantsTheory.comp _) simp only [Finset.coe_map, Function.Embedding.coe_subtype] exact Monotone.comp (g := Set.image ((↑) : s → α)) (f := ((↑) : Finset s → Set s)) Set.monotone_image fun _ _ => Finset.coe_subset.2 [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M ⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s) [PROOFSTEP] rw [distinctConstantsTheory_eq_iUnion, Set.union_iUnion, isSatisfiable_directed_union_iff] [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M ⊢ ∀ (i : Finset ↑s), IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i)) [PROOFSTEP] exact fun t => isSatisfiable_union_distinctConstantsTheory_of_card_le T _ M ((lift_le_aleph0.2 (finset_card_lt_aleph0 _).le).trans (aleph0_le_lift.2 (aleph0_le_mk M))) [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M ⊢ Directed (fun x x_1 => x ⊆ x_1) fun i => LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i) [PROOFSTEP] apply Monotone.directed_le [GOAL] case a L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M ⊢ Monotone fun i => LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i) [PROOFSTEP] refine' monotone_const.union (monotone_distinctConstantsTheory.comp _) [GOAL] case a L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M ⊢ Monotone fun i => ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i) [PROOFSTEP] simp only [Finset.coe_map, Function.Embedding.coe_subtype] [GOAL] case a L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L s : Set α M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M ⊢ Monotone fun i => (fun a => ↑a) '' ↑i [PROOFSTEP] exact Monotone.comp (g := Set.image ((↑) : s → α)) (f := ((↑) : Finset s → Set s)) Set.monotone_image fun _ _ => Finset.coe_subset.2 [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L κ : Cardinal.{w} M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M ⊢ ∃ N, lift κ ≤ #↑N [PROOFSTEP] obtain ⟨N⟩ := isSatisfiable_union_distinctConstantsTheory_of_infinite T (Set.univ : Set κ.out) M [GOAL] case intro L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L κ : Cardinal.{w} M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ) ⊢ ∃ N, lift κ ≤ #↑N [PROOFSTEP] refine' ⟨(N.is_model.mono (Set.subset_union_left _ _)).bundled.reduct _, _⟩ [GOAL] case intro L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L κ : Cardinal.{w} M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ) ⊢ lift κ ≤ #↑(ModelType.reduct (lhomWithConstants L (Quotient.out κ)) (Model.bundled (_ : ↑N ⊨ LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T))) [PROOFSTEP] haveI : N ⊨ distinctConstantsTheory _ _ := N.is_model.mono (Set.subset_union_right _ _) [GOAL] case intro L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L κ : Cardinal.{w} M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ) this : ↑N ⊨ distinctConstantsTheory L Set.univ ⊢ lift κ ≤ #↑(ModelType.reduct (lhomWithConstants L (Quotient.out κ)) (Model.bundled (_ : ↑N ⊨ LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T))) [PROOFSTEP] rw [ModelType.reduct_Carrier, coe_of] [GOAL] case intro L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L κ : Cardinal.{w} M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ) this : ↑N ⊨ distinctConstantsTheory L Set.univ ⊢ lift κ ≤ #↑N [PROOFSTEP] refine' _root_.trans (lift_le.2 (le_of_eq (Cardinal.mk_out κ).symm)) _ [GOAL] case intro L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L κ : Cardinal.{w} M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ) this : ↑N ⊨ distinctConstantsTheory L Set.univ ⊢ lift #(Quotient.out κ) ≤ #↑N [PROOFSTEP] rw [← mk_univ] [GOAL] case intro L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L κ : Cardinal.{w} M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ) this : ↑N ⊨ distinctConstantsTheory L Set.univ ⊢ lift #↑Set.univ ≤ #↑N [PROOFSTEP] refine' (card_le_of_model_distinctConstantsTheory L Set.univ N).trans (lift_le.{max u v w}.1 _) [GOAL] case intro L : Language T✝ : Theory L α : Type w n : ℕ T' T : Theory L κ : Cardinal.{w} M : Type w' inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Infinite M N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ) this : ↑N ⊨ distinctConstantsTheory L Set.univ ⊢ lift (lift #↑N) ≤ lift #↑N [PROOFSTEP] rw [lift_lift] [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' : Theory L ι : Type u_1 T : ι → Theory L ⊢ IsSatisfiable (⋃ (i : ι), T i) ↔ ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i) [PROOFSTEP] classical refine' ⟨fun h s => h.mono (Set.iUnion_mono fun _ => Set.iUnion_subset_iff.2 fun _ => refl _), fun h => _⟩ rw [isSatisfiable_iff_isFinitelySatisfiable] intro s hs rw [Set.iUnion_eq_iUnion_finset] at hs obtain ⟨t, ht⟩ := Directed.exists_mem_subset_of_finset_subset_biUnion (by exact Monotone.directed_le fun t1 t2 (h : ∀ ⦃x⦄, x ∈ t1 → x ∈ t2) => Set.iUnion_mono fun _ => Set.iUnion_mono' fun h1 => ⟨h h1, refl _⟩) hs exact (h t).mono ht [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' : Theory L ι : Type u_1 T : ι → Theory L ⊢ IsSatisfiable (⋃ (i : ι), T i) ↔ ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i) [PROOFSTEP] refine' ⟨fun h s => h.mono (Set.iUnion_mono fun _ => Set.iUnion_subset_iff.2 fun _ => refl _), fun h => _⟩ [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' : Theory L ι : Type u_1 T : ι → Theory L h : ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i) ⊢ IsSatisfiable (⋃ (i : ι), T i) [PROOFSTEP] rw [isSatisfiable_iff_isFinitelySatisfiable] [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' : Theory L ι : Type u_1 T : ι → Theory L h : ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i) ⊢ IsFinitelySatisfiable (⋃ (i : ι), T i) [PROOFSTEP] intro s hs [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' : Theory L ι : Type u_1 T : ι → Theory L h : ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i) s : Finset (Sentence L) hs : ↑s ⊆ ⋃ (i : ι), T i ⊢ IsSatisfiable ↑s [PROOFSTEP] rw [Set.iUnion_eq_iUnion_finset] at hs [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' : Theory L ι : Type u_1 T : ι → Theory L h : ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i) s : Finset (Sentence L) hs : ↑s ⊆ ⋃ (t : Finset ι) (i : ι) (_ : i ∈ t), T i ⊢ IsSatisfiable ↑s [PROOFSTEP] obtain ⟨t, ht⟩ := Directed.exists_mem_subset_of_finset_subset_biUnion (by exact Monotone.directed_le fun t1 t2 (h : ∀ ⦃x⦄, x ∈ t1 → x ∈ t2) => Set.iUnion_mono fun _ => Set.iUnion_mono' fun h1 => ⟨h h1, refl _⟩) hs [GOAL] L : Language T✝ : Theory L α : Type w n : ℕ T' : Theory L ι : Type u_1 T : ι → Theory L h : ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i) s : Finset (Sentence L) hs : ↑s ⊆ ⋃ (t : Finset ι) (i : ι) (_ : i ∈ t), T i ⊢ Directed (fun x x_1 => x ⊆ x_1) fun i => ⋃ (i_1 : ι) (_ : i_1 ∈ i), T i_1 [PROOFSTEP] exact Monotone.directed_le fun t1 t2 (h : ∀ ⦃x⦄, x ∈ t1 → x ∈ t2) => Set.iUnion_mono fun _ => Set.iUnion_mono' fun h1 => ⟨h h1, refl _⟩ [GOAL] case intro L : Language T✝ : Theory L α : Type w n : ℕ T' : Theory L ι : Type u_1 T : ι → Theory L h : ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i) s : Finset (Sentence L) hs : ↑s ⊆ ⋃ (t : Finset ι) (i : ι) (_ : i ∈ t), T i t : Finset ι ht : ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), T i ⊢ IsSatisfiable ↑s [PROOFSTEP] exact (h t).mono ht [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝¹ : Structure L M inst✝ : Nonempty M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h3 : lift κ ≤ lift #M ⊢ ∃ N, Nonempty (↑N ↪ₑ[L] M) ∧ #↑N = κ [PROOFSTEP] obtain ⟨S, _, hS⟩ := exists_elementarySubstructure_card_eq L ∅ κ h1 (by simp) h2 h3 [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝¹ : Structure L M inst✝ : Nonempty M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h3 : lift κ ≤ lift #M ⊢ lift #↑∅ ≤ lift κ [PROOFSTEP] simp [GOAL] case intro.intro L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝¹ : Structure L M inst✝ : Nonempty M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h3 : lift κ ≤ lift #M S : ElementarySubstructure L M left✝ : ∅ ⊆ ↑S hS : lift #{ x // x ∈ S } = lift κ ⊢ ∃ N, Nonempty (↑N ↪ₑ[L] M) ∧ #↑N = κ [PROOFSTEP] have : Small.{w} S := by rw [← lift_inj.{_, w + 1}, lift_lift, lift_lift] at hS exact small_iff_lift_mk_lt_univ.2 (lt_of_eq_of_lt hS κ.lift_lt_univ') [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝¹ : Structure L M inst✝ : Nonempty M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h3 : lift κ ≤ lift #M S : ElementarySubstructure L M left✝ : ∅ ⊆ ↑S hS : lift #{ x // x ∈ S } = lift κ ⊢ Small.{w, w'} { x // x ∈ S } [PROOFSTEP] rw [← lift_inj.{_, w + 1}, lift_lift, lift_lift] at hS [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝¹ : Structure L M inst✝ : Nonempty M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h3 : lift κ ≤ lift #M S : ElementarySubstructure L M left✝ : ∅ ⊆ ↑S hS : lift #{ x // x ∈ S } = lift κ ⊢ Small.{w, w'} { x // x ∈ S } [PROOFSTEP] exact small_iff_lift_mk_lt_univ.2 (lt_of_eq_of_lt hS κ.lift_lt_univ') [GOAL] case intro.intro L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝¹ : Structure L M inst✝ : Nonempty M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h3 : lift κ ≤ lift #M S : ElementarySubstructure L M left✝ : ∅ ⊆ ↑S hS : lift #{ x // x ∈ S } = lift κ this : Small.{w, w'} { x // x ∈ S } ⊢ ∃ N, Nonempty (↑N ↪ₑ[L] M) ∧ #↑N = κ [PROOFSTEP] refine' ⟨(equivShrink S).bundledInduced L, ⟨S.subtype.comp (Equiv.bundledInducedEquiv L _).symm.toElementaryEmbedding⟩, lift_inj.1 (_root_.trans _ hS)⟩ [GOAL] case intro.intro L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝¹ : Structure L M inst✝ : Nonempty M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h3 : lift κ ≤ lift #M S : ElementarySubstructure L M left✝ : ∅ ⊆ ↑S hS : lift #{ x // x ∈ S } = lift κ this : Small.{w, w'} { x // x ∈ S } ⊢ lift #↑(Equiv.bundledInduced L (equivShrink { x // x ∈ S })) = lift #{ x // x ∈ S } [PROOFSTEP] simp only [Equiv.bundledInduced_α, lift_mk_shrink'] [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : lift (card L) ≤ lift κ h2 : lift #M ≤ lift κ ⊢ ∃ N, Nonempty (M ↪ₑ[L] ↑N) ∧ #↑N = κ [PROOFSTEP] obtain ⟨N0, hN0⟩ := (L.elementaryDiagram M).exists_large_model_of_infinite_model κ M [GOAL] case intro L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : lift (card L) ≤ lift κ h2 : lift #M ≤ lift κ N0 : Theory.ModelType (elementaryDiagram L M) hN0 : lift κ ≤ #↑N0 ⊢ ∃ N, Nonempty (M ↪ₑ[L] ↑N) ∧ #↑N = κ [PROOFSTEP] rw [← lift_le.{max u v}, lift_lift, lift_lift] at h2 [GOAL] case intro L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : lift (card L) ≤ lift κ h2 : lift #M ≤ lift κ N0 : Theory.ModelType (elementaryDiagram L M) hN0 : lift κ ≤ #↑N0 ⊢ ∃ N, Nonempty (M ↪ₑ[L] ↑N) ∧ #↑N = κ [PROOFSTEP] obtain ⟨N, ⟨NN0⟩, hN⟩ := exists_elementaryEmbedding_card_eq_of_le (L[[M]]) N0 κ (aleph0_le_lift.1 ((aleph0_le_lift.2 (aleph0_le_mk M)).trans h2)) (by simp only [card_withConstants, lift_add, lift_lift] rw [add_comm, add_eq_max (aleph0_le_lift.2 (infinite_iff.1 iM)), max_le_iff] rw [← lift_le.{w'}, lift_lift, lift_lift] at h1 exact ⟨h2, h1⟩) (hN0.trans (by rw [← lift_umax', lift_id])) [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : lift (card L) ≤ lift κ h2 : lift #M ≤ lift κ N0 : Theory.ModelType (elementaryDiagram L M) hN0 : lift κ ≤ #↑N0 ⊢ lift (card (L[[M]])) ≤ lift κ [PROOFSTEP] simp only [card_withConstants, lift_add, lift_lift] [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : lift (card L) ≤ lift κ h2 : lift #M ≤ lift κ N0 : Theory.ModelType (elementaryDiagram L M) hN0 : lift κ ≤ #↑N0 ⊢ lift (card L) + lift #M ≤ lift κ [PROOFSTEP] rw [add_comm, add_eq_max (aleph0_le_lift.2 (infinite_iff.1 iM)), max_le_iff] [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : lift (card L) ≤ lift κ h2 : lift #M ≤ lift κ N0 : Theory.ModelType (elementaryDiagram L M) hN0 : lift κ ≤ #↑N0 ⊢ lift #M ≤ lift κ ∧ lift (card L) ≤ lift κ [PROOFSTEP] rw [← lift_le.{w'}, lift_lift, lift_lift] at h1 [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : lift (card L) ≤ lift κ h2 : lift #M ≤ lift κ N0 : Theory.ModelType (elementaryDiagram L M) hN0 : lift κ ≤ #↑N0 ⊢ lift #M ≤ lift κ ∧ lift (card L) ≤ lift κ [PROOFSTEP] exact ⟨h2, h1⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : lift (card L) ≤ lift κ h2 : lift #M ≤ lift κ N0 : Theory.ModelType (elementaryDiagram L M) hN0 : lift κ ≤ #↑N0 ⊢ #↑N0 ≤ lift #↑N0 [PROOFSTEP] rw [← lift_umax', lift_id] [GOAL] case intro.intro.intro.intro L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : lift (card L) ≤ lift κ h2 : lift #M ≤ lift κ N0 : Theory.ModelType (elementaryDiagram L M) hN0 : lift κ ≤ #↑N0 N : Bundled (Structure (L[[M]])) hN : #↑N = κ NN0 : ↑N ↪ₑ[L[[M]]] ↑N0 ⊢ ∃ N, Nonempty (M ↪ₑ[L] ↑N) ∧ #↑N = κ [PROOFSTEP] letI := (lhomWithConstants L M).reduct N [GOAL] case intro.intro.intro.intro L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : lift (card L) ≤ lift κ h2 : lift #M ≤ lift κ N0 : Theory.ModelType (elementaryDiagram L M) hN0 : lift κ ≤ #↑N0 N : Bundled (Structure (L[[M]])) hN : #↑N = κ NN0 : ↑N ↪ₑ[L[[M]]] ↑N0 this : Structure L ↑N := LHom.reduct (lhomWithConstants L M) ↑N ⊢ ∃ N, Nonempty (M ↪ₑ[L] ↑N) ∧ #↑N = κ [PROOFSTEP] haveI h : N ⊨ L.elementaryDiagram M := (NN0.theory_model_iff (L.elementaryDiagram M)).2 inferInstance [GOAL] case intro.intro.intro.intro L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : lift (card L) ≤ lift κ h2 : lift #M ≤ lift κ N0 : Theory.ModelType (elementaryDiagram L M) hN0 : lift κ ≤ #↑N0 N : Bundled (Structure (L[[M]])) hN : #↑N = κ NN0 : ↑N ↪ₑ[L[[M]]] ↑N0 this : Structure L ↑N := LHom.reduct (lhomWithConstants L M) ↑N h : ↑N ⊨ elementaryDiagram L M ⊢ ∃ N, Nonempty (M ↪ₑ[L] ↑N) ∧ #↑N = κ [PROOFSTEP] refine' ⟨Bundled.of N, ⟨_⟩, hN⟩ [GOAL] case intro.intro.intro.intro L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : lift (card L) ≤ lift κ h2 : lift #M ≤ lift κ N0 : Theory.ModelType (elementaryDiagram L M) hN0 : lift κ ≤ #↑N0 N : Bundled (Structure (L[[M]])) hN : #↑N = κ NN0 : ↑N ↪ₑ[L[[M]]] ↑N0 this : Structure L ↑N := LHom.reduct (lhomWithConstants L M) ↑N h : ↑N ⊨ elementaryDiagram L M ⊢ M ↪ₑ[L] ↑(Bundled.of ↑N) [PROOFSTEP] apply ElementaryEmbedding.ofModelsElementaryDiagram L M N [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ ⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ [PROOFSTEP] cases le_or_gt (lift.{w'} κ) (Cardinal.lift.{w} #M) [GOAL] case inl L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h✝ : lift κ ≤ lift #M ⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ case inr L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h✝ : lift κ > lift #M ⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ [PROOFSTEP] case inl h => obtain ⟨N, hN1, hN2⟩ := exists_elementaryEmbedding_card_eq_of_le L M κ h1 h2 h exact ⟨N, Or.inl hN1, hN2⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h : lift κ ≤ lift #M ⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ [PROOFSTEP] case inl h => obtain ⟨N, hN1, hN2⟩ := exists_elementaryEmbedding_card_eq_of_le L M κ h1 h2 h exact ⟨N, Or.inl hN1, hN2⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h : lift κ ≤ lift #M ⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ [PROOFSTEP] obtain ⟨N, hN1, hN2⟩ := exists_elementaryEmbedding_card_eq_of_le L M κ h1 h2 h [GOAL] case intro.intro L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h : lift κ ≤ lift #M N : Bundled (Structure L) hN1 : Nonempty (↑N ↪ₑ[L] M) hN2 : #↑N = κ ⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ [PROOFSTEP] exact ⟨N, Or.inl hN1, hN2⟩ [GOAL] case inr L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h✝ : lift κ > lift #M ⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ [PROOFSTEP] case inr h => obtain ⟨N, hN1, hN2⟩ := exists_elementaryEmbedding_card_eq_of_ge L M κ h2 (le_of_lt h) exact ⟨N, Or.inr hN1, hN2⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h : lift κ > lift #M ⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ [PROOFSTEP] case inr h => obtain ⟨N, hN1, hN2⟩ := exists_elementaryEmbedding_card_eq_of_ge L M κ h2 (le_of_lt h) exact ⟨N, Or.inr hN1, hN2⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h : lift κ > lift #M ⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ [PROOFSTEP] obtain ⟨N, hN1, hN2⟩ := exists_elementaryEmbedding_card_eq_of_ge L M κ h2 (le_of_lt h) [GOAL] case intro.intro L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝ : Structure L M iM : Infinite M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ h : lift κ > lift #M N : Bundled (Structure L) hN1 : Nonempty (M ↪ₑ[L] ↑N) hN2 : #↑N = κ ⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ [PROOFSTEP] exact ⟨N, Or.inr hN1, hN2⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝¹ : Structure L M inst✝ : Infinite M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ ⊢ ∃ N, (M ≅[L] ↑N) ∧ #↑N = κ [PROOFSTEP] obtain ⟨N, NM | MN, hNκ⟩ := exists_elementaryEmbedding_card_eq L M κ h1 h2 [GOAL] case intro.intro.inl L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝¹ : Structure L M inst✝ : Infinite M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ N : Bundled (Structure L) hNκ : #↑N = κ NM : Nonempty (↑N ↪ₑ[L] M) ⊢ ∃ N, (M ≅[L] ↑N) ∧ #↑N = κ [PROOFSTEP] exact ⟨N, NM.some.elementarilyEquivalent.symm, hNκ⟩ [GOAL] case intro.intro.inr L : Language T : Theory L α : Type w n : ℕ M : Type w' inst✝¹ : Structure L M inst✝ : Infinite M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ N : Bundled (Structure L) hNκ : #↑N = κ MN : Nonempty (M ↪ₑ[L] ↑N) ⊢ ∃ N, (M ≅[L] ↑N) ∧ #↑N = κ [PROOFSTEP] exact ⟨N, MN.some.elementarilyEquivalent, hNκ⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ h : ∃ M, Infinite ↑M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ ⊢ ∃ N, #↑N = κ [PROOFSTEP] cases h with | intro M MI => haveI := MI obtain ⟨N, hN, rfl⟩ := exists_elementarilyEquivalent_card_eq L M κ h1 h2 haveI : Nonempty N := hN.nonempty exact ⟨hN.theory_model.bundled, rfl⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ h : ∃ M, Infinite ↑M κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ ⊢ ∃ N, #↑N = κ [PROOFSTEP] cases h with | intro M MI => haveI := MI obtain ⟨N, hN, rfl⟩ := exists_elementarilyEquivalent_card_eq L M κ h1 h2 haveI : Nonempty N := hN.nonempty exact ⟨hN.theory_model.bundled, rfl⟩ [GOAL] case intro L : Language T : Theory L α : Type w n : ℕ κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ M : ModelType T MI : Infinite ↑M ⊢ ∃ N, #↑N = κ [PROOFSTEP] | intro M MI => haveI := MI obtain ⟨N, hN, rfl⟩ := exists_elementarilyEquivalent_card_eq L M κ h1 h2 haveI : Nonempty N := hN.nonempty exact ⟨hN.theory_model.bundled, rfl⟩ [GOAL] case intro L : Language T : Theory L α : Type w n : ℕ κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ M : ModelType T MI : Infinite ↑M ⊢ ∃ N, #↑N = κ [PROOFSTEP] haveI := MI [GOAL] case intro L : Language T : Theory L α : Type w n : ℕ κ : Cardinal.{w} h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ M : ModelType T MI this : Infinite ↑M ⊢ ∃ N, #↑N = κ [PROOFSTEP] obtain ⟨N, hN, rfl⟩ := exists_elementarilyEquivalent_card_eq L M κ h1 h2 [GOAL] case intro.intro.intro L : Language T : Theory L α : Type w n : ℕ M : ModelType T MI this : Infinite ↑M N : Bundled (Structure L) hN : ↑M ≅[L] ↑N h1 : ℵ₀ ≤ #↑N h2 : lift (card L) ≤ lift #↑N ⊢ ∃ N_1, #↑N_1 = #↑N [PROOFSTEP] haveI : Nonempty N := hN.nonempty [GOAL] case intro.intro.intro L : Language T : Theory L α : Type w n : ℕ M : ModelType T MI this✝ : Infinite ↑M N : Bundled (Structure L) hN : ↑M ≅[L] ↑N h1 : ℵ₀ ≤ #↑N h2 : lift (card L) ≤ lift #↑N this : Nonempty ↑N ⊢ ∃ N_1, #↑N_1 = #↑N [PROOFSTEP] exact ⟨hN.theory_model.bundled, rfl⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L ⊢ T ⊨ᵇ φ ↔ ¬IsSatisfiable (T ∪ {Formula.not φ}) [PROOFSTEP] rw [models_sentence_iff, IsSatisfiable] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L ⊢ (∀ (M : ModelType T), ↑M ⊨ φ) ↔ ¬Nonempty (ModelType (T ∪ {Formula.not φ})) [PROOFSTEP] refine' ⟨fun h1 h2 => (Sentence.realize_not _).1 (realize_sentence_of_mem (T ∪ {Formula.not φ}) (Set.subset_union_right _ _ (Set.mem_singleton _))) (h1 (h2.some.subtheoryModel (Set.subset_union_left _ _))), fun h M => _⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L h : ¬Nonempty (ModelType (T ∪ {Formula.not φ})) M : ModelType T ⊢ ↑M ⊨ φ [PROOFSTEP] contrapose! h [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L M : ModelType T h : ¬↑M ⊨ φ ⊢ Nonempty (ModelType (T ∪ {Formula.not φ})) [PROOFSTEP] rw [← Sentence.realize_not] at h [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L M : ModelType T h : ↑M ⊨ Formula.not φ ⊢ Nonempty (ModelType (T ∪ {Formula.not φ})) [PROOFSTEP] refine' ⟨{ Carrier := M is_model := ⟨fun ψ hψ => hψ.elim (realize_sentence_of_mem _) fun h' => _⟩ }⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L M : ModelType T h : ↑M ⊨ Formula.not φ ψ : Sentence L hψ : ψ ∈ T ∪ {Formula.not φ} h' : ψ ∈ {Formula.not φ} ⊢ ↑M ⊨ ψ [PROOFSTEP] rw [Set.mem_singleton_iff.1 h'] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L M : ModelType T h : ↑M ⊨ Formula.not φ ψ : Sentence L hψ : ψ ∈ T ∪ {Formula.not φ} h' : ψ ∈ {Formula.not φ} ⊢ ↑M ⊨ Formula.not φ [PROOFSTEP] exact h [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L h : T ⊨ᵇ φ M : Type u_1 inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Nonempty M ⊢ M ⊨ φ [PROOFSTEP] rw [models_iff_not_satisfiable] at h [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L h : ¬IsSatisfiable (T ∪ {Formula.not φ}) M : Type u_1 inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Nonempty M ⊢ M ⊨ φ [PROOFSTEP] contrapose! h [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L M : Type u_1 inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Nonempty M h : ¬M ⊨ φ ⊢ IsSatisfiable (T ∪ {Formula.not φ}) [PROOFSTEP] have : M ⊨ T ∪ {Formula.not φ} := by simp only [Set.union_singleton, model_iff, Set.mem_insert_iff, forall_eq_or_imp, Sentence.realize_not] rw [← model_iff] exact ⟨h, inferInstance⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L M : Type u_1 inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Nonempty M h : ¬M ⊨ φ ⊢ M ⊨ T ∪ {Formula.not φ} [PROOFSTEP] simp only [Set.union_singleton, model_iff, Set.mem_insert_iff, forall_eq_or_imp, Sentence.realize_not] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L M : Type u_1 inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Nonempty M h : ¬M ⊨ φ ⊢ ¬M ⊨ φ ∧ ∀ (a : Sentence L), a ∈ T → M ⊨ a [PROOFSTEP] rw [← model_iff] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L M : Type u_1 inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Nonempty M h : ¬M ⊨ φ ⊢ ¬M ⊨ φ ∧ M ⊨ T [PROOFSTEP] exact ⟨h, inferInstance⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L M : Type u_1 inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Nonempty M h : ¬M ⊨ φ this : M ⊨ T ∪ {Formula.not φ} ⊢ IsSatisfiable (T ∪ {Formula.not φ}) [PROOFSTEP] exact Model.isSatisfiable M [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L ⊢ T ⊨ᵇ φ ↔ ∃ T0, ↑T0 ⊆ T ∧ ↑T0 ⊨ᵇ φ [PROOFSTEP] simp only [models_iff_not_satisfiable] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L ⊢ ¬IsSatisfiable (T ∪ {Formula.not φ}) ↔ ∃ T0, ↑T0 ⊆ T ∧ ¬IsSatisfiable (↑T0 ∪ {Formula.not φ}) [PROOFSTEP] rw [← not_iff_not, not_not, isSatisfiable_iff_isFinitelySatisfiable, IsFinitelySatisfiable] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L ⊢ (∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0) ↔ ¬∃ T0, ↑T0 ⊆ T ∧ ¬IsSatisfiable (↑T0 ∪ {Formula.not φ}) [PROOFSTEP] push_neg [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L ⊢ (∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0) ↔ ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ}) [PROOFSTEP] letI := Classical.decEq (Sentence L) [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L this : DecidableEq (Sentence L) := Classical.decEq (Sentence L) ⊢ (∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0) ↔ ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ}) [PROOFSTEP] constructor [GOAL] case mp L : Language T : Theory L α : Type w n : ℕ φ : Sentence L this : DecidableEq (Sentence L) := Classical.decEq (Sentence L) ⊢ (∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0) → ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ}) [PROOFSTEP] intro h T0 hT0 [GOAL] case mp L : Language T : Theory L α : Type w n : ℕ φ : Sentence L this : DecidableEq (Sentence L) := Classical.decEq (Sentence L) h : ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0 T0 : Finset (Sentence L) hT0 : ↑T0 ⊆ T ⊢ IsSatisfiable (↑T0 ∪ {Formula.not φ}) [PROOFSTEP] simpa using h (T0 ∪ {Formula.not φ}) (by simp only [Finset.coe_union, Finset.coe_singleton] exact Set.union_subset_union hT0 (Set.Subset.refl _)) [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L this : DecidableEq (Sentence L) := Classical.decEq (Sentence L) h : ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0 T0 : Finset (Sentence L) hT0 : ↑T0 ⊆ T ⊢ ↑(T0 ∪ {Formula.not φ}) ⊆ T ∪ {Formula.not φ} [PROOFSTEP] simp only [Finset.coe_union, Finset.coe_singleton] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L this : DecidableEq (Sentence L) := Classical.decEq (Sentence L) h : ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0 T0 : Finset (Sentence L) hT0 : ↑T0 ⊆ T ⊢ ↑T0 ∪ {Formula.not φ} ⊆ T ∪ {Formula.not φ} [PROOFSTEP] exact Set.union_subset_union hT0 (Set.Subset.refl _) [GOAL] case mpr L : Language T : Theory L α : Type w n : ℕ φ : Sentence L this : DecidableEq (Sentence L) := Classical.decEq (Sentence L) ⊢ (∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ})) → ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0 [PROOFSTEP] intro h T0 hT0 [GOAL] case mpr L : Language T : Theory L α : Type w n : ℕ φ : Sentence L this : DecidableEq (Sentence L) := Classical.decEq (Sentence L) h : ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ}) T0 : Finset (Sentence L) hT0 : ↑T0 ⊆ T ∪ {Formula.not φ} ⊢ IsSatisfiable ↑T0 [PROOFSTEP] exact IsSatisfiable.mono (h (T0.erase (Formula.not φ)) (by simpa using hT0)) (by simp) [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L this : DecidableEq (Sentence L) := Classical.decEq (Sentence L) h : ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ}) T0 : Finset (Sentence L) hT0 : ↑T0 ⊆ T ∪ {Formula.not φ} ⊢ ↑(Finset.erase T0 (Formula.not φ)) ⊆ T [PROOFSTEP] simpa using hT0 [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : Sentence L this : DecidableEq (Sentence L) := Classical.decEq (Sentence L) h : ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ}) T0 : Finset (Sentence L) hT0 : ↑T0 ⊆ T ∪ {Formula.not φ} ⊢ ↑T0 ⊆ ↑(Finset.erase T0 (Formula.not φ)) ∪ {Formula.not φ} [PROOFSTEP] simp [GOAL] L : Language T : Theory L α : Type w n : ℕ h : IsComplete T φ : Sentence L ⊢ T ⊨ᵇ Formula.not φ ↔ ¬T ⊨ᵇ φ [PROOFSTEP] cases' h.2 φ with hφ hφn [GOAL] case inl L : Language T : Theory L α : Type w n : ℕ h : IsComplete T φ : Sentence L hφ : T ⊨ᵇ φ ⊢ T ⊨ᵇ Formula.not φ ↔ ¬T ⊨ᵇ φ [PROOFSTEP] simp only [hφ, not_true, iff_false_iff] [GOAL] case inl L : Language T : Theory L α : Type w n : ℕ h : IsComplete T φ : Sentence L hφ : T ⊨ᵇ φ ⊢ ¬T ⊨ᵇ Formula.not φ [PROOFSTEP] rw [models_sentence_iff, not_forall] [GOAL] case inl L : Language T : Theory L α : Type w n : ℕ h : IsComplete T φ : Sentence L hφ : T ⊨ᵇ φ ⊢ ∃ x, ¬↑x ⊨ Formula.not φ [PROOFSTEP] refine' ⟨h.1.some, _⟩ [GOAL] case inl L : Language T : Theory L α : Type w n : ℕ h : IsComplete T φ : Sentence L hφ : T ⊨ᵇ φ ⊢ ¬↑(Nonempty.some (_ : IsSatisfiable T)) ⊨ Formula.not φ [PROOFSTEP] simp only [Sentence.realize_not, Classical.not_not] [GOAL] case inl L : Language T : Theory L α : Type w n : ℕ h : IsComplete T φ : Sentence L hφ : T ⊨ᵇ φ ⊢ ↑(Nonempty.some (_ : IsSatisfiable T)) ⊨ φ [PROOFSTEP] exact models_sentence_iff.1 hφ _ [GOAL] case inr L : Language T : Theory L α : Type w n : ℕ h : IsComplete T φ : Sentence L hφn : T ⊨ᵇ Formula.not φ ⊢ T ⊨ᵇ Formula.not φ ↔ ¬T ⊨ᵇ φ [PROOFSTEP] simp only [hφn, true_iff_iff] [GOAL] case inr L : Language T : Theory L α : Type w n : ℕ h : IsComplete T φ : Sentence L hφn : T ⊨ᵇ Formula.not φ ⊢ ¬T ⊨ᵇ φ [PROOFSTEP] intro hφ [GOAL] case inr L : Language T : Theory L α : Type w n : ℕ h : IsComplete T φ : Sentence L hφn : T ⊨ᵇ Formula.not φ hφ : T ⊨ᵇ φ ⊢ False [PROOFSTEP] rw [models_sentence_iff] at * [GOAL] case inr L : Language T : Theory L α : Type w n : ℕ h : IsComplete T φ : Sentence L hφn : ∀ (M : ModelType T), ↑M ⊨ Formula.not φ hφ : ∀ (M : ModelType T), ↑M ⊨ φ ⊢ False [PROOFSTEP] exact hφn h.1.some (hφ _) [GOAL] L : Language T : Theory L α : Type w n : ℕ h : IsComplete T φ : Sentence L M : Type u_1 inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Nonempty M ⊢ M ⊨ φ ↔ T ⊨ᵇ φ [PROOFSTEP] cases' h.2 φ with hφ hφn [GOAL] case inl L : Language T : Theory L α : Type w n : ℕ h : IsComplete T φ : Sentence L M : Type u_1 inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Nonempty M hφ : T ⊨ᵇ φ ⊢ M ⊨ φ ↔ T ⊨ᵇ φ [PROOFSTEP] exact iff_of_true (hφ.realize_sentence M) hφ [GOAL] case inr L : Language T : Theory L α : Type w n : ℕ h : IsComplete T φ : Sentence L M : Type u_1 inst✝² : Structure L M inst✝¹ : M ⊨ T inst✝ : Nonempty M hφn : T ⊨ᵇ Formula.not φ ⊢ M ⊨ φ ↔ T ⊨ᵇ φ [PROOFSTEP] exact iff_of_false ((Sentence.realize_not M).1 (hφn.realize_sentence M)) ((h.models_not_iff φ).1 hφn) [GOAL] L : Language T : Theory L α : Type w n : ℕ h : IsMaximal T φ : Sentence L hφ : T ⊨ᵇ φ ⊢ φ ∈ T [PROOFSTEP] refine' (h.mem_or_not_mem φ).resolve_right fun con => _ [GOAL] L : Language T : Theory L α : Type w n : ℕ h : IsMaximal T φ : Sentence L hφ : T ⊨ᵇ φ con : Formula.not φ ∈ T ⊢ False [PROOFSTEP] rw [models_iff_not_satisfiable, Set.union_singleton, Set.insert_eq_of_mem con] at hφ [GOAL] L : Language T : Theory L α : Type w n : ℕ h : IsMaximal T φ : Sentence L hφ : ¬IsSatisfiable T con : Formula.not φ ∈ T ⊢ False [PROOFSTEP] exact hφ h.1 [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : BoundedFormula L α n M : ModelType T v : α → ↑M xs : Fin n → ↑M ⊢ BoundedFormula.Realize (φ ⇔ φ) v xs [PROOFSTEP] rw [BoundedFormula.realize_iff] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α n h : SemanticallyEquivalent T φ ψ M : ModelType T v : α → ↑M xs : Fin n → ↑M ⊢ BoundedFormula.Realize (ψ ⇔ φ) v xs [PROOFSTEP] rw [BoundedFormula.realize_iff, Iff.comm, ← BoundedFormula.realize_iff] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α n h : SemanticallyEquivalent T φ ψ M : ModelType T v : α → ↑M xs : Fin n → ↑M ⊢ BoundedFormula.Realize (φ ⇔ ψ) v xs [PROOFSTEP] exact h M v xs [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ θ : BoundedFormula L α n h1 : SemanticallyEquivalent T φ ψ h2 : SemanticallyEquivalent T ψ θ M : ModelType T v : α → ↑M xs : Fin n → ↑M ⊢ BoundedFormula.Realize (φ ⇔ θ) v xs [PROOFSTEP] have h1' := h1 M v xs [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ θ : BoundedFormula L α n h1 : SemanticallyEquivalent T φ ψ h2 : SemanticallyEquivalent T ψ θ M : ModelType T v : α → ↑M xs : Fin n → ↑M h1' : BoundedFormula.Realize (φ ⇔ ψ) v xs ⊢ BoundedFormula.Realize (φ ⇔ θ) v xs [PROOFSTEP] have h2' := h2 M v xs [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ θ : BoundedFormula L α n h1 : SemanticallyEquivalent T φ ψ h2 : SemanticallyEquivalent T ψ θ M : ModelType T v : α → ↑M xs : Fin n → ↑M h1' : BoundedFormula.Realize (φ ⇔ ψ) v xs h2' : BoundedFormula.Realize (ψ ⇔ θ) v xs ⊢ BoundedFormula.Realize (φ ⇔ θ) v xs [PROOFSTEP] rw [BoundedFormula.realize_iff] at * [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ θ : BoundedFormula L α n h1 : SemanticallyEquivalent T φ ψ h2 : SemanticallyEquivalent T ψ θ M : ModelType T v : α → ↑M xs : Fin n → ↑M h1' : BoundedFormula.Realize φ v xs ↔ BoundedFormula.Realize ψ v xs h2' : BoundedFormula.Realize ψ v xs ↔ BoundedFormula.Realize θ v xs ⊢ BoundedFormula.Realize φ v xs ↔ BoundedFormula.Realize θ v xs [PROOFSTEP] exact ⟨h2'.1 ∘ h1'.1, h1'.2 ∘ h2'.2⟩ [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α (n + 1) h : SemanticallyEquivalent T φ ψ ⊢ SemanticallyEquivalent T (∀'φ) (∀'ψ) [PROOFSTEP] simp_rw [SemanticallyEquivalent, ModelsBoundedFormula, BoundedFormula.realize_iff, BoundedFormula.realize_all] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α (n + 1) h : SemanticallyEquivalent T φ ψ ⊢ ∀ (M : ModelType T) (v : α → ↑M) (xs : Fin n → ↑M), (∀ (a : ↑M), BoundedFormula.Realize φ v (Fin.snoc xs a)) ↔ ∀ (a : ↑M), BoundedFormula.Realize ψ v (Fin.snoc xs a) [PROOFSTEP] exact fun M v xs => forall_congr' fun a => h.realize_bd_iff [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α (n + 1) h : SemanticallyEquivalent T φ ψ ⊢ SemanticallyEquivalent T (∃'φ) (∃'ψ) [PROOFSTEP] simp_rw [SemanticallyEquivalent, ModelsBoundedFormula, BoundedFormula.realize_iff, BoundedFormula.realize_ex] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α (n + 1) h : SemanticallyEquivalent T φ ψ ⊢ ∀ (M : ModelType T) (v : α → ↑M) (xs : Fin n → ↑M), (∃ a, BoundedFormula.Realize φ v (Fin.snoc xs a)) ↔ ∃ a, BoundedFormula.Realize ψ v (Fin.snoc xs a) [PROOFSTEP] exact fun M v xs => exists_congr fun a => h.realize_bd_iff [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α n h : SemanticallyEquivalent T φ ψ ⊢ SemanticallyEquivalent T (∼φ) ∼ψ [PROOFSTEP] simp_rw [SemanticallyEquivalent, ModelsBoundedFormula, BoundedFormula.realize_iff, BoundedFormula.realize_not] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α n h : SemanticallyEquivalent T φ ψ ⊢ ∀ (M : ModelType T) (v : α → ↑M) (xs : Fin n → ↑M), ¬BoundedFormula.Realize φ v xs ↔ ¬BoundedFormula.Realize ψ v xs [PROOFSTEP] exact fun M v xs => not_congr h.realize_bd_iff [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ φ' ψ' : BoundedFormula L α n h : SemanticallyEquivalent T φ ψ h' : SemanticallyEquivalent T φ' ψ' ⊢ SemanticallyEquivalent T (φ ⟹ φ') (ψ ⟹ ψ') [PROOFSTEP] simp_rw [SemanticallyEquivalent, ModelsBoundedFormula, BoundedFormula.realize_iff, BoundedFormula.realize_imp] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ φ' ψ' : BoundedFormula L α n h : SemanticallyEquivalent T φ ψ h' : SemanticallyEquivalent T φ' ψ' ⊢ ∀ (M : ModelType T) (v : α → ↑M) (xs : Fin n → ↑M), BoundedFormula.Realize φ v xs → BoundedFormula.Realize φ' v xs ↔ BoundedFormula.Realize ψ v xs → BoundedFormula.Realize ψ' v xs [PROOFSTEP] exact fun M v xs => imp_congr h.realize_bd_iff h'.realize_bd_iff [GOAL] L : Language T : Theory L α : Type w n : ℕ M : Type w inst✝ : Structure L M φ : Sentence L ⊢ φ ∈ completeTheory L M ∨ Formula.not φ ∈ completeTheory L M [PROOFSTEP] simp_rw [completeTheory, Set.mem_setOf_eq, Sentence.Realize, Formula.realize_not, or_not] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α n M : Theory.ModelType T v : α → ↑M xs : Fin n → ↑M ⊢ Realize (φ ⇔ ∼∼φ) v xs [PROOFSTEP] simp [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α n M : Theory.ModelType T v : α → ↑M xs : Fin n → ↑M ⊢ Realize (φ ⟹ ψ ⇔ ∼φ ⊔ ψ) v xs [PROOFSTEP] simp [imp_iff_not_or] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α n M : Theory.ModelType T v : α → ↑M xs : Fin n → ↑M ⊢ Realize (φ ⊔ ψ ⇔ ∼(∼φ ⊓ ∼ψ)) v xs [PROOFSTEP] simp [imp_iff_not_or] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α n M : Theory.ModelType T v : α → ↑M xs : Fin n → ↑M ⊢ Realize (φ ⊓ ψ ⇔ ∼(∼φ ⊔ ∼ψ)) v xs [PROOFSTEP] simp [and_iff_not_or_not] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ✝ ψ : BoundedFormula L α n φ : BoundedFormula L α (n + 1) M : Theory.ModelType T v : α → ↑M xs : Fin n → ↑M ⊢ Realize (∀'φ ⇔ ∼(∃'∼φ)) v xs [PROOFSTEP] simp [GOAL] L : Language T : Theory L α : Type w n : ℕ φ✝ ψ : BoundedFormula L α n φ : BoundedFormula L α (n + 1) M : Theory.ModelType T v : α → ↑M xs : Fin n → ↑M ⊢ Realize (∃'φ ⇔ ∼(∀'∼φ)) v xs [PROOFSTEP] simp [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α n M : Theory.ModelType T v : α → ↑M xs : Fin n → ↑M ⊢ Realize (φ ⇔ ∀'liftAt 1 n φ) v xs [PROOFSTEP] skip [GOAL] L : Language T : Theory L α : Type w n : ℕ φ ψ : BoundedFormula L α n M : Theory.ModelType T v : α → ↑M xs : Fin n → ↑M ⊢ Realize (φ ⇔ ∀'liftAt 1 n φ) v xs [PROOFSTEP] rw [realize_iff, realize_all_liftAt_one_self] [GOAL] L : Language T : Theory L α : Type w n : ℕ φ : BoundedFormula L α n M : Theory.ModelType ∅ v : α → ↑M xs : Fin n → ↑M ⊢ Realize (φ ⇔ toPrenex φ) v xs [PROOFSTEP] rw [realize_iff, realize_toPrenex] [GOAL] L : Language T : Theory L α : Type w n : ℕ P : {m : ℕ} → BoundedFormula L α m → Prop φ : BoundedFormula L α n hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ) hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ) hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂) ⊢ P φ [PROOFSTEP] suffices h' : ∀ {m} {φ : L.BoundedFormula α m}, φ.IsPrenex → P φ [GOAL] L : Language T : Theory L α : Type w n : ℕ P : {m : ℕ} → BoundedFormula L α m → Prop φ : BoundedFormula L α n hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ) hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ) hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂) h' : ∀ {m : ℕ} {φ : BoundedFormula L α m}, IsPrenex φ → P φ ⊢ P φ [PROOFSTEP] exact (hse φ.semanticallyEquivalent_toPrenex).2 (h' φ.toPrenex_isPrenex) [GOAL] case h' L : Language T : Theory L α : Type w n : ℕ P : {m : ℕ} → BoundedFormula L α m → Prop φ : BoundedFormula L α n hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ) hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ) hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂) ⊢ ∀ {m : ℕ} {φ : BoundedFormula L α m}, IsPrenex φ → P φ [PROOFSTEP] intro m φ hφ [GOAL] case h' L : Language T : Theory L α : Type w n : ℕ P : {m : ℕ} → BoundedFormula L α m → Prop φ✝ : BoundedFormula L α n hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ) hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ) hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂) m : ℕ φ : BoundedFormula L α m hφ : IsPrenex φ ⊢ P φ [PROOFSTEP] induction' hφ with _ _ hφ _ _ _ hφ _ _ _ hφ [GOAL] case h'.of_isQF L : Language T : Theory L α : Type w n : ℕ P : {m : ℕ} → BoundedFormula L α m → Prop φ✝¹ : BoundedFormula L α n hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ) hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ) hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂) m : ℕ φ : BoundedFormula L α m n✝ : ℕ φ✝ : BoundedFormula L α n✝ hφ : IsQF φ✝ ⊢ P φ✝ [PROOFSTEP] exact hqf hφ [GOAL] case h'.all L : Language T : Theory L α : Type w n : ℕ P : {m : ℕ} → BoundedFormula L α m → Prop φ✝¹ : BoundedFormula L α n hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ) hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ) hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂) m : ℕ φ : BoundedFormula L α m n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) h✝ : IsPrenex φ✝ hφ : P φ✝ ⊢ P (∀'φ✝) [PROOFSTEP] exact hall hφ [GOAL] case h'.ex L : Language T : Theory L α : Type w n : ℕ P : {m : ℕ} → BoundedFormula L α m → Prop φ✝¹ : BoundedFormula L α n hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ) hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ) hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂) m : ℕ φ : BoundedFormula L α m n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) h✝ : IsPrenex φ✝ hφ : P φ✝ ⊢ P (∃'φ✝) [PROOFSTEP] exact hex hφ [GOAL] L : Language κ : Cardinal.{w} T : Theory L h : Categorical κ T h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ hS : Theory.IsSatisfiable T hT : ∀ (M : Theory.ModelType T), Infinite ↑M φ : Sentence L ⊢ T ⊨ᵇ φ ∨ T ⊨ᵇ Formula.not φ [PROOFSTEP] obtain ⟨_, _⟩ := Theory.exists_model_card_eq ⟨hS.some, hT hS.some⟩ κ h1 h2 [GOAL] case intro L : Language κ : Cardinal.{w} T : Theory L h : Categorical κ T h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ hS : Theory.IsSatisfiable T hT : ∀ (M : Theory.ModelType T), Infinite ↑M φ : Sentence L w✝ : Theory.ModelType T h✝ : #↑w✝ = κ ⊢ T ⊨ᵇ φ ∨ T ⊨ᵇ Formula.not φ [PROOFSTEP] rw [Theory.models_sentence_iff, Theory.models_sentence_iff] [GOAL] case intro L : Language κ : Cardinal.{w} T : Theory L h : Categorical κ T h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ hS : Theory.IsSatisfiable T hT : ∀ (M : Theory.ModelType T), Infinite ↑M φ : Sentence L w✝ : Theory.ModelType T h✝ : #↑w✝ = κ ⊢ (∀ (M : Theory.ModelType T), ↑M ⊨ φ) ∨ ∀ (M : Theory.ModelType T), ↑M ⊨ Formula.not φ [PROOFSTEP] by_contra con [GOAL] case intro L : Language κ : Cardinal.{w} T : Theory L h : Categorical κ T h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ hS : Theory.IsSatisfiable T hT : ∀ (M : Theory.ModelType T), Infinite ↑M φ : Sentence L w✝ : Theory.ModelType T h✝ : #↑w✝ = κ con : ¬((∀ (M : Theory.ModelType T), ↑M ⊨ φ) ∨ ∀ (M : Theory.ModelType T), ↑M ⊨ Formula.not φ) ⊢ False [PROOFSTEP] push_neg at con [GOAL] case intro L : Language κ : Cardinal.{w} T : Theory L h : Categorical κ T h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ hS : Theory.IsSatisfiable T hT : ∀ (M : Theory.ModelType T), Infinite ↑M φ : Sentence L w✝ : Theory.ModelType T h✝ : #↑w✝ = κ con : (∃ M, ¬↑M ⊨ φ) ∧ ∃ M, ¬↑M ⊨ Formula.not φ ⊢ False [PROOFSTEP] obtain ⟨⟨MF, hMF⟩, MT, hMT⟩ := con [GOAL] case intro.intro.intro.intro L : Language κ : Cardinal.{w} T : Theory L h : Categorical κ T h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ hS : Theory.IsSatisfiable T hT : ∀ (M : Theory.ModelType T), Infinite ↑M φ : Sentence L w✝ : Theory.ModelType T h✝ : #↑w✝ = κ MF : Theory.ModelType T hMF : ¬↑MF ⊨ φ MT : Theory.ModelType T hMT : ¬↑MT ⊨ Formula.not φ ⊢ False [PROOFSTEP] rw [Sentence.realize_not, Classical.not_not] at hMT [GOAL] case intro.intro.intro.intro L : Language κ : Cardinal.{w} T : Theory L h : Categorical κ T h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ hS : Theory.IsSatisfiable T hT : ∀ (M : Theory.ModelType T), Infinite ↑M φ : Sentence L w✝ : Theory.ModelType T h✝ : #↑w✝ = κ MF : Theory.ModelType T hMF : ¬↑MF ⊨ φ MT : Theory.ModelType T hMT : ↑MT ⊨ φ ⊢ False [PROOFSTEP] refine' hMF _ [GOAL] case intro.intro.intro.intro L : Language κ : Cardinal.{w} T : Theory L h : Categorical κ T h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ hS : Theory.IsSatisfiable T hT : ∀ (M : Theory.ModelType T), Infinite ↑M φ : Sentence L w✝ : Theory.ModelType T h✝ : #↑w✝ = κ MF : Theory.ModelType T hMF : ¬↑MF ⊨ φ MT : Theory.ModelType T hMT : ↑MT ⊨ φ ⊢ ↑MF ⊨ φ [PROOFSTEP] haveI := hT MT [GOAL] case intro.intro.intro.intro L : Language κ : Cardinal.{w} T : Theory L h : Categorical κ T h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ hS : Theory.IsSatisfiable T hT : ∀ (M : Theory.ModelType T), Infinite ↑M φ : Sentence L w✝ : Theory.ModelType T h✝ : #↑w✝ = κ MF : Theory.ModelType T hMF : ¬↑MF ⊨ φ MT : Theory.ModelType T hMT : ↑MT ⊨ φ this : Infinite ↑MT ⊢ ↑MF ⊨ φ [PROOFSTEP] haveI := hT MF [GOAL] case intro.intro.intro.intro L : Language κ : Cardinal.{w} T : Theory L h : Categorical κ T h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ hS : Theory.IsSatisfiable T hT : ∀ (M : Theory.ModelType T), Infinite ↑M φ : Sentence L w✝ : Theory.ModelType T h✝ : #↑w✝ = κ MF : Theory.ModelType T hMF : ¬↑MF ⊨ φ MT : Theory.ModelType T hMT : ↑MT ⊨ φ this✝ : Infinite ↑MT this : Infinite ↑MF ⊢ ↑MF ⊨ φ [PROOFSTEP] obtain ⟨NT, MNT, hNT⟩ := exists_elementarilyEquivalent_card_eq L MT κ h1 h2 [GOAL] case intro.intro.intro.intro.intro.intro L : Language κ : Cardinal.{w} T : Theory L h : Categorical κ T h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ hS : Theory.IsSatisfiable T hT : ∀ (M : Theory.ModelType T), Infinite ↑M φ : Sentence L w✝ : Theory.ModelType T h✝ : #↑w✝ = κ MF : Theory.ModelType T hMF : ¬↑MF ⊨ φ MT : Theory.ModelType T hMT : ↑MT ⊨ φ this✝ : Infinite ↑MT this : Infinite ↑MF NT : Bundled (Structure L) MNT : ↑MT ≅[L] ↑NT hNT : #↑NT = κ ⊢ ↑MF ⊨ φ [PROOFSTEP] obtain ⟨NF, MNF, hNF⟩ := exists_elementarilyEquivalent_card_eq L MF κ h1 h2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro L : Language κ : Cardinal.{w} T : Theory L h : Categorical κ T h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ hS : Theory.IsSatisfiable T hT : ∀ (M : Theory.ModelType T), Infinite ↑M φ : Sentence L w✝ : Theory.ModelType T h✝ : #↑w✝ = κ MF : Theory.ModelType T hMF : ¬↑MF ⊨ φ MT : Theory.ModelType T hMT : ↑MT ⊨ φ this✝ : Infinite ↑MT this : Infinite ↑MF NT : Bundled (Structure L) MNT : ↑MT ≅[L] ↑NT hNT : #↑NT = κ NF : Bundled (Structure L) MNF : ↑MF ≅[L] ↑NF hNF : #↑NF = κ ⊢ ↑MF ⊨ φ [PROOFSTEP] obtain ⟨TF⟩ := h (MNT.toModel T) (MNF.toModel T) hNT hNF [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro L : Language κ : Cardinal.{w} T : Theory L h : Categorical κ T h1 : ℵ₀ ≤ κ h2 : lift (card L) ≤ lift κ hS : Theory.IsSatisfiable T hT : ∀ (M : Theory.ModelType T), Infinite ↑M φ : Sentence L w✝ : Theory.ModelType T h✝ : #↑w✝ = κ MF : Theory.ModelType T hMF : ¬↑MF ⊨ φ MT : Theory.ModelType T hMT : ↑MT ⊨ φ this✝ : Infinite ↑MT this : Infinite ↑MF NT : Bundled (Structure L) MNT : ↑MT ≅[L] ↑NT hNT : #↑NT = κ NF : Bundled (Structure L) MNF : ↑MF ≅[L] ↑NF hNF : #↑NF = κ TF : ↑(ElementarilyEquivalent.toModel T MNT) ≃[L] ↑(ElementarilyEquivalent.toModel T MNF) ⊢ ↑MF ⊨ φ [PROOFSTEP] exact ((MNT.realize_sentence φ).trans ((TF.realize_sentence φ).trans (MNF.realize_sentence φ).symm)).1 hMT [GOAL] L : Language κ : Cardinal.{w} T✝ : Theory L T : Theory Language.empty M N : Theory.ModelType T hM : #↑M = κ hN : #↑N = κ ⊢ Nonempty (↑M ≃[Language.empty] ↑N) [PROOFSTEP] rw [empty.nonempty_equiv_iff, hM, hN] [GOAL] L : Language κ : Cardinal.{w} T : Theory L ⊢ lift (card Language.empty) ≤ lift ℵ₀ [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.ModelTheory.Satisfiability", "llama_tokens": 31921}
[GOAL] α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α ⊢ disjointed ≤ id [PROOFSTEP] rintro f n [GOAL] α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α n : ℕ ⊢ disjointed f n ≤ id f n [PROOFSTEP] cases n [GOAL] case zero α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α ⊢ disjointed f Nat.zero ≤ id f Nat.zero [PROOFSTEP] rfl [GOAL] case succ α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α n✝ : ℕ ⊢ disjointed f (Nat.succ n✝) ≤ id f (Nat.succ n✝) [PROOFSTEP] exact sdiff_le [GOAL] α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α ⊢ Pairwise (Disjoint on disjointed f) [PROOFSTEP] refine' (Symmetric.pairwise_on Disjoint.symm _).2 fun m n h => _ [GOAL] α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α m n : ℕ h : m < n ⊢ Disjoint (disjointed f m) (disjointed f n) [PROOFSTEP] cases n [GOAL] case zero α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α m : ℕ h : m < Nat.zero ⊢ Disjoint (disjointed f m) (disjointed f Nat.zero) [PROOFSTEP] exact (Nat.not_lt_zero _ h).elim [GOAL] case succ α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α m n✝ : ℕ h : m < Nat.succ n✝ ⊢ Disjoint (disjointed f m) (disjointed f (Nat.succ n✝)) [PROOFSTEP] exact disjoint_sdiff_self_right.mono_left ((disjointed_le f m).trans (le_partialSups_of_le f (Nat.lt_add_one_iff.1 h))) [GOAL] α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α p : α → Sort u_3 hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i) n : ℕ h : p (f (n + 1)) ⊢ p (disjointed f (n + 1)) [PROOFSTEP] suffices H : ∀ k, p (f (n + 1) \ partialSups f k) [GOAL] α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α p : α → Sort u_3 hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i) n : ℕ h : p (f (n + 1)) H : (k : ℕ) → p (f (n + 1) \ ↑(partialSups f) k) ⊢ p (disjointed f (n + 1)) [PROOFSTEP] exact H n [GOAL] case H α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α p : α → Sort u_3 hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i) n : ℕ h : p (f (n + 1)) ⊢ (k : ℕ) → p (f (n + 1) \ ↑(partialSups f) k) [PROOFSTEP] rintro k [GOAL] case H α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α p : α → Sort u_3 hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i) n : ℕ h : p (f (n + 1)) k : ℕ ⊢ p (f (n + 1) \ ↑(partialSups f) k) [PROOFSTEP] induction' k with k ih [GOAL] case H.zero α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α p : α → Sort u_3 hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i) n : ℕ h : p (f (n + 1)) ⊢ p (f (n + 1) \ ↑(partialSups f) Nat.zero) [PROOFSTEP] exact hdiff h [GOAL] case H.succ α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α p : α → Sort u_3 hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i) n : ℕ h : p (f (n + 1)) k : ℕ ih : p (f (n + 1) \ ↑(partialSups f) k) ⊢ p (f (n + 1) \ ↑(partialSups f) (Nat.succ k)) [PROOFSTEP] rw [partialSups_succ, ← sdiff_sdiff_left] [GOAL] case H.succ α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α p : α → Sort u_3 hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i) n : ℕ h : p (f (n + 1)) k : ℕ ih : p (f (n + 1) \ ↑(partialSups f) k) ⊢ p ((f (n + 1) \ ↑(partialSups f) k) \ f (k + 1)) [PROOFSTEP] exact hdiff ih [GOAL] α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α hf : Monotone f n : ℕ ⊢ disjointed f (n + 1) = f (n + 1) \ f n [PROOFSTEP] rw [disjointed_succ, hf.partialSups_eq] [GOAL] α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α ⊢ partialSups (disjointed f) = partialSups f [PROOFSTEP] ext n [GOAL] case h.h α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α n : ℕ ⊢ ↑(partialSups (disjointed f)) n = ↑(partialSups f) n [PROOFSTEP] induction' n with k ih [GOAL] case h.h.zero α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α ⊢ ↑(partialSups (disjointed f)) Nat.zero = ↑(partialSups f) Nat.zero [PROOFSTEP] rw [partialSups_zero, partialSups_zero, disjointed_zero] [GOAL] case h.h.succ α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f : ℕ → α k : ℕ ih : ↑(partialSups (disjointed f)) k = ↑(partialSups f) k ⊢ ↑(partialSups (disjointed f)) (Nat.succ k) = ↑(partialSups f) (Nat.succ k) [PROOFSTEP] rw [partialSups_succ, partialSups_succ, disjointed_succ, ih, sup_sdiff_self_right] [GOAL] α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f d : ℕ → α hdisj : Pairwise (Disjoint on d) hsups : partialSups d = partialSups f ⊢ d = disjointed f [PROOFSTEP] ext n [GOAL] case h α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f d : ℕ → α hdisj : Pairwise (Disjoint on d) hsups : partialSups d = partialSups f n : ℕ ⊢ d n = disjointed f n [PROOFSTEP] cases' n with n [GOAL] case h.zero α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f d : ℕ → α hdisj : Pairwise (Disjoint on d) hsups : partialSups d = partialSups f ⊢ d Nat.zero = disjointed f Nat.zero [PROOFSTEP] rw [← partialSups_zero d, hsups, partialSups_zero, disjointed_zero] [GOAL] case h.succ α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f d : ℕ → α hdisj : Pairwise (Disjoint on d) hsups : partialSups d = partialSups f n : ℕ ⊢ d (Nat.succ n) = disjointed f (Nat.succ n) [PROOFSTEP] suffices h : d n.succ = partialSups d n.succ \ partialSups d n [GOAL] case h.succ α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f d : ℕ → α hdisj : Pairwise (Disjoint on d) hsups : partialSups d = partialSups f n : ℕ h : d (Nat.succ n) = ↑(partialSups d) (Nat.succ n) \ ↑(partialSups d) n ⊢ d (Nat.succ n) = disjointed f (Nat.succ n) [PROOFSTEP] rw [h, hsups, partialSups_succ, disjointed_succ, sup_sdiff, sdiff_self, bot_sup_eq] [GOAL] case h α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f d : ℕ → α hdisj : Pairwise (Disjoint on d) hsups : partialSups d = partialSups f n : ℕ ⊢ d (Nat.succ n) = ↑(partialSups d) (Nat.succ n) \ ↑(partialSups d) n [PROOFSTEP] rw [partialSups_succ, sup_sdiff, sdiff_self, bot_sup_eq, eq_comm, sdiff_eq_self_iff_disjoint] [GOAL] case h α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f d : ℕ → α hdisj : Pairwise (Disjoint on d) hsups : partialSups d = partialSups f n : ℕ ⊢ Disjoint (↑(partialSups d) n) (d (n + 1)) [PROOFSTEP] suffices h : ∀ m ≤ n, Disjoint (partialSups d m) (d n.succ) [GOAL] case h α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f d : ℕ → α hdisj : Pairwise (Disjoint on d) hsups : partialSups d = partialSups f n : ℕ h : ∀ (m : ℕ), m ≤ n → Disjoint (↑(partialSups d) m) (d (Nat.succ n)) ⊢ Disjoint (↑(partialSups d) n) (d (n + 1)) [PROOFSTEP] exact h n le_rfl [GOAL] case h α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f d : ℕ → α hdisj : Pairwise (Disjoint on d) hsups : partialSups d = partialSups f n : ℕ ⊢ ∀ (m : ℕ), m ≤ n → Disjoint (↑(partialSups d) m) (d (Nat.succ n)) [PROOFSTEP] rintro m hm [GOAL] case h α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f d : ℕ → α hdisj : Pairwise (Disjoint on d) hsups : partialSups d = partialSups f n m : ℕ hm : m ≤ n ⊢ Disjoint (↑(partialSups d) m) (d (Nat.succ n)) [PROOFSTEP] induction' m with m ih [GOAL] case h.zero α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f d : ℕ → α hdisj : Pairwise (Disjoint on d) hsups : partialSups d = partialSups f n m : ℕ hm✝ : m ≤ n hm : Nat.zero ≤ n ⊢ Disjoint (↑(partialSups d) Nat.zero) (d (Nat.succ n)) [PROOFSTEP] exact hdisj (Nat.succ_ne_zero _).symm [GOAL] case h.succ α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f d : ℕ → α hdisj : Pairwise (Disjoint on d) hsups : partialSups d = partialSups f n m✝ : ℕ hm✝ : m✝ ≤ n m : ℕ ih : m ≤ n → Disjoint (↑(partialSups d) m) (d (Nat.succ n)) hm : Nat.succ m ≤ n ⊢ Disjoint (↑(partialSups d) (Nat.succ m)) (d (Nat.succ n)) [PROOFSTEP] rw [partialSups_succ, disjoint_iff, inf_sup_right, sup_eq_bot_iff, ← disjoint_iff, ← disjoint_iff] [GOAL] case h.succ α : Type u_1 β : Type u_2 inst✝ : GeneralizedBooleanAlgebra α f d : ℕ → α hdisj : Pairwise (Disjoint on d) hsups : partialSups d = partialSups f n m✝ : ℕ hm✝ : m✝ ≤ n m : ℕ ih : m ≤ n → Disjoint (↑(partialSups d) m) (d (Nat.succ n)) hm : Nat.succ m ≤ n ⊢ Disjoint (↑(partialSups d) m) (d (Nat.succ n)) ∧ Disjoint (d (m + 1)) (d (Nat.succ n)) [PROOFSTEP] exact ⟨ih (Nat.le_of_succ_le hm), hdisj (Nat.lt_succ_of_le hm).ne⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝ : CompleteBooleanAlgebra α f : ℕ → α n : ℕ ⊢ disjointed f n = f n ⊓ ⨅ (i : ℕ) (_ : i < n), (f i)ᶜ [PROOFSTEP] cases n [GOAL] case zero α : Type u_1 β : Type u_2 inst✝ : CompleteBooleanAlgebra α f : ℕ → α ⊢ disjointed f Nat.zero = f Nat.zero ⊓ ⨅ (i : ℕ) (_ : i < Nat.zero), (f i)ᶜ [PROOFSTEP] rw [disjointed_zero, eq_comm, inf_eq_left] [GOAL] case zero α : Type u_1 β : Type u_2 inst✝ : CompleteBooleanAlgebra α f : ℕ → α ⊢ f Nat.zero ≤ ⨅ (i : ℕ) (_ : i < Nat.zero), (f i)ᶜ [PROOFSTEP] simp_rw [le_iInf_iff] [GOAL] case zero α : Type u_1 β : Type u_2 inst✝ : CompleteBooleanAlgebra α f : ℕ → α ⊢ ∀ (i : ℕ), i < Nat.zero → f Nat.zero ≤ (f i)ᶜ [PROOFSTEP] exact fun i hi => (i.not_lt_zero hi).elim [GOAL] case succ α : Type u_1 β : Type u_2 inst✝ : CompleteBooleanAlgebra α f : ℕ → α n✝ : ℕ ⊢ disjointed f (Nat.succ n✝) = f (Nat.succ n✝) ⊓ ⨅ (i : ℕ) (_ : i < Nat.succ n✝), (f i)ᶜ [PROOFSTEP] simp_rw [disjointed_succ, partialSups_eq_biSup, sdiff_eq, compl_iSup] [GOAL] case succ α : Type u_1 β : Type u_2 inst✝ : CompleteBooleanAlgebra α f : ℕ → α n✝ : ℕ ⊢ f (n✝ + 1) ⊓ ⨅ (i : ℕ) (_ : i ≤ n✝), (f i)ᶜ = f (Nat.succ n✝) ⊓ ⨅ (i : ℕ) (_ : i < Nat.succ n✝), (f i)ᶜ [PROOFSTEP] congr [GOAL] case succ.e_a.e_s α : Type u_1 β : Type u_2 inst✝ : CompleteBooleanAlgebra α f : ℕ → α n✝ : ℕ ⊢ (fun i => ⨅ (_ : i ≤ n✝), (f i)ᶜ) = fun i => ⨅ (_ : i < Nat.succ n✝), (f i)ᶜ [PROOFSTEP] ext i [GOAL] case succ.e_a.e_s.h α : Type u_1 β : Type u_2 inst✝ : CompleteBooleanAlgebra α f : ℕ → α n✝ i : ℕ ⊢ ⨅ (_ : i ≤ n✝), (f i)ᶜ = ⨅ (_ : i < Nat.succ n✝), (f i)ᶜ [PROOFSTEP] rw [Nat.lt_succ_iff] [GOAL] α : Type u_1 β : Type u_2 s : ℕ → Set α H : ∀ (x : α), ∃ n, x ∈ s n inst✝ : (x : α) → (n : ℕ) → Decidable (x ∈ s n) n : ℕ ⊢ (fun x => Nat.find (_ : ∃ n, x ∈ s n)) ⁻¹' {n} = disjointed s n [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 s : ℕ → Set α H : ∀ (x : α), ∃ n, x ∈ s n inst✝ : (x : α) → (n : ℕ) → Decidable (x ∈ s n) n : ℕ x : α ⊢ x ∈ (fun x => Nat.find (_ : ∃ n, x ∈ s n)) ⁻¹' {n} ↔ x ∈ disjointed s n [PROOFSTEP] simp [Nat.find_eq_iff, disjointed_eq_inter_compl]
{"mathlib_filename": "Mathlib.Order.Disjointed", "llama_tokens": 5447}
[GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : OrderBot α a b c d : α ha : a ≠ ⊥ hab : Disjoint a b h : a = b ⊢ Disjoint a a [PROOFSTEP] rwa [← h] at hab [GOAL] α : Type u_1 inst✝¹ : SemilatticeInf α inst✝ : OrderBot α a b c d : α ⊢ Disjoint (a ⊓ b) c ↔ Disjoint a (b ⊓ c) [PROOFSTEP] rw [disjoint_iff_inf_le, disjoint_iff_inf_le, inf_assoc] [GOAL] α : Type u_1 inst✝¹ : SemilatticeInf α inst✝ : OrderBot α a b c d : α ⊢ Disjoint a (b ⊓ c) ↔ Disjoint b (a ⊓ c) [PROOFSTEP] simp_rw [disjoint_iff_inf_le, inf_left_comm] [GOAL] α : Type u_1 inst✝¹ : SemilatticeInf α inst✝ : OrderBot α a b c d : α ⊢ Disjoint (a ⊓ b) c ↔ Disjoint (a ⊓ c) b [PROOFSTEP] simp_rw [disjoint_iff_inf_le, inf_right_comm] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a b c : α ⊢ Disjoint (a ⊔ b) c ↔ Disjoint a c ∧ Disjoint b c [PROOFSTEP] simp only [disjoint_iff, inf_sup_right, sup_eq_bot_iff] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a b c : α ⊢ Disjoint a (b ⊔ c) ↔ Disjoint a b ∧ Disjoint a c [PROOFSTEP] simp only [disjoint_iff, inf_sup_left, sup_eq_bot_iff] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderBot α a b c : α h : a ≤ c ⊔ b hd : Disjoint a c ⊢ a ≤ b ⊔ c [PROOFSTEP] rwa [sup_comm] [GOAL] α : Type u_1 inst✝¹ : PartialOrder α inst✝ : OrderTop α a b c d : α ha : a ≠ ⊤ hab : Codisjoint a b h : a = b ⊢ Codisjoint a a [PROOFSTEP] rwa [← h] at hab [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderTop α a b c : α ⊢ Codisjoint (a ⊓ b) c ↔ Codisjoint a c ∧ Codisjoint b c [PROOFSTEP] simp only [codisjoint_iff, sup_inf_right, inf_eq_top_iff] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderTop α a b c : α ⊢ Codisjoint a (b ⊓ c) ↔ Codisjoint a b ∧ Codisjoint a c [PROOFSTEP] simp only [codisjoint_iff, sup_inf_left, inf_eq_top_iff] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : OrderTop α a b c : α h : b ⊓ a ≤ c hd : Codisjoint b c ⊢ a ⊓ b ≤ c [PROOFSTEP] rwa [inf_comm] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : BoundedOrder α a b c : α hab : Disjoint a b hbc : Codisjoint b c ⊢ a ≤ c [PROOFSTEP] rw [← @inf_top_eq _ _ _ a, ← @bot_sup_eq _ _ _ c, ← hab.eq_bot, ← hbc.eq_top, sup_inf_right] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : BoundedOrder α a b c : α hab : Disjoint a b hbc : Codisjoint b c ⊢ a ⊓ (b ⊔ c) ≤ (a ⊔ c) ⊓ (b ⊔ c) [PROOFSTEP] exact inf_le_inf_right _ le_sup_left [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : BoundedOrder α a b x y z : α h : IsCompl x y hle : a ≤ b ⊔ y ⊢ b ⊓ x ⊔ y ⊓ x = b ⊓ x [PROOFSTEP] rw [h.symm.inf_eq_bot, sup_bot_eq] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : BoundedOrder α a b x y z : α h : IsCompl y z ⊢ x ⊓ y = ⊥ ↔ x ≤ z [PROOFSTEP] rw [← le_bot_iff, ← h.le_sup_right_iff_inf_left_le, bot_sup_eq] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : BoundedOrder α a b x y z : α h : IsCompl y z ⊢ Disjoint x y ↔ x ≤ z [PROOFSTEP] rw [disjoint_iff] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : BoundedOrder α a b x y z : α h : IsCompl y z ⊢ x ⊓ y = ⊥ ↔ x ≤ z [PROOFSTEP] exact h.inf_left_eq_bot_iff [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : BoundedOrder α a b x y z x' y' : α h : IsCompl x y h' : IsCompl x' y' ⊢ (x ⊔ x') ⊓ (y ⊓ y') = ⊥ [PROOFSTEP] rw [inf_sup_right, ← inf_assoc, h.inf_eq_bot, bot_inf_eq, bot_sup_eq, inf_left_comm, h'.inf_eq_bot, inf_bot_eq] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : BoundedOrder α a b x y z x' y' : α h : IsCompl x y h' : IsCompl x' y' ⊢ x ⊔ x' ⊔ y ⊓ y' = ⊤ [PROOFSTEP] rw [sup_inf_left, @sup_comm _ _ x, sup_assoc, h.sup_eq_top, sup_top_eq, top_inf_eq, sup_assoc, sup_left_comm, h'.sup_eq_top, sup_top_eq] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β x y : α × β ⊢ Disjoint x y ↔ Disjoint x.fst y.fst ∧ Disjoint x.snd y.snd [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β x y : α × β ⊢ Disjoint x y → Disjoint x.fst y.fst ∧ Disjoint x.snd y.snd [PROOFSTEP] intro h [GOAL] case mp α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β x y : α × β h : Disjoint x y ⊢ Disjoint x.fst y.fst ∧ Disjoint x.snd y.snd [PROOFSTEP] refine' ⟨fun a hx hy ↦ (@h (a, ⊥) ⟨hx, _⟩ ⟨hy, _⟩).1, fun b hx hy ↦ (@h (⊥, b) ⟨_, hx⟩ ⟨_, hy⟩).2⟩ [GOAL] case mp.refine'_1 α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β x y : α × β h : Disjoint x y a : α hx : a ≤ x.fst hy : a ≤ y.fst ⊢ (a, ⊥).snd ≤ x.snd case mp.refine'_2 α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β x y : α × β h : Disjoint x y a : α hx : a ≤ x.fst hy : a ≤ y.fst ⊢ (a, ⊥).snd ≤ y.snd case mp.refine'_3 α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β x y : α × β h : Disjoint x y b : β hx : b ≤ x.snd hy : b ≤ y.snd ⊢ (⊥, b).fst ≤ x.fst case mp.refine'_4 α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β x y : α × β h : Disjoint x y b : β hx : b ≤ x.snd hy : b ≤ y.snd ⊢ (⊥, b).fst ≤ y.fst [PROOFSTEP] all_goals exact bot_le [GOAL] case mp.refine'_1 α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β x y : α × β h : Disjoint x y a : α hx : a ≤ x.fst hy : a ≤ y.fst ⊢ (a, ⊥).snd ≤ x.snd [PROOFSTEP] exact bot_le [GOAL] case mp.refine'_2 α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β x y : α × β h : Disjoint x y a : α hx : a ≤ x.fst hy : a ≤ y.fst ⊢ (a, ⊥).snd ≤ y.snd [PROOFSTEP] exact bot_le [GOAL] case mp.refine'_3 α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β x y : α × β h : Disjoint x y b : β hx : b ≤ x.snd hy : b ≤ y.snd ⊢ (⊥, b).fst ≤ x.fst [PROOFSTEP] exact bot_le [GOAL] case mp.refine'_4 α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β x y : α × β h : Disjoint x y b : β hx : b ≤ x.snd hy : b ≤ y.snd ⊢ (⊥, b).fst ≤ y.fst [PROOFSTEP] exact bot_le [GOAL] case mpr α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β x y : α × β ⊢ Disjoint x.fst y.fst ∧ Disjoint x.snd y.snd → Disjoint x y [PROOFSTEP] rintro ⟨ha, hb⟩ z hza hzb [GOAL] case mpr.intro α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β x y : α × β ha : Disjoint x.fst y.fst hb : Disjoint x.snd y.snd z : α × β hza : z ≤ x hzb : z ≤ y ⊢ z ≤ ⊥ [PROOFSTEP] refine' ⟨ha hza.1 hzb.1, hb hza.2 hzb.2⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : BoundedOrder α inst✝ : BoundedOrder β x y : α × β ⊢ IsCompl x y ↔ IsCompl x.fst y.fst ∧ IsCompl x.snd y.snd [PROOFSTEP] simp_rw [isCompl_iff, Prod.disjoint_iff, Prod.codisjoint_iff, and_and_and_comm] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : BoundedOrder α a b : Complementeds α ⊢ ↑a ≤ ↑b ↔ a ≤ b [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : BoundedOrder α a b : Complementeds α ⊢ Disjoint ↑a ↑b ↔ Disjoint a b [PROOFSTEP] rw [disjoint_iff, disjoint_iff, ← coe_inf, ← coe_bot, coe_inj] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : BoundedOrder α a b : Complementeds α ⊢ Codisjoint ↑a ↑b ↔ Codisjoint a b [PROOFSTEP] rw [codisjoint_iff, codisjoint_iff, ← coe_sup, ← coe_top, coe_inj] [GOAL] α : Type u_1 inst✝¹ : DistribLattice α inst✝ : BoundedOrder α a b : Complementeds α ⊢ IsCompl ↑a ↑b ↔ IsCompl a b [PROOFSTEP] simp_rw [isCompl_iff, disjoint_coe, codisjoint_coe]
{"mathlib_filename": "Mathlib.Order.Disjoint", "llama_tokens": 4251}
[GOAL] α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 inst✝ : Preorder α ⊢ Function.Injective fun c => ↑c.toOrderHom [PROOFSTEP] rintro ⟨⟩ ⟨⟩ h [GOAL] case mk.mk α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 inst✝ : Preorder α toOrderHom✝¹ : α →o α le_closure'✝¹ : ∀ (x : α), x ≤ OrderHom.toFun toOrderHom✝¹ x idempotent'✝¹ : ∀ (x : α), OrderHom.toFun toOrderHom✝¹ (OrderHom.toFun toOrderHom✝¹ x) = OrderHom.toFun toOrderHom✝¹ x toOrderHom✝ : α →o α le_closure'✝ : ∀ (x : α), x ≤ OrderHom.toFun toOrderHom✝ x idempotent'✝ : ∀ (x : α), OrderHom.toFun toOrderHom✝ (OrderHom.toFun toOrderHom✝ x) = OrderHom.toFun toOrderHom✝ x h : (fun c => ↑c.toOrderHom) { toOrderHom := toOrderHom✝¹, le_closure' := le_closure'✝¹, idempotent' := idempotent'✝¹ } = (fun c => ↑c.toOrderHom) { toOrderHom := toOrderHom✝, le_closure' := le_closure'✝, idempotent' := idempotent'✝ } ⊢ { toOrderHom := toOrderHom✝¹, le_closure' := le_closure'✝¹, idempotent' := idempotent'✝¹ } = { toOrderHom := toOrderHom✝, le_closure' := le_closure'✝, idempotent' := idempotent'✝ } [PROOFSTEP] congr [GOAL] case mk.mk.e_toOrderHom α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 inst✝ : Preorder α toOrderHom✝¹ : α →o α le_closure'✝¹ : ∀ (x : α), x ≤ OrderHom.toFun toOrderHom✝¹ x idempotent'✝¹ : ∀ (x : α), OrderHom.toFun toOrderHom✝¹ (OrderHom.toFun toOrderHom✝¹ x) = OrderHom.toFun toOrderHom✝¹ x toOrderHom✝ : α →o α le_closure'✝ : ∀ (x : α), x ≤ OrderHom.toFun toOrderHom✝ x idempotent'✝ : ∀ (x : α), OrderHom.toFun toOrderHom✝ (OrderHom.toFun toOrderHom✝ x) = OrderHom.toFun toOrderHom✝ x h : (fun c => ↑c.toOrderHom) { toOrderHom := toOrderHom✝¹, le_closure' := le_closure'✝¹, idempotent' := idempotent'✝¹ } = (fun c => ↑c.toOrderHom) { toOrderHom := toOrderHom✝, le_closure' := le_closure'✝, idempotent' := idempotent'✝ } ⊢ toOrderHom✝¹ = toOrderHom✝ [PROOFSTEP] exact FunLike.ext' h [GOAL] α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 inst✝¹ inst✝ : PartialOrder α c : ClosureOperator α c₁ : α → α monotone'✝¹ : Monotone c₁ le_closure'✝¹ : ∀ (x : α), x ≤ OrderHom.toFun { toFun := c₁, monotone' := monotone'✝¹ } x idempotent'✝¹ : ∀ (x : α), OrderHom.toFun { toFun := c₁, monotone' := monotone'✝¹ } (OrderHom.toFun { toFun := c₁, monotone' := monotone'✝¹ } x) = OrderHom.toFun { toFun := c₁, monotone' := monotone'✝¹ } x c₂ : α → α monotone'✝ : Monotone c₂ le_closure'✝ : ∀ (x : α), x ≤ OrderHom.toFun { toFun := c₂, monotone' := monotone'✝ } x idempotent'✝ : ∀ (x : α), OrderHom.toFun { toFun := c₂, monotone' := monotone'✝ } (OrderHom.toFun { toFun := c₂, monotone' := monotone'✝ } x) = OrderHom.toFun { toFun := c₂, monotone' := monotone'✝ } x h : ↑{ toOrderHom := { toFun := c₁, monotone' := monotone'✝¹ }, le_closure' := le_closure'✝¹, idempotent' := idempotent'✝¹ } = ↑{ toOrderHom := { toFun := c₂, monotone' := monotone'✝ }, le_closure' := le_closure'✝, idempotent' := idempotent'✝ } ⊢ { toOrderHom := { toFun := c₁, monotone' := monotone'✝¹ }, le_closure' := le_closure'✝¹, idempotent' := idempotent'✝¹ } = { toOrderHom := { toFun := c₂, monotone' := monotone'✝ }, le_closure' := le_closure'✝, idempotent' := idempotent'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 inst✝¹ inst✝ : PartialOrder α c : ClosureOperator α x : α ⊢ x ∈ Set.range ↑c → x ∈ closed c [PROOFSTEP] rintro ⟨y, rfl⟩ [GOAL] case intro α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 inst✝¹ inst✝ : PartialOrder α c : ClosureOperator α y : α ⊢ ↑c y ∈ closed c [PROOFSTEP] apply c.idempotent [GOAL] α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 inst✝¹ inst✝ : PartialOrder α c : ClosureOperator α x y : α hy : closed c y ⊢ ↑c x ≤ y ↔ x ≤ y [PROOFSTEP] rw [← c.closure_eq_self_of_mem_closed hy, ← le_closure_iff] [GOAL] α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 inst✝¹ inst✝ : PartialOrder α c✝ c : ClosureOperator α ⊢ c = mk₃ (↑c) (closed c) (_ : ∀ (x : α), x ≤ ↑c x) (_ : ∀ (x : α), ↑c x ∈ closed c) (_ : ∀ (x y : α), x ≤ y → closed c y → ↑c x ≤ y) [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 inst✝¹ inst✝ : PartialOrder α c✝ c : ClosureOperator α x✝ : α ⊢ ↑c x✝ = ↑(mk₃ (↑c) (closed c) (_ : ∀ (x : α), x ≤ ↑c x) (_ : ∀ (x : α), ↑c x ∈ closed c) (_ : ∀ (x y : α), x ≤ y → closed c y → ↑c x ≤ y)) x✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 inst✝ : SemilatticeSup α c : ClosureOperator α x y : α ⊢ ↑c (x ⊔ ↑c y) = ↑c (x ⊔ y) [PROOFSTEP] rw [sup_comm, closure_sup_closure_left, sup_comm (a := x)] [GOAL] α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 inst✝ : SemilatticeSup α c : ClosureOperator α x y : α ⊢ ↑c (↑c x ⊔ ↑c y) = ↑c (x ⊔ y) [PROOFSTEP] rw [closure_sup_closure_left, closure_sup_closure_right] [GOAL] α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 β : Type u_4 inst✝¹ : Preorder α inst✝ : Preorder β u : β → α l : LowerAdjoint u l₁ : α → β gc'✝¹ : GaloisConnection l₁ u l₂ : α → β gc'✝ : GaloisConnection l₂ u h : { toFun := l₁, gc' := gc'✝¹ }.toFun = { toFun := l₂, gc' := gc'✝ }.toFun ⊢ { toFun := l₁, gc' := gc'✝¹ } = { toFun := l₂, gc' := gc'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 β : Type u_4 inst✝ : SetLike α β l : LowerAdjoint SetLike.coe s : Set β x : β ⊢ x ∈ toFun l s ↔ ∀ (S : α), s ⊆ ↑S → x ∈ S [PROOFSTEP] simp_rw [← SetLike.mem_coe, ← Set.singleton_subset_iff, ← l.le_iff_subset] [GOAL] α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 β : Type u_4 inst✝ : SetLike α β l : LowerAdjoint SetLike.coe s : Set β x : β ⊢ toFun l {x} ≤ toFun l s ↔ ∀ (S : α), toFun l s ≤ S → toFun l {x} ≤ S [PROOFSTEP] exact ⟨fun h S => h.trans, fun h => h _ le_rfl⟩ [GOAL] α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 β : Type u_4 inst✝ : SetLike α β l : LowerAdjoint SetLike.coe x y : α ⊢ toFun l (↑(toFun l ↑x) ∪ ↑(toFun l ↑y)) = toFun l (↑x ∪ ↑y) [PROOFSTEP] rw [closure_union_closure_right, closure_union_closure_left] [GOAL] α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 β : Type u_4 inst✝ : PartialOrder α c : ClosureOperator α ⊢ GaloisConnection.closureOperator (_ : GaloisConnection (ClosureOperator.toClosed c) Subtype.val) = c [PROOFSTEP] ext x [GOAL] case a.h α : Type u_1 ι : Sort u_2 κ : ι → Sort u_3 β : Type u_4 inst✝ : PartialOrder α c : ClosureOperator α x : α ⊢ ↑(GaloisConnection.closureOperator (_ : GaloisConnection (ClosureOperator.toClosed c) Subtype.val)) x = ↑c x [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Order.Closure", "llama_tokens": 3203}
[GOAL] α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : LE α ⊢ OrderTop α ⊕' NoTopOrder α [PROOFSTEP] by_cases H : ∀ a : α, ∃ b, ¬b ≤ a [GOAL] case pos α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : LE α H : ∀ (a : α), ∃ b, ¬b ≤ a ⊢ OrderTop α ⊕' NoTopOrder α [PROOFSTEP] exact PSum.inr ⟨H⟩ [GOAL] case neg α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : LE α H : ¬∀ (a : α), ∃ b, ¬b ≤ a ⊢ OrderTop α ⊕' NoTopOrder α [PROOFSTEP] push_neg at H [GOAL] case neg α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : LE α H : ∃ a, ∀ (b : α), b ≤ a ⊢ OrderTop α ⊕' NoTopOrder α [PROOFSTEP] letI : Top α := ⟨Classical.choose H⟩ [GOAL] case neg α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : LE α H : ∃ a, ∀ (b : α), b ≤ a this : Top α := { top := Classical.choose H } ⊢ OrderTop α ⊕' NoTopOrder α [PROOFSTEP] exact PSum.inl ⟨Classical.choose_spec H⟩ [GOAL] α : Type u β : Type v γ : Type u_1 δ : Type u_2 inst✝² : LinearOrder α inst✝¹ : Preorder β inst✝ : OrderTop β f : α → β H : StrictMono f a : α h_top : f a = ⊤ x : α p : β ⊢ p ≤ f a [PROOFSTEP] rw [h_top] [GOAL] α : Type u β : Type v γ : Type u_1 δ : Type u_2 inst✝² : LinearOrder α inst✝¹ : Preorder β inst✝ : OrderTop β f : α → β H : StrictMono f a : α h_top : f a = ⊤ x : α p : β ⊢ p ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 hA : PartialOrder α A : OrderTop α hB : PartialOrder α B : OrderTop α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ ⊤ = ⊤ [PROOFSTEP] cases PartialOrder.ext H [GOAL] case refl α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 hA : PartialOrder α A B : OrderTop α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ ⊤ = ⊤ [PROOFSTEP] apply top_unique [GOAL] case refl.h α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 hA : PartialOrder α A B : OrderTop α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ ⊤ ≤ ⊤ [PROOFSTEP] exact @le_top _ _ A _ [GOAL] α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α A B : OrderTop α ⊢ A = B [PROOFSTEP] rcases A with ⟨ha⟩ [GOAL] case mk α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α B : OrderTop α toTop✝ : Top α ha : ∀ (a : α), a ≤ ⊤ ⊢ mk ha = B [PROOFSTEP] rcases B with ⟨hb⟩ [GOAL] case mk.mk α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α toTop✝¹ : Top α ha : ∀ (a : α), a ≤ ⊤ toTop✝ : Top α hb : ∀ (a : α), a ≤ ⊤ ⊢ mk ha = mk hb [PROOFSTEP] congr [GOAL] case mk.mk.e_toTop α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α toTop✝¹ : Top α ha : ∀ (a : α), a ≤ ⊤ toTop✝ : Top α hb : ∀ (a : α), a ≤ ⊤ ⊢ toTop✝¹ = toTop✝ [PROOFSTEP] ext [GOAL] case mk.mk.e_toTop.top α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α toTop✝¹ : Top α ha : ∀ (a : α), a ≤ ⊤ toTop✝ : Top α hb : ∀ (a : α), a ≤ ⊤ ⊢ ⊤ = ⊤ [PROOFSTEP] exact le_antisymm (hb _) (ha _) [GOAL] α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : LE α ⊢ OrderBot α ⊕' NoBotOrder α [PROOFSTEP] by_cases H : ∀ a : α, ∃ b, ¬a ≤ b [GOAL] case pos α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : LE α H : ∀ (a : α), ∃ b, ¬a ≤ b ⊢ OrderBot α ⊕' NoBotOrder α [PROOFSTEP] exact PSum.inr ⟨H⟩ [GOAL] case neg α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : LE α H : ¬∀ (a : α), ∃ b, ¬a ≤ b ⊢ OrderBot α ⊕' NoBotOrder α [PROOFSTEP] push_neg at H [GOAL] case neg α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : LE α H : ∃ a, ∀ (b : α), a ≤ b ⊢ OrderBot α ⊕' NoBotOrder α [PROOFSTEP] letI : Bot α := ⟨Classical.choose H⟩ [GOAL] case neg α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : LE α H : ∃ a, ∀ (b : α), a ≤ b this : Bot α := { bot := Classical.choose H } ⊢ OrderBot α ⊕' NoBotOrder α [PROOFSTEP] exact PSum.inl ⟨Classical.choose_spec H⟩ [GOAL] α : Type u β : Type v γ : Type u_1 δ : Type u_2 inst✝² : LinearOrder α inst✝¹ : PartialOrder β inst✝ : OrderBot β f : α → β H : StrictMono f a : α h_bot : f a = ⊥ x : α p : β ⊢ f a ≤ p [PROOFSTEP] rw [h_bot] [GOAL] α : Type u β : Type v γ : Type u_1 δ : Type u_2 inst✝² : LinearOrder α inst✝¹ : PartialOrder β inst✝ : OrderBot β f : α → β H : StrictMono f a : α h_bot : f a = ⊥ x : α p : β ⊢ ⊥ ≤ p [PROOFSTEP] exact bot_le [GOAL] α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 hA : PartialOrder α A : OrderBot α hB : PartialOrder α B : OrderBot α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ ⊥ = ⊥ [PROOFSTEP] cases PartialOrder.ext H [GOAL] case refl α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 hA : PartialOrder α A B : OrderBot α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ ⊥ = ⊥ [PROOFSTEP] apply bot_unique [GOAL] case refl.h α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 hA : PartialOrder α A B : OrderBot α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ ⊥ ≤ ⊥ [PROOFSTEP] exact @bot_le _ _ A _ [GOAL] α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α A B : OrderBot α ⊢ A = B [PROOFSTEP] rcases A with ⟨ha⟩ [GOAL] case mk α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α B : OrderBot α toBot✝ : Bot α ha : ∀ (a : α), ⊥ ≤ a ⊢ mk ha = B [PROOFSTEP] rcases B with ⟨hb⟩ [GOAL] case mk.mk α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α toBot✝¹ : Bot α ha : ∀ (a : α), ⊥ ≤ a toBot✝ : Bot α hb : ∀ (a : α), ⊥ ≤ a ⊢ mk ha = mk hb [PROOFSTEP] congr [GOAL] case mk.mk.e_toBot α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α toBot✝¹ : Bot α ha : ∀ (a : α), ⊥ ≤ a toBot✝ : Bot α hb : ∀ (a : α), ⊥ ≤ a ⊢ toBot✝¹ = toBot✝ [PROOFSTEP] ext [GOAL] case mk.mk.e_toBot.bot α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α toBot✝¹ : Bot α ha : ∀ (a : α), ⊥ ≤ a toBot✝ : Bot α hb : ∀ (a : α), ⊥ ≤ a ⊢ ⊥ = ⊥ [PROOFSTEP] exact le_antisymm (ha _) (hb _) [GOAL] α : Type u β : Type v γ : Type u_1 δ : Type u_2 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α a b : α ⊢ a ⊔ b = ⊥ ↔ a = ⊥ ∧ b = ⊥ [PROOFSTEP] rw [eq_bot_iff, sup_le_iff] [GOAL] α : Type u β : Type v γ : Type u_1 δ : Type u_2 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α a b : α ⊢ a ≤ ⊥ ∧ b ≤ ⊥ ↔ a = ⊥ ∧ b = ⊥ [PROOFSTEP] simp [GOAL] α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α A B : BoundedOrder α ⊢ A = B [PROOFSTEP] have ht : @BoundedOrder.toOrderTop α _ A = @BoundedOrder.toOrderTop α _ B := OrderTop.ext [GOAL] α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α A B : BoundedOrder α ht : toOrderTop = toOrderTop ⊢ A = B [PROOFSTEP] have hb : @BoundedOrder.toOrderBot α _ A = @BoundedOrder.toOrderBot α _ B := OrderBot.ext [GOAL] α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α A B : BoundedOrder α ht : toOrderTop = toOrderTop hb : toOrderBot = toOrderBot ⊢ A = B [PROOFSTEP] cases A [GOAL] case mk α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α B : BoundedOrder α toOrderTop✝ : OrderTop α toOrderBot✝ : OrderBot α ht : toOrderTop = toOrderTop hb : toOrderBot = toOrderBot ⊢ mk = B [PROOFSTEP] cases B [GOAL] case mk.mk α✝ : Type u β : Type v γ : Type u_1 δ : Type u_2 α : Type u_3 inst✝ : PartialOrder α toOrderTop✝¹ : OrderTop α toOrderBot✝¹ : OrderBot α toOrderTop✝ : OrderTop α toOrderBot✝ : OrderBot α ht : toOrderTop = toOrderTop hb : toOrderBot = toOrderBot ⊢ mk = mk [PROOFSTEP] congr [GOAL] α : Type u β : Type v γ : Type u_1 δ : Type u_2 inst✝³ : LE α inst✝² : Top α inst✝¹ : LE β inst✝ : OrderTop β f : α → β map_le : ∀ (a b : α), f a ≤ f b → a ≤ b map_top : f ⊤ = ⊤ a : α ⊢ f a ≤ f ⊤ [PROOFSTEP] rw [map_top] -- Porting note: lean3 didn't need the type annotation [GOAL] α : Type u β : Type v γ : Type u_1 δ : Type u_2 inst✝³ : LE α inst✝² : Top α inst✝¹ : LE β inst✝ : OrderTop β f : α → β map_le : ∀ (a b : α), f a ≤ f b → a ≤ b map_top : f ⊤ = ⊤ a : α ⊢ f a ≤ ⊤ [PROOFSTEP] exact @le_top β _ _ _ [GOAL] α : Type u β : Type v γ : Type u_1 δ : Type u_2 inst✝³ : LE α inst✝² : Bot α inst✝¹ : LE β inst✝ : OrderBot β f : α → β map_le : ∀ (a b : α), f a ≤ f b → a ≤ b map_bot : f ⊥ = ⊥ a : α ⊢ f ⊥ ≤ f a [PROOFSTEP] rw [map_bot] -- Porting note: lean3 didn't need the type annotation [GOAL] α : Type u β : Type v γ : Type u_1 δ : Type u_2 inst✝³ : LE α inst✝² : Bot α inst✝¹ : LE β inst✝ : OrderBot β f : α → β map_le : ∀ (a b : α), f a ≤ f b → a ≤ b map_bot : f ⊥ = ⊥ a : α ⊢ ⊥ ≤ f a [PROOFSTEP] exact @bot_le β _ _ _ [GOAL] α : Type u β : Type v γ : Type u_1 δ : Type u_2 p : α → Prop inst✝² : PartialOrder α inst✝¹ : OrderBot α inst✝ : OrderBot (Subtype p) hbot : p ⊥ x : { x // p x } ⊢ ↑x = ⊥ ↔ x = ⊥ [PROOFSTEP] rw [← coe_bot hbot, ext_iff] [GOAL] α : Type u β : Type v γ : Type u_1 δ : Type u_2 p : α → Prop inst✝² : PartialOrder α inst✝¹ : OrderTop α inst✝ : OrderTop (Subtype p) htop : p ⊤ x : { x // p x } ⊢ ↑x = ⊤ ↔ x = ⊤ [PROOFSTEP] rw [← coe_top htop, ext_iff] [GOAL] α : Type u β : Type v γ : Type u_1 δ : Type u_2 inst✝¹ : LinearOrder α inst✝ : OrderBot α a b : α ⊢ min a b = ⊥ ↔ a = ⊥ ∨ b = ⊥ [PROOFSTEP] simp only [← inf_eq_min, ← le_bot_iff, inf_le_iff]
{"mathlib_filename": "Mathlib.Order.BoundedOrder", "llama_tokens": 5010}
[GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x y : X hxz : IsMaximal x (x ⊔ y) hyz : IsMaximal y (x ⊔ y) ⊢ IsMaximal (x ⊓ y) y [PROOFSTEP] rw [inf_comm] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x y : X hxz : IsMaximal x (x ⊔ y) hyz : IsMaximal y (x ⊔ y) ⊢ IsMaximal (y ⊓ x) y [PROOFSTEP] rw [sup_comm] at hxz hyz [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x y : X hxz : IsMaximal x (y ⊔ x) hyz : IsMaximal y (y ⊔ x) ⊢ IsMaximal (y ⊓ x) y [PROOFSTEP] exact isMaximal_inf_left_of_isMaximal_sup hyz hxz [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x b a y : X ha : x ⊓ y = a hxy : x ≠ y hxb : IsMaximal x b hyb : IsMaximal y b ⊢ IsMaximal a y [PROOFSTEP] have hb : x ⊔ y = b := sup_eq_of_isMaximal hxb hyb hxy [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x b a y : X ha : x ⊓ y = a hxy : x ≠ y hxb : IsMaximal x b hyb : IsMaximal y b hb : x ⊔ y = b ⊢ IsMaximal a y [PROOFSTEP] substs a b [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x y : X hxy : x ≠ y hxb : IsMaximal x (x ⊔ y) hyb : IsMaximal y (x ⊔ y) ⊢ IsMaximal (x ⊓ y) y [PROOFSTEP] exact isMaximal_inf_right_of_isMaximal_sup hxb hyb [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x y a b : X hm : IsMaximal x a ha : x ⊔ y = a hb : x ⊓ y = b ⊢ Iso (x, a) (b, y) [PROOFSTEP] substs a b [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X x y : X hm : IsMaximal x (x ⊔ y) ⊢ Iso (x, x ⊔ y) (x ⊓ y, y) [PROOFSTEP] exact second_iso hm [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x y : X hx : x ∈ s hy : y ∈ s ⊢ x ≤ y ∨ y ≤ x [PROOFSTEP] rcases Set.mem_range.1 hx with ⟨i, rfl⟩ [GOAL] case intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X y : X hy : y ∈ s i : Fin (s.length + 1) hx : series s i ∈ s ⊢ series s i ≤ y ∨ y ≤ series s i [PROOFSTEP] rcases Set.mem_range.1 hy with ⟨j, rfl⟩ [GOAL] case intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ∈ s j : Fin (s.length + 1) hy : series s j ∈ s ⊢ series s i ≤ series s j ∨ series s j ≤ series s i [PROOFSTEP] rw [s.strictMono.le_iff_le, s.strictMono.le_iff_le] [GOAL] case intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ∈ s j : Fin (s.length + 1) hy : series s j ∈ s ⊢ i ≤ j ∨ j ≤ i [PROOFSTEP] exact le_total i j [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hl : s₁.length = s₂.length h : ∀ (i : Fin (s₁.length + 1)), series s₁ i = series s₂ (↑(Fin.castIso (_ : Nat.succ s₁.length = Nat.succ s₂.length)) i) ⊢ s₁ = s₂ [PROOFSTEP] cases s₁ [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₂ : CompositionSeries X length✝ : ℕ series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) hl : { length := length✝, series := series✝, step' := step'✝ }.length = s₂.length h : ∀ (i : Fin ({ length := length✝, series := series✝, step' := step'✝ }.length + 1)), series { length := length✝, series := series✝, step' := step'✝ } i = series s₂ (↑(Fin.castIso (_ : Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length = Nat.succ s₂.length)) i) ⊢ { length := length✝, series := series✝, step' := step'✝ } = s₂ [PROOFSTEP] cases s₂ [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝¹ : ℕ series✝¹ : Fin (length✝¹ + 1) → X step'✝¹ : ∀ (i : Fin length✝¹), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) length✝ : ℕ series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) hl : { length := length✝¹, series := series✝¹, step' := step'✝¹ }.length = { length := length✝, series := series✝, step' := step'✝ }.length h : ∀ (i : Fin ({ length := length✝¹, series := series✝¹, step' := step'✝¹ }.length + 1)), series { length := length✝¹, series := series✝¹, step' := step'✝¹ } i = series { length := length✝, series := series✝, step' := step'✝ } (↑(Fin.castIso (_ : Nat.succ { length := length✝¹, series := series✝¹, step' := step'✝¹ }.length = Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length)) i) ⊢ { length := length✝¹, series := series✝¹, step' := step'✝¹ } = { length := length✝, series := series✝, step' := step'✝ } [PROOFSTEP] dsimp at hl h [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝¹ : ℕ series✝¹ : Fin (length✝¹ + 1) → X step'✝¹ : ∀ (i : Fin length✝¹), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) length✝ : ℕ series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) hl : length✝¹ = length✝ h : ∀ (i : Fin (length✝¹ + 1)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝¹ = Nat.succ length✝)) i) ⊢ { length := length✝¹, series := series✝¹, step' := step'✝¹ } = { length := length✝, series := series✝, step' := step'✝ } [PROOFSTEP] subst hl [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝ : ℕ series✝¹ : Fin (length✝ + 1) → X step'✝¹ : ∀ (i : Fin length✝), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : ∀ (i : Fin (length✝ + 1)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝ = Nat.succ length✝)) i) ⊢ { length := length✝, series := series✝¹, step' := step'✝¹ } = { length := length✝, series := series✝, step' := step'✝ } [PROOFSTEP] simpa [Function.funext_iff] using h [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ List.length (toList s) = s.length + 1 [PROOFSTEP] rw [toList, List.length_ofFn] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ toList s ≠ [] [PROOFSTEP] rw [← List.length_pos_iff_ne_nil, length_toList] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ 0 < s.length + 1 [PROOFSTEP] exact Nat.succ_pos _ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : List.ofFn s₁.series = List.ofFn s₂.series ⊢ s₁ = s₂ [PROOFSTEP] have h₁ : s₁.length = s₂.length := Nat.succ_injective ((List.length_ofFn s₁).symm.trans <| (congr_arg List.length h).trans <| List.length_ofFn s₂) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : List.ofFn s₁.series = List.ofFn s₂.series h₁ : s₁.length = s₂.length ⊢ s₁ = s₂ [PROOFSTEP] have h₂ : ∀ i : Fin s₁.length.succ, s₁ i = s₂ (Fin.castIso (congr_arg Nat.succ h₁) i) := -- Porting note: `List.nthLe_ofFn` has been deprecated but `List.get_ofFn` has a -- different type, so we do golf here.congr_fun <| List.ofFn_injective <| h.trans <| List.ofFn_congr (congr_arg Nat.succ h₁).symm _ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : List.ofFn s₁.series = List.ofFn s₂.series h₁ : s₁.length = s₂.length h₂ : ∀ (i : Fin (Nat.succ s₁.length)), series s₁ i = series s₂ (↑(Fin.castIso (_ : Nat.succ s₁.length = Nat.succ s₂.length)) i) ⊢ s₁ = s₂ [PROOFSTEP] cases s₁ [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₂ : CompositionSeries X length✝ : ℕ series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : List.ofFn { length := length✝, series := series✝, step' := step'✝ }.series = List.ofFn s₂.series h₁ : { length := length✝, series := series✝, step' := step'✝ }.length = s₂.length h₂ : ∀ (i : Fin (Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length)), series { length := length✝, series := series✝, step' := step'✝ } i = series s₂ (↑(Fin.castIso (_ : Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length = Nat.succ s₂.length)) i) ⊢ { length := length✝, series := series✝, step' := step'✝ } = s₂ [PROOFSTEP] cases s₂ [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝¹ : ℕ series✝¹ : Fin (length✝¹ + 1) → X step'✝¹ : ∀ (i : Fin length✝¹), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) length✝ : ℕ series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : List.ofFn { length := length✝¹, series := series✝¹, step' := step'✝¹ }.series = List.ofFn { length := length✝, series := series✝, step' := step'✝ }.series h₁ : { length := length✝¹, series := series✝¹, step' := step'✝¹ }.length = { length := length✝, series := series✝, step' := step'✝ }.length h₂ : ∀ (i : Fin (Nat.succ { length := length✝¹, series := series✝¹, step' := step'✝¹ }.length)), series { length := length✝¹, series := series✝¹, step' := step'✝¹ } i = series { length := length✝, series := series✝, step' := step'✝ } (↑(Fin.castIso (_ : Nat.succ { length := length✝¹, series := series✝¹, step' := step'✝¹ }.length = Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length)) i) ⊢ { length := length✝¹, series := series✝¹, step' := step'✝¹ } = { length := length✝, series := series✝, step' := step'✝ } [PROOFSTEP] dsimp at h h₁ h₂ [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝¹ : ℕ series✝¹ : Fin (length✝¹ + 1) → X step'✝¹ : ∀ (i : Fin length✝¹), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) length✝ : ℕ series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : List.ofFn series✝¹ = List.ofFn series✝ h₁ : length✝¹ = length✝ h₂ : ∀ (i : Fin (Nat.succ length✝¹)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝¹ = Nat.succ length✝)) i) ⊢ { length := length✝¹, series := series✝¹, step' := step'✝¹ } = { length := length✝, series := series✝, step' := step'✝ } [PROOFSTEP] subst h₁ [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝ : ℕ series✝¹ : Fin (length✝ + 1) → X step'✝¹ : ∀ (i : Fin length✝), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : List.ofFn series✝¹ = List.ofFn series✝ h₂ : ∀ (i : Fin (Nat.succ length✝)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝ = Nat.succ length✝)) i) ⊢ { length := length✝, series := series✝¹, step' := step'✝¹ } = { length := length✝, series := series✝, step' := step'✝ } [PROOFSTEP] simp only [mk.injEq, heq_eq_eq, true_and] [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝ : ℕ series✝¹ : Fin (length✝ + 1) → X step'✝¹ : ∀ (i : Fin length✝), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : List.ofFn series✝¹ = List.ofFn series✝ h₂ : ∀ (i : Fin (Nat.succ length✝)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝ = Nat.succ length✝)) i) ⊢ series✝¹ = series✝ [PROOFSTEP] simp only [Fin.castIso_refl] at h₂ [GOAL] case mk.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X length✝ : ℕ series✝¹ : Fin (length✝ + 1) → X step'✝¹ : ∀ (i : Fin length✝), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i)) series✝ : Fin (length✝ + 1) → X step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i)) h : List.ofFn series✝¹ = List.ofFn series✝ h₂ : ∀ (i : Fin (Nat.succ length✝)), series✝¹ i = series✝ (↑(OrderIso.refl (Fin (Nat.succ length✝))) i) ⊢ series✝¹ = series✝ [PROOFSTEP] exact funext h₂ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ ∀ (i : ℕ) (h : i < List.length (toList s) - 1), IsMaximal (List.get (toList s) { val := i, isLt := (_ : i < List.length (toList s)) }) (List.get (toList s) { val := i + 1, isLt := (_ : Nat.succ i < List.length (toList s)) }) [PROOFSTEP] intro i hi [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : ℕ hi : i < List.length (toList s) - 1 ⊢ IsMaximal (List.get (toList s) { val := i, isLt := (_ : i < List.length (toList s)) }) (List.get (toList s) { val := i + 1, isLt := (_ : Nat.succ i < List.length (toList s)) }) [PROOFSTEP] simp only [toList, List.get_ofFn] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : ℕ hi : i < List.length (toList s) - 1 ⊢ IsMaximal (series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) { val := i, isLt := (_ : i < List.length (toList s)) })) (series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) { val := i + 1, isLt := (_ : Nat.succ i < List.length (toList s)) })) [PROOFSTEP] rw [length_toList] at hi [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : ℕ hi✝ : i < List.length (toList s) - 1 hi : i < s.length + 1 - 1 ⊢ IsMaximal (series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) { val := i, isLt := (_ : i < List.length (toList s)) })) (series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) { val := i + 1, isLt := (_ : Nat.succ i < List.length (toList s)) })) [PROOFSTEP] exact s.step ⟨i, hi⟩ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i j : Fin (List.length (toList s)) h : i < j ⊢ List.get (toList s) i < List.get (toList s) j [PROOFSTEP] dsimp [toList] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i j : Fin (List.length (toList s)) h : i < j ⊢ List.get (List.ofFn s.series) i < List.get (List.ofFn s.series) j [PROOFSTEP] rw [List.get_ofFn, List.get_ofFn] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i j : Fin (List.length (toList s)) h : i < j ⊢ series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) i) < series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) j) [PROOFSTEP] exact s.strictMono h [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X ⊢ x ∈ toList s ↔ x ∈ s [PROOFSTEP] rw [toList, List.mem_ofFn, mem_def] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : Fin (List.length l - 1 + 1) ⊢ ↑i < List.length l [PROOFSTEP] conv_rhs => rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt (List.length_pos_of_ne_nil hl))] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : Fin (List.length l - 1 + 1) | List.length l [PROOFSTEP] rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt (List.length_pos_of_ne_nil hl))] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : Fin (List.length l - 1 + 1) | List.length l [PROOFSTEP] rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt (List.length_pos_of_ne_nil hl))] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : Fin (List.length l - 1 + 1) | List.length l [PROOFSTEP] rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt (List.length_pos_of_ne_nil hl))] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : Fin (List.length l - 1 + 1) ⊢ ↑i < List.length l - Nat.succ 0 + Nat.succ 0 [PROOFSTEP] exact i.2 [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s)) = s [PROOFSTEP] refine' ext_fun _ _ [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length = s.length [PROOFSTEP] rw [length_ofList, length_toList, Nat.succ_sub_one] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ ∀ (i : Fin ((ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length + 1)), series (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))) i = series s (↑(Fin.castIso (_ : Nat.succ (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length = Nat.succ s.length)) i) [PROOFSTEP] rintro ⟨i, hi⟩ -- Porting note: Was `dsimp [ofList, toList]; rw [List.nthLe_ofFn']`. [GOAL] case refine'_2.mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : ℕ hi : i < (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length + 1 ⊢ series (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))) { val := i, isLt := hi } = series s (↑(Fin.castIso (_ : Nat.succ (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length = Nat.succ s.length)) { val := i, isLt := hi }) [PROOFSTEP] simp [ofList, toList, -List.ofFn_succ] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l ⊢ toList (ofList l hl hc) = l [PROOFSTEP] refine' List.ext_get _ _ [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l ⊢ List.length (toList (ofList l hl hc)) = List.length l [PROOFSTEP] rw [length_toList, length_ofList, tsub_add_cancel_of_le (Nat.succ_le_of_lt <| List.length_pos_of_ne_nil hl)] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l ⊢ ∀ (n : ℕ) (h₁ : n < List.length (toList (ofList l hl hc))) (h₂ : n < List.length l), List.get (toList (ofList l hl hc)) { val := n, isLt := h₁ } = List.get l { val := n, isLt := h₂ } [PROOFSTEP] intro i hi hi' [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : ℕ hi : i < List.length (toList (ofList l hl hc)) hi' : i < List.length l ⊢ List.get (toList (ofList l hl hc)) { val := i, isLt := hi } = List.get l { val := i, isLt := hi' } [PROOFSTEP] dsimp [ofList, toList] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : ℕ hi : i < List.length (toList (ofList l hl hc)) hi' : i < List.length l ⊢ List.get (List.ofFn fun i => List.nthLe l ↑i (_ : ↑i < List.length l)) { val := i, isLt := hi } = List.get l { val := i, isLt := hi' } [PROOFSTEP] rw [List.get_ofFn] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X l : List X hl : l ≠ [] hc : List.Chain' IsMaximal l i : ℕ hi : i < List.length (toList (ofList l hl hc)) hi' : i < List.length l ⊢ List.nthLe l ↑(↑(Fin.castIso (_ : List.length (List.ofFn fun i => List.nthLe l ↑i (_ : ↑i < List.length l)) = List.length l - 1 + 1)) { val := i, isLt := hi }) (_ : ↑(↑(Fin.castIso (_ : List.length (List.ofFn fun i => List.nthLe l ↑i (_ : ↑i < List.length l)) = List.length l - 1 + 1)) { val := i, isLt := hi }) < List.length l) = List.get l { val := i, isLt := hi' } [PROOFSTEP] rfl [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : ∀ (x : X), x ∈ s₁ ↔ x ∈ s₂ ⊢ toList s₁ ~ toList s₂ [PROOFSTEP] classical exact List.perm_of_nodup_nodup_toFinset_eq s₁.toList_nodup s₂.toList_nodup (Finset.ext <| by simp [*]) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : ∀ (x : X), x ∈ s₁ ↔ x ∈ s₂ ⊢ toList s₁ ~ toList s₂ [PROOFSTEP] exact List.perm_of_nodup_nodup_toFinset_eq s₁.toList_nodup s₂.toList_nodup (Finset.ext <| by simp [*]) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : ∀ (x : X), x ∈ s₁ ↔ x ∈ s₂ ⊢ ∀ (a : X), a ∈ List.toFinset (toList s₁) ↔ a ∈ List.toFinset (toList s₂) [PROOFSTEP] simp [*] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length - 1) ⊢ IsMaximal ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.castSucc i)) ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.succ i)) [PROOFSTEP] have := s.step ⟨i, lt_of_lt_of_le i.2 tsub_le_self⟩ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length - 1) this : IsMaximal (series s (Fin.castSucc { val := ↑i, isLt := (_ : ↑i < s.length) })) (series s (Fin.succ { val := ↑i, isLt := (_ : ↑i < s.length) })) ⊢ IsMaximal ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.castSucc i)) ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.succ i)) [PROOFSTEP] cases i [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X val✝ : ℕ isLt✝ : val✝ < s.length - 1 this : IsMaximal (series s (Fin.castSucc { val := ↑{ val := val✝, isLt := isLt✝ }, isLt := (_ : ↑{ val := val✝, isLt := isLt✝ } < s.length) })) (series s (Fin.succ { val := ↑{ val := val✝, isLt := isLt✝ }, isLt := (_ : ↑{ val := val✝, isLt := isLt✝ } < s.length) })) ⊢ IsMaximal ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.castSucc { val := val✝, isLt := isLt✝ })) ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.succ { val := val✝, isLt := isLt✝ })) [PROOFSTEP] exact this [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ { val := ↑(Fin.last (eraseTop s).length), isLt := (_ : ↑(Fin.last (eraseTop s).length) < s.length + 1) } = { val := s.length - 1, isLt := (_ : s.length - 1 < s.length + 1) } [PROOFSTEP] ext [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ ↑{ val := ↑(Fin.last (eraseTop s).length), isLt := (_ : ↑(Fin.last (eraseTop s).length) < s.length + 1) } = ↑{ val := s.length - 1, isLt := (_ : s.length - 1 < s.length + 1) } [PROOFSTEP] simp only [eraseTop_length, Fin.val_last, Fin.coe_castSucc, Fin.coe_ofNat_eq_mod, Fin.val_mk] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X ⊢ top (eraseTop s) ≤ top s [PROOFSTEP] simp [eraseTop, top, s.strictMono.le_iff_le, Fin.le_iff_val_le_val, tsub_le_self] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hx : x ≠ top s hxs : x ∈ s ⊢ x ∈ eraseTop s [PROOFSTEP] rcases hxs with ⟨i, rfl⟩ [GOAL] case intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s ⊢ series s i ∈ eraseTop s [PROOFSTEP] have hi : (i : ℕ) < (s.length - 1).succ := by conv_rhs => rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one] exact lt_of_le_of_ne (Nat.le_of_lt_succ i.2) (by simpa [top, s.inj, Fin.ext_iff] using hx) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s ⊢ ↑i < Nat.succ (s.length - 1) [PROOFSTEP] conv_rhs => rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s | Nat.succ (s.length - 1) [PROOFSTEP] rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s | Nat.succ (s.length - 1) [PROOFSTEP] rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s | Nat.succ (s.length - 1) [PROOFSTEP] rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s ⊢ ↑i < s.length [PROOFSTEP] exact lt_of_le_of_ne (Nat.le_of_lt_succ i.2) (by simpa [top, s.inj, Fin.ext_iff] using hx) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s ⊢ ↑i ≠ s.length [PROOFSTEP] simpa [top, s.inj, Fin.ext_iff] using hx [GOAL] case intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s hi : ↑i < Nat.succ (s.length - 1) ⊢ series s i ∈ eraseTop s [PROOFSTEP] refine' ⟨Fin.castSucc (n := s.length + 1) i, _⟩ [GOAL] case intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X i : Fin (s.length + 1) hx : series s i ≠ top s hi : ↑i < Nat.succ (s.length - 1) ⊢ series (eraseTop s) ↑↑(Fin.castSucc i) = series s i [PROOFSTEP] simp [Fin.ext_iff, Nat.mod_eq_of_lt hi] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X h : 0 < s.length ⊢ x ∈ eraseTop s ↔ x ≠ top s ∧ x ∈ s [PROOFSTEP] simp only [mem_def] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X h : 0 < s.length ⊢ x ∈ range (eraseTop s).series ↔ x ≠ top s ∧ x ∈ range s.series [PROOFSTEP] dsimp only [eraseTop] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X h : 0 < s.length ⊢ (x ∈ range fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) ↔ x ≠ top s ∧ x ∈ range s.series [PROOFSTEP] constructor [GOAL] case mp X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X h : 0 < s.length ⊢ (x ∈ range fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) → x ≠ top s ∧ x ∈ range s.series [PROOFSTEP] rintro ⟨i, rfl⟩ [GOAL] case mp.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) ⊢ (fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) i ≠ top s ∧ (fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) i ∈ range s.series [PROOFSTEP] have hi : (i : ℕ) < s.length := by conv_rhs => rw [← Nat.succ_sub_one s.length, Nat.succ_sub h] exact i.2 -- Porting note: Was `simp [top, Fin.ext_iff, ne_of_lt hi]`. [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) ⊢ ↑i < s.length [PROOFSTEP] conv_rhs => rw [← Nat.succ_sub_one s.length, Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) | s.length [PROOFSTEP] rw [← Nat.succ_sub_one s.length, Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) | s.length [PROOFSTEP] rw [← Nat.succ_sub_one s.length, Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) | s.length [PROOFSTEP] rw [← Nat.succ_sub_one s.length, Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) ⊢ ↑i < Nat.succ (s.length - Nat.succ 0) [PROOFSTEP] exact i.2 -- Porting note: Was `simp [top, Fin.ext_iff, ne_of_lt hi]`. [GOAL] case mp.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length i : Fin (s.length - 1 + 1) hi : ↑i < s.length ⊢ (fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) i ≠ top s ∧ (fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) i ∈ range s.series [PROOFSTEP] simp [top, Fin.ext_iff, ne_of_lt hi, -Set.mem_range, Set.mem_range_self] [GOAL] case mpr X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X h : 0 < s.length ⊢ x ≠ top s ∧ x ∈ range s.series → x ∈ range fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) } [PROOFSTEP] intro h [GOAL] case mpr X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X h✝ : 0 < s.length h : x ≠ top s ∧ x ∈ range s.series ⊢ x ∈ range fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) } [PROOFSTEP] exact mem_eraseTop_of_ne_of_mem h.1 h.2 [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length ⊢ IsMaximal (top (eraseTop s)) (top s) [PROOFSTEP] have : s.length - 1 + 1 = s.length := by conv_rhs => rw [← Nat.succ_sub_one s.length]; rw [Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length ⊢ s.length - 1 + 1 = s.length [PROOFSTEP] conv_rhs => rw [← Nat.succ_sub_one s.length]; rw [Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length | s.length [PROOFSTEP] rw [← Nat.succ_sub_one s.length]; rw [Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length | s.length [PROOFSTEP] rw [← Nat.succ_sub_one s.length]; rw [Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length | s.length [PROOFSTEP] rw [← Nat.succ_sub_one s.length] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length | Nat.succ s.length - 1 [PROOFSTEP] rw [Nat.succ_sub h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length this : s.length - 1 + 1 = s.length ⊢ IsMaximal (top (eraseTop s)) (top s) [PROOFSTEP] rw [top_eraseTop, top] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length this : s.length - 1 + 1 = s.length ⊢ IsMaximal (series s { val := s.length - 1, isLt := (_ : s.length - 1 < s.length + 1) }) (series s (Fin.last s.length)) [PROOFSTEP] convert s.step ⟨s.length - 1, Nat.sub_lt h zero_lt_one⟩ [GOAL] case h.e'_5.h.e'_5 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length this : s.length - 1 + 1 = s.length ⊢ Fin.last s.length = Fin.succ { val := s.length - 1, isLt := (_ : s.length - 1 < s.length) } [PROOFSTEP] ext [GOAL] case h.e'_5.h.e'_5.h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length this : s.length - 1 + 1 = s.length ⊢ ↑(Fin.last s.length) = ↑(Fin.succ { val := s.length - 1, isLt := (_ : s.length - 1 < s.length) }) [PROOFSTEP] simp [this] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α i : Fin m ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.castSucc (Fin.castAdd n i)) = a (Fin.castSucc i) [PROOFSTEP] cases i [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α val✝ : ℕ isLt✝ : val✝ < m ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.castSucc (Fin.castAdd n { val := val✝, isLt := isLt✝ })) = a (Fin.castSucc { val := val✝, isLt := isLt✝ }) [PROOFSTEP] simp [Matrix.vecAppend_eq_ite, *] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α i : Fin m h : a (Fin.last m) = b 0 ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.succ (Fin.castAdd n i)) = a (Fin.succ i) [PROOFSTEP] cases' i with i hi [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.succ (Fin.castAdd n { val := i, isLt := hi })) = a (Fin.succ { val := i, isLt := hi }) [PROOFSTEP] simp only [Matrix.vecAppend_eq_ite, hi, Fin.succ_mk, Function.comp_apply, Fin.castSucc_mk, Fin.val_mk, Fin.castAdd_mk] [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m ⊢ (if h : i + 1 < m then a { val := i + 1, isLt := (_ : i + 1 < Nat.succ m) } else b { val := i + 1 - m, isLt := (_ : ↑{ val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (m + n)) } - m < Nat.succ n) }) = a { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) } [PROOFSTEP] split_ifs with h_1 [GOAL] case pos X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m h_1 : i + 1 < m ⊢ a { val := i + 1, isLt := (_ : i + 1 < Nat.succ m) } = a { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) } [PROOFSTEP] rfl [GOAL] case neg X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m h_1 : ¬i + 1 < m ⊢ b { val := i + 1 - m, isLt := (_ : ↑{ val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (m + n)) } - m < Nat.succ n) } = a { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) } [PROOFSTEP] have : i + 1 = m := le_antisymm hi (le_of_not_gt h_1) [GOAL] case neg X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m h_1 : ¬i + 1 < m this : i + 1 = m ⊢ b { val := i + 1 - m, isLt := (_ : ↑{ val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (m + n)) } - m < Nat.succ n) } = a { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) } [PROOFSTEP] calc b ⟨i + 1 - m, by simp [this]⟩ = b 0 := congr_arg b (by simp [Fin.ext_iff, this]) _ = a (Fin.last _) := h.symm _ = _ := congr_arg a (by simp [Fin.ext_iff, this]) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m h_1 : ¬i + 1 < m this : i + 1 = m ⊢ i + 1 - m < Nat.succ n [PROOFSTEP] simp [this] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m h_1 : ¬i + 1 < m this : i + 1 = m ⊢ { val := i + 1 - m, isLt := (_ : i + 1 - m < Nat.succ n) } = 0 [PROOFSTEP] simp [Fin.ext_iff, this] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α h : a (Fin.last m) = b 0 i : ℕ hi : i < m h_1 : ¬i + 1 < m this : i + 1 = m ⊢ Fin.last m = { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) } [PROOFSTEP] simp [Fin.ext_iff, this] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α i : Fin n ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.castSucc (Fin.natAdd m i)) = b (Fin.castSucc i) [PROOFSTEP] cases i [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α val✝ : ℕ isLt✝ : val✝ < n ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.castSucc (Fin.natAdd m { val := val✝, isLt := isLt✝ })) = b (Fin.castSucc { val := val✝, isLt := isLt✝ }) [PROOFSTEP] simp only [Matrix.vecAppend_eq_ite, Nat.not_lt_zero, Fin.natAdd_mk, add_lt_iff_neg_left, add_tsub_cancel_left, dif_neg, Fin.castSucc_mk, not_false_iff, Fin.val_mk] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α i : Fin n ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.succ (Fin.natAdd m i)) = b (Fin.succ i) [PROOFSTEP] cases' i with i hi [GOAL] case mk X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X α : Type u_1 m n : ℕ a : Fin (Nat.succ m) → α b : Fin (Nat.succ n) → α i : ℕ hi : i < n ⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.succ (Fin.natAdd m { val := i, isLt := hi })) = b (Fin.succ { val := i, isLt := hi }) [PROOFSTEP] simp only [Matrix.vecAppend_eq_ite, add_assoc, Nat.not_lt_zero, Fin.natAdd_mk, add_lt_iff_neg_left, add_tsub_cancel_left, Fin.succ_mk, dif_neg, not_false_iff, Fin.val_mk] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin (s₁.length + s₂.length) ⊢ IsMaximal (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.castSucc i)) (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.succ i)) [PROOFSTEP] refine' Fin.addCases _ _ i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin (s₁.length + s₂.length) ⊢ ∀ (i : Fin s₁.length), IsMaximal (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.castSucc (Fin.castAdd s₂.length i))) (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.succ (Fin.castAdd s₂.length i))) [PROOFSTEP] intro i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i✝ : Fin (s₁.length + s₂.length) i : Fin s₁.length ⊢ IsMaximal (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.castSucc (Fin.castAdd s₂.length i))) (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.succ (Fin.castAdd s₂.length i))) [PROOFSTEP] rw [append_succ_castAdd_aux _ _ _ h, append_castAdd_aux] [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i✝ : Fin (s₁.length + s₂.length) i : Fin s₁.length ⊢ IsMaximal (series s₁ (Fin.castSucc i)) (series s₁ (Fin.succ i)) [PROOFSTEP] exact s₁.step i [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin (s₁.length + s₂.length) ⊢ ∀ (i : Fin s₂.length), IsMaximal (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.castSucc (Fin.natAdd s₁.length i))) (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.succ (Fin.natAdd s₁.length i))) [PROOFSTEP] intro i [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i✝ : Fin (s₁.length + s₂.length) i : Fin s₂.length ⊢ IsMaximal (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.castSucc (Fin.natAdd s₁.length i))) (Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc) s₂.series (Fin.succ (Fin.natAdd s₁.length i))) [PROOFSTEP] rw [append_natAdd_aux, append_succ_natAdd_aux] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i✝ : Fin (s₁.length + s₂.length) i : Fin s₂.length ⊢ IsMaximal (series s₂ (Fin.castSucc i)) (series s₂ (Fin.succ i)) [PROOFSTEP] exact s₂.step i [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin s₁.length ⊢ series (append s₁ s₂ h) (Fin.castSucc (Fin.castAdd s₂.length i)) = series s₁ (Fin.castSucc i) [PROOFSTEP] rw [coe_append, append_castAdd_aux _ _ i] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin s₁.length ⊢ series (append s₁ s₂ h) (Fin.succ (Fin.castAdd s₂.length i)) = series s₁ (Fin.succ i) [PROOFSTEP] rw [coe_append, append_succ_castAdd_aux _ _ _ h] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin s₂.length ⊢ series (append s₁ s₂ h) (Fin.castSucc (Fin.natAdd s₁.length i)) = series s₂ (Fin.castSucc i) [PROOFSTEP] rw [coe_append, append_natAdd_aux _ _ i] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : top s₁ = bot s₂ i : Fin s₂.length ⊢ series (append s₁ s₂ h) (Fin.succ (Fin.natAdd s₁.length i)) = series s₂ (Fin.succ i) [PROOFSTEP] rw [coe_append, append_succ_natAdd_aux _ _ i] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1) ⊢ IsMaximal (Fin.snoc s.series x (Fin.castSucc i)) (Fin.snoc s.series x (Fin.succ i)) [PROOFSTEP] refine' Fin.lastCases _ _ i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1) ⊢ IsMaximal (Fin.snoc s.series x (Fin.castSucc (Fin.last s.length))) (Fin.snoc s.series x (Fin.succ (Fin.last s.length))) [PROOFSTEP] rwa [Fin.snoc_castSucc, Fin.succ_last, Fin.snoc_last, ← top] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1) ⊢ ∀ (i : Fin s.length), IsMaximal (Fin.snoc s.series x (Fin.castSucc (Fin.castSucc i))) (Fin.snoc s.series x (Fin.succ (Fin.castSucc i))) [PROOFSTEP] intro i [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i✝ : Fin (s.length + 1) i : Fin s.length ⊢ IsMaximal (Fin.snoc s.series x (Fin.castSucc (Fin.castSucc i))) (Fin.snoc s.series x (Fin.succ (Fin.castSucc i))) [PROOFSTEP] rw [Fin.snoc_castSucc, ← Fin.castSucc_fin_succ, Fin.snoc_castSucc] [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i✝ : Fin (s.length + 1) i : Fin s.length ⊢ IsMaximal (series s (Fin.castSucc i)) (series s (Fin.succ i)) [PROOFSTEP] exact s.step _ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x ⊢ bot (snoc s x hsat) = bot s [PROOFSTEP] rw [bot, bot, ← snoc_castSucc s x hsat 0, Fin.castSucc_zero' (n := s.length + 1)] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x y : X hsat : IsMaximal (top s) x ⊢ y ∈ snoc s x hsat ↔ y ∈ s ∨ y = x [PROOFSTEP] simp only [snoc, mem_def] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x y : X hsat : IsMaximal (top s) x ⊢ y ∈ range (Fin.snoc s.series x) ↔ y ∈ range s.series ∨ y = x [PROOFSTEP] constructor [GOAL] case mp X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x y : X hsat : IsMaximal (top s) x ⊢ y ∈ range (Fin.snoc s.series x) → y ∈ range s.series ∨ y = x [PROOFSTEP] rintro ⟨i, rfl⟩ [GOAL] case mp.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1 + 1) ⊢ Fin.snoc s.series x i ∈ range s.series ∨ Fin.snoc s.series x i = x [PROOFSTEP] refine' Fin.lastCases _ (fun i => _) i [GOAL] case mp.intro.refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1 + 1) ⊢ Fin.snoc s.series x (Fin.last (s.length + 1)) ∈ range s.series ∨ Fin.snoc s.series x (Fin.last (s.length + 1)) = x [PROOFSTEP] right [GOAL] case mp.intro.refine'_1.h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1 + 1) ⊢ Fin.snoc s.series x (Fin.last (s.length + 1)) = x [PROOFSTEP] simp [GOAL] case mp.intro.refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i✝ : Fin (s.length + 1 + 1) i : Fin (s.length + 1) ⊢ Fin.snoc s.series x (Fin.castSucc i) ∈ range s.series ∨ Fin.snoc s.series x (Fin.castSucc i) = x [PROOFSTEP] left [GOAL] case mp.intro.refine'_2.h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i✝ : Fin (s.length + 1 + 1) i : Fin (s.length + 1) ⊢ Fin.snoc s.series x (Fin.castSucc i) ∈ range s.series [PROOFSTEP] simp [GOAL] case mpr X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x y : X hsat : IsMaximal (top s) x ⊢ y ∈ range s.series ∨ y = x → y ∈ range (Fin.snoc s.series x) [PROOFSTEP] intro h [GOAL] case mpr X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x y : X hsat : IsMaximal (top s) x h : y ∈ range s.series ∨ y = x ⊢ y ∈ range (Fin.snoc s.series x) [PROOFSTEP] rcases h with (⟨i, rfl⟩ | rfl) [GOAL] case mpr.inl.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1) ⊢ series s i ∈ range (Fin.snoc s.series x) [PROOFSTEP] use Fin.castSucc i [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hsat : IsMaximal (top s) x i : Fin (s.length + 1) ⊢ Fin.snoc s.series x (Fin.castSucc i) = series s i [PROOFSTEP] simp [GOAL] case mpr.inr X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X y : X hsat : IsMaximal (top s) y ⊢ y ∈ range (Fin.snoc s.series y) [PROOFSTEP] use Fin.last _ [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X y : X hsat : IsMaximal (top s) y ⊢ Fin.snoc s.series y (Fin.last (s.length + 1)) = y [PROOFSTEP] simp [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length ⊢ s = snoc (eraseTop s) (top s) (_ : IsMaximal (top (eraseTop s)) (top s)) [PROOFSTEP] ext x [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length x : X ⊢ x ∈ s ↔ x ∈ snoc (eraseTop s) (top s) (_ : IsMaximal (top (eraseTop s)) (top s)) [PROOFSTEP] simp [mem_snoc, mem_eraseTop h] [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : 0 < s.length x : X ⊢ x ∈ s ↔ ¬x = top s ∧ x ∈ s ∨ x = top s [PROOFSTEP] by_cases h : x = s.top [GOAL] case pos X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h✝ : 0 < s.length x : X h : x = top s ⊢ x ∈ s ↔ ¬x = top s ∧ x ∈ s ∨ x = top s [PROOFSTEP] simp [*, s.top_mem] [GOAL] case neg X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h✝ : 0 < s.length x : X h : ¬x = top s ⊢ x ∈ s ↔ ¬x = top s ∧ x ∈ s ∨ x = top s [PROOFSTEP] simp [*, s.top_mem] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : IsMaximal (top (eraseTop s)) (top s) ⊢ s.length ≠ 0 [PROOFSTEP] intro hs [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : IsMaximal (top (eraseTop s)) (top s) hs : s.length = 0 ⊢ False [PROOFSTEP] refine' ne_of_gt (lt_of_isMaximal h) _ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X h : IsMaximal (top (eraseTop s)) (top s) hs : s.length = 0 ⊢ top s = top (eraseTop s) [PROOFSTEP] simp [top, Fin.ext_iff, hs] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : Equivalent s₁ s₂ i : Fin s₂.length ⊢ Iso (series s₁ (Fin.castSucc (↑(Exists.choose h).symm i)), series s₁ (Fin.succ (↑(Exists.choose h).symm i))) (series s₂ (Fin.castSucc i), series s₂ (Fin.succ i)) [PROOFSTEP] simpa using h.choose_spec (h.choose.symm i) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ t₁ t₂ : CompositionSeries X hs : top s₁ = bot s₂ ht : top t₁ = bot t₂ h₁ : Equivalent s₁ t₁ h₂ : Equivalent s₂ t₂ e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) := Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv ⊢ ∀ (i : Fin (CompositionSeries.append s₁ s₂ hs).length), Iso (series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc i), series (CompositionSeries.append s₁ s₂ hs) (Fin.succ i)) (series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e i)), series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e i))) [PROOFSTEP] intro i [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ t₁ t₂ : CompositionSeries X hs : top s₁ = bot s₂ ht : top t₁ = bot t₂ h₁ : Equivalent s₁ t₁ h₂ : Equivalent s₂ t₂ e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) := Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv i : Fin (CompositionSeries.append s₁ s₂ hs).length ⊢ Iso (series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc i), series (CompositionSeries.append s₁ s₂ hs) (Fin.succ i)) (series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e i)), series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e i))) [PROOFSTEP] refine' Fin.addCases _ _ i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ t₁ t₂ : CompositionSeries X hs : top s₁ = bot s₂ ht : top t₁ = bot t₂ h₁ : Equivalent s₁ t₁ h₂ : Equivalent s₂ t₂ e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) := Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv i : Fin (CompositionSeries.append s₁ s₂ hs).length ⊢ ∀ (i : Fin s₁.length), Iso (series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc (Fin.castAdd s₂.length i)), series (CompositionSeries.append s₁ s₂ hs) (Fin.succ (Fin.castAdd s₂.length i))) (series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e (Fin.castAdd s₂.length i))), series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e (Fin.castAdd s₂.length i)))) [PROOFSTEP] intro i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ t₁ t₂ : CompositionSeries X hs : top s₁ = bot s₂ ht : top t₁ = bot t₂ h₁ : Equivalent s₁ t₁ h₂ : Equivalent s₂ t₂ e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) := Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv i✝ : Fin (CompositionSeries.append s₁ s₂ hs).length i : Fin s₁.length ⊢ Iso (series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc (Fin.castAdd s₂.length i)), series (CompositionSeries.append s₁ s₂ hs) (Fin.succ (Fin.castAdd s₂.length i))) (series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e (Fin.castAdd s₂.length i))), series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e (Fin.castAdd s₂.length i)))) [PROOFSTEP] simpa [top, bot] using h₁.choose_spec i [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ t₁ t₂ : CompositionSeries X hs : top s₁ = bot s₂ ht : top t₁ = bot t₂ h₁ : Equivalent s₁ t₁ h₂ : Equivalent s₂ t₂ e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) := Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv i : Fin (CompositionSeries.append s₁ s₂ hs).length ⊢ ∀ (i : Fin s₂.length), Iso (series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc (Fin.natAdd s₁.length i)), series (CompositionSeries.append s₁ s₂ hs) (Fin.succ (Fin.natAdd s₁.length i))) (series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e (Fin.natAdd s₁.length i))), series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e (Fin.natAdd s₁.length i)))) [PROOFSTEP] intro i [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ t₁ t₂ : CompositionSeries X hs : top s₁ = bot s₂ ht : top t₁ = bot t₂ h₁ : Equivalent s₁ t₁ h₂ : Equivalent s₂ t₂ e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) := Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv i✝ : Fin (CompositionSeries.append s₁ s₂ hs).length i : Fin s₂.length ⊢ Iso (series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc (Fin.natAdd s₁.length i)), series (CompositionSeries.append s₁ s₂ hs) (Fin.succ (Fin.natAdd s₁.length i))) (series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e (Fin.natAdd s₁.length i))), series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e (Fin.natAdd s₁.length i)))) [PROOFSTEP] simpa [top, bot] using h₂.choose_spec i [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X x₁ x₂ : X hsat₁ : IsMaximal (top s₁) x₁ hsat₂ : IsMaximal (top s₂) x₂ hequiv : Equivalent s₁ s₂ htop : Iso (top s₁, x₁) (top s₂, x₂) e : Fin (Nat.succ s₁.length) ≃ Fin (Nat.succ s₂.length) := Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm i : Fin (snoc s₁ x₁ hsat₁).length ⊢ Iso (series (snoc s₁ x₁ hsat₁) (Fin.castSucc i), series (snoc s₁ x₁ hsat₁) (Fin.succ i)) (series (snoc s₂ x₂ hsat₂) (Fin.castSucc (↑e i)), series (snoc s₂ x₂ hsat₂) (Fin.succ (↑e i))) [PROOFSTEP] refine' Fin.lastCases _ _ i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X x₁ x₂ : X hsat₁ : IsMaximal (top s₁) x₁ hsat₂ : IsMaximal (top s₂) x₂ hequiv : Equivalent s₁ s₂ htop : Iso (top s₁, x₁) (top s₂, x₂) e : Fin (Nat.succ s₁.length) ≃ Fin (Nat.succ s₂.length) := Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm i : Fin (snoc s₁ x₁ hsat₁).length ⊢ Iso (series (snoc s₁ x₁ hsat₁) (Fin.castSucc (Fin.last s₁.length)), series (snoc s₁ x₁ hsat₁) (Fin.succ (Fin.last s₁.length))) (series (snoc s₂ x₂ hsat₂) (Fin.castSucc (↑e (Fin.last s₁.length))), series (snoc s₂ x₂ hsat₂) (Fin.succ (↑e (Fin.last s₁.length)))) [PROOFSTEP] simpa [top] using htop [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X x₁ x₂ : X hsat₁ : IsMaximal (top s₁) x₁ hsat₂ : IsMaximal (top s₂) x₂ hequiv : Equivalent s₁ s₂ htop : Iso (top s₁, x₁) (top s₂, x₂) e : Fin (Nat.succ s₁.length) ≃ Fin (Nat.succ s₂.length) := Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm i : Fin (snoc s₁ x₁ hsat₁).length ⊢ ∀ (i : Fin s₁.length), Iso (series (snoc s₁ x₁ hsat₁) (Fin.castSucc (Fin.castSucc i)), series (snoc s₁ x₁ hsat₁) (Fin.succ (Fin.castSucc i))) (series (snoc s₂ x₂ hsat₂) (Fin.castSucc (↑e (Fin.castSucc i))), series (snoc s₂ x₂ hsat₂) (Fin.succ (↑e (Fin.castSucc i)))) [PROOFSTEP] intro i [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X x₁ x₂ : X hsat₁ : IsMaximal (top s₁) x₁ hsat₂ : IsMaximal (top s₂) x₂ hequiv : Equivalent s₁ s₂ htop : Iso (top s₁, x₁) (top s₂, x₂) e : Fin (Nat.succ s₁.length) ≃ Fin (Nat.succ s₂.length) := Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm i✝ : Fin (snoc s₁ x₁ hsat₁).length i : Fin s₁.length ⊢ Iso (series (snoc s₁ x₁ hsat₁) (Fin.castSucc (Fin.castSucc i)), series (snoc s₁ x₁ hsat₁) (Fin.succ (Fin.castSucc i))) (series (snoc s₂ x₂ hsat₂) (Fin.castSucc (↑e (Fin.castSucc i))), series (snoc s₂ x₂ hsat₂) (Fin.succ (↑e (Fin.castSucc i)))) [PROOFSTEP] simpa [Fin.succ_castSucc] using hequiv.choose_spec i [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X h : Equivalent s₁ s₂ ⊢ s₁.length = s₂.length [PROOFSTEP] simpa using Fintype.card_congr h.choose [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) x✝ : Fin s.length ⊢ Fin.castSucc (Fin.castSucc x✝) < Fin.castSucc (Fin.last s.length) [PROOFSTEP] simp [Fin.castSucc_lt_last] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) x✝ : Fin s.length ⊢ Fin.castSucc (Fin.castSucc x✝) < Fin.last (s.length + 1) [PROOFSTEP] simp [Fin.castSucc_lt_last] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) ⊢ ∀ (i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length), Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc i), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ i)) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑e i)), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑e i))) [PROOFSTEP] intro i [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length ⊢ Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc i), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ i)) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑e i)), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑e i))) [PROOFSTEP] dsimp only [] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length ⊢ Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc i), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ i)) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) i)), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) i))) [PROOFSTEP] refine' Fin.lastCases _ (fun i => _) i [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length ⊢ Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc (Fin.last (snoc s x₁ hsat₁).length)), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ (Fin.last (snoc s x₁ hsat₁).length))) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.last (snoc s x₁ hsat₁).length))), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.last (snoc s x₁ hsat₁).length)))) [PROOFSTEP] erw [Equiv.swap_apply_left, snoc_castSucc, snoc_last, Fin.succ_last, snoc_last, snoc_castSucc, snoc_castSucc, Fin.succ_castSucc, snoc_castSucc, Fin.succ_last, snoc_last] [GOAL] case refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length ⊢ Iso (x₁, y₁) (series s (Fin.last s.length), x₂) [PROOFSTEP] exact hr₂ [GOAL] case refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i✝ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length i : Fin (snoc s x₁ hsat₁).length ⊢ Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc (Fin.castSucc i)), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ (Fin.castSucc i))) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc i))), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc i)))) [PROOFSTEP] refine' Fin.lastCases _ (fun i => _) i [GOAL] case refine'_2.refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i✝ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length i : Fin (snoc s x₁ hsat₁).length ⊢ Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc (Fin.castSucc (Fin.last s.length))), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ (Fin.castSucc (Fin.last s.length)))) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc (Fin.last s.length)))), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc (Fin.last s.length))))) [PROOFSTEP] erw [Equiv.swap_apply_right, snoc_castSucc, snoc_castSucc, snoc_castSucc, Fin.succ_castSucc, snoc_castSucc, Fin.succ_last, snoc_last, snoc_last, Fin.succ_last, snoc_last] [GOAL] case refine'_2.refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i✝ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length i : Fin (snoc s x₁ hsat₁).length ⊢ Iso (series s (Fin.last s.length), x₁) (x₂, y₂) [PROOFSTEP] exact hr₁ [GOAL] case refine'_2.refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i✝¹ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length i✝ : Fin (snoc s x₁ hsat₁).length i : Fin s.length ⊢ Iso (series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc (Fin.castSucc (Fin.castSucc i))), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ (Fin.castSucc (Fin.castSucc i)))) (series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc (Fin.castSucc i)))), series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc (Fin.castSucc i))))) [PROOFSTEP] erw [Equiv.swap_apply_of_ne_of_ne h2 h1, snoc_castSucc, snoc_castSucc, snoc_castSucc, snoc_castSucc, Fin.succ_castSucc, snoc_castSucc, Fin.succ_castSucc, snoc_castSucc, snoc_castSucc, snoc_castSucc] [GOAL] case refine'_2.refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x₁ x₂ y₁ y₂ : X hsat₁ : IsMaximal (top s) x₁ hsat₂ : IsMaximal (top s) x₂ hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁ hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂ hr₁ : Iso (top s, x₁) (x₂, y₂) hr₂ : Iso (x₁, y₁) (top s, x₂) e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) := Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)) h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length) h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1) i✝¹ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length i✝ : Fin (snoc s x₁ hsat₁).length i : Fin s.length ⊢ Iso (series s (Fin.castSucc i), series s (Fin.succ i)) (series s (Fin.castSucc i), series s (Fin.succ i)) [PROOFSTEP] exact (s.step i).iso_refl [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁ : s₁.length = 0 ⊢ s₂.length = 0 [PROOFSTEP] have : s₁.bot = s₁.top := congr_arg s₁ (Fin.ext (by simp [hs₁])) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁ : s₁.length = 0 ⊢ ↑0 = ↑(Fin.last s₁.length) [PROOFSTEP] simp [hs₁] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁ : s₁.length = 0 this : bot s₁ = top s₁ ⊢ s₂.length = 0 [PROOFSTEP] have : Fin.last s₂.length = (0 : Fin s₂.length.succ) := s₂.injective (hb.symm.trans (this.trans ht)).symm [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁ : s₁.length = 0 this✝ : bot s₁ = top s₁ this : Fin.last s₂.length = 0 ⊢ s₂.length = 0 [PROOFSTEP] rw [Fin.ext_iff] at this [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁ : s₁.length = 0 this✝ : bot s₁ = top s₁ this : ↑(Fin.last s₂.length) = ↑0 ⊢ s₂.length = 0 [PROOFSTEP] simpa [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ ⊢ ¬0 < s₂.length → ¬0 < s₁.length [PROOFSTEP] simp only [pos_iff_ne_zero, Ne.def, not_iff_not, Classical.not_not] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ ⊢ s₂.length = 0 → s₁.length = 0 [PROOFSTEP] exact length_eq_zero_of_bot_eq_bot_of_top_eq_top_of_length_eq_zero hb.symm ht.symm [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁0 : s₁.length = 0 ⊢ s₁ = s₂ [PROOFSTEP] have : ∀ x, x ∈ s₁ ↔ x = s₁.top := fun x => ⟨fun hx => forall_mem_eq_of_length_eq_zero hs₁0 hx s₁.top_mem, fun hx => hx.symm ▸ s₁.top_mem⟩ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁0 : s₁.length = 0 this : ∀ (x : X), x ∈ s₁ ↔ x = top s₁ ⊢ s₁ = s₂ [PROOFSTEP] have : ∀ x, x ∈ s₂ ↔ x = s₂.top := fun x => ⟨fun hx => forall_mem_eq_of_length_eq_zero (length_eq_zero_of_bot_eq_bot_of_top_eq_top_of_length_eq_zero hb ht hs₁0) hx s₂.top_mem, fun hx => hx.symm ▸ s₂.top_mem⟩ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁0 : s₁.length = 0 this✝ : ∀ (x : X), x ∈ s₁ ↔ x = top s₁ this : ∀ (x : X), x ∈ s₂ ↔ x = top s₂ ⊢ s₁ = s₂ [PROOFSTEP] ext [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hs₁0 : s₁.length = 0 this✝ : ∀ (x : X), x ∈ s₁ ↔ x = top s₁ this : ∀ (x : X), x ∈ s₂ ↔ x = top s₂ x✝ : X ⊢ x✝ ∈ s₁ ↔ x✝ ∈ s₂ [PROOFSTEP] simp [*] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = s.length ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] induction' hn : s.length with n ih generalizing s x [GOAL] case zero X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.zero ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.zero ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] exact (ne_of_gt (lt_of_le_of_lt hb (lt_of_isMaximal hm)) (forall_mem_eq_of_length_eq_zero hn s.top_mem s.bot_mem)).elim [GOAL] case succ X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] have h0s : 0 < s.length := hn.symm ▸ Nat.succ_pos _ [GOAL] case succ X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] by_cases hetx : s.eraseTop.top = x [GOAL] case pos X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : top (eraseTop s) = x ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] use s.eraseTop [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : top (eraseTop s) = x ⊢ bot (eraseTop s) = bot s ∧ (eraseTop s).length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc (eraseTop s) (top s) (_ : IsMaximal (top (eraseTop s)) (top s))) [PROOFSTEP] simp [← hetx, hn] -- Porting note: `rfl` is required. [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : top (eraseTop s) = x ⊢ Equivalent s s [PROOFSTEP] rfl [GOAL] case neg X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] have imxs : IsMaximal (x ⊓ s.eraseTop.top) s.eraseTop.top := isMaximal_of_eq_inf x s.top rfl (Ne.symm hetx) hm (isMaximal_eraseTop_top h0s) [GOAL] case neg X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] have := ih _ _ imxs (le_inf (by simpa) (le_top_of_mem s.eraseTop.bot_mem)) (by simp [hn]) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) ⊢ bot (eraseTop s) ≤ x [PROOFSTEP] simpa [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) ⊢ (eraseTop s).length = n [PROOFSTEP] simp [hn] [GOAL] case neg X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) this : ∃ t, bot t = bot (eraseTop s) ∧ t.length + 1 = n ∧ ∃ htx, Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] rcases this with ⟨t, htb, htl, htt, hteqv⟩ [GOAL] case neg.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] have hmtx : IsMaximal t.top x := isMaximal_of_eq_inf s.eraseTop.top s.top (by rw [inf_comm, htt]) hetx (isMaximal_eraseTop_top h0s) hm [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) ⊢ top (eraseTop s) ⊓ x = top t [PROOFSTEP] rw [inf_comm, htt] [GOAL] case neg.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) [PROOFSTEP] use snoc t x hmtx [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ bot (snoc t x hmtx) = bot s ∧ (snoc t x hmtx).length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc (snoc t x hmtx) (top s) (_ : IsMaximal (top (snoc t x hmtx)) (top s))) [PROOFSTEP] refine' ⟨by simp [htb], by simp [htl], by simp, _⟩ [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ bot (snoc t x hmtx) = bot s [PROOFSTEP] simp [htb] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ (snoc t x hmtx).length + 1 = Nat.succ n [PROOFSTEP] simp [htl] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ top (snoc t x hmtx) = x [PROOFSTEP] simp [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ Equivalent s (snoc (snoc t x hmtx) (top s) (_ : IsMaximal (top (snoc t x hmtx)) (top s))) [PROOFSTEP] have : s.Equivalent ((snoc t s.eraseTop.top (htt.symm ▸ imxs)).snoc s.top (by simpa using isMaximal_eraseTop_top h0s)) := by conv_lhs => rw [eq_snoc_eraseTop h0s] exact Equivalent.snoc hteqv (by simpa using (isMaximal_eraseTop_top h0s).iso_refl) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s) [PROOFSTEP] simpa using isMaximal_eraseTop_top h0s [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ Equivalent s (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) [PROOFSTEP] conv_lhs => rw [eq_snoc_eraseTop h0s] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x | s [PROOFSTEP] rw [eq_snoc_eraseTop h0s] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x | s [PROOFSTEP] rw [eq_snoc_eraseTop h0s] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x | s [PROOFSTEP] rw [eq_snoc_eraseTop h0s] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ Equivalent (snoc (eraseTop s) (top s) (_ : IsMaximal (top (eraseTop s)) (top s))) (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) [PROOFSTEP] exact Equivalent.snoc hteqv (by simpa using (isMaximal_eraseTop_top h0s).iso_refl) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x ⊢ Iso (top (eraseTop s), top s) (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))), top s) [PROOFSTEP] simpa using (isMaximal_eraseTop_top h0s).iso_refl [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x this : Equivalent s (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) ⊢ Equivalent s (snoc (snoc t x hmtx) (top s) (_ : IsMaximal (top (snoc t x hmtx)) (top s))) [PROOFSTEP] refine' this.trans _ [GOAL] case h X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x this : Equivalent s (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) ⊢ Equivalent (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) (snoc (snoc t x hmtx) (top s) (_ : IsMaximal (top (snoc t x hmtx)) (top s))) [PROOFSTEP] refine' Equivalent.snoc_snoc_swap _ _ [GOAL] case h.refine'_1 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x this : Equivalent s (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) ⊢ Iso (top t, top (eraseTop s)) (x, top s) [PROOFSTEP] exact iso_symm (second_iso_of_eq hm (sup_eq_of_isMaximal hm (isMaximal_eraseTop_top h0s) (Ne.symm hetx)) htt.symm) [GOAL] case h.refine'_2 X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x this : Equivalent s (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) ⊢ Iso (top (eraseTop s), top s) (top t, x) [PROOFSTEP] exact second_iso_of_eq (isMaximal_eraseTop_top h0s) (sup_eq_of_isMaximal (isMaximal_eraseTop_top h0s) hm hetx) (by rw [inf_comm, htt]) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s✝ : CompositionSeries X x✝¹ : X hm✝ : IsMaximal x✝¹ (top s✝) hb✝ : bot s✝ ≤ x✝¹ x✝ : ℕ hn✝ : s✝.length = x✝ n : ℕ ih : ∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)), bot s ≤ x → s.length = n → ∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s))) s : CompositionSeries X x : X hm : IsMaximal x (top s) hb : bot s ≤ x hn : s.length = Nat.succ n h0s : 0 < s.length hetx : ¬top (eraseTop s) = x imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s)) t : CompositionSeries X htb : bot t = bot (eraseTop s) htl : t.length + 1 = n htt : top t = x ⊓ top (eraseTop s) hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) hmtx : IsMaximal (top t) x this : Equivalent s (snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s) (_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s))) ⊢ top (eraseTop s) ⊓ x = top t [PROOFSTEP] rw [inf_comm, htt] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ ⊢ Equivalent s₁ s₂ [PROOFSTEP] induction' hle : s₁.length with n ih generalizing s₁ s₂ [GOAL] case zero X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.zero ⊢ Equivalent s₁ s₂ [PROOFSTEP] rw [eq_of_bot_eq_bot_of_top_eq_top_of_length_eq_zero hb ht hle] [GOAL] case succ X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n ⊢ Equivalent s₁ s₂ [PROOFSTEP] have h0s₂ : 0 < s₂.length := length_pos_of_bot_eq_bot_of_top_eq_top_of_length_pos hb ht (hle.symm ▸ Nat.succ_pos _) [GOAL] case succ X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length ⊢ Equivalent s₁ s₂ [PROOFSTEP] rcases exists_top_eq_snoc_equivalant s₁ s₂.eraseTop.top (ht.symm ▸ isMaximal_eraseTop_top h0s₂) (hb.symm ▸ s₂.bot_eraseTop ▸ bot_le_of_mem (top_mem _)) with ⟨t, htb, htl, htt, hteq⟩ [GOAL] case succ.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) ⊢ Equivalent s₁ s₂ [PROOFSTEP] have := ih t s₂.eraseTop (by simp [htb, ← hb]) htt (Nat.succ_inj'.1 (htl.trans hle)) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) ⊢ bot t = bot (eraseTop s₂) [PROOFSTEP] simp [htb, ← hb] [GOAL] case succ.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) ⊢ Equivalent s₁ s₂ [PROOFSTEP] refine' hteq.trans _ [GOAL] case succ.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) ⊢ Equivalent (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) s₂ [PROOFSTEP] conv_rhs => rw [eq_snoc_eraseTop h0s₂] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) | s₂ [PROOFSTEP] rw [eq_snoc_eraseTop h0s₂] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) | s₂ [PROOFSTEP] rw [eq_snoc_eraseTop h0s₂] [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) | s₂ [PROOFSTEP] rw [eq_snoc_eraseTop h0s₂] [GOAL] case succ.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) ⊢ Equivalent (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) (snoc (eraseTop s₂) (top s₂) (_ : IsMaximal (top (eraseTop s₂)) (top s₂))) [PROOFSTEP] simp only [ht] [GOAL] case succ.intro.intro.intro.intro X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) ⊢ Equivalent (snoc t (top s₂) (_ : IsMaximal (top t) (top s₂))) (snoc (eraseTop s₂) (top s₂) (_ : IsMaximal (top (eraseTop s₂)) (top s₂))) [PROOFSTEP] exact Equivalent.snoc this (by simp [htt, (isMaximal_eraseTop_top h0s₂).iso_refl]) [GOAL] X : Type u inst✝¹ : Lattice X inst✝ : JordanHolderLattice X s₁✝ s₂✝ : CompositionSeries X hb✝ : bot s₁✝ = bot s₂✝ ht✝ : top s₁✝ = top s₂✝ x✝ : ℕ hle✝ : s₁✝.length = x✝ n : ℕ ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂ s₁ s₂ : CompositionSeries X hb : bot s₁ = bot s₂ ht : top s₁ = top s₂ hle : s₁.length = Nat.succ n h0s₂ : 0 < s₂.length t : CompositionSeries X htb : bot t = bot s₁ htl : t.length + 1 = s₁.length htt : top t = top (eraseTop s₂) hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) this : Equivalent t (eraseTop s₂) ⊢ Iso (top t, top s₂) (top (eraseTop s₂), top s₂) [PROOFSTEP] simp [htt, (isMaximal_eraseTop_top h0s₂).iso_refl]
{"mathlib_filename": "Mathlib.Order.JordanHolder", "llama_tokens": 53535}
[GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α ⊢ a :: l ∈ subchain s ↔ a ∈ s ∧ l ∈ subchain s ∧ ∀ (b : α), b ∈ head? l → a < b [PROOFSTEP] simp only [subchain, mem_setOf_eq, forall_mem_cons, chain'_cons', and_left_comm, and_comm, and_assoc] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α ⊢ [a] ∈ subchain s ↔ a ∈ s [PROOFSTEP] simp [cons_mem_subchain_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n : ℕ hn : ↑n ≤ chainHeight s ⊢ ∃ l, l ∈ subchain s ∧ length l = n [PROOFSTEP] cases' (le_top : s.chainHeight ≤ ⊤).eq_or_lt with ha ha [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n : ℕ hn : ↑n ≤ chainHeight s ha : chainHeight s = ⊤ ⊢ ∃ l, l ∈ subchain s ∧ length l = n [PROOFSTEP] rw [chainHeight_eq_iSup_subtype] at ha [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n : ℕ hn : ↑n ≤ chainHeight s ha : chainHeight s < ⊤ ⊢ ∃ l, l ∈ subchain s ∧ length l = n [PROOFSTEP] rw [chainHeight_eq_iSup_subtype] at ha [GOAL] case inl α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n : ℕ hn : ↑n ≤ chainHeight s ha : ⨆ (l : ↑(subchain s)), ↑(length ↑l) = ⊤ ⊢ ∃ l, l ∈ subchain s ∧ length l = n [PROOFSTEP] obtain ⟨_, ⟨⟨l, h₁, h₂⟩, rfl⟩, h₃⟩ := not_bddAbove_iff'.mp ((WithTop.iSup_coe_eq_top _).mp ha) n [GOAL] case inl.intro.intro.intro.mk.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l✝ : List α a : α n : ℕ hn : ↑n ≤ chainHeight s ha : ⨆ (l : ↑(subchain s)), ↑(length ↑l) = ⊤ l : List α h₁ : Chain' (fun x x_1 => x < x_1) l h₂ : ∀ (i : α), i ∈ l → i ∈ s h₃ : ¬(fun x => ↑(length ↑x)) { val := l, property := (_ : Chain' (fun x x_1 => x < x_1) l ∧ ∀ (i : α), i ∈ l → i ∈ s) } ≤ n ⊢ ∃ l, l ∈ subchain s ∧ length l = n [PROOFSTEP] exact ⟨l.take n, ⟨h₁.take _, fun x h ↦ h₂ _ <| take_subset _ _ h⟩, (l.length_take n).trans <| min_eq_left <| le_of_not_ge h₃⟩ [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n : ℕ hn : ↑n ≤ chainHeight s ha : ⨆ (l : ↑(subchain s)), ↑(length ↑l) < ⊤ ⊢ ∃ l, l ∈ subchain s ∧ length l = n [PROOFSTEP] rw [ENat.iSup_coe_lt_top] at ha [GOAL] case inr α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n : ℕ hn : ↑n ≤ chainHeight s ha : BddAbove (range fun l => length ↑l) ⊢ ∃ l, l ∈ subchain s ∧ length l = n [PROOFSTEP] obtain ⟨⟨l, h₁, h₂⟩, e : l.length = _⟩ := Nat.sSup_mem (Set.range_nonempty _) ha [GOAL] case inr.intro.mk.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l✝ : List α a : α n : ℕ hn : ↑n ≤ chainHeight s ha : BddAbove (range fun l => length ↑l) l : List α h₁ : Chain' (fun x x_1 => x < x_1) l h₂ : ∀ (i : α), i ∈ l → i ∈ s e : length l = sSup (range fun l => length ↑l) ⊢ ∃ l, l ∈ subchain s ∧ length l = n [PROOFSTEP] refine' ⟨l.take n, ⟨h₁.take _, fun x h ↦ h₂ _ <| take_subset _ _ h⟩, (l.length_take n).trans <| min_eq_left <| _⟩ [GOAL] case inr.intro.mk.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l✝ : List α a : α n : ℕ hn : ↑n ≤ chainHeight s ha : BddAbove (range fun l => length ↑l) l : List α h₁ : Chain' (fun x x_1 => x < x_1) l h₂ : ∀ (i : α), i ∈ l → i ∈ s e : length l = sSup (range fun l => length ↑l) ⊢ n ≤ length l [PROOFSTEP] rwa [e, ← Nat.cast_le (α := ℕ∞), sSup_range, ENat.coe_iSup ha, ← chainHeight_eq_iSup_subtype] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n : ℕ ⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l] [PROOFSTEP] tfae_have 1 → 2 [GOAL] case tfae_1_to_2 α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n : ℕ ⊢ ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n [PROOFSTEP] exact s.exists_chain_of_le_chainHeight [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n : ℕ tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n ⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l] [PROOFSTEP] tfae_have 2 → 3 [GOAL] case tfae_2_to_3 α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n : ℕ tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n ⊢ (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l [PROOFSTEP] rintro ⟨l, hls, he⟩ [GOAL] case tfae_2_to_3.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l✝ : List α a : α n : ℕ tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n l : List α hls : l ∈ subchain s he : length l = n ⊢ ∃ l, l ∈ subchain s ∧ n ≤ length l [PROOFSTEP] exact ⟨l, hls, he.ge⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n : ℕ tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n tfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l ⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l] [PROOFSTEP] tfae_have 3 → 1 [GOAL] case tfae_3_to_1 α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n : ℕ tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n tfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l ⊢ (∃ l, l ∈ subchain s ∧ n ≤ length l) → ↑n ≤ chainHeight s [PROOFSTEP] rintro ⟨l, hs, hn⟩ [GOAL] case tfae_3_to_1.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l✝ : List α a : α n : ℕ tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n tfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l l : List α hs : l ∈ subchain s hn : n ≤ length l ⊢ ↑n ≤ chainHeight s [PROOFSTEP] exact le_iSup₂_of_le l hs (WithTop.coe_le_coe.2 hn) [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n : ℕ tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n tfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l tfae_3_to_1 : (∃ l, l ∈ subchain s ∧ n ≤ length l) → ↑n ≤ chainHeight s ⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l] [PROOFSTEP] tfae_finish [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α ⊢ chainHeight s = ⊤ ↔ ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n [PROOFSTEP] refine' ⟨fun h n ↦ le_chainHeight_iff.1 (le_top.trans_eq h.symm), fun h ↦ _⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n ⊢ chainHeight s = ⊤ [PROOFSTEP] contrapose! h [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α h : chainHeight s ≠ ⊤ ⊢ ∃ n, ∀ (l : List α), l ∈ subchain s → length l ≠ n [PROOFSTEP] obtain ⟨n, hn⟩ := WithTop.ne_top_iff_exists.1 h [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α h : chainHeight s ≠ ⊤ n : ℕ hn : ↑n = chainHeight s ⊢ ∃ n, ∀ (l : List α), l ∈ subchain s → length l ≠ n [PROOFSTEP] exact ⟨n + 1, fun l hs ↦ (Nat.lt_succ_iff.2 <| Nat.cast_le.1 <| (length_le_chainHeight_of_mem_subchain hs).trans_eq hn.symm).ne⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α ⊢ 1 ≤ chainHeight s ↔ Set.Nonempty s [PROOFSTEP] rw [← Nat.cast_one, Set.le_chainHeight_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α ⊢ (∃ l, l ∈ subchain s ∧ length l = 1) ↔ Set.Nonempty s [PROOFSTEP] simp only [length_eq_one, @and_comm (_ ∈ _), @eq_comm _ _ [_], exists_exists_eq_and, singleton_mem_subchain_iff, Set.Nonempty] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α ⊢ chainHeight s = 0 ↔ s = ∅ [PROOFSTEP] rw [← not_iff_not, ← Ne.def, ← ENat.one_le_iff_ne_zero, one_le_chainHeight_iff, nonempty_iff_ne_empty] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α n m : ℕ ⊢ ↑n ≤ chainHeight s + ↑m ↔ ∃ l, l ∈ subchain s ∧ n ≤ length l + m [PROOFSTEP] simp_rw [← tsub_le_iff_right, ← ENat.coe_sub, (le_chainHeight_TFAE s (n - m)).out 0 2] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β n m : ℕ ⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m ↔ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m [PROOFSTEP] refine' ⟨fun e l h ↦ le_chainHeight_add_nat_iff.1 ((add_le_add_right (length_le_chainHeight_of_mem_subchain h) _).trans e), fun H ↦ _⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m ⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m [PROOFSTEP] by_cases s.chainHeight = ⊤ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m ⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m [PROOFSTEP] by_cases s.chainHeight = ⊤ [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : chainHeight s = ⊤ ⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m [PROOFSTEP] suffices t.chainHeight = ⊤ by rw [this, top_add] exact le_top [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : chainHeight s = ⊤ this : chainHeight t = ⊤ ⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m [PROOFSTEP] rw [this, top_add] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : chainHeight s = ⊤ this : chainHeight t = ⊤ ⊢ chainHeight s + ↑n ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : chainHeight s = ⊤ ⊢ chainHeight t = ⊤ [PROOFSTEP] rw [chainHeight_eq_top_iff] at h ⊢ [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n ⊢ ∀ (n : ℕ), ∃ l, l ∈ subchain t ∧ length l = n [PROOFSTEP] intro k [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n k : ℕ ⊢ ∃ l, l ∈ subchain t ∧ length l = k [PROOFSTEP] have := (le_chainHeight_TFAE t k).out 1 2 [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n k : ℕ this : (∃ l, l ∈ subchain t ∧ length l = k) ↔ ∃ l, l ∈ subchain t ∧ k ≤ length l ⊢ ∃ l, l ∈ subchain t ∧ length l = k [PROOFSTEP] rw [this] [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n k : ℕ this : (∃ l, l ∈ subchain t ∧ length l = k) ↔ ∃ l, l ∈ subchain t ∧ k ≤ length l ⊢ ∃ l, l ∈ subchain t ∧ k ≤ length l [PROOFSTEP] obtain ⟨l, hs, hl⟩ := h (k + m) [GOAL] case pos.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l✝ : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n k : ℕ this : (∃ l, l ∈ subchain t ∧ length l = k) ↔ ∃ l, l ∈ subchain t ∧ k ≤ length l l : List α hs : l ∈ subchain s hl : length l = k + m ⊢ ∃ l, l ∈ subchain t ∧ k ≤ length l [PROOFSTEP] obtain ⟨l', ht, hl'⟩ := H l hs [GOAL] case pos.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l✝ : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n k : ℕ this : (∃ l, l ∈ subchain t ∧ length l = k) ↔ ∃ l, l ∈ subchain t ∧ k ≤ length l l : List α hs : l ∈ subchain s hl : length l = k + m l' : List β ht : l' ∈ subchain t hl' : length l + n ≤ length l' + m ⊢ ∃ l, l ∈ subchain t ∧ k ≤ length l [PROOFSTEP] exact ⟨l', ht, (add_le_add_iff_right m).1 <| _root_.trans (hl.symm.trans_le le_self_add) hl'⟩ [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : ¬chainHeight s = ⊤ ⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m [PROOFSTEP] obtain ⟨k, hk⟩ := WithTop.ne_top_iff_exists.1 h [GOAL] case neg.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : ¬chainHeight s = ⊤ k : ℕ hk : ↑k = chainHeight s ⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m [PROOFSTEP] obtain ⟨l, hs, hl⟩ := le_chainHeight_iff.1 hk.le [GOAL] case neg.intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l✝ : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : ¬chainHeight s = ⊤ k : ℕ hk : ↑k = chainHeight s l : List α hs : l ∈ subchain s hl : length l = k ⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m [PROOFSTEP] rw [← hk, ← hl] [GOAL] case neg.intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l✝ : List α a : α s : Set α t : Set β n m : ℕ H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m h : ¬chainHeight s = ⊤ k : ℕ hk : ↑k = chainHeight s l : List α hs : l ∈ subchain s hl : length l = k ⊢ ↑(length l) + ↑n ≤ chainHeight t + ↑m [PROOFSTEP] exact le_chainHeight_add_nat_iff.2 (H l hs) [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β ⊢ TFAE [chainHeight s ≤ chainHeight t, ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l = length l', ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l'] [PROOFSTEP] tfae_have 1 ↔ 3 [GOAL] case tfae_1_iff_3 α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β ⊢ chainHeight s ≤ chainHeight t ↔ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l' [PROOFSTEP] convert ← chainHeight_add_le_chainHeight_add s t 0 0 [GOAL] case h.e'_1.h.e'_3 α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β ⊢ chainHeight s + ↑0 = chainHeight s [PROOFSTEP] apply add_zero [GOAL] case h.e'_1.h.e'_4 α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β ⊢ chainHeight t + ↑0 = chainHeight t [PROOFSTEP] apply add_zero [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β tfae_1_iff_3 : chainHeight s ≤ chainHeight t ↔ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l' ⊢ TFAE [chainHeight s ≤ chainHeight t, ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l = length l', ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l'] [PROOFSTEP] tfae_have 2 ↔ 3 [GOAL] case tfae_2_iff_3 α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β tfae_1_iff_3 : chainHeight s ≤ chainHeight t ↔ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l' ⊢ (∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l = length l') ↔ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l' [PROOFSTEP] refine' forall₂_congr fun l hl ↦ _ [GOAL] case tfae_2_iff_3 α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l✝ : List α a : α s : Set α t : Set β tfae_1_iff_3 : chainHeight s ≤ chainHeight t ↔ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l' l : List α hl : l ∈ subchain s ⊢ (∃ l', l' ∈ subchain t ∧ length l = length l') ↔ ∃ l', l' ∈ subchain t ∧ length l ≤ length l' [PROOFSTEP] simp_rw [← (le_chainHeight_TFAE t l.length).out 1 2, eq_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t✝ : Set α l : List α a : α s : Set α t : Set β tfae_1_iff_3 : chainHeight s ≤ chainHeight t ↔ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l' tfae_2_iff_3 : (∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l = length l') ↔ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l' ⊢ TFAE [chainHeight s ≤ chainHeight t, ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l = length l', ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l'] [PROOFSTEP] tfae_finish [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α ⊢ chainHeight (f '' s) = chainHeight s [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α ⊢ chainHeight (f '' s) ≤ chainHeight s [PROOFSTEP] rw [chainHeight_le_chainHeight_iff] [GOAL] case a α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α ⊢ chainHeight s ≤ chainHeight (f '' s) [PROOFSTEP] rw [chainHeight_le_chainHeight_iff] [GOAL] case a α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α ⊢ ∀ (l : List β), l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ length l = length l' [PROOFSTEP] suffices ∀ l ∈ (f '' s).subchain, ∃ l' ∈ s.subchain, map f l' = l by intro l hl obtain ⟨l', h₁, rfl⟩ := this l hl exact ⟨l', h₁, length_map _ _⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α this : ∀ (l : List β), l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = l ⊢ ∀ (l : List β), l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ length l = length l' [PROOFSTEP] intro l hl [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l✝ : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α this : ∀ (l : List β), l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = l l : List β hl : l ∈ subchain (f '' s) ⊢ ∃ l', l' ∈ subchain s ∧ length l = length l' [PROOFSTEP] obtain ⟨l', h₁, rfl⟩ := this l hl [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α this : ∀ (l : List β), l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = l l' : List α h₁ : l' ∈ subchain s hl : map f l' ∈ subchain (f '' s) ⊢ ∃ l'_1, l'_1 ∈ subchain s ∧ length (map f l') = length l'_1 [PROOFSTEP] exact ⟨l', h₁, length_map _ _⟩ [GOAL] case a α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α ⊢ ∀ (l : List β), l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = l [PROOFSTEP] intro l [GOAL] case a α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l✝ : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α l : List β ⊢ l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = l [PROOFSTEP] induction' l with x xs hx [GOAL] case a.nil α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α ⊢ [] ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = [] [PROOFSTEP] exact fun _ ↦ ⟨nil, ⟨trivial, fun x h ↦ (not_mem_nil x h).elim⟩, rfl⟩ [GOAL] case a.cons α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α x : β xs : List β hx : xs ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = xs ⊢ x :: xs ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = x :: xs [PROOFSTEP] intro h [GOAL] case a.cons α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α x : β xs : List β hx : xs ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = xs h : x :: xs ∈ subchain (f '' s) ⊢ ∃ l', l' ∈ subchain s ∧ map f l' = x :: xs [PROOFSTEP] rw [cons_mem_subchain_iff] at h [GOAL] case a.cons α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α x : β xs : List β hx : xs ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = xs h : x ∈ f '' s ∧ xs ∈ subchain (f '' s) ∧ ∀ (b : β), b ∈ head? xs → x < b ⊢ ∃ l', l' ∈ subchain s ∧ map f l' = x :: xs [PROOFSTEP] obtain ⟨⟨x, hx', rfl⟩, h₁, h₂⟩ := h [GOAL] case a.cons.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α xs : List β hx : xs ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = xs x : α hx' : x ∈ s h₁ : xs ∈ subchain (f '' s) h₂ : ∀ (b : β), b ∈ head? xs → f x < b ⊢ ∃ l', l' ∈ subchain s ∧ map f l' = f x :: xs [PROOFSTEP] obtain ⟨l', h₃, rfl⟩ := hx h₁ [GOAL] case a.cons.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α x : α hx' : x ∈ s l' : List α h₃ : l' ∈ subchain s hx : map f l' ∈ subchain (f '' s) → ∃ l'_1, l'_1 ∈ subchain s ∧ map f l'_1 = map f l' h₁ : map f l' ∈ subchain (f '' s) h₂ : ∀ (b : β), b ∈ head? (map f l') → f x < b ⊢ ∃ l'_1, l'_1 ∈ subchain s ∧ map f l'_1 = f x :: map f l' [PROOFSTEP] refine' ⟨x :: l', Set.cons_mem_subchain_iff.mpr ⟨hx', h₃, _⟩, rfl⟩ [GOAL] case a.cons.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α x : α hx' : x ∈ s l' : List α h₃ : l' ∈ subchain s hx : map f l' ∈ subchain (f '' s) → ∃ l'_1, l'_1 ∈ subchain s ∧ map f l'_1 = map f l' h₁ : map f l' ∈ subchain (f '' s) h₂ : ∀ (b : β), b ∈ head? (map f l') → f x < b ⊢ ∀ (b : α), b ∈ head? l' → x < b [PROOFSTEP] cases l' [GOAL] case a.cons.intro.intro.intro.intro.intro.intro.nil α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α x : α hx' : x ∈ s h₃ : [] ∈ subchain s hx : map f [] ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = map f [] h₁ : map f [] ∈ subchain (f '' s) h₂ : ∀ (b : β), b ∈ head? (map f []) → f x < b ⊢ ∀ (b : α), b ∈ head? [] → x < b [PROOFSTEP] simp [GOAL] case a.cons.intro.intro.intro.intro.intro.intro.cons α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α x : α hx' : x ∈ s head✝ : α tail✝ : List α h₃ : head✝ :: tail✝ ∈ subchain s hx : map f (head✝ :: tail✝) ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = map f (head✝ :: tail✝) h₁ : map f (head✝ :: tail✝) ∈ subchain (f '' s) h₂ : ∀ (b : β), b ∈ head? (map f (head✝ :: tail✝)) → f x < b ⊢ ∀ (b : α), b ∈ head? (head✝ :: tail✝) → x < b [PROOFSTEP] simpa [← hf] using h₂ [GOAL] case a α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α ⊢ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain (f '' s) ∧ length l = length l' [PROOFSTEP] intro l hl [GOAL] case a α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l✝ : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α l : List α hl : l ∈ subchain s ⊢ ∃ l', l' ∈ subchain (f '' s) ∧ length l = length l' [PROOFSTEP] refine' ⟨l.map f, ⟨_, _⟩, _⟩ [GOAL] case a.refine'_1 α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l✝ : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α l : List α hl : l ∈ subchain s ⊢ Chain' (fun x x_1 => x < x_1) (map f l) [PROOFSTEP] simp_rw [chain'_map, ← hf] [GOAL] case a.refine'_1 α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l✝ : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α l : List α hl : l ∈ subchain s ⊢ Chain' (fun a b => a < b) l [PROOFSTEP] exact hl.1 [GOAL] case a.refine'_2 α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l✝ : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α l : List α hl : l ∈ subchain s ⊢ ∀ (i : β), i ∈ map f l → i ∈ f '' s [PROOFSTEP] intro _ e [GOAL] case a.refine'_2 α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l✝ : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α l : List α hl : l ∈ subchain s i✝ : β e : i✝ ∈ map f l ⊢ i✝ ∈ f '' s [PROOFSTEP] obtain ⟨a, ha, rfl⟩ := mem_map.mp e [GOAL] case a.refine'_2.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l✝ : List α a✝ : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α l : List α hl : l ∈ subchain s a : α ha : a ∈ l e : f a ∈ map f l ⊢ f a ∈ f '' s [PROOFSTEP] exact Set.mem_image_of_mem _ (hl.2 _ ha) [GOAL] case a.refine'_3 α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s✝ t : Set α l✝ : List α a : α f : α → β hf : ∀ {x y : α}, x < y ↔ f x < f y s : Set α l : List α hl : l ∈ subchain s ⊢ length l = length (map f l) [PROOFSTEP] rw [length_map] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α ⊢ chainHeight (↑ofDual ⁻¹' s) = chainHeight s [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α ⊢ chainHeight (↑ofDual ⁻¹' s) ≤ chainHeight s [PROOFSTEP] rw [chainHeight_le_chainHeight_iff] [GOAL] case a α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α ⊢ ∀ (l : List αᵒᵈ), l ∈ subchain (↑ofDual ⁻¹' s) → ∃ l', l' ∈ subchain s ∧ length l = length l' [PROOFSTEP] rintro l ⟨h₁, h₂⟩ [GOAL] case a.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l✝ : List α a : α l : List αᵒᵈ h₁ : Chain' (fun x x_1 => x < x_1) l h₂ : ∀ (i : αᵒᵈ), i ∈ l → i ∈ ↑ofDual ⁻¹' s ⊢ ∃ l', l' ∈ subchain s ∧ length l = length l' [PROOFSTEP] exact ⟨l.reverse, ⟨chain'_reverse.mpr h₁, fun i h ↦ h₂ i (mem_reverse.mp h)⟩, (length_reverse _).symm⟩ [GOAL] case a α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α ⊢ chainHeight s ≤ chainHeight (↑ofDual ⁻¹' s) [PROOFSTEP] rw [chainHeight_le_chainHeight_iff] [GOAL] case a α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l : List α a : α ⊢ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain (↑ofDual ⁻¹' s) ∧ length l = length l' [PROOFSTEP] rintro l ⟨h₁, h₂⟩ [GOAL] case a.intro α : Type u_1 β : Type u_2 inst✝¹ : LT α inst✝ : LT β s t : Set α l✝ : List α a : α l : List α h₁ : Chain' (fun x x_1 => x < x_1) l h₂ : ∀ (i : α), i ∈ l → i ∈ s ⊢ ∃ l', l' ∈ subchain (↑ofDual ⁻¹' s) ∧ length l = length l' [PROOFSTEP] exact ⟨l.reverse, ⟨chain'_reverse.mpr h₁, fun i h ↦ h₂ i (mem_reverse.mp h)⟩, (length_reverse _).symm⟩ [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α ⊢ chainHeight s = ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Ici i) [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α ⊢ chainHeight s ≤ ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Ici i) [PROOFSTEP] refine' iSup₂_le _ [GOAL] case a α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α ⊢ ∀ (i : List α), i ∈ subchain s → ↑(length i) ≤ ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Ici i) [PROOFSTEP] rintro (_ | ⟨x, xs⟩) h [GOAL] case a.nil α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α h : [] ∈ subchain s ⊢ ↑(length []) ≤ ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Ici i) [PROOFSTEP] exact zero_le _ [GOAL] case a.cons α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α x : α xs : List α h : x :: xs ∈ subchain s ⊢ ↑(length (x :: xs)) ≤ ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Ici i) [PROOFSTEP] apply le_trans _ (le_iSup₂ x (cons_mem_subchain_iff.mp h).1) [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α x : α xs : List α h : x :: xs ∈ subchain s ⊢ ↑(length (x :: xs)) ≤ chainHeight (s ∩ Ici x) [PROOFSTEP] apply length_le_chainHeight_of_mem_subchain [GOAL] case hl α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α x : α xs : List α h : x :: xs ∈ subchain s ⊢ x :: xs ∈ subchain (s ∩ Ici x) [PROOFSTEP] refine' ⟨h.1, fun i hi ↦ ⟨h.2 i hi, _⟩⟩ [GOAL] case hl α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α x : α xs : List α h : x :: xs ∈ subchain s i : α hi : i ∈ x :: xs ⊢ i ∈ Ici x [PROOFSTEP] cases hi [GOAL] case hl.head α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α x : α xs : List α h : x :: xs ∈ subchain s ⊢ x ∈ Ici x [PROOFSTEP] exact left_mem_Ici [GOAL] case hl.tail α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α x : α xs : List α h : x :: xs ∈ subchain s i : α a✝ : Mem i xs ⊢ i ∈ Ici x [PROOFSTEP] rename_i hi [GOAL] case hl.tail α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α x : α xs : List α h : x :: xs ∈ subchain s i : α hi : Mem i xs ⊢ i ∈ Ici x [PROOFSTEP] cases' chain'_iff_pairwise.mp h.1 with _ _ h' [GOAL] case hl.tail.cons α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α x : α xs : List α h : x :: xs ∈ subchain s i : α hi : Mem i xs a✝ : List.Pairwise (fun x x_1 => x < x_1) xs h' : ∀ (a' : α), a' ∈ xs → x < a' ⊢ i ∈ Ici x [PROOFSTEP] exact (h' _ hi).le [GOAL] case a α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α ⊢ ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Ici i) ≤ chainHeight s [PROOFSTEP] exact iSup₂_le fun i _ ↦ chainHeight_mono <| Set.inter_subset_left _ _ [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α ⊢ chainHeight s = ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Iic i) [PROOFSTEP] simp_rw [← chainHeight_dual (_ ∩ _)] [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α ⊢ chainHeight s = ⨆ (i : α) (_ : i ∈ s), chainHeight (↑ofDual ⁻¹' (s ∩ Iic i)) [PROOFSTEP] rw [← chainHeight_dual, chainHeight_eq_iSup_Ici] [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α ⊢ ⨆ (i : αᵒᵈ) (_ : i ∈ ↑ofDual ⁻¹' s), chainHeight (↑ofDual ⁻¹' s ∩ Ici i) = ⨆ (i : α) (_ : i ∈ s), chainHeight (↑ofDual ⁻¹' (s ∩ Iic i)) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b ⊢ chainHeight (insert a s) = chainHeight s + 1 [PROOFSTEP] rw [← add_zero (insert a s).chainHeight] [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b ⊢ chainHeight (insert a s) + 0 = chainHeight s + 1 [PROOFSTEP] change (insert a s).chainHeight + (0 : ℕ) = s.chainHeight + (1 : ℕ) [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b ⊢ chainHeight (insert a s) + ↑0 = chainHeight s + ↑1 [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b ⊢ chainHeight (insert a s) + ↑0 ≤ chainHeight s + ↑1 [PROOFSTEP] rw [chainHeight_add_le_chainHeight_add] [GOAL] case a α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b ⊢ chainHeight s + ↑1 ≤ chainHeight (insert a s) + ↑0 [PROOFSTEP] rw [chainHeight_add_le_chainHeight_add] [GOAL] case a α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b ⊢ ∀ (l : List α), l ∈ subchain (insert a s) → ∃ l', l' ∈ subchain s ∧ length l + 0 ≤ length l' + 1 [PROOFSTEP] rintro (_ | ⟨y, ys⟩) h [GOAL] case a.nil α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b h : [] ∈ subchain (insert a s) ⊢ ∃ l', l' ∈ subchain s ∧ length [] + 0 ≤ length l' + 1 [PROOFSTEP] exact ⟨[], nil_mem_subchain _, zero_le _⟩ [GOAL] case a.cons α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b y : α ys : List α h : y :: ys ∈ subchain (insert a s) ⊢ ∃ l', l' ∈ subchain s ∧ length (y :: ys) + 0 ≤ length l' + 1 [PROOFSTEP] have h' := cons_mem_subchain_iff.mp h [GOAL] case a.cons α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b y : α ys : List α h : y :: ys ∈ subchain (insert a s) h' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b ⊢ ∃ l', l' ∈ subchain s ∧ length (y :: ys) + 0 ≤ length l' + 1 [PROOFSTEP] refine' ⟨ys, ⟨h'.2.1.1, fun i hi ↦ _⟩, by simp⟩ [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b y : α ys : List α h : y :: ys ∈ subchain (insert a s) h' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b ⊢ length (y :: ys) + 0 ≤ length ys + 1 [PROOFSTEP] simp [GOAL] case a.cons α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b y : α ys : List α h : y :: ys ∈ subchain (insert a s) h' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b i : α hi : i ∈ ys ⊢ i ∈ s [PROOFSTEP] apply (h'.2.1.2 i hi).resolve_left [GOAL] case a.cons α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b y : α ys : List α h : y :: ys ∈ subchain (insert a s) h' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b i : α hi : i ∈ ys ⊢ ¬i = a [PROOFSTEP] rintro rfl [GOAL] case a.cons α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α y : α ys : List α i : α hi : i ∈ ys hx : ∀ (b : α), b ∈ s → i < b h : y :: ys ∈ subchain (insert i s) h' : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b ⊢ False [PROOFSTEP] cases' chain'_iff_pairwise.mp h.1 with _ _ hy [GOAL] case a.cons.cons α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α y : α ys : List α i : α hi : i ∈ ys hx : ∀ (b : α), b ∈ s → i < b h : y :: ys ∈ subchain (insert i s) h' : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b a✝ : List.Pairwise (fun x x_1 => x < x_1) ys hy : ∀ (a' : α), a' ∈ ys → y < a' ⊢ False [PROOFSTEP] cases' h'.1 with h' h' [GOAL] case a.cons.cons.inl α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α y : α ys : List α i : α hi : i ∈ ys hx : ∀ (b : α), b ∈ s → i < b h : y :: ys ∈ subchain (insert i s) h'✝ : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b a✝ : List.Pairwise (fun x x_1 => x < x_1) ys hy : ∀ (a' : α), a' ∈ ys → y < a' h' : y = i ⊢ False case a.cons.cons.inr α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α y : α ys : List α i : α hi : i ∈ ys hx : ∀ (b : α), b ∈ s → i < b h : y :: ys ∈ subchain (insert i s) h'✝ : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b a✝ : List.Pairwise (fun x x_1 => x < x_1) ys hy : ∀ (a' : α), a' ∈ ys → y < a' h' : y ∈ s ⊢ False [PROOFSTEP] exacts [(hy _ hi).ne h', not_le_of_gt (hy _ hi) (hx _ h').le] [GOAL] case a α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b ⊢ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain (insert a s) ∧ length l + 1 ≤ length l' + 0 [PROOFSTEP] intro l hl [GOAL] case a α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b l : List α hl : l ∈ subchain s ⊢ ∃ l', l' ∈ subchain (insert a s) ∧ length l + 1 ≤ length l' + 0 [PROOFSTEP] refine' ⟨a :: l, ⟨_, _⟩, by simp⟩ [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b l : List α hl : l ∈ subchain s ⊢ length l + 1 ≤ length (a :: l) + 0 [PROOFSTEP] simp [GOAL] case a.refine'_1 α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b l : List α hl : l ∈ subchain s ⊢ Chain' (fun x x_1 => x < x_1) (a :: l) [PROOFSTEP] rw [chain'_cons'] [GOAL] case a.refine'_1 α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b l : List α hl : l ∈ subchain s ⊢ (∀ (y : α), y ∈ head? l → a < y) ∧ Chain' (fun x x_1 => x < x_1) l [PROOFSTEP] exact ⟨fun y hy ↦ hx _ (hl.2 _ (mem_of_mem_head? hy)), hl.1⟩ [GOAL] case a.refine'_2 α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b l : List α hl : l ∈ subchain s ⊢ ∀ (i : α), i ∈ a :: l → i ∈ insert a s [PROOFSTEP] rintro x (_ | _) [GOAL] case a.refine'_2.head α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b l : List α hl : l ∈ subchain s ⊢ a ∈ insert a s case a.refine'_2.tail α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α hx : ∀ (b : α), b ∈ s → a < b l : List α hl : l ∈ subchain s x : α a✝ : Mem x l ⊢ x ∈ insert a s [PROOFSTEP] exacts [Or.inl (Set.mem_singleton a), Or.inr (hl.2 x ‹_›)] [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α ha : ∀ (b : α), b ∈ s → b < a ⊢ chainHeight (insert a s) = chainHeight s + 1 [PROOFSTEP] rw [← chainHeight_dual, ← chainHeight_dual s] [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α a : α ha : ∀ (b : α), b ∈ s → b < a ⊢ chainHeight (↑ofDual ⁻¹' insert a s) = chainHeight (↑ofDual ⁻¹' s) + 1 [PROOFSTEP] exact chainHeight_insert_of_forall_gt _ ha [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α ⊢ chainHeight (s ∪ t) ≤ chainHeight s + chainHeight t [PROOFSTEP] classical refine' iSup₂_le fun l hl ↦ _ let l₁ := l.filter (· ∈ s) let l₂ := l.filter (· ∈ t) have hl₁ : ↑l₁.length ≤ s.chainHeight := by apply Set.length_le_chainHeight_of_mem_subchain exact ⟨hl.1.sublist (filter_sublist _), fun i h ↦ by simpa using (of_mem_filter h : _)⟩ have hl₂ : ↑l₂.length ≤ t.chainHeight := by apply Set.length_le_chainHeight_of_mem_subchain exact ⟨hl.1.sublist (filter_sublist _), fun i h ↦ by simpa using (of_mem_filter h : _)⟩ refine' le_trans _ (add_le_add hl₁ hl₂) simp_rw [← Nat.cast_add, ← Multiset.coe_card, ← Multiset.card_add, ← Multiset.coe_filter] rw [Multiset.filter_add_filter, Multiset.filter_eq_self.mpr, Multiset.card_add, Nat.cast_add] exacts [le_add_right rfl.le, hl.2] [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α ⊢ chainHeight (s ∪ t) ≤ chainHeight s + chainHeight t [PROOFSTEP] refine' iSup₂_le fun l hl ↦ _ [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) ⊢ ↑(length l) ≤ chainHeight s + chainHeight t [PROOFSTEP] let l₁ := l.filter (· ∈ s) [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l ⊢ ↑(length l) ≤ chainHeight s + chainHeight t [PROOFSTEP] let l₂ := l.filter (· ∈ t) [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l l₂ : List α := filter (fun x => decide (x ∈ t)) l ⊢ ↑(length l) ≤ chainHeight s + chainHeight t [PROOFSTEP] have hl₁ : ↑l₁.length ≤ s.chainHeight := by apply Set.length_le_chainHeight_of_mem_subchain exact ⟨hl.1.sublist (filter_sublist _), fun i h ↦ by simpa using (of_mem_filter h : _)⟩ [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l l₂ : List α := filter (fun x => decide (x ∈ t)) l ⊢ ↑(length l₁) ≤ chainHeight s [PROOFSTEP] apply Set.length_le_chainHeight_of_mem_subchain [GOAL] case hl α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l l₂ : List α := filter (fun x => decide (x ∈ t)) l ⊢ l₁ ∈ subchain s [PROOFSTEP] exact ⟨hl.1.sublist (filter_sublist _), fun i h ↦ by simpa using (of_mem_filter h : _)⟩ [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l l₂ : List α := filter (fun x => decide (x ∈ t)) l i : α h : i ∈ l₁ ⊢ i ∈ s [PROOFSTEP] simpa using (of_mem_filter h : _) [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l l₂ : List α := filter (fun x => decide (x ∈ t)) l hl₁ : ↑(length l₁) ≤ chainHeight s ⊢ ↑(length l) ≤ chainHeight s + chainHeight t [PROOFSTEP] have hl₂ : ↑l₂.length ≤ t.chainHeight := by apply Set.length_le_chainHeight_of_mem_subchain exact ⟨hl.1.sublist (filter_sublist _), fun i h ↦ by simpa using (of_mem_filter h : _)⟩ [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l l₂ : List α := filter (fun x => decide (x ∈ t)) l hl₁ : ↑(length l₁) ≤ chainHeight s ⊢ ↑(length l₂) ≤ chainHeight t [PROOFSTEP] apply Set.length_le_chainHeight_of_mem_subchain [GOAL] case hl α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l l₂ : List α := filter (fun x => decide (x ∈ t)) l hl₁ : ↑(length l₁) ≤ chainHeight s ⊢ l₂ ∈ subchain t [PROOFSTEP] exact ⟨hl.1.sublist (filter_sublist _), fun i h ↦ by simpa using (of_mem_filter h : _)⟩ [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l l₂ : List α := filter (fun x => decide (x ∈ t)) l hl₁ : ↑(length l₁) ≤ chainHeight s i : α h : i ∈ l₂ ⊢ i ∈ t [PROOFSTEP] simpa using (of_mem_filter h : _) [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l l₂ : List α := filter (fun x => decide (x ∈ t)) l hl₁ : ↑(length l₁) ≤ chainHeight s hl₂ : ↑(length l₂) ≤ chainHeight t ⊢ ↑(length l) ≤ chainHeight s + chainHeight t [PROOFSTEP] refine' le_trans _ (add_le_add hl₁ hl₂) [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l l₂ : List α := filter (fun x => decide (x ∈ t)) l hl₁ : ↑(length l₁) ≤ chainHeight s hl₂ : ↑(length l₂) ≤ chainHeight t ⊢ ↑(length l) ≤ ↑(length l₁) + ↑(length l₂) [PROOFSTEP] simp_rw [← Nat.cast_add, ← Multiset.coe_card, ← Multiset.card_add, ← Multiset.coe_filter] [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l l₂ : List α := filter (fun x => decide (x ∈ t)) l hl₁ : ↑(length l₁) ≤ chainHeight s hl₂ : ↑(length l₂) ≤ chainHeight t ⊢ ↑(↑Multiset.card ↑l) ≤ ↑(↑Multiset.card (Multiset.filter (fun b => b ∈ s) ↑l + Multiset.filter (fun b => b ∈ t) ↑l)) [PROOFSTEP] rw [Multiset.filter_add_filter, Multiset.filter_eq_self.mpr, Multiset.card_add, Nat.cast_add] [GOAL] α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l l₂ : List α := filter (fun x => decide (x ∈ t)) l hl₁ : ↑(length l₁) ≤ chainHeight s hl₂ : ↑(length l₂) ≤ chainHeight t ⊢ ↑(↑Multiset.card ↑l) ≤ ↑(↑Multiset.card ↑l) + ↑(↑Multiset.card (Multiset.filter (fun a => a ∈ s ∧ a ∈ t) ↑l)) α : Type u_1 β : Type u_2 s t : Set α inst✝ : Preorder α l : List α hl : l ∈ subchain (s ∪ t) l₁ : List α := filter (fun x => decide (x ∈ s)) l l₂ : List α := filter (fun x => decide (x ∈ t)) l hl₁ : ↑(length l₁) ≤ chainHeight s hl₂ : ↑(length l₂) ≤ chainHeight t ⊢ ∀ (a : α), a ∈ ↑l → a ∈ s ∨ a ∈ t [PROOFSTEP] exacts [le_add_right rfl.le, hl.2] [GOAL] α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b ⊢ chainHeight (s ∪ t) = chainHeight s + chainHeight t [PROOFSTEP] cases h : t.chainHeight [GOAL] case none α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b h : chainHeight t = none ⊢ chainHeight (s ∪ t) = chainHeight s + none [PROOFSTEP] rw [WithTop.none_eq_top, add_top, eq_top_iff, ← WithTop.none_eq_top, ← h] [GOAL] case none α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b h : chainHeight t = none ⊢ chainHeight t ≤ chainHeight (s ∪ t) [PROOFSTEP] exact Set.chainHeight_mono (Set.subset_union_right _ _) [GOAL] case some α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b val✝ : ℕ h : chainHeight t = some val✝ ⊢ chainHeight (s ∪ t) = chainHeight s + some val✝ [PROOFSTEP] apply le_antisymm [GOAL] case some.a α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b val✝ : ℕ h : chainHeight t = some val✝ ⊢ chainHeight (s ∪ t) ≤ chainHeight s + some val✝ [PROOFSTEP] rw [← h] [GOAL] case some.a α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b val✝ : ℕ h : chainHeight t = some val✝ ⊢ chainHeight (s ∪ t) ≤ chainHeight s + chainHeight t [PROOFSTEP] exact chainHeight_union_le [GOAL] case some.a α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b val✝ : ℕ h : chainHeight t = some val✝ ⊢ chainHeight s + some val✝ ≤ chainHeight (s ∪ t) [PROOFSTEP] rw [WithTop.some_eq_coe, ← add_zero (s ∪ t).chainHeight, ← WithTop.coe_zero, ENat.some_eq_coe, chainHeight_add_le_chainHeight_add] [GOAL] case some.a α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b val✝ : ℕ h : chainHeight t = some val✝ ⊢ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain (s ∪ t) ∧ length l + val✝ ≤ length l' + 0 [PROOFSTEP] intro l hl [GOAL] case some.a α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b val✝ : ℕ h : chainHeight t = some val✝ l : List α hl : l ∈ subchain s ⊢ ∃ l', l' ∈ subchain (s ∪ t) ∧ length l + val✝ ≤ length l' + 0 [PROOFSTEP] obtain ⟨l', hl', rfl⟩ := exists_chain_of_le_chainHeight t h.symm.le [GOAL] case some.a.intro.intro α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b l : List α hl : l ∈ subchain s l' : List α hl' : l' ∈ subchain t h : chainHeight t = some (length l') ⊢ ∃ l'_1, l'_1 ∈ subchain (s ∪ t) ∧ length l + length l' ≤ length l'_1 + 0 [PROOFSTEP] refine' ⟨l ++ l', ⟨Chain'.append hl.1 hl'.1 fun x hx y hy ↦ _, fun i hi ↦ _⟩, by simp⟩ [GOAL] α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b l : List α hl : l ∈ subchain s l' : List α hl' : l' ∈ subchain t h : chainHeight t = some (length l') ⊢ length l + length l' ≤ length (l ++ l') + 0 [PROOFSTEP] simp [GOAL] case some.a.intro.intro.refine'_1 α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b l : List α hl : l ∈ subchain s l' : List α hl' : l' ∈ subchain t h : chainHeight t = some (length l') x : α hx : x ∈ getLast? l y : α hy : y ∈ head? l' ⊢ x < y [PROOFSTEP] exact H x (hl.2 _ <| mem_of_mem_getLast? hx) y (hl'.2 _ <| mem_of_mem_head? hy) [GOAL] case some.a.intro.intro.refine'_2 α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b l : List α hl : l ∈ subchain s l' : List α hl' : l' ∈ subchain t h : chainHeight t = some (length l') i : α hi : i ∈ l ++ l' ⊢ i ∈ s ∪ t [PROOFSTEP] rw [mem_append] at hi [GOAL] case some.a.intro.intro.refine'_2 α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b l : List α hl : l ∈ subchain s l' : List α hl' : l' ∈ subchain t h : chainHeight t = some (length l') i : α hi : i ∈ l ∨ i ∈ l' ⊢ i ∈ s ∪ t [PROOFSTEP] cases' hi with hi hi [GOAL] case some.a.intro.intro.refine'_2.inl α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b l : List α hl : l ∈ subchain s l' : List α hl' : l' ∈ subchain t h : chainHeight t = some (length l') i : α hi : i ∈ l ⊢ i ∈ s ∪ t case some.a.intro.intro.refine'_2.inr α : Type u_1 β : Type u_2 s✝ t✝ : Set α inst✝ : Preorder α s t : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b l : List α hl : l ∈ subchain s l' : List α hl' : l' ∈ subchain t h : chainHeight t = some (length l') i : α hi : i ∈ l' ⊢ i ∈ s ∪ t [PROOFSTEP] exacts [Or.inl (hl.2 _ hi), Or.inr (hl'.2 _ hi)] [GOAL] α : Type u_1 β : Type u_2 s✝ t : Set α inst✝ : Preorder α s : Set α hs : chainHeight s ≠ ⊤ ⊢ WellFoundedGT ↑s [PROOFSTEP] haveI : IsTrans { x // x ∈ s } (↑· < ↑·) := inferInstance [GOAL] α : Type u_1 β : Type u_2 s✝ t : Set α inst✝ : Preorder α s : Set α hs : chainHeight s ≠ ⊤ this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1 ⊢ WellFoundedGT ↑s [PROOFSTEP] obtain ⟨n, hn⟩ := WithTop.ne_top_iff_exists.1 hs [GOAL] case intro α : Type u_1 β : Type u_2 s✝ t : Set α inst✝ : Preorder α s : Set α hs : chainHeight s ≠ ⊤ this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1 n : ℕ hn : ↑n = chainHeight s ⊢ WellFoundedGT ↑s [PROOFSTEP] refine' ⟨RelEmbedding.wellFounded_iff_no_descending_seq.2 ⟨fun f ↦ _⟩⟩ [GOAL] case intro α : Type u_1 β : Type u_2 s✝ t : Set α inst✝ : Preorder α s : Set α hs : chainHeight s ≠ ⊤ this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1 n : ℕ hn : ↑n = chainHeight s f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 ⊢ False [PROOFSTEP] refine' n.lt_succ_self.not_le (WithTop.coe_le_coe.1 <| hn.symm ▸ _) [GOAL] case intro α : Type u_1 β : Type u_2 s✝ t : Set α inst✝ : Preorder α s : Set α hs : chainHeight s ≠ ⊤ this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1 n : ℕ hn : ↑n = chainHeight s f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 ⊢ ↑(Nat.succ n) ≤ chainHeight s [PROOFSTEP] refine' le_iSup₂_of_le _ ⟨chain'_map_of_chain' ((↑) : { x // x ∈ s } → α) (fun _ _ ↦ id) (chain'_iff_pairwise.2 <| pairwise_ofFn.2 fun i j ↦ f.map_rel_iff.2), fun i h ↦ _⟩ _ [GOAL] case intro.refine'_1 α : Type u_1 β : Type u_2 s✝ t : Set α inst✝ : Preorder α s : Set α hs : chainHeight s ≠ ⊤ this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1 n : ℕ hn : ↑n = chainHeight s f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 ⊢ ℕ [PROOFSTEP] exact n.succ [GOAL] case intro.refine'_2 α : Type u_1 β : Type u_2 s✝ t : Set α inst✝ : Preorder α s : Set α hs : chainHeight s ≠ ⊤ this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1 n : ℕ hn : ↑n = chainHeight s f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 i : α h : i ∈ map Subtype.val (ofFn fun i => ↑f ↑i) ⊢ i ∈ s [PROOFSTEP] obtain ⟨a, -, rfl⟩ := mem_map.1 h [GOAL] case intro.refine'_2.intro.intro α : Type u_1 β : Type u_2 s✝ t : Set α inst✝ : Preorder α s : Set α hs : chainHeight s ≠ ⊤ this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1 n : ℕ hn : ↑n = chainHeight s f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 a : { x // x ∈ s } h : ↑a ∈ map Subtype.val (ofFn fun i => ↑f ↑i) ⊢ ↑a ∈ s [PROOFSTEP] exact a.prop [GOAL] case intro.refine'_3 α : Type u_1 β : Type u_2 s✝ t : Set α inst✝ : Preorder α s : Set α hs : chainHeight s ≠ ⊤ this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1 n : ℕ hn : ↑n = chainHeight s f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 ⊢ ↑(Nat.succ n) ≤ ↑(length (map Subtype.val (ofFn fun i => ↑f ↑i))) [PROOFSTEP] rw [length_map, length_ofFn] [GOAL] case intro.refine'_3 α : Type u_1 β : Type u_2 s✝ t : Set α inst✝ : Preorder α s : Set α hs : chainHeight s ≠ ⊤ this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1 n : ℕ hn : ↑n = chainHeight s f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 ⊢ ↑(Nat.succ n) ≤ ↑(Nat.succ n) [PROOFSTEP] exact le_rfl [GOAL] α : Type u_1 β : Type u_2 s✝ t : Set α inst✝ : Preorder α s : Set α hs : chainHeight s ≠ ⊤ ⊢ chainHeight (↑ofDual ⁻¹' s) ≠ ⊤ [PROOFSTEP] rwa [chainHeight_dual]
{"mathlib_filename": "Mathlib.Order.Height", "llama_tokens": 27991}
[GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α ⊢ ∃ b, ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b [PROOFSTEP] by_cases h : ∃ b, (a, b) ∈ f.val [GOAL] case pos α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ∃ b, (a, b) ∈ ↑f ⊢ ∃ b, ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b [PROOFSTEP] cases' h with b hb [GOAL] case pos.intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α b : β hb : (a, b) ∈ ↑f ⊢ ∃ b, ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b [PROOFSTEP] exact ⟨b, fun p hp ↦ f.prop _ hp _ hb⟩ [GOAL] case neg α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f ⊢ ∃ b, ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b [PROOFSTEP] have : ∀ x ∈ (f.val.filter fun p : α × β ↦ p.fst < a).image Prod.snd, ∀ y ∈ (f.val.filter fun p : α × β ↦ a < p.fst).image Prod.snd, x < y := by intro x hx y hy rw [Finset.mem_image] at hx hy rcases hx with ⟨p, hp1, rfl⟩ rcases hy with ⟨q, hq1, rfl⟩ rw [Finset.mem_filter] at hp1 hq1 rw [← lt_iff_lt_of_cmp_eq_cmp (f.prop _ hp1.1 _ hq1.1)] exact lt_trans hp1.right hq1.right [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f ⊢ ∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y [PROOFSTEP] intro x hx y hy [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f x : β hx : x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) y : β hy : y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) ⊢ x < y [PROOFSTEP] rw [Finset.mem_image] at hx hy [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f x : β hx : ∃ a_1, a_1 ∈ Finset.filter (fun p => p.fst < a) ↑f ∧ a_1.snd = x y : β hy : ∃ a_1, a_1 ∈ Finset.filter (fun p => a < p.fst) ↑f ∧ a_1.snd = y ⊢ x < y [PROOFSTEP] rcases hx with ⟨p, hp1, rfl⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f y : β hy : ∃ a_1, a_1 ∈ Finset.filter (fun p => a < p.fst) ↑f ∧ a_1.snd = y p : α × β hp1 : p ∈ Finset.filter (fun p => p.fst < a) ↑f ⊢ p.snd < y [PROOFSTEP] rcases hy with ⟨q, hq1, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f p : α × β hp1 : p ∈ Finset.filter (fun p => p.fst < a) ↑f q : α × β hq1 : q ∈ Finset.filter (fun p => a < p.fst) ↑f ⊢ p.snd < q.snd [PROOFSTEP] rw [Finset.mem_filter] at hp1 hq1 [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f p : α × β hp1 : p ∈ ↑f ∧ p.fst < a q : α × β hq1 : q ∈ ↑f ∧ a < q.fst ⊢ p.snd < q.snd [PROOFSTEP] rw [← lt_iff_lt_of_cmp_eq_cmp (f.prop _ hp1.1 _ hq1.1)] [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f p : α × β hp1 : p ∈ ↑f ∧ p.fst < a q : α × β hq1 : q ∈ ↑f ∧ a < q.fst ⊢ p.fst < q.fst [PROOFSTEP] exact lt_trans hp1.right hq1.right [GOAL] case neg α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f this : ∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y ⊢ ∃ b, ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b [PROOFSTEP] cases' exists_between_finsets _ _ this with b hb [GOAL] case neg.intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f this : ∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y b : β hb : (∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧ ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y ⊢ ∃ b, ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b [PROOFSTEP] use b [GOAL] case h α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f this : ∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y b : β hb : (∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧ ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y ⊢ ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b [PROOFSTEP] rintro ⟨p1, p2⟩ hp [GOAL] case h.mk α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f this : ∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y b : β hb : (∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧ ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y p1 : α p2 : β hp : (p1, p2) ∈ ↑f ⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b [PROOFSTEP] have : p1 ≠ a := fun he ↦ h ⟨p2, he ▸ hp⟩ [GOAL] case h.mk α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f this✝ : ∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y b : β hb : (∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧ ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y p1 : α p2 : β hp : (p1, p2) ∈ ↑f this : p1 ≠ a ⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b [PROOFSTEP] cases' lt_or_gt_of_ne this with hl hr [GOAL] case h.mk.inl α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f this✝ : ∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y b : β hb : (∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧ ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y p1 : α p2 : β hp : (p1, p2) ∈ ↑f this : p1 ≠ a hl : p1 < a ⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b [PROOFSTEP] have : p1 < a ∧ p2 < b := ⟨hl, hb.1 _ (Finset.mem_image.mpr ⟨(p1, p2), Finset.mem_filter.mpr ⟨hp, hl⟩, rfl⟩)⟩ [GOAL] case h.mk.inl α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f this✝¹ : ∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y b : β hb : (∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧ ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y p1 : α p2 : β hp : (p1, p2) ∈ ↑f this✝ : p1 ≠ a hl : p1 < a this : p1 < a ∧ p2 < b ⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b [PROOFSTEP] rw [← cmp_eq_lt_iff, ← cmp_eq_lt_iff] at this [GOAL] case h.mk.inl α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f this✝¹ : ∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y b : β hb : (∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧ ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y p1 : α p2 : β hp : (p1, p2) ∈ ↑f this✝ : p1 ≠ a hl : p1 < a this : cmp p1 a = Ordering.lt ∧ cmp p2 b = Ordering.lt ⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b [PROOFSTEP] exact this.1.trans this.2.symm [GOAL] case h.mk.inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f this✝ : ∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y b : β hb : (∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧ ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y p1 : α p2 : β hp : (p1, p2) ∈ ↑f this : p1 ≠ a hr : p1 > a ⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b [PROOFSTEP] have : a < p1 ∧ b < p2 := ⟨hr, hb.2 _ (Finset.mem_image.mpr ⟨(p1, p2), Finset.mem_filter.mpr ⟨hp, hr⟩, rfl⟩)⟩ [GOAL] case h.mk.inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f this✝¹ : ∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y b : β hb : (∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧ ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y p1 : α p2 : β hp : (p1, p2) ∈ ↑f this✝ : p1 ≠ a hr : p1 > a this : a < p1 ∧ b < p2 ⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b [PROOFSTEP] rw [← cmp_eq_gt_iff, ← cmp_eq_gt_iff] at this [GOAL] case h.mk.inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β f : PartialIso α β a : α h : ¬∃ b, (a, b) ∈ ↑f this✝¹ : ∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y b : β hb : (∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧ ∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y p1 : α p2 : β hp : (p1, p2) ∈ ↑f this✝ : p1 ≠ a hr : p1 > a this : cmp p1 a = Ordering.gt ∧ cmp p2 b = Ordering.gt ⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b [PROOFSTEP] exact this.1.trans this.2.symm [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : Finset (α × β) hf : ∀ (p : α × β), p ∈ f → ∀ (q : α × β), q ∈ f → cmp p.fst q.fst = cmp p.snd q.snd p : β × α hp : p ∈ Finset.image (↑(Equiv.prodComm α β)) f q : β × α hq : q ∈ Finset.image (↑(Equiv.prodComm α β)) f ⊢ ↑(Equiv.prodComm α β).symm p ∈ f [PROOFSTEP] rw [← Finset.mem_coe, Finset.coe_image, Equiv.image_eq_preimage] at hp [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : Finset (α × β) hf : ∀ (p : α × β), p ∈ f → ∀ (q : α × β), q ∈ f → cmp p.fst q.fst = cmp p.snd q.snd p : β × α hp : p ∈ ↑(Equiv.prodComm α β).symm ⁻¹' ↑f q : β × α hq : q ∈ Finset.image (↑(Equiv.prodComm α β)) f ⊢ ↑(Equiv.prodComm α β).symm p ∈ f [PROOFSTEP] rwa [← Finset.mem_coe] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : Finset (α × β) hf : ∀ (p : α × β), p ∈ f → ∀ (q : α × β), q ∈ f → cmp p.fst q.fst = cmp p.snd q.snd p : β × α hp : p ∈ Finset.image (↑(Equiv.prodComm α β)) f q : β × α hq : q ∈ Finset.image (↑(Equiv.prodComm α β)) f ⊢ ↑(Equiv.prodComm α β).symm q ∈ f [PROOFSTEP] rw [← Finset.mem_coe, Finset.coe_image, Equiv.image_eq_preimage] at hq [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : Finset (α × β) hf : ∀ (p : α × β), p ∈ f → ∀ (q : α × β), q ∈ f → cmp p.fst q.fst = cmp p.snd q.snd p : β × α hp : p ∈ Finset.image (↑(Equiv.prodComm α β)) f q : β × α hq : q ∈ ↑(Equiv.prodComm α β).symm ⁻¹' ↑f ⊢ ↑(Equiv.prodComm α β).symm q ∈ f [PROOFSTEP] rwa [← Finset.mem_coe] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β a : α f : PartialIso α β ⊢ ∃ y, y ∈ {f | ∃ b, (a, b) ∈ ↑f} ∧ f ≤ y [PROOFSTEP] cases' exists_across f a with b a_b [GOAL] case intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β a : α f : PartialIso α β b : β a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b ⊢ ∃ y, y ∈ {f | ∃ b, (a, b) ∈ ↑f} ∧ f ≤ y [PROOFSTEP] refine ⟨⟨insert (a, b) f.val, fun p hp q hq ↦ ?_⟩, ⟨b, Finset.mem_insert_self _ _⟩, Finset.subset_insert _ _⟩ [GOAL] case intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β a : α f : PartialIso α β b : β a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b p : α × β hp : p ∈ insert (a, b) ↑f q : α × β hq : q ∈ insert (a, b) ↑f ⊢ cmp p.fst q.fst = cmp p.snd q.snd [PROOFSTEP] rw [Finset.mem_insert] at hp hq [GOAL] case intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β a : α f : PartialIso α β b : β a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b p : α × β hp : p = (a, b) ∨ p ∈ ↑f q : α × β hq : q = (a, b) ∨ q ∈ ↑f ⊢ cmp p.fst q.fst = cmp p.snd q.snd [PROOFSTEP] rcases hp with (rfl | pf) [GOAL] case intro.inl α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β a : α f : PartialIso α β b : β a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b q : α × β hq : q = (a, b) ∨ q ∈ ↑f ⊢ cmp (a, b).fst q.fst = cmp (a, b).snd q.snd [PROOFSTEP] rcases hq with (rfl | qf) [GOAL] case intro.inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β a : α f : PartialIso α β b : β a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b p q : α × β hq : q = (a, b) ∨ q ∈ ↑f pf : p ∈ ↑f ⊢ cmp p.fst q.fst = cmp p.snd q.snd [PROOFSTEP] rcases hq with (rfl | qf) [GOAL] case intro.inl.inl α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β a : α f : PartialIso α β b : β a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b ⊢ cmp (a, b).fst (a, b).fst = cmp (a, b).snd (a, b).snd [PROOFSTEP] simp only [cmp_self_eq_eq] [GOAL] case intro.inl.inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β a : α f : PartialIso α β b : β a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b q : α × β qf : q ∈ ↑f ⊢ cmp (a, b).fst q.fst = cmp (a, b).snd q.snd [PROOFSTEP] rw [cmp_eq_cmp_symm] [GOAL] case intro.inl.inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β a : α f : PartialIso α β b : β a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b q : α × β qf : q ∈ ↑f ⊢ cmp q.fst (a, b).fst = cmp q.snd (a, b).snd [PROOFSTEP] exact a_b _ qf [GOAL] case intro.inr.inl α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β a : α f : PartialIso α β b : β a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b p : α × β pf : p ∈ ↑f ⊢ cmp p.fst (a, b).fst = cmp p.snd (a, b).snd [PROOFSTEP] exact a_b _ pf [GOAL] case intro.inr.inr α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β a : α f : PartialIso α β b : β a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b p q : α × β pf : p ∈ ↑f qf : q ∈ ↑f ⊢ cmp p.fst q.fst = cmp p.snd q.snd [PROOFSTEP] exact f.prop _ pf _ qf [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered α inst✝² : NoMinOrder α inst✝¹ : NoMaxOrder α inst✝ : Nonempty α b : β f : PartialIso α β ⊢ ∃ y, y ∈ {f | ∃ a, (a, b) ∈ ↑f} ∧ f ≤ y [PROOFSTEP] rcases(definedAtLeft α b).mem_gt f.comm with ⟨f', ⟨a, ha⟩, hl⟩ [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered α inst✝² : NoMinOrder α inst✝¹ : NoMaxOrder α inst✝ : Nonempty α b : β f : PartialIso α β f' : PartialIso β α hl : PartialIso.comm f ≤ f' a : α ha : (b, a) ∈ ↑f' ⊢ ∃ y, y ∈ {f | ∃ a, (a, b) ∈ ↑f} ∧ f ≤ y [PROOFSTEP] refine' ⟨f'.comm, ⟨a, _⟩, _⟩ [GOAL] case intro.intro.intro.refine'_1 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered α inst✝² : NoMinOrder α inst✝¹ : NoMaxOrder α inst✝ : Nonempty α b : β f : PartialIso α β f' : PartialIso β α hl : PartialIso.comm f ≤ f' a : α ha : (b, a) ∈ ↑f' ⊢ (a, b) ∈ ↑(PartialIso.comm f') [PROOFSTEP] change (a, b) ∈ f'.val.image _ [GOAL] case intro.intro.intro.refine'_1 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered α inst✝² : NoMinOrder α inst✝¹ : NoMaxOrder α inst✝ : Nonempty α b : β f : PartialIso α β f' : PartialIso β α hl : PartialIso.comm f ≤ f' a : α ha : (b, a) ∈ ↑f' ⊢ (a, b) ∈ Finset.image ↑(Equiv.prodComm β α) ↑f' [PROOFSTEP] rwa [← Finset.mem_coe, Finset.coe_image, Equiv.image_eq_preimage] [GOAL] case intro.intro.intro.refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered α inst✝² : NoMinOrder α inst✝¹ : NoMaxOrder α inst✝ : Nonempty α b : β f : PartialIso α β f' : PartialIso β α hl : PartialIso.comm f ≤ f' a : α ha : (b, a) ∈ ↑f' ⊢ f ≤ PartialIso.comm f' [PROOFSTEP] change _ ⊆ f'.val.image _ [GOAL] case intro.intro.intro.refine'_2 α : Type u_1 β : Type u_2 inst✝⁵ : LinearOrder α inst✝⁴ : LinearOrder β inst✝³ : DenselyOrdered α inst✝² : NoMinOrder α inst✝¹ : NoMaxOrder α inst✝ : Nonempty α b : β f : PartialIso α β f' : PartialIso β α hl : PartialIso.comm f ≤ f' a : α ha : (b, a) ∈ ↑f' ⊢ (fun a => ↑a) f ⊆ Finset.image ↑(Equiv.prodComm β α) ↑f' [PROOFSTEP] rwa [← Finset.coe_subset, Finset.coe_image, ← Equiv.subset_image, ← Finset.coe_image, Finset.coe_subset] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : Encodable α inst✝¹ : DenselyOrdered β inst✝ : Nontrivial β ⊢ Nonempty (α ↪o β) [PROOFSTEP] rcases exists_pair_lt β with ⟨x, y, hxy⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : Encodable α inst✝¹ : DenselyOrdered β inst✝ : Nontrivial β x y : β hxy : x < y ⊢ Nonempty (α ↪o β) [PROOFSTEP] cases' exists_between hxy with a ha [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : Encodable α inst✝¹ : DenselyOrdered β inst✝ : Nontrivial β x y : β hxy : x < y a : β ha : x < a ∧ a < y ⊢ Nonempty (α ↪o β) [PROOFSTEP] haveI : Nonempty (Set.Ioo x y) := ⟨⟨a, ha⟩⟩ [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : Encodable α inst✝¹ : DenselyOrdered β inst✝ : Nontrivial β x y : β hxy : x < y a : β ha : x < a ∧ a < y this : Nonempty ↑(Set.Ioo x y) ⊢ Nonempty (α ↪o β) [PROOFSTEP] let our_ideal : Ideal (PartialIso α _) := idealOfCofinals default (definedAtLeft (Set.Ioo x y)) [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : Encodable α inst✝¹ : DenselyOrdered β inst✝ : Nontrivial β x y : β hxy : x < y a : β ha : x < a ∧ a < y this : Nonempty ↑(Set.Ioo x y) our_ideal : Ideal (PartialIso α ↑(Set.Ioo x y)) := idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y)) ⊢ Nonempty (α ↪o β) [PROOFSTEP] let F a := funOfIdeal a our_ideal (cofinal_meets_idealOfCofinals _ _ a) [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : Encodable α inst✝¹ : DenselyOrdered β inst✝ : Nontrivial β x y : β hxy : x < y a : β ha : x < a ∧ a < y this : Nonempty ↑(Set.Ioo x y) our_ideal : Ideal (PartialIso α ↑(Set.Ioo x y)) := idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y)) F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } := fun a => funOfIdeal a our_ideal (_ : ∃ x_1, x_1 ∈ definedAtLeft (↑(Set.Ioo x y)) a ∧ x_1 ∈ idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y))) ⊢ Nonempty (α ↪o β) [PROOFSTEP] refine ⟨RelEmbedding.trans (OrderEmbedding.ofStrictMono (fun a ↦ (F a).val) fun a₁ a₂ ↦ ?_) (OrderEmbedding.subtype _)⟩ [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : Encodable α inst✝¹ : DenselyOrdered β inst✝ : Nontrivial β x y : β hxy : x < y a : β ha : x < a ∧ a < y this : Nonempty ↑(Set.Ioo x y) our_ideal : Ideal (PartialIso α ↑(Set.Ioo x y)) := idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y)) F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } := fun a => funOfIdeal a our_ideal (_ : ∃ x_1, x_1 ∈ definedAtLeft (↑(Set.Ioo x y)) a ∧ x_1 ∈ idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y))) a₁ a₂ : α ⊢ a₁ < a₂ → (fun a => ↑(F a)) a₁ < (fun a => ↑(F a)) a₂ [PROOFSTEP] rcases(F a₁).prop with ⟨f, hf, ha₁⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : Encodable α inst✝¹ : DenselyOrdered β inst✝ : Nontrivial β x y : β hxy : x < y a : β ha : x < a ∧ a < y this : Nonempty ↑(Set.Ioo x y) our_ideal : Ideal (PartialIso α ↑(Set.Ioo x y)) := idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y)) F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } := fun a => funOfIdeal a our_ideal (_ : ∃ x_1, x_1 ∈ definedAtLeft (↑(Set.Ioo x y)) a ∧ x_1 ∈ idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y))) a₁ a₂ : α f : PartialIso α ↑(Set.Ioo x y) hf : f ∈ our_ideal ha₁ : (a₁, ↑(F a₁)) ∈ ↑f ⊢ a₁ < a₂ → (fun a => ↑(F a)) a₁ < (fun a => ↑(F a)) a₂ [PROOFSTEP] rcases(F a₂).prop with ⟨g, hg, ha₂⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : Encodable α inst✝¹ : DenselyOrdered β inst✝ : Nontrivial β x y : β hxy : x < y a : β ha : x < a ∧ a < y this : Nonempty ↑(Set.Ioo x y) our_ideal : Ideal (PartialIso α ↑(Set.Ioo x y)) := idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y)) F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } := fun a => funOfIdeal a our_ideal (_ : ∃ x_1, x_1 ∈ definedAtLeft (↑(Set.Ioo x y)) a ∧ x_1 ∈ idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y))) a₁ a₂ : α f : PartialIso α ↑(Set.Ioo x y) hf : f ∈ our_ideal ha₁ : (a₁, ↑(F a₁)) ∈ ↑f g : PartialIso α ↑(Set.Ioo x y) hg : g ∈ our_ideal ha₂ : (a₂, ↑(F a₂)) ∈ ↑g ⊢ a₁ < a₂ → (fun a => ↑(F a)) a₁ < (fun a => ↑(F a)) a₂ [PROOFSTEP] rcases our_ideal.directed _ hf _ hg with ⟨m, _hm, fm, gm⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : LinearOrder α inst✝³ : LinearOrder β inst✝² : Encodable α inst✝¹ : DenselyOrdered β inst✝ : Nontrivial β x y : β hxy : x < y a : β ha : x < a ∧ a < y this : Nonempty ↑(Set.Ioo x y) our_ideal : Ideal (PartialIso α ↑(Set.Ioo x y)) := idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y)) F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } := fun a => funOfIdeal a our_ideal (_ : ∃ x_1, x_1 ∈ definedAtLeft (↑(Set.Ioo x y)) a ∧ x_1 ∈ idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y))) a₁ a₂ : α f : PartialIso α ↑(Set.Ioo x y) hf : f ∈ our_ideal ha₁ : (a₁, ↑(F a₁)) ∈ ↑f g : PartialIso α ↑(Set.Ioo x y) hg : g ∈ our_ideal ha₂ : (a₂, ↑(F a₂)) ∈ ↑g m : PartialIso α ↑(Set.Ioo x y) _hm : m ∈ ↑our_ideal fm : f ≤ m gm : g ≤ m ⊢ a₁ < a₂ → (fun a => ↑(F a)) a₁ < (fun a => ↑(F a)) a₂ [PROOFSTEP] exact (lt_iff_lt_of_cmp_eq_cmp <| m.prop (a₁, _) (fm ha₁) (a₂, _) (gm ha₂)).mp [GOAL] α : Type u_1 β : Type u_2 inst✝¹¹ : LinearOrder α inst✝¹⁰ : LinearOrder β inst✝⁹ : Encodable α inst✝⁸ : DenselyOrdered α inst✝⁷ : NoMinOrder α inst✝⁶ : NoMaxOrder α inst✝⁵ : Nonempty α inst✝⁴ : Encodable β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β to_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α) our_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } := fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal) G : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } := fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal) a : α b : β ⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b [PROOFSTEP] rcases(F a).prop with ⟨f, hf, ha⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝¹¹ : LinearOrder α inst✝¹⁰ : LinearOrder β inst✝⁹ : Encodable α inst✝⁸ : DenselyOrdered α inst✝⁷ : NoMinOrder α inst✝⁶ : NoMaxOrder α inst✝⁵ : Nonempty α inst✝⁴ : Encodable β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β to_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α) our_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } := fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal) G : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } := fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal) a : α b : β f : PartialIso α β hf : f ∈ our_ideal ha : (a, ↑(F a)) ∈ ↑f ⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b [PROOFSTEP] rcases(G b).prop with ⟨g, hg, hb⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹¹ : LinearOrder α inst✝¹⁰ : LinearOrder β inst✝⁹ : Encodable α inst✝⁸ : DenselyOrdered α inst✝⁷ : NoMinOrder α inst✝⁶ : NoMaxOrder α inst✝⁵ : Nonempty α inst✝⁴ : Encodable β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β to_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α) our_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } := fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal) G : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } := fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal) a : α b : β f : PartialIso α β hf : f ∈ our_ideal ha : (a, ↑(F a)) ∈ ↑f g : PartialIso α β hg : g ∈ our_ideal hb : (↑(G b), b) ∈ ↑g ⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b [PROOFSTEP] rcases our_ideal.directed _ hf _ hg with ⟨m, _, fm, gm⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹¹ : LinearOrder α inst✝¹⁰ : LinearOrder β inst✝⁹ : Encodable α inst✝⁸ : DenselyOrdered α inst✝⁷ : NoMinOrder α inst✝⁶ : NoMaxOrder α inst✝⁵ : Nonempty α inst✝⁴ : Encodable β inst✝³ : DenselyOrdered β inst✝² : NoMinOrder β inst✝¹ : NoMaxOrder β inst✝ : Nonempty β to_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α) our_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } := fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal) G : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } := fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal) a : α b : β f : PartialIso α β hf : f ∈ our_ideal ha : (a, ↑(F a)) ∈ ↑f g : PartialIso α β hg : g ∈ our_ideal hb : (↑(G b), b) ∈ ↑g m : PartialIso α β left✝ : m ∈ ↑our_ideal fm : f ≤ m gm : g ≤ m ⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b [PROOFSTEP] exact m.prop (a, _) (fm ha) (_, b) (gm hb)
{"mathlib_filename": "Mathlib.Order.CountableDenseLinearOrder", "llama_tokens": 16694}
{"mathlib_filename": "Mathlib.Order.Synonym", "llama_tokens": 0}
[GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P p q : Substructure L M h : ↑p = ↑q ⊢ p = q [PROOFSTEP] cases p [GOAL] case mk L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P q : Substructure L M carrier✝ : Set M fun_mem✝ : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f carrier✝ h : ↑{ carrier := carrier✝, fun_mem := fun_mem✝ } = ↑q ⊢ { carrier := carrier✝, fun_mem := fun_mem✝ } = q [PROOFSTEP] cases q [GOAL] case mk.mk L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P carrier✝¹ : Set M fun_mem✝¹ : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f carrier✝¹ carrier✝ : Set M fun_mem✝ : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f carrier✝ h : ↑{ carrier := carrier✝¹, fun_mem := fun_mem✝¹ } = ↑{ carrier := carrier✝, fun_mem := fun_mem✝ } ⊢ { carrier := carrier✝¹, fun_mem := fun_mem✝¹ } = { carrier := carrier✝, fun_mem := fun_mem✝ } [PROOFSTEP] congr [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M α : Type u_3 t : Term L α xs : α → M h : ∀ (a : α), xs a ∈ S ⊢ realize xs t ∈ S [PROOFSTEP] induction' t with a n f ts ih [GOAL] case var L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M α : Type u_3 xs : α → M h : ∀ (a : α), xs a ∈ S a : α ⊢ realize xs (var a) ∈ S [PROOFSTEP] exact h a [GOAL] case func L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M α : Type u_3 xs : α → M h : ∀ (a : α), xs a ∈ S n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n), realize xs (ts a) ∈ S ⊢ realize xs (func f ts) ∈ S [PROOFSTEP] exact Substructure.fun_mem _ _ _ ih [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set (Substructure L M) n : ℕ f : Functions L n ⊢ ∀ (s_1 : Set M), (s_1 ∈ Set.range fun t => ⋂ (_ : t ∈ s), ↑t) → ClosedUnder f s_1 [PROOFSTEP] rintro _ ⟨t, rfl⟩ [GOAL] case intro L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set (Substructure L M) n : ℕ f : Functions L n t : Substructure L M ⊢ ClosedUnder f ((fun t => ⋂ (_ : t ∈ s), ↑t) t) [PROOFSTEP] by_cases h : t ∈ s [GOAL] case pos L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set (Substructure L M) n : ℕ f : Functions L n t : Substructure L M h : t ∈ s ⊢ ClosedUnder f ((fun t => ⋂ (_ : t ∈ s), ↑t) t) [PROOFSTEP] simpa [h] using t.fun_mem f [GOAL] case neg L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set (Substructure L M) n : ℕ f : Functions L n t : Substructure L M h : ¬t ∈ s ⊢ ClosedUnder f ((fun t => ⋂ (_ : t ∈ s), ↑t) t) [PROOFSTEP] simp [h] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M ι : Sort u_3 S : ι → Substructure L M x : M ⊢ x ∈ ⨅ (i : ι), S i ↔ ∀ (i : ι), x ∈ S i [PROOFSTEP] simp only [iInf, mem_sInf, Set.forall_range_iff] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M ι : Sort u_3 S : ι → Substructure L M ⊢ ↑(⨅ (i : ι), S i) = ⋂ (i : ι), ↑(S i) [PROOFSTEP] simp only [iInf, coe_sInf, Set.biInter_range] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M ⊢ ↑(LowerAdjoint.toFun (closure L) s) = range (Term.realize Subtype.val) [PROOFSTEP] let S : L.Substructure M := ⟨range (Term.realize (L := L) ((↑) : s → M)), fun {n} f x hx => by simp only [mem_range] at * refine' ⟨func f fun i => Classical.choose (hx i), _⟩ simp only [Term.realize, fun i => Classical.choose_spec (hx i)]⟩ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M n : ℕ f : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ range (Term.realize Subtype.val) ⊢ funMap f x ∈ range (Term.realize Subtype.val) [PROOFSTEP] simp only [mem_range] at * [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M n : ℕ f : Functions L n x : Fin n → M hx : ∀ (i : Fin n), ∃ y, Term.realize Subtype.val y = x i ⊢ ∃ y, Term.realize Subtype.val y = funMap f x [PROOFSTEP] refine' ⟨func f fun i => Classical.choose (hx i), _⟩ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M n : ℕ f : Functions L n x : Fin n → M hx : ∀ (i : Fin n), ∃ y, Term.realize Subtype.val y = x i ⊢ Term.realize Subtype.val (func f fun i => Classical.choose (_ : ∃ y, Term.realize Subtype.val y = x i)) = funMap f x [PROOFSTEP] simp only [Term.realize, fun i => Classical.choose_spec (hx i)] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M s : Set M S : Substructure L M := { carrier := range (Term.realize Subtype.val), fun_mem := (_ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), (∀ (i : Fin n), x i ∈ range (Term.realize Subtype.val)) → funMap f x ∈ range (Term.realize Subtype.val)) } ⊢ ↑(LowerAdjoint.toFun (closure L) s) = range (Term.realize Subtype.val) [PROOFSTEP] change _ = (S : Set M) [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M s : Set M S : Substructure L M := { carrier := range (Term.realize Subtype.val), fun_mem := (_ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), (∀ (i : Fin n), x i ∈ range (Term.realize Subtype.val)) → funMap f x ∈ range (Term.realize Subtype.val)) } ⊢ ↑(LowerAdjoint.toFun (closure L) s) = ↑S [PROOFSTEP] rw [← SetLike.ext'_iff] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M s : Set M S : Substructure L M := { carrier := range (Term.realize Subtype.val), fun_mem := (_ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), (∀ (i : Fin n), x i ∈ range (Term.realize Subtype.val)) → funMap f x ∈ range (Term.realize Subtype.val)) } ⊢ LowerAdjoint.toFun (closure L) s = S [PROOFSTEP] refine' closure_eq_of_le (fun x hx => ⟨var ⟨x, hx⟩, rfl⟩) (le_sInf fun S' hS' => _) [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M s : Set M S : Substructure L M := { carrier := range (Term.realize Subtype.val), fun_mem := (_ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), (∀ (i : Fin n), x i ∈ range (Term.realize Subtype.val)) → funMap f x ∈ range (Term.realize Subtype.val)) } S' : Substructure L M hS' : S' ∈ {S | s ⊆ ↑S} ⊢ S ≤ S' [PROOFSTEP] rintro _ ⟨t, rfl⟩ [GOAL] case intro L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M s : Set M S : Substructure L M := { carrier := range (Term.realize Subtype.val), fun_mem := (_ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), (∀ (i : Fin n), x i ∈ range (Term.realize Subtype.val)) → funMap f x ∈ range (Term.realize Subtype.val)) } S' : Substructure L M hS' : S' ∈ {S | s ⊆ ↑S} t : Term L { x // x ∈ s } ⊢ Term.realize Subtype.val t ∈ S' [PROOFSTEP] exact t.realize_mem _ fun i => hS' i.2 [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P S : Substructure L M s : Set M inst✝ : Small.{u, w} ↑s ⊢ Small.{u, w} { x // x ∈ LowerAdjoint.toFun (closure L) s } [PROOFSTEP] rw [← SetLike.coe_sort_coe, Substructure.coe_closure_eq_range_term_realize] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P S : Substructure L M s : Set M inst✝ : Small.{u, w} ↑s ⊢ Small.{u, w} ↑(range (Term.realize Subtype.val)) [PROOFSTEP] exact small_range _ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M x : M ⊢ x ∈ LowerAdjoint.toFun (closure L) s ↔ ∃ t, Term.realize Subtype.val t = x [PROOFSTEP] rw [← SetLike.mem_coe, coe_closure_eq_range_term_realize, mem_range] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M ⊢ lift #{ x // x ∈ LowerAdjoint.toFun (closure L) s } ≤ #(Term L ↑s) [PROOFSTEP] rw [← SetLike.coe_sort_coe, coe_closure_eq_range_term_realize] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M ⊢ lift #↑(range (Term.realize Subtype.val)) ≤ #(Term L ↑s) [PROOFSTEP] rw [← Cardinal.lift_id'.{w, max u w} #(L.Term s)] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M ⊢ lift #↑(range (Term.realize Subtype.val)) ≤ lift #(Term L ↑s) [PROOFSTEP] exact Cardinal.mk_range_le_lift [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M ⊢ lift #{ x // x ∈ LowerAdjoint.toFun (closure L) s } ≤ max ℵ₀ (lift #↑s + lift #((i : ℕ) × Functions L i)) [PROOFSTEP] rw [← lift_umax] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M ⊢ lift #{ x // x ∈ LowerAdjoint.toFun (closure L) s } ≤ max ℵ₀ (lift #↑s + lift #((i : ℕ) × Functions L i)) [PROOFSTEP] refine' lift_card_closure_le_card_term.trans (Term.card_le.trans _) [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M ⊢ max ℵ₀ #(↑s ⊕ (i : ℕ) × Functions L i) ≤ max ℵ₀ (lift #↑s + lift #((i : ℕ) × Functions L i)) [PROOFSTEP] rw [mk_sum, lift_umax.{w, u}] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P S : Substructure L M s : Set M inst✝ : Countable ((l : ℕ) × Functions L l) h : Set.Countable s ⊢ Countable { x // x ∈ LowerAdjoint.toFun (closure L) s } [PROOFSTEP] haveI : Countable s := h.to_subtype [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P S : Substructure L M s : Set M inst✝ : Countable ((l : ℕ) × Functions L l) h : Set.Countable s this : Countable ↑s ⊢ Countable { x // x ∈ LowerAdjoint.toFun (closure L) s } [PROOFSTEP] rw [← mk_le_aleph0_iff, ← lift_le_aleph0] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P S : Substructure L M s : Set M inst✝ : Countable ((l : ℕ) × Functions L l) h : Set.Countable s this : Countable ↑s ⊢ lift #{ x // x ∈ LowerAdjoint.toFun (closure L) s } ≤ ℵ₀ [PROOFSTEP] exact lift_card_closure_le_card_term.trans mk_le_aleph0 [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s✝ : Set M p : M → Prop x : M s : Set M hs : LowerAdjoint.toFun (closure L) s = ⊤ Hs : ∀ (x : M), x ∈ s → p x Hfun : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f (setOf p) ⊢ p x [PROOFSTEP] have : ∀ x ∈ closure L s, p x := fun x hx => closure_induction hx Hs fun {n} => Hfun [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s✝ : Set M p : M → Prop x : M s : Set M hs : LowerAdjoint.toFun (closure L) s = ⊤ Hs : ∀ (x : M), x ∈ s → p x Hfun : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f (setOf p) this : ∀ (x : M), x ∈ LowerAdjoint.toFun (closure L) s → p x ⊢ p x [PROOFSTEP] simpa [hs] using this x [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M ⊢ Small.{u, w} { x // x ∈ ⊥ } [PROOFSTEP] rw [← closure_empty] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M ⊢ Small.{u, w} { x // x ∈ LowerAdjoint.toFun (closure L) ∅ } [PROOFSTEP] haveI : Small.{u} (∅ : Set M) := small_subsingleton _ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M this : Small.{u, w} ↑∅ ⊢ Small.{u, w} { x // x ∈ LowerAdjoint.toFun (closure L) ∅ } [PROOFSTEP] exact Substructure.small_closure [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M s : Set M φ : M →[L] N S : Substructure L N n : ℕ f : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ ↑φ ⁻¹' ↑S ⊢ funMap f x ∈ ↑φ ⁻¹' ↑S [PROOFSTEP] rw [mem_preimage, φ.map_fun] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M s : Set M φ : M →[L] N S : Substructure L N n : ℕ f : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ ↑φ ⁻¹' ↑S ⊢ funMap f (↑φ ∘ x) ∈ ↑S [PROOFSTEP] exact S.fun_mem f (φ ∘ x) hx [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M s : Set M S : Substructure L P ⊢ ∀ (x : P), x ∈ comap (Hom.id L P) S ↔ x ∈ S [PROOFSTEP] simp [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M s : Set M φ : M →[L] N S : Substructure L M n : ℕ f : Functions L n x : Fin n → N hx : ∀ (i : Fin n), x i ∈ ↑φ '' ↑S ⊢ (fun a => ↑φ a) (funMap f fun i => Classical.choose (_ : x i ∈ ↑φ '' ↑S)) = funMap f x [PROOFSTEP] simp only [Hom.map_fun, SetLike.mem_coe] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M s : Set M φ : M →[L] N S : Substructure L M n : ℕ f : Functions L n x : Fin n → N hx : ∀ (i : Fin n), x i ∈ ↑φ '' ↑S ⊢ funMap f (↑φ ∘ fun i => Classical.choose (_ : ∃ x_1, (fun x_2 => x_2 ∈ S ∧ ↑φ x_2 = x i) x_1)) = funMap f x [PROOFSTEP] exact congr rfl (funext fun i => (Classical.choose_spec (hx i)).2) [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M s : Set M ι : Type u_3 f : M →[L] N hf : Function.Injective ↑f S : Substructure L M x : M ⊢ x ∈ comap f (map f S) → x ∈ S [PROOFSTEP] simp [mem_comap, mem_map, hf.eq_iff] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ : Substructure L M s : Set M ι : Type u_3 f : M →[L] N hf : Function.Surjective ↑f S : Substructure L N x : N h : x ∈ S y : M hy : ↑f y = x ⊢ y ∈ comap f S ∧ ↑f y = x [PROOFSTEP] simp [hy, h] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s : Set M m : { x // x ∈ ⊤ } ⊢ (fun m => { val := m, property := (_ : m ∈ ⊤) }) (↑(subtype ⊤) m) = m [PROOFSTEP] simp [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s✝ s : Set M p : (x : M) → x ∈ LowerAdjoint.toFun (closure L) s → Prop Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(LowerAdjoint.toFun (closure L) s)) Hfun : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f {x | ∃ hx, p x hx} x : M hx : x ∈ LowerAdjoint.toFun (closure L) s ⊢ p x hx [PROOFSTEP] refine' Exists.elim _ fun (hx : x ∈ closure L s) (hc : p x hx) => hc [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M s✝ s : Set M p : (x : M) → x ∈ LowerAdjoint.toFun (closure L) s → Prop Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(LowerAdjoint.toFun (closure L) s)) Hfun : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f {x | ∃ hx, p x hx} x : M hx : x ∈ LowerAdjoint.toFun (closure L) s ⊢ ∃ x_1, p x x_1 [PROOFSTEP] exact closure_induction hx (fun x hx => ⟨subset_closure hx, Hs x hx⟩) @Hfun [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P S✝ : Substructure L M L' : Language inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M S : Substructure L' M n : ℕ f : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ ↑S ⊢ funMap f x ∈ ↑S [PROOFSTEP] have h := S.fun_mem (φ.onFunction f) x hx [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P S✝ : Substructure L M L' : Language inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M S : Substructure L' M n : ℕ f : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ ↑S h : funMap (onFunction φ f) x ∈ ↑S ⊢ funMap f x ∈ ↑S [PROOFSTEP] simp only [LHom.map_onFunction, Substructure.mem_carrier] at h [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P S✝ : Substructure L M L' : Language inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M S : Substructure L' M n : ℕ f : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ ↑S h : funMap f x ∈ S ⊢ funMap f x ∈ ↑S [PROOFSTEP] exact h [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P S✝ : Substructure L M L' : Language inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M S T : Substructure L' M h : (fun S => { carrier := ↑S, fun_mem := (_ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), (∀ (i : Fin n), x i ∈ ↑S) → funMap f x ∈ S) }) S = (fun S => { carrier := ↑S, fun_mem := (_ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), (∀ (i : Fin n), x i ∈ ↑S) → funMap f x ∈ S) }) T ⊢ S = T [PROOFSTEP] simp only [SetLike.coe_set_eq, Substructure.mk.injEq] at h [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P S✝ : Substructure L M L' : Language inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M S T : Substructure L' M h : S = T ⊢ S = T [PROOFSTEP] exact h [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ S : Substructure L M A : Set M h : A ⊆ ↑S n : ℕ f : Functions (L[[↑A]]) n ⊢ ClosedUnder f ↑S [PROOFSTEP] cases' f with f f [GOAL] case inl L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ S : Substructure L M A : Set M h : A ⊆ ↑S n : ℕ f : Functions L n ⊢ ClosedUnder (Sum.inl f) ↑S [PROOFSTEP] exact S.fun_mem f [GOAL] case inr L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ S : Substructure L M A : Set M h : A ⊆ ↑S n : ℕ f : Functions (constantsOn ↑A) n ⊢ ClosedUnder (Sum.inr f) ↑S [PROOFSTEP] cases n [GOAL] case inr.zero L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ S : Substructure L M A : Set M h : A ⊆ ↑S f : Functions (constantsOn ↑A) Nat.zero ⊢ ClosedUnder (Sum.inr f) ↑S [PROOFSTEP] exact fun _ _ => h f.2 [GOAL] case inr.succ L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ S : Substructure L M A : Set M h : A ⊆ ↑S n✝ : ℕ f : Functions (constantsOn ↑A) (Nat.succ n✝) ⊢ ClosedUnder (Sum.inr f) ↑S [PROOFSTEP] exact isEmptyElim f [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M A s : Set M h : A ⊆ ↑S ⊢ ↑(LHom.substructureReduct (lhomWithConstants L ↑A)) (withConstants S h) = S [PROOFSTEP] ext [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M A s : Set M h : A ⊆ ↑S x✝ : M ⊢ x✝ ∈ ↑(LHom.substructureReduct (lhomWithConstants L ↑A)) (withConstants S h) ↔ x✝ ∈ S [PROOFSTEP] simp [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M A s : Set M h : A ⊆ ↑S ⊢ A ⊆ ↑(LowerAdjoint.toFun (closure (L[[↑A]])) s) [PROOFSTEP] intro a ha [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M A s : Set M h : A ⊆ ↑S a : M ha : a ∈ A ⊢ a ∈ ↑(LowerAdjoint.toFun (closure (L[[↑A]])) s) [PROOFSTEP] simp only [SetLike.mem_coe] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M A s : Set M h : A ⊆ ↑S a : M ha : a ∈ A ⊢ a ∈ LowerAdjoint.toFun (closure (L[[↑A]])) s [PROOFSTEP] let a' : L[[A]].Constants := Sum.inr ⟨a, ha⟩ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M A s : Set M h : A ⊆ ↑S a : M ha : a ∈ A a' : Language.Constants (L[[↑A]]) := Sum.inr { val := a, property := ha } ⊢ a ∈ LowerAdjoint.toFun (closure (L[[↑A]])) s [PROOFSTEP] exact constants_mem a' [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M A s : Set M h : A ⊆ ↑S ⊢ LowerAdjoint.toFun (closure (L[[↑A]])) s = withConstants (LowerAdjoint.toFun (closure L) (A ∪ s)) (_ : A ⊆ ↑(LowerAdjoint.toFun (closure L) (A ∪ s))) [PROOFSTEP] refine' closure_eq_of_le ((A.subset_union_right s).trans subset_closure) _ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M A s : Set M h : A ⊆ ↑S ⊢ withConstants (LowerAdjoint.toFun (closure L) (A ∪ s)) (_ : A ⊆ ↑(LowerAdjoint.toFun (closure L) (A ∪ s))) ≤ LowerAdjoint.toFun (closure (L[[↑A]])) s [PROOFSTEP] rw [← (L.lhomWithConstants A).substructureReduct.le_iff_le] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M A s : Set M h : A ⊆ ↑S ⊢ ↑(LHom.substructureReduct (lhomWithConstants L ↑A)) (withConstants (LowerAdjoint.toFun (closure L) (A ∪ s)) (_ : A ⊆ ↑(LowerAdjoint.toFun (closure L) (A ∪ s)))) ≤ ↑(LHom.substructureReduct (lhomWithConstants L ↑A)) (LowerAdjoint.toFun (closure (L[[↑A]])) s) [PROOFSTEP] simp only [subset_closure, reduct_withConstants, closure_le, LHom.coe_substructureReduct, Set.union_subset_iff, and_true_iff] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M A s : Set M h : A ⊆ ↑S ⊢ A ⊆ ↑(LowerAdjoint.toFun (closure (L[[↑A]])) s) [PROOFSTEP] exact subset_closure_withConstants [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M p : Substructure L N f✝ : M →[L] N h : ∀ (c : M), ↑f✝ c ∈ p n : ℕ f : Functions L n x : Fin n → M ⊢ (fun c => { val := ↑f✝ c, property := (_ : ↑f✝ c ∈ p) }) (funMap f x) = funMap f ((fun c => { val := ↑f✝ c, property := (_ : ↑f✝ c ∈ p) }) ∘ x) [PROOFSTEP] aesop [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f : M →[L] N ⊢ range f = Substructure.map f ⊤ [PROOFSTEP] ext [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f : M →[L] N x✝ : N ⊢ x✝ ∈ range f ↔ x✝ ∈ Substructure.map f ⊤ [PROOFSTEP] simp [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f : M →[L] N ⊢ range f = ⊤ ↔ Function.Surjective ↑f [PROOFSTEP] rw [SetLike.ext'_iff, range_coe, coe_top, Set.range_iff_surjective] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f : M →[L] N p : Substructure L N ⊢ range f ≤ p ↔ comap f p = ⊤ [PROOFSTEP] rw [range_eq_map, map_le_iff_le_comap, eq_top_iff] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f g : M →[L] N n : ℕ fn : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x} ⊢ funMap fn x ∈ {x | ↑f x = ↑g x} [PROOFSTEP] have h : f ∘ x = g ∘ x := by ext repeat' rw [Function.comp_apply] apply hx [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f g : M →[L] N n : ℕ fn : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x} ⊢ ↑f ∘ x = ↑g ∘ x [PROOFSTEP] ext [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f g : M →[L] N n : ℕ fn : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x} x✝ : Fin n ⊢ (↑f ∘ x) x✝ = (↑g ∘ x) x✝ [PROOFSTEP] repeat' rw [Function.comp_apply] [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f g : M →[L] N n : ℕ fn : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x} x✝ : Fin n ⊢ (↑f ∘ x) x✝ = (↑g ∘ x) x✝ [PROOFSTEP] rw [Function.comp_apply] [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f g : M →[L] N n : ℕ fn : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x} x✝ : Fin n ⊢ ↑f (x x✝) = (↑g ∘ x) x✝ [PROOFSTEP] rw [Function.comp_apply] [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f g : M →[L] N n : ℕ fn : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x} x✝ : Fin n ⊢ ↑f (x x✝) = ↑g (x x✝) [PROOFSTEP] rw [Function.comp_apply] [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f g : M →[L] N n : ℕ fn : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x} x✝ : Fin n ⊢ ↑f (x x✝) = ↑g (x x✝) [PROOFSTEP] apply hx [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f g : M →[L] N n : ℕ fn : Functions L n x : Fin n → M hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x} h : ↑f ∘ x = ↑g ∘ x ⊢ funMap fn x ∈ {x | ↑f x = ↑g x} [PROOFSTEP] simp [h] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M p : Substructure L N f : M ↪[L] N h : ∀ (c : M), ↑f c ∈ p n : ℕ r : Relations L n x : Fin n → M ⊢ RelMap r ({ toFun := ↑(Hom.codRestrict p (toHom f) h), inj' := (_ : ∀ (a b : M), ↑(Hom.codRestrict p (toHom f) h) a = ↑(Hom.codRestrict p (toHom f) h) b → a = b) }.toFun ∘ x) ↔ RelMap r x [PROOFSTEP] simp only [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M p : Substructure L N f : M ↪[L] N h : ∀ (c : M), ↑f c ∈ p n : ℕ r : Relations L n x : Fin n → M ⊢ RelMap r (↑(Hom.codRestrict p (toHom f) h) ∘ x) ↔ RelMap r x [PROOFSTEP] rw [← p.subtype.map_rel] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M p : Substructure L N f : M ↪[L] N h : ∀ (c : M), ↑f c ∈ p n : ℕ r : Relations L n x : Fin n → M ⊢ RelMap r (↑(subtype p) ∘ ↑(Hom.codRestrict p (toHom f) h) ∘ x) ↔ RelMap r x [PROOFSTEP] change RelMap r (Hom.comp p.subtype.toHom (f.toHom.codRestrict p h) ∘ x) ↔ _ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M p : Substructure L N f : M ↪[L] N h : ∀ (c : M), ↑f c ∈ p n : ℕ r : Relations L n x : Fin n → M ⊢ RelMap r (↑(Hom.comp (toHom (subtype p)) (Hom.codRestrict p (toHom f) h)) ∘ x) ↔ RelMap r x [PROOFSTEP] rw [Hom.subtype_comp_codRestrict, ← f.map_rel] [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M p : Substructure L N f : M ↪[L] N h : ∀ (c : M), ↑f c ∈ p n : ℕ r : Relations L n x : Fin n → M ⊢ RelMap r (↑(toHom f) ∘ x) ↔ RelMap r (↑f ∘ x) [PROOFSTEP] rfl [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f✝ : M ↪[L] N s : Substructure L M n : ℕ f : Functions L n x : Fin n → { x // x ∈ s } ⊢ Equiv.toFun { toFun := ↑(codRestrict (Substructure.map (toHom f✝) s) (domRestrict f✝ s) (_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f✝ s) x ∈ Substructure.map (toHom f✝) s)), invFun := fun n => { val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s), property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s) ∈ ↑s) }, left_inv := (_ : ∀ (x : { x // x ∈ s }), (fun n => { val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s), property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s) ∈ ↑s) }) (↑(codRestrict (Substructure.map (toHom f✝) s) (domRestrict f✝ s) (_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f✝ s) x ∈ Substructure.map (toHom f✝) s)) x) = x), right_inv := (_ : ∀ (x : { x // x ∈ Substructure.map (toHom f✝) s }), ↑(codRestrict (Substructure.map (toHom f✝) s) (domRestrict f✝ s) (_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f✝ s) x ∈ Substructure.map (toHom f✝) s)) ((fun n => { val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s), property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s) ∈ ↑s) }) x) = x) } (funMap f x) = funMap f ({ toFun := ↑(codRestrict (Substructure.map (toHom f✝) s) (domRestrict f✝ s) (_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f✝ s) x ∈ Substructure.map (toHom f✝) s)), invFun := fun n => { val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s), property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s) ∈ ↑s) }, left_inv := (_ : ∀ (x : { x // x ∈ s }), (fun n => { val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s), property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s) ∈ ↑s) }) (↑(codRestrict (Substructure.map (toHom f✝) s) (domRestrict f✝ s) (_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f✝ s) x ∈ Substructure.map (toHom f✝) s)) x) = x), right_inv := (_ : ∀ (x : { x // x ∈ Substructure.map (toHom f✝) s }), ↑(codRestrict (Substructure.map (toHom f✝) s) (domRestrict f✝ s) (_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f✝ s) x ∈ Substructure.map (toHom f✝) s)) ((fun n => { val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s), property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s) ∈ ↑s) }) x) = x) }.toFun ∘ x) [PROOFSTEP] aesop [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f : M ↪[L] N s : Substructure L M n : ℕ R : Relations L n x : Fin n → { x // x ∈ s } ⊢ RelMap R ({ toFun := ↑(codRestrict (Substructure.map (toHom f) s) (domRestrict f s) (_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f s) x ∈ Substructure.map (toHom f) s)), invFun := fun n => { val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f) s), property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f) s) ∈ ↑s) }, left_inv := (_ : ∀ (x : { x // x ∈ s }), (fun n => { val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f) s), property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f) s) ∈ ↑s) }) (↑(codRestrict (Substructure.map (toHom f) s) (domRestrict f s) (_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f s) x ∈ Substructure.map (toHom f) s)) x) = x), right_inv := (_ : ∀ (x : { x // x ∈ Substructure.map (toHom f) s }), ↑(codRestrict (Substructure.map (toHom f) s) (domRestrict f s) (_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f s) x ∈ Substructure.map (toHom f) s)) ((fun n => { val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f) s), property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f) s) ∈ ↑s) }) x) = x) }.toFun ∘ x) ↔ RelMap R x [PROOFSTEP] aesop [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f✝ : M ↪[L] N n : ℕ f : Functions L n x : Fin n → M ⊢ Equiv.toFun { toFun := ↑(codRestrict (Hom.range (toHom f✝)) f✝ (_ : ∀ (x : M), ↑(toHom f✝) x ∈ Hom.range (toHom f✝))), invFun := fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f✝)), left_inv := (_ : ∀ (m : M), (fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f✝))) (↑(codRestrict (Hom.range (toHom f✝)) f✝ (_ : ∀ (x : M), ↑(toHom f✝) x ∈ Hom.range (toHom f✝))) m) = m), right_inv := (_ : ∀ (x : { x // x ∈ Hom.range (toHom f✝) }), ↑(codRestrict (Hom.range (toHom f✝)) f✝ (_ : ∀ (x : M), ↑(toHom f✝) x ∈ Hom.range (toHom f✝))) ((fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f✝))) x) = x) } (funMap f x) = funMap f ({ toFun := ↑(codRestrict (Hom.range (toHom f✝)) f✝ (_ : ∀ (x : M), ↑(toHom f✝) x ∈ Hom.range (toHom f✝))), invFun := fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f✝)), left_inv := (_ : ∀ (m : M), (fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f✝))) (↑(codRestrict (Hom.range (toHom f✝)) f✝ (_ : ∀ (x : M), ↑(toHom f✝) x ∈ Hom.range (toHom f✝))) m) = m), right_inv := (_ : ∀ (x : { x // x ∈ Hom.range (toHom f✝) }), ↑(codRestrict (Hom.range (toHom f✝)) f✝ (_ : ∀ (x : M), ↑(toHom f✝) x ∈ Hom.range (toHom f✝))) ((fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f✝))) x) = x) }.toFun ∘ x) [PROOFSTEP] aesop [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f : M ↪[L] N n : ℕ R : Relations L n x : Fin n → M ⊢ RelMap R ({ toFun := ↑(codRestrict (Hom.range (toHom f)) f (_ : ∀ (x : M), ↑(toHom f) x ∈ Hom.range (toHom f))), invFun := fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f)), left_inv := (_ : ∀ (m : M), (fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f))) (↑(codRestrict (Hom.range (toHom f)) f (_ : ∀ (x : M), ↑(toHom f) x ∈ Hom.range (toHom f))) m) = m), right_inv := (_ : ∀ (x : { x // x ∈ Hom.range (toHom f) }), ↑(codRestrict (Hom.range (toHom f)) f (_ : ∀ (x : M), ↑(toHom f) x ∈ Hom.range (toHom f))) ((fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f))) x) = x) }.toFun ∘ x) ↔ RelMap R x [PROOFSTEP] aesop [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f : M ≃[L] N ⊢ Hom.range (toHom f) = ⊤ [PROOFSTEP] ext n [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f : M ≃[L] N n : N ⊢ n ∈ Hom.range (toHom f) ↔ n ∈ ⊤ [PROOFSTEP] simp only [Hom.mem_range, coe_toHom, Substructure.mem_top, iff_true_iff] [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S : Substructure L M f : M ≃[L] N n : N ⊢ ∃ y, ↑f y = n [PROOFSTEP] exact ⟨f.symm n, apply_symm_apply _ _⟩ [GOAL] L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ S : Substructure L M ⊢ Hom.range (Embedding.toHom (subtype S)) = S [PROOFSTEP] ext x [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ S : Substructure L M x : M ⊢ x ∈ Hom.range (Embedding.toHom (subtype S)) ↔ x ∈ S [PROOFSTEP] simp only [Hom.mem_range, Embedding.coe_toHom, coeSubtype] [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ S : Substructure L M x : M ⊢ (∃ y, ↑y = x) ↔ x ∈ S [PROOFSTEP] refine' ⟨_, fun h => ⟨⟨x, h⟩, rfl⟩⟩ [GOAL] case h L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ S : Substructure L M x : M ⊢ (∃ y, ↑y = x) → x ∈ S [PROOFSTEP] rintro ⟨⟨y, hy⟩, rfl⟩ [GOAL] case h.intro.mk L : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P S✝ S : Substructure L M y : M hy : y ∈ S ⊢ ↑{ val := y, property := hy } ∈ S [PROOFSTEP] exact hy
{"mathlib_filename": "Mathlib.ModelTheory.Substructures", "llama_tokens": 18550}
[GOAL] α : Type u β : Type v γ : Type w inst✝ : CompleteLattice α f : α →o α p : α → Prop step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a) hSup : ∀ (s : Set α), (∀ (a : α), a ∈ s → p a) → p (sSup s) ⊢ p (↑lfp f) [PROOFSTEP] set s := {a | a ≤ lfp f ∧ p a} [GOAL] α : Type u β : Type v γ : Type w inst✝ : CompleteLattice α f : α →o α p : α → Prop step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a) hSup : ∀ (s : Set α), (∀ (a : α), a ∈ s → p a) → p (sSup s) s : Set α := {a | a ≤ ↑lfp f ∧ p a} ⊢ p (↑lfp f) [PROOFSTEP] specialize hSup s fun a => And.right [GOAL] α : Type u β : Type v γ : Type w inst✝ : CompleteLattice α f : α →o α p : α → Prop step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a) s : Set α := {a | a ≤ ↑lfp f ∧ p a} hSup : p (sSup s) ⊢ p (↑lfp f) [PROOFSTEP] suffices : sSup s = lfp f [GOAL] α : Type u β : Type v γ : Type w inst✝ : CompleteLattice α f : α →o α p : α → Prop step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a) s : Set α := {a | a ≤ ↑lfp f ∧ p a} hSup : p (sSup s) this : sSup s = ↑lfp f ⊢ p (↑lfp f) case this α : Type u β : Type v γ : Type w inst✝ : CompleteLattice α f : α →o α p : α → Prop step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a) s : Set α := {a | a ≤ ↑lfp f ∧ p a} hSup : p (sSup s) ⊢ sSup s = ↑lfp f [PROOFSTEP] exact this ▸ hSup [GOAL] case this α : Type u β : Type v γ : Type w inst✝ : CompleteLattice α f : α →o α p : α → Prop step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a) s : Set α := {a | a ≤ ↑lfp f ∧ p a} hSup : p (sSup s) ⊢ sSup s = ↑lfp f [PROOFSTEP] have h : sSup s ≤ lfp f := sSup_le fun b => And.left [GOAL] case this α : Type u β : Type v γ : Type w inst✝ : CompleteLattice α f : α →o α p : α → Prop step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a) s : Set α := {a | a ≤ ↑lfp f ∧ p a} hSup : p (sSup s) h : sSup s ≤ ↑lfp f ⊢ sSup s = ↑lfp f [PROOFSTEP] have hmem : f (sSup s) ∈ s := ⟨f.map_le_lfp h, step _ hSup h⟩ [GOAL] case this α : Type u β : Type v γ : Type w inst✝ : CompleteLattice α f : α →o α p : α → Prop step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a) s : Set α := {a | a ≤ ↑lfp f ∧ p a} hSup : p (sSup s) h : sSup s ≤ ↑lfp f hmem : ↑f (sSup s) ∈ s ⊢ sSup s = ↑lfp f [PROOFSTEP] exact h.antisymm (f.lfp_le <| le_sSup hmem) [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β f : β →o α g : α →o β h : α →o α →o α ⊢ ↑lfp (comp lfp h) = ↑lfp (onDiag h) [PROOFSTEP] let a := lfp (lfp.comp h) [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β f : β →o α g : α →o β h : α →o α →o α a : α := ↑lfp (comp lfp h) ⊢ ↑lfp (comp lfp h) = ↑lfp (onDiag h) [PROOFSTEP] refine' (lfp_le _ _).antisymm (lfp_le _ (Eq.le _)) [GOAL] case refine'_1 α : Type u β : Type v γ : Type w inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β f : β →o α g : α →o β h : α →o α →o α a : α := ↑lfp (comp lfp h) ⊢ ↑(comp lfp h) (↑lfp (onDiag h)) ≤ ↑lfp (onDiag h) [PROOFSTEP] exact lfp_le _ h.onDiag.map_lfp.le [GOAL] case refine'_2 α : Type u β : Type v γ : Type w inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β f : β →o α g : α →o β h : α →o α →o α a : α := ↑lfp (comp lfp h) ⊢ ↑(onDiag h) (↑lfp (comp lfp h)) = ↑lfp (comp lfp h) [PROOFSTEP] have ha : (lfp ∘ h) a = a := (lfp.comp h).map_lfp [GOAL] case refine'_2 α : Type u β : Type v γ : Type w inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β f : β →o α g : α →o β h : α →o α →o α a : α := ↑lfp (comp lfp h) ha : (↑lfp ∘ ↑h) a = a ⊢ ↑(onDiag h) (↑lfp (comp lfp h)) = ↑lfp (comp lfp h) [PROOFSTEP] calc h a a = h a (lfp (h a)) := congr_arg (h a) ha.symm _ = lfp (h a) := (h a).map_lfp _ = a := ha
{"mathlib_filename": "Mathlib.Order.FixedPoints", "llama_tokens": 1954}
[GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝ : Sup α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) sup_idem : ∀ (a : α), a ⊔ a = a a b c : α hab : a ≤ b hbc : b ≤ c ⊢ a ≤ c [PROOFSTEP] show a ⊔ c = c [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝ : Sup α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) sup_idem : ∀ (a : α), a ⊔ a = a a b c : α hab : a ≤ b hbc : b ≤ c ⊢ a ⊔ c = c [PROOFSTEP] rw [← hbc, ← sup_assoc, hab] [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝ : Sup α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) sup_idem : ∀ (a : α), a ⊔ a = a a b : α hab : a ≤ b hba : b ≤ a ⊢ a = b [PROOFSTEP] rwa [← hba, sup_comm] [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝ : Sup α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) sup_idem : ∀ (a : α), a ⊔ a = a a b : α ⊢ a ⊔ (a ⊔ b) = a ⊔ b [PROOFSTEP] rw [← sup_assoc, sup_idem] [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝ : Sup α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) sup_idem : ∀ (a : α), a ⊔ a = a a b : α ⊢ b ⊔ (a ⊔ b) = a ⊔ b [PROOFSTEP] rw [sup_comm, sup_assoc, sup_idem] [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝ : Sup α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) sup_idem : ∀ (a : α), a ⊔ a = a a b c : α hac : a ≤ c hbc : b ≤ c ⊢ a ⊔ b ≤ c [PROOFSTEP] show (a ⊔ b) ⊔ c = c [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝ : Sup α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) sup_idem : ∀ (a : α), a ⊔ a = a a b c : α hac : a ≤ c hbc : b ≤ c ⊢ a ⊔ b ⊔ c = c [PROOFSTEP] rwa [sup_assoc, hbc] [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a b c d : α ⊢ a ⊔ b ≤ a ∧ a ≤ a ⊔ b ↔ b ≤ a [PROOFSTEP] simp [le_rfl] [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a b c d : α ⊢ a ⊔ b ≤ b ∧ b ≤ a ⊔ b ↔ a ≤ b [PROOFSTEP] simp [le_rfl] [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a b c d : α ⊢ a ≤ b ↔ ∃ c, b = a ⊔ c [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v inst✝ : SemilatticeSup α a b c d : α ⊢ a ≤ b → ∃ c, b = a ⊔ c [PROOFSTEP] intro h [GOAL] case mp α : Type u β : Type v inst✝ : SemilatticeSup α a b c d : α h : a ≤ b ⊢ ∃ c, b = a ⊔ c [PROOFSTEP] exact ⟨b, (sup_eq_right.mpr h).symm⟩ [GOAL] case mpr α : Type u β : Type v inst✝ : SemilatticeSup α a b c d : α ⊢ (∃ c, b = a ⊔ c) → a ≤ b [PROOFSTEP] rintro ⟨c, rfl : _ = _ ⊔ _⟩ [GOAL] case mpr.intro α : Type u β : Type v inst✝ : SemilatticeSup α a c✝ d c : α ⊢ a ≤ a ⊔ c [PROOFSTEP] exact le_sup_left [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a b c d : α ⊢ a ⊔ a = a [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a b c d : α ⊢ a ⊔ b = b ⊔ a [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u β : Type v inst✝ : SemilatticeSup α a b c d : α ⊢ a ⊔ b ≤ b ⊔ a [PROOFSTEP] simp [GOAL] case a α : Type u β : Type v inst✝ : SemilatticeSup α a b c d : α ⊢ b ⊔ a ≤ a ⊔ b [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a b c d x : α ⊢ a ⊔ b ⊔ c ≤ x ↔ a ⊔ (b ⊔ c) ≤ x [PROOFSTEP] simp only [sup_le_iff] [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a b c d x : α ⊢ (a ≤ x ∧ b ≤ x) ∧ c ≤ x ↔ a ≤ x ∧ b ≤ x ∧ c ≤ x [PROOFSTEP] rw [and_assoc] [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a✝ b✝ c✝ d a b c : α ⊢ a ⊔ b ⊔ c = c ⊔ b ⊔ a [PROOFSTEP] rw [sup_comm, @sup_comm _ _ a, sup_assoc] [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a b c d : α ⊢ a ⊔ (a ⊔ b) = a ⊔ b [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a b c d : α ⊢ a ⊔ b ⊔ b = a ⊔ b [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a✝ b✝ c✝ d a b c : α ⊢ a ⊔ (b ⊔ c) = b ⊔ (a ⊔ c) [PROOFSTEP] rw [← sup_assoc, ← sup_assoc, @sup_comm α _ a] [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a✝ b✝ c✝ d a b c : α ⊢ a ⊔ b ⊔ c = a ⊔ c ⊔ b [PROOFSTEP] rw [sup_assoc, sup_assoc, @sup_comm _ _ b] [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a✝ b✝ c✝ d✝ a b c d : α ⊢ a ⊔ b ⊔ (c ⊔ d) = a ⊔ c ⊔ (b ⊔ d) [PROOFSTEP] rw [sup_assoc, sup_left_comm b, ← sup_assoc] [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a✝ b✝ c✝ d a b c : α ⊢ a ⊔ (b ⊔ c) = a ⊔ b ⊔ (a ⊔ c) [PROOFSTEP] rw [sup_sup_sup_comm, sup_idem] [GOAL] α : Type u β : Type v inst✝ : SemilatticeSup α a✝ b✝ c✝ d a b c : α ⊢ a ⊔ b ⊔ c = a ⊔ c ⊔ (b ⊔ c) [PROOFSTEP] rw [sup_sup_sup_comm, sup_idem] [GOAL] α✝ : Type u β : Type v inst✝ : SemilatticeSup α✝ a b c✝ d : α✝ α : Type u_1 A B : SemilatticeSup α H : ∀ (x y : α), x ≤ y ↔ x ≤ y x y c : α ⊢ x ⊔ y ≤ c ↔ x ⊔ y ≤ c [PROOFSTEP] simp only [sup_le_iff] [GOAL] α✝ : Type u β : Type v inst✝ : SemilatticeSup α✝ a b c✝ d : α✝ α : Type u_1 A B : SemilatticeSup α H : ∀ (x y : α), x ≤ y ↔ x ≤ y x y c : α ⊢ x ⊔ y ≤ c ↔ x ≤ c ∧ y ≤ c [PROOFSTEP] rw [← H, @sup_le_iff α A, H, H] [GOAL] α✝ : Type u β : Type v inst✝ : SemilatticeSup α✝ a b c d : α✝ α : Type u_1 A B : SemilatticeSup α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ A = B [PROOFSTEP] have ss : A.toSup = B.toSup := by ext; apply SemilatticeSup.ext_sup H [GOAL] α✝ : Type u β : Type v inst✝ : SemilatticeSup α✝ a b c d : α✝ α : Type u_1 A B : SemilatticeSup α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ toSup = toSup [PROOFSTEP] ext [GOAL] case sup.h.h α✝ : Type u β : Type v inst✝ : SemilatticeSup α✝ a b c d : α✝ α : Type u_1 A B : SemilatticeSup α H : ∀ (x y : α), x ≤ y ↔ x ≤ y x✝¹ x✝ : α ⊢ x✝¹ ⊔ x✝ = x✝¹ ⊔ x✝ [PROOFSTEP] apply SemilatticeSup.ext_sup H [GOAL] α✝ : Type u β : Type v inst✝ : SemilatticeSup α✝ a b c d : α✝ α : Type u_1 A B : SemilatticeSup α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ss : toSup = toSup ⊢ A = B [PROOFSTEP] cases A [GOAL] case mk α✝ : Type u β : Type v inst✝ : SemilatticeSup α✝ a b c d : α✝ α : Type u_1 B : SemilatticeSup α toSup✝ : Sup α toPartialOrder✝ : PartialOrder α le_sup_left✝ : ∀ (a b : α), a ≤ a ⊔ b le_sup_right✝ : ∀ (a b : α), b ≤ a ⊔ b sup_le✝ : ∀ (a b c : α), a ≤ c → b ≤ c → a ⊔ b ≤ c H : ∀ (x y : α), x ≤ y ↔ x ≤ y ss : toSup = toSup ⊢ mk le_sup_left✝ le_sup_right✝ sup_le✝ = B [PROOFSTEP] cases B [GOAL] case mk.mk α✝ : Type u β : Type v inst✝ : SemilatticeSup α✝ a b c d : α✝ α : Type u_1 toSup✝¹ : Sup α toPartialOrder✝¹ : PartialOrder α le_sup_left✝¹ : ∀ (a b : α), a ≤ a ⊔ b le_sup_right✝¹ : ∀ (a b : α), b ≤ a ⊔ b sup_le✝¹ : ∀ (a b c : α), a ≤ c → b ≤ c → a ⊔ b ≤ c toSup✝ : Sup α toPartialOrder✝ : PartialOrder α le_sup_left✝ : ∀ (a b : α), a ≤ a ⊔ b le_sup_right✝ : ∀ (a b : α), b ≤ a ⊔ b sup_le✝ : ∀ (a b c : α), a ≤ c → b ≤ c → a ⊔ b ≤ c H : ∀ (x y : α), x ≤ y ↔ x ≤ y ss : toSup = toSup ⊢ mk le_sup_left✝¹ le_sup_right✝¹ sup_le✝¹ = mk le_sup_left✝ le_sup_right✝ sup_le✝ [PROOFSTEP] cases PartialOrder.ext H [GOAL] case mk.mk.refl α✝ : Type u β : Type v inst✝ : SemilatticeSup α✝ a b c d : α✝ α : Type u_1 toSup✝¹ : Sup α toPartialOrder✝ : PartialOrder α le_sup_left✝¹ : ∀ (a b : α), a ≤ a ⊔ b le_sup_right✝¹ : ∀ (a b : α), b ≤ a ⊔ b sup_le✝¹ : ∀ (a b c : α), a ≤ c → b ≤ c → a ⊔ b ≤ c toSup✝ : Sup α le_sup_left✝ : ∀ (a b : α), a ≤ a ⊔ b le_sup_right✝ : ∀ (a b : α), b ≤ a ⊔ b sup_le✝ : ∀ (a b c : α), a ≤ c → b ≤ c → a ⊔ b ≤ c H : ∀ (x y : α), x ≤ y ↔ x ≤ y ss : toSup = toSup ⊢ mk le_sup_left✝¹ le_sup_right✝¹ sup_le✝¹ = mk le_sup_left✝ le_sup_right✝ sup_le✝ [PROOFSTEP] congr [GOAL] α : Type u β : Type v inst✝ : SemilatticeInf α a b c d : α ⊢ a ⊓ b ≤ a ∧ a ≤ a ⊓ b ↔ a ≤ b [PROOFSTEP] simp [le_rfl] [GOAL] α : Type u β : Type v inst✝ : SemilatticeInf α a b c d : α ⊢ a ⊓ b ≤ b ∧ b ≤ a ⊓ b ↔ b ≤ a [PROOFSTEP] simp [le_rfl] [GOAL] α✝ : Type u β : Type v inst✝ : SemilatticeInf α✝ a b c✝ d : α✝ α : Type u_1 A B : SemilatticeInf α H : ∀ (x y : α), x ≤ y ↔ x ≤ y x y c : α ⊢ c ≤ x ⊓ y ↔ c ≤ x ⊓ y [PROOFSTEP] simp only [le_inf_iff] [GOAL] α✝ : Type u β : Type v inst✝ : SemilatticeInf α✝ a b c✝ d : α✝ α : Type u_1 A B : SemilatticeInf α H : ∀ (x y : α), x ≤ y ↔ x ≤ y x y c : α ⊢ c ≤ x ⊓ y ↔ c ≤ x ∧ c ≤ y [PROOFSTEP] rw [← H, @le_inf_iff α A, H, H] [GOAL] α✝ : Type u β : Type v inst✝ : SemilatticeInf α✝ a b c d : α✝ α : Type u_1 A B : SemilatticeInf α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ A = B [PROOFSTEP] have ss : A.toInf = B.toInf := by ext; apply SemilatticeInf.ext_inf H [GOAL] α✝ : Type u β : Type v inst✝ : SemilatticeInf α✝ a b c d : α✝ α : Type u_1 A B : SemilatticeInf α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ toInf = toInf [PROOFSTEP] ext [GOAL] case inf.h.h α✝ : Type u β : Type v inst✝ : SemilatticeInf α✝ a b c d : α✝ α : Type u_1 A B : SemilatticeInf α H : ∀ (x y : α), x ≤ y ↔ x ≤ y x✝¹ x✝ : α ⊢ x✝¹ ⊓ x✝ = x✝¹ ⊓ x✝ [PROOFSTEP] apply SemilatticeInf.ext_inf H [GOAL] α✝ : Type u β : Type v inst✝ : SemilatticeInf α✝ a b c d : α✝ α : Type u_1 A B : SemilatticeInf α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ss : toInf = toInf ⊢ A = B [PROOFSTEP] cases A [GOAL] case mk α✝ : Type u β : Type v inst✝ : SemilatticeInf α✝ a b c d : α✝ α : Type u_1 B : SemilatticeInf α toInf✝ : Inf α toPartialOrder✝ : PartialOrder α inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c H : ∀ (x y : α), x ≤ y ↔ x ≤ y ss : toInf = toInf ⊢ mk inf_le_left✝ inf_le_right✝ le_inf✝ = B [PROOFSTEP] cases B [GOAL] case mk.mk α✝ : Type u β : Type v inst✝ : SemilatticeInf α✝ a b c d : α✝ α : Type u_1 toInf✝¹ : Inf α toPartialOrder✝¹ : PartialOrder α inf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a inf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b le_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c toInf✝ : Inf α toPartialOrder✝ : PartialOrder α inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c H : ∀ (x y : α), x ≤ y ↔ x ≤ y ss : toInf = toInf ⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝ [PROOFSTEP] cases PartialOrder.ext H [GOAL] case mk.mk.refl α✝ : Type u β : Type v inst✝ : SemilatticeInf α✝ a b c d : α✝ α : Type u_1 toInf✝¹ : Inf α toPartialOrder✝ : PartialOrder α inf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a inf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b le_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c toInf✝ : Inf α inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c H : ∀ (x y : α), x ≤ y ↔ x ≤ y ss : toInf = toInf ⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝ [PROOFSTEP] congr [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝ : Inf α inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) inf_idem : ∀ (a : α), a ⊓ a = a ⊢ SemilatticeInf α [PROOFSTEP] haveI : SemilatticeSup αᵒᵈ := SemilatticeSup.mk' inf_comm inf_assoc inf_idem [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝ : Inf α inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) inf_idem : ∀ (a : α), a ⊓ a = a this : SemilatticeSup αᵒᵈ ⊢ SemilatticeInf α [PROOFSTEP] haveI i := OrderDual.semilatticeInf αᵒᵈ [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝ : Inf α inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) inf_idem : ∀ (a : α), a ⊓ a = a this : SemilatticeSup αᵒᵈ i : SemilatticeInf αᵒᵈᵒᵈ ⊢ SemilatticeInf α [PROOFSTEP] exact i [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝¹ : Sup α inst✝ : Inf α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) sup_idem : ∀ (a : α), a ⊔ a = a inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) inf_idem : ∀ (a : α), a ⊓ a = a sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a a b : α h : a ⊔ b = b ⊢ b ⊓ a = a [PROOFSTEP] rw [← h, inf_comm, inf_sup_self] [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝¹ : Sup α inst✝ : Inf α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) sup_idem : ∀ (a : α), a ⊔ a = a inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) inf_idem : ∀ (a : α), a ⊓ a = a sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a a b : α h : b ⊓ a = a ⊢ a ⊔ b = b [PROOFSTEP] rw [← h, sup_comm, sup_inf_self] [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝¹ : Sup α inst✝ : Inf α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a b : α ⊢ b ⊔ b = b ⊔ b ⊓ (b ⊔ b) [PROOFSTEP] rw [inf_sup_self] [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝¹ : Sup α inst✝ : Inf α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a b : α ⊢ b ⊔ b ⊓ (b ⊔ b) = b [PROOFSTEP] rw [sup_inf_self] [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝¹ : Sup α inst✝ : Inf α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a sup_idem : ∀ (b : α), b ⊔ b = b b : α ⊢ b ⊓ b = b ⊓ (b ⊔ b ⊓ b) [PROOFSTEP] rw [sup_inf_self] [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝¹ : Sup α inst✝ : Inf α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a sup_idem : ∀ (b : α), b ⊔ b = b b : α ⊢ b ⊓ (b ⊔ b ⊓ b) = b [PROOFSTEP] rw [inf_sup_self] [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝¹ : Sup α inst✝ : Inf α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a sup_idem : ∀ (b : α), b ⊔ b = b inf_idem : ∀ (b : α), b ⊓ b = b semilatt_inf_inst : SemilatticeInf α := SemilatticeInf.mk' inf_comm inf_assoc inf_idem semilatt_sup_inst : SemilatticeSup α := SemilatticeSup.mk' sup_comm sup_assoc sup_idem partial_order_eq : SemilatticeSup.toPartialOrder = SemilatticeInf.toPartialOrder a b : α ⊢ a ⊓ b ≤ a [PROOFSTEP] rw [partial_order_eq] [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝¹ : Sup α inst✝ : Inf α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a sup_idem : ∀ (b : α), b ⊔ b = b inf_idem : ∀ (b : α), b ⊓ b = b semilatt_inf_inst : SemilatticeInf α := SemilatticeInf.mk' inf_comm inf_assoc inf_idem semilatt_sup_inst : SemilatticeSup α := SemilatticeSup.mk' sup_comm sup_assoc sup_idem partial_order_eq : SemilatticeSup.toPartialOrder = SemilatticeInf.toPartialOrder a b : α ⊢ a ⊓ b ≤ a [PROOFSTEP] apply inf_le_left [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝¹ : Sup α inst✝ : Inf α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a sup_idem : ∀ (b : α), b ⊔ b = b inf_idem : ∀ (b : α), b ⊓ b = b semilatt_inf_inst : SemilatticeInf α := SemilatticeInf.mk' inf_comm inf_assoc inf_idem semilatt_sup_inst : SemilatticeSup α := SemilatticeSup.mk' sup_comm sup_assoc sup_idem partial_order_eq : SemilatticeSup.toPartialOrder = SemilatticeInf.toPartialOrder a b : α ⊢ a ⊓ b ≤ b [PROOFSTEP] rw [partial_order_eq] [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝¹ : Sup α inst✝ : Inf α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a sup_idem : ∀ (b : α), b ⊔ b = b inf_idem : ∀ (b : α), b ⊓ b = b semilatt_inf_inst : SemilatticeInf α := SemilatticeInf.mk' inf_comm inf_assoc inf_idem semilatt_sup_inst : SemilatticeSup α := SemilatticeSup.mk' sup_comm sup_assoc sup_idem partial_order_eq : SemilatticeSup.toPartialOrder = SemilatticeInf.toPartialOrder a b : α ⊢ a ⊓ b ≤ b [PROOFSTEP] apply inf_le_right [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝¹ : Sup α inst✝ : Inf α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a sup_idem : ∀ (b : α), b ⊔ b = b inf_idem : ∀ (b : α), b ⊓ b = b semilatt_inf_inst : SemilatticeInf α := SemilatticeInf.mk' inf_comm inf_assoc inf_idem semilatt_sup_inst : SemilatticeSup α := SemilatticeSup.mk' sup_comm sup_assoc sup_idem partial_order_eq : SemilatticeSup.toPartialOrder = SemilatticeInf.toPartialOrder a b c : α ⊢ a ≤ b → a ≤ c → a ≤ b ⊓ c [PROOFSTEP] rw [partial_order_eq] [GOAL] α✝ : Type u β : Type v α : Type u_1 inst✝¹ : Sup α inst✝ : Inf α sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c) inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c) sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a sup_idem : ∀ (b : α), b ⊔ b = b inf_idem : ∀ (b : α), b ⊓ b = b semilatt_inf_inst : SemilatticeInf α := SemilatticeInf.mk' inf_comm inf_assoc inf_idem semilatt_sup_inst : SemilatticeSup α := SemilatticeSup.mk' sup_comm sup_assoc sup_idem partial_order_eq : SemilatticeSup.toPartialOrder = SemilatticeInf.toPartialOrder a b c : α ⊢ a ≤ b → a ≤ c → a ≤ b ⊓ c [PROOFSTEP] apply le_inf [GOAL] α : Type u β : Type v inst✝ : Lattice α a b c d : α ⊢ a ⊔ b ≤ a ⊓ b ↔ a = b [PROOFSTEP] simp [le_antisymm_iff, and_comm] [GOAL] α : Type u β : Type v inst✝ : Lattice α a b c d : α ⊢ a ⊓ b = a ⊔ b ↔ a = b [PROOFSTEP] rw [← inf_le_sup.ge_iff_eq, sup_le_inf] [GOAL] α : Type u β : Type v inst✝ : Lattice α a b c d : α ⊢ a ⊓ b < a ⊔ b ↔ a ≠ b [PROOFSTEP] rw [inf_le_sup.lt_iff_ne, Ne.def, inf_eq_sup] [GOAL] α : Type u β : Type v inst✝ : Lattice α a b c d : α ⊢ a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c [PROOFSTEP] refine' ⟨fun h ↦ _, _⟩ [GOAL] case refine'_1 α : Type u β : Type v inst✝ : Lattice α a b c d : α h : a ⊓ b = c ∧ a ⊔ b = c ⊢ a = c ∧ b = c case refine'_2 α : Type u β : Type v inst✝ : Lattice α a b c d : α ⊢ a = c ∧ b = c → a ⊓ b = c ∧ a ⊔ b = c [PROOFSTEP] { obtain rfl := sup_eq_inf.1 (h.2.trans h.1.symm) simpa using h } [GOAL] case refine'_1 α : Type u β : Type v inst✝ : Lattice α a b c d : α h : a ⊓ b = c ∧ a ⊔ b = c ⊢ a = c ∧ b = c [PROOFSTEP] obtain rfl := sup_eq_inf.1 (h.2.trans h.1.symm) [GOAL] case refine'_1 α : Type u β : Type v inst✝ : Lattice α a c d : α h : a ⊓ a = c ∧ a ⊔ a = c ⊢ a = c ∧ a = c [PROOFSTEP] simpa using h [GOAL] case refine'_2 α : Type u β : Type v inst✝ : Lattice α a b c d : α ⊢ a = c ∧ b = c → a ⊓ b = c ∧ a ⊔ b = c [PROOFSTEP] { rintro ⟨rfl, rfl⟩ exact ⟨inf_idem, sup_idem⟩ } [GOAL] case refine'_2 α : Type u β : Type v inst✝ : Lattice α a b c d : α ⊢ a = c ∧ b = c → a ⊓ b = c ∧ a ⊔ b = c [PROOFSTEP] rintro ⟨rfl, rfl⟩ [GOAL] case refine'_2.intro α : Type u β : Type v inst✝ : Lattice α b d : α ⊢ b ⊓ b = b ∧ b ⊔ b = b [PROOFSTEP] exact ⟨inf_idem, sup_idem⟩ [GOAL] α : Type u β : Type v inst✝ : Lattice α a b c d : α ⊢ a ⊓ (a ⊔ b) = a [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝ : Lattice α a b c d : α ⊢ a ⊔ a ⊓ b = a [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝ : Lattice α a b c d : α ⊢ a ⊔ b = b ↔ a ⊓ b = a [PROOFSTEP] rw [sup_eq_right, ← inf_eq_left] [GOAL] α✝ : Type u β : Type v inst✝ : Lattice α✝ a b c d : α✝ α : Type u_1 A B : Lattice α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ A = B [PROOFSTEP] cases A [GOAL] case mk α✝ : Type u β : Type v inst✝ : Lattice α✝ a b c d : α✝ α : Type u_1 B : Lattice α toSemilatticeSup✝ : SemilatticeSup α toInf✝ : Inf α inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ mk inf_le_left✝ inf_le_right✝ le_inf✝ = B [PROOFSTEP] cases B [GOAL] case mk.mk α✝ : Type u β : Type v inst✝ : Lattice α✝ a b c d : α✝ α : Type u_1 toSemilatticeSup✝¹ : SemilatticeSup α toInf✝¹ : Inf α inf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a inf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b le_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c toSemilatticeSup✝ : SemilatticeSup α toInf✝ : Inf α inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝ [PROOFSTEP] cases SemilatticeSup.ext H [GOAL] case mk.mk.refl α✝ : Type u β : Type v inst✝ : Lattice α✝ a b c d : α✝ α : Type u_1 toSemilatticeSup✝ : SemilatticeSup α toInf✝¹ : Inf α inf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a inf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b le_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c toInf✝ : Inf α inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝ [PROOFSTEP] cases SemilatticeInf.ext H [GOAL] case mk.mk.refl.refl α✝ : Type u β : Type v inst✝ : Lattice α✝ a b c d : α✝ α : Type u_1 toSemilatticeSup✝ : SemilatticeSup α toInf✝ : Inf α inf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a inf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b le_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝ [PROOFSTEP] congr [GOAL] α : Type u β : Type v inst✝ : DistribLattice α x y z : α ⊢ y ⊓ z ⊔ x = (y ⊔ x) ⊓ (z ⊔ x) [PROOFSTEP] simp only [sup_inf_left, fun y : α => @sup_comm α _ y x, eq_self_iff_true] [GOAL] α : Type u β : Type v inst✝ : DistribLattice α x y z : α ⊢ x ⊓ (y ⊔ z) = x ⊓ (x ⊔ z) ⊓ (y ⊔ z) [PROOFSTEP] rw [inf_sup_self] [GOAL] α : Type u β : Type v inst✝ : DistribLattice α x y z : α ⊢ x ⊓ (x ⊔ z) ⊓ (y ⊔ z) = x ⊓ (x ⊓ y ⊔ z) [PROOFSTEP] simp only [inf_assoc, sup_inf_right, eq_self_iff_true] [GOAL] α : Type u β : Type v inst✝ : DistribLattice α x y z : α ⊢ x ⊓ (x ⊓ y ⊔ z) = (x ⊔ x ⊓ y) ⊓ (x ⊓ y ⊔ z) [PROOFSTEP] rw [sup_inf_self] [GOAL] α : Type u β : Type v inst✝ : DistribLattice α x y z : α ⊢ (x ⊔ x ⊓ y) ⊓ (x ⊓ y ⊔ z) = (x ⊓ y ⊔ x) ⊓ (x ⊓ y ⊔ z) [PROOFSTEP] rw [sup_comm] [GOAL] α : Type u β : Type v inst✝ : DistribLattice α x y z : α ⊢ (x ⊓ y ⊔ x) ⊓ (x ⊓ y ⊔ z) = x ⊓ y ⊔ x ⊓ z [PROOFSTEP] rw [sup_inf_left] [GOAL] α : Type u β : Type v inst✝ : DistribLattice α x y z : α ⊢ (y ⊔ z) ⊓ x = y ⊓ x ⊔ z ⊓ x [PROOFSTEP] simp only [inf_sup_left, fun y : α => @inf_comm α _ y x, eq_self_iff_true] [GOAL] α : Type u β : Type v inst✝ : DistribLattice α x y z : α h₁ : x ⊓ z ≤ y ⊓ z h₂ : x ⊔ z ≤ y ⊔ z ⊢ y ⊓ z ⊔ x = (y ⊔ x) ⊓ (x ⊔ z) [PROOFSTEP] rw [sup_inf_right, @sup_comm _ _ x] [GOAL] α : Type u β : Type v inst✝ : LinearOrder α a✝ b✝ c d a b : α p : α → Prop ha : p a hb : p b h : a ≤ b ⊢ p (a ⊔ b) [PROOFSTEP] rwa [sup_eq_right.2 h] [GOAL] α : Type u β : Type v inst✝ : LinearOrder α a✝ b✝ c d a b : α p : α → Prop ha : p a hb : p b h : b ≤ a ⊢ p (a ⊔ b) [PROOFSTEP] rwa [sup_eq_left.2 h] [GOAL] α : Type u β : Type v inst✝ : LinearOrder α a b c d : α ⊢ a ≤ b ⊔ c ↔ a ≤ b ∨ a ≤ c [PROOFSTEP] exact ⟨fun h => (le_total c b).imp (fun bc => by rwa [sup_eq_left.2 bc] at h ) (fun bc => by rwa [sup_eq_right.2 bc] at h ), fun h => h.elim le_sup_of_le_left le_sup_of_le_right⟩ [GOAL] α : Type u β : Type v inst✝ : LinearOrder α a b c d : α h : a ≤ b ⊔ c bc : c ≤ b ⊢ a ≤ b [PROOFSTEP] rwa [sup_eq_left.2 bc] at h [GOAL] α : Type u β : Type v inst✝ : LinearOrder α a b c d : α h : a ≤ b ⊔ c bc : b ≤ c ⊢ a ≤ c [PROOFSTEP] rwa [sup_eq_right.2 bc] at h [GOAL] α : Type u β : Type v inst✝ : LinearOrder α a b c d : α ⊢ a < b ⊔ c ↔ a < b ∨ a < c [PROOFSTEP] exact ⟨fun h => (le_total c b).imp (fun bc => by rwa [sup_eq_left.2 bc] at h ) (fun bc => by rwa [sup_eq_right.2 bc] at h ), fun h => h.elim lt_sup_of_lt_left lt_sup_of_lt_right⟩ [GOAL] α : Type u β : Type v inst✝ : LinearOrder α a b c d : α h : a < b ⊔ c bc : c ≤ b ⊢ a < b [PROOFSTEP] rwa [sup_eq_left.2 bc] at h [GOAL] α : Type u β : Type v inst✝ : LinearOrder α a b c d : α h : a < b ⊔ c bc : b ≤ c ⊢ a < c [PROOFSTEP] rwa [sup_eq_right.2 bc] at h [GOAL] α : Type u β : Type v inst✝² : SemilatticeSup α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : IsTotal α fun x x_1 => x ≤ x_1 ⊢ (fun x x_1 => x ⊔ x_1) = maxDefault [PROOFSTEP] ext x y [GOAL] case h.h α : Type u β : Type v inst✝² : SemilatticeSup α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : IsTotal α fun x x_1 => x ≤ x_1 x y : α ⊢ x ⊔ y = maxDefault x y [PROOFSTEP] unfold maxDefault [GOAL] case h.h α : Type u β : Type v inst✝² : SemilatticeSup α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : IsTotal α fun x x_1 => x ≤ x_1 x y : α ⊢ x ⊔ y = if x ≤ y then y else x [PROOFSTEP] split_ifs with h' [GOAL] case pos α : Type u β : Type v inst✝² : SemilatticeSup α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : IsTotal α fun x x_1 => x ≤ x_1 x y : α h' : x ≤ y ⊢ x ⊔ y = y case neg α : Type u β : Type v inst✝² : SemilatticeSup α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : IsTotal α fun x x_1 => x ≤ x_1 x y : α h' : ¬x ≤ y ⊢ x ⊔ y = x [PROOFSTEP] exacts [sup_of_le_right h', sup_of_le_left $ (total_of (· ≤ ·) x y).resolve_left h'] [GOAL] α : Type u β : Type v inst✝² : SemilatticeInf α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : IsTotal α fun x x_1 => x ≤ x_1 ⊢ (fun x x_1 => x ⊓ x_1) = minDefault [PROOFSTEP] ext x y [GOAL] case h.h α : Type u β : Type v inst✝² : SemilatticeInf α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : IsTotal α fun x x_1 => x ≤ x_1 x y : α ⊢ x ⊓ y = minDefault x y [PROOFSTEP] unfold minDefault [GOAL] case h.h α : Type u β : Type v inst✝² : SemilatticeInf α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : IsTotal α fun x x_1 => x ≤ x_1 x y : α ⊢ x ⊓ y = if x ≤ y then x else y [PROOFSTEP] split_ifs with h' [GOAL] case pos α : Type u β : Type v inst✝² : SemilatticeInf α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : IsTotal α fun x x_1 => x ≤ x_1 x y : α h' : x ≤ y ⊢ x ⊓ y = x case neg α : Type u β : Type v inst✝² : SemilatticeInf α inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1 inst✝ : IsTotal α fun x x_1 => x ≤ x_1 x y : α h' : ¬x ≤ y ⊢ x ⊓ y = y [PROOFSTEP] exacts [inf_of_le_left h', inf_of_le_right $ (total_of (· ≤ ·) x y).resolve_left h'] [GOAL] α✝ : Type u β : Type v α : Type u inst✝⁴ : Lattice α inst✝³ : DecidableEq α inst✝² : DecidableRel fun x x_1 => x ≤ x_1 inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : IsTotal α fun x x_1 => x ≤ x_1 src✝ : Lattice α := inst✝⁴ ⊢ ∀ (a b : α), min a b = if a ≤ b then a else b [PROOFSTEP] exact congr_fun₂ inf_eq_minDefault [GOAL] α✝ : Type u β : Type v α : Type u inst✝⁴ : Lattice α inst✝³ : DecidableEq α inst✝² : DecidableRel fun x x_1 => x ≤ x_1 inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : IsTotal α fun x x_1 => x ≤ x_1 src✝ : Lattice α := inst✝⁴ ⊢ ∀ (a b : α), max a b = if a ≤ b then b else a [PROOFSTEP] exact congr_fun₂ sup_eq_maxDefault [GOAL] α : Type u β : Type v ι : Type u_1 π : ι → Type u_2 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → SemilatticeSup (π i) f : (i : ι) → π i i : ι a b : π i j : ι ⊢ update f i (a ⊔ b) j = (update f i a ⊔ update f i b) j [PROOFSTEP] obtain rfl | hji := eq_or_ne j i [GOAL] case inl α : Type u β : Type v ι : Type u_1 π : ι → Type u_2 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → SemilatticeSup (π i) f : (i : ι) → π i j : ι a b : π j ⊢ update f j (a ⊔ b) j = (update f j a ⊔ update f j b) j [PROOFSTEP] simp [update_noteq, *] [GOAL] case inr α : Type u β : Type v ι : Type u_1 π : ι → Type u_2 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → SemilatticeSup (π i) f : (i : ι) → π i i : ι a b : π i j : ι hji : j ≠ i ⊢ update f i (a ⊔ b) j = (update f i a ⊔ update f i b) j [PROOFSTEP] simp [update_noteq, *] [GOAL] α : Type u β : Type v ι : Type u_1 π : ι → Type u_2 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → SemilatticeInf (π i) f : (i : ι) → π i i : ι a b : π i j : ι ⊢ update f i (a ⊓ b) j = (update f i a ⊓ update f i b) j [PROOFSTEP] obtain rfl | hji := eq_or_ne j i [GOAL] case inl α : Type u β : Type v ι : Type u_1 π : ι → Type u_2 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → SemilatticeInf (π i) f : (i : ι) → π i j : ι a b : π j ⊢ update f j (a ⊓ b) j = (update f j a ⊓ update f j b) j [PROOFSTEP] simp [update_noteq, *] [GOAL] case inr α : Type u β : Type v ι : Type u_1 π : ι → Type u_2 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → SemilatticeInf (π i) f : (i : ι) → π i i : ι a b : π i j : ι hji : j ≠ i ⊢ update f i (a ⊓ b) j = (update f i a ⊓ update f i b) j [PROOFSTEP] simp [update_noteq, *] [GOAL] α : Type u β : Type v inst✝¹ : SemilatticeInf α inst✝ : SemilatticeInf β f : α → β h : ∀ (x y : α), f (x ⊓ y) = f x ⊓ f y x y : α hxy : x ≤ y ⊢ f x ⊓ f y = f x [PROOFSTEP] rw [← h, inf_eq_left.2 hxy] [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : SemilatticeSup β f : α → β hf : Monotone f x y : α h : x ≤ y ⊢ f (x ⊔ y) = f x ⊔ f y [PROOFSTEP] simp only [h, hf h, sup_of_le_right] [GOAL] α : Type u β : Type v inst✝¹ : LinearOrder α inst✝ : SemilatticeSup β f : α → β hf : Monotone f x y : α h : y ≤ x ⊢ f (x ⊔ y) = f x ⊔ f y [PROOFSTEP] simp only [h, hf h, sup_of_le_left] [GOAL] α : Type u β : Type v inst✝¹ : Sup α inst✝ : SemilatticeSup β f : α → β hf_inj : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b : α ⊢ a ≤ a ⊔ b [PROOFSTEP] change f a ≤ f (a ⊔ b) [GOAL] α : Type u β : Type v inst✝¹ : Sup α inst✝ : SemilatticeSup β f : α → β hf_inj : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b : α ⊢ f a ≤ f (a ⊔ b) [PROOFSTEP] rw [map_sup] [GOAL] α : Type u β : Type v inst✝¹ : Sup α inst✝ : SemilatticeSup β f : α → β hf_inj : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b : α ⊢ f a ≤ f a ⊔ f b [PROOFSTEP] exact le_sup_left [GOAL] α : Type u β : Type v inst✝¹ : Sup α inst✝ : SemilatticeSup β f : α → β hf_inj : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b : α ⊢ b ≤ a ⊔ b [PROOFSTEP] change f b ≤ f (a ⊔ b) [GOAL] α : Type u β : Type v inst✝¹ : Sup α inst✝ : SemilatticeSup β f : α → β hf_inj : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b : α ⊢ f b ≤ f (a ⊔ b) [PROOFSTEP] rw [map_sup] [GOAL] α : Type u β : Type v inst✝¹ : Sup α inst✝ : SemilatticeSup β f : α → β hf_inj : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b : α ⊢ f b ≤ f a ⊔ f b [PROOFSTEP] exact le_sup_right [GOAL] α : Type u β : Type v inst✝¹ : Sup α inst✝ : SemilatticeSup β f : α → β hf_inj : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b c : α ha : a ≤ c hb : b ≤ c ⊢ a ⊔ b ≤ c [PROOFSTEP] change f (a ⊔ b) ≤ f c [GOAL] α : Type u β : Type v inst✝¹ : Sup α inst✝ : SemilatticeSup β f : α → β hf_inj : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b c : α ha : a ≤ c hb : b ≤ c ⊢ f (a ⊔ b) ≤ f c [PROOFSTEP] rw [map_sup] [GOAL] α : Type u β : Type v inst✝¹ : Sup α inst✝ : SemilatticeSup β f : α → β hf_inj : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b c : α ha : a ≤ c hb : b ≤ c ⊢ f a ⊔ f b ≤ f c [PROOFSTEP] exact sup_le ha hb [GOAL] α : Type u β : Type v inst✝¹ : Inf α inst✝ : SemilatticeInf β f : α → β hf_inj : Injective f map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b : α ⊢ a ⊓ b ≤ a [PROOFSTEP] change f (a ⊓ b) ≤ f a [GOAL] α : Type u β : Type v inst✝¹ : Inf α inst✝ : SemilatticeInf β f : α → β hf_inj : Injective f map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b : α ⊢ f (a ⊓ b) ≤ f a [PROOFSTEP] rw [map_inf] [GOAL] α : Type u β : Type v inst✝¹ : Inf α inst✝ : SemilatticeInf β f : α → β hf_inj : Injective f map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b : α ⊢ f a ⊓ f b ≤ f a [PROOFSTEP] exact inf_le_left [GOAL] α : Type u β : Type v inst✝¹ : Inf α inst✝ : SemilatticeInf β f : α → β hf_inj : Injective f map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b : α ⊢ a ⊓ b ≤ b [PROOFSTEP] change f (a ⊓ b) ≤ f b [GOAL] α : Type u β : Type v inst✝¹ : Inf α inst✝ : SemilatticeInf β f : α → β hf_inj : Injective f map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b : α ⊢ f (a ⊓ b) ≤ f b [PROOFSTEP] rw [map_inf] [GOAL] α : Type u β : Type v inst✝¹ : Inf α inst✝ : SemilatticeInf β f : α → β hf_inj : Injective f map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b : α ⊢ f a ⊓ f b ≤ f b [PROOFSTEP] exact inf_le_right [GOAL] α : Type u β : Type v inst✝¹ : Inf α inst✝ : SemilatticeInf β f : α → β hf_inj : Injective f map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b c : α ha : a ≤ b hb : a ≤ c ⊢ a ≤ b ⊓ c [PROOFSTEP] change f a ≤ f (b ⊓ c) [GOAL] α : Type u β : Type v inst✝¹ : Inf α inst✝ : SemilatticeInf β f : α → β hf_inj : Injective f map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b c : α ha : a ≤ b hb : a ≤ c ⊢ f a ≤ f (b ⊓ c) [PROOFSTEP] rw [map_inf] [GOAL] α : Type u β : Type v inst✝¹ : Inf α inst✝ : SemilatticeInf β f : α → β hf_inj : Injective f map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b src✝ : PartialOrder α := PartialOrder.lift f hf_inj a b c : α ha : a ≤ b hb : a ≤ c ⊢ f a ≤ f b ⊓ f c [PROOFSTEP] exact le_inf ha hb [GOAL] α : Type u β : Type v inst✝² : Sup α inst✝¹ : Inf α inst✝ : DistribLattice β f : α → β hf_inj : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b src✝ : Lattice α := Injective.lattice f hf_inj map_sup map_inf a b c : α ⊢ (a ⊔ b) ⊓ (a ⊔ c) ≤ a ⊔ b ⊓ c [PROOFSTEP] change f ((a ⊔ b) ⊓ (a ⊔ c)) ≤ f (a ⊔ b ⊓ c) [GOAL] α : Type u β : Type v inst✝² : Sup α inst✝¹ : Inf α inst✝ : DistribLattice β f : α → β hf_inj : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b src✝ : Lattice α := Injective.lattice f hf_inj map_sup map_inf a b c : α ⊢ f ((a ⊔ b) ⊓ (a ⊔ c)) ≤ f (a ⊔ b ⊓ c) [PROOFSTEP] rw [map_inf, map_sup, map_sup, map_sup, map_inf] [GOAL] α : Type u β : Type v inst✝² : Sup α inst✝¹ : Inf α inst✝ : DistribLattice β f : α → β hf_inj : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b src✝ : Lattice α := Injective.lattice f hf_inj map_sup map_inf a b c : α ⊢ (f a ⊔ f b) ⊓ (f a ⊔ f c) ≤ f a ⊔ f b ⊓ f c [PROOFSTEP] exact le_sup_inf
{"mathlib_filename": "Mathlib.Order.Lattice", "llama_tokens": 21368}
[GOAL] 𝕆 : Type u_1 ℙ : Type u_2 α : Type u_3 β : Type u_4 inst✝⁴ : Preorder 𝕆 inst✝³ : Preorder ℙ inst✝² : Preorder α inst✝¹ : Preorder β n : ℕ inst✝ : GradeMinOrder (Fin n) α a : Fin n h : IsMin a ⊢ IsMin ↑a [PROOFSTEP] cases n [GOAL] case zero 𝕆 : Type u_1 ℙ : Type u_2 α : Type u_3 β : Type u_4 inst✝⁴ : Preorder 𝕆 inst✝³ : Preorder ℙ inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : GradeMinOrder (Fin zero) α a : Fin zero h : IsMin a ⊢ IsMin ↑a [PROOFSTEP] exact a.elim0 [GOAL] case succ 𝕆 : Type u_1 ℙ : Type u_2 α : Type u_3 β : Type u_4 inst✝⁴ : Preorder 𝕆 inst✝³ : Preorder ℙ inst✝² : Preorder α inst✝¹ : Preorder β n✝ : ℕ inst✝ : GradeMinOrder (Fin (succ n✝)) α a : Fin (succ n✝) h : IsMin a ⊢ IsMin ↑a [PROOFSTEP] rw [h.eq_bot, Fin.bot_eq_zero] [GOAL] case succ 𝕆 : Type u_1 ℙ : Type u_2 α : Type u_3 β : Type u_4 inst✝⁴ : Preorder 𝕆 inst✝³ : Preorder ℙ inst✝² : Preorder α inst✝¹ : Preorder β n✝ : ℕ inst✝ : GradeMinOrder (Fin (succ n✝)) α a : Fin (succ n✝) h : IsMin a ⊢ IsMin ↑0 [PROOFSTEP] exact isMin_bot
{"mathlib_filename": "Mathlib.Order.Grade", "llama_tokens": 595}
[GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsRefl α r inst✝ : IsAntisymm α r a b : α ⊢ a = b → r a b ∧ r b a [PROOFSTEP] rintro rfl [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsRefl α r inst✝ : IsAntisymm α r a : α ⊢ r a a ∧ r a a [PROOFSTEP] exact ⟨refl _, refl _⟩ [GOAL] α : Type u β : Type v r✝ : α → α → Prop s : β → β → Prop r : α → α → Prop inst✝ : IsTrichotomous α r a b : α ⊢ Function.swap r a b ∨ a = b ∨ Function.swap r b a [PROOFSTEP] simpa [Function.swap, or_comm, or_left_comm] using trichotomous_of r a b [GOAL] α : Type u β : Type v r✝ : α → α → Prop s : β → β → Prop r : α → α → Prop inst✝¹ : IsIrrefl α r inst✝ : Subsingleton α ⊢ ∀ (a b : α), r a b = EmptyRelation a b [PROOFSTEP] simpa using not_rel_of_subsingleton r [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrans α r inst✝ : IsTrichotomous α r a b c : α ⊢ ¬r b a → r b c → r a c [PROOFSTEP] intro h₁ h₂ [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrans α r inst✝ : IsTrichotomous α r a b c : α h₁ : ¬r b a h₂ : r b c ⊢ r a c [PROOFSTEP] rcases trichotomous_of r a b with (h₃ | rfl | h₃) [GOAL] case inl α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrans α r inst✝ : IsTrichotomous α r a b c : α h₁ : ¬r b a h₂ : r b c h₃ : r a b ⊢ r a c case inr.inl α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrans α r inst✝ : IsTrichotomous α r a c : α h₁ : ¬r a a h₂ : r a c ⊢ r a c case inr.inr α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrans α r inst✝ : IsTrichotomous α r a b c : α h₁ : ¬r b a h₂ : r b c h₃ : r b a ⊢ r a c [PROOFSTEP] exacts [_root_.trans h₃ h₂, h₂, absurd h₃ h₁] [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrans α r inst✝ : IsTrichotomous α r a b c : α ⊢ r a b → ¬r c b → r a c [PROOFSTEP] intro h₁ h₂ [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrans α r inst✝ : IsTrichotomous α r a b c : α h₁ : r a b h₂ : ¬r c b ⊢ r a c [PROOFSTEP] rcases trichotomous_of r b c with (h₃ | rfl | h₃) [GOAL] case inl α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrans α r inst✝ : IsTrichotomous α r a b c : α h₁ : r a b h₂ : ¬r c b h₃ : r b c ⊢ r a c case inr.inl α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrans α r inst✝ : IsTrichotomous α r a b : α h₁ : r a b h₂ : ¬r b b ⊢ r a b case inr.inr α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsTrans α r inst✝ : IsTrichotomous α r a b c : α h₁ : r a b h₂ : ¬r c b h₃ : r c b ⊢ r a c [PROOFSTEP] exacts [_root_.trans h₁ h₃, h₁, absurd h₃ h₂] [GOAL] α : Type u β : Type v r✝ : α → α → Prop s : β → β → Prop r : α → α → Prop inst✝ : IsStrictOrder α r x y : α h : x < y e : y = x ⊢ False [PROOFSTEP] rw [e] at h [GOAL] α : Type u β : Type v r✝ : α → α → Prop s : β → β → Prop r : α → α → Prop inst✝ : IsStrictOrder α r x y : α h : x < x e : y = x ⊢ False [PROOFSTEP] exact irrefl _ h [GOAL] α : Type u β : Type v r✝ : α → α → Prop s : β → β → Prop r : α → α → Prop inst✝ : IsOrderConnected α r a b c : α h₁ : ¬r a b h₂ : ¬r b c ⊢ ¬(r a b ∨ r b c) [PROOFSTEP] simp [h₁, h₂] [GOAL] α✝ : Type u β : Type v r✝ : α✝ → α✝ → Prop s : β → β → Prop α : Type ?u.14854 r : α → α → Prop inst✝ : IsWellOrder α r ⊢ IsTrichotomous α r [PROOFSTEP] infer_instance -- see Note [lower instance priority] [GOAL] α✝ : Type u β : Type v r✝ : α✝ → α✝ → Prop s : β → β → Prop α : Type ?u.14937 r : α → α → Prop inst✝ : IsWellOrder α r ⊢ IsTrans α r [PROOFSTEP] infer_instance -- see Note [lower instance priority] [GOAL] α✝ : Type u β : Type v r✝ : α✝ → α✝ → Prop s : β → β → Prop α : Type ?u.15023 r : α → α → Prop inst✝ : IsWellOrder α r ⊢ IsIrrefl α r [PROOFSTEP] infer_instance -- see Note [lower instance priority] [GOAL] α✝ : Type u β : Type v r✝ : α✝ → α✝ → Prop s : β → β → Prop α : Type ?u.15135 r : α → α → Prop inst✝ : IsWellOrder α r ⊢ IsAsymm α r [PROOFSTEP] infer_instance [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsWellOrder α r inst✝ : IsWellOrder β s a b c : α × β h₁ : Prod.Lex r s a b h₂ : Prod.Lex r s b c ⊢ Prod.Lex r s a c [PROOFSTEP] cases' h₁ with a₁ a₂ b₁ b₂ ab a₁ b₁ b₂ ab [GOAL] case left α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsWellOrder α r inst✝ : IsWellOrder β s c : α × β a₁ : α a₂ : β b₁ : α b₂ : β ab : r a₁ b₁ h₂ : Prod.Lex r s (b₁, b₂) c ⊢ Prod.Lex r s (a₁, a₂) c [PROOFSTEP] cases' h₂ with _ _ c₁ c₂ bc _ _ c₂ bc [GOAL] case right α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsWellOrder α r inst✝ : IsWellOrder β s c : α × β a₁ : α b₁ b₂ : β ab : s b₁ b₂ h₂ : Prod.Lex r s (a₁, b₂) c ⊢ Prod.Lex r s (a₁, b₁) c [PROOFSTEP] cases' h₂ with _ _ c₁ c₂ bc _ _ c₂ bc [GOAL] case left.left α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsWellOrder α r inst✝ : IsWellOrder β s a₁ : α a₂ : β b₁ : α b₂ : β ab : r a₁ b₁ c₁ : α c₂ : β bc : r b₁ c₁ ⊢ Prod.Lex r s (a₁, a₂) (c₁, c₂) case left.right α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsWellOrder α r inst✝ : IsWellOrder β s a₁ : α a₂ : β b₁ : α b₂ : β ab : r a₁ b₁ c₂ : β bc : s b₂ c₂ ⊢ Prod.Lex r s (a₁, a₂) (b₁, c₂) case right.left α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsWellOrder α r inst✝ : IsWellOrder β s a₁ : α b₁ b₂ : β ab : s b₁ b₂ c₁ : α c₂ : β bc : r a₁ c₁ ⊢ Prod.Lex r s (a₁, b₁) (c₁, c₂) case right.right α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝¹ : IsWellOrder α r inst✝ : IsWellOrder β s a₁ : α b₁ b₂ : β ab : s b₁ b₂ c₂ : β bc : s b₂ c₂ ⊢ Prod.Lex r s (a₁, b₁) (a₁, c₂) [PROOFSTEP] exacts [.left _ _ (_root_.trans ab bc), .left _ _ ab, .left _ _ bc, .right _ (_root_.trans ab bc)] [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝³ : PartialOrder α inst✝² : WellFoundedLT α inst✝¹ : Preorder β inst✝ : WellFoundedLT β ⊢ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] refine @Subrelation.wf (α × β) (Prod.Lex (· < ·) (· < ·)) (· < ·) ?_ IsWellFounded.wf [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝³ : PartialOrder α inst✝² : WellFoundedLT α inst✝¹ : Preorder β inst✝ : WellFoundedLT β ⊢ Subrelation (fun x x_1 => x < x_1) (Prod.Lex (fun x x_1 => x < x_1) fun x x_1 => x < x_1) [PROOFSTEP] rintro ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ w [GOAL] case mk.mk α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝³ : PartialOrder α inst✝² : WellFoundedLT α inst✝¹ : Preorder β inst✝ : WellFoundedLT β a₁ : α b₁ : β a₂ : α b₂ : β w : (a₁, b₁) < (a₂, b₂) ⊢ Prod.Lex (fun x x_1 => x < x_1) (fun x x_1 => x < x_1) (a₁, b₁) (a₂, b₂) [PROOFSTEP] simp only [Prod.mk_lt_mk] at w [GOAL] case mk.mk α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝³ : PartialOrder α inst✝² : WellFoundedLT α inst✝¹ : Preorder β inst✝ : WellFoundedLT β a₁ : α b₁ : β a₂ : α b₂ : β w : a₁ < a₂ ∧ b₁ ≤ b₂ ∨ a₁ ≤ a₂ ∧ b₁ < b₂ ⊢ Prod.Lex (fun x x_1 => x < x_1) (fun x x_1 => x < x_1) (a₁, b₁) (a₂, b₂) [PROOFSTEP] rcases eq_or_ne a₁ a₂ with rfl | ha [GOAL] case mk.mk.inl α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝³ : PartialOrder α inst✝² : WellFoundedLT α inst✝¹ : Preorder β inst✝ : WellFoundedLT β a₁ : α b₁ b₂ : β w : a₁ < a₁ ∧ b₁ ≤ b₂ ∨ a₁ ≤ a₁ ∧ b₁ < b₂ ⊢ Prod.Lex (fun x x_1 => x < x_1) (fun x x_1 => x < x_1) (a₁, b₁) (a₁, b₂) [PROOFSTEP] right [GOAL] case mk.mk.inl.h α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝³ : PartialOrder α inst✝² : WellFoundedLT α inst✝¹ : Preorder β inst✝ : WellFoundedLT β a₁ : α b₁ b₂ : β w : a₁ < a₁ ∧ b₁ ≤ b₂ ∨ a₁ ≤ a₁ ∧ b₁ < b₂ ⊢ b₁ < b₂ [PROOFSTEP] simpa using w [GOAL] case mk.mk.inr α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝³ : PartialOrder α inst✝² : WellFoundedLT α inst✝¹ : Preorder β inst✝ : WellFoundedLT β a₁ : α b₁ : β a₂ : α b₂ : β w : a₁ < a₂ ∧ b₁ ≤ b₂ ∨ a₁ ≤ a₂ ∧ b₁ < b₂ ha : a₁ ≠ a₂ ⊢ Prod.Lex (fun x x_1 => x < x_1) (fun x x_1 => x < x_1) (a₁, b₁) (a₂, b₂) [PROOFSTEP] left [GOAL] case mk.mk.inr.h α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝³ : PartialOrder α inst✝² : WellFoundedLT α inst✝¹ : Preorder β inst✝ : WellFoundedLT β a₁ : α b₁ : β a₂ : α b₂ : β w : a₁ < a₂ ∧ b₁ ≤ b₂ ∨ a₁ ≤ a₂ ∧ b₁ < b₂ ha : a₁ ≠ a₂ ⊢ a₁ < a₂ [PROOFSTEP] rcases w with ⟨a_lt, _⟩ | ⟨a_le, _⟩ [GOAL] case mk.mk.inr.h.inl.intro α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝³ : PartialOrder α inst✝² : WellFoundedLT α inst✝¹ : Preorder β inst✝ : WellFoundedLT β a₁ : α b₁ : β a₂ : α b₂ : β ha : a₁ ≠ a₂ a_lt : a₁ < a₂ right✝ : b₁ ≤ b₂ ⊢ a₁ < a₂ [PROOFSTEP] assumption [GOAL] case mk.mk.inr.h.inr.intro α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝³ : PartialOrder α inst✝² : WellFoundedLT α inst✝¹ : Preorder β inst✝ : WellFoundedLT β a₁ : α b₁ : β a₂ : α b₂ : β ha : a₁ ≠ a₂ a_le : a₁ ≤ a₂ right✝ : b₁ < b₂ ⊢ a₁ < a₂ [PROOFSTEP] exact Ne.lt_of_le ha a_le [GOAL] α : Type u β : Type v r✝ : α → α → Prop s✝ : β → β → Prop r : α → α → Prop s : Set α ⊢ ¬Bounded r s ↔ Unbounded r s [PROOFSTEP] simp only [Bounded, Unbounded, not_forall, not_exists, exists_prop, not_and, not_not] [GOAL] α : Type u β : Type v r✝ : α → α → Prop s✝ : β → β → Prop r : α → α → Prop s : Set α ⊢ ¬Unbounded r s ↔ Bounded r s [PROOFSTEP] rw [not_iff_comm, not_bounded_iff] [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : HasSubset α a b c : α hab : a = b hbc : b ⊆ c ⊢ a ⊆ c [PROOFSTEP] rwa [hab] [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : HasSubset α a b c : α hab : a ⊆ b hbc : b = c ⊢ a ⊆ c [PROOFSTEP] rwa [← hbc] [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : HasSSubset α a b c : α hab : a = b hbc : b ⊂ c ⊢ a ⊂ c [PROOFSTEP] rwa [hab] [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : HasSSubset α a b c : α hab : a ⊂ b hbc : b = c ⊢ a ⊂ c [PROOFSTEP] rwa [← hbc] [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : LinearOrder α ⊢ IsOrderConnected α fun x x_1 => x < x_1 [PROOFSTEP] infer_instance [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : LinearOrder α ⊢ IsIncompTrans α fun x x_1 => x < x_1 [PROOFSTEP] infer_instance [GOAL] α : Type u β : Type v r : α → α → Prop s : β → β → Prop inst✝ : LinearOrder α ⊢ IsStrictWeakOrder α fun x x_1 => x < x_1 [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Order.RelClasses", "llama_tokens": 5644}
{"mathlib_filename": "Mathlib.Order.LatticeIntervals", "llama_tokens": 0}
[GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β a b c : α h : a ≤ b ⊢ ¬a ⩿ b ↔ ∃ c, a < c ∧ c < b [PROOFSTEP] simp_rw [Wcovby, h, true_and_iff, not_forall, exists_prop, not_not] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β a b c : α ⊢ (∀ ⦃c : α⦄, a < c → ¬c < b) ↔ Ioo a b = ∅ [PROOFSTEP] simp [eq_empty_iff_forall_not_mem] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β a b c : α f : α ↪o β hab : a ⩿ b h : OrdConnected (range ↑f) ⊢ ↑f a ⩿ ↑f b [PROOFSTEP] refine' ⟨f.monotone hab.le, fun c ha hb => _⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β a b c✝ : α f : α ↪o β hab : a ⩿ b h : OrdConnected (range ↑f) c : (fun x => β) a ha : ↑f a < c hb : c < ↑f b ⊢ False [PROOFSTEP] obtain ⟨c, rfl⟩ := h.out (mem_range_self _) (mem_range_self _) ⟨ha.le, hb.le⟩ [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β a b c✝ : α f : α ↪o β hab : a ⩿ b h : OrdConnected (range ↑f) c : α ha : ↑f a < ↑f c hb : ↑f c < ↑f b ⊢ False [PROOFSTEP] rw [f.lt_iff_lt] at ha hb [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β a b c✝ : α f : α ↪o β hab : a ⩿ b h : OrdConnected (range ↑f) c : α ha : a < c hb : c < b ⊢ False [PROOFSTEP] exact hab.2 ha hb [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c : α h : a ⩿ b h2 : a ≤ c h3 : c ≤ b ⊢ c = a ∨ c = b [PROOFSTEP] rcases h2.eq_or_lt with (h2 | h2) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c : α h : a ⩿ b h2✝ : a ≤ c h3 : c ≤ b h2 : a = c ⊢ c = a ∨ c = b [PROOFSTEP] exact Or.inl h2.symm [GOAL] case inr α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c : α h : a ⩿ b h2✝ : a ≤ c h3 : c ≤ b h2 : a < c ⊢ c = a ∨ c = b [PROOFSTEP] rcases h3.eq_or_lt with (h3 | h3) [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c : α h : a ⩿ b h2✝ : a ≤ c h3✝ : c ≤ b h2 : a < c h3 : c = b ⊢ c = a ∨ c = b [PROOFSTEP] exact Or.inr h3 [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c : α h : a ⩿ b h2✝ : a ≤ c h3✝ : c ≤ b h2 : a < c h3 : c < b ⊢ c = a ∨ c = b [PROOFSTEP] exact (h.2 h2 h3).elim [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c : α h : a ⩿ b ⊢ a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b [PROOFSTEP] refine' ⟨fun h2 => h.eq_or_eq h2.1 h2.2, _⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c : α h : a ⩿ b ⊢ c = a ∨ c = b → a ≤ c ∧ c ≤ b [PROOFSTEP] rintro (rfl | rfl) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝ : PartialOrder α b c : α h : c ⩿ b ⊢ c ≤ c ∧ c ≤ b case inr α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a c : α h : a ⩿ c ⊢ a ≤ c ∧ c ≤ c [PROOFSTEP] exacts [⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c : α h : a ⩿ b ⊢ Icc a b = {a, b} [PROOFSTEP] ext c [GOAL] case h α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c✝ : α h : a ⩿ b c : α ⊢ c ∈ Icc a b ↔ c ∈ {a, b} [PROOFSTEP] exact h.le_and_le_iff [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c : α h : a ⩿ b ⊢ Ico a b ⊆ {a} [PROOFSTEP] rw [← Icc_diff_right, h.Icc_eq, diff_singleton_subset_iff, pair_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c : α h : a ⩿ b ⊢ Ioc a b ⊆ {b} [PROOFSTEP] rw [← Icc_diff_left, h.Icc_eq, diff_singleton_subset_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : LT α a b : α h : a < b ⊢ ¬a ⋖ b ↔ ∃ c, a < c ∧ c < b [PROOFSTEP] simp_rw [Covby, h, true_and_iff, not_forall, exists_prop, not_not] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : Preorder β a b c : α ⊢ (∀ ⦃c : α⦄, a < c → ¬c < b) ↔ Ioo a b = ∅ [PROOFSTEP] simp [eq_empty_iff_forall_not_mem] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c : α ⊢ a ⩿ b ↔ a ⋖ b ∨ a = b [PROOFSTEP] rw [le_antisymm_iff, wcovby_iff_covby_or_le_and_le] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c : α h : a ⋖ b ⊢ Ico a b = {a} [PROOFSTEP] rw [← Ioo_union_left h.lt, h.Ioo_eq, empty_union] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b c : α h : a ⋖ b ⊢ Ioc a b = {b} [PROOFSTEP] rw [← Ioo_union_right h.lt, h.Ioo_eq, empty_union] [GOAL] α : Type u_1 β : Type u_2 inst✝ : LinearOrder α a b c : α h : a ⋖ b ⊢ Ioi a = Ici b [PROOFSTEP] rw [← Ioo_union_Ici_eq_Ioi h.lt, h.Ioo_eq, empty_union] [GOAL] α : Type u_1 β : Type u_2 inst✝ : LinearOrder α a b c : α h : a ⋖ b ⊢ Iio b = Iic a [PROOFSTEP] rw [← Iic_union_Ioo_eq_Iio h.lt, h.Ioo_eq, union_empty] [GOAL] α : Type u_1 β : Type u_2 inst✝ : LinearOrder α a b c : α h : a < b ⊢ ∃ a', a' > a ∧ ∃ b', b' < b ∧ ∀ (x : α), x < a' → ∀ (y : α), y > b' → x < y [PROOFSTEP] by_cases h' : a ⋖ b [GOAL] case pos α : Type u_1 β : Type u_2 inst✝ : LinearOrder α a b c : α h : a < b h' : a ⋖ b ⊢ ∃ a', a' > a ∧ ∃ b', b' < b ∧ ∀ (x : α), x < a' → ∀ (y : α), y > b' → x < y [PROOFSTEP] exact ⟨b, h, a, h, fun x hx y hy => hx.trans_le <| h'.ge_of_gt hy⟩ [GOAL] case neg α : Type u_1 β : Type u_2 inst✝ : LinearOrder α a b c : α h : a < b h' : ¬a ⋖ b ⊢ ∃ a', a' > a ∧ ∃ b', b' < b ∧ ∀ (x : α), x < a' → ∀ (y : α), y > b' → x < y [PROOFSTEP] rcases h.exists_lt_lt h' with ⟨c, ha, hb⟩ [GOAL] case neg.intro.intro α : Type u_1 β : Type u_2 inst✝ : LinearOrder α a b c✝ : α h : a < b h' : ¬a ⋖ b c : α ha : a < c hb : c < b ⊢ ∃ a', a' > a ∧ ∃ b', b' < b ∧ ∀ (x : α), x < a' → ∀ (y : α), y > b' → x < y [PROOFSTEP] exact ⟨c, ha, c, hb, fun _ h₁ _ => lt_trans h₁⟩ [GOAL] α : Type u_1 β : Type u_2 x : α s : Set α ⊢ s ⩿ insert x s [PROOFSTEP] refine' wcovby_of_eq_or_eq (subset_insert x s) fun t hst h2t => _ [GOAL] α : Type u_1 β : Type u_2 x : α s t : Set α hst : s ≤ t h2t : t ≤ insert x s ⊢ t = s ∨ t = insert x s [PROOFSTEP] by_cases h : x ∈ t [GOAL] case pos α : Type u_1 β : Type u_2 x : α s t : Set α hst : s ≤ t h2t : t ≤ insert x s h : x ∈ t ⊢ t = s ∨ t = insert x s [PROOFSTEP] exact Or.inr (subset_antisymm h2t <| insert_subset_iff.mpr ⟨h, hst⟩) [GOAL] case neg α : Type u_1 β : Type u_2 x : α s t : Set α hst : s ≤ t h2t : t ≤ insert x s h : ¬x ∈ t ⊢ t = s ∨ t = insert x s [PROOFSTEP] refine' Or.inl (subset_antisymm _ hst) [GOAL] case neg α : Type u_1 β : Type u_2 x : α s t : Set α hst : s ≤ t h2t : t ≤ insert x s h : ¬x ∈ t ⊢ t ⊆ s [PROOFSTEP] rwa [← diff_singleton_eq_self h, diff_singleton_subset_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β ⊢ x ⩿ y → x.fst = y.fst ∨ x.snd = y.snd [PROOFSTEP] refine' fun h => of_not_not fun hab => _ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β h : x ⩿ y hab : ¬(x.fst = y.fst ∨ x.snd = y.snd) ⊢ False [PROOFSTEP] push_neg at hab [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β h : x ⩿ y hab : x.fst ≠ y.fst ∧ x.snd ≠ y.snd ⊢ False [PROOFSTEP] exact h.2 (mk_lt_mk.2 <| Or.inl ⟨hab.1.lt_of_le h.1.1, le_rfl⟩) (mk_lt_mk.2 <| Or.inr ⟨le_rfl, hab.2.lt_of_le h.1.2⟩) [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β ⊢ (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂ [PROOFSTEP] refine' ⟨Wcovby.fst, (And.imp mk_le_mk_iff_left.2) fun h c h₁ h₂ => _⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β h : ∀ ⦃c : α⦄, a₁ < c → ¬c < a₂ c : α × β h₁ : (a₁, b) < c h₂ : c < (a₂, b) ⊢ False [PROOFSTEP] have : c.2 = b := h₂.le.2.antisymm h₁.le.2 [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β h : ∀ ⦃c : α⦄, a₁ < c → ¬c < a₂ c : α × β h₁ : (a₁, b) < c h₂ : c < (a₂, b) this : c.snd = b ⊢ False [PROOFSTEP] rw [← @Prod.mk.eta _ _ c, this, mk_lt_mk_iff_left] at h₁ h₂ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β h : ∀ ⦃c : α⦄, a₁ < c → ¬c < a₂ c : α × β h₁ : a₁ < c.fst h₂ : c.fst < a₂ this : c.snd = b ⊢ False [PROOFSTEP] exact h h₁ h₂ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β ⊢ (a₁, b) ⋖ (a₂, b) ↔ a₁ ⋖ a₂ [PROOFSTEP] simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_left, mk_lt_mk_iff_left] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β ⊢ (a, b₁) ⋖ (a, b₂) ↔ b₁ ⋖ b₂ [PROOFSTEP] simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_right, mk_lt_mk_iff_right] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β ⊢ (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂ [PROOFSTEP] refine' ⟨fun h => _, _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β h : (a₁, b₁) ⩿ (a₂, b₂) ⊢ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂ [PROOFSTEP] obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovby h [GOAL] case refine'_1.inl α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ : α b b₁ b₂ : β x y : α × β h : (a₁, b₁) ⩿ (a₁, b₂) ⊢ a₁ ⩿ a₁ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₁ [PROOFSTEP] exact Or.inr ⟨mk_wcovby_mk_iff_right.1 h, rfl⟩ [GOAL] case refine'_1.inr α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ : β x y : α × β h : (a₁, b₁) ⩿ (a₂, b₁) ⊢ a₁ ⩿ a₂ ∧ b₁ = b₁ ∨ b₁ ⩿ b₁ ∧ a₁ = a₂ [PROOFSTEP] exact Or.inl ⟨mk_wcovby_mk_iff_left.1 h, rfl⟩ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β ⊢ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂ → (a₁, b₁) ⩿ (a₂, b₂) [PROOFSTEP] rintro (⟨h, rfl⟩ | ⟨h, rfl⟩) [GOAL] case refine'_2.inl.intro α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ : β x y : α × β h : a₁ ⩿ a₂ ⊢ (a₁, b₁) ⩿ (a₂, b₁) [PROOFSTEP] exact mk_wcovby_mk_iff_left.2 h [GOAL] case refine'_2.inr.intro α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ : α b b₁ b₂ : β x y : α × β h : b₁ ⩿ b₂ ⊢ (a₁, b₁) ⩿ (a₁, b₂) [PROOFSTEP] exact mk_wcovby_mk_iff_right.2 h [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β ⊢ (a₁, b₁) ⋖ (a₂, b₂) ↔ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂ [PROOFSTEP] refine' ⟨fun h => _, _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β h : (a₁, b₁) ⋖ (a₂, b₂) ⊢ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂ [PROOFSTEP] obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovby h.wcovby [GOAL] case refine'_1.inl α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ : α b b₁ b₂ : β x y : α × β h : (a₁, b₁) ⋖ (a₁, b₂) ⊢ a₁ ⋖ a₁ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₁ [PROOFSTEP] exact Or.inr ⟨mk_covby_mk_iff_right.1 h, rfl⟩ [GOAL] case refine'_1.inr α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ : β x y : α × β h : (a₁, b₁) ⋖ (a₂, b₁) ⊢ a₁ ⋖ a₂ ∧ b₁ = b₁ ∨ b₁ ⋖ b₁ ∧ a₁ = a₂ [PROOFSTEP] exact Or.inl ⟨mk_covby_mk_iff_left.1 h, rfl⟩ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β ⊢ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂ → (a₁, b₁) ⋖ (a₂, b₂) [PROOFSTEP] rintro (⟨h, rfl⟩ | ⟨h, rfl⟩) [GOAL] case refine'_2.inl.intro α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ : β x y : α × β h : a₁ ⋖ a₂ ⊢ (a₁, b₁) ⋖ (a₂, b₁) [PROOFSTEP] exact mk_covby_mk_iff_left.2 h [GOAL] case refine'_2.inr.intro α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ : α b b₁ b₂ : β x y : α × β h : b₁ ⋖ b₂ ⊢ (a₁, b₁) ⋖ (a₁, b₂) [PROOFSTEP] exact mk_covby_mk_iff_right.2 h [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β ⊢ x ⩿ y ↔ x.fst ⩿ y.fst ∧ x.snd = y.snd ∨ x.snd ⩿ y.snd ∧ x.fst = y.fst [PROOFSTEP] cases x [GOAL] case mk α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β y : α × β fst✝ : α snd✝ : β ⊢ (fst✝, snd✝) ⩿ y ↔ (fst✝, snd✝).fst ⩿ y.fst ∧ (fst✝, snd✝).snd = y.snd ∨ (fst✝, snd✝).snd ⩿ y.snd ∧ (fst✝, snd✝).fst = y.fst [PROOFSTEP] cases y [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β fst✝¹ : α snd✝¹ : β fst✝ : α snd✝ : β ⊢ (fst✝¹, snd✝¹) ⩿ (fst✝, snd✝) ↔ (fst✝¹, snd✝¹).fst ⩿ (fst✝, snd✝).fst ∧ (fst✝¹, snd✝¹).snd = (fst✝, snd✝).snd ∨ (fst✝¹, snd✝¹).snd ⩿ (fst✝, snd✝).snd ∧ (fst✝¹, snd✝¹).fst = (fst✝, snd✝).fst [PROOFSTEP] exact mk_wcovby_mk_iff [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β ⊢ x ⋖ y ↔ x.fst ⋖ y.fst ∧ x.snd = y.snd ∨ x.snd ⋖ y.snd ∧ x.fst = y.fst [PROOFSTEP] cases x [GOAL] case mk α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β y : α × β fst✝ : α snd✝ : β ⊢ (fst✝, snd✝) ⋖ y ↔ (fst✝, snd✝).fst ⋖ y.fst ∧ (fst✝, snd✝).snd = y.snd ∨ (fst✝, snd✝).snd ⋖ y.snd ∧ (fst✝, snd✝).fst = y.fst [PROOFSTEP] cases y [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : PartialOrder β a a₁ a₂ : α b b₁ b₂ : β fst✝¹ : α snd✝¹ : β fst✝ : α snd✝ : β ⊢ (fst✝¹, snd✝¹) ⋖ (fst✝, snd✝) ↔ (fst✝¹, snd✝¹).fst ⋖ (fst✝, snd✝).fst ∧ (fst✝¹, snd✝¹).snd = (fst✝, snd✝).snd ∨ (fst✝¹, snd✝¹).snd ⋖ (fst✝, snd✝).snd ∧ (fst✝¹, snd✝¹).fst = (fst✝, snd✝).fst [PROOFSTEP] exact mk_covby_mk_iff
{"mathlib_filename": "Mathlib.Order.Cover", "llama_tokens": 8334}
[GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' t : Term L α g : α → β v : β → M ⊢ realize v (relabel g t) = realize (v ∘ g) t [PROOFSTEP] induction' t with _ n f ts ih [GOAL] case var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' g : α → β v : β → M _a✝ : α ⊢ realize v (relabel g (var _a✝)) = realize (v ∘ g) (var _a✝) [PROOFSTEP] rfl [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' g : α → β v : β → M n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n), realize v (relabel g (ts a)) = realize (v ∘ g) (ts a) ⊢ realize v (relabel g (func f ts)) = realize (v ∘ g) (func f ts) [PROOFSTEP] simp [ih] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' f : Functions L 1 t : Term L α v : α → M ⊢ realize v (Functions.apply₁ f t) = funMap f ![realize v t] [PROOFSTEP] rw [Functions.apply₁, Term.realize] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' f : Functions L 1 t : Term L α v : α → M ⊢ (funMap f fun i => realize v (Matrix.vecCons t ![] i)) = funMap f ![realize v t] [PROOFSTEP] refine' congr rfl (funext fun i => _) [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' f : Functions L 1 t : Term L α v : α → M i : Fin 1 ⊢ realize v (Matrix.vecCons t ![] i) = Matrix.vecCons (realize v t) ![] i [PROOFSTEP] simp only [Matrix.cons_val_fin_one] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' f : Functions L 2 t₁ t₂ : Term L α v : α → M ⊢ realize v (Functions.apply₂ f t₁ t₂) = funMap f ![realize v t₁, realize v t₂] [PROOFSTEP] rw [Functions.apply₂, Term.realize] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' f : Functions L 2 t₁ t₂ : Term L α v : α → M ⊢ (funMap f fun i => realize v (Matrix.vecCons t₁ ![t₂] i)) = funMap f ![realize v t₁, realize v t₂] [PROOFSTEP] refine' congr rfl (funext (Fin.cases _ _)) [GOAL] case refine'_1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' f : Functions L 2 t₁ t₂ : Term L α v : α → M ⊢ realize v (Matrix.vecCons t₁ ![t₂] 0) = Matrix.vecCons (realize v t₁) ![realize v t₂] 0 [PROOFSTEP] simp only [Matrix.cons_val_zero] [GOAL] case refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' f : Functions L 2 t₁ t₂ : Term L α v : α → M ⊢ ∀ (i : Fin 1), realize v (Matrix.vecCons t₁ ![t₂] (succ i)) = Matrix.vecCons (realize v t₁) ![realize v t₂] (succ i) [PROOFSTEP] simp only [Matrix.cons_val_succ, Matrix.cons_val_fin_one, forall_const] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' t : Term L α tf : α → Term L β v : β → M ⊢ realize v (subst t tf) = realize (fun a => realize v (tf a)) t [PROOFSTEP] induction' t with _ _ _ _ ih [GOAL] case var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' tf : α → Term L β v : β → M _a✝ : α ⊢ realize v (subst (var _a✝) tf) = realize (fun a => realize v (tf a)) (var _a✝) [PROOFSTEP] rfl [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' tf : α → Term L β v : β → M l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L α ih : ∀ (a : Fin l✝), realize v (subst (_ts✝ a) tf) = realize (fun a => realize v (tf a)) (_ts✝ a) ⊢ realize v (subst (func _f✝ _ts✝) tf) = realize (fun a => realize v (tf a)) (func _f✝ _ts✝) [PROOFSTEP] simp [ih] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' inst✝ : DecidableEq α t : Term L α s : Set α h : ↑(varFinset t) ⊆ s v : α → M ⊢ realize (v ∘ Subtype.val) (restrictVar t (Set.inclusion h)) = realize v t [PROOFSTEP] induction' t with _ _ _ _ ih [GOAL] case var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' inst✝ : DecidableEq α t : Term L α s : Set α h✝ : ↑(varFinset t) ⊆ s v : α → M _a✝ : α h : ↑(varFinset (var _a✝)) ⊆ s ⊢ realize (v ∘ Subtype.val) (restrictVar (var _a✝) (Set.inclusion h)) = realize v (var _a✝) [PROOFSTEP] rfl [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' inst✝ : DecidableEq α t : Term L α s : Set α h✝ : ↑(varFinset t) ⊆ s v : α → M l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L α ih : ∀ (a : Fin l✝) (h : ↑(varFinset (_ts✝ a)) ⊆ s), realize (v ∘ Subtype.val) (restrictVar (_ts✝ a) (Set.inclusion h)) = realize v (_ts✝ a) h : ↑(varFinset (func _f✝ _ts✝)) ⊆ s ⊢ realize (v ∘ Subtype.val) (restrictVar (func _f✝ _ts✝) (Set.inclusion h)) = realize v (func _f✝ _ts✝) [PROOFSTEP] simp_rw [varFinset, Finset.coe_biUnion, Set.iUnion_subset_iff] at h [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' inst✝ : DecidableEq α t : Term L α s : Set α h✝¹ : ↑(varFinset t) ⊆ s v : α → M l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L α ih : ∀ (a : Fin l✝) (h : ↑(varFinset (_ts✝ a)) ⊆ s), realize (v ∘ Subtype.val) (restrictVar (_ts✝ a) (Set.inclusion h)) = realize v (_ts✝ a) h✝ : ↑(Finset.biUnion Finset.univ fun i => varFinset (_ts✝ i)) ⊆ s h : ∀ (i : Fin l✝), i ∈ ↑Finset.univ → ↑(varFinset (_ts✝ i)) ⊆ s ⊢ realize (v ∘ Subtype.val) (restrictVar (func _f✝ _ts✝) (Set.inclusion h✝)) = realize v (func _f✝ _ts✝) [PROOFSTEP] exact congr rfl (funext fun i => ih i (h i (Finset.mem_univ i))) [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' inst✝ : DecidableEq α γ : Type u_3 t : Term L (α ⊕ γ) s : Set α h : ↑(varFinsetLeft t) ⊆ s v : α → M xs : γ → M ⊢ realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft t (Set.inclusion h)) = realize (Sum.elim v xs) t [PROOFSTEP] induction' t with a _ _ _ ih [GOAL] case var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' inst✝ : DecidableEq α γ : Type u_3 t : Term L (α ⊕ γ) s : Set α h✝ : ↑(varFinsetLeft t) ⊆ s v : α → M xs : γ → M a : α ⊕ γ h : ↑(varFinsetLeft (var a)) ⊆ s ⊢ realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (var a) (Set.inclusion h)) = realize (Sum.elim v xs) (var a) [PROOFSTEP] cases a [GOAL] case var.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' inst✝ : DecidableEq α γ : Type u_3 t : Term L (α ⊕ γ) s : Set α h✝ : ↑(varFinsetLeft t) ⊆ s v : α → M xs : γ → M val✝ : α h : ↑(varFinsetLeft (var (Sum.inl val✝))) ⊆ s ⊢ realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (var (Sum.inl val✝)) (Set.inclusion h)) = realize (Sum.elim v xs) (var (Sum.inl val✝)) [PROOFSTEP] rfl [GOAL] case var.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' inst✝ : DecidableEq α γ : Type u_3 t : Term L (α ⊕ γ) s : Set α h✝ : ↑(varFinsetLeft t) ⊆ s v : α → M xs : γ → M val✝ : γ h : ↑(varFinsetLeft (var (Sum.inr val✝))) ⊆ s ⊢ realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (var (Sum.inr val✝)) (Set.inclusion h)) = realize (Sum.elim v xs) (var (Sum.inr val✝)) [PROOFSTEP] rfl [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' inst✝ : DecidableEq α γ : Type u_3 t : Term L (α ⊕ γ) s : Set α h✝ : ↑(varFinsetLeft t) ⊆ s v : α → M xs : γ → M l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L (α ⊕ γ) ih : ∀ (a : Fin l✝) (h : ↑(varFinsetLeft (_ts✝ a)) ⊆ s), realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (_ts✝ a) (Set.inclusion h)) = realize (Sum.elim v xs) (_ts✝ a) h : ↑(varFinsetLeft (func _f✝ _ts✝)) ⊆ s ⊢ realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (func _f✝ _ts✝) (Set.inclusion h)) = realize (Sum.elim v xs) (func _f✝ _ts✝) [PROOFSTEP] simp_rw [varFinsetLeft, Finset.coe_biUnion, Set.iUnion_subset_iff] at h [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' inst✝ : DecidableEq α γ : Type u_3 t : Term L (α ⊕ γ) s : Set α h✝¹ : ↑(varFinsetLeft t) ⊆ s v : α → M xs : γ → M l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L (α ⊕ γ) ih : ∀ (a : Fin l✝) (h : ↑(varFinsetLeft (_ts✝ a)) ⊆ s), realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (_ts✝ a) (Set.inclusion h)) = realize (Sum.elim v xs) (_ts✝ a) h✝ : ↑(Finset.biUnion Finset.univ fun i => varFinsetLeft (_ts✝ i)) ⊆ s h : ∀ (i : Fin l✝), i ∈ ↑Finset.univ → ↑(varFinsetLeft (_ts✝ i)) ⊆ s ⊢ realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (func _f✝ _ts✝) (Set.inclusion h✝)) = realize (Sum.elim v xs) (func _f✝ _ts✝) [PROOFSTEP] exact congr rfl (funext fun i => ih i (h i (Finset.mem_univ i))) [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M t : Term (L[[α]]) β v : β → M ⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars t) = realize v t [PROOFSTEP] induction' t with _ n f ts ih [GOAL] case var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M _a✝ : β ⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (var _a✝)) = realize v (var _a✝) [PROOFSTEP] simp [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M n : ℕ f : Functions (L[[α]]) n ts : Fin n → Term (L[[α]]) β ih : ∀ (a : Fin n), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a) ⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func f ts)) = realize v (func f ts) [PROOFSTEP] cases n [GOAL] case func.zero L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M f : Functions (L[[α]]) Nat.zero ts : Fin Nat.zero → Term (L[[α]]) β ih : ∀ (a : Fin Nat.zero), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a) ⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func f ts)) = realize v (func f ts) [PROOFSTEP] cases f [GOAL] case func.zero.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M ts : Fin Nat.zero → Term (L[[α]]) β ih : ∀ (a : Fin Nat.zero), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a) val✝ : Functions L Nat.zero ⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func (Sum.inl val✝) ts)) = realize v (func (Sum.inl val✝) ts) [PROOFSTEP] simp only [realize, ih, Nat.zero_eq, constantsOn, mk₂_Functions] --Porting note: below lemma does not work with simp for some reason [GOAL] case func.zero.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M ts : Fin Nat.zero → Term (L[[α]]) β ih : ∀ (a : Fin Nat.zero), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a) val✝ : Functions L Nat.zero ⊢ (funMap val✝ fun i => realize v (ts i)) = funMap (Sum.inl val✝) fun i => realize v (ts i) [PROOFSTEP] rw [withConstants_funMap_sum_inl] [GOAL] case func.zero.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M ts : Fin Nat.zero → Term (L[[α]]) β ih : ∀ (a : Fin Nat.zero), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a) val✝ : Functions (constantsOn α) Nat.zero ⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func (Sum.inr val✝) ts)) = realize v (func (Sum.inr val✝) ts) [PROOFSTEP] simp only [realize, constantsToVars, Sum.elim_inl, funMap_eq_coe_constants] [GOAL] case func.zero.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M ts : Fin Nat.zero → Term (L[[α]]) β ih : ∀ (a : Fin Nat.zero), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a) val✝ : Functions (constantsOn α) Nat.zero ⊢ ↑(Language.con L val✝) = ↑(Sum.inr val✝) [PROOFSTEP] rfl [GOAL] case func.succ L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M n✝ : ℕ f : Functions (L[[α]]) (Nat.succ n✝) ts : Fin (Nat.succ n✝) → Term (L[[α]]) β ih : ∀ (a : Fin (Nat.succ n✝)), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a) ⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func f ts)) = realize v (func f ts) [PROOFSTEP] cases' f with _ f [GOAL] case func.succ.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M n✝ : ℕ ts : Fin (Nat.succ n✝) → Term (L[[α]]) β ih : ∀ (a : Fin (Nat.succ n✝)), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a) val✝ : Functions L (Nat.succ n✝) ⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func (Sum.inl val✝) ts)) = realize v (func (Sum.inl val✝) ts) [PROOFSTEP] simp only [realize, ih, constantsOn, mk₂_Functions] --Porting note: below lemma does not work with simp for some reason [GOAL] case func.succ.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M n✝ : ℕ ts : Fin (Nat.succ n✝) → Term (L[[α]]) β ih : ∀ (a : Fin (Nat.succ n✝)), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a) val✝ : Functions L (Nat.succ n✝) ⊢ (funMap val✝ fun i => realize v (ts i)) = funMap (Sum.inl val✝) fun i => realize v (ts i) [PROOFSTEP] rw [withConstants_funMap_sum_inl] [GOAL] case func.succ.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M n✝ : ℕ ts : Fin (Nat.succ n✝) → Term (L[[α]]) β ih : ∀ (a : Fin (Nat.succ n✝)), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a) f : Functions (constantsOn α) (Nat.succ n✝) ⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func (Sum.inr f) ts)) = realize v (func (Sum.inr f) ts) [PROOFSTEP] exact isEmptyElim f [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M t : Term L (α ⊕ β) v : β → M ⊢ realize v (varsToConstants t) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) t [PROOFSTEP] induction' t with ab n f ts ih [GOAL] case var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M ab : α ⊕ β ⊢ realize v (varsToConstants (var ab)) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) (var ab) [PROOFSTEP] cases' ab with a b [GOAL] case var.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M a : α ⊢ realize v (varsToConstants (var (Sum.inl a))) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) (var (Sum.inl a)) [PROOFSTEP] simp [Language.con, realize, constantMap, funMap_eq_coe_constants] [GOAL] case var.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M b : β ⊢ realize v (varsToConstants (var (Sum.inr b))) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) (var (Sum.inr b)) [PROOFSTEP] simp [realize, constantMap] [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M n : ℕ f : Functions L n ts : Fin n → Term L (α ⊕ β) ih : ∀ (a : Fin n), realize v (varsToConstants (ts a)) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) (ts a) ⊢ realize v (varsToConstants (func f ts)) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) (func f ts) [PROOFSTEP] simp only [realize, constantsOn, mk₂_Functions, ih] --Porting note: below lemma does not work with simp for some reason [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M v : β → M n : ℕ f : Functions L n ts : Fin n → Term L (α ⊕ β) ih : ∀ (a : Fin n), realize v (varsToConstants (ts a)) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) (ts a) ⊢ (funMap (Sum.inl f) fun i => realize (Sum.elim (fun a => ↑(Language.con L a)) v) (ts i)) = funMap f fun i => realize (Sum.elim (fun a => ↑(Language.con L a)) v) (ts i) [PROOFSTEP] rw [withConstants_funMap_sum_inl] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M n : ℕ t : Term (L[[α]]) (β ⊕ Fin n) v : β → M xs : Fin n → M ⊢ realize (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs) (↑constantsVarsEquivLeft t) = realize (Sum.elim v xs) t [PROOFSTEP] simp only [constantsVarsEquivLeft, realize_relabel, Equiv.coe_trans, Function.comp_apply, constantsVarsEquiv_apply, relabelEquiv_symm_apply] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M n : ℕ t : Term (L[[α]]) (β ⊕ Fin n) v : β → M xs : Fin n → M ⊢ realize (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs ∘ ↑(Equiv.sumAssoc α β (Fin n)).symm) (constantsToVars t) = realize (Sum.elim v xs) t [PROOFSTEP] refine' _root_.trans _ realize_constantsToVars [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M n : ℕ t : Term (L[[α]]) (β ⊕ Fin n) v : β → M xs : Fin n → M ⊢ realize (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs ∘ ↑(Equiv.sumAssoc α β (Fin n)).symm) (constantsToVars t) = realize (Sum.elim (fun a => ↑(Language.con L a)) (Sum.elim v xs)) (constantsToVars t) [PROOFSTEP] rcongr x [GOAL] case e_v.h L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M n : ℕ t : Term (L[[α]]) (β ⊕ Fin n) v : β → M xs : Fin n → M x : α ⊕ β ⊕ Fin n ⊢ (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs ∘ ↑(Equiv.sumAssoc α β (Fin n)).symm) x = Sum.elim (fun a => ↑(Language.con L a)) (Sum.elim v xs) x [PROOFSTEP] rcases x with (a | (b | i)) [GOAL] case e_v.h.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M n : ℕ t : Term (L[[α]]) (β ⊕ Fin n) v : β → M xs : Fin n → M a : α ⊢ (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs ∘ ↑(Equiv.sumAssoc α β (Fin n)).symm) (Sum.inl a) = Sum.elim (fun a => ↑(Language.con L a)) (Sum.elim v xs) (Sum.inl a) [PROOFSTEP] simp [GOAL] case e_v.h.inr.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M n : ℕ t : Term (L[[α]]) (β ⊕ Fin n) v : β → M xs : Fin n → M b : β ⊢ (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs ∘ ↑(Equiv.sumAssoc α β (Fin n)).symm) (Sum.inr (Sum.inl b)) = Sum.elim (fun a => ↑(Language.con L a)) (Sum.elim v xs) (Sum.inr (Sum.inl b)) [PROOFSTEP] simp [GOAL] case e_v.h.inr.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M n : ℕ t : Term (L[[α]]) (β ⊕ Fin n) v : β → M xs : Fin n → M i : Fin n ⊢ (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs ∘ ↑(Equiv.sumAssoc α β (Fin n)).symm) (Sum.inr (Sum.inr i)) = Sum.elim (fun a => ↑(Language.con L a)) (Sum.elim v xs) (Sum.inr (Sum.inr i)) [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M t : Term L α v : α → M ⊢ Term.realize v (onTerm φ t) = Term.realize v t [PROOFSTEP] induction' t with _ n f ts ih [GOAL] case var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M v : α → M _a✝ : α ⊢ Term.realize v (onTerm φ (var _a✝)) = Term.realize v (var _a✝) [PROOFSTEP] rfl [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M v : α → M n : ℕ f : Functions L n ts : Fin n → Term L α ih : ∀ (a : Fin n), Term.realize v (onTerm φ (ts a)) = Term.realize v (ts a) ⊢ Term.realize v (onTerm φ (func f ts)) = Term.realize v (func f ts) [PROOFSTEP] simp only [Term.realize, LHom.onTerm, LHom.map_onFunction, ih] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' g : M →[L] N t : Term L α v : α → M ⊢ Term.realize (↑g ∘ v) t = ↑g (Term.realize v t) [PROOFSTEP] induction t [GOAL] case var L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' g : M →[L] N v : α → M _a✝ : α ⊢ Term.realize (↑g ∘ v) (var _a✝) = ↑g (Term.realize v (var _a✝)) [PROOFSTEP] rfl [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' g : M →[L] N v : α → M l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L α _ts_ih✝ : ∀ (a : Fin l✝), Term.realize (↑g ∘ v) (_ts✝ a) = ↑g (Term.realize v (_ts✝ a)) ⊢ Term.realize (↑g ∘ v) (func _f✝ _ts✝) = ↑g (Term.realize v (func _f✝ _ts✝)) [PROOFSTEP] rw [Term.realize, Term.realize, g.map_fun] [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' g : M →[L] N v : α → M l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L α _ts_ih✝ : ∀ (a : Fin l✝), Term.realize (↑g ∘ v) (_ts✝ a) = ↑g (Term.realize v (_ts✝ a)) ⊢ (funMap _f✝ fun i => Term.realize (↑g ∘ v) (_ts✝ i)) = funMap _f✝ (↑g ∘ fun i => Term.realize v (_ts✝ i)) [PROOFSTEP] refine' congr rfl _ [GOAL] case func L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' g : M →[L] N v : α → M l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L α _ts_ih✝ : ∀ (a : Fin l✝), Term.realize (↑g ∘ v) (_ts✝ a) = ↑g (Term.realize v (_ts✝ a)) ⊢ (fun i => Term.realize (↑g ∘ v) (_ts✝ i)) = ↑g ∘ fun i => Term.realize v (_ts✝ i) [PROOFSTEP] ext x [GOAL] case func.h L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' g : M →[L] N v : α → M l✝ : ℕ _f✝ : Functions L l✝ _ts✝ : Fin l✝ → Term L α _ts_ih✝ : ∀ (a : Fin l✝), Term.realize (↑g ∘ v) (_ts✝ a) = ↑g (Term.realize v (_ts✝ a)) x : Fin l✝ ⊢ Term.realize (↑g ∘ v) (_ts✝ x) = (↑g ∘ fun i => Term.realize v (_ts✝ i)) x [PROOFSTEP] simp [*] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M ⊢ Realize ⊤ v xs ↔ True [PROOFSTEP] simp [Top.top] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M ⊢ Realize (φ ⊓ ψ) v xs ↔ Realize φ v xs ∧ Realize ψ v xs [PROOFSTEP] simp [Inf.inf, Realize] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M ⊢ (Realize φ v xs → Realize ψ v xs → False) → False ↔ Realize φ v xs ∧ Realize ψ v xs [PROOFSTEP] tauto [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l✝ : ℕ φ ψ : BoundedFormula L α l✝ θ : BoundedFormula L α (Nat.succ l✝) v✝ : α → M xs✝ : Fin l✝ → M l : List (BoundedFormula L α n) v : α → M xs : Fin n → M ⊢ Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ l) v xs ↔ ∀ (φ : BoundedFormula L α n), φ ∈ l → Realize φ v xs [PROOFSTEP] induction' l with φ l ih [GOAL] case nil L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M v : α → M xs : Fin n → M ⊢ Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ []) v xs ↔ ∀ (φ : BoundedFormula L α n), φ ∈ [] → Realize φ v xs [PROOFSTEP] simp [GOAL] case cons L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l✝ : ℕ φ✝ ψ : BoundedFormula L α l✝ θ : BoundedFormula L α (Nat.succ l✝) v✝ : α → M xs✝ : Fin l✝ → M v : α → M xs : Fin n → M φ : BoundedFormula L α n l : List (BoundedFormula L α n) ih : Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ l) v xs ↔ ∀ (φ : BoundedFormula L α n), φ ∈ l → Realize φ v xs ⊢ Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ (φ :: l)) v xs ↔ ∀ (φ_1 : BoundedFormula L α n), φ_1 ∈ φ :: l → Realize φ_1 v xs [PROOFSTEP] simp [ih] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M ⊢ Realize (φ ⟹ ψ) v xs ↔ Realize φ v xs → Realize ψ v xs [PROOFSTEP] simp only [Realize] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M R : Relations L 1 t : Term L (α ⊕ Fin l) ⊢ Realize (Relations.boundedFormula₁ R t) v xs ↔ RelMap R ![realize (Sum.elim v xs) t] [PROOFSTEP] rw [Relations.boundedFormula₁, realize_rel, iff_eq_eq] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M R : Relations L 1 t : Term L (α ⊕ Fin l) ⊢ (RelMap R fun i => realize (Sum.elim v xs) (Matrix.vecCons t ![] i)) = RelMap R ![realize (Sum.elim v xs) t] [PROOFSTEP] refine' congr rfl (funext fun _ => _) [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M R : Relations L 1 t : Term L (α ⊕ Fin l) x✝ : Fin 1 ⊢ realize (Sum.elim v xs) (Matrix.vecCons t ![] x✝) = Matrix.vecCons (realize (Sum.elim v xs) t) ![] x✝ [PROOFSTEP] simp only [Matrix.cons_val_fin_one] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M R : Relations L 2 t₁ t₂ : Term L (α ⊕ Fin l) ⊢ Realize (Relations.boundedFormula₂ R t₁ t₂) v xs ↔ RelMap R ![realize (Sum.elim v xs) t₁, realize (Sum.elim v xs) t₂] [PROOFSTEP] rw [Relations.boundedFormula₂, realize_rel, iff_eq_eq] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M R : Relations L 2 t₁ t₂ : Term L (α ⊕ Fin l) ⊢ (RelMap R fun i => realize (Sum.elim v xs) (Matrix.vecCons t₁ ![t₂] i)) = RelMap R ![realize (Sum.elim v xs) t₁, realize (Sum.elim v xs) t₂] [PROOFSTEP] refine' congr rfl (funext (Fin.cases _ _)) [GOAL] case refine'_1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M R : Relations L 2 t₁ t₂ : Term L (α ⊕ Fin l) ⊢ realize (Sum.elim v xs) (Matrix.vecCons t₁ ![t₂] 0) = Matrix.vecCons (realize (Sum.elim v xs) t₁) ![realize (Sum.elim v xs) t₂] 0 [PROOFSTEP] simp only [Matrix.cons_val_zero] [GOAL] case refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M R : Relations L 2 t₁ t₂ : Term L (α ⊕ Fin l) ⊢ ∀ (i : Fin 1), realize (Sum.elim v xs) (Matrix.vecCons t₁ ![t₂] (succ i)) = Matrix.vecCons (realize (Sum.elim v xs) t₁) ![realize (Sum.elim v xs) t₂] (succ i) [PROOFSTEP] simp only [Matrix.cons_val_succ, Matrix.cons_val_fin_one, forall_const] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M ⊢ Realize (φ ⊔ ψ) v xs ↔ Realize φ v xs ∨ Realize ψ v xs [PROOFSTEP] simp only [realize, Sup.sup, realize_not, eq_iff_iff] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M ⊢ Realize (∼φ ⟹ ψ) v xs ↔ Realize φ v xs ∨ Realize ψ v xs [PROOFSTEP] tauto [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l✝ : ℕ φ ψ : BoundedFormula L α l✝ θ : BoundedFormula L α (Nat.succ l✝) v✝ : α → M xs✝ : Fin l✝ → M l : List (BoundedFormula L α n) v : α → M xs : Fin n → M ⊢ Realize (List.foldr (fun x x_1 => x ⊔ x_1) ⊥ l) v xs ↔ ∃ φ, φ ∈ l ∧ Realize φ v xs [PROOFSTEP] induction' l with φ l ih [GOAL] case nil L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M v : α → M xs : Fin n → M ⊢ Realize (List.foldr (fun x x_1 => x ⊔ x_1) ⊥ []) v xs ↔ ∃ φ, φ ∈ [] ∧ Realize φ v xs [PROOFSTEP] simp [GOAL] case cons L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l✝ : ℕ φ✝ ψ : BoundedFormula L α l✝ θ : BoundedFormula L α (Nat.succ l✝) v✝ : α → M xs✝ : Fin l✝ → M v : α → M xs : Fin n → M φ : BoundedFormula L α n l : List (BoundedFormula L α n) ih : Realize (List.foldr (fun x x_1 => x ⊔ x_1) ⊥ l) v xs ↔ ∃ φ, φ ∈ l ∧ Realize φ v xs ⊢ Realize (List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (φ :: l)) v xs ↔ ∃ φ_1, φ_1 ∈ φ :: l ∧ Realize φ_1 v xs [PROOFSTEP] simp_rw [List.foldr_cons, realize_sup, ih, List.mem_cons, or_and_right, exists_or, exists_eq_left] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M ⊢ Realize (∃'θ) v xs ↔ ∃ a, Realize θ v (snoc xs a) [PROOFSTEP] rw [BoundedFormula.ex, realize_not, realize_all, not_forall] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M ⊢ (∃ x, ¬Realize (∼θ) v (snoc xs x)) ↔ ∃ a, Realize θ v (snoc xs a) [PROOFSTEP] simp_rw [realize_not, Classical.not_not] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M ⊢ Realize (φ ⇔ ψ) v xs ↔ (Realize φ v xs ↔ Realize ψ v xs) [PROOFSTEP] simp only [BoundedFormula.iff, realize_inf, realize_imp, and_imp, ← iff_def] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M m n : ℕ h : m = n h' : m ≤ n φ : BoundedFormula L α m v : α → M xs : Fin n → M ⊢ Realize (castLE h' φ) v xs ↔ Realize φ v (xs ∘ ↑(castIso h)) [PROOFSTEP] subst h [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M m : ℕ φ : BoundedFormula L α m v : α → M h' : m ≤ m xs : Fin m → M ⊢ Realize (castLE h' φ) v xs ↔ Realize φ v (xs ∘ ↑(castIso (_ : m = m))) [PROOFSTEP] simp only [castLE_rfl, castIso_refl, OrderIso.coe_refl, Function.comp.right_id] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝ : Structure L' M ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n → Relations L' n n : ℕ φ : BoundedFormula L α n v : α → M v' : β → M xs : Fin n → M h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x ⊢ Realize (mapTermRel ft fr (fun x => id) φ) v' xs ↔ Realize φ v xs [PROOFSTEP] induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Structure L' M ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n → Relations L' n n : ℕ v : α → M v' : β → M xs✝ : Fin n → M h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x n✝ : ℕ xs : Fin n✝ → M ⊢ Realize (mapTermRel ft fr (fun x => id) falsum) v' xs ↔ Realize falsum v xs [PROOFSTEP] rfl [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Structure L' M ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n → Relations L' n n : ℕ v : α → M v' : β → M xs✝ : Fin n → M h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) xs : Fin n✝ → M ⊢ Realize (mapTermRel ft fr (fun x => id) (equal t₁✝ t₂✝)) v' xs ↔ Realize (equal t₁✝ t₂✝) v xs [PROOFSTEP] simp [mapTermRel, Realize, h1] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Structure L' M ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n → Relations L' n n : ℕ v : α → M v' : β → M xs✝ : Fin n → M h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) xs : Fin n✝ → M ⊢ Realize (mapTermRel ft fr (fun x => id) (rel R✝ ts✝)) v' xs ↔ Realize (rel R✝ ts✝) v xs [PROOFSTEP] simp [mapTermRel, Realize, h1, h2] [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Structure L' M ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n → Relations L' n n : ℕ v : α → M v' : β → M xs✝ : Fin n → M h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ {xs : Fin n✝ → M}, Realize (mapTermRel ft fr (fun x => id) f₁✝) v' xs ↔ Realize f₁✝ v xs ih2 : ∀ {xs : Fin n✝ → M}, Realize (mapTermRel ft fr (fun x => id) f₂✝) v' xs ↔ Realize f₂✝ v xs xs : Fin n✝ → M ⊢ Realize (mapTermRel ft fr (fun x => id) (f₁✝ ⟹ f₂✝)) v' xs ↔ Realize (f₁✝ ⟹ f₂✝) v xs [PROOFSTEP] simp [mapTermRel, Realize, ih1, ih2] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Structure L' M ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n) fr : (n : ℕ) → Relations L n → Relations L' n n : ℕ v : α → M v' : β → M xs✝ : Fin n → M h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih : ∀ {xs : Fin (n✝ + 1) → M}, Realize (mapTermRel ft fr (fun x => id) f✝) v' xs ↔ Realize f✝ v xs xs : Fin n✝ → M ⊢ Realize (mapTermRel ft fr (fun x => id) (∀'f✝)) v' xs ↔ Realize (∀'f✝) v xs [PROOFSTEP] simp only [mapTermRel, Realize, ih, id.def] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝ : Structure L' M k : ℕ ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin (k + n)) fr : (n : ℕ) → Relations L n → Relations L' n n : ℕ φ : BoundedFormula L α n v : {n : ℕ} → (Fin (k + n) → M) → α → M v' : β → M xs : Fin (k + n) → M h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (k + n) → M), realize (Sum.elim v' xs') (ft n t) = realize (Sum.elim (v xs') (xs' ∘ natAdd k)) t h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x hv : ∀ (n : ℕ) (xs : Fin (k + n) → M) (x : M), v (snoc xs x) = v xs ⊢ Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) φ) v' xs ↔ Realize φ (v xs) (xs ∘ natAdd k) [PROOFSTEP] induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Structure L' M k : ℕ ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin (k + n)) fr : (n : ℕ) → Relations L n → Relations L' n n : ℕ v : {n : ℕ} → (Fin (k + n) → M) → α → M v' : β → M xs✝ : Fin (k + n) → M h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (k + n) → M), realize (Sum.elim v' xs') (ft n t) = realize (Sum.elim (v xs') (xs' ∘ natAdd k)) t h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x hv : ∀ (n : ℕ) (xs : Fin (k + n) → M) (x : M), v (snoc xs x) = v xs n✝ : ℕ xs : Fin (k + n✝) → M ⊢ Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) falsum) v' xs ↔ Realize falsum (v xs) (xs ∘ natAdd k) [PROOFSTEP] rfl [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Structure L' M k : ℕ ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin (k + n)) fr : (n : ℕ) → Relations L n → Relations L' n n : ℕ v : {n : ℕ} → (Fin (k + n) → M) → α → M v' : β → M xs✝ : Fin (k + n) → M h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (k + n) → M), realize (Sum.elim v' xs') (ft n t) = realize (Sum.elim (v xs') (xs' ∘ natAdd k)) t h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x hv : ∀ (n : ℕ) (xs : Fin (k + n) → M) (x : M), v (snoc xs x) = v xs n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) xs : Fin (k + n✝) → M ⊢ Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) (equal t₁✝ t₂✝)) v' xs ↔ Realize (equal t₁✝ t₂✝) (v xs) (xs ∘ natAdd k) [PROOFSTEP] simp [mapTermRel, Realize, h1] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Structure L' M k : ℕ ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin (k + n)) fr : (n : ℕ) → Relations L n → Relations L' n n : ℕ v : {n : ℕ} → (Fin (k + n) → M) → α → M v' : β → M xs✝ : Fin (k + n) → M h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (k + n) → M), realize (Sum.elim v' xs') (ft n t) = realize (Sum.elim (v xs') (xs' ∘ natAdd k)) t h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x hv : ∀ (n : ℕ) (xs : Fin (k + n) → M) (x : M), v (snoc xs x) = v xs n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) xs : Fin (k + n✝) → M ⊢ Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) (rel R✝ ts✝)) v' xs ↔ Realize (rel R✝ ts✝) (v xs) (xs ∘ natAdd k) [PROOFSTEP] simp [mapTermRel, Realize, h1, h2] [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Structure L' M k : ℕ ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin (k + n)) fr : (n : ℕ) → Relations L n → Relations L' n n : ℕ v : {n : ℕ} → (Fin (k + n) → M) → α → M v' : β → M xs✝ : Fin (k + n) → M h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (k + n) → M), realize (Sum.elim v' xs') (ft n t) = realize (Sum.elim (v xs') (xs' ∘ natAdd k)) t h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x hv : ∀ (n : ℕ) (xs : Fin (k + n) → M) (x : M), v (snoc xs x) = v xs n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ (xs : Fin (k + n✝) → M), Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) f₁✝) v' xs ↔ Realize f₁✝ (v xs) (xs ∘ natAdd k) ih2 : ∀ (xs : Fin (k + n✝) → M), Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) f₂✝) v' xs ↔ Realize f₂✝ (v xs) (xs ∘ natAdd k) xs : Fin (k + n✝) → M ⊢ Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) (f₁✝ ⟹ f₂✝)) v' xs ↔ Realize (f₁✝ ⟹ f₂✝) (v xs) (xs ∘ natAdd k) [PROOFSTEP] simp [mapTermRel, Realize, ih1, ih2] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Structure L' M k : ℕ ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin (k + n)) fr : (n : ℕ) → Relations L n → Relations L' n n : ℕ v : {n : ℕ} → (Fin (k + n) → M) → α → M v' : β → M xs✝ : Fin (k + n) → M h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (k + n) → M), realize (Sum.elim v' xs') (ft n t) = realize (Sum.elim (v xs') (xs' ∘ natAdd k)) t h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x hv : ∀ (n : ℕ) (xs : Fin (k + n) → M) (x : M), v (snoc xs x) = v xs n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih : ∀ (xs : Fin (k + (n✝ + 1)) → M), Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) f✝) v' xs ↔ Realize f✝ (v xs) (xs ∘ natAdd k) xs : Fin (k + n✝) → M ⊢ Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) (∀'f✝)) v' xs ↔ Realize (∀'f✝) (v xs) (xs ∘ natAdd k) [PROOFSTEP] simp [mapTermRel, Realize, ih, hv] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M m n : ℕ φ : BoundedFormula L α n g : α → β ⊕ Fin m v : β → M xs : Fin (m + n) → M ⊢ Realize (relabel g φ) v xs ↔ Realize φ (Sum.elim v (xs ∘ castAdd n) ∘ g) (xs ∘ natAdd m) [PROOFSTEP] rw [relabel, realize_mapTermRel_add_castLe] [GOAL] case h1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M m n : ℕ φ : BoundedFormula L α n g : α → β ⊕ Fin m v : β → M xs : Fin (m + n) → M ⊢ ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (m + n) → M), realize (Sum.elim v xs') (Term.relabel (relabelAux g n) t) = realize (Sum.elim (Sum.elim v (xs' ∘ castAdd n) ∘ g) (xs' ∘ natAdd m)) t [PROOFSTEP] intros [GOAL] case h2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M m n : ℕ φ : BoundedFormula L α n g : α → β ⊕ Fin m v : β → M xs : Fin (m + n) → M ⊢ ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (id R) x = RelMap R x [PROOFSTEP] intros [GOAL] case hv L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M m n : ℕ φ : BoundedFormula L α n g : α → β ⊕ Fin m v : β → M xs : Fin (m + n) → M ⊢ ∀ (n : ℕ) (xs : Fin (m + n) → M) (x : M), Sum.elim v (snoc xs x ∘ castAdd (n + 1)) ∘ g = Sum.elim v (xs ∘ castAdd n) ∘ g [PROOFSTEP] intros [GOAL] case h1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M m n : ℕ φ : BoundedFormula L α n g : α → β ⊕ Fin m v : β → M xs : Fin (m + n) → M n✝ : ℕ t✝ : Term L (α ⊕ Fin n✝) xs'✝ : Fin (m + n✝) → M ⊢ realize (Sum.elim v xs'✝) (Term.relabel (relabelAux g n✝) t✝) = realize (Sum.elim (Sum.elim v (xs'✝ ∘ castAdd n✝) ∘ g) (xs'✝ ∘ natAdd m)) t✝ [PROOFSTEP] simp [GOAL] case h2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M m n : ℕ φ : BoundedFormula L α n g : α → β ⊕ Fin m v : β → M xs : Fin (m + n) → M n✝ : ℕ R✝ : Relations L n✝ x✝ : Fin n✝ → M ⊢ RelMap (id R✝) x✝ = RelMap R✝ x✝ [PROOFSTEP] simp [GOAL] case hv L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M m n : ℕ φ : BoundedFormula L α n g : α → β ⊕ Fin m v : β → M xs : Fin (m + n) → M n✝ : ℕ xs✝ : Fin (m + n✝) → M x✝ : M ⊢ Sum.elim v (snoc xs✝ x✝ ∘ castAdd (n✝ + 1)) ∘ g = Sum.elim v (xs✝ ∘ castAdd n✝) ∘ g [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M n n' m : ℕ φ : BoundedFormula L α n v : α → M xs : Fin (n + n') → M hmn : m + n' ≤ n + 1 ⊢ Realize (liftAt n' m φ) v xs ↔ Realize φ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') [PROOFSTEP] rw [liftAt] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M n n' m : ℕ φ : BoundedFormula L α n v : α → M xs : Fin (n + n') → M hmn : m + n' ≤ n + 1 ⊢ Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) φ) v xs ↔ Realize φ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') [PROOFSTEP] induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 k _ ih3 [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 n✝ : ℕ xs : Fin (n✝ + n') → M hmn : m + n' ≤ n✝ + 1 ⊢ Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) falsum) v xs ↔ Realize falsum v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') [PROOFSTEP] simp [mapTermRel, Realize] [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) xs : Fin (n✝ + n') → M hmn : m + n' ≤ n✝ + 1 ⊢ Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) (equal t₁✝ t₂✝)) v xs ↔ Realize (equal t₁✝ t₂✝) v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') [PROOFSTEP] simp [mapTermRel, Realize, realize_rel, realize_liftAt, Sum.elim_comp_map] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) xs : Fin (n✝ + n') → M hmn : m + n' ≤ n✝ + 1 ⊢ Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) (rel R✝ ts✝)) v xs ↔ Realize (rel R✝ ts✝) v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') [PROOFSTEP] simp [mapTermRel, Realize, realize_rel, realize_liftAt, Sum.elim_comp_map] [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ {xs : Fin (n✝ + n') → M}, m + n' ≤ n✝ + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f₁✝) v xs ↔ Realize f₁✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) ih2 : ∀ {xs : Fin (n✝ + n') → M}, m + n' ≤ n✝ + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f₂✝) v xs ↔ Realize f₂✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (n✝ + n') → M hmn : m + n' ≤ n✝ + 1 ⊢ Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) (f₁✝ ⟹ f₂✝)) v xs ↔ Realize (f₁✝ ⟹ f₂✝) v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') [PROOFSTEP] simp only [mapTermRel, Realize, ih1 hmn, ih2 hmn] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 ⊢ Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) (∀'f✝)) v xs ↔ Realize (∀'f✝) v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') [PROOFSTEP] have h : k + 1 + n' = k + n' + 1 := by rw [add_assoc, add_comm 1 n', ← add_assoc] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 ⊢ k + 1 + n' = k + n' + 1 [PROOFSTEP] rw [add_assoc, add_comm 1 n', ← add_assoc] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h : k + 1 + n' = k + n' + 1 ⊢ Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) (∀'f✝)) v xs ↔ Realize (∀'f✝) v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') [PROOFSTEP] simp only [mapTermRel, Realize, realize_castLE_of_eq h, ih3 (hmn.trans k.succ.le_succ)] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h : k + 1 + n' = k + n' + 1 ⊢ (∀ (x : M), Realize f✝ v ((snoc xs x ∘ ↑(castIso h)) ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) ↔ ∀ (x : M), Realize f✝ v (snoc (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') x) [PROOFSTEP] refine' forall_congr' fun x => iff_eq_eq.mpr (congr rfl (funext (Fin.lastCases _ fun i => _))) [GOAL] case all.refine'_1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h : k + 1 + n' = k + n' + 1 x : M ⊢ ((snoc xs x ∘ ↑(castIso h)) ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') (last k) = snoc (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') x (last k) [PROOFSTEP] simp only [Function.comp_apply, val_last, snoc_last] [GOAL] case all.refine'_1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h : k + 1 + n' = k + n' + 1 x : M ⊢ snoc xs x (↑(castIso h) (if k < m then castAdd n' (last k) else addNat (last k) n')) = x [PROOFSTEP] by_cases h : k < m [GOAL] case pos L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h✝ : k + 1 + n' = k + n' + 1 x : M h : k < m ⊢ snoc xs x (↑(castIso h✝) (if k < m then castAdd n' (last k) else addNat (last k) n')) = x [PROOFSTEP] rw [if_pos h] [GOAL] case pos L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h✝ : k + 1 + n' = k + n' + 1 x : M h : k < m ⊢ snoc xs x (↑(castIso h✝) (castAdd n' (last k))) = x [PROOFSTEP] refine' (congr rfl (ext _)).trans (snoc_last _ _) [GOAL] case pos L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h✝ : k + 1 + n' = k + n' + 1 x : M h : k < m ⊢ ↑(↑(castIso h✝) (castAdd n' (last k))) = ↑(last (k + n')) [PROOFSTEP] simp only [coe_orderIso_apply, coe_castAdd, val_last, self_eq_add_right] [GOAL] case pos L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h✝ : k + 1 + n' = k + n' + 1 x : M h : k < m ⊢ n' = 0 [PROOFSTEP] refine' le_antisymm (le_of_add_le_add_left ((hmn.trans (Nat.succ_le_of_lt h)).trans _)) n'.zero_le [GOAL] case pos L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h✝ : k + 1 + n' = k + n' + 1 x : M h : k < m ⊢ m ≤ m + 0 [PROOFSTEP] rw [add_zero] [GOAL] case neg L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h✝ : k + 1 + n' = k + n' + 1 x : M h : ¬k < m ⊢ snoc xs x (↑(castIso h✝) (if k < m then castAdd n' (last k) else addNat (last k) n')) = x [PROOFSTEP] rw [if_neg h] [GOAL] case neg L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h✝ : k + 1 + n' = k + n' + 1 x : M h : ¬k < m ⊢ snoc xs x (↑(castIso h✝) (addNat (last k) n')) = x [PROOFSTEP] refine' (congr rfl (ext _)).trans (snoc_last _ _) [GOAL] case neg L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h✝ : k + 1 + n' = k + n' + 1 x : M h : ¬k < m ⊢ ↑(↑(castIso h✝) (addNat (last k) n')) = ↑(last (k + n')) [PROOFSTEP] simp [GOAL] case all.refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h : k + 1 + n' = k + n' + 1 x : M i : Fin k ⊢ ((snoc xs x ∘ ↑(castIso h)) ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') (castSucc i) = snoc (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') x (castSucc i) [PROOFSTEP] simp only [Function.comp_apply, Fin.snoc_castSucc] [GOAL] case all.refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h : k + 1 + n' = k + n' + 1 x : M i : Fin k ⊢ snoc xs x (↑(castIso h) (if ↑(castSucc i) < m then castAdd n' (castSucc i) else addNat (castSucc i) n')) = xs (if ↑i < m then castAdd n' i else addNat i n') [PROOFSTEP] refine' (congr rfl (ext _)).trans (snoc_castSucc _ _ _) [GOAL] case all.refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h : k + 1 + n' = k + n' + 1 x : M i : Fin k ⊢ ↑(↑(castIso h) (if ↑(castSucc i) < m then castAdd n' (castSucc i) else addNat (castSucc i) n')) = ↑(castSucc (if ↑i < m then castAdd n' i else addNat i n')) [PROOFSTEP] simp only [coe_castSucc, coe_orderIso_apply] [GOAL] case all.refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h : k + 1 + n' = k + n' + 1 x : M i : Fin k ⊢ ↑(if ↑i < m then castAdd n' (castSucc i) else addNat (castSucc i) n') = ↑(if ↑i < m then castAdd n' i else addNat i n') [PROOFSTEP] split_ifs [GOAL] case pos L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h : k + 1 + n' = k + n' + 1 x : M i : Fin k h✝ : ↑i < m ⊢ ↑(castAdd n' (castSucc i)) = ↑(castAdd n' i) [PROOFSTEP] simp [GOAL] case neg L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M n n' m : ℕ v : α → M xs✝ : Fin (n + n') → M hmn✝ : m + n' ≤ n + 1 k : ℕ f✝ : BoundedFormula L α (k + 1) ih3 : ∀ {xs : Fin (k + 1 + n') → M}, m + n' ≤ k + 1 + 1 → (Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝) v xs ↔ Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) xs : Fin (k + n') → M hmn : m + n' ≤ k + 1 h : k + 1 + n' = k + n' + 1 x : M i : Fin k h✝ : ¬↑i < m ⊢ ↑(addNat (castSucc i) n') = ↑(addNat i n') [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M n m : ℕ φ : BoundedFormula L α n v : α → M xs : Fin (n + 1) → M hmn : m ≤ n ⊢ Realize (liftAt 1 m φ) v xs ↔ Realize φ v (xs ∘ fun i => if ↑i < m then castSucc i else succ i) [PROOFSTEP] simp [realize_liftAt (add_le_add_right hmn 1), castSucc] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin (n + 1) → M ⊢ Realize (liftAt 1 n φ) v xs ↔ Realize φ v (xs ∘ castSucc) [PROOFSTEP] rw [realize_liftAt_one (refl n), iff_eq_eq] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin (n + 1) → M ⊢ Realize φ v (xs ∘ fun i => if ↑i < n then castSucc i else succ i) = Realize φ v (xs ∘ castSucc) [PROOFSTEP] refine' congr rfl (congr rfl (funext fun i => _)) [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin (n + 1) → M i : Fin n ⊢ (if ↑i < n then castSucc i else succ i) = castSucc i [PROOFSTEP] rw [if_pos i.is_lt] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M φ : BoundedFormula L α n✝ tf : α → Term L β v : β → M xs : Fin n✝ → M n : ℕ t : Term L (α ⊕ Fin n) x : Fin n → M ⊢ realize (Sum.elim v x) (Term.subst t (Sum.elim (Term.relabel Sum.inl ∘ tf) (var ∘ Sum.inr))) = realize (Sum.elim (fun a => realize v (tf a)) x) t [PROOFSTEP] rw [Term.realize_subst] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M φ : BoundedFormula L α n✝ tf : α → Term L β v : β → M xs : Fin n✝ → M n : ℕ t : Term L (α ⊕ Fin n) x : Fin n → M ⊢ realize (fun a => realize (Sum.elim v x) (Sum.elim (Term.relabel Sum.inl ∘ tf) (var ∘ Sum.inr) a)) t = realize (Sum.elim (fun a => realize v (tf a)) x) t [PROOFSTEP] rcongr a [GOAL] case e_v.h L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M φ : BoundedFormula L α n✝ tf : α → Term L β v : β → M xs : Fin n✝ → M n : ℕ t : Term L (α ⊕ Fin n) x : Fin n → M a : α ⊕ Fin n ⊢ realize (Sum.elim v x) (Sum.elim (Term.relabel Sum.inl ∘ tf) (var ∘ Sum.inr) a) = Sum.elim (fun a => realize v (tf a)) x a [PROOFSTEP] cases a [GOAL] case e_v.h.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M φ : BoundedFormula L α n✝ tf : α → Term L β v : β → M xs : Fin n✝ → M n : ℕ t : Term L (α ⊕ Fin n) x : Fin n → M val✝ : α ⊢ realize (Sum.elim v x) (Sum.elim (Term.relabel Sum.inl ∘ tf) (var ∘ Sum.inr) (Sum.inl val✝)) = Sum.elim (fun a => realize v (tf a)) x (Sum.inl val✝) [PROOFSTEP] simp only [Sum.elim_inl, Function.comp_apply, Term.realize_relabel, Sum.elim_comp_inl] [GOAL] case e_v.h.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M φ : BoundedFormula L α n✝ tf : α → Term L β v : β → M xs : Fin n✝ → M n : ℕ t : Term L (α ⊕ Fin n) x : Fin n → M val✝ : Fin n ⊢ realize (Sum.elim v x) (Sum.elim (Term.relabel Sum.inl ∘ tf) (var ∘ Sum.inr) (Sum.inr val✝)) = Sum.elim (fun a => realize v (tf a)) x (Sum.inr val✝) [PROOFSTEP] rfl [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M φ : BoundedFormula L α n tf : α → Term L β v : β → M xs : Fin n → M ⊢ ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (id R) x = RelMap R x [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝ : DecidableEq α n : ℕ φ : BoundedFormula L α n s : Set α h : ↑(freeVarFinset φ) ⊆ s v : α → M xs : Fin n → M ⊢ Realize (restrictFreeVar φ (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize φ v xs [PROOFSTEP] induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : DecidableEq α n : ℕ φ : BoundedFormula L α n s : Set α h✝ : ↑(freeVarFinset φ) ⊆ s v : α → M xs✝ : Fin n → M n✝ : ℕ h : ↑(freeVarFinset falsum) ⊆ s xs : Fin n✝ → M ⊢ Realize (restrictFreeVar falsum (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize falsum v xs [PROOFSTEP] rfl [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : DecidableEq α n : ℕ φ : BoundedFormula L α n s : Set α h✝ : ↑(freeVarFinset φ) ⊆ s v : α → M xs✝ : Fin n → M n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) h : ↑(freeVarFinset (equal t₁✝ t₂✝)) ⊆ s xs : Fin n✝ → M ⊢ Realize (restrictFreeVar (equal t₁✝ t₂✝) (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize (equal t₁✝ t₂✝) v xs [PROOFSTEP] simp [restrictFreeVar, Realize] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : DecidableEq α n : ℕ φ : BoundedFormula L α n s : Set α h✝ : ↑(freeVarFinset φ) ⊆ s v : α → M xs✝ : Fin n → M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) h : ↑(freeVarFinset (rel R✝ ts✝)) ⊆ s xs : Fin n✝ → M ⊢ Realize (restrictFreeVar (rel R✝ ts✝) (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize (rel R✝ ts✝) v xs [PROOFSTEP] simp [restrictFreeVar, Realize] [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : DecidableEq α n : ℕ φ : BoundedFormula L α n s : Set α h✝ : ↑(freeVarFinset φ) ⊆ s v : α → M xs✝ : Fin n → M n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ (h : ↑(freeVarFinset f₁✝) ⊆ s) {xs : Fin n✝ → M}, Realize (restrictFreeVar f₁✝ (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize f₁✝ v xs ih2 : ∀ (h : ↑(freeVarFinset f₂✝) ⊆ s) {xs : Fin n✝ → M}, Realize (restrictFreeVar f₂✝ (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize f₂✝ v xs h : ↑(freeVarFinset (f₁✝ ⟹ f₂✝)) ⊆ s xs : Fin n✝ → M ⊢ Realize (restrictFreeVar (f₁✝ ⟹ f₂✝) (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize (f₁✝ ⟹ f₂✝) v xs [PROOFSTEP] simp [restrictFreeVar, Realize, ih1, ih2] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : DecidableEq α n : ℕ φ : BoundedFormula L α n s : Set α h✝ : ↑(freeVarFinset φ) ⊆ s v : α → M xs✝ : Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (h : ↑(freeVarFinset f✝) ⊆ s) {xs : Fin (n✝ + 1) → M}, Realize (restrictFreeVar f✝ (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize f✝ v xs h : ↑(freeVarFinset (∀'f✝)) ⊆ s xs : Fin n✝ → M ⊢ Realize (restrictFreeVar (∀'f✝) (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize (∀'f✝) v xs [PROOFSTEP] simp [restrictFreeVar, Realize, ih3] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M n : ℕ φ : BoundedFormula (L[[α]]) β n v : β → M xs : Fin n → M ⊢ Realize (↑constantsVarsEquiv φ) (Sum.elim (fun a => ↑(Language.con L a)) v) xs ↔ Realize φ v xs [PROOFSTEP] refine' realize_mapTermRel_id (fun n t xs => realize_constantsVarsEquivLeft) fun n R xs => _ [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M n✝ : ℕ φ : BoundedFormula (L[[α]]) β n✝ v : β → M xs✝ : Fin n✝ → M n : ℕ R : Relations (L[[α]]) n xs : Fin n → M ⊢ RelMap (↑((fun x => Equiv.sumEmpty (Relations L x) (Relations (constantsOn α) x)) n) R) xs = RelMap R xs [PROOFSTEP] rw [← (lhomWithConstants L α).map_onRelation (Equiv.sumEmpty (L.Relations n) ((constantsOn α).Relations n) R) xs] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M n✝ : ℕ φ : BoundedFormula (L[[α]]) β n✝ v : β → M xs✝ : Fin n✝ → M n : ℕ R : Relations (L[[α]]) n xs : Fin n → M ⊢ RelMap (LHom.onRelation (lhomWithConstants L α) (↑(Equiv.sumEmpty (Relations L n) (Relations (constantsOn α) n)) R)) xs = RelMap R xs [PROOFSTEP] rcongr [GOAL] case a L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M n✝ : ℕ φ : BoundedFormula (L[[α]]) β n✝ v : β → M xs✝ : Fin n✝ → M n : ℕ R : Relations (L[[α]]) n xs : Fin n → M ⊢ RelMap (LHom.onRelation (lhomWithConstants L α) (↑(Equiv.sumEmpty (Relations L n) (Relations (constantsOn α) n)) R)) xs ↔ RelMap R xs [PROOFSTEP] cases' R with R R [GOAL] case a.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M n✝ : ℕ φ : BoundedFormula (L[[α]]) β n✝ v : β → M xs✝ : Fin n✝ → M n : ℕ xs : Fin n → M R : Relations L n ⊢ RelMap (LHom.onRelation (lhomWithConstants L α) (↑(Equiv.sumEmpty (Relations L n) (Relations (constantsOn α) n)) (Sum.inl R))) xs ↔ RelMap (Sum.inl R) xs [PROOFSTEP] simp [GOAL] case a.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝¹ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M n✝ : ℕ φ : BoundedFormula (L[[α]]) β n✝ v : β → M xs✝ : Fin n✝ → M n : ℕ xs : Fin n → M R : Relations (constantsOn α) n ⊢ RelMap (LHom.onRelation (lhomWithConstants L α) (↑(Equiv.sumEmpty (Relations L n) (Relations (constantsOn α) n)) (Sum.inr R))) xs ↔ RelMap (Sum.inr R) xs [PROOFSTEP] exact isEmptyElim R [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M g : α ≃ β k : ℕ φ : BoundedFormula L α k v : β → M xs : Fin k → M ⊢ Realize (↑(relabelEquiv g) φ) v xs ↔ Realize φ (v ∘ ↑g) xs [PROOFSTEP] simp only [relabelEquiv, mapTermRelEquiv_apply, Equiv.coe_refl] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M g : α ≃ β k : ℕ φ : BoundedFormula L α k v : β → M xs : Fin k → M ⊢ Realize (mapTermRel (fun n => ↑(Term.relabelEquiv (Equiv.sumCongr g (_root_.Equiv.refl (Fin n))))) (fun n => id) (fun x => id) φ) v xs ↔ Realize φ (v ∘ ↑g) xs [PROOFSTEP] refine' realize_mapTermRel_id (fun n t xs => _) fun _ _ _ => rfl [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M g : α ≃ β k : ℕ φ : BoundedFormula L α k v : β → M xs✝ : Fin k → M n : ℕ t : Term L (α ⊕ Fin n) xs : Fin n → M ⊢ realize (Sum.elim v xs) (↑(Term.relabelEquiv (Equiv.sumCongr g (_root_.Equiv.refl (Fin n)))) t) = realize (Sum.elim (v ∘ ↑g) xs) t [PROOFSTEP] simp only [relabelEquiv_apply, Term.realize_relabel] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M g : α ≃ β k : ℕ φ : BoundedFormula L α k v : β → M xs✝ : Fin k → M n : ℕ t : Term L (α ⊕ Fin n) xs : Fin n → M ⊢ realize (Sum.elim v xs ∘ ↑(Equiv.sumCongr g (_root_.Equiv.refl (Fin n)))) t = realize (Sum.elim (v ∘ ↑g) xs) t [PROOFSTEP] refine' congr (congr rfl _) rfl [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M g : α ≃ β k : ℕ φ : BoundedFormula L α k v : β → M xs✝ : Fin k → M n : ℕ t : Term L (α ⊕ Fin n) xs : Fin n → M ⊢ Sum.elim v xs ∘ ↑(Equiv.sumCongr g (_root_.Equiv.refl (Fin n))) = Sum.elim (v ∘ ↑g) xs [PROOFSTEP] ext (i | i) [GOAL] case h.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M g : α ≃ β k : ℕ φ : BoundedFormula L α k v : β → M xs✝ : Fin k → M n : ℕ t : Term L (α ⊕ Fin n) xs : Fin n → M i : α ⊢ (Sum.elim v xs ∘ ↑(Equiv.sumCongr g (_root_.Equiv.refl (Fin n)))) (Sum.inl i) = Sum.elim (v ∘ ↑g) xs (Sum.inl i) [PROOFSTEP] rfl [GOAL] case h.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M g : α ≃ β k : ℕ φ : BoundedFormula L α k v : β → M xs✝ : Fin k → M n : ℕ t : Term L (α ⊕ Fin n) xs : Fin n → M i : Fin n ⊢ (Sum.elim v xs ∘ ↑(Equiv.sumCongr g (_root_.Equiv.refl (Fin n)))) (Sum.inr i) = Sum.elim (v ∘ ↑g) xs (Sum.inr i) [PROOFSTEP] rfl [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝ : Nonempty M n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M ⊢ Realize (∀'liftAt 1 n φ) v xs ↔ Realize φ v xs [PROOFSTEP] inhabit M [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝ : Nonempty M n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M inhabited_h : Inhabited M ⊢ Realize (∀'liftAt 1 n φ) v xs ↔ Realize φ v xs [PROOFSTEP] simp only [realize_all, realize_liftAt_one_self] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝ : Nonempty M n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M inhabited_h : Inhabited M ⊢ (∀ (a : M), Realize φ v (snoc xs a ∘ castSucc)) ↔ Realize φ v xs [PROOFSTEP] refine' ⟨fun h => _, fun h a => _⟩ [GOAL] case refine'_1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝ : Nonempty M n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M inhabited_h : Inhabited M h : ∀ (a : M), Realize φ v (snoc xs a ∘ castSucc) ⊢ Realize φ v xs [PROOFSTEP] refine' (congr rfl (funext fun i => _)).mp (h default) [GOAL] case refine'_1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝ : Nonempty M n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M inhabited_h : Inhabited M h : ∀ (a : M), Realize φ v (snoc xs a ∘ castSucc) i : Fin n ⊢ (snoc xs default ∘ castSucc) i = xs i [PROOFSTEP] simp [GOAL] case refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝ : Nonempty M n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M inhabited_h : Inhabited M h : Realize φ v xs a : M ⊢ Realize φ v (snoc xs a ∘ castSucc) [PROOFSTEP] refine' (congr rfl (funext fun i => _)).mp h [GOAL] case refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n✝ l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝ : Nonempty M n : ℕ φ : BoundedFormula L α n v : α → M xs : Fin n → M inhabited_h : Inhabited M h : Realize φ v xs a : M i : Fin n ⊢ xs i = (snoc xs a ∘ castSucc) i [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝ : Nonempty M φ ψ : BoundedFormula L α n hφ : IsQF φ hψ : IsPrenex ψ v : α → M xs : Fin n → M ⊢ Realize (toPrenexImpRight φ ψ) v xs ↔ Realize (φ ⟹ ψ) v xs [PROOFSTEP] induction' hψ with _ _ hψ _ _ _hψ ih _ _ _hψ ih [GOAL] case of_isQF L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α n✝ hψ : IsQF φ✝ φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M ⊢ Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs [PROOFSTEP] rw [hψ.toPrenexImpRight] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M ⊢ Realize (toPrenexImpRight φ (∀'φ✝)) v xs ↔ Realize (φ ⟹ ∀'φ✝) v xs [PROOFSTEP] refine' _root_.trans (forall_congr' fun _ => ih hφ.liftAt) _ [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M ⊢ (∀ (a : M), Realize (liftAt 1 n✝ φ ⟹ φ✝) v (snoc xs a)) ↔ Realize (φ ⟹ ∀'φ✝) v xs [PROOFSTEP] simp only [realize_imp, realize_liftAt_one_self, snoc_comp_castSucc, realize_all] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M ⊢ (∀ (a : M), Realize φ v xs → Realize φ✝ v (snoc xs a)) ↔ Realize φ v xs → ∀ (a : M), Realize φ✝ v (snoc xs a) [PROOFSTEP] exact ⟨fun h1 a h2 => h1 h2 a, fun h1 h2 a => h1 a h2⟩ [GOAL] case ex L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M ⊢ Realize (toPrenexImpRight φ (∃'φ✝)) v xs ↔ Realize (φ ⟹ ∃'φ✝) v xs [PROOFSTEP] unfold toPrenexImpRight [GOAL] case ex L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M ⊢ Realize (∃'toPrenexImpRight (liftAt 1 n✝ φ) φ✝) v xs ↔ Realize (φ ⟹ ∃'φ✝) v xs [PROOFSTEP] rw [realize_ex] [GOAL] case ex L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M ⊢ (∃ a, Realize (toPrenexImpRight (liftAt 1 n✝ φ) φ✝) v (snoc xs a)) ↔ Realize (φ ⟹ ∃'φ✝) v xs [PROOFSTEP] refine' _root_.trans (exists_congr fun _ => ih hφ.liftAt) _ [GOAL] case ex L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M ⊢ (∃ a, Realize (liftAt 1 n✝ φ ⟹ φ✝) v (snoc xs a)) ↔ Realize (φ ⟹ ∃'φ✝) v xs [PROOFSTEP] simp only [realize_imp, realize_liftAt_one_self, snoc_comp_castSucc, realize_ex] [GOAL] case ex L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M ⊢ (∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a)) ↔ Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a) [PROOFSTEP] refine' ⟨_, fun h' => _⟩ [GOAL] case ex.refine'_1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M ⊢ (∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a)) → Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a) [PROOFSTEP] rintro ⟨a, ha⟩ h [GOAL] case ex.refine'_1.intro L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M a : M ha : Realize φ v xs → Realize φ✝ v (snoc xs a) h : Realize φ v xs ⊢ ∃ a, Realize φ✝ v (snoc xs a) [PROOFSTEP] exact ⟨a, ha h⟩ [GOAL] case ex.refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M h' : Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a) ⊢ ∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a) [PROOFSTEP] by_cases φ.Realize v xs [GOAL] case ex.refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M h' : Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a) ⊢ ∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a) [PROOFSTEP] by_cases φ.Realize v xs [GOAL] case pos L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M h' : Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a) h : Realize φ v xs ⊢ ∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a) [PROOFSTEP] obtain ⟨a, ha⟩ := h' h [GOAL] case pos.intro L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M h' : Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a) h : Realize φ v xs a : M ha : Realize φ✝ v (snoc xs a) ⊢ ∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a) [PROOFSTEP] exact ⟨a, fun _ => ha⟩ [GOAL] case neg L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M h' : Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a) h : ¬Realize φ v xs ⊢ ∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a) [PROOFSTEP] inhabit M [GOAL] case neg L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝² ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ✝¹ ψ : BoundedFormula L α n hφ✝ : IsQF φ✝¹ v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hψ : IsPrenex φ✝ ih : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs φ : BoundedFormula L α n✝ hφ : IsQF φ xs : Fin n✝ → M h' : Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a) h : ¬Realize φ v xs inhabited_h : Inhabited M ⊢ ∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a) [PROOFSTEP] exact ⟨default, fun h'' => (h h'').elim⟩ [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝ : Nonempty M φ ψ : BoundedFormula L α n hφ : IsPrenex φ hψ : IsPrenex ψ v : α → M xs : Fin n → M ⊢ Realize (toPrenexImp φ ψ) v xs ↔ Realize (φ ⟹ ψ) v xs [PROOFSTEP] revert ψ [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n hφ : IsPrenex φ v : α → M xs : Fin n → M ⊢ ∀ {ψ : BoundedFormula L α n}, IsPrenex ψ → (Realize (toPrenexImp φ ψ) v xs ↔ Realize (φ ⟹ ψ) v xs) [PROOFSTEP] induction' hφ with _ _ hφ _ _ _hφ ih _ _ _hφ ih [GOAL] case of_isQF L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α n✝ hφ : IsQF φ✝ xs : Fin n✝ → M ⊢ ∀ {ψ : BoundedFormula L α n✝}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) [PROOFSTEP] intro ψ hψ [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ⊢ ∀ {ψ : BoundedFormula L α n✝}, IsPrenex ψ → (Realize (toPrenexImp (∀'φ✝) ψ) v xs ↔ Realize (∀'φ✝ ⟹ ψ) v xs) [PROOFSTEP] intro ψ hψ [GOAL] case ex L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ⊢ ∀ {ψ : BoundedFormula L α n✝}, IsPrenex ψ → (Realize (toPrenexImp (∃'φ✝) ψ) v xs ↔ Realize (∃'φ✝ ⟹ ψ) v xs) [PROOFSTEP] intro ψ hψ [GOAL] case of_isQF L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α n✝ hφ : IsQF φ✝ xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs [PROOFSTEP] rw [hφ.toPrenexImp] [GOAL] case of_isQF L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α n✝ hφ : IsQF φ✝ xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ Realize (toPrenexImpRight φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs [PROOFSTEP] exact realize_toPrenexImpRight hφ hψ [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ Realize (toPrenexImp (∀'φ✝) ψ) v xs ↔ Realize (∀'φ✝ ⟹ ψ) v xs [PROOFSTEP] unfold toPrenexImp [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ Realize (∃'toPrenexImp φ✝ (liftAt 1 n✝ ψ)) v xs ↔ Realize (∀'φ✝ ⟹ ψ) v xs [PROOFSTEP] rw [realize_ex] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ (∃ a, Realize (toPrenexImp φ✝ (liftAt 1 n✝ ψ)) v (snoc xs a)) ↔ Realize (∀'φ✝ ⟹ ψ) v xs [PROOFSTEP] refine' _root_.trans (exists_congr fun _ => ih hψ.liftAt) _ [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ (∃ a, Realize (φ✝ ⟹ liftAt 1 n✝ ψ) v (snoc xs a)) ↔ Realize (∀'φ✝ ⟹ ψ) v xs [PROOFSTEP] simp only [realize_imp, realize_liftAt_one_self, snoc_comp_castSucc, realize_all] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ (∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs) ↔ (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs [PROOFSTEP] refine' ⟨_, fun h' => _⟩ [GOAL] case all.refine'_1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ (∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs) → (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs [PROOFSTEP] rintro ⟨a, ha⟩ h [GOAL] case all.refine'_1.intro L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ a : M ha : Realize φ✝ v (snoc xs a) → Realize ψ v xs h : ∀ (a : M), Realize φ✝ v (snoc xs a) ⊢ Realize ψ v xs [PROOFSTEP] exact ha (h a) [GOAL] case all.refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ h' : (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs ⊢ ∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs [PROOFSTEP] by_cases ψ.Realize v xs [GOAL] case all.refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ h' : (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs ⊢ ∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs [PROOFSTEP] by_cases ψ.Realize v xs [GOAL] case pos L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ h' : (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs h : Realize ψ v xs ⊢ ∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs [PROOFSTEP] inhabit M [GOAL] case pos L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ h' : (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs h : Realize ψ v xs inhabited_h : Inhabited M ⊢ ∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs [PROOFSTEP] exact ⟨default, fun _h'' => h⟩ [GOAL] case neg L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ h' : (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs h : ¬Realize ψ v xs ⊢ ∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs [PROOFSTEP] obtain ⟨a, ha⟩ := not_forall.1 (h ∘ h') [GOAL] case neg.intro L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ h' : (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs h : ¬Realize ψ v xs a : M ha : ¬Realize φ✝ v (snoc xs a) ⊢ ∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs [PROOFSTEP] exact ⟨a, fun h => (ha h).elim⟩ [GOAL] case ex L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ Realize (toPrenexImp (∃'φ✝) ψ) v xs ↔ Realize (∃'φ✝ ⟹ ψ) v xs [PROOFSTEP] refine' _root_.trans (forall_congr' fun _ => ih hψ.liftAt) _ [GOAL] case ex L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝¹ ψ✝ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs✝¹ : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M xs✝ : Fin n → M n✝ : ℕ φ✝ : BoundedFormula L α (n✝ + 1) _hφ : IsPrenex φ✝ ih : ∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs) xs : Fin n✝ → M ψ : BoundedFormula L α n✝ hψ : IsPrenex ψ ⊢ (∀ (a : M), Realize (φ✝ ⟹ liftAt 1 n✝ ψ) v (snoc xs a)) ↔ Realize (∃'φ✝ ⟹ ψ) v xs [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs : Fin l → M inst✝ : Nonempty M φ : BoundedFormula L α n v : α → M ⊢ ∀ {xs : Fin n → M}, Realize (toPrenex φ) v xs ↔ Realize φ v xs [PROOFSTEP] induction' φ with _ _ _ _ _ _ _ _ _ f1 f2 h1 h2 _ _ h [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs : Fin l → M inst✝ : Nonempty M v : α → M n✝ : ℕ ⊢ ∀ {xs : Fin n✝ → M}, Realize (toPrenex falsum) v xs ↔ Realize falsum v xs [PROOFSTEP] exact Iff.rfl [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs : Fin l → M inst✝ : Nonempty M v : α → M n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) ⊢ ∀ {xs : Fin n✝ → M}, Realize (toPrenex (equal t₁✝ t₂✝)) v xs ↔ Realize (equal t₁✝ t₂✝) v xs [PROOFSTEP] exact Iff.rfl [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs : Fin l → M inst✝ : Nonempty M v : α → M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) ⊢ ∀ {xs : Fin n✝ → M}, Realize (toPrenex (rel R✝ ts✝)) v xs ↔ Realize (rel R✝ ts✝) v xs [PROOFSTEP] exact Iff.rfl [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs : Fin l → M inst✝ : Nonempty M v : α → M n✝ : ℕ f1 f2 : BoundedFormula L α n✝ h1 : ∀ {xs : Fin n✝ → M}, Realize (toPrenex f1) v xs ↔ Realize f1 v xs h2 : ∀ {xs : Fin n✝ → M}, Realize (toPrenex f2) v xs ↔ Realize f2 v xs ⊢ ∀ {xs : Fin n✝ → M}, Realize (toPrenex (f1 ⟹ f2)) v xs ↔ Realize (f1 ⟹ f2) v xs [PROOFSTEP] intros [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs : Fin l → M inst✝ : Nonempty M v : α → M n✝ : ℕ f1 f2 : BoundedFormula L α n✝ h1 : ∀ {xs : Fin n✝ → M}, Realize (toPrenex f1) v xs ↔ Realize f1 v xs h2 : ∀ {xs : Fin n✝ → M}, Realize (toPrenex f2) v xs ↔ Realize f2 v xs xs✝ : Fin n✝ → M ⊢ Realize (toPrenex (f1 ⟹ f2)) v xs✝ ↔ Realize (f1 ⟹ f2) v xs✝ [PROOFSTEP] rw [toPrenex, realize_toPrenexImp f1.toPrenex_isPrenex f2.toPrenex_isPrenex, realize_imp, realize_imp, h1, h2] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs : Fin l → M inst✝ : Nonempty M v : α → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) h : ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenex f✝) v xs ↔ Realize f✝ v xs ⊢ ∀ {xs : Fin n✝ → M}, Realize (toPrenex (∀'f✝)) v xs ↔ Realize (∀'f✝) v xs [PROOFSTEP] intros [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs : Fin l → M inst✝ : Nonempty M v : α → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) h : ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenex f✝) v xs ↔ Realize f✝ v xs xs✝ : Fin n✝ → M ⊢ Realize (toPrenex (∀'f✝)) v xs✝ ↔ Realize (∀'f✝) v xs✝ [PROOFSTEP] rw [realize_all, toPrenex, realize_all] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n l : ℕ φ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v✝ : α → M xs : Fin l → M inst✝ : Nonempty M v : α → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) h : ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenex f✝) v xs ↔ Realize f✝ v xs xs✝ : Fin n✝ → M ⊢ (∀ (a : M), Realize (toPrenex f✝) v (snoc xs✝ a)) ↔ ∀ (a : M), Realize f✝ v (snoc xs✝ a) [PROOFSTEP] exact forall_congr' fun a => h [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝ : ℕ inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M n : ℕ ψ : BoundedFormula L α n v : α → M xs : Fin n → M ⊢ Realize (onBoundedFormula φ ψ) v xs ↔ Realize ψ v xs [PROOFSTEP] induction' ψ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝¹ : ℕ inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M n : ℕ v : α → M xs✝ : Fin n → M n✝ : ℕ xs : Fin n✝ → M ⊢ Realize (onBoundedFormula φ falsum) v xs ↔ Realize falsum v xs [PROOFSTEP] rfl [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝¹ : ℕ inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M n : ℕ v : α → M xs✝ : Fin n → M n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) xs : Fin n✝ → M ⊢ Realize (onBoundedFormula φ (equal t₁✝ t₂✝)) v xs ↔ Realize (equal t₁✝ t₂✝) v xs [PROOFSTEP] simp only [onBoundedFormula, realize_bdEqual, realize_onTerm] [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝¹ : ℕ inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M n : ℕ v : α → M xs✝ : Fin n → M n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) xs : Fin n✝ → M ⊢ Term.realize (Sum.elim v xs) t₁✝ = Term.realize (Sum.elim v xs) t₂✝ ↔ Realize (equal t₁✝ t₂✝) v xs [PROOFSTEP] rfl [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝¹ : ℕ inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M n : ℕ v : α → M xs✝ : Fin n → M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) xs : Fin n✝ → M ⊢ Realize (onBoundedFormula φ (rel R✝ ts✝)) v xs ↔ Realize (rel R✝ ts✝) v xs [PROOFSTEP] simp only [onBoundedFormula, realize_rel, LHom.map_onRelation, Function.comp_apply, realize_onTerm] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝¹ : ℕ inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M n : ℕ v : α → M xs✝ : Fin n → M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) xs : Fin n✝ → M ⊢ (RelMap R✝ fun i => Term.realize (Sum.elim v xs) (ts✝ i)) ↔ Realize (rel R✝ ts✝) v xs [PROOFSTEP] rfl [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝¹ : ℕ inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M n : ℕ v : α → M xs✝ : Fin n → M n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ {xs : Fin n✝ → M}, Realize (onBoundedFormula φ f₁✝) v xs ↔ Realize f₁✝ v xs ih2 : ∀ {xs : Fin n✝ → M}, Realize (onBoundedFormula φ f₂✝) v xs ↔ Realize f₂✝ v xs xs : Fin n✝ → M ⊢ Realize (onBoundedFormula φ (f₁✝ ⟹ f₂✝)) v xs ↔ Realize (f₁✝ ⟹ f₂✝) v xs [PROOFSTEP] simp only [onBoundedFormula, ih1, ih2, realize_imp] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n✝¹ : ℕ inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M n : ℕ v : α → M xs✝ : Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ {xs : Fin (n✝ + 1) → M}, Realize (onBoundedFormula φ f✝) v xs ↔ Realize f✝ v xs xs : Fin n✝ → M ⊢ Realize (onBoundedFormula φ (∀'f✝)) v xs ↔ Realize (∀'f✝) v xs [PROOFSTEP] simp only [onBoundedFormula, ih3, realize_all] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ ψ : Formula L α v : α → M k : ℕ R : Relations L k ts : Fin k → Term L α ⊢ (RelMap R fun i => Term.realize (Sum.elim v default) (Term.relabel Sum.inl (ts i))) ↔ RelMap R fun i => Term.realize v (ts i) [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ ψ : Formula L α v : α → M R : Relations L 1 t : Term L α ⊢ Realize (Relations.formula₁ R t) v ↔ RelMap R ![Term.realize v t] [PROOFSTEP] rw [Relations.formula₁, realize_rel, iff_eq_eq] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ ψ : Formula L α v : α → M R : Relations L 1 t : Term L α ⊢ (RelMap R fun i => Term.realize v (Matrix.vecCons t ![] i)) = RelMap R ![Term.realize v t] [PROOFSTEP] refine' congr rfl (funext fun _ => _) [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ ψ : Formula L α v : α → M R : Relations L 1 t : Term L α x✝ : Fin 1 ⊢ Term.realize v (Matrix.vecCons t ![] x✝) = Matrix.vecCons (Term.realize v t) ![] x✝ [PROOFSTEP] simp only [Matrix.cons_val_fin_one] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ ψ : Formula L α v : α → M R : Relations L 2 t₁ t₂ : Term L α ⊢ Realize (Relations.formula₂ R t₁ t₂) v ↔ RelMap R ![Term.realize v t₁, Term.realize v t₂] [PROOFSTEP] rw [Relations.formula₂, realize_rel, iff_eq_eq] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ ψ : Formula L α v : α → M R : Relations L 2 t₁ t₂ : Term L α ⊢ (RelMap R fun i => Term.realize v (Matrix.vecCons t₁ ![t₂] i)) = RelMap R ![Term.realize v t₁, Term.realize v t₂] [PROOFSTEP] refine' congr rfl (funext (Fin.cases _ _)) [GOAL] case refine'_1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ ψ : Formula L α v : α → M R : Relations L 2 t₁ t₂ : Term L α ⊢ Term.realize v (Matrix.vecCons t₁ ![t₂] 0) = Matrix.vecCons (Term.realize v t₁) ![Term.realize v t₂] 0 [PROOFSTEP] simp only [Matrix.cons_val_zero] [GOAL] case refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ ψ : Formula L α v : α → M R : Relations L 2 t₁ t₂ : Term L α ⊢ ∀ (i : Fin 1), Term.realize v (Matrix.vecCons t₁ ![t₂] (succ i)) = Matrix.vecCons (Term.realize v t₁) ![Term.realize v t₂] (succ i) [PROOFSTEP] simp only [Matrix.cons_val_succ, Matrix.cons_val_fin_one, forall_const] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ✝ ψ : Formula L α v✝ : α → M φ : Formula L α g : α → β v : β → M ⊢ Realize (relabel g φ) v ↔ Realize φ (v ∘ g) [PROOFSTEP] rw [Realize, Realize, relabel, BoundedFormula.realize_relabel, iff_eq_eq, Fin.castAdd_zero] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ✝ ψ : Formula L α v✝ : α → M φ : Formula L α g : α → β v : β → M ⊢ BoundedFormula.Realize φ (Sum.elim v (default ∘ Fin.cast (_ : 0 = 0)) ∘ Sum.inl ∘ g) (default ∘ natAdd 0) = BoundedFormula.Realize φ (v ∘ g) default [PROOFSTEP] exact congr rfl (funext finZeroElim) [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ✝ ψ : Formula L α v✝ : α → M φ : Formula L (Fin n) v : Empty → M x : Fin n → M ⊢ BoundedFormula.Realize (BoundedFormula.relabel Sum.inr φ) v x ↔ Realize φ x [PROOFSTEP] rw [BoundedFormula.realize_relabel, Formula.Realize, Sum.elim_comp_inr, Fin.castAdd_zero, cast_refl, Function.comp.right_id, Subsingleton.elim (x ∘ (natAdd n : Fin 0 → Fin n)) default] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ ψ : Formula L α v : α → M t₁ t₂ : Term L α x : α → M ⊢ Realize (Term.equal t₁ t₂) x ↔ Term.realize x t₁ = Term.realize x t₂ [PROOFSTEP] simp [Term.equal, Realize] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ ψ : Formula L α v : α → M f : Functions L n x : Fin n → M y : M ⊢ Realize (graph f) (cons y x) ↔ funMap f x = y [PROOFSTEP] simp only [Formula.graph, Term.realize, realize_equal, Fin.cons_zero, Fin.cons_succ] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ φ ψ : Formula L α v : α → M f : Functions L n x : Fin n → M y : M ⊢ (y = funMap f fun i => x i) ↔ funMap f x = y [PROOFSTEP] rw [eq_comm] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n : ℕ inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M ψ : Formula L α ⊢ setOf (Formula.Realize (onFormula φ ψ)) = setOf (Formula.Realize ψ) [PROOFSTEP] ext [GOAL] case h L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n : ℕ inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M ψ : Formula L α x✝ : α → M ⊢ x✝ ∈ setOf (Formula.Realize (onFormula φ ψ)) ↔ x✝ ∈ setOf (Formula.Realize ψ) [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n : ℕ inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M φ : Sentence (L[[α]]) ⊢ (Realize (↑equivSentence.symm φ) fun a => ↑(Language.con L a)) ↔ M ⊨ φ [PROOFSTEP] simp only [equivSentence, Equiv.symm_symm, Equiv.coe_trans, Realize, BoundedFormula.realize_relabelEquiv, Function.comp] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n : ℕ inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M φ : Sentence (L[[α]]) ⊢ BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ) (fun x => ↑(Language.con L (↑(Equiv.sumEmpty α Empty) x))) default ↔ M ⊨ φ [PROOFSTEP] refine' _root_.trans _ BoundedFormula.realize_constantsVarsEquiv [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n : ℕ inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M φ : Sentence (L[[α]]) ⊢ BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ) (fun x => ↑(Language.con L (↑(Equiv.sumEmpty α Empty) x))) default ↔ BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ) (Sum.elim (fun a => ↑(Language.con L a)) default) default [PROOFSTEP] rw [iff_iff_eq] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n : ℕ inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M φ : Sentence (L[[α]]) ⊢ BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ) (fun x => ↑(Language.con L (↑(Equiv.sumEmpty α Empty) x))) default = BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ) (Sum.elim (fun a => ↑(Language.con L a)) default) default [PROOFSTEP] congr with (_ | a) [GOAL] case e__v.h.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n : ℕ inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M φ : Sentence (L[[α]]) val✝ : α ⊢ ↑(Language.con L (↑(Equiv.sumEmpty α Empty) (Sum.inl val✝))) = Sum.elim (fun a => ↑(Language.con L a)) default (Sum.inl val✝) [PROOFSTEP] simp [GOAL] case e__v.h.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n : ℕ inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M φ : Sentence (L[[α]]) a : Empty ⊢ ↑(Language.con L (↑(Equiv.sumEmpty α Empty) (Sum.inr a))) = Sum.elim (fun a => ↑(Language.con L a)) default (Sum.inr a) [PROOFSTEP] cases a [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n : ℕ inst✝¹ : Structure (L[[α]]) M inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M φ : Formula L α ⊢ M ⊨ ↑equivSentence φ ↔ Realize φ fun a => ↑(Language.con L a) [PROOFSTEP] rw [← realize_equivSentence_symm_con M (equivSentence φ), _root_.Equiv.symm_apply_apply] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ ⊢ M ≅[L] N ↔ ∀ (φ : Sentence L), M ⊨ φ ↔ N ⊨ φ [PROOFSTEP] simp only [ElementarilyEquivalent, Set.ext_iff, completeTheory, Set.mem_setOf_eq] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝⁴ : Structure L M inst✝³ : Structure L N inst✝² : Structure L P α : Type u' β : Type v' n : ℕ T✝ : Theory L inst✝¹ : Structure L' M φ : L →ᴸ L' inst✝ : IsExpansionOn φ M T : Theory L ⊢ M ⊨ onTheory φ T ↔ M ⊨ T [PROOFSTEP] simp [Theory.model_iff, LHom.onTheory] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T T' : Theory L h : M ⊨ T h' : M ⊨ T' ⊢ M ⊨ T ∪ T' [PROOFSTEP] simp only [model_iff, Set.mem_union] at * [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T T' : Theory L h : ∀ (φ : Sentence L), φ ∈ T → M ⊨ φ h' : ∀ (φ : Sentence L), φ ∈ T' → M ⊨ φ ⊢ ∀ (φ : Sentence L), φ ∈ T ∨ φ ∈ T' → M ⊨ φ [PROOFSTEP] exact fun φ hφ => hφ.elim (h _) (h' _) [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L φ : Sentence L ⊢ M ⊨ {φ} ↔ M ⊨ φ [PROOFSTEP] simp [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L inst✝ : N ⊨ completeTheory L M φ : Sentence L ⊢ N ⊨ φ ↔ M ⊨ φ [PROOFSTEP] refine' ⟨fun h => _, (L.completeTheory M).realize_sentence_of_mem⟩ [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L inst✝ : N ⊨ completeTheory L M φ : Sentence L h : N ⊨ φ ⊢ M ⊨ φ [PROOFSTEP] contrapose! h [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L inst✝ : N ⊨ completeTheory L M φ : Sentence L h : ¬M ⊨ φ ⊢ ¬N ⊨ φ [PROOFSTEP] rw [← Sentence.realize_not] at * [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L inst✝ : N ⊨ completeTheory L M φ : Sentence L h : M ⊨ Formula.not φ ⊢ N ⊨ Formula.not φ [PROOFSTEP] exact (L.completeTheory M).realize_sentence_of_mem (mem_completeTheory.2 h) [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L φ : BoundedFormula L α n v : α → M ⊢ Formula.Realize (alls φ) v ↔ ∀ (xs : Fin n → M), Realize φ v xs [PROOFSTEP] induction' n with n ih [GOAL] case zero L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L φ✝ : BoundedFormula L α n v : α → M φ : BoundedFormula L α Nat.zero ⊢ Formula.Realize (alls φ) v ↔ ∀ (xs : Fin Nat.zero → M), Realize φ v xs [PROOFSTEP] exact Unique.forall_iff.symm [GOAL] case succ L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L φ✝ : BoundedFormula L α n✝ v : α → M n : ℕ ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (alls φ) v ↔ ∀ (xs : Fin n → M), Realize φ v xs φ : BoundedFormula L α (Nat.succ n) ⊢ Formula.Realize (alls φ) v ↔ ∀ (xs : Fin (Nat.succ n) → M), Realize φ v xs [PROOFSTEP] simp only [alls, ih, Realize] [GOAL] case succ L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L φ✝ : BoundedFormula L α n✝ v : α → M n : ℕ ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (alls φ) v ↔ ∀ (xs : Fin n → M), Realize φ v xs φ : BoundedFormula L α (Nat.succ n) ⊢ (∀ (xs : Fin n → M) (x : M), Realize φ v (snoc xs x)) ↔ ∀ (xs : Fin (Nat.succ n) → M), Realize φ v xs [PROOFSTEP] exact ⟨fun h xs => Fin.snoc_init_self xs ▸ h _ _, fun h xs x => h (Fin.snoc xs x)⟩ [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L φ : BoundedFormula L α n v : α → M ⊢ Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs [PROOFSTEP] induction' n with n ih [GOAL] case zero L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L φ✝ : BoundedFormula L α n v : α → M φ : BoundedFormula L α Nat.zero ⊢ Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs [PROOFSTEP] exact Unique.exists_iff.symm [GOAL] case succ L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L φ✝ : BoundedFormula L α n✝ v : α → M n : ℕ ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs φ : BoundedFormula L α (Nat.succ n) ⊢ Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs [PROOFSTEP] simp only [BoundedFormula.exs, ih, realize_ex] [GOAL] case succ L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L φ✝ : BoundedFormula L α n✝ v : α → M n : ℕ ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs φ : BoundedFormula L α (Nat.succ n) ⊢ (∃ xs a, Realize φ v (snoc xs a)) ↔ ∃ xs, Realize φ v xs [PROOFSTEP] constructor [GOAL] case succ.mp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L φ✝ : BoundedFormula L α n✝ v : α → M n : ℕ ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs φ : BoundedFormula L α (Nat.succ n) ⊢ (∃ xs a, Realize φ v (snoc xs a)) → ∃ xs, Realize φ v xs [PROOFSTEP] rintro ⟨xs, x, h⟩ [GOAL] case succ.mp.intro.intro L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L φ✝ : BoundedFormula L α n✝ v : α → M n : ℕ ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs φ : BoundedFormula L α (Nat.succ n) xs : Fin n → M x : M h : Realize φ v (snoc xs x) ⊢ ∃ xs, Realize φ v xs [PROOFSTEP] exact ⟨_, h⟩ [GOAL] case succ.mpr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L φ✝ : BoundedFormula L α n✝ v : α → M n : ℕ ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs φ : BoundedFormula L α (Nat.succ n) ⊢ (∃ xs, Realize φ v xs) → ∃ xs a, Realize φ v (snoc xs a) [PROOFSTEP] rintro ⟨xs, h⟩ [GOAL] case succ.mpr.intro L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L φ✝ : BoundedFormula L α n✝ v : α → M n : ℕ ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs φ : BoundedFormula L α (Nat.succ n) xs : Fin (Nat.succ n) → M h : Realize φ v xs ⊢ ∃ xs a, Realize φ v (snoc xs a) [PROOFSTEP] rw [← Fin.snoc_init_self xs] at h [GOAL] case succ.mpr.intro L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L φ✝ : BoundedFormula L α n✝ v : α → M n : ℕ ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs φ : BoundedFormula L α (Nat.succ n) xs : Fin (Nat.succ n) → M h : Realize φ v (snoc (init xs) (xs (last n))) ⊢ ∃ xs a, Realize φ v (snoc xs a) [PROOFSTEP] exact ⟨_, _, h⟩ [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L φ : BoundedFormula L α n v : α ⊕ Fin n → M ⊢ Formula.Realize (toFormula φ) v ↔ Realize φ (v ∘ Sum.inl) (v ∘ Sum.inr) [PROOFSTEP] induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 a8 a9 a0 [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ v : α ⊕ Fin n✝ → M ⊢ Formula.Realize (toFormula falsum) v ↔ Realize falsum (v ∘ Sum.inl) (v ∘ Sum.inr) [PROOFSTEP] rfl [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) v : α ⊕ Fin n✝ → M ⊢ Formula.Realize (toFormula (equal t₁✝ t₂✝)) v ↔ Realize (equal t₁✝ t₂✝) (v ∘ Sum.inl) (v ∘ Sum.inr) [PROOFSTEP] simp [BoundedFormula.Realize] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) v : α ⊕ Fin n✝ → M ⊢ Formula.Realize (toFormula (rel R✝ ts✝)) v ↔ Realize (rel R✝ ts✝) (v ∘ Sum.inl) (v ∘ Sum.inr) [PROOFSTEP] simp [BoundedFormula.Realize] [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ (v : α ⊕ Fin n✝ → M), Formula.Realize (toFormula f₁✝) v ↔ Realize f₁✝ (v ∘ Sum.inl) (v ∘ Sum.inr) ih2 : ∀ (v : α ⊕ Fin n✝ → M), Formula.Realize (toFormula f₂✝) v ↔ Realize f₂✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M ⊢ Formula.Realize (toFormula (f₁✝ ⟹ f₂✝)) v ↔ Realize (f₁✝ ⟹ f₂✝) (v ∘ Sum.inl) (v ∘ Sum.inr) [PROOFSTEP] rw [toFormula, Formula.Realize, realize_imp, ← Formula.Realize, ih1, ← Formula.Realize, ih2, realize_imp] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M ⊢ Formula.Realize (toFormula (∀'f✝)) v ↔ Realize (∀'f✝) (v ∘ Sum.inl) (v ∘ Sum.inr) [PROOFSTEP] rw [toFormula, Formula.Realize, realize_all, realize_all] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M ⊢ (∀ (a : M), Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v (snoc default a)) ↔ ∀ (a : M), Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) [PROOFSTEP] refine' forall_congr' fun a => _ [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M ⊢ Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v (snoc default a) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) [PROOFSTEP] have h := ih3 (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ Realize f✝ (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) ∘ Sum.inl) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) ∘ Sum.inr) ⊢ Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v (snoc default a) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) [PROOFSTEP] simp only [Sum.elim_comp_inl, Sum.elim_comp_inr] at h [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) ⊢ Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v (snoc default a) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) [PROOFSTEP] rw [← h, realize_relabel, Formula.Realize, iff_iff_eq] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) ⊢ Realize (toFormula f✝) (Sum.elim v (snoc default a ∘ castAdd 0) ∘ Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (snoc default a ∘ natAdd 1) = Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) default [PROOFSTEP] simp only [Function.comp] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) ⊢ (Realize (toFormula f✝) (fun x => Sum.elim v (fun x => snoc default a (castAdd 0 x)) (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) x)) fun x => snoc default a (natAdd 1 x)) = Realize (toFormula f✝) (Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a)) default [PROOFSTEP] congr with x [GOAL] case all.e__v.h L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) x : α ⊕ Fin (n✝ + 1) ⊢ Sum.elim v (fun x => snoc default a (castAdd 0 x)) (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) x) = Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) x [PROOFSTEP] cases' x with _ x [GOAL] case all.e__v.h.inl L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) val✝ : α ⊢ Sum.elim v (fun x => snoc default a (castAdd 0 x)) (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) (Sum.inl val✝)) = Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inl val✝) [PROOFSTEP] simp [GOAL] case all.e__v.h.inr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) x : Fin (n✝ + 1) ⊢ Sum.elim v (fun x => snoc default a (castAdd 0 x)) (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) (Sum.inr x)) = Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inr x) [PROOFSTEP] refine' Fin.lastCases _ _ x [GOAL] case all.e__v.h.inr.refine'_1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) x : Fin (n✝ + 1) ⊢ Sum.elim v (fun x => snoc default a (castAdd 0 x)) (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) (Sum.inr (last n✝))) = Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inr (last n✝)) [PROOFSTEP] rw [Sum.elim_inr, Sum.elim_inr, finSumFinEquiv_symm_last, Sum.map_inr, Sum.elim_inr] [GOAL] case all.e__v.h.inr.refine'_1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) x : Fin (n✝ + 1) ⊢ snoc default a (castAdd 0 (id 0)) = snoc (fun x => v (Sum.inr x)) a (last n✝) [PROOFSTEP] simp [Fin.snoc] [GOAL] case all.e__v.h.inr.refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) x : Fin (n✝ + 1) ⊢ ∀ (i : Fin n✝), Sum.elim v (fun x => snoc default a (castAdd 0 x)) (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) (Sum.inr (castSucc i))) = Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inr (castSucc i)) [PROOFSTEP] simp only [castSucc, Function.comp_apply, Sum.elim_inr, finSumFinEquiv_symm_apply_castAdd, Sum.map_inl, Sum.elim_inl] [GOAL] case all.e__v.h.inr.refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) x : Fin (n✝ + 1) ⊢ ∀ (i : Fin n✝), v (Sum.inr i) = snoc (fun x => v (Sum.inr x)) a (castAdd 1 i) [PROOFSTEP] rw [← castSucc] [GOAL] case all.e__v.h.inr.refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) x : Fin (n✝ + 1) ⊢ ∀ (i : Fin n✝), v (Sum.inr i) = snoc (fun x => v (Sum.inr x)) a (castSucc i) [PROOFSTEP] simp [GOAL] case all.e__xs.h L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L v✝ : α ⊕ Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr) v : α ⊕ Fin n✝ → M a : M h : Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔ Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) x : Fin 0 ⊢ snoc default a (natAdd 1 x) = default x [PROOFSTEP] exact Fin.elim0 x [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N φ : BoundedFormula L α n v : α → M xs : Fin n → M ⊢ BoundedFormula.Realize φ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize φ v xs [PROOFSTEP] induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 [GOAL] case falsum L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ : ℕ xs : Fin n✝ → M ⊢ BoundedFormula.Realize BoundedFormula.falsum (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize BoundedFormula.falsum v xs [PROOFSTEP] rfl [GOAL] case equal L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ : ℕ t₁✝ t₂✝ : Term L (α ⊕ Fin n✝) xs : Fin n✝ → M ⊢ BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) v xs [PROOFSTEP] simp only [BoundedFormula.Realize, ← Sum.comp_elim, Equiv.realize_term, g.injective.eq_iff] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) xs : Fin n✝ → M ⊢ BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) v xs [PROOFSTEP] simp only [BoundedFormula.Realize, ← Sum.comp_elim, Equiv.realize_term] [GOAL] case rel L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ l✝ : ℕ R✝ : Relations L l✝ ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝) xs : Fin n✝ → M ⊢ (RelMap R✝ fun i => ↑g (Term.realize (Sum.elim v xs) (ts✝ i))) ↔ RelMap R✝ fun i => Term.realize (Sum.elim v xs) (ts✝ i) [PROOFSTEP] exact g.map_rel _ _ [GOAL] case imp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ : ℕ f₁✝ f₂✝ : BoundedFormula L α n✝ ih1 : ∀ {xs : Fin n✝ → M}, BoundedFormula.Realize f₁✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f₁✝ v xs ih2 : ∀ {xs : Fin n✝ → M}, BoundedFormula.Realize f₂✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f₂✝ v xs xs : Fin n✝ → M ⊢ BoundedFormula.Realize (f₁✝ ⟹ f₂✝) (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize (f₁✝ ⟹ f₂✝) v xs [PROOFSTEP] rw [BoundedFormula.Realize, ih1, ih2, BoundedFormula.Realize] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs xs : Fin n✝ → M ⊢ BoundedFormula.Realize (∀'f✝) (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize (∀'f✝) v xs [PROOFSTEP] rw [BoundedFormula.Realize, BoundedFormula.Realize] [GOAL] case all L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs xs : Fin n✝ → M ⊢ (∀ (x : N), BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) x)) ↔ ∀ (x : M), BoundedFormula.Realize f✝ v (snoc xs x) [PROOFSTEP] constructor [GOAL] case all.mp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs xs : Fin n✝ → M ⊢ (∀ (x : N), BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) x)) → ∀ (x : M), BoundedFormula.Realize f✝ v (snoc xs x) [PROOFSTEP] intro h a [GOAL] case all.mp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs xs : Fin n✝ → M h : ∀ (x : N), BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) x) a : M ⊢ BoundedFormula.Realize f✝ v (snoc xs a) [PROOFSTEP] have h' := h (g a) [GOAL] case all.mp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs xs : Fin n✝ → M h : ∀ (x : N), BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) x) a : M h' : BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) (↑g a)) ⊢ BoundedFormula.Realize f✝ v (snoc xs a) [PROOFSTEP] rw [← Fin.comp_snoc, ih3] at h' [GOAL] case all.mp L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs xs : Fin n✝ → M h : ∀ (x : N), BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) x) a : M h' : BoundedFormula.Realize f✝ v (snoc xs a) ⊢ BoundedFormula.Realize f✝ v (snoc xs a) [PROOFSTEP] exact h' [GOAL] case all.mpr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs xs : Fin n✝ → M ⊢ (∀ (x : M), BoundedFormula.Realize f✝ v (snoc xs x)) → ∀ (x : N), BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) x) [PROOFSTEP] intro h a [GOAL] case all.mpr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs xs : Fin n✝ → M h : ∀ (x : M), BoundedFormula.Realize f✝ v (snoc xs x) a : N ⊢ BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) a) [PROOFSTEP] have h' := h (g.symm a) [GOAL] case all.mpr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs xs : Fin n✝ → M h : ∀ (x : M), BoundedFormula.Realize f✝ v (snoc xs x) a : N h' : BoundedFormula.Realize f✝ v (snoc xs (↑(symm g) a)) ⊢ BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) a) [PROOFSTEP] rw [← ih3, Fin.comp_snoc, g.apply_symm_apply] at h' [GOAL] case all.mpr L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N v : α → M xs✝ : Fin n → M n✝ : ℕ f✝ : BoundedFormula L α (n✝ + 1) ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs xs : Fin n✝ → M h : ∀ (x : M), BoundedFormula.Realize f✝ v (snoc xs x) a : N h' : BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) a) ⊢ BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) a) [PROOFSTEP] exact h' [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N φ : Formula L α v : α → M ⊢ Formula.Realize φ (↑g ∘ v) ↔ Formula.Realize φ v [PROOFSTEP] rw [Formula.Realize, Formula.Realize, ← g.realize_boundedFormula φ, iff_eq_eq, Unique.eq_default (g ∘ default)] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L g : M ≃[L] N φ : Sentence L ⊢ M ⊨ φ ↔ N ⊨ φ [PROOFSTEP] rw [Sentence.Realize, Sentence.Realize, ← g.realize_formula, Unique.eq_default (g ∘ default)] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L n : ℕ ⊢ M ⊨ Sentence.cardGe L n ↔ ↑n ≤ #M [PROOFSTEP] rw [← lift_mk_fin, ← lift_le.{0}, lift_lift, lift_mk_le, Sentence.cardGe, Sentence.Realize, BoundedFormula.realize_exs] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L n : ℕ ⊢ (∃ xs, BoundedFormula.Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ (List.map (fun ij => ∼((var ∘ Sum.inr) ij.fst =' (var ∘ Sum.inr) ij.snd)) (List.filter (fun ij => decide (ij.fst ≠ ij.snd)) (List.finRange n ×ˢ List.finRange n)))) default xs) ↔ Nonempty (Fin n ↪ M) [PROOFSTEP] simp_rw [BoundedFormula.realize_foldr_inf] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L n : ℕ ⊢ (∃ xs, ∀ (φ : BoundedFormula L Empty n), φ ∈ List.map (fun ij => ∼((var ∘ Sum.inr) ij.fst =' (var ∘ Sum.inr) ij.snd)) (List.filter (fun ij => decide (ij.fst ≠ ij.snd)) (List.finRange n ×ˢ List.finRange n)) → BoundedFormula.Realize φ default xs) ↔ Nonempty (Fin n ↪ M) [PROOFSTEP] simp only [Function.comp_apply, List.mem_map, Prod.exists, Ne.def, List.mem_product, List.mem_finRange, forall_exists_index, and_imp, List.mem_filter, true_and_iff] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L n : ℕ ⊢ (∃ xs, ∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n), (decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs) ↔ Nonempty (Fin n ↪ M) [PROOFSTEP] refine' ⟨_, fun xs => ⟨xs.some, _⟩⟩ [GOAL] case refine'_1 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L n : ℕ ⊢ (∃ xs, ∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n), (decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs) → Nonempty (Fin n ↪ M) [PROOFSTEP] rintro ⟨xs, h⟩ [GOAL] case refine'_1.intro L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L n : ℕ xs : Fin n → M h : ∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n), (decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs ⊢ Nonempty (Fin n ↪ M) [PROOFSTEP] refine' ⟨⟨xs, fun i j ij => _⟩⟩ [GOAL] case refine'_1.intro L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L n : ℕ xs : Fin n → M h : ∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n), (decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs i j : Fin n ij : xs i = xs j ⊢ i = j [PROOFSTEP] contrapose! ij [GOAL] case refine'_1.intro L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L n : ℕ xs : Fin n → M h : ∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n), (decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs i j : Fin n ij : i ≠ j ⊢ xs i ≠ xs j [PROOFSTEP] have hij := h _ i j (by simpa using ij) rfl [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L n : ℕ xs : Fin n → M h : ∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n), (decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs i j : Fin n ij : i ≠ j ⊢ (decide ¬i = j) = true [PROOFSTEP] simpa using ij [GOAL] case refine'_1.intro L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L n : ℕ xs : Fin n → M h : ∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n), (decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs i j : Fin n ij : i ≠ j hij : BoundedFormula.Realize (∼(var (Sum.inr i) =' var (Sum.inr j))) default xs ⊢ xs i ≠ xs j [PROOFSTEP] simp only [BoundedFormula.realize_not, Term.realize, BoundedFormula.realize_bdEqual, Sum.elim_inr] at hij [GOAL] case refine'_1.intro L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L n : ℕ xs : Fin n → M h : ∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n), (decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs i j : Fin n ij : i ≠ j hij : ¬xs i = xs j ⊢ xs i ≠ xs j [PROOFSTEP] exact hij [GOAL] case refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L n : ℕ xs : Nonempty (Fin n ↪ M) ⊢ ∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n), (decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default ↑(Nonempty.some xs) [PROOFSTEP] rintro _ i j ij rfl [GOAL] case refine'_2 L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n✝ : ℕ T : Theory L n : ℕ xs : Nonempty (Fin n ↪ M) i j : Fin n ij : (decide ¬i = j) = true ⊢ BoundedFormula.Realize (∼(var (Sum.inr i) =' var (Sum.inr j))) default ↑(Nonempty.some xs) [PROOFSTEP] simpa using ij [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L ⊢ M ⊨ infiniteTheory L ↔ Infinite M [PROOFSTEP] simp [infiniteTheory, infinite_iff, aleph0_le] [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L ⊢ M ⊨ nonemptyTheory L ↔ Nonempty M [PROOFSTEP] simp only [nonemptyTheory, Theory.model_iff, Set.mem_singleton_iff, forall_eq, Sentence.realize_cardGe, Nat.cast_one, one_le_iff_ne_zero, mk_ne_zero_iff] [GOAL] L : Language L' : Language M✝ : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M✝ inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L M : Type w inst✝ : Structure (L[[α]]) M s : Set α ⊢ M ⊨ distinctConstantsTheory L s ↔ Set.InjOn (fun i => ↑(Language.con L i)) s [PROOFSTEP] simp only [distinctConstantsTheory, Theory.model_iff, Set.mem_image, Set.mem_inter, Set.mem_prod, Set.mem_compl, Prod.exists, forall_exists_index, and_imp] [GOAL] L : Language L' : Language M✝ : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M✝ inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L M : Type w inst✝ : Structure (L[[α]]) M s : Set α ⊢ (∀ (φ : Sentence (L[[α]])) (x x_1 : α), (x, x_1) ∈ s ×ˢ s ∩ (Set.diagonal α)ᶜ → Formula.not (Term.equal (Constants.term (Language.con L x)) (Constants.term (Language.con L x_1))) = φ → M ⊨ φ) ↔ Set.InjOn (fun i => ↑(Language.con L i)) s [PROOFSTEP] refine' ⟨fun h a as b bs ab => _, _⟩ [GOAL] case refine'_1 L : Language L' : Language M✝ : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M✝ inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L M : Type w inst✝ : Structure (L[[α]]) M s : Set α h : ∀ (φ : Sentence (L[[α]])) (x x_1 : α), (x, x_1) ∈ s ×ˢ s ∩ (Set.diagonal α)ᶜ → Formula.not (Term.equal (Constants.term (Language.con L x)) (Constants.term (Language.con L x_1))) = φ → M ⊨ φ a : α as : a ∈ s b : α bs : b ∈ s ab : (fun i => ↑(Language.con L i)) a = (fun i => ↑(Language.con L i)) b ⊢ a = b [PROOFSTEP] contrapose! ab [GOAL] case refine'_1 L : Language L' : Language M✝ : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M✝ inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L M : Type w inst✝ : Structure (L[[α]]) M s : Set α h : ∀ (φ : Sentence (L[[α]])) (x x_1 : α), (x, x_1) ∈ s ×ˢ s ∩ (Set.diagonal α)ᶜ → Formula.not (Term.equal (Constants.term (Language.con L x)) (Constants.term (Language.con L x_1))) = φ → M ⊨ φ a : α as : a ∈ s b : α bs : b ∈ s ab : a ≠ b ⊢ ↑(Language.con L a) ≠ ↑(Language.con L b) [PROOFSTEP] have h' := h _ a b ⟨⟨as, bs⟩, ab⟩ rfl [GOAL] case refine'_1 L : Language L' : Language M✝ : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M✝ inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L M : Type w inst✝ : Structure (L[[α]]) M s : Set α h : ∀ (φ : Sentence (L[[α]])) (x x_1 : α), (x, x_1) ∈ s ×ˢ s ∩ (Set.diagonal α)ᶜ → Formula.not (Term.equal (Constants.term (Language.con L x)) (Constants.term (Language.con L x_1))) = φ → M ⊨ φ a : α as : a ∈ s b : α bs : b ∈ s ab : a ≠ b h' : M ⊨ Formula.not (Term.equal (Constants.term (Language.con L a)) (Constants.term (Language.con L b))) ⊢ ↑(Language.con L a) ≠ ↑(Language.con L b) [PROOFSTEP] simp only [Sentence.Realize, Formula.realize_not, Formula.realize_equal, Term.realize_constants] at h' [GOAL] case refine'_1 L : Language L' : Language M✝ : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M✝ inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L M : Type w inst✝ : Structure (L[[α]]) M s : Set α h : ∀ (φ : Sentence (L[[α]])) (x x_1 : α), (x, x_1) ∈ s ×ˢ s ∩ (Set.diagonal α)ᶜ → Formula.not (Term.equal (Constants.term (Language.con L x)) (Constants.term (Language.con L x_1))) = φ → M ⊨ φ a : α as : a ∈ s b : α bs : b ∈ s ab : a ≠ b h' : ¬↑(Language.con L a) = ↑(Language.con L b) ⊢ ↑(Language.con L a) ≠ ↑(Language.con L b) [PROOFSTEP] exact h' [GOAL] case refine'_2 L : Language L' : Language M✝ : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M✝ inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L M : Type w inst✝ : Structure (L[[α]]) M s : Set α ⊢ Set.InjOn (fun i => ↑(Language.con L i)) s → ∀ (φ : Sentence (L[[α]])) (x x_1 : α), (x, x_1) ∈ s ×ˢ s ∩ (Set.diagonal α)ᶜ → Formula.not (Term.equal (Constants.term (Language.con L x)) (Constants.term (Language.con L x_1))) = φ → M ⊨ φ [PROOFSTEP] rintro h φ a b ⟨⟨as, bs⟩, ab⟩ rfl [GOAL] case refine'_2.intro.intro L : Language L' : Language M✝ : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M✝ inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L M : Type w inst✝ : Structure (L[[α]]) M s : Set α h : Set.InjOn (fun i => ↑(Language.con L i)) s a b : α ab : (a, b) ∈ (Set.diagonal α)ᶜ as : (a, b).fst ∈ s bs : (a, b).snd ∈ s ⊢ M ⊨ Formula.not (Term.equal (Constants.term (Language.con L a)) (Constants.term (Language.con L b))) [PROOFSTEP] simp only [Sentence.Realize, Formula.realize_not, Formula.realize_equal, Term.realize_constants] [GOAL] case refine'_2.intro.intro L : Language L' : Language M✝ : Type w N : Type u_1 P : Type u_2 inst✝³ : Structure L M✝ inst✝² : Structure L N inst✝¹ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L M : Type w inst✝ : Structure (L[[α]]) M s : Set α h : Set.InjOn (fun i => ↑(Language.con L i)) s a b : α ab : (a, b) ∈ (Set.diagonal α)ᶜ as : (a, b).fst ∈ s bs : (a, b).snd ∈ s ⊢ ¬↑(Language.con L a) = ↑(Language.con L b) [PROOFSTEP] exact fun contra => ab (h as bs contra) [GOAL] L : Language L' : Language M : Type w N : Type u_1 P : Type u_2 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' n : ℕ T : Theory L h : M ≅[L] N ⊢ M ⊨ T ↔ N ⊨ T [PROOFSTEP] rw [Theory.model_iff_subset_completeTheory, Theory.model_iff_subset_completeTheory, h.completeTheory_eq]
{"mathlib_filename": "Mathlib.ModelTheory.Semantics", "llama_tokens": 97807}
[GOAL] P : Type u_1 inst✝ : LE P I J s✝ t✝ : Ideal P x y : P s t : Ideal P x✝ : s.toLowerSet = t.toLowerSet ⊢ s = t [PROOFSTEP] cases s [GOAL] case mk P : Type u_1 inst✝ : LE P I J s t✝ : Ideal P x y : P t : Ideal P toLowerSet✝ : LowerSet P nonempty'✝ : Set.Nonempty toLowerSet✝.carrier directed'✝ : DirectedOn (fun x x_1 => x ≤ x_1) toLowerSet✝.carrier x✝ : { toLowerSet := toLowerSet✝, nonempty' := nonempty'✝, directed' := directed'✝ }.toLowerSet = t.toLowerSet ⊢ { toLowerSet := toLowerSet✝, nonempty' := nonempty'✝, directed' := directed'✝ } = t [PROOFSTEP] cases t [GOAL] case mk.mk P : Type u_1 inst✝ : LE P I J s t : Ideal P x y : P toLowerSet✝¹ : LowerSet P nonempty'✝¹ : Set.Nonempty toLowerSet✝¹.carrier directed'✝¹ : DirectedOn (fun x x_1 => x ≤ x_1) toLowerSet✝¹.carrier toLowerSet✝ : LowerSet P nonempty'✝ : Set.Nonempty toLowerSet✝.carrier directed'✝ : DirectedOn (fun x x_1 => x ≤ x_1) toLowerSet✝.carrier x✝ : { toLowerSet := toLowerSet✝¹, nonempty' := nonempty'✝¹, directed' := directed'✝¹ }.toLowerSet = { toLowerSet := toLowerSet✝, nonempty' := nonempty'✝, directed' := directed'✝ }.toLowerSet ⊢ { toLowerSet := toLowerSet✝¹, nonempty' := nonempty'✝¹, directed' := directed'✝¹ } = { toLowerSet := toLowerSet✝, nonempty' := nonempty'✝, directed' := directed'✝ } [PROOFSTEP] congr [GOAL] P : Type u_1 inst✝ : LE P I✝ J s t : Ideal P x y : P I : Ideal P p : P nmem : ¬p ∈ I hp : ↑I = univ ⊢ False [PROOFSTEP] have := mem_univ p [GOAL] P : Type u_1 inst✝ : LE P I✝ J s t : Ideal P x y : P I : Ideal P p : P nmem : ¬p ∈ I hp : ↑I = univ this : p ∈ univ ⊢ False [PROOFSTEP] rw [← hp] at this [GOAL] P : Type u_1 inst✝ : LE P I✝ J s t : Ideal P x y : P I : Ideal P p : P nmem : ¬p ∈ I hp : ↑I = univ this : p ∈ ↑I ⊢ False [PROOFSTEP] exact nmem this [GOAL] P : Type u_1 inst✝¹ : LE P I✝ J✝ s t : Ideal P x y : P inst✝ : IsDirected P fun x x_1 => x ≥ x_1 I J : Ideal P ⊢ Set.Nonempty (↑I ∩ ↑J) [PROOFSTEP] obtain ⟨a, ha⟩ := I.nonempty [GOAL] case intro P : Type u_1 inst✝¹ : LE P I✝ J✝ s t : Ideal P x y : P inst✝ : IsDirected P fun x x_1 => x ≥ x_1 I J : Ideal P a : P ha : a ∈ ↑I ⊢ Set.Nonempty (↑I ∩ ↑J) [PROOFSTEP] obtain ⟨b, hb⟩ := J.nonempty [GOAL] case intro.intro P : Type u_1 inst✝¹ : LE P I✝ J✝ s t : Ideal P x y : P inst✝ : IsDirected P fun x x_1 => x ≥ x_1 I J : Ideal P a : P ha : a ∈ ↑I b : P hb : b ∈ ↑J ⊢ Set.Nonempty (↑I ∩ ↑J) [PROOFSTEP] obtain ⟨c, hac, hbc⟩ := exists_le_le a b [GOAL] case intro.intro.intro.intro P : Type u_1 inst✝¹ : LE P I✝ J✝ s t : Ideal P x y : P inst✝ : IsDirected P fun x x_1 => x ≥ x_1 I J : Ideal P a : P ha : a ∈ ↑I b : P hb : b ∈ ↑J c : P hac : c ≤ a hbc : c ≤ b ⊢ Set.Nonempty (↑I ∩ ↑J) [PROOFSTEP] exact ⟨c, I.lower hac ha, J.lower hbc hb⟩ [GOAL] P : Type u_1 inst✝² : LE P inst✝¹ : IsDirected P fun x x_1 => x ≤ x_1 inst✝ : Nonempty P I : Ideal P hI : IsCoatom I src✝ : IsProper I := IsCoatom.isProper hI x✝ : Ideal P hJ : I < x✝ ⊢ ↑x✝ = univ [PROOFSTEP] simp [hI.2 _ hJ] [GOAL] P : Type u_1 inst✝¹ : LE P inst✝ : OrderTop P I : Ideal P h : ⊤ ∈ I ⊢ I = ⊤ [PROOFSTEP] ext [GOAL] case a.h P : Type u_1 inst✝¹ : LE P inst✝ : OrderTop P I : Ideal P h : ⊤ ∈ I x✝ : P ⊢ x✝ ∈ ↑I ↔ x✝ ∈ ↑⊤ [PROOFSTEP] exact iff_of_true (I.lower le_top h) trivial [GOAL] P : Type u_1 inst✝¹ : Preorder P inst✝ : OrderBot P ⊢ ∀ (a : Ideal P), ⊥ ≤ a [PROOFSTEP] simp [GOAL] P : Type u_1 inst✝¹ : SemilatticeSup P inst✝ : IsDirected P fun x x_1 => x ≥ x_1 x✝ : P I✝ J✝ K s t I J : Ideal P x : P hx : x ∈ (I.toLowerSet ⊓ J.toLowerSet).carrier y : P hy : y ∈ (I.toLowerSet ⊓ J.toLowerSet).carrier ⊢ (fun x x_1 => x ≤ x_1) x (x ⊔ y) ∧ (fun x x_1 => x ≤ x_1) y (x ⊔ y) [PROOFSTEP] simp [GOAL] P : Type u_1 inst✝¹ : SemilatticeSup P inst✝ : IsDirected P fun x x_1 => x ≥ x_1 x : P I✝ J✝ K s t I J : Ideal P ⊢ Set.Nonempty { carrier := {x | ∃ i, i ∈ I ∧ ∃ j, j ∈ J ∧ x ≤ i ⊔ j}, lower' := (_ : ∀ (x y : P), y ≤ x → x ∈ {x | ∃ i, i ∈ I ∧ ∃ j, j ∈ J ∧ x ≤ i ⊔ j} → y ∈ {x | ∃ i, i ∈ I ∧ ∃ j, j ∈ J ∧ x ≤ i ⊔ j}) }.carrier [PROOFSTEP] cases' inter_nonempty I J with w h [GOAL] case intro P : Type u_1 inst✝¹ : SemilatticeSup P inst✝ : IsDirected P fun x x_1 => x ≥ x_1 x : P I✝ J✝ K s t I J : Ideal P w : P h : w ∈ ↑I ∩ ↑J ⊢ Set.Nonempty { carrier := {x | ∃ i, i ∈ I ∧ ∃ j, j ∈ J ∧ x ≤ i ⊔ j}, lower' := (_ : ∀ (x y : P), y ≤ x → x ∈ {x | ∃ i, i ∈ I ∧ ∃ j, j ∈ J ∧ x ≤ i ⊔ j} → y ∈ {x | ∃ i, i ∈ I ∧ ∃ j, j ∈ J ∧ x ≤ i ⊔ j}) }.carrier [PROOFSTEP] exact ⟨w, w, h.1, w, h.2, le_sup_left⟩ [GOAL] P : Type u_1 inst✝¹ : SemilatticeSup P inst✝ : IsDirected P fun x x_1 => x ≥ x_1 x : P I J K s t : Ideal P hx : ¬x ∈ I h : I = I ⊔ principal x ⊢ x ∈ I [PROOFSTEP] simpa only [left_eq_sup, principal_le_iff] using h [GOAL] P : Type u_1 inst✝¹ : SemilatticeSup P inst✝ : OrderBot P x : P I J K : Ideal P S : Set (Ideal P) ⊢ ⊥ ∈ (⨅ (s : Ideal P) (_ : s ∈ S), s.toLowerSet).carrier [PROOFSTEP] rw [LowerSet.carrier_eq_coe, LowerSet.coe_iInf₂, Set.mem_iInter₂] [GOAL] P : Type u_1 inst✝¹ : SemilatticeSup P inst✝ : OrderBot P x : P I J K : Ideal P S : Set (Ideal P) ⊢ ∀ (i : Ideal P), i ∈ S → ⊥ ∈ ↑i.toLowerSet [PROOFSTEP] exact fun s _ ↦ s.bot_mem [GOAL] P : Type u_1 inst✝¹ : SemilatticeSup P inst✝ : OrderBot P x : P I J K : Ideal P S : Set (Ideal P) a : P ha : a ∈ (⨅ (s : Ideal P) (_ : s ∈ S), s.toLowerSet).carrier b : P hb : b ∈ (⨅ (s : Ideal P) (_ : s ∈ S), s.toLowerSet).carrier ⊢ a ⊔ b ∈ (⨅ (s : Ideal P) (_ : s ∈ S), s.toLowerSet).carrier [PROOFSTEP] rw [LowerSet.carrier_eq_coe, LowerSet.coe_iInf₂, Set.mem_iInter₂] at ha hb ⊢ [GOAL] P : Type u_1 inst✝¹ : SemilatticeSup P inst✝ : OrderBot P x : P I J K : Ideal P S : Set (Ideal P) a : P ha : ∀ (i : Ideal P), i ∈ S → a ∈ ↑i.toLowerSet b : P hb : ∀ (i : Ideal P), i ∈ S → b ∈ ↑i.toLowerSet ⊢ ∀ (i : Ideal P), i ∈ S → a ⊔ b ∈ ↑i.toLowerSet [PROOFSTEP] exact fun s hs ↦ sup_mem (ha _ hs) (hb _ hs) [GOAL] P : Type u_1 inst✝¹ : SemilatticeSup P inst✝ : OrderBot P x : P I J K : Ideal P S : Set (Ideal P) ⊢ x ∈ sInf S ↔ ∀ (s : Ideal P), s ∈ S → x ∈ s [PROOFSTEP] simp_rw [← SetLike.mem_coe, coe_sInf, mem_iInter₂] [GOAL] P : Type u_1 inst✝¹ : SemilatticeSup P inst✝ : OrderBot P x : P I J K : Ideal P S✝ : Set (Ideal P) src✝ : Lattice (Ideal P) := inferInstance S : Set (Ideal P) ⊢ IsGLB S (sInf S) [PROOFSTEP] refine' ⟨fun s hs ↦ _, fun s hs ↦ by rwa [← coe_subset_coe, coe_sInf, subset_iInter₂_iff]⟩ [GOAL] P : Type u_1 inst✝¹ : SemilatticeSup P inst✝ : OrderBot P x : P I J K : Ideal P S✝ : Set (Ideal P) src✝ : Lattice (Ideal P) := inferInstance S : Set (Ideal P) s : Ideal P hs : s ∈ lowerBounds S ⊢ s ≤ sInf S [PROOFSTEP] rwa [← coe_subset_coe, coe_sInf, subset_iInter₂_iff] [GOAL] P : Type u_1 inst✝¹ : SemilatticeSup P inst✝ : OrderBot P x : P I J K : Ideal P S✝ : Set (Ideal P) src✝ : Lattice (Ideal P) := inferInstance S : Set (Ideal P) s : Ideal P hs : s ∈ S ⊢ sInf S ≤ s [PROOFSTEP] rw [← coe_subset_coe, coe_sInf] [GOAL] P : Type u_1 inst✝¹ : SemilatticeSup P inst✝ : OrderBot P x : P I J K : Ideal P S✝ : Set (Ideal P) src✝ : Lattice (Ideal P) := inferInstance S : Set (Ideal P) s : Ideal P hs : s ∈ S ⊢ ⋂ (s : Ideal P) (_ : s ∈ S), ↑s ⊆ ↑s [PROOFSTEP] exact biInter_subset_of_mem hs [GOAL] P : Type u_1 inst✝ : DistribLattice P I J : Ideal P x i j : P hi : i ∈ I hj : j ∈ J hx : x ≤ i ⊔ j ⊢ ∃ i', i' ∈ I ∧ ∃ j', j' ∈ J ∧ x = i' ⊔ j' [PROOFSTEP] refine' ⟨x ⊓ i, I.lower inf_le_right hi, x ⊓ j, J.lower inf_le_right hj, _⟩ [GOAL] P : Type u_1 inst✝ : DistribLattice P I J : Ideal P x i j : P hi : i ∈ I hj : j ∈ J hx : x ≤ i ⊔ j ⊢ x = x ⊓ i ⊔ x ⊓ j [PROOFSTEP] calc x = x ⊓ (i ⊔ j) := left_eq_inf.mpr hx _ = x ⊓ i ⊔ x ⊓ j := inf_sup_left [GOAL] P : Type u_1 inst✝ : BooleanAlgebra P x : P I : Ideal P hI : IsProper I hxc : xᶜ ∈ I ⊢ ¬x ∈ I [PROOFSTEP] intro hx [GOAL] P : Type u_1 inst✝ : BooleanAlgebra P x : P I : Ideal P hI : IsProper I hxc : xᶜ ∈ I hx : x ∈ I ⊢ False [PROOFSTEP] apply hI.top_not_mem [GOAL] P : Type u_1 inst✝ : BooleanAlgebra P x : P I : Ideal P hI : IsProper I hxc : xᶜ ∈ I hx : x ∈ I ⊢ ⊤ ∈ I [PROOFSTEP] have ht : x ⊔ xᶜ ∈ I := sup_mem ‹_› ‹_› [GOAL] P : Type u_1 inst✝ : BooleanAlgebra P x : P I : Ideal P hI : IsProper I hxc : xᶜ ∈ I hx : x ∈ I ht : x ⊔ xᶜ ∈ I ⊢ ⊤ ∈ I [PROOFSTEP] rwa [sup_compl_eq_top] at ht [GOAL] P : Type u_1 inst✝ : BooleanAlgebra P x : P I : Ideal P hI : IsProper I ⊢ ¬x ∈ I ∨ ¬xᶜ ∈ I [PROOFSTEP] have h : xᶜ ∈ I → x ∉ I := hI.not_mem_of_compl_mem [GOAL] P : Type u_1 inst✝ : BooleanAlgebra P x : P I : Ideal P hI : IsProper I h : xᶜ ∈ I → ¬x ∈ I ⊢ ¬x ∈ I ∨ ¬xᶜ ∈ I [PROOFSTEP] tauto [GOAL] P : Type u_1 inst✝¹ : Preorder P p : P ι : Type u_2 inst✝ : Encodable ι 𝒟 : ι → Cofinal P ⊢ Monotone (sequenceOfCofinals p 𝒟) [PROOFSTEP] apply monotone_nat_of_le_succ [GOAL] case hf P : Type u_1 inst✝¹ : Preorder P p : P ι : Type u_2 inst✝ : Encodable ι 𝒟 : ι → Cofinal P ⊢ ∀ (n : ℕ), sequenceOfCofinals p 𝒟 n ≤ sequenceOfCofinals p 𝒟 (n + 1) [PROOFSTEP] intro n [GOAL] case hf P : Type u_1 inst✝¹ : Preorder P p : P ι : Type u_2 inst✝ : Encodable ι 𝒟 : ι → Cofinal P n : ℕ ⊢ sequenceOfCofinals p 𝒟 n ≤ sequenceOfCofinals p 𝒟 (n + 1) [PROOFSTEP] dsimp only [sequenceOfCofinals, Nat.add] [GOAL] case hf P : Type u_1 inst✝¹ : Preorder P p : P ι : Type u_2 inst✝ : Encodable ι 𝒟 : ι → Cofinal P n : ℕ ⊢ sequenceOfCofinals p 𝒟 n ≤ match Encodable.decode n with | none => sequenceOfCofinals p 𝒟 n | some i => Cofinal.above (𝒟 i) (sequenceOfCofinals p 𝒟 n) [PROOFSTEP] cases (Encodable.decode n : Option ι) [GOAL] case hf.none P : Type u_1 inst✝¹ : Preorder P p : P ι : Type u_2 inst✝ : Encodable ι 𝒟 : ι → Cofinal P n : ℕ ⊢ sequenceOfCofinals p 𝒟 n ≤ match none with | none => sequenceOfCofinals p 𝒟 n | some i => Cofinal.above (𝒟 i) (sequenceOfCofinals p 𝒟 n) [PROOFSTEP] rfl [GOAL] case hf.some P : Type u_1 inst✝¹ : Preorder P p : P ι : Type u_2 inst✝ : Encodable ι 𝒟 : ι → Cofinal P n : ℕ val✝ : ι ⊢ sequenceOfCofinals p 𝒟 n ≤ match some val✝ with | none => sequenceOfCofinals p 𝒟 n | some i => Cofinal.above (𝒟 i) (sequenceOfCofinals p 𝒟 n) [PROOFSTEP] apply Cofinal.le_above [GOAL] P : Type u_1 inst✝¹ : Preorder P p : P ι : Type u_2 inst✝ : Encodable ι 𝒟 : ι → Cofinal P i : ι ⊢ sequenceOfCofinals p 𝒟 (Encodable.encode i + 1) ∈ 𝒟 i [PROOFSTEP] dsimp only [sequenceOfCofinals, Nat.add] [GOAL] P : Type u_1 inst✝¹ : Preorder P p : P ι : Type u_2 inst✝ : Encodable ι 𝒟 : ι → Cofinal P i : ι ⊢ (match Encodable.decode (Encodable.encode i) with | none => sequenceOfCofinals p 𝒟 (Encodable.encode i) | some i_1 => Cofinal.above (𝒟 i_1) (sequenceOfCofinals p 𝒟 (Encodable.encode i))) ∈ 𝒟 i [PROOFSTEP] rw [Encodable.encodek] [GOAL] P : Type u_1 inst✝¹ : Preorder P p : P ι : Type u_2 inst✝ : Encodable ι 𝒟 : ι → Cofinal P i : ι ⊢ (match some i with | none => sequenceOfCofinals p 𝒟 (Encodable.encode i) | some i_1 => Cofinal.above (𝒟 i_1) (sequenceOfCofinals p 𝒟 (Encodable.encode i))) ∈ 𝒟 i [PROOFSTEP] apply Cofinal.above_mem
{"mathlib_filename": "Mathlib.Order.Ideal", "llama_tokens": 6022}
[GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : NoMaxOrder α x✝ : α × β a : α b : β ⊢ ∃ b_1, (a, b) < b_1 [PROOFSTEP] obtain ⟨c, h⟩ := exists_gt a [GOAL] case intro α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : NoMaxOrder α x✝ : α × β a : α b : β c : α h : a < c ⊢ ∃ b_1, (a, b) < b_1 [PROOFSTEP] exact ⟨(c, b), Prod.mk_lt_mk_iff_left.2 h⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : NoMaxOrder β x✝ : α × β a : α b : β ⊢ ∃ b_1, (a, b) < b_1 [PROOFSTEP] obtain ⟨c, h⟩ := exists_gt b [GOAL] case intro α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : NoMaxOrder β x✝ : α × β a : α b c : β h : b < c ⊢ ∃ b_1, (a, b) < b_1 [PROOFSTEP] exact ⟨(a, c), Prod.mk_lt_mk_iff_right.2 h⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : NoMinOrder α x✝ : α × β a : α b : β ⊢ ∃ b_1, b_1 < (a, b) [PROOFSTEP] obtain ⟨c, h⟩ := exists_lt a [GOAL] case intro α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : NoMinOrder α x✝ : α × β a : α b : β c : α h : c < a ⊢ ∃ b_1, b_1 < (a, b) [PROOFSTEP] exact ⟨(c, b), Prod.mk_lt_mk_iff_left.2 h⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : NoMinOrder β x✝ : α × β a : α b : β ⊢ ∃ b_1, b_1 < (a, b) [PROOFSTEP] obtain ⟨c, h⟩ := exists_lt b [GOAL] case intro α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : NoMinOrder β x✝ : α × β a : α b c : β h : c < b ⊢ ∃ b_1, b_1 < (a, b) [PROOFSTEP] exact ⟨(a, c), Prod.mk_lt_mk_iff_right.2 h⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u π : ι → Type u_3 inst✝² : Nonempty ι inst✝¹ : (i : ι) → Preorder (π i) inst✝ : ∀ (i : ι), NoMaxOrder (π i) a : (i : ι) → π i ⊢ ∃ b, a < b [PROOFSTEP] classical obtain ⟨b, hb⟩ := exists_gt (a <| Classical.arbitrary _) exact ⟨_, lt_update_self_iff.2 hb⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u π : ι → Type u_3 inst✝² : Nonempty ι inst✝¹ : (i : ι) → Preorder (π i) inst✝ : ∀ (i : ι), NoMaxOrder (π i) a : (i : ι) → π i ⊢ ∃ b, a < b [PROOFSTEP] obtain ⟨b, hb⟩ := exists_gt (a <| Classical.arbitrary _) [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u π : ι → Type u_3 inst✝² : Nonempty ι inst✝¹ : (i : ι) → Preorder (π i) inst✝ : ∀ (i : ι), NoMaxOrder (π i) a : (i : ι) → π i b : π (Classical.arbitrary ι) hb : a (Classical.arbitrary ι) < b ⊢ ∃ b, a < b [PROOFSTEP] exact ⟨_, lt_update_self_iff.2 hb⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u π : ι → Type u_3 inst✝² : Nonempty ι inst✝¹ : (i : ι) → Preorder (π i) inst✝ : ∀ (i : ι), NoMinOrder (π i) a : (i : ι) → π i ⊢ ∃ b, b < a [PROOFSTEP] classical obtain ⟨b, hb⟩ := exists_lt (a <| Classical.arbitrary _) exact ⟨_, update_lt_self_iff.2 hb⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u π : ι → Type u_3 inst✝² : Nonempty ι inst✝¹ : (i : ι) → Preorder (π i) inst✝ : ∀ (i : ι), NoMinOrder (π i) a : (i : ι) → π i ⊢ ∃ b, b < a [PROOFSTEP] obtain ⟨b, hb⟩ := exists_lt (a <| Classical.arbitrary _) [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u π : ι → Type u_3 inst✝² : Nonempty ι inst✝¹ : (i : ι) → Preorder (π i) inst✝ : ∀ (i : ι), NoMinOrder (π i) a : (i : ι) → π i b : π (Classical.arbitrary ι) hb : b < a (Classical.arbitrary ι) ⊢ ∃ b, b < a [PROOFSTEP] exact ⟨_, update_lt_self_iff.2 hb⟩ [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝¹ : LinearOrder α inst✝ : NoBotOrder α a : α ⊢ ∃ b, b < a [PROOFSTEP] simpa [not_le] using exists_not_ge a [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝¹ : LinearOrder α inst✝ : NoTopOrder α a : α ⊢ ∃ b, a < b [PROOFSTEP] simpa [not_le] using exists_not_le a [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α a b : α ⊢ ¬IsMin a ↔ ∃ b, b < a [PROOFSTEP] simp [lt_iff_le_not_le, IsMin, not_forall, exists_prop] [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α a b : α ⊢ ¬IsMax a ↔ ∃ b, a < b [PROOFSTEP] simp [lt_iff_le_not_le, IsMax, not_forall, exists_prop]
{"mathlib_filename": "Mathlib.Order.Max", "llama_tokens": 2223}
[GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsWeakUpperModularLattice α a b : α ⊢ a ⊓ b ⋖ a → a ⊓ b ⋖ b → b ⋖ a ⊔ b [PROOFSTEP] rw [inf_comm, sup_comm] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsWeakUpperModularLattice α a b : α ⊢ b ⊓ a ⋖ a → b ⊓ a ⋖ b → b ⋖ b ⊔ a [PROOFSTEP] exact fun ha hb => covby_sup_of_inf_covby_of_inf_covby_left hb ha [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsWeakLowerModularLattice α a b : α ⊢ a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ b [PROOFSTEP] rw [sup_comm, inf_comm] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsWeakLowerModularLattice α a b : α ⊢ a ⋖ b ⊔ a → b ⋖ b ⊔ a → b ⊓ a ⋖ b [PROOFSTEP] exact fun ha hb => inf_covby_of_covby_sup_of_covby_sup_left hb ha [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsUpperModularLattice α a b : α ⊢ a ⊓ b ⋖ b → a ⋖ a ⊔ b [PROOFSTEP] rw [sup_comm, inf_comm] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsUpperModularLattice α a b : α ⊢ b ⊓ a ⋖ b → a ⋖ b ⊔ a [PROOFSTEP] exact covby_sup_of_inf_covby_left [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsLowerModularLattice α a b : α ⊢ b ⋖ a ⊔ b → a ⊓ b ⋖ a [PROOFSTEP] rw [inf_comm, sup_comm] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsLowerModularLattice α a b : α ⊢ b ⋖ b ⊔ a → b ⊓ a ⋖ a [PROOFSTEP] exact inf_covby_of_covby_sup_left [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x y z : α h : z ≤ x ⊢ x ⊓ y ⊔ z = x ⊓ (y ⊔ z) [PROOFSTEP] rw [inf_comm, sup_comm, ← sup_inf_assoc_of_le y h, inf_comm, sup_comm] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x✝ y z : αᵒᵈ xz : x✝ ≤ z ⊢ (x✝ ⊔ y) ⊓ z = x✝ ⊔ y ⊓ z [PROOFSTEP] rw [inf_comm, sup_comm, eq_comm, inf_comm, sup_comm] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x✝ y z : αᵒᵈ xz : x✝ ≤ z ⊢ z ⊓ y ⊔ x✝ = z ⊓ (y ⊔ x✝) [PROOFSTEP] exact @sup_inf_assoc_of_le α _ _ _ y _ xz [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x y z : α hxy : x ≤ y hinf : y ⊓ z ≤ x ⊓ z hsup : y ⊔ z ≤ x ⊔ z h : y ≤ x ⊔ z ⊢ z ⊓ y ≤ z ⊓ x [PROOFSTEP] rw [inf_comm, @inf_comm _ _ z] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x y z : α hxy : x ≤ y hinf : y ⊓ z ≤ x ⊓ z hsup : y ⊔ z ≤ x ⊔ z h : y ≤ x ⊔ z ⊢ y ⊓ z ≤ x ⊓ z [PROOFSTEP] exact hinf [GOAL] α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α x y z : α β : Type u_2 γ : Type u_3 inst✝¹ : PartialOrder β inst✝ : Preorder γ h₁ : WellFounded fun x x_1 => x < x_1 h₂ : WellFounded fun x x_1 => x < x_1 K : α f₁ : β → α f₂ : α → β g₁ : γ → α g₂ : α → γ gci : GaloisCoinsertion f₁ f₂ gi : GaloisInsertion g₂ g₁ hf : ∀ (a : α), f₁ (f₂ a) = a ⊓ K hg : ∀ (a : α), g₁ (g₂ a) = a ⊔ K A B : α hAB : A < B ⊢ Prod.Lex (fun x x_1 => x < x_1) (fun x x_1 => x < x_1) (f₂ A, g₂ A) (f₂ B, g₂ B) [PROOFSTEP] simp only [Prod.lex_def, lt_iff_le_not_le, ← gci.l_le_l_iff, ← gi.u_le_u_iff, hf, hg, le_antisymm_iff] [GOAL] α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α x y z : α β : Type u_2 γ : Type u_3 inst✝¹ : PartialOrder β inst✝ : Preorder γ h₁ : WellFounded fun x x_1 => x < x_1 h₂ : WellFounded fun x x_1 => x < x_1 K : α f₁ : β → α f₂ : α → β g₁ : γ → α g₂ : α → γ gci : GaloisCoinsertion f₁ f₂ gi : GaloisInsertion g₂ g₁ hf : ∀ (a : α), f₁ (f₂ a) = a ⊓ K hg : ∀ (a : α), g₁ (g₂ a) = a ⊔ K A B : α hAB : A < B ⊢ A ⊓ K ≤ B ⊓ K ∧ ¬B ⊓ K ≤ A ⊓ K ∨ (A ⊓ K ≤ B ⊓ K ∧ B ⊓ K ≤ A ⊓ K) ∧ A ⊔ K ≤ B ⊔ K ∧ ¬B ⊔ K ≤ A ⊔ K [PROOFSTEP] simp only [gci.l_le_l_iff, gi.u_le_u_iff, ← lt_iff_le_not_le, ← le_antisymm_iff] [GOAL] α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α x y z : α β : Type u_2 γ : Type u_3 inst✝¹ : PartialOrder β inst✝ : Preorder γ h₁ : WellFounded fun x x_1 => x < x_1 h₂ : WellFounded fun x x_1 => x < x_1 K : α f₁ : β → α f₂ : α → β g₁ : γ → α g₂ : α → γ gci : GaloisCoinsertion f₁ f₂ gi : GaloisInsertion g₂ g₁ hf : ∀ (a : α), f₁ (f₂ a) = a ⊓ K hg : ∀ (a : α), g₁ (g₂ a) = a ⊔ K A B : α hAB : A < B ⊢ A ⊓ K < B ⊓ K ∨ A ⊓ K = B ⊓ K ∧ A ⊔ K < B ⊔ K [PROOFSTEP] cases' lt_or_eq_of_le (inf_le_inf_right K (le_of_lt hAB)) with h h [GOAL] case inl α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α x y z : α β : Type u_2 γ : Type u_3 inst✝¹ : PartialOrder β inst✝ : Preorder γ h₁ : WellFounded fun x x_1 => x < x_1 h₂ : WellFounded fun x x_1 => x < x_1 K : α f₁ : β → α f₂ : α → β g₁ : γ → α g₂ : α → γ gci : GaloisCoinsertion f₁ f₂ gi : GaloisInsertion g₂ g₁ hf : ∀ (a : α), f₁ (f₂ a) = a ⊓ K hg : ∀ (a : α), g₁ (g₂ a) = a ⊔ K A B : α hAB : A < B h : A ⊓ K < B ⊓ K ⊢ A ⊓ K < B ⊓ K ∨ A ⊓ K = B ⊓ K ∧ A ⊔ K < B ⊔ K [PROOFSTEP] exact Or.inl h [GOAL] case inr α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α x y z : α β : Type u_2 γ : Type u_3 inst✝¹ : PartialOrder β inst✝ : Preorder γ h₁ : WellFounded fun x x_1 => x < x_1 h₂ : WellFounded fun x x_1 => x < x_1 K : α f₁ : β → α f₂ : α → β g₁ : γ → α g₂ : α → γ gci : GaloisCoinsertion f₁ f₂ gi : GaloisInsertion g₂ g₁ hf : ∀ (a : α), f₁ (f₂ a) = a ⊓ K hg : ∀ (a : α), g₁ (g₂ a) = a ⊔ K A B : α hAB : A < B h : A ⊓ K = B ⊓ K ⊢ A ⊓ K < B ⊓ K ∨ A ⊓ K = B ⊓ K ∧ A ⊔ K < B ⊔ K [PROOFSTEP] exact Or.inr ⟨h, sup_lt_sup_of_lt_of_inf_le_inf hAB (le_of_eq h.symm)⟩ [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x✝ y z a b : α x : ↑(Icc (a ⊓ b) a) ⊢ ↑((fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) }) ((fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) }) x)) = ↑x [PROOFSTEP] change a ⊓ (↑x ⊔ b) = ↑x [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x✝ y z a b : α x : ↑(Icc (a ⊓ b) a) ⊢ a ⊓ (↑x ⊔ b) = ↑x [PROOFSTEP] rw [sup_comm, ← inf_sup_assoc_of_le _ x.prop.2, sup_eq_right.2 x.prop.1] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x✝ y z a b : α x : ↑(Icc b (a ⊔ b)) ⊢ ↑((fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) }) ((fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) }) x)) = ↑x [PROOFSTEP] change a ⊓ ↑x ⊔ b = ↑x [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x✝ y z a b : α x : ↑(Icc b (a ⊔ b)) ⊢ a ⊓ ↑x ⊔ b = ↑x [PROOFSTEP] rw [inf_comm, inf_sup_assoc_of_le _ x.prop.1, inf_eq_left.2 x.prop.2] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x✝ y✝ z a b : α x y : ↑(Icc (a ⊓ b) a) ⊢ ↑{ toFun := fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) }, invFun := fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) }, left_inv := (_ : ∀ (x : ↑(Icc (a ⊓ b) a)), (fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) }) ((fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) }) x) = x), right_inv := (_ : ∀ (x : ↑(Icc b (a ⊔ b))), (fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) }) ((fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) }) x) = x) } x ≤ ↑{ toFun := fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) }, invFun := fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) }, left_inv := (_ : ∀ (x : ↑(Icc (a ⊓ b) a)), (fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) }) ((fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) }) x) = x), right_inv := (_ : ∀ (x : ↑(Icc b (a ⊔ b))), (fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) }) ((fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) }) x) = x) } y ↔ x ≤ y [PROOFSTEP] simp only [Subtype.mk_le_mk, Equiv.coe_fn_mk, and_true_iff, le_sup_right] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x✝ y✝ z a b : α x y : ↑(Icc (a ⊓ b) a) ⊢ ↑x ⊔ b ≤ ↑y ⊔ b ↔ x ≤ y [PROOFSTEP] rw [← Subtype.coe_le_coe] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x✝ y✝ z a b : α x y : ↑(Icc (a ⊓ b) a) ⊢ ↑x ⊔ b ≤ ↑y ⊔ b ↔ ↑x ≤ ↑y [PROOFSTEP] refine' ⟨fun h => _, fun h => sup_le_sup_right h _⟩ [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x✝ y✝ z a b : α x y : ↑(Icc (a ⊓ b) a) h : ↑x ⊔ b ≤ ↑y ⊔ b ⊢ ↑x ≤ ↑y [PROOFSTEP] rw [← sup_eq_right.2 x.prop.1, inf_sup_assoc_of_le _ x.prop.2, sup_comm, ← sup_eq_right.2 y.prop.1, inf_sup_assoc_of_le _ y.prop.2, @sup_comm _ _ b] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x✝ y✝ z a b : α x y : ↑(Icc (a ⊓ b) a) h : ↑x ⊔ b ≤ ↑y ⊔ b ⊢ a ⊓ (↑x ⊔ b) ≤ a ⊓ (↑y ⊔ b) [PROOFSTEP] exact inf_le_inf_left _ h [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x y z a b : α c : ↑(Ioo (a ⊓ b) a) ⊢ ↑((fun c => { val := a ⊓ ↑c, property := (_ : a ⊓ b < a ⊓ ↑c ∧ a ⊓ ↑c < a) }) ((fun c => { val := ↑c ⊔ b, property := (_ : b < ↑c ⊔ b ∧ ↑c ⊔ b < a ⊔ b) }) c)) = ↑c [PROOFSTEP] dsimp [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x y z a b : α c : ↑(Ioo (a ⊓ b) a) ⊢ a ⊓ (↑c ⊔ b) = ↑c [PROOFSTEP] rw [sup_comm, ← inf_sup_assoc_of_le _ c.prop.2.le, sup_eq_right.2 c.prop.1.le] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x y z a b : α c : ↑(Ioo b (a ⊔ b)) ⊢ ↑((fun c => { val := ↑c ⊔ b, property := (_ : b < ↑c ⊔ b ∧ ↑c ⊔ b < a ⊔ b) }) ((fun c => { val := a ⊓ ↑c, property := (_ : a ⊓ b < a ⊓ ↑c ∧ a ⊓ ↑c < a) }) c)) = ↑c [PROOFSTEP] dsimp [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x y z a b : α c : ↑(Ioo b (a ⊔ b)) ⊢ a ⊓ ↑c ⊔ b = ↑c [PROOFSTEP] rw [inf_comm, inf_sup_assoc_of_le _ c.prop.1.le, inf_eq_left.2 c.prop.2.le] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x y z a b : α ⊢ a ⋖ a ⊔ b → a ⊓ b ⋖ b [PROOFSTEP] simp_rw [covby_iff_Ioo_eq, @sup_comm _ _ a, @inf_comm _ _ a, ← isEmpty_coe_sort, right_lt_sup, inf_lt_left, (infIooOrderIsoIooSup b a).symm.toEquiv.isEmpty_congr] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x y z a b : α ⊢ ¬b ≤ a ∧ IsEmpty ↑(Ioo (b ⊓ a) b) → ¬b ≤ a ∧ IsEmpty ↑(Ioo (b ⊓ a) b) [PROOFSTEP] exact id [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x y z a b : α ⊢ a ⊓ b ⋖ a → b ⋖ a ⊔ b [PROOFSTEP] simp_rw [covby_iff_Ioo_eq, ← isEmpty_coe_sort, right_lt_sup, inf_lt_left, (infIooOrderIsoIooSup a b).toEquiv.isEmpty_congr] [GOAL] α : Type u_1 inst✝¹ : Lattice α inst✝ : IsModularLattice α x y z a b : α ⊢ ¬a ≤ b ∧ IsEmpty ↑(Ioo b (a ⊔ b)) → ¬a ≤ b ∧ IsEmpty ↑(Ioo b (a ⊔ b)) [PROOFSTEP] exact id [GOAL] α : Type u_1 inst✝ : Lattice α h : ∀ (x y z : α), x ⊓ z ⊔ y ⊓ z = (x ⊓ z ⊔ y) ⊓ z x✝ y z : α xz : x✝ ≤ z ⊢ (x✝ ⊔ y) ⊓ z ≤ x✝ ⊔ y ⊓ z [PROOFSTEP] rw [← inf_eq_left.2 xz, h] [GOAL] α : Type u_1 inst✝ : DistribLattice α x✝ y z : α xz : x✝ ≤ z ⊢ (x✝ ⊔ y) ⊓ z ≤ x✝ ⊔ y ⊓ z [PROOFSTEP] rw [inf_sup_right, inf_eq_left.2 xz] [GOAL] α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α inst✝ : IsModularLattice α a b c : α h : Disjoint a b hsup : Disjoint (a ⊔ b) c ⊢ Disjoint a (b ⊔ c) [PROOFSTEP] rw [disjoint_iff_inf_le, ← h.eq_bot, sup_comm] [GOAL] α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α inst✝ : IsModularLattice α a b c : α h : Disjoint a b hsup : Disjoint (a ⊔ b) c ⊢ a ⊓ (c ⊔ b) ≤ a ⊓ b [PROOFSTEP] apply le_inf inf_le_left [GOAL] α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α inst✝ : IsModularLattice α a b c : α h : Disjoint a b hsup : Disjoint (a ⊔ b) c ⊢ a ⊓ (c ⊔ b) ≤ b [PROOFSTEP] apply (inf_le_inf_right (c ⊔ b) le_sup_right).trans [GOAL] α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α inst✝ : IsModularLattice α a b c : α h : Disjoint a b hsup : Disjoint (a ⊔ b) c ⊢ (?m.28074 ⊔ a) ⊓ (c ⊔ b) ≤ b α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α inst✝ : IsModularLattice α a b c : α h : Disjoint a b hsup : Disjoint (a ⊔ b) c ⊢ α [PROOFSTEP] rw [sup_comm, IsModularLattice.sup_inf_sup_assoc, hsup.eq_bot, bot_sup_eq] [GOAL] α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α inst✝ : IsModularLattice α a b c : α h : Disjoint b c hsup : Disjoint a (b ⊔ c) ⊢ Disjoint (a ⊔ b) c [PROOFSTEP] rw [disjoint_comm, sup_comm] [GOAL] α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α inst✝ : IsModularLattice α a b c : α h : Disjoint b c hsup : Disjoint a (b ⊔ c) ⊢ Disjoint c (b ⊔ a) [PROOFSTEP] apply Disjoint.disjoint_sup_right_of_disjoint_sup_left h.symm [GOAL] α : Type u_1 inst✝² : Lattice α inst✝¹ : OrderBot α inst✝ : IsModularLattice α a b c : α h : Disjoint b c hsup : Disjoint a (b ⊔ c) ⊢ Disjoint (c ⊔ b) a [PROOFSTEP] rwa [sup_comm, disjoint_comm] at hsup [GOAL] α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Iic a) x : α hx : x ∈ Iic a y : α hy : IsCompl x y ⊢ IsCompl { val := x, property := hx } { val := y ⊓ a, property := (_ : y ⊓ a ∈ Iic a) } [PROOFSTEP] constructor [GOAL] case disjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Iic a) x : α hx : x ∈ Iic a y : α hy : IsCompl x y ⊢ Disjoint { val := x, property := hx } { val := y ⊓ a, property := (_ : y ⊓ a ∈ Iic a) } [PROOFSTEP] rw [disjoint_iff_inf_le] [GOAL] case disjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Iic a) x : α hx : x ∈ Iic a y : α hy : IsCompl x y ⊢ { val := x, property := hx } ⊓ { val := y ⊓ a, property := (_ : y ⊓ a ∈ Iic a) } ≤ ⊥ [PROOFSTEP] change x ⊓ (y ⊓ a) ≤ ⊥ -- improve lattice subtype API [GOAL] case disjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Iic a) x : α hx : x ∈ Iic a y : α hy : IsCompl x y ⊢ x ⊓ (y ⊓ a) ≤ ⊥ [PROOFSTEP] rw [← inf_assoc] [GOAL] case disjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Iic a) x : α hx : x ∈ Iic a y : α hy : IsCompl x y ⊢ x ⊓ y ⊓ a ≤ ⊥ [PROOFSTEP] exact le_trans inf_le_left hy.1.le_bot [GOAL] case codisjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Iic a) x : α hx : x ∈ Iic a y : α hy : IsCompl x y ⊢ Codisjoint { val := x, property := hx } { val := y ⊓ a, property := (_ : y ⊓ a ∈ Iic a) } [PROOFSTEP] rw [codisjoint_iff_le_sup] [GOAL] case codisjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Iic a) x : α hx : x ∈ Iic a y : α hy : IsCompl x y ⊢ ⊤ ≤ { val := x, property := hx } ⊔ { val := y ⊓ a, property := (_ : y ⊓ a ∈ Iic a) } [PROOFSTEP] change a ≤ x ⊔ y ⊓ a [GOAL] case codisjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Iic a) x : α hx : x ∈ Iic a y : α hy : IsCompl x y ⊢ a ≤ x ⊔ y ⊓ a [PROOFSTEP] rw [← sup_inf_assoc_of_le _ (Set.mem_Iic.1 hx), hy.2.eq_top, top_inf_eq] [GOAL] α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Ici a) x : α hx : x ∈ Ici a y : α hy : IsCompl x y ⊢ IsCompl { val := x, property := hx } { val := y ⊔ a, property := (_ : y ⊔ a ∈ Ici a) } [PROOFSTEP] constructor [GOAL] case disjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Ici a) x : α hx : x ∈ Ici a y : α hy : IsCompl x y ⊢ Disjoint { val := x, property := hx } { val := y ⊔ a, property := (_ : y ⊔ a ∈ Ici a) } [PROOFSTEP] rw [disjoint_iff_inf_le] [GOAL] case disjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Ici a) x : α hx : x ∈ Ici a y : α hy : IsCompl x y ⊢ { val := x, property := hx } ⊓ { val := y ⊔ a, property := (_ : y ⊔ a ∈ Ici a) } ≤ ⊥ [PROOFSTEP] change x ⊓ (y ⊔ a) ≤ a [GOAL] case disjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Ici a) x : α hx : x ∈ Ici a y : α hy : IsCompl x y ⊢ x ⊓ (y ⊔ a) ≤ a [PROOFSTEP] rw [← inf_sup_assoc_of_le _ (Set.mem_Ici.1 hx), hy.1.eq_bot, bot_sup_eq] [GOAL] case codisjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Ici a) x : α hx : x ∈ Ici a y : α hy : IsCompl x y ⊢ Codisjoint { val := x, property := hx } { val := y ⊔ a, property := (_ : y ⊔ a ∈ Ici a) } [PROOFSTEP] rw [codisjoint_iff_le_sup] [GOAL] case codisjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Ici a) x : α hx : x ∈ Ici a y : α hy : IsCompl x y ⊢ ⊤ ≤ { val := x, property := hx } ⊔ { val := y ⊔ a, property := (_ : y ⊔ a ∈ Ici a) } [PROOFSTEP] change ⊤ ≤ x ⊔ (y ⊔ a) -- improve lattice subtype API [GOAL] case codisjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Ici a) x : α hx : x ∈ Ici a y : α hy : IsCompl x y ⊢ ⊤ ≤ x ⊔ (y ⊔ a) [PROOFSTEP] rw [← sup_assoc] [GOAL] case codisjoint α : Type u_1 inst✝³ : Lattice α inst✝² : IsModularLattice α a : α inst✝¹ : BoundedOrder α inst✝ : ComplementedLattice α x✝ : ↑(Ici a) x : α hx : x ∈ Ici a y : α hy : IsCompl x y ⊢ ⊤ ≤ x ⊔ y ⊔ a [PROOFSTEP] exact le_trans hy.2.top_le le_sup_left
{"mathlib_filename": "Mathlib.Order.ModularLattice", "llama_tokens": 10167}
[GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ g : β → γ f : α → β s : Set α x : α h : IsLUB s x ⊢ IsLUB (id '' s) (id x) [PROOFSTEP] simpa only [image_id] using h [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ g : β → γ f : α → β hf : LeftOrdContinuous f a₁ a₂ : α h : a₁ ≤ a₂ ⊢ a₂ ∈ upperBounds {a₁, a₂} [PROOFSTEP] simp [*] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ g : β → γ f : α → β hg : LeftOrdContinuous g hf : LeftOrdContinuous f s : Set α x : α h : IsLUB s x ⊢ IsLUB (g ∘ f '' s) ((g ∘ f) x) [PROOFSTEP] simpa only [image_image] using hg (hf h) [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ g : β → γ f✝ : α → β f : α → α hf : LeftOrdContinuous f n : ℕ ⊢ LeftOrdContinuous f^[n] [PROOFSTEP] induction n with | zero => exact LeftOrdContinuous.id α | succ n ihn => exact ihn.comp hf [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ g : β → γ f✝ : α → β f : α → α hf : LeftOrdContinuous f n : ℕ ⊢ LeftOrdContinuous f^[n] [PROOFSTEP] induction n with | zero => exact LeftOrdContinuous.id α | succ n ihn => exact ihn.comp hf [GOAL] case zero α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ g : β → γ f✝ : α → β f : α → α hf : LeftOrdContinuous f ⊢ LeftOrdContinuous f^[Nat.zero] [PROOFSTEP] | zero => exact LeftOrdContinuous.id α [GOAL] case zero α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ g : β → γ f✝ : α → β f : α → α hf : LeftOrdContinuous f ⊢ LeftOrdContinuous f^[Nat.zero] [PROOFSTEP] exact LeftOrdContinuous.id α [GOAL] case succ α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ g : β → γ f✝ : α → β f : α → α hf : LeftOrdContinuous f n : ℕ ihn : LeftOrdContinuous f^[n] ⊢ LeftOrdContinuous f^[Nat.succ n] [PROOFSTEP] | succ n ihn => exact ihn.comp hf [GOAL] case succ α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ g : β → γ f✝ : α → β f : α → α hf : LeftOrdContinuous f n : ℕ ihn : LeftOrdContinuous f^[n] ⊢ LeftOrdContinuous f^[Nat.succ n] [PROOFSTEP] exact ihn.comp hf [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup β f : α → β hf : LeftOrdContinuous f x y : α ⊢ IsLUB (f '' {x, y}) (f x ⊔ f y) [PROOFSTEP] simp only [image_pair, isLUB_pair] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup β f : α → β hf : LeftOrdContinuous f h : Injective f x y : α ⊢ f x ≤ f y ↔ x ≤ y [PROOFSTEP] simp only [← sup_eq_right, ← hf.map_sup, h.eq_iff] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : SemilatticeSup α inst✝ : SemilatticeSup β f : α → β hf : LeftOrdContinuous f h : Injective f x y : α ⊢ f x < f y ↔ x < y [PROOFSTEP] simp only [lt_iff_le_not_le, hf.le_iff h] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β f : α → β hf : LeftOrdContinuous f s : Set α ⊢ f (sSup s) = ⨆ (x : α) (_ : x ∈ s), f x [PROOFSTEP] rw [hf.map_sSup', sSup_image] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β f : α → β hf : LeftOrdContinuous f g : ι → α ⊢ f (⨆ (i : ι), g i) = ⨆ (i : ι), f (g i) [PROOFSTEP] simp only [iSup, hf.map_sSup', ← range_comp] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝¹ : CompleteLattice α inst✝ : CompleteLattice β f : α → β hf : LeftOrdContinuous f g : ι → α ⊢ sSup (range (f ∘ fun i => g i)) = sSup (range fun i => f (g i)) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : ConditionallyCompleteLattice α inst✝¹ : ConditionallyCompleteLattice β inst✝ : Nonempty ι f : α → β hf : LeftOrdContinuous f g : ι → α hg : BddAbove (range g) ⊢ f (⨆ (i : ι), g i) = ⨆ (i : ι), f (g i) [PROOFSTEP] simp only [iSup, hf.map_csSup (range_nonempty _) hg, ← range_comp] [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : ConditionallyCompleteLattice α inst✝¹ : ConditionallyCompleteLattice β inst✝ : Nonempty ι f : α → β hf : LeftOrdContinuous f g : ι → α hg : BddAbove (range g) ⊢ sSup (range (f ∘ g)) = sSup (range fun i => f (g i)) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w ι : Sort x inst✝² : Preorder α inst✝¹ : Preorder β inst✝ : Preorder γ g : β → γ f : α → β s : Set α x : α h : IsGLB s x ⊢ IsGLB (id '' s) (id x) [PROOFSTEP] simpa only [image_id] using h
{"mathlib_filename": "Mathlib.Order.OrdContinuous", "llama_tokens": 2386}
[GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : OrderBot α a✝ b✝ x a b : α ⊢ b < a → b = ⊥ ↔ b ≠ ⊥ → b ≤ a → a ≤ b [PROOFSTEP] simp only [Ne.def, @not_imp_comm (b = ⊥), not_imp, lt_iff_le_not_le] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : OrderBot α a b x : α h : IsAtom a ⊢ x ≤ a ↔ x = ⊥ ∨ x = a [PROOFSTEP] rw [le_iff_lt_or_eq, h.lt_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : OrderBot α a b x : α ⊢ ⊥ ⋖ a ↔ IsAtom a [PROOFSTEP] simp only [Covby, bot_lt_iff_ne_bot, IsAtom, not_imp_not] [GOAL] α : Type u_1 β : Type u_2 a : α ι : Sort u_3 inst✝ : Order.Frame α ha : IsAtom a f : ι → α ⊢ a ≤ iSup f ↔ ∃ i, a ≤ f i [PROOFSTEP] refine ⟨?_, fun ⟨i, hi⟩ => le_trans hi (le_iSup _ _)⟩ [GOAL] α : Type u_1 β : Type u_2 a : α ι : Sort u_3 inst✝ : Order.Frame α ha : IsAtom a f : ι → α ⊢ a ≤ iSup f → ∃ i, a ≤ f i [PROOFSTEP] show (a ≤ ⨆ i, f i) → _ [GOAL] α : Type u_1 β : Type u_2 a : α ι : Sort u_3 inst✝ : Order.Frame α ha : IsAtom a f : ι → α ⊢ a ≤ ⨆ (i : ι), f i → ∃ i, a ≤ f i [PROOFSTEP] refine fun h => of_not_not fun ha' => ?_ [GOAL] α : Type u_1 β : Type u_2 a : α ι : Sort u_3 inst✝ : Order.Frame α ha : IsAtom a f : ι → α h : a ≤ ⨆ (i : ι), f i ha' : ¬∃ i, a ≤ f i ⊢ False [PROOFSTEP] push_neg at ha' [GOAL] α : Type u_1 β : Type u_2 a : α ι : Sort u_3 inst✝ : Order.Frame α ha : IsAtom a f : ι → α h : a ≤ ⨆ (i : ι), f i ha' : ∀ (i : ι), ¬a ≤ f i ⊢ False [PROOFSTEP] have ha'' : Disjoint a (⨆ i, f i) := disjoint_iSup_iff.2 fun i => fun x hxa hxf => le_bot_iff.2 <| of_not_not fun hx => have hxa : x < a := (le_iff_eq_or_lt.1 hxa).resolve_left (by rintro rfl; exact ha' _ hxf) hx (ha.2 _ hxa) [GOAL] α : Type u_1 β : Type u_2 a : α ι : Sort u_3 inst✝ : Order.Frame α ha : IsAtom a f : ι → α h : a ≤ ⨆ (i : ι), f i ha' : ∀ (i : ι), ¬a ≤ f i i : ι x : α hxa : x ≤ a hxf : x ≤ f i hx : ¬x = ⊥ ⊢ ¬x = a [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 inst✝ : Order.Frame α f : ι → α i : ι x : α hxf : x ≤ f i hx : ¬x = ⊥ ha : IsAtom x h : x ≤ ⨆ (i : ι), f i ha' : ∀ (i : ι), ¬x ≤ f i hxa : x ≤ x ⊢ False [PROOFSTEP] exact ha' _ hxf [GOAL] α : Type u_1 β : Type u_2 a : α ι : Sort u_3 inst✝ : Order.Frame α ha : IsAtom a f : ι → α h : a ≤ ⨆ (i : ι), f i ha' : ∀ (i : ι), ¬a ≤ f i ha'' : Disjoint a (⨆ (i : ι), f i) ⊢ False [PROOFSTEP] obtain rfl := le_bot_iff.1 (ha'' le_rfl h) [GOAL] α : Type u_1 β : Type u_2 ι : Sort u_3 inst✝ : Order.Frame α f : ι → α ha : IsAtom ⊥ h : ⊥ ≤ ⨆ (i : ι), f i ha' : ∀ (i : ι), ¬⊥ ≤ f i ha'' : Disjoint ⊥ (⨆ (i : ι), f i) ⊢ False [PROOFSTEP] exact ha.1 rfl [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b✝ : α b : ↑(Ici a) ⊢ IsAtom b ↔ a ⋖ ↑b [PROOFSTEP] rw [← bot_covby_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b✝ : α b : ↑(Ici a) ⊢ ⊥ ⋖ b ↔ a ⋖ ↑b [PROOFSTEP] refine' (Set.OrdConnected.apply_covby_apply_iff (OrderEmbedding.subtype fun c => a ≤ c) _).symm [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b✝ : α b : ↑(Ici a) ⊢ OrdConnected (range ↑(OrderEmbedding.subtype fun c => a ≤ c)) [PROOFSTEP] simpa only [OrderEmbedding.subtype_apply, Subtype.range_coe_subtype] using Set.ordConnected_Ici [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a✝ b : α a : ↑(Iic b) ⊢ IsCoatom a ↔ ↑a ⋖ b [PROOFSTEP] rw [← covby_top_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a✝ b : α a : ↑(Iic b) ⊢ a ⋖ ⊤ ↔ ↑a ⋖ b [PROOFSTEP] refine' (Set.OrdConnected.apply_covby_apply_iff (OrderEmbedding.subtype fun c => c ≤ b) _).symm [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a✝ b : α a : ↑(Iic b) ⊢ OrdConnected (range ↑(OrderEmbedding.subtype fun c => c ≤ b)) [PROOFSTEP] simpa only [OrderEmbedding.subtype_apply, Subtype.range_coe_subtype] using Set.ordConnected_Iic [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b : α h : a ≤ b ⊢ a ⋖ b ↔ IsAtom { val := b, property := h } [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a b : α h : a ≤ b ⊢ a ⋖ b ↔ IsCoatom { val := a, property := h } [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : OrderBot α h : IsCoatomic αᵒᵈ b : α ⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] apply h.eq_top_or_exists_le_coatom [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : OrderBot α h : IsAtomic α b : αᵒᵈ ⊢ b = ⊤ ∨ ∃ a, IsCoatom a ∧ b ≤ a [PROOFSTEP] apply h.eq_bot_or_exists_atom_le [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : OrderTop α h : IsAtomic αᵒᵈ b : α ⊢ b = ⊤ ∨ ∃ a, IsCoatom a ∧ b ≤ a [PROOFSTEP] apply h.eq_bot_or_exists_atom_le [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PartialOrder α inst✝ : OrderTop α h : IsCoatomic α b : αᵒᵈ ⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] apply h.eq_top_or_exists_le_coatom [GOAL] α✝ : Type u_1 β : Type u_2 inst✝² : PartialOrder α✝ α : Type u_3 inst✝¹ : BooleanAlgebra α inst✝ : IsAtomic α x y : α ⊢ x ≤ y ↔ ∀ (a : α), IsAtom a → a ≤ x → a ≤ y [PROOFSTEP] refine ⟨fun h a _ => (le_trans · h), fun h => ?_⟩ [GOAL] α✝ : Type u_1 β : Type u_2 inst✝² : PartialOrder α✝ α : Type u_3 inst✝¹ : BooleanAlgebra α inst✝ : IsAtomic α x y : α h : ∀ (a : α), IsAtom a → a ≤ x → a ≤ y ⊢ x ≤ y [PROOFSTEP] have : x ⊓ yᶜ = ⊥ := of_not_not fun hbot => have ⟨a, ha, hle⟩ := (eq_bot_or_exists_atom_le _).resolve_left hbot have ⟨hx, hy'⟩ := le_inf_iff.1 hle have hy := h a ha hx have : a ≤ y ⊓ yᶜ := le_inf_iff.2 ⟨hy, hy'⟩ ha.1 (by simpa using this) [GOAL] α✝ : Type u_1 β : Type u_2 inst✝² : PartialOrder α✝ α : Type u_3 inst✝¹ : BooleanAlgebra α inst✝ : IsAtomic α x y : α h : ∀ (a : α), IsAtom a → a ≤ x → a ≤ y hbot : ¬x ⊓ yᶜ = ⊥ a : α ha : IsAtom a hle : a ≤ x ⊓ yᶜ hx : a ≤ x hy' : a ≤ yᶜ hy : a ≤ y this : a ≤ y ⊓ yᶜ ⊢ a = ⊥ [PROOFSTEP] simpa using this [GOAL] α✝ : Type u_1 β : Type u_2 inst✝² : PartialOrder α✝ α : Type u_3 inst✝¹ : BooleanAlgebra α inst✝ : IsAtomic α x y : α h : ∀ (a : α), IsAtom a → a ≤ x → a ≤ y this : x ⊓ yᶜ = ⊥ ⊢ x ≤ y [PROOFSTEP] exact (eq_compl_iff_isCompl.1 (by simp)).inf_right_eq_bot_iff.1 this [GOAL] α✝ : Type u_1 β : Type u_2 inst✝² : PartialOrder α✝ α : Type u_3 inst✝¹ : BooleanAlgebra α inst✝ : IsAtomic α x y : α h : ∀ (a : α), IsAtom a → a ≤ x → a ≤ y this : x ⊓ yᶜ = ⊥ ⊢ y = yᶜᶜ [PROOFSTEP] simp [GOAL] α✝ : Type u_1 β : Type u_2 inst✝² : PartialOrder α✝ α : Type u_3 inst✝¹ : BooleanAlgebra α inst✝ : IsAtomic α x y : α ⊢ x = y ↔ ∀ (a : α), IsAtom a → (a ≤ x ↔ a ≤ y) [PROOFSTEP] refine ⟨fun h => h ▸ by simp, fun h => ?_⟩ [GOAL] α✝ : Type u_1 β : Type u_2 inst✝² : PartialOrder α✝ α : Type u_3 inst✝¹ : BooleanAlgebra α inst✝ : IsAtomic α x y : α h : x = y ⊢ ∀ (a : α), IsAtom a → (a ≤ x ↔ a ≤ x) [PROOFSTEP] simp [GOAL] α✝ : Type u_1 β : Type u_2 inst✝² : PartialOrder α✝ α : Type u_3 inst✝¹ : BooleanAlgebra α inst✝ : IsAtomic α x y : α h : ∀ (a : α), IsAtom a → (a ≤ x ↔ a ≤ y) ⊢ x = y [PROOFSTEP] exact le_antisymm (le_iff_atom_le_imp.2 fun a ha hx => (h a ha).1 hx) (le_iff_atom_le_imp.2 fun a ha hy => (h a ha).2 hy) [GOAL] α✝ : Type u_1 β : Type u_2 inst✝² : PartialOrder α✝ α : Type ?u.23945 inst✝¹ : CompleteBooleanAlgebra α inst✝ : IsAtomic α src✝ : CompleteBooleanAlgebra α := inst✝¹ ι✝ : Type ?u.23945 κ✝ : ι✝ → Type ?u.23945 f : (a : ι✝) → κ✝ a → α a : α ha : IsAtom a ⊢ a ≤ ⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b ↔ a ≤ ⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a) [PROOFSTEP] simp only [le_iInf_iff, atom_le_iSup ha] [GOAL] α✝ : Type u_1 β : Type u_2 inst✝² : PartialOrder α✝ α : Type ?u.23945 inst✝¹ : CompleteBooleanAlgebra α inst✝ : IsAtomic α src✝ : CompleteBooleanAlgebra α := inst✝¹ ι✝ : Type ?u.23945 κ✝ : ι✝ → Type ?u.23945 f : (a : ι✝) → κ✝ a → α a : α ha : IsAtom a ⊢ (∀ (i : ι✝), ∃ i_1, a ≤ f i i_1) ↔ ∃ i, ∀ (i_1 : ι✝), a ≤ f i_1 (i i_1) [PROOFSTEP] rw [Classical.skolem] [GOAL] α : Type u_1 β : Type u_2 inst✝ : CompleteLattice α h : IsCoatomistic αᵒᵈ b : α ⊢ ∃ s, b = sSup s ∧ ∀ (a : α), a ∈ s → IsAtom a [PROOFSTEP] apply h.eq_sInf_coatoms [GOAL] α : Type u_1 β : Type u_2 inst✝ : CompleteLattice α h : IsAtomistic α b : αᵒᵈ ⊢ ∃ s, b = sInf s ∧ ∀ (a : αᵒᵈ), a ∈ s → IsCoatom a [PROOFSTEP] apply h.eq_sSup_atoms [GOAL] α : Type u_1 β : Type u_2 inst✝ : CompleteLattice α h : IsAtomistic αᵒᵈ b : α ⊢ ∃ s, b = sInf s ∧ ∀ (a : α), a ∈ s → IsCoatom a [PROOFSTEP] apply h.eq_sSup_atoms [GOAL] α : Type u_1 β : Type u_2 inst✝ : CompleteLattice α h : IsCoatomistic α b : αᵒᵈ ⊢ ∃ s, b = sSup s ∧ ∀ (a : αᵒᵈ), a ∈ s → IsAtom a [PROOFSTEP] apply h.eq_sInf_coatoms [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsAtomistic α b : α ⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] rcases eq_sSup_atoms b with ⟨s, rfl, hs⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsAtomistic α s : Set α hs : ∀ (a : α), a ∈ s → IsAtom a ⊢ sSup s = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ sSup s [PROOFSTEP] cases' s.eq_empty_or_nonempty with h h [GOAL] case intro.intro.inl α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsAtomistic α s : Set α hs : ∀ (a : α), a ∈ s → IsAtom a h : s = ∅ ⊢ sSup s = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ sSup s [PROOFSTEP] simp [h] [GOAL] case intro.intro.inr α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsAtomistic α s : Set α hs : ∀ (a : α), a ∈ s → IsAtom a h : Set.Nonempty s ⊢ sSup s = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ sSup s [PROOFSTEP] exact Or.intro_right _ ⟨h.some, hs _ h.choose_spec, le_sSup h.choose_spec⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsAtomistic α b : α ⊢ sSup {a | IsAtom a ∧ a ≤ b} = b [PROOFSTEP] rcases eq_sSup_atoms b with ⟨s, rfl, hs⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsAtomistic α s : Set α hs : ∀ (a : α), a ∈ s → IsAtom a ⊢ sSup {a | IsAtom a ∧ a ≤ sSup s} = sSup s [PROOFSTEP] exact le_antisymm (sSup_le fun _ => And.right) (sSup_le_sSup fun a ha => ⟨hs a ha, le_sSup ha⟩) [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsAtomistic α ⊢ sSup {a | IsAtom a} = ⊤ [PROOFSTEP] refine' Eq.trans (congr rfl (Set.ext fun x => _)) (sSup_atoms_le_eq ⊤) [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsAtomistic α x : α ⊢ x ∈ {a | IsAtom a} ↔ x ∈ {a | IsAtom a ∧ a ≤ ⊤} [PROOFSTEP] exact (and_iff_left le_top).symm [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsAtomistic α a b : α h : ∀ (c : α), IsAtom c → c ≤ a → c ≤ b ⊢ a ≤ b [PROOFSTEP] rw [← sSup_atoms_le_eq a, ← sSup_atoms_le_eq b] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsAtomistic α a b : α h : ∀ (c : α), IsAtom c → c ≤ a → c ≤ b ⊢ sSup {a_1 | IsAtom a_1 ∧ a_1 ≤ a} ≤ sSup {a | IsAtom a ∧ a ≤ b} [PROOFSTEP] exact sSup_le_sSup fun c hc => ⟨hc.1, h c hc.1 hc.2⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsAtomistic α a b : α ⊢ a = b ↔ ∀ (c : α), IsAtom c → (c ≤ a ↔ c ≤ b) [PROOFSTEP] refine ⟨fun h => h ▸ by simp, fun h => ?_⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsAtomistic α a b : α h : a = b ⊢ ∀ (c : α), IsAtom c → (c ≤ a ↔ c ≤ a) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsAtomistic α a b : α h : ∀ (c : α), IsAtom c → (c ≤ a ↔ c ≤ b) ⊢ a = b [PROOFSTEP] exact le_antisymm (le_iff_atom_le_imp.2 fun a ha hx => (h a ha).1 hx) (le_iff_atom_le_imp.2 fun a ha hy => (h a ha).2 hy) [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsCoatomistic α b : α ⊢ b = ⊤ ∨ ∃ a, IsCoatom a ∧ b ≤ a [PROOFSTEP] rcases eq_sInf_coatoms b with ⟨s, rfl, hs⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsCoatomistic α s : Set α hs : ∀ (a : α), a ∈ s → IsCoatom a ⊢ sInf s = ⊤ ∨ ∃ a, IsCoatom a ∧ sInf s ≤ a [PROOFSTEP] cases' s.eq_empty_or_nonempty with h h [GOAL] case intro.intro.inl α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsCoatomistic α s : Set α hs : ∀ (a : α), a ∈ s → IsCoatom a h : s = ∅ ⊢ sInf s = ⊤ ∨ ∃ a, IsCoatom a ∧ sInf s ≤ a [PROOFSTEP] simp [h] [GOAL] case intro.intro.inr α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsCoatomistic α s : Set α hs : ∀ (a : α), a ∈ s → IsCoatom a h : Set.Nonempty s ⊢ sInf s = ⊤ ∨ ∃ a, IsCoatom a ∧ sInf s ≤ a [PROOFSTEP] exact Or.intro_right _ ⟨h.some, hs _ h.choose_spec, sInf_le h.choose_spec⟩ [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α ⊢ ∃ s, b = sSup s ∧ ∀ (a : α), a ∈ s → IsAtom a [PROOFSTEP] inhabit α [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α ⊢ ∃ s, b = sSup s ∧ ∀ (a : α), a ∈ s → IsAtom a [PROOFSTEP] refine ⟨{a | IsAtom a ∧ a ≤ b}, ?_, fun a ha => ha.1⟩ [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α ⊢ b = sSup {a | IsAtom a ∧ a ≤ b} [PROOFSTEP] refine le_antisymm ?_ (sSup_le fun c hc => hc.2) [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α ⊢ b ≤ sSup {a | IsAtom a ∧ a ≤ b} [PROOFSTEP] have : (⨅ c : α, ⨆ x, b ⊓ cond x c (cᶜ)) = b := by simp [iSup_bool_eq, iInf_const] [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α ⊢ (⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ) = b [PROOFSTEP] simp [iSup_bool_eq, iInf_const] [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α this : (⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ) = b ⊢ b ≤ sSup {a | IsAtom a ∧ a ≤ b} [PROOFSTEP] rw [← this] [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α this : (⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ) = b ⊢ (⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ) ≤ sSup {a | IsAtom a ∧ a ≤ ⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ} [PROOFSTEP] clear this [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α ⊢ (⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ) ≤ sSup {a | IsAtom a ∧ a ≤ ⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ} [PROOFSTEP] simp_rw [iInf_iSup_eq, iSup_le_iff] [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α ⊢ ∀ (i : α → Bool), (⨅ (a : α), b ⊓ bif i a then a else aᶜ) ≤ sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ} [PROOFSTEP] intro g [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool ⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤ sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ} [PROOFSTEP] by_cases (⨅ a, b ⊓ cond (g a) a (aᶜ)) = ⊥ [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool ⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤ sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ} [PROOFSTEP] by_cases (⨅ a, b ⊓ cond (g a) a (aᶜ)) = ⊥ [GOAL] case pos α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool h : (⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥ ⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤ sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ} case neg α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool h : ¬(⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥ ⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤ sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ} [PROOFSTEP] case pos => simp [h] [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool h : (⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥ ⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤ sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ} [PROOFSTEP] case pos => simp [h] [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool h : (⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥ ⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤ sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ} [PROOFSTEP] simp [h] [GOAL] case neg α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool h : ¬(⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥ ⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤ sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ} [PROOFSTEP] refine le_sSup ⟨⟨h, fun c hc => ?_⟩, le_trans (by rfl) (le_iSup _ g)⟩ [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool h : ¬(⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥ ⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤ ⨅ (a : α), b ⊓ bif g a then a else aᶜ [PROOFSTEP] rfl [GOAL] case neg α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool h : ¬(⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥ c : α hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ ⊢ c = ⊥ [PROOFSTEP] clear h [GOAL] case neg α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool c : α hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ ⊢ c = ⊥ [PROOFSTEP] have := lt_of_lt_of_le hc (le_trans (iInf_le _ c) inf_le_right) [GOAL] case neg α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool c : α hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ this : c < bif g c then c else cᶜ ⊢ c = ⊥ [PROOFSTEP] revert this [GOAL] case neg α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool c : α hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ ⊢ (c < bif g c then c else cᶜ) → c = ⊥ [PROOFSTEP] nontriviality α [GOAL] α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool c : α hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ ✝ : Nontrivial α ⊢ (c < bif g c then c else cᶜ) → c = ⊥ [PROOFSTEP] cases g c [GOAL] case false α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool c : α hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ ✝ : Nontrivial α ⊢ (c < bif false then c else cᶜ) → c = ⊥ [PROOFSTEP] simp [GOAL] case true α✝ : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α✝ α : Type ?u.31123 inst✝ : CompleteAtomicBooleanAlgebra α b : α inhabited_h : Inhabited α g : α → Bool c : α hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ ✝ : Nontrivial α ⊢ (c < bif true then c else cᶜ) → c = ⊥ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : LE α inst✝ : BoundedOrder α ⊢ IsSimpleOrder α ↔ IsSimpleOrder αᵒᵈ [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 inst✝¹ : LE α inst✝ : BoundedOrder α ⊢ IsSimpleOrder α → IsSimpleOrder αᵒᵈ [PROOFSTEP] intro i [GOAL] case mpr α : Type u_1 β : Type u_2 inst✝¹ : LE α inst✝ : BoundedOrder α ⊢ IsSimpleOrder αᵒᵈ → IsSimpleOrder α [PROOFSTEP] intro i [GOAL] case mp α : Type u_1 β : Type u_2 inst✝¹ : LE α inst✝ : BoundedOrder α i : IsSimpleOrder α ⊢ IsSimpleOrder αᵒᵈ [PROOFSTEP] haveI := i [GOAL] case mpr α : Type u_1 β : Type u_2 inst✝¹ : LE α inst✝ : BoundedOrder α i : IsSimpleOrder αᵒᵈ ⊢ IsSimpleOrder α [PROOFSTEP] haveI := i [GOAL] case mp α : Type u_1 β : Type u_2 inst✝¹ : LE α inst✝ : BoundedOrder α i this : IsSimpleOrder α ⊢ IsSimpleOrder αᵒᵈ [PROOFSTEP] exact { exists_pair_ne := @exists_pair_ne α _ eq_bot_or_eq_top := fun a => Or.symm (eq_bot_or_eq_top (OrderDual.ofDual a) : _ ∨ _) } [GOAL] case mpr α : Type u_1 β : Type u_2 inst✝¹ : LE α inst✝ : BoundedOrder α i this : IsSimpleOrder αᵒᵈ ⊢ IsSimpleOrder α [PROOFSTEP] exact { exists_pair_ne := @exists_pair_ne αᵒᵈ _ eq_bot_or_eq_top := fun a => Or.symm (eq_bot_or_eq_top (OrderDual.toDual a)) } [GOAL] α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α ⊢ ⊥ ≠ ⊤ [PROOFSTEP] obtain ⟨a, b, h⟩ := exists_pair_ne α [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α a b : α h : a ≠ b ⊢ ⊥ ≠ ⊤ [PROOFSTEP] rcases eq_bot_or_eq_top a with (rfl | rfl) [GOAL] case intro.intro.inl α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α b : α h : ⊥ ≠ b ⊢ ⊥ ≠ ⊤ [PROOFSTEP] rcases eq_bot_or_eq_top b with (rfl | rfl) [GOAL] case intro.intro.inr α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α b : α h : ⊤ ≠ b ⊢ ⊥ ≠ ⊤ [PROOFSTEP] rcases eq_bot_or_eq_top b with (rfl | rfl) [GOAL] case intro.intro.inl.inl α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α h : ⊥ ≠ ⊥ ⊢ ⊥ ≠ ⊤ [PROOFSTEP] first | simpa | simpa using h.symm [GOAL] case intro.intro.inl.inl α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α h : ⊥ ≠ ⊥ ⊢ ⊥ ≠ ⊤ [PROOFSTEP] simpa [GOAL] case intro.intro.inl.inl α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α h : ⊥ ≠ ⊥ ⊢ ⊥ ≠ ⊤ [PROOFSTEP] simpa using h.symm [GOAL] case intro.intro.inl.inr α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α h : ⊥ ≠ ⊤ ⊢ ⊥ ≠ ⊤ [PROOFSTEP] first | simpa | simpa using h.symm [GOAL] case intro.intro.inl.inr α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α h : ⊥ ≠ ⊤ ⊢ ⊥ ≠ ⊤ [PROOFSTEP] simpa [GOAL] case intro.intro.inr.inl α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α h : ⊤ ≠ ⊥ ⊢ ⊥ ≠ ⊤ [PROOFSTEP] first | simpa | simpa using h.symm [GOAL] case intro.intro.inr.inl α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α h : ⊤ ≠ ⊥ ⊢ ⊥ ≠ ⊤ [PROOFSTEP] simpa [GOAL] case intro.intro.inr.inl α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α h : ⊤ ≠ ⊥ ⊢ ⊥ ≠ ⊤ [PROOFSTEP] simpa using h.symm [GOAL] case intro.intro.inr.inr α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α h : ⊤ ≠ ⊤ ⊢ ⊥ ≠ ⊤ [PROOFSTEP] first | simpa | simpa using h.symm [GOAL] case intro.intro.inr.inr α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α h : ⊤ ≠ ⊤ ⊢ ⊥ ≠ ⊤ [PROOFSTEP] simpa [GOAL] case intro.intro.inr.inr α : Type u_1 β : Type u_2 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α h : ⊤ ≠ ⊤ ⊢ ⊥ ≠ ⊤ [PROOFSTEP] simpa using h.symm [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α✝ inst✝⁴ : BoundedOrder α✝ inst✝³ : IsSimpleOrder α✝ α : Type ?u.47226 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α ⊢ IsSimpleOrder α [PROOFSTEP] infer_instance [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α✝ inst✝⁴ : BoundedOrder α✝ inst✝³ : IsSimpleOrder α✝ α : Type ?u.47699 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α a : α ⊢ a ≤ a [PROOFSTEP] rcases eq_bot_or_eq_top a with (rfl | rfl) [GOAL] case inl α✝ : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α✝ inst✝⁴ : BoundedOrder α✝ inst✝³ : IsSimpleOrder α✝ α : Type ?u.47699 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α ⊢ ⊥ ≤ ⊥ [PROOFSTEP] simp [GOAL] case inr α✝ : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α✝ inst✝⁴ : BoundedOrder α✝ inst✝³ : IsSimpleOrder α✝ α : Type ?u.47699 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α ⊢ ⊤ ≤ ⊤ [PROOFSTEP] simp [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α✝ inst✝⁴ : BoundedOrder α✝ inst✝³ : IsSimpleOrder α✝ α : Type ?u.47699 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α a b c : α ⊢ a ≤ b → b ≤ c → a ≤ c [PROOFSTEP] rcases eq_bot_or_eq_top a with (rfl | rfl) [GOAL] case inl α✝ : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α✝ inst✝⁴ : BoundedOrder α✝ inst✝³ : IsSimpleOrder α✝ α : Type ?u.47699 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α b c : α ⊢ ⊥ ≤ b → b ≤ c → ⊥ ≤ c [PROOFSTEP] simp [GOAL] case inr α✝ : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α✝ inst✝⁴ : BoundedOrder α✝ inst✝³ : IsSimpleOrder α✝ α : Type ?u.47699 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α b c : α ⊢ ⊤ ≤ b → b ≤ c → ⊤ ≤ c [PROOFSTEP] rcases eq_bot_or_eq_top b with (rfl | rfl) [GOAL] case inr.inl α✝ : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α✝ inst✝⁴ : BoundedOrder α✝ inst✝³ : IsSimpleOrder α✝ α : Type ?u.47699 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α c : α ⊢ ⊤ ≤ ⊥ → ⊥ ≤ c → ⊤ ≤ c [PROOFSTEP] rcases eq_bot_or_eq_top c with (rfl | rfl) [GOAL] case inr.inl.inl α✝ : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α✝ inst✝⁴ : BoundedOrder α✝ inst✝³ : IsSimpleOrder α✝ α : Type ?u.47699 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α ⊢ ⊤ ≤ ⊥ → ⊥ ≤ ⊥ → ⊤ ≤ ⊥ [PROOFSTEP] simp [GOAL] case inr.inl.inr α✝ : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α✝ inst✝⁴ : BoundedOrder α✝ inst✝³ : IsSimpleOrder α✝ α : Type ?u.47699 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α ⊢ ⊤ ≤ ⊥ → ⊥ ≤ ⊤ → ⊤ ≤ ⊤ [PROOFSTEP] simp [GOAL] case inr.inr α✝ : Type u_1 β : Type u_2 inst✝⁵ : PartialOrder α✝ inst✝⁴ : BoundedOrder α✝ inst✝³ : IsSimpleOrder α✝ α : Type ?u.47699 inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α c : α ⊢ ⊤ ≤ ⊤ → ⊤ ≤ c → ⊤ ≤ c [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : BoundedOrder α inst✝¹ : IsSimpleOrder α inst✝ : DecidableEq α src✝ : PartialOrder α := inferInstance a b : α ⊢ a ≤ b ∨ b ≤ a [PROOFSTEP] rcases eq_bot_or_eq_top a with (rfl | rfl) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : BoundedOrder α inst✝¹ : IsSimpleOrder α inst✝ : DecidableEq α src✝ : PartialOrder α := inferInstance b : α ⊢ ⊥ ≤ b ∨ b ≤ ⊥ [PROOFSTEP] simp [GOAL] case inr α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : BoundedOrder α inst✝¹ : IsSimpleOrder α inst✝ : DecidableEq α src✝ : PartialOrder α := inferInstance b : α ⊢ ⊤ ≤ b ∨ b ≤ ⊤ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝ : Lattice α := inferInstance x y z : α ⊢ (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z [PROOFSTEP] rcases eq_bot_or_eq_top x with (rfl | rfl) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝ : Lattice α := inferInstance y z : α ⊢ (⊥ ⊔ y) ⊓ (⊥ ⊔ z) ≤ ⊥ ⊔ y ⊓ z [PROOFSTEP] simp [GOAL] case inr α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝ : Lattice α := inferInstance y z : α ⊢ (⊤ ⊔ y) ⊓ (⊤ ⊔ z) ≤ ⊤ ⊔ y ⊓ z [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α ⊢ IsAtomic αᵒᵈ [PROOFSTEP] infer_instance [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.66638 inst✝³ : DecidableEq α inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α x : α ⊢ (fun x => bif x then ⊤ else ⊥) ((fun x => decide (x = ⊤)) x) = x [PROOFSTEP] rcases eq_bot_or_eq_top x with (rfl | rfl) [GOAL] case inl α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.66638 inst✝³ : DecidableEq α inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α ⊢ (fun x => bif x then ⊤ else ⊥) ((fun x => decide (x = ⊤)) ⊥) = ⊥ [PROOFSTEP] simp [bot_ne_top] [GOAL] case inr α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.66638 inst✝³ : DecidableEq α inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α ⊢ (fun x => bif x then ⊤ else ⊥) ((fun x => decide (x = ⊤)) ⊤) = ⊤ [PROOFSTEP] simp [bot_ne_top] [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.66638 inst✝³ : DecidableEq α inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α x : Bool ⊢ (fun x => decide (x = ⊤)) ((fun x => bif x then ⊤ else ⊥) x) = x [PROOFSTEP] cases x [GOAL] case false α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.66638 inst✝³ : DecidableEq α inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α ⊢ (fun x => decide (x = ⊤)) ((fun x => bif x then ⊤ else ⊥) false) = false [PROOFSTEP] simp [bot_ne_top] [GOAL] case true α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.66638 inst✝³ : DecidableEq α inst✝² : LE α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α ⊢ (fun x => decide (x = ⊤)) ((fun x => bif x then ⊤ else ⊥) true) = true [PROOFSTEP] simp [bot_ne_top] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝ : α ≃ Bool := equivBool a b : α ⊢ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } a ≤ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } b ↔ a ≤ b [PROOFSTEP] rcases eq_bot_or_eq_top a with (rfl | rfl) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝ : α ≃ Bool := equivBool b : α ⊢ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } ⊥ ≤ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } b ↔ ⊥ ≤ b [PROOFSTEP] simp [bot_ne_top] [GOAL] case inr α : Type u_1 β : Type u_2 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝ : α ≃ Bool := equivBool b : α ⊢ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } ⊤ ≤ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } b ↔ ⊤ ≤ b [PROOFSTEP] rcases eq_bot_or_eq_top b with (rfl | rfl) [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝ : α ≃ Bool := equivBool ⊢ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } ⊤ ≤ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } ⊥ ↔ ⊤ ≤ ⊥ [PROOFSTEP] simp [bot_ne_top.symm, bot_ne_top, Bool.false_lt_true] [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝³ : DecidableEq α inst✝² : PartialOrder α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝ : α ≃ Bool := equivBool ⊢ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } ⊤ ≤ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } ⊤ ↔ ⊤ ≤ ⊤ [PROOFSTEP] simp [bot_ne_top] [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.72459 inst✝³ : DecidableEq α inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α) src✝ : DistribLattice α := IsSimpleOrder.distribLattice x : α ⊢ x ⊓ xᶜ ≤ ⊥ [PROOFSTEP] rcases eq_bot_or_eq_top x with (rfl | rfl) [GOAL] case inl α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.72459 inst✝³ : DecidableEq α inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α) src✝ : DistribLattice α := IsSimpleOrder.distribLattice ⊢ ⊥ ⊓ ⊥ᶜ ≤ ⊥ [PROOFSTEP] simp [GOAL] case inr α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.72459 inst✝³ : DecidableEq α inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α) src✝ : DistribLattice α := IsSimpleOrder.distribLattice ⊢ ⊤ ⊓ ⊤ᶜ ≤ ⊥ [PROOFSTEP] simp [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.72459 inst✝³ : DecidableEq α inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α) src✝ : DistribLattice α := IsSimpleOrder.distribLattice x : α ⊢ ⊤ ≤ x ⊔ xᶜ [PROOFSTEP] rcases eq_bot_or_eq_top x with (rfl | rfl) [GOAL] case inl α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.72459 inst✝³ : DecidableEq α inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α) src✝ : DistribLattice α := IsSimpleOrder.distribLattice ⊢ ⊤ ≤ ⊥ ⊔ ⊥ᶜ [PROOFSTEP] simp [GOAL] case inr α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.72459 inst✝³ : DecidableEq α inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α) src✝ : DistribLattice α := IsSimpleOrder.distribLattice ⊢ ⊤ ≤ ⊤ ⊔ ⊤ᶜ [PROOFSTEP] simp [GOAL] α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.72459 inst✝³ : DecidableEq α inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α) src✝ : DistribLattice α := IsSimpleOrder.distribLattice x y : α ⊢ x \ y = x ⊓ yᶜ [PROOFSTEP] rcases eq_bot_or_eq_top x with (rfl | rfl) [GOAL] case inl α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.72459 inst✝³ : DecidableEq α inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α) src✝ : DistribLattice α := IsSimpleOrder.distribLattice y : α ⊢ ⊥ \ y = ⊥ ⊓ yᶜ [PROOFSTEP] simp [bot_ne_top, SDiff.sdiff, compl] [GOAL] case inr α✝ : Type u_1 β : Type u_2 inst✝⁷ : DecidableEq α✝ inst✝⁶ : PartialOrder α✝ inst✝⁵ : BoundedOrder α✝ inst✝⁴ : IsSimpleOrder α✝ α : Type ?u.72459 inst✝³ : DecidableEq α inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α) src✝ : DistribLattice α := IsSimpleOrder.distribLattice y : α ⊢ ⊤ \ y = ⊤ ⊓ yᶜ [PROOFSTEP] simp [bot_ne_top, SDiff.sdiff, compl] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α x : α h : x ∈ s ⊢ x ≤ sSup s [PROOFSTEP] rcases eq_bot_or_eq_top x with (rfl | rfl) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ⊥ ∈ s ⊢ ⊥ ≤ sSup s [PROOFSTEP] exact bot_le [GOAL] case inr α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ⊤ ∈ s ⊢ ⊤ ≤ sSup s [PROOFSTEP] dsimp [GOAL] case inr α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ⊤ ∈ s ⊢ ⊤ ≤ if ⊤ ∈ s then ⊤ else ⊥ [PROOFSTEP] rw [if_pos h] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α x : α h : ∀ (b : α), b ∈ s → b ≤ x ⊢ sSup s ≤ x [PROOFSTEP] rcases eq_bot_or_eq_top x with (rfl | rfl) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ∀ (b : α), b ∈ s → b ≤ ⊥ ⊢ sSup s ≤ ⊥ [PROOFSTEP] dsimp [GOAL] case inl α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ∀ (b : α), b ∈ s → b ≤ ⊥ ⊢ (if ⊤ ∈ s then ⊤ else ⊥) ≤ ⊥ [PROOFSTEP] rw [if_neg] [GOAL] case inl.hnc α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ∀ (b : α), b ∈ s → b ≤ ⊥ ⊢ ¬⊤ ∈ s [PROOFSTEP] intro con [GOAL] case inl.hnc α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ∀ (b : α), b ∈ s → b ≤ ⊥ con : ⊤ ∈ s ⊢ False [PROOFSTEP] exact bot_ne_top (eq_top_iff.2 (h ⊤ con)) [GOAL] case inr α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ∀ (b : α), b ∈ s → b ≤ ⊤ ⊢ sSup s ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α x : α h : x ∈ s ⊢ sInf s ≤ x [PROOFSTEP] rcases eq_bot_or_eq_top x with (rfl | rfl) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ⊥ ∈ s ⊢ sInf s ≤ ⊥ [PROOFSTEP] dsimp [GOAL] case inl α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ⊥ ∈ s ⊢ (if ⊥ ∈ s then ⊥ else ⊤) ≤ ⊥ [PROOFSTEP] rw [if_pos h] [GOAL] case inr α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ⊤ ∈ s ⊢ sInf s ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α x : α h : ∀ (b : α), b ∈ s → x ≤ b ⊢ x ≤ sInf s [PROOFSTEP] rcases eq_bot_or_eq_top x with (rfl | rfl) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ∀ (b : α), b ∈ s → ⊥ ≤ b ⊢ ⊥ ≤ sInf s [PROOFSTEP] exact bot_le [GOAL] case inr α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ∀ (b : α), b ∈ s → ⊤ ≤ b ⊢ ⊤ ≤ sInf s [PROOFSTEP] dsimp [GOAL] case inr α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ∀ (b : α), b ∈ s → ⊤ ≤ b ⊢ ⊤ ≤ if ⊥ ∈ s then ⊥ else ⊤ [PROOFSTEP] rw [if_neg] [GOAL] case inr.hnc α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ∀ (b : α), b ∈ s → ⊤ ≤ b ⊢ ¬⊥ ∈ s [PROOFSTEP] intro con [GOAL] case inr.hnc α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : Lattice α := inferInstance src✝ : BoundedOrder α := inferInstance s : Set α h : ∀ (b : α), b ∈ s → ⊤ ≤ b con : ⊥ ∈ s ⊢ False [PROOFSTEP] exact top_ne_bot (eq_bot_iff.2 (h ⊥ con)) [GOAL] α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra x : α s : Set α ⊢ x ⊓ sSup s ≤ ⨆ (b : α) (_ : b ∈ s), x ⊓ b [PROOFSTEP] rcases eq_bot_or_eq_top x with (rfl | rfl) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra s : Set α ⊢ ⊥ ⊓ sSup s ≤ ⨆ (b : α) (_ : b ∈ s), ⊥ ⊓ b [PROOFSTEP] simp only [le_bot_iff, sSup_eq_bot, bot_inf_eq, iSup_bot, le_refl] [GOAL] case inr α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra s : Set α ⊢ ⊤ ⊓ sSup s ≤ ⨆ (b : α) (_ : b ∈ s), ⊤ ⊓ b [PROOFSTEP] simp only [top_inf_eq, ← sSup_eq_iSup] [GOAL] case inr α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra s : Set α ⊢ sSup s ≤ sSup s [PROOFSTEP] exact le_rfl [GOAL] α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra x : α s : Set α ⊢ ⨅ (b : α) (_ : b ∈ s), x ⊔ b ≤ x ⊔ sInf s [PROOFSTEP] rcases eq_bot_or_eq_top x with (rfl | rfl) [GOAL] case inl α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra s : Set α ⊢ ⨅ (b : α) (_ : b ∈ s), ⊥ ⊔ b ≤ ⊥ ⊔ sInf s [PROOFSTEP] simp only [bot_sup_eq, ← sInf_eq_iInf] [GOAL] case inl α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra s : Set α ⊢ sInf s ≤ sInf s [PROOFSTEP] exact le_rfl [GOAL] case inr α : Type u_1 β : Type u_2 inst✝² : Lattice α inst✝¹ : BoundedOrder α inst✝ : IsSimpleOrder α src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra s : Set α ⊢ ⨅ (b : α) (_ : b ∈ s), ⊤ ⊔ b ≤ ⊤ ⊔ sInf s [PROOFSTEP] simp only [top_le_iff, top_sup_eq, iInf_top, le_sInf_iff, le_refl] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : CompleteLattice α inst✝ : IsSimpleOrder α ⊢ IsAtomistic αᵒᵈ [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β f : β ↪o α hbot : ↑f ⊥ = ⊥ b : β hb : IsAtom (↑f b) ⊢ IsAtom b [PROOFSTEP] simp only [← bot_covby_iff] at hb ⊢ [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β f : β ↪o α hbot : ↑f ⊥ = ⊥ b : β hb : ⊥ ⋖ ↑f b ⊢ ⊥ ⋖ b [PROOFSTEP] exact Covby.of_image f (hbot.symm ▸ hb) [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : PartialOrder α inst✝³ : PartialOrder β inst✝² : OrderBot α inst✝¹ : IsAtomic α inst✝ : OrderBot β l : α → β u : β → α gi : GaloisInsertion l u hbot : u ⊥ = ⊥ h_atom : ∀ (a : α), IsAtom a → u (l a) = a a : α ⊢ IsAtom (l a) ↔ IsAtom a [PROOFSTEP] refine' ⟨fun hla => _, fun ha => gi.isAtom_of_u_bot hbot ((h_atom a ha).symm ▸ ha)⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : PartialOrder α inst✝³ : PartialOrder β inst✝² : OrderBot α inst✝¹ : IsAtomic α inst✝ : OrderBot β l : α → β u : β → α gi : GaloisInsertion l u hbot : u ⊥ = ⊥ h_atom : ∀ (a : α), IsAtom a → u (l a) = a a : α hla : IsAtom (l a) ⊢ IsAtom a [PROOFSTEP] obtain ⟨a', ha', hab'⟩ := (eq_bot_or_exists_atom_le (u (l a))).resolve_left (hbot ▸ fun h => hla.1 (gi.u_injective h)) [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : PartialOrder α inst✝³ : PartialOrder β inst✝² : OrderBot α inst✝¹ : IsAtomic α inst✝ : OrderBot β l : α → β u : β → α gi : GaloisInsertion l u hbot : u ⊥ = ⊥ h_atom : ∀ (a : α), IsAtom a → u (l a) = a a : α hla : IsAtom (l a) a' : α ha' : IsAtom a' hab' : a' ≤ u (l a) ⊢ IsAtom a [PROOFSTEP] have := (hla.le_iff.mp <| (gi.l_u_eq (l a) ▸ gi.gc.monotone_l hab' : l a' ≤ l a)).resolve_left fun h => ha'.1 (hbot ▸ h_atom a' ha' ▸ congr_arg u h) [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : PartialOrder α inst✝³ : PartialOrder β inst✝² : OrderBot α inst✝¹ : IsAtomic α inst✝ : OrderBot β l : α → β u : β → α gi : GaloisInsertion l u hbot : u ⊥ = ⊥ h_atom : ∀ (a : α), IsAtom a → u (l a) = a a : α hla : IsAtom (l a) a' : α ha' : IsAtom a' hab' : a' ≤ u (l a) this : l a' = l a ⊢ IsAtom a [PROOFSTEP] have haa' : a = a' := (ha'.le_iff.mp <| (gi.gc.le_u_l a).trans_eq (h_atom a' ha' ▸ congr_arg u this.symm)).resolve_left (mt (congr_arg l) (gi.gc.l_bot.symm ▸ hla.1)) [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : PartialOrder α inst✝³ : PartialOrder β inst✝² : OrderBot α inst✝¹ : IsAtomic α inst✝ : OrderBot β l : α → β u : β → α gi : GaloisInsertion l u hbot : u ⊥ = ⊥ h_atom : ∀ (a : α), IsAtom a → u (l a) = a a : α hla : IsAtom (l a) a' : α ha' : IsAtom a' hab' : a' ≤ u (l a) this : l a' = l a haa' : a = a' ⊢ IsAtom a [PROOFSTEP] exact haa'.symm ▸ ha' [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : PartialOrder α inst✝³ : PartialOrder β inst✝² : OrderBot α inst✝¹ : IsAtomic α inst✝ : OrderBot β l : α → β u : β → α gi : GaloisInsertion l u hbot : u ⊥ = ⊥ h_atom : ∀ (a : α), IsAtom a → u (l a) = a b : β ⊢ IsAtom (u b) ↔ IsAtom b [PROOFSTEP] rw [← gi.isAtom_iff hbot h_atom, gi.l_u_eq] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : PartialOrder α inst✝³ : PartialOrder β inst✝² : OrderTop α inst✝¹ : IsCoatomic α inst✝ : OrderTop β l : α → β u : β → α gi : GaloisInsertion l u h_coatom : ∀ (a : α), IsCoatom a → u (l a) = a b : β ⊢ IsCoatom (u b) ↔ IsCoatom b [PROOFSTEP] refine' ⟨fun hb => gi.isCoatom_of_image hb, fun hb => _⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : PartialOrder α inst✝³ : PartialOrder β inst✝² : OrderTop α inst✝¹ : IsCoatomic α inst✝ : OrderTop β l : α → β u : β → α gi : GaloisInsertion l u h_coatom : ∀ (a : α), IsCoatom a → u (l a) = a b : β hb : IsCoatom b ⊢ IsCoatom (u b) [PROOFSTEP] obtain ⟨a, ha, hab⟩ := (eq_top_or_exists_le_coatom (u b)).resolve_left fun h => hb.1 <| (gi.gc.u_top ▸ gi.l_u_eq ⊤ : l ⊤ = ⊤) ▸ gi.l_u_eq b ▸ congr_arg l h [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : PartialOrder α inst✝³ : PartialOrder β inst✝² : OrderTop α inst✝¹ : IsCoatomic α inst✝ : OrderTop β l : α → β u : β → α gi : GaloisInsertion l u h_coatom : ∀ (a : α), IsCoatom a → u (l a) = a b : β hb : IsCoatom b a : α ha : IsCoatom a hab : u b ≤ a ⊢ IsCoatom (u b) [PROOFSTEP] have : l a = b := (hb.le_iff.mp (gi.l_u_eq b ▸ gi.gc.monotone_l hab : b ≤ l a)).resolve_left fun hla => ha.1 (gi.gc.u_top ▸ h_coatom a ha ▸ congr_arg u hla) [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : PartialOrder α inst✝³ : PartialOrder β inst✝² : OrderTop α inst✝¹ : IsCoatomic α inst✝ : OrderTop β l : α → β u : β → α gi : GaloisInsertion l u h_coatom : ∀ (a : α), IsCoatom a → u (l a) = a b : β hb : IsCoatom b a : α ha : IsCoatom a hab : u b ≤ a this : l a = b ⊢ IsCoatom (u b) [PROOFSTEP] exact this ▸ (h_coatom a ha).symm ▸ ha [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : BoundedOrder α inst✝ : BoundedOrder β f : α ≃o β ⊢ IsSimpleOrder α ↔ IsSimpleOrder β [PROOFSTEP] rw [isSimpleOrder_iff_isAtom_top, isSimpleOrder_iff_isAtom_top, ← f.isAtom_iff ⊤, f.map_top] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderBot α inst✝ : OrderBot β f : α ≃o β ⊢ IsAtomic α ↔ IsAtomic β [PROOFSTEP] simp only [IsAtomic_iff, f.surjective.forall, f.surjective.exists, ← map_bot f, f.eq_iff_eq, f.le_iff_le, f.isAtom_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PartialOrder α inst✝² : PartialOrder β inst✝¹ : OrderTop α inst✝ : OrderTop β f : α ≃o β ⊢ IsCoatomic α ↔ IsCoatomic β [PROOFSTEP] simp only [← isAtomic_dual_iff_isCoatomic, f.dual.isAtomic_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Lattice α inst✝³ : BoundedOrder α inst✝² : IsModularLattice α inst✝¹ : ComplementedLattice α inst✝ : IsAtomic α x : α ⊢ x = ⊤ ∨ ∃ a, IsCoatom a ∧ x ≤ a [PROOFSTEP] rcases exists_isCompl x with ⟨y, xy⟩ [GOAL] case intro α : Type u_1 β : Type u_2 inst✝⁴ : Lattice α inst✝³ : BoundedOrder α inst✝² : IsModularLattice α inst✝¹ : ComplementedLattice α inst✝ : IsAtomic α x y : α xy : IsCompl x y ⊢ x = ⊤ ∨ ∃ a, IsCoatom a ∧ x ≤ a [PROOFSTEP] apply (eq_bot_or_exists_atom_le y).imp _ _ [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Lattice α inst✝³ : BoundedOrder α inst✝² : IsModularLattice α inst✝¹ : ComplementedLattice α inst✝ : IsAtomic α x y : α xy : IsCompl x y ⊢ y = ⊥ → x = ⊤ [PROOFSTEP] rintro rfl [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Lattice α inst✝³ : BoundedOrder α inst✝² : IsModularLattice α inst✝¹ : ComplementedLattice α inst✝ : IsAtomic α x : α xy : IsCompl x ⊥ ⊢ x = ⊤ [PROOFSTEP] exact eq_top_of_isCompl_bot xy [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : Lattice α inst✝³ : BoundedOrder α inst✝² : IsModularLattice α inst✝¹ : ComplementedLattice α inst✝ : IsAtomic α x y : α xy : IsCompl x y ⊢ (∃ a, IsAtom a ∧ a ≤ y) → ∃ a, IsCoatom a ∧ x ≤ a [PROOFSTEP] rintro ⟨a, ha, ay⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 inst✝⁴ : Lattice α inst✝³ : BoundedOrder α inst✝² : IsModularLattice α inst✝¹ : ComplementedLattice α inst✝ : IsAtomic α x y : α xy : IsCompl x y a : α ha : IsAtom a ay : a ≤ y ⊢ ∃ a, IsCoatom a ∧ x ≤ a [PROOFSTEP] rcases exists_isCompl (xy.symm.IicOrderIsoIci ⟨a, ay⟩) with ⟨⟨b, xb⟩, hb⟩ [GOAL] case intro.intro.intro.mk α : Type u_1 β : Type u_2 inst✝⁴ : Lattice α inst✝³ : BoundedOrder α inst✝² : IsModularLattice α inst✝¹ : ComplementedLattice α inst✝ : IsAtomic α x y : α xy : IsCompl x y a : α ha : IsAtom a ay : a ≤ y b : α xb : b ∈ Set.Ici x hb : IsCompl (↑(IsCompl.IicOrderIsoIci (_ : IsCompl y x)) { val := a, property := ay }) { val := b, property := xb } ⊢ ∃ a, IsCoatom a ∧ x ≤ a [PROOFSTEP] refine' ⟨↑(⟨b, xb⟩ : Set.Ici x), IsCoatom.of_isCoatom_coe_Ici _, xb⟩ [GOAL] case intro.intro.intro.mk α : Type u_1 β : Type u_2 inst✝⁴ : Lattice α inst✝³ : BoundedOrder α inst✝² : IsModularLattice α inst✝¹ : ComplementedLattice α inst✝ : IsAtomic α x y : α xy : IsCompl x y a : α ha : IsAtom a ay : a ≤ y b : α xb : b ∈ Set.Ici x hb : IsCompl (↑(IsCompl.IicOrderIsoIci (_ : IsCompl y x)) { val := a, property := ay }) { val := b, property := xb } ⊢ IsCoatom { val := b, property := xb } [PROOFSTEP] rw [← hb.isAtom_iff_isCoatom, OrderIso.isAtom_iff] [GOAL] case intro.intro.intro.mk α : Type u_1 β : Type u_2 inst✝⁴ : Lattice α inst✝³ : BoundedOrder α inst✝² : IsModularLattice α inst✝¹ : ComplementedLattice α inst✝ : IsAtomic α x y : α xy : IsCompl x y a : α ha : IsAtom a ay : a ≤ y b : α xb : b ∈ Set.Ici x hb : IsCompl (↑(IsCompl.IicOrderIsoIci (_ : IsCompl y x)) { val := a, property := ay }) { val := b, property := xb } ⊢ IsAtom { val := a, property := ay } [PROOFSTEP] apply ha.Iic [GOAL] α : Type u_1 β : Type u_2 p : Prop ⊢ IsAtom p ↔ p [PROOFSTEP] simp [IsAtom, show ⊥ = False from rfl, fun q r : Prop => show q < r ↔ _ ∧ _ from .rfl] [GOAL] α : Type u_1 β : Type u_2 p : Prop ⊢ IsCoatom p ↔ ¬p [PROOFSTEP] simp [IsCoatom, show ⊤ = True from rfl, fun q r : Prop => show q < r ↔ _ ∧ _ from .rfl] [GOAL] α : Type u_1 β : Type u_2 p : Prop ⊢ ¬p → ∀ (b : Prop), (p → b) → b → ¬p → b [PROOFSTEP] tauto [GOAL] α : Type u_1 β : Type u_2 p : Prop ⊢ p = ⊥ ∨ p = ⊤ [PROOFSTEP] by_cases p [GOAL] α : Type u_1 β : Type u_2 p : Prop ⊢ p = ⊥ ∨ p = ⊤ [PROOFSTEP] by_cases p [GOAL] case pos α : Type u_1 β : Type u_2 p : Prop h : p ⊢ p = ⊥ ∨ p = ⊤ [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 β : Type u_2 p : Prop h : ¬p ⊢ p = ⊥ ∨ p = ⊤ [PROOFSTEP] simp [h] [GOAL] case pos α : Type u_1 β : Type u_2 p : Prop h : p ⊢ ⊥ ∨ ⊤ [PROOFSTEP] tauto [GOAL] case neg α : Type u_1 β : Type u_2 p : Prop h : ¬p ⊢ ¬⊥ ∨ ¬⊤ [PROOFSTEP] tauto [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝ : (i : ι) → Bot (π i) f : (i : ι) → π i h : ∀ (i : ι), f i = ⊥ i : ι ⊢ f i = ⊥ i [PROOFSTEP] simp [h] [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) ⊢ IsAtom f ↔ ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥ [PROOFSTEP] classical constructor case mpr => rintro ⟨i, ⟨hfi, hlt⟩, hbot⟩ refine ⟨fun h => hfi ((Pi.eq_bot_iff.1 h) _), fun g hgf => Pi.eq_bot_iff.2 fun j => ?_⟩ have ⟨hgf, k, hgfk⟩ := Pi.lt_def.1 hgf obtain rfl : i = k := of_not_not fun hki => by rw [hbot _ (Ne.symm hki)] at hgfk ; simp at hgfk by_cases hij : j = i; case pos => subst hij; refine hlt _ hgfk refine eq_bot_iff.2 <| le_trans (hgf _) (eq_bot_iff.1 (hbot _ hij)) case mp => rintro ⟨hbot, h⟩ have ⟨i, hbot⟩ : ∃ i, f i ≠ ⊥ := by rw [ne_eq, Pi.eq_bot_iff, not_forall] at hbot ; exact hbot refine ⟨i, ⟨hbot, ?c⟩, ?d⟩ case c => intro b hb have := h (Function.update ⊥ i b) simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this simpa using this (fun j => by by_cases h : j = i; {subst h; simpa using le_of_lt hb }; simp [h]) i (by simpa using hb) i case d => intro j hj have := h (Function.update ⊥ j (f j)) simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this simpa using this (fun k => by by_cases k = j; {subst h; simp }; simp [h]) i (by rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot]) j [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) ⊢ IsAtom f ↔ ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥ [PROOFSTEP] constructor [GOAL] case mp ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) ⊢ IsAtom f → ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥ case mpr ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) ⊢ (∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥) → IsAtom f [PROOFSTEP] case mpr => rintro ⟨i, ⟨hfi, hlt⟩, hbot⟩ refine ⟨fun h => hfi ((Pi.eq_bot_iff.1 h) _), fun g hgf => Pi.eq_bot_iff.2 fun j => ?_⟩ have ⟨hgf, k, hgfk⟩ := Pi.lt_def.1 hgf obtain rfl : i = k := of_not_not fun hki => by rw [hbot _ (Ne.symm hki)] at hgfk ; simp at hgfk by_cases hij : j = i; case pos => subst hij; refine hlt _ hgfk refine eq_bot_iff.2 <| le_trans (hgf _) (eq_bot_iff.1 (hbot _ hij)) [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) ⊢ (∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥) → IsAtom f [PROOFSTEP] case mpr => rintro ⟨i, ⟨hfi, hlt⟩, hbot⟩ refine ⟨fun h => hfi ((Pi.eq_bot_iff.1 h) _), fun g hgf => Pi.eq_bot_iff.2 fun j => ?_⟩ have ⟨hgf, k, hgfk⟩ := Pi.lt_def.1 hgf obtain rfl : i = k := of_not_not fun hki => by rw [hbot _ (Ne.symm hki)] at hgfk ; simp at hgfk by_cases hij : j = i; case pos => subst hij; refine hlt _ hgfk refine eq_bot_iff.2 <| le_trans (hgf _) (eq_bot_iff.1 (hbot _ hij)) [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) ⊢ (∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥) → IsAtom f [PROOFSTEP] rintro ⟨i, ⟨hfi, hlt⟩, hbot⟩ [GOAL] case intro.intro.intro ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) i : ι hbot : ∀ (j : ι), j ≠ i → f j = ⊥ hfi : f i ≠ ⊥ hlt : ∀ (b : π i), b < f i → b = ⊥ ⊢ IsAtom f [PROOFSTEP] refine ⟨fun h => hfi ((Pi.eq_bot_iff.1 h) _), fun g hgf => Pi.eq_bot_iff.2 fun j => ?_⟩ [GOAL] case intro.intro.intro ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) i : ι hbot : ∀ (j : ι), j ≠ i → f j = ⊥ hfi : f i ≠ ⊥ hlt : ∀ (b : π i), b < f i → b = ⊥ g : (i : ι) → π i hgf : g < f j : ι ⊢ g j = ⊥ [PROOFSTEP] have ⟨hgf, k, hgfk⟩ := Pi.lt_def.1 hgf [GOAL] case intro.intro.intro ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) i : ι hbot : ∀ (j : ι), j ≠ i → f j = ⊥ hfi : f i ≠ ⊥ hlt : ∀ (b : π i), b < f i → b = ⊥ g : (i : ι) → π i hgf✝ : g < f j : ι hgf : g ≤ f k : ι hgfk : g k < f k ⊢ g j = ⊥ [PROOFSTEP] obtain rfl : i = k := of_not_not fun hki => by rw [hbot _ (Ne.symm hki)] at hgfk ; simp at hgfk [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) i : ι hbot : ∀ (j : ι), j ≠ i → f j = ⊥ hfi : f i ≠ ⊥ hlt : ∀ (b : π i), b < f i → b = ⊥ g : (i : ι) → π i hgf✝ : g < f j : ι hgf : g ≤ f k : ι hgfk : g k < f k hki : ¬i = k ⊢ False [PROOFSTEP] rw [hbot _ (Ne.symm hki)] at hgfk [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) i : ι hbot : ∀ (j : ι), j ≠ i → f j = ⊥ hfi : f i ≠ ⊥ hlt : ∀ (b : π i), b < f i → b = ⊥ g : (i : ι) → π i hgf✝ : g < f j : ι hgf : g ≤ f k : ι hgfk : g k < ⊥ hki : ¬i = k ⊢ False [PROOFSTEP] simp at hgfk [GOAL] case intro.intro.intro ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) i : ι hbot : ∀ (j : ι), j ≠ i → f j = ⊥ hfi : f i ≠ ⊥ hlt : ∀ (b : π i), b < f i → b = ⊥ g : (i : ι) → π i hgf✝ : g < f j : ι hgf : g ≤ f hgfk : g i < f i ⊢ g j = ⊥ [PROOFSTEP] by_cases hij : j = i [GOAL] case pos ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) i : ι hbot : ∀ (j : ι), j ≠ i → f j = ⊥ hfi : f i ≠ ⊥ hlt : ∀ (b : π i), b < f i → b = ⊥ g : (i : ι) → π i hgf✝ : g < f j : ι hgf : g ≤ f hgfk : g i < f i hij : j = i ⊢ g j = ⊥ case neg ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) i : ι hbot : ∀ (j : ι), j ≠ i → f j = ⊥ hfi : f i ≠ ⊥ hlt : ∀ (b : π i), b < f i → b = ⊥ g : (i : ι) → π i hgf✝ : g < f j : ι hgf : g ≤ f hgfk : g i < f i hij : ¬j = i ⊢ g j = ⊥ [PROOFSTEP] case pos => subst hij; refine hlt _ hgfk [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) i : ι hbot : ∀ (j : ι), j ≠ i → f j = ⊥ hfi : f i ≠ ⊥ hlt : ∀ (b : π i), b < f i → b = ⊥ g : (i : ι) → π i hgf✝ : g < f j : ι hgf : g ≤ f hgfk : g i < f i hij : j = i ⊢ g j = ⊥ [PROOFSTEP] case pos => subst hij; refine hlt _ hgfk [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) i : ι hbot : ∀ (j : ι), j ≠ i → f j = ⊥ hfi : f i ≠ ⊥ hlt : ∀ (b : π i), b < f i → b = ⊥ g : (i : ι) → π i hgf✝ : g < f j : ι hgf : g ≤ f hgfk : g i < f i hij : j = i ⊢ g j = ⊥ [PROOFSTEP] subst hij [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) g : (i : ι) → π i hgf✝ : g < f j : ι hgf : g ≤ f hbot : ∀ (j_1 : ι), j_1 ≠ j → f j_1 = ⊥ hfi : f j ≠ ⊥ hlt : ∀ (b : π j), b < f j → b = ⊥ hgfk : g j < f j ⊢ g j = ⊥ [PROOFSTEP] refine hlt _ hgfk [GOAL] case neg ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) i : ι hbot : ∀ (j : ι), j ≠ i → f j = ⊥ hfi : f i ≠ ⊥ hlt : ∀ (b : π i), b < f i → b = ⊥ g : (i : ι) → π i hgf✝ : g < f j : ι hgf : g ≤ f hgfk : g i < f i hij : ¬j = i ⊢ g j = ⊥ [PROOFSTEP] refine eq_bot_iff.2 <| le_trans (hgf _) (eq_bot_iff.1 (hbot _ hij)) [GOAL] case mp ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) ⊢ IsAtom f → ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥ [PROOFSTEP] case mp => rintro ⟨hbot, h⟩ have ⟨i, hbot⟩ : ∃ i, f i ≠ ⊥ := by rw [ne_eq, Pi.eq_bot_iff, not_forall] at hbot ; exact hbot refine ⟨i, ⟨hbot, ?c⟩, ?d⟩ case c => intro b hb have := h (Function.update ⊥ i b) simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this simpa using this (fun j => by by_cases h : j = i; {subst h; simpa using le_of_lt hb }; simp [h]) i (by simpa using hb) i case d => intro j hj have := h (Function.update ⊥ j (f j)) simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this simpa using this (fun k => by by_cases k = j; {subst h; simp }; simp [h]) i (by rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot]) j [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) ⊢ IsAtom f → ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥ [PROOFSTEP] case mp => rintro ⟨hbot, h⟩ have ⟨i, hbot⟩ : ∃ i, f i ≠ ⊥ := by rw [ne_eq, Pi.eq_bot_iff, not_forall] at hbot ; exact hbot refine ⟨i, ⟨hbot, ?c⟩, ?d⟩ case c => intro b hb have := h (Function.update ⊥ i b) simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this simpa using this (fun j => by by_cases h : j = i; {subst h; simpa using le_of_lt hb }; simp [h]) i (by simpa using hb) i case d => intro j hj have := h (Function.update ⊥ j (f j)) simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this simpa using this (fun k => by by_cases k = j; {subst h; simp }; simp [h]) i (by rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot]) j [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) ⊢ IsAtom f → ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥ [PROOFSTEP] rintro ⟨hbot, h⟩ [GOAL] case intro ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ ⊢ ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥ [PROOFSTEP] have ⟨i, hbot⟩ : ∃ i, f i ≠ ⊥ := by rw [ne_eq, Pi.eq_bot_iff, not_forall] at hbot ; exact hbot [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ ⊢ ∃ i, f i ≠ ⊥ [PROOFSTEP] rw [ne_eq, Pi.eq_bot_iff, not_forall] at hbot [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot : ∃ x, ¬f x = ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ ⊢ ∃ i, f i ≠ ⊥ [PROOFSTEP] exact hbot [GOAL] case intro ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ ⊢ ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥ [PROOFSTEP] refine ⟨i, ⟨hbot, ?c⟩, ?d⟩ [GOAL] case c ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ ⊢ ∀ (b : π i), b < f i → b = ⊥ case d ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ ⊢ ∀ (j : ι), j ≠ i → f j = ⊥ [PROOFSTEP] case c => intro b hb have := h (Function.update ⊥ i b) simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this simpa using this (fun j => by by_cases h : j = i; {subst h; simpa using le_of_lt hb }; simp [h]) i (by simpa using hb) i [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ ⊢ ∀ (b : π i), b < f i → b = ⊥ [PROOFSTEP] case c => intro b hb have := h (Function.update ⊥ i b) simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this simpa using this (fun j => by by_cases h : j = i; {subst h; simpa using le_of_lt hb }; simp [h]) i (by simpa using hb) i [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ ⊢ ∀ (b : π i), b < f i → b = ⊥ [PROOFSTEP] intro b hb [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ b : π i hb : b < f i ⊢ b = ⊥ [PROOFSTEP] have := h (Function.update ⊥ i b) [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ b : π i hb : b < f i this : Function.update ⊥ i b < f → Function.update ⊥ i b = ⊥ ⊢ b = ⊥ [PROOFSTEP] simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ b : π i hb : b < f i this : (∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) → ∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥ ⊢ b = ⊥ [PROOFSTEP] simpa using this (fun j => by by_cases h : j = i; {subst h; simpa using le_of_lt hb }; simp [h]) i (by simpa using hb) i [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ b : π i hb : b < f i this : (∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) → ∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥ j : ι ⊢ Function.update ⊥ i b j ≤ f j [PROOFSTEP] by_cases h : j = i [GOAL] case pos ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ b : π i hb : b < f i this : (∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) → ∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥ j : ι h : j = i ⊢ Function.update ⊥ i b j ≤ f j case neg ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ b : π i hb : b < f i this : (∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) → ∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥ j : ι h : ¬j = i ⊢ Function.update ⊥ i b j ≤ f j [PROOFSTEP] {subst h; simpa using le_of_lt hb } [GOAL] case pos ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ b : π i hb : b < f i this : (∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) → ∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥ j : ι h : j = i ⊢ Function.update ⊥ i b j ≤ f j [PROOFSTEP] subst h [GOAL] case pos ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ j : ι hbot : f j ≠ ⊥ b : π j hb : b < f j this : (∀ (i : ι), Function.update ⊥ j b i ≤ f i) → ∀ (x : ι), Function.update ⊥ j b x < f x → ∀ (i : ι), Function.update ⊥ j b i = ⊥ ⊢ Function.update ⊥ j b j ≤ f j [PROOFSTEP] simpa using le_of_lt hb [GOAL] case neg ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ b : π i hb : b < f i this : (∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) → ∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥ j : ι h : ¬j = i ⊢ Function.update ⊥ i b j ≤ f j [PROOFSTEP] simp [h] [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ b : π i hb : b < f i this : (∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) → ∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥ ⊢ Function.update ⊥ i b i < f i [PROOFSTEP] simpa using hb [GOAL] case d ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ ⊢ ∀ (j : ι), j ≠ i → f j = ⊥ [PROOFSTEP] case d => intro j hj have := h (Function.update ⊥ j (f j)) simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this simpa using this (fun k => by by_cases k = j; {subst h; simp }; simp [h]) i (by rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot]) j [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ ⊢ ∀ (j : ι), j ≠ i → f j = ⊥ [PROOFSTEP] case d => intro j hj have := h (Function.update ⊥ j (f j)) simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this simpa using this (fun k => by by_cases k = j; {subst h; simp }; simp [h]) i (by rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot]) j [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ ⊢ ∀ (j : ι), j ≠ i → f j = ⊥ [PROOFSTEP] intro j hj [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ j : ι hj : j ≠ i ⊢ f j = ⊥ [PROOFSTEP] have := h (Function.update ⊥ j (f j)) [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ j : ι hj : j ≠ i this : Function.update ⊥ j (f j) < f → Function.update ⊥ j (f j) = ⊥ ⊢ f j = ⊥ [PROOFSTEP] simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ j : ι hj : j ≠ i this : (∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) → ∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥ ⊢ f j = ⊥ [PROOFSTEP] simpa using this (fun k => by by_cases k = j; {subst h; simp }; simp [h]) i (by rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot]) j [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ j : ι hj : j ≠ i this : (∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) → ∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥ k : ι ⊢ Function.update ⊥ j (f j) k ≤ f k [PROOFSTEP] by_cases k = j [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ j : ι hj : j ≠ i this : (∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) → ∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥ k : ι ⊢ Function.update ⊥ j (f j) k ≤ f k [PROOFSTEP] by_cases k = j [GOAL] case pos ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ j : ι hj : j ≠ i this : (∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) → ∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥ k : ι h : k = j ⊢ Function.update ⊥ j (f j) k ≤ f k case neg ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ j : ι hj : j ≠ i this : (∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) → ∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥ k : ι h : ¬k = j ⊢ Function.update ⊥ j (f j) k ≤ f k [PROOFSTEP] {subst h; simp } [GOAL] case pos ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ j : ι hj : j ≠ i this : (∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) → ∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥ k : ι h : k = j ⊢ Function.update ⊥ j (f j) k ≤ f k [PROOFSTEP] subst h [GOAL] case pos ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ k : ι hj : k ≠ i this : (∀ (i : ι), Function.update ⊥ k (f k) i ≤ f i) → ∀ (x : ι), Function.update ⊥ k (f k) x < f x → ∀ (i : ι), Function.update ⊥ k (f k) i = ⊥ ⊢ Function.update ⊥ k (f k) k ≤ f k [PROOFSTEP] simp [GOAL] case neg ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ j : ι hj : j ≠ i this : (∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) → ∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥ k : ι h : ¬k = j ⊢ Function.update ⊥ j (f j) k ≤ f k [PROOFSTEP] simp [h] [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u f : (i : ι) → π i inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) hbot✝ : f ≠ ⊥ h : ∀ (b : (i : ι) → π i), b < f → b = ⊥ i : ι hbot : f i ≠ ⊥ j : ι hj : j ≠ i this : (∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) → ∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥ ⊢ Function.update ⊥ j (f j) i < f i [PROOFSTEP] rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot] [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u i : ι inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) a : π i h : IsAtom a ⊢ IsAtom (Function.update ⊥ i a i) [PROOFSTEP] simpa [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i ⊢ IsAtom f ↔ ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a [PROOFSTEP] constructor [GOAL] case mp ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i ⊢ IsAtom f → ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a case mpr ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i ⊢ (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) → IsAtom f [PROOFSTEP] case mp => intro h have ⟨i, h, hbot⟩ := isAtom_iff.1 h refine ⟨_, _, h, funext fun j => if hij : j = i then hij ▸ by simp else ?_⟩ rw [Function.update_noteq hij, hbot _ hij, bot_apply] [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i ⊢ IsAtom f → ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a [PROOFSTEP] case mp => intro h have ⟨i, h, hbot⟩ := isAtom_iff.1 h refine ⟨_, _, h, funext fun j => if hij : j = i then hij ▸ by simp else ?_⟩ rw [Function.update_noteq hij, hbot _ hij, bot_apply] [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i ⊢ IsAtom f → ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a [PROOFSTEP] intro h [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i h : IsAtom f ⊢ ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a [PROOFSTEP] have ⟨i, h, hbot⟩ := isAtom_iff.1 h [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i h✝ : IsAtom f i : ι h : IsAtom (f i) hbot : ∀ (j : ι), j ≠ i → f j = ⊥ ⊢ ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a [PROOFSTEP] refine ⟨_, _, h, funext fun j => if hij : j = i then hij ▸ by simp else ?_⟩ [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i h✝ : IsAtom f i : ι h : IsAtom (f i) hbot : ∀ (j : ι), j ≠ i → f j = ⊥ j : ι hij : j = i ⊢ f j = Function.update ⊥ j (f j) j [PROOFSTEP] simp [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i h✝ : IsAtom f i : ι h : IsAtom (f i) hbot : ∀ (j : ι), j ≠ i → f j = ⊥ j : ι hij : ¬j = i ⊢ f j = Function.update ⊥ i (f i) j [PROOFSTEP] rw [Function.update_noteq hij, hbot _ hij, bot_apply] [GOAL] case mpr ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i ⊢ (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) → IsAtom f [PROOFSTEP] case mpr => rintro ⟨i, a, h, rfl⟩ refine isAtom_single h [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i ⊢ (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) → IsAtom f [PROOFSTEP] case mpr => rintro ⟨i, a, h, rfl⟩ refine isAtom_single h [GOAL] ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) f : (i : ι) → π i ⊢ (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) → IsAtom f [PROOFSTEP] rintro ⟨i, a, h, rfl⟩ [GOAL] case intro.intro.intro ι : Type u_3 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : DecidableEq ι inst✝¹ : (i : ι) → PartialOrder (π i) inst✝ : (i : ι) → OrderBot (π i) i : ι a : π i h : IsAtom a ⊢ IsAtom (Function.update ⊥ i a) [PROOFSTEP] refine isAtom_single h [GOAL] ι : Type ?u.130792 α : Type u_1 β : Type u_2 π : ι → Type u inst✝² : (i : ι) → PartialOrder (π i) inst✝¹ : (i : ι) → OrderBot (π i) inst✝ : ∀ (i : ι), IsAtomic (π i) b : (i : ι) → π i h : ¬b = ⊥ i : ι hi : ¬b i = ⊥ a : π i ha : IsAtom a hab : a ≤ b i this : DecidableEq ι ⊢ ∀ (j : ι), j ≠ i → ⊥ j ≤ b j [PROOFSTEP] simp [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i ⊢ ∃ s_1, s = sSup s_1 ∧ ∀ (a : (i : ι) → π i), a ∈ s_1 → IsAtom a [PROOFSTEP] classical refine ⟨{f | IsAtom f ∧ f ≤ s}, ?_, by simp; tauto⟩ ext i rw [← sSup_atoms_le_eq (s i)] simp_rw [isAtom_iff_eq_single] refine le_antisymm ?le ?ge case le => refine sSup_le fun a ⟨ha, hle⟩ => ?_ refine le_sSup ⟨⟨_, ⟨_, _, ha, rfl⟩, ?_⟩, by simp⟩ intro j; by_cases hij : j = i case pos => subst hij; simpa case neg => simp [hij] case ge => refine sSup_le ?_ rintro _ ⟨⟨_, ⟨j, a, ha, rfl⟩, hle⟩, rfl⟩ by_cases hij : i = j; case neg => simp [Function.update_noteq hij] subst hij; simp only [Function.update_same] refine le_sSup ⟨ha, by simpa using hle i⟩ [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i ⊢ ∃ s_1, s = sSup s_1 ∧ ∀ (a : (i : ι) → π i), a ∈ s_1 → IsAtom a [PROOFSTEP] refine ⟨{f | IsAtom f ∧ f ≤ s}, ?_, by simp; tauto⟩ [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i ⊢ ∀ (a : (i : ι) → π i), a ∈ {f | IsAtom f ∧ f ≤ s} → IsAtom a [PROOFSTEP] simp [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i ⊢ ∀ (a : (i : ι) → π i), IsAtom a → a ≤ s → IsAtom a [PROOFSTEP] tauto [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i ⊢ s = sSup {f | IsAtom f ∧ f ≤ s} [PROOFSTEP] ext i [GOAL] case h ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι ⊢ s i = sSup {f | IsAtom f ∧ f ≤ s} i [PROOFSTEP] rw [← sSup_atoms_le_eq (s i)] [GOAL] case h ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι ⊢ sSup {a | IsAtom a ∧ a ≤ s i} = sSup {f | IsAtom f ∧ f ≤ s} i [PROOFSTEP] simp_rw [isAtom_iff_eq_single] [GOAL] case h ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι ⊢ sSup {a | IsAtom a ∧ a ≤ s i} = sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i [PROOFSTEP] refine le_antisymm ?le ?ge [GOAL] case le ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι ⊢ sSup {a | IsAtom a ∧ a ≤ s i} ≤ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i case ge ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι ⊢ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i ≤ sSup {a | IsAtom a ∧ a ≤ s i} [PROOFSTEP] case le => refine sSup_le fun a ⟨ha, hle⟩ => ?_ refine le_sSup ⟨⟨_, ⟨_, _, ha, rfl⟩, ?_⟩, by simp⟩ intro j; by_cases hij : j = i case pos => subst hij; simpa case neg => simp [hij] [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι ⊢ sSup {a | IsAtom a ∧ a ≤ s i} ≤ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i [PROOFSTEP] case le => refine sSup_le fun a ⟨ha, hle⟩ => ?_ refine le_sSup ⟨⟨_, ⟨_, _, ha, rfl⟩, ?_⟩, by simp⟩ intro j; by_cases hij : j = i case pos => subst hij; simpa case neg => simp [hij] [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι ⊢ sSup {a | IsAtom a ∧ a ≤ s i} ≤ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i [PROOFSTEP] refine sSup_le fun a ⟨ha, hle⟩ => ?_ [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i} ha : IsAtom a hle : a ≤ s i ⊢ a ≤ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i [PROOFSTEP] refine le_sSup ⟨⟨_, ⟨_, _, ha, rfl⟩, ?_⟩, by simp⟩ [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i} ha : IsAtom a hle : a ≤ s i ⊢ (fun f => ↑f i) { val := Function.update ⊥ i a, property := (_ : (∃ i_1 a_1, IsAtom a_1 ∧ Function.update ⊥ i a = Function.update ⊥ i_1 a_1) ∧ Function.update ⊥ i a ≤ s) } = a [PROOFSTEP] simp [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i} ha : IsAtom a hle : a ≤ s i ⊢ Function.update ⊥ i a ≤ s [PROOFSTEP] intro j [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i} ha : IsAtom a hle : a ≤ s i j : ι ⊢ Function.update ⊥ i a j ≤ s j [PROOFSTEP] by_cases hij : j = i [GOAL] case pos ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i} ha : IsAtom a hle : a ≤ s i j : ι hij : j = i ⊢ Function.update ⊥ i a j ≤ s j case neg ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i} ha : IsAtom a hle : a ≤ s i j : ι hij : ¬j = i ⊢ Function.update ⊥ i a j ≤ s j [PROOFSTEP] case pos => subst hij; simpa [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i} ha : IsAtom a hle : a ≤ s i j : ι hij : j = i ⊢ Function.update ⊥ i a j ≤ s j [PROOFSTEP] case pos => subst hij; simpa [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i} ha : IsAtom a hle : a ≤ s i j : ι hij : j = i ⊢ Function.update ⊥ i a j ≤ s j [PROOFSTEP] subst hij [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i j : ι a : π j x✝ : a ∈ {a | IsAtom a ∧ a ≤ s j} ha : IsAtom a hle : a ≤ s j ⊢ Function.update ⊥ j a j ≤ s j [PROOFSTEP] simpa [GOAL] case neg ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i} ha : IsAtom a hle : a ≤ s i j : ι hij : ¬j = i ⊢ Function.update ⊥ i a j ≤ s j [PROOFSTEP] case neg => simp [hij] [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i} ha : IsAtom a hle : a ≤ s i j : ι hij : ¬j = i ⊢ Function.update ⊥ i a j ≤ s j [PROOFSTEP] case neg => simp [hij] [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i} ha : IsAtom a hle : a ≤ s i j : ι hij : ¬j = i ⊢ Function.update ⊥ i a j ≤ s j [PROOFSTEP] simp [hij] [GOAL] case ge ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι ⊢ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i ≤ sSup {a | IsAtom a ∧ a ≤ s i} [PROOFSTEP] case ge => refine sSup_le ?_ rintro _ ⟨⟨_, ⟨j, a, ha, rfl⟩, hle⟩, rfl⟩ by_cases hij : i = j; case neg => simp [Function.update_noteq hij] subst hij; simp only [Function.update_same] refine le_sSup ⟨ha, by simpa using hle i⟩ [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι ⊢ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i ≤ sSup {a | IsAtom a ∧ a ≤ s i} [PROOFSTEP] case ge => refine sSup_le ?_ rintro _ ⟨⟨_, ⟨j, a, ha, rfl⟩, hle⟩, rfl⟩ by_cases hij : i = j; case neg => simp [Function.update_noteq hij] subst hij; simp only [Function.update_same] refine le_sSup ⟨ha, by simpa using hle i⟩ [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι ⊢ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i ≤ sSup {a | IsAtom a ∧ a ≤ s i} [PROOFSTEP] refine sSup_le ?_ [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι ⊢ ∀ (b : π i), (b ∈ Set.range fun f => ↑f i) → b ≤ sSup {a | IsAtom a ∧ a ≤ s i} [PROOFSTEP] rintro _ ⟨⟨_, ⟨j, a, ha, rfl⟩, hle⟩, rfl⟩ [GOAL] case intro.mk.intro.intro.intro.intro ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i j : ι a : π j ha : IsAtom a hle : Function.update ⊥ j a ≤ s ⊢ (fun f => ↑f i) { val := Function.update ⊥ j a, property := (_ : (∃ i a_1, IsAtom a_1 ∧ Function.update ⊥ j a = Function.update ⊥ i a_1) ∧ Function.update ⊥ j a ≤ s) } ≤ sSup {a | IsAtom a ∧ a ≤ s i} [PROOFSTEP] by_cases hij : i = j [GOAL] case pos ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i j : ι a : π j ha : IsAtom a hle : Function.update ⊥ j a ≤ s hij : i = j ⊢ (fun f => ↑f i) { val := Function.update ⊥ j a, property := (_ : (∃ i a_1, IsAtom a_1 ∧ Function.update ⊥ j a = Function.update ⊥ i a_1) ∧ Function.update ⊥ j a ≤ s) } ≤ sSup {a | IsAtom a ∧ a ≤ s i} case neg ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i j : ι a : π j ha : IsAtom a hle : Function.update ⊥ j a ≤ s hij : ¬i = j ⊢ (fun f => ↑f i) { val := Function.update ⊥ j a, property := (_ : (∃ i a_1, IsAtom a_1 ∧ Function.update ⊥ j a = Function.update ⊥ i a_1) ∧ Function.update ⊥ j a ≤ s) } ≤ sSup {a | IsAtom a ∧ a ≤ s i} [PROOFSTEP] case neg => simp [Function.update_noteq hij] [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i j : ι a : π j ha : IsAtom a hle : Function.update ⊥ j a ≤ s hij : ¬i = j ⊢ (fun f => ↑f i) { val := Function.update ⊥ j a, property := (_ : (∃ i a_1, IsAtom a_1 ∧ Function.update ⊥ j a = Function.update ⊥ i a_1) ∧ Function.update ⊥ j a ≤ s) } ≤ sSup {a | IsAtom a ∧ a ≤ s i} [PROOFSTEP] case neg => simp [Function.update_noteq hij] [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i j : ι a : π j ha : IsAtom a hle : Function.update ⊥ j a ≤ s hij : ¬i = j ⊢ (fun f => ↑f i) { val := Function.update ⊥ j a, property := (_ : (∃ i a_1, IsAtom a_1 ∧ Function.update ⊥ j a = Function.update ⊥ i a_1) ∧ Function.update ⊥ j a ≤ s) } ≤ sSup {a | IsAtom a ∧ a ≤ s i} [PROOFSTEP] simp [Function.update_noteq hij] [GOAL] case pos ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i j : ι a : π j ha : IsAtom a hle : Function.update ⊥ j a ≤ s hij : i = j ⊢ (fun f => ↑f i) { val := Function.update ⊥ j a, property := (_ : (∃ i a_1, IsAtom a_1 ∧ Function.update ⊥ j a = Function.update ⊥ i a_1) ∧ Function.update ⊥ j a ≤ s) } ≤ sSup {a | IsAtom a ∧ a ≤ s i} [PROOFSTEP] subst hij [GOAL] case pos ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i ha : IsAtom a hle : Function.update ⊥ i a ≤ s ⊢ (fun f => ↑f i) { val := Function.update ⊥ i a, property := (_ : (∃ i_1 a_1, IsAtom a_1 ∧ Function.update ⊥ i a = Function.update ⊥ i_1 a_1) ∧ Function.update ⊥ i a ≤ s) } ≤ sSup {a | IsAtom a ∧ a ≤ s i} [PROOFSTEP] simp only [Function.update_same] [GOAL] case pos ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i ha : IsAtom a hle : Function.update ⊥ i a ≤ s ⊢ a ≤ sSup {a | IsAtom a ∧ a ≤ s i} [PROOFSTEP] refine le_sSup ⟨ha, by simpa using hle i⟩ [GOAL] ι : Type ?u.135698 α : Type u_1 β : Type u_2 π : ι → Type u inst✝¹ : (i : ι) → CompleteLattice (π i) inst✝ : ∀ (i : ι), IsAtomistic (π i) s : (i : ι) → π i i : ι a : π i ha : IsAtom a hle : Function.update ⊥ i a ≤ s ⊢ a ≤ s i [PROOFSTEP] simpa using hle i [GOAL] α : Type u_1 β : Type u_2 s : Set α ⊢ IsAtom s ↔ ∃ x, s = {x} [PROOFSTEP] refine' ⟨_, by rintro ⟨x, rfl⟩ exact isAtom_singleton x⟩ [GOAL] α : Type u_1 β : Type u_2 s : Set α ⊢ (∃ x, s = {x}) → IsAtom s [PROOFSTEP] rintro ⟨x, rfl⟩ [GOAL] case intro α : Type u_1 β : Type u_2 x : α ⊢ IsAtom {x} [PROOFSTEP] exact isAtom_singleton x [GOAL] α : Type u_1 β : Type u_2 s : Set α ⊢ IsAtom s → ∃ x, s = {x} [PROOFSTEP] rw [_root_.isAtom_iff, bot_eq_empty, ← nonempty_iff_ne_empty] [GOAL] α : Type u_1 β : Type u_2 s : Set α ⊢ (Set.Nonempty s ∧ ∀ (b : Set α), b ≠ ∅ → b ≤ s → s ≤ b) → ∃ x, s = {x} [PROOFSTEP] rintro ⟨⟨x, hx⟩, hs⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 s : Set α hs : ∀ (b : Set α), b ≠ ∅ → b ≤ s → s ≤ b x : α hx : x ∈ s ⊢ ∃ x, s = {x} [PROOFSTEP] exact ⟨x, eq_singleton_iff_unique_mem.2 ⟨hx, fun y hy => (hs { y } (singleton_ne_empty _) (singleton_subset_iff.2 hy) hx).symm⟩⟩ [GOAL] α : Type u_1 β : Type u_2 s : Set α ⊢ IsCoatom s ↔ ∃ x, s = {x}ᶜ [PROOFSTEP] rw [isCompl_compl.isCoatom_iff_isAtom, isAtom_iff] [GOAL] α : Type u_1 β : Type u_2 s : Set α ⊢ (∃ x, sᶜ = {x}) ↔ ∃ x, s = {x}ᶜ [PROOFSTEP] simp_rw [@eq_comm _ s, compl_eq_comm] [GOAL] α : Type u_1 β : Type u_2 s : Set α ⊢ s = sSup ((fun x => {x}) '' s) [PROOFSTEP] rw [sSup_eq_sUnion, sUnion_image, biUnion_of_singleton] [GOAL] α : Type u_1 β : Type u_2 s : Set α ⊢ ∀ (a : Set α), a ∈ (fun x => {x}) '' s → IsAtom a [PROOFSTEP] { rintro _ ⟨x, _, rfl⟩ exact isAtom_singleton x } [GOAL] α : Type u_1 β : Type u_2 s : Set α ⊢ ∀ (a : Set α), a ∈ (fun x => {x}) '' s → IsAtom a [PROOFSTEP] rintro _ ⟨x, _, rfl⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 s : Set α x : α left✝ : x ∈ s ⊢ IsAtom ((fun x => {x}) x) [PROOFSTEP] exact isAtom_singleton x [GOAL] α : Type u_1 β : Type u_2 s : Set α ⊢ s = sInf ((fun x => {x}ᶜ) '' sᶜ) [PROOFSTEP] {rw [sInf_eq_sInter, sInter_image, ← compl_iUnion₂, biUnion_of_singleton, compl_compl] } [GOAL] α : Type u_1 β : Type u_2 s : Set α ⊢ s = sInf ((fun x => {x}ᶜ) '' sᶜ) [PROOFSTEP] rw [sInf_eq_sInter, sInter_image, ← compl_iUnion₂, biUnion_of_singleton, compl_compl] [GOAL] α : Type u_1 β : Type u_2 s : Set α ⊢ ∀ (a : Set α), a ∈ (fun x => {x}ᶜ) '' sᶜ → IsCoatom a [PROOFSTEP] { rintro _ ⟨x, _, rfl⟩ exact isCoatom_singleton_compl x } [GOAL] α : Type u_1 β : Type u_2 s : Set α ⊢ ∀ (a : Set α), a ∈ (fun x => {x}ᶜ) '' sᶜ → IsCoatom a [PROOFSTEP] rintro _ ⟨x, _, rfl⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 s : Set α x : α left✝ : x ∈ sᶜ ⊢ IsCoatom ((fun x => {x}ᶜ) x) [PROOFSTEP] exact isCoatom_singleton_compl x
{"mathlib_filename": "Mathlib.Order.Atoms", "llama_tokens": 54106}
[GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α h : ∀ (c : Set α), IsChain r c → ∃ ub, ∀ (a : α), a ∈ c → r a ub trans : ∀ {a b c : α}, r a b → r b c → r a c this✝ : ∃ ub, ∀ (a : α), a ∈ maxChain r → r a ub ub : α hub : ∀ (a : α), a ∈ maxChain r → r a ub a : α ha : r ub a this : IsChain r (insert a (maxChain r)) ⊢ a ∈ maxChain r [PROOFSTEP] rw [maxChain_spec.right this (subset_insert _ _)] [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α h : ∀ (c : Set α), IsChain r c → ∃ ub, ∀ (a : α), a ∈ c → r a ub trans : ∀ {a b c : α}, r a b → r b c → r a c this✝ : ∃ ub, ∀ (a : α), a ∈ maxChain r → r a ub ub : α hub : ∀ (a : α), a ∈ maxChain r → r a ub a : α ha : r ub a this : IsChain r (insert a (maxChain r)) ⊢ a ∈ insert a (maxChain r) [PROOFSTEP] exact mem_insert _ _ [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c✝ : Set α inst✝ : Preorder α s : Set α ih : ∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub c : Set ↑s hc : IsChain (fun x x_1 => x ≤ x_1) c ⊢ IsChain (fun x x_1 => x ≤ x_1) (Subtype.val '' c) [PROOFSTEP] rintro _ ⟨p, hpc, rfl⟩ _ ⟨q, hqc, rfl⟩ hpq [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 r : α → α → Prop c✝ : Set α inst✝ : Preorder α s : Set α ih : ∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub c : Set ↑s hc : IsChain (fun x x_1 => x ≤ x_1) c p : { x // x ∈ s } hpc : p ∈ c q : { x // x ∈ s } hqc : q ∈ c hpq : ↑p ≠ ↑q ⊢ (fun x x_1 => x ≤ x_1) ↑p ↑q ∨ (fun x x_1 => x ≤ x_1) ↑q ↑p [PROOFSTEP] refine' hc hpc hqc fun t => hpq (Subtype.ext_iff.1 t) [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α inst✝ : Preorder α s : Set α ih : ∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub x : α hxs : x ∈ s ⊢ ∃ m, m ∈ s ∧ x ≤ m ∧ ∀ (z : α), z ∈ s → m ≤ z → z ≤ m [PROOFSTEP] have H := zorn_preorder₀ ({y ∈ s | x ≤ y}) fun c hcs hc => ?_ [GOAL] case refine_2 α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α inst✝ : Preorder α s : Set α ih : ∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub x : α hxs : x ∈ s H : ∃ m, m ∈ {y | y ∈ s ∧ x ≤ y} ∧ ∀ (z : α), z ∈ {y | y ∈ s ∧ x ≤ y} → m ≤ z → z ≤ m ⊢ ∃ m, m ∈ s ∧ x ≤ m ∧ ∀ (z : α), z ∈ s → m ≤ z → z ≤ m [PROOFSTEP] rcases H with ⟨m, ⟨hms, hxm⟩, hm⟩ [GOAL] case refine_2.intro.intro.intro α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α inst✝ : Preorder α s : Set α ih : ∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub x : α hxs : x ∈ s m : α hm : ∀ (z : α), z ∈ {y | y ∈ s ∧ x ≤ y} → m ≤ z → z ≤ m hms : m ∈ s hxm : x ≤ m ⊢ ∃ m, m ∈ s ∧ x ≤ m ∧ ∀ (z : α), z ∈ s → m ≤ z → z ≤ m [PROOFSTEP] exact ⟨m, hms, hxm, fun z hzs hmz => hm _ ⟨hzs, hxm.trans hmz⟩ hmz⟩ [GOAL] case refine_1 α : Type u_1 β : Type u_2 r : α → α → Prop c✝ : Set α inst✝ : Preorder α s : Set α ih : ∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub x : α hxs : x ∈ s c : Set α hcs : c ⊆ {y | y ∈ s ∧ x ≤ y} hc : IsChain (fun x x_1 => x ≤ x_1) c ⊢ ∃ ub, ub ∈ {y | y ∈ s ∧ x ≤ y} ∧ ∀ (z : α), z ∈ c → z ≤ ub [PROOFSTEP] rcases c.eq_empty_or_nonempty with (rfl | ⟨y, hy⟩) [GOAL] case refine_1.inl α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α inst✝ : Preorder α s : Set α ih : ∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub x : α hxs : x ∈ s hcs : ∅ ⊆ {y | y ∈ s ∧ x ≤ y} hc : IsChain (fun x x_1 => x ≤ x_1) ∅ ⊢ ∃ ub, ub ∈ {y | y ∈ s ∧ x ≤ y} ∧ ∀ (z : α), z ∈ ∅ → z ≤ ub [PROOFSTEP] exact ⟨x, ⟨hxs, le_rfl⟩, fun z => False.elim⟩ [GOAL] case refine_1.inr.intro α : Type u_1 β : Type u_2 r : α → α → Prop c✝ : Set α inst✝ : Preorder α s : Set α ih : ∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub x : α hxs : x ∈ s c : Set α hcs : c ⊆ {y | y ∈ s ∧ x ≤ y} hc : IsChain (fun x x_1 => x ≤ x_1) c y : α hy : y ∈ c ⊢ ∃ ub, ub ∈ {y | y ∈ s ∧ x ≤ y} ∧ ∀ (z : α), z ∈ c → z ≤ ub [PROOFSTEP] rcases ih c (fun z hz => (hcs hz).1) hc y hy with ⟨z, hzs, hz⟩ [GOAL] case refine_1.inr.intro.intro.intro α : Type u_1 β : Type u_2 r : α → α → Prop c✝ : Set α inst✝ : Preorder α s : Set α ih : ∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub x : α hxs : x ∈ s c : Set α hcs : c ⊆ {y | y ∈ s ∧ x ≤ y} hc : IsChain (fun x x_1 => x ≤ x_1) c y : α hy : y ∈ c z : α hzs : z ∈ s hz : ∀ (z_1 : α), z_1 ∈ c → z_1 ≤ z ⊢ ∃ ub, ub ∈ {y | y ∈ s ∧ x ≤ y} ∧ ∀ (z : α), z ∈ c → z ≤ ub [PROOFSTEP] exact ⟨z, ⟨hzs, (hcs hy).2.trans <| hz _ hy⟩, hz⟩ [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α inst✝ : Preorder α a : α ih : ∀ (c : Set α), c ⊆ Ici a → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, a ≤ ub ∧ ∀ (z : α), z ∈ c → z ≤ ub x : α hax : a ≤ x ⊢ ∀ (c : Set α), c ⊆ Ici a → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ Ici a ∧ ∀ (z : α), z ∈ c → z ≤ ub [PROOFSTEP] simpa using ih [GOAL] α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α hc : IsChain r c ⊢ ∃ M, IsMaxChain r M ∧ c ⊆ M [PROOFSTEP] have H := zorn_subset_nonempty {s | c ⊆ s ∧ IsChain r s} ?_ c ⟨Subset.rfl, hc⟩ [GOAL] case refine_2 α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α hc : IsChain r c H : ∃ m, m ∈ {s | c ⊆ s ∧ IsChain r s} ∧ c ⊆ m ∧ ∀ (a : Set α), a ∈ {s | c ⊆ s ∧ IsChain r s} → m ⊆ a → a = m ⊢ ∃ M, IsMaxChain r M ∧ c ⊆ M [PROOFSTEP] obtain ⟨M, ⟨_, hM₀⟩, hM₁, hM₂⟩ := H [GOAL] case refine_2.intro.intro.intro.intro α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α hc : IsChain r c M : Set α left✝ : c ⊆ M hM₀ : IsChain r M hM₁ : c ⊆ M hM₂ : ∀ (a : Set α), a ∈ {s | c ⊆ s ∧ IsChain r s} → M ⊆ a → a = M ⊢ ∃ M, IsMaxChain r M ∧ c ⊆ M [PROOFSTEP] exact ⟨M, ⟨hM₀, fun d hd hMd => (hM₂ _ ⟨hM₁.trans hMd, hd⟩ hMd).symm⟩, hM₁⟩ [GOAL] case refine_1 α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α hc : IsChain r c ⊢ ∀ (c_1 : Set (Set α)), c_1 ⊆ {s | c ⊆ s ∧ IsChain r s} → IsChain (fun x x_1 => x ⊆ x_1) c_1 → Set.Nonempty c_1 → ∃ ub, ub ∈ {s | c ⊆ s ∧ IsChain r s} ∧ ∀ (s : Set α), s ∈ c_1 → s ⊆ ub [PROOFSTEP] rintro cs hcs₀ hcs₁ ⟨s, hs⟩ [GOAL] case refine_1.intro α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α hc : IsChain r c cs : Set (Set α) hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s} hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs s : Set α hs : s ∈ cs ⊢ ∃ ub, ub ∈ {s | c ⊆ s ∧ IsChain r s} ∧ ∀ (s : Set α), s ∈ cs → s ⊆ ub [PROOFSTEP] refine' ⟨⋃₀ cs, ⟨fun _ ha => Set.mem_sUnion_of_mem ((hcs₀ hs).left ha) hs, _⟩, fun _ => Set.subset_sUnion_of_mem⟩ [GOAL] case refine_1.intro α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α hc : IsChain r c cs : Set (Set α) hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s} hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs s : Set α hs : s ∈ cs ⊢ IsChain r (⋃₀ cs) [PROOFSTEP] rintro y ⟨sy, hsy, hysy⟩ z ⟨sz, hsz, hzsz⟩ hyz [GOAL] case refine_1.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α hc : IsChain r c cs : Set (Set α) hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s} hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs s : Set α hs : s ∈ cs y : α sy : Set α hsy : sy ∈ cs hysy : y ∈ sy z : α sz : Set α hsz : sz ∈ cs hzsz : z ∈ sz hyz : y ≠ z ⊢ r y z ∨ r z y [PROOFSTEP] obtain rfl | hsseq := eq_or_ne sy sz [GOAL] case refine_1.intro.intro.intro.intro.intro.inl α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α hc : IsChain r c cs : Set (Set α) hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s} hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs s : Set α hs : s ∈ cs y : α sy : Set α hsy : sy ∈ cs hysy : y ∈ sy z : α hyz : y ≠ z hsz : sy ∈ cs hzsz : z ∈ sy ⊢ r y z ∨ r z y [PROOFSTEP] exact (hcs₀ hsy).right hysy hzsz hyz [GOAL] case refine_1.intro.intro.intro.intro.intro.inr α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α hc : IsChain r c cs : Set (Set α) hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s} hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs s : Set α hs : s ∈ cs y : α sy : Set α hsy : sy ∈ cs hysy : y ∈ sy z : α sz : Set α hsz : sz ∈ cs hzsz : z ∈ sz hyz : y ≠ z hsseq : sy ≠ sz ⊢ r y z ∨ r z y [PROOFSTEP] cases' hcs₁ hsy hsz hsseq with h h [GOAL] case refine_1.intro.intro.intro.intro.intro.inr.inl α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α hc : IsChain r c cs : Set (Set α) hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s} hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs s : Set α hs : s ∈ cs y : α sy : Set α hsy : sy ∈ cs hysy : y ∈ sy z : α sz : Set α hsz : sz ∈ cs hzsz : z ∈ sz hyz : y ≠ z hsseq : sy ≠ sz h : (fun x x_1 => x ⊆ x_1) sy sz ⊢ r y z ∨ r z y [PROOFSTEP] exact (hcs₀ hsz).right (h hysy) hzsz hyz [GOAL] case refine_1.intro.intro.intro.intro.intro.inr.inr α : Type u_1 β : Type u_2 r : α → α → Prop c : Set α hc : IsChain r c cs : Set (Set α) hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s} hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs s : Set α hs : s ∈ cs y : α sy : Set α hsy : sy ∈ cs hysy : y ∈ sy z : α sz : Set α hsz : sz ∈ cs hzsz : z ∈ sz hyz : y ≠ z hsseq : sy ≠ sz h : (fun x x_1 => x ⊆ x_1) sz sy ⊢ r y z ∨ r z y [PROOFSTEP] exact (hcs₀ hsy).right hysy (h hzsz) hyz
{"mathlib_filename": "Mathlib.Order.Zorn", "llama_tokens": 5170}
[GOAL] α : Type u_1 inst✝ : CircularOrder α a b c : α ⊢ sbtw a b c ↔ ¬btw c b a [PROOFSTEP] rw [sbtw_iff_btw_not_btw] [GOAL] α : Type u_1 inst✝ : CircularOrder α a b c : α ⊢ btw a b c ∧ ¬btw c b a ↔ ¬btw c b a [PROOFSTEP] exact and_iff_right_of_imp (btw_total _ _ _).resolve_left [GOAL] α : Type u_1 inst✝ : CircularOrder α a b : α ⊢ (cIcc a b)ᶜ = cIoo b a [PROOFSTEP] ext [GOAL] case h α : Type u_1 inst✝ : CircularOrder α a b x✝ : α ⊢ x✝ ∈ (cIcc a b)ᶜ ↔ x✝ ∈ cIoo b a [PROOFSTEP] rw [Set.mem_cIoo, sbtw_iff_not_btw, cIcc, mem_compl_iff, mem_setOf] [GOAL] α : Type u_1 inst✝ : CircularOrder α a b : α ⊢ (cIoo a b)ᶜ = cIcc b a [PROOFSTEP] ext [GOAL] case h α : Type u_1 inst✝ : CircularOrder α a b x✝ : α ⊢ x✝ ∈ (cIoo a b)ᶜ ↔ x✝ ∈ cIcc b a [PROOFSTEP] rw [Set.mem_cIcc, btw_iff_not_sbtw, cIoo, mem_compl_iff, mem_setOf] [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α h : btw a b c ⊢ btw b c a [PROOFSTEP] dsimp [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α h : btw a b c ⊢ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ a ≤ b ∨ a ≤ b ∧ b ≤ c [PROOFSTEP] rwa [← or_assoc, or_comm] [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α ⊢ sbtw a b c ↔ btw a b c ∧ ¬btw c b a [PROOFSTEP] simp_rw [lt_iff_le_not_le] [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α ⊢ (a ≤ b ∧ ¬b ≤ a) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ a ≤ b ∧ ¬b ≤ a ↔ (a ≤ b ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ a ≤ b) ∧ ¬(c ≤ b ∧ b ≤ a ∨ b ≤ a ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b) [PROOFSTEP] have h1 := le_trans a b c [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α h1 : a ≤ b → b ≤ c → a ≤ c ⊢ (a ≤ b ∧ ¬b ≤ a) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ a ≤ b ∧ ¬b ≤ a ↔ (a ≤ b ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ a ≤ b) ∧ ¬(c ≤ b ∧ b ≤ a ∨ b ≤ a ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b) [PROOFSTEP] have h2 := le_trans b c a [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α h1 : a ≤ b → b ≤ c → a ≤ c h2 : b ≤ c → c ≤ a → b ≤ a ⊢ (a ≤ b ∧ ¬b ≤ a) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ a ≤ b ∧ ¬b ≤ a ↔ (a ≤ b ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ a ≤ b) ∧ ¬(c ≤ b ∧ b ≤ a ∨ b ≤ a ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b) [PROOFSTEP] have h3 := le_trans c a b [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α h1 : a ≤ b → b ≤ c → a ≤ c h2 : b ≤ c → c ≤ a → b ≤ a h3 : c ≤ a → a ≤ b → c ≤ b ⊢ (a ≤ b ∧ ¬b ≤ a) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ a ≤ b ∧ ¬b ≤ a ↔ (a ≤ b ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ a ≤ b) ∧ ¬(c ≤ b ∧ b ≤ a ∨ b ≤ a ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b) [PROOFSTEP] revert h1 h2 h3 [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α ⊢ (a ≤ b → b ≤ c → a ≤ c) → (b ≤ c → c ≤ a → b ≤ a) → (c ≤ a → a ≤ b → c ≤ b) → ((a ≤ b ∧ ¬b ≤ a) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ a ≤ b ∧ ¬b ≤ a ↔ (a ≤ b ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ a ≤ b) ∧ ¬(c ≤ b ∧ b ≤ a ∨ b ≤ a ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b)) [PROOFSTEP] generalize (a ≤ b) = p1 [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α p1 : Prop ⊢ (p1 → b ≤ c → a ≤ c) → (b ≤ c → c ≤ a → b ≤ a) → (c ≤ a → p1 → c ≤ b) → ((p1 ∧ ¬b ≤ a) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ p1 ∧ ¬b ≤ a ↔ (p1 ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ p1) ∧ ¬(c ≤ b ∧ b ≤ a ∨ b ≤ a ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b)) [PROOFSTEP] generalize (b ≤ a) = p2 [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 : Prop ⊢ (p1 → b ≤ c → a ≤ c) → (b ≤ c → c ≤ a → p2) → (c ≤ a → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b)) [PROOFSTEP] generalize (a ≤ c) = p3 [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 : Prop ⊢ (p1 → b ≤ c → p3) → (b ≤ c → c ≤ a → p2) → (c ≤ a → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬p3 ∨ (c ≤ a ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] generalize (c ≤ a) = p4 [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 : Prop ⊢ (p1 → b ≤ c → p3) → (b ≤ c → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ b ≤ c ∨ b ≤ c ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] generalize (b ≤ c) = p5 [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p1 [GOAL] α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p1 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h : p1 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p2 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h : p1 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p2 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h : ¬p1 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p2 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h : ¬p1 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p2 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝ : p1 h : p2 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p3 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝ : p1 h : p2 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p3 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝ : p1 h : ¬p2 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p3 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝ : p1 h : ¬p2 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p3 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝ : ¬p1 h : p2 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p3 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝ : ¬p1 h : p2 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p3 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝ : ¬p1 h : ¬p2 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p3 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝ : ¬p1 h : ¬p2 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p3 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : p1 h✝ : p2 h : p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : p1 h✝ : p2 h : p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : p1 h✝ : p2 h : ¬p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : p1 h✝ : p2 h : ¬p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : p1 h✝ : ¬p2 h : p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : p1 h✝ : ¬p2 h : p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : p1 h✝ : ¬p2 h : ¬p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : p1 h✝ : ¬p2 h : ¬p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : ¬p1 h✝ : p2 h : p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : ¬p1 h✝ : p2 h : p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : ¬p1 h✝ : p2 h : ¬p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : ¬p1 h✝ : p2 h : ¬p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : ¬p1 h✝ : ¬p2 h : p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : ¬p1 h✝ : ¬p2 h : p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : ¬p1 h✝ : ¬p2 h : ¬p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝¹ : ¬p1 h✝ : ¬p2 h : ¬p3 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p4 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : p2 h✝ : p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : p2 h✝ : p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : p2 h✝ : p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : p2 h✝ : p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : p2 h✝ : ¬p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : p2 h✝ : ¬p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : p2 h✝ : ¬p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : p2 h✝ : ¬p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : ¬p2 h✝ : p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : ¬p2 h✝ : p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : ¬p2 h✝ : p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : ¬p2 h✝ : p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : ¬p2 h✝ : ¬p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : ¬p2 h✝ : ¬p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : ¬p2 h✝ : ¬p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : p1 h✝¹ : ¬p2 h✝ : ¬p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : p2 h✝ : p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : p2 h✝ : p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : p2 h✝ : p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : p2 h✝ : p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : p2 h✝ : ¬p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : p2 h✝ : ¬p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : p2 h✝ : ¬p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : p2 h✝ : ¬p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : ¬p2 h✝ : p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : ¬p2 h✝ : p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : ¬p2 h✝ : p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : ¬p2 h✝ : p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : ¬p2 h✝ : ¬p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : ¬p2 h✝ : ¬p3 h : p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : ¬p2 h✝ : ¬p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝² : ¬p1 h✝¹ : ¬p2 h✝ : ¬p3 h : ¬p4 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] by_cases p5 [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : p2 h✝¹ : p3 h✝ : p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : p2 h✝¹ : p3 h✝ : p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : p2 h✝¹ : p3 h✝ : ¬p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : p2 h✝¹ : p3 h✝ : ¬p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : p2 h✝¹ : ¬p3 h✝ : p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : p2 h✝¹ : ¬p3 h✝ : p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : p2 h✝¹ : ¬p3 h✝ : ¬p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : p2 h✝¹ : ¬p3 h✝ : ¬p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : ¬p2 h✝¹ : p3 h✝ : p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : ¬p2 h✝¹ : p3 h✝ : p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : ¬p2 h✝¹ : p3 h✝ : ¬p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : ¬p2 h✝¹ : p3 h✝ : ¬p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : ¬p2 h✝¹ : ¬p3 h✝ : p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : ¬p2 h✝¹ : ¬p3 h✝ : p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : ¬p2 h✝¹ : ¬p3 h✝ : ¬p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : p1 h✝² : ¬p2 h✝¹ : ¬p3 h✝ : ¬p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : p2 h✝¹ : p3 h✝ : p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : p2 h✝¹ : p3 h✝ : p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : p2 h✝¹ : p3 h✝ : ¬p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : p2 h✝¹ : p3 h✝ : ¬p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : p2 h✝¹ : ¬p3 h✝ : p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : p2 h✝¹ : ¬p3 h✝ : p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : p2 h✝¹ : ¬p3 h✝ : ¬p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : p2 h✝¹ : ¬p3 h✝ : ¬p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : ¬p2 h✝¹ : p3 h✝ : p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : ¬p2 h✝¹ : p3 h✝ : p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : ¬p2 h✝¹ : p3 h✝ : ¬p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : ¬p2 h✝¹ : p3 h✝ : ¬p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : ¬p2 h✝¹ : ¬p3 h✝ : p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : ¬p2 h✝¹ : ¬p3 h✝ : p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : ¬p2 h✝¹ : ¬p3 h✝ : ¬p4 h : p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝ : Preorder α a b c : α p1 p2 p3 p4 p5 : Prop h✝³ : ¬p1 h✝² : ¬p2 h✝¹ : ¬p3 h✝ : ¬p4 h : ¬p5 ⊢ (p1 → p5 → p3) → (p5 → p4 → p2) → (p4 → p1 → c ≤ b) → ((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔ (p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b)) [PROOFSTEP] simp [*] [GOAL] α : Type u_1 inst✝ : Preorder α a b c d : α ⊢ sbtw a b c → sbtw b d c → sbtw a d c [PROOFSTEP] rintro (⟨hab, hbc⟩ | ⟨hbc, hca⟩ | ⟨hca, hab⟩) (⟨hbd, hdc⟩ | ⟨hdc, hcb⟩ | ⟨hcb, hbd⟩) [GOAL] case inl.intro.inl.intro α : Type u_1 inst✝ : Preorder α a b c d : α hab : a < b hbc : b < c hbd : b < d hdc : d < c ⊢ sbtw a d c [PROOFSTEP] exact Or.inl ⟨hab.trans hbd, hdc⟩ [GOAL] case inl.intro.inr.inl.intro α : Type u_1 inst✝ : Preorder α a b c d : α hab : a < b hbc : b < c hdc : d < c hcb : c < b ⊢ sbtw a d c [PROOFSTEP] exact (hbc.not_lt hcb).elim [GOAL] case inl.intro.inr.inr.intro α : Type u_1 inst✝ : Preorder α a b c d : α hab : a < b hbc : b < c hcb : c < b hbd : b < d ⊢ sbtw a d c [PROOFSTEP] exact (hbc.not_lt hcb).elim [GOAL] case inr.inl.intro.inl.intro α : Type u_1 inst✝ : Preorder α a b c d : α hbc : b < c hca : c < a hbd : b < d hdc : d < c ⊢ sbtw a d c [PROOFSTEP] exact Or.inr (Or.inl ⟨hdc, hca⟩) [GOAL] case inr.inl.intro.inr.inl.intro α : Type u_1 inst✝ : Preorder α a b c d : α hbc : b < c hca : c < a hdc : d < c hcb : c < b ⊢ sbtw a d c [PROOFSTEP] exact Or.inr (Or.inl ⟨hdc, hca⟩) [GOAL] case inr.inl.intro.inr.inr.intro α : Type u_1 inst✝ : Preorder α a b c d : α hbc : b < c hca : c < a hcb : c < b hbd : b < d ⊢ sbtw a d c [PROOFSTEP] exact (hbc.not_lt hcb).elim [GOAL] case inr.inr.intro.inl.intro α : Type u_1 inst✝ : Preorder α a b c d : α hca : c < a hab : a < b hbd : b < d hdc : d < c ⊢ sbtw a d c [PROOFSTEP] exact Or.inr (Or.inl ⟨hdc, hca⟩) [GOAL] case inr.inr.intro.inr.inl.intro α : Type u_1 inst✝ : Preorder α a b c d : α hca : c < a hab : a < b hdc : d < c hcb : c < b ⊢ sbtw a d c [PROOFSTEP] exact Or.inr (Or.inl ⟨hdc, hca⟩) [GOAL] case inr.inr.intro.inr.inr.intro α : Type u_1 inst✝ : Preorder α a b c d : α hca : c < a hab : a < b hcb : c < b hbd : b < d ⊢ sbtw a d c [PROOFSTEP] exact Or.inr (Or.inr ⟨hca, hab.trans hbd⟩) [GOAL] α : Type u_1 inst✝ : PartialOrder α src✝ : CircularPreorder α := Preorder.toCircularPreorder α a b c : α ⊢ btw a b c → btw c b a → a = b ∨ b = c ∨ c = a [PROOFSTEP] rintro (⟨hab, hbc⟩ | ⟨hbc, hca⟩ | ⟨hca, hab⟩) (⟨hcb, hba⟩ | ⟨hba, hac⟩ | ⟨hac, hcb⟩) [GOAL] case inl.intro.inl.intro α : Type u_1 inst✝ : PartialOrder α src✝ : CircularPreorder α := Preorder.toCircularPreorder α a b c : α hab : a ≤ b hbc : b ≤ c hcb : c ≤ b hba : b ≤ a ⊢ a = b ∨ b = c ∨ c = a [PROOFSTEP] exact Or.inl (hab.antisymm hba) [GOAL] case inl.intro.inr.inl.intro α : Type u_1 inst✝ : PartialOrder α src✝ : CircularPreorder α := Preorder.toCircularPreorder α a b c : α hab : a ≤ b hbc : b ≤ c hba : b ≤ a hac : a ≤ c ⊢ a = b ∨ b = c ∨ c = a [PROOFSTEP] exact Or.inl (hab.antisymm hba) [GOAL] case inl.intro.inr.inr.intro α : Type u_1 inst✝ : PartialOrder α src✝ : CircularPreorder α := Preorder.toCircularPreorder α a b c : α hab : a ≤ b hbc : b ≤ c hac : a ≤ c hcb : c ≤ b ⊢ a = b ∨ b = c ∨ c = a [PROOFSTEP] exact Or.inr (Or.inl <| hbc.antisymm hcb) [GOAL] case inr.inl.intro.inl.intro α : Type u_1 inst✝ : PartialOrder α src✝ : CircularPreorder α := Preorder.toCircularPreorder α a b c : α hbc : b ≤ c hca : c ≤ a hcb : c ≤ b hba : b ≤ a ⊢ a = b ∨ b = c ∨ c = a [PROOFSTEP] exact Or.inr (Or.inl <| hbc.antisymm hcb) [GOAL] case inr.inl.intro.inr.inl.intro α : Type u_1 inst✝ : PartialOrder α src✝ : CircularPreorder α := Preorder.toCircularPreorder α a b c : α hbc : b ≤ c hca : c ≤ a hba : b ≤ a hac : a ≤ c ⊢ a = b ∨ b = c ∨ c = a [PROOFSTEP] exact Or.inr (Or.inr <| hca.antisymm hac) [GOAL] case inr.inl.intro.inr.inr.intro α : Type u_1 inst✝ : PartialOrder α src✝ : CircularPreorder α := Preorder.toCircularPreorder α a b c : α hbc : b ≤ c hca : c ≤ a hac : a ≤ c hcb : c ≤ b ⊢ a = b ∨ b = c ∨ c = a [PROOFSTEP] exact Or.inr (Or.inl <| hbc.antisymm hcb) [GOAL] case inr.inr.intro.inl.intro α : Type u_1 inst✝ : PartialOrder α src✝ : CircularPreorder α := Preorder.toCircularPreorder α a b c : α hca : c ≤ a hab : a ≤ b hcb : c ≤ b hba : b ≤ a ⊢ a = b ∨ b = c ∨ c = a [PROOFSTEP] exact Or.inl (hab.antisymm hba) [GOAL] case inr.inr.intro.inr.inl.intro α : Type u_1 inst✝ : PartialOrder α src✝ : CircularPreorder α := Preorder.toCircularPreorder α a b c : α hca : c ≤ a hab : a ≤ b hba : b ≤ a hac : a ≤ c ⊢ a = b ∨ b = c ∨ c = a [PROOFSTEP] exact Or.inl (hab.antisymm hba) [GOAL] case inr.inr.intro.inr.inr.intro α : Type u_1 inst✝ : PartialOrder α src✝ : CircularPreorder α := Preorder.toCircularPreorder α a b c : α hca : c ≤ a hab : a ≤ b hac : a ≤ c hcb : c ≤ b ⊢ a = b ∨ b = c ∨ c = a [PROOFSTEP] exact Or.inr (Or.inr <| hca.antisymm hac) [GOAL] α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α ⊢ btw a b c ∨ btw c b a [PROOFSTEP] cases' le_total a b with hab hba [GOAL] case inl α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hab : a ≤ b ⊢ btw a b c ∨ btw c b a [PROOFSTEP] cases' le_total b c with hbc hcb [GOAL] case inr α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hba : b ≤ a ⊢ btw a b c ∨ btw c b a [PROOFSTEP] cases' le_total b c with hbc hcb [GOAL] case inl.inl α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hab : a ≤ b hbc : b ≤ c ⊢ btw a b c ∨ btw c b a [PROOFSTEP] cases' le_total c a with hca hac [GOAL] case inl.inr α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hab : a ≤ b hcb : c ≤ b ⊢ btw a b c ∨ btw c b a [PROOFSTEP] cases' le_total c a with hca hac [GOAL] case inr.inl α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hba : b ≤ a hbc : b ≤ c ⊢ btw a b c ∨ btw c b a [PROOFSTEP] cases' le_total c a with hca hac [GOAL] case inr.inr α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hba : b ≤ a hcb : c ≤ b ⊢ btw a b c ∨ btw c b a [PROOFSTEP] cases' le_total c a with hca hac [GOAL] case inl.inl.inl α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hab : a ≤ b hbc : b ≤ c hca : c ≤ a ⊢ btw a b c ∨ btw c b a [PROOFSTEP] exact Or.inl (Or.inl ⟨hab, hbc⟩) [GOAL] case inl.inl.inr α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hab : a ≤ b hbc : b ≤ c hac : a ≤ c ⊢ btw a b c ∨ btw c b a [PROOFSTEP] exact Or.inl (Or.inl ⟨hab, hbc⟩) [GOAL] case inl.inr.inl α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hab : a ≤ b hcb : c ≤ b hca : c ≤ a ⊢ btw a b c ∨ btw c b a [PROOFSTEP] exact Or.inl (Or.inr <| Or.inr ⟨hca, hab⟩) [GOAL] case inl.inr.inr α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hab : a ≤ b hcb : c ≤ b hac : a ≤ c ⊢ btw a b c ∨ btw c b a [PROOFSTEP] exact Or.inr (Or.inr <| Or.inr ⟨hac, hcb⟩) [GOAL] case inr.inl.inl α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hba : b ≤ a hbc : b ≤ c hca : c ≤ a ⊢ btw a b c ∨ btw c b a [PROOFSTEP] exact Or.inl (Or.inr <| Or.inl ⟨hbc, hca⟩) [GOAL] case inr.inl.inr α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hba : b ≤ a hbc : b ≤ c hac : a ≤ c ⊢ btw a b c ∨ btw c b a [PROOFSTEP] exact Or.inr (Or.inr <| Or.inl ⟨hba, hac⟩) [GOAL] case inr.inr.inl α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hba : b ≤ a hcb : c ≤ b hca : c ≤ a ⊢ btw a b c ∨ btw c b a [PROOFSTEP] exact Or.inr (Or.inl ⟨hcb, hba⟩) [GOAL] case inr.inr.inr α : Type u_1 inst✝ : LinearOrder α src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α a b c : α hba : b ≤ a hcb : c ≤ b hac : a ≤ c ⊢ btw a b c ∨ btw c b a [PROOFSTEP] exact Or.inr (Or.inr <| Or.inl ⟨hba, hac⟩)
{"mathlib_filename": "Mathlib.Order.Circular", "llama_tokens": 31533}
[GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α ⊢ ∀ ⦃b : α⦄, b ∈ {a} → r a b → r b a [PROOFSTEP] rintro b (rfl : b = a) [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α b✝ b : α ⊢ r b b → r b b [PROOFSTEP] exact id [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α inst✝ : IsAntisymm α r x : α ⊢ x ∈ maximals r s ↔ x ∈ s ∧ ∀ ⦃y : α⦄, y ∈ s → r x y → x = y [PROOFSTEP] simp only [maximals, Set.mem_sep_iff, and_congr_right_iff] [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α inst✝ : IsAntisymm α r x : α ⊢ x ∈ s → ((∀ ⦃b : α⦄, b ∈ s → r x b → r b x) ↔ ∀ ⦃y : α⦄, y ∈ s → r x y → x = y) [PROOFSTEP] refine' fun _ ↦ ⟨fun h y hys hxy ↦ antisymm hxy (h hys hxy), fun h y hys hxy ↦ _⟩ [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α inst✝ : IsAntisymm α r x : α x✝ : x ∈ s h : ∀ ⦃y : α⦄, y ∈ s → r x y → x = y y : α hys : y ∈ s hxy : r x y ⊢ r y x [PROOFSTEP] convert hxy [GOAL] case h.e'_1 α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α inst✝ : IsAntisymm α r x : α x✝ : x ∈ s h : ∀ ⦃y : α⦄, y ∈ s → r x y → x = y y : α hys : y ∈ s hxy : r x y ⊢ y = x [PROOFSTEP] rw [h hys hxy] [GOAL] case h.e'_2 α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α inst✝ : IsAntisymm α r x : α x✝ : x ∈ s h : ∀ ⦃y : α⦄, y ∈ s → r x y → x = y y : α hys : y ∈ s hxy : r x y ⊢ x = y [PROOFSTEP] rw [h hys hxy] [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α inst✝¹ : IsAntisymm α r x : α rlt : α → α → Prop inst✝ : IsNonstrictStrictOrder α r rlt ⊢ x ∈ minimals r s ↔ x ∈ s ∧ ∀ ⦃y : α⦄, rlt y x → ¬y ∈ s [PROOFSTEP] simp [minimals, right_iff_left_not_left_of r rlt, not_imp_not, imp.swap (a := _ ∈ _)] [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α inst✝¹ : IsAntisymm α r x : α rlt : α → α → Prop inst✝ : IsNonstrictStrictOrder α r rlt ⊢ x ∈ maximals r s ↔ x ∈ s ∧ ∀ ⦃y : α⦄, rlt x y → ¬y ∈ s [PROOFSTEP] simp [maximals, right_iff_left_not_left_of r rlt, not_imp_not, imp.swap (a := _ ∈ _)] [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α inst✝¹ : IsAntisymm α r inst✝ : IsTrans α r hts : t ⊆ s h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ r y x ⊢ minimals r s = minimals r t [PROOFSTEP] refine Set.ext fun a ↦ ⟨fun ⟨has, hmin⟩ ↦ ⟨?_, fun b hbt ↦ hmin (hts hbt)⟩, fun ⟨hat, hmin⟩ ↦ ⟨hts hat, fun b hbs hba ↦ ?_⟩⟩ [GOAL] case refine_1 α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b : α inst✝¹ : IsAntisymm α r inst✝ : IsTrans α r hts : t ⊆ s h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ r y x a : α x✝ : a ∈ minimals r s has : a ∈ s hmin : ∀ ⦃b : α⦄, b ∈ s → r b a → r a b ⊢ a ∈ t [PROOFSTEP] obtain ⟨a', ha', haa'⟩ := h _ has [GOAL] case refine_1.intro.intro α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b : α inst✝¹ : IsAntisymm α r inst✝ : IsTrans α r hts : t ⊆ s h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ r y x a : α x✝ : a ∈ minimals r s has : a ∈ s hmin : ∀ ⦃b : α⦄, b ∈ s → r b a → r a b a' : α ha' : a' ∈ t haa' : r a' a ⊢ a ∈ t [PROOFSTEP] rwa [antisymm (hmin (hts ha') haa') haa'] [GOAL] case refine_2 α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α inst✝¹ : IsAntisymm α r inst✝ : IsTrans α r hts : t ⊆ s h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ r y x a : α x✝ : a ∈ minimals r t hat : a ∈ t hmin : ∀ ⦃b : α⦄, b ∈ t → r b a → r a b b : α hbs : b ∈ s hba : r b a ⊢ r a b [PROOFSTEP] obtain ⟨b', hb't, hb'b⟩ := h b hbs [GOAL] case refine_2.intro.intro α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α inst✝¹ : IsAntisymm α r inst✝ : IsTrans α r hts : t ⊆ s h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ r y x a : α x✝ : a ∈ minimals r t hat : a ∈ t hmin : ∀ ⦃b : α⦄, b ∈ t → r b a → r a b b : α hbs : b ∈ s hba : r b a b' : α hb't : b' ∈ t hb'b : r b' b ⊢ r a b [PROOFSTEP] rwa [antisymm (hmin hb't (Trans.trans hb'b hba)) (Trans.trans hb'b hba)] [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α inst✝ : IsSymm α r ⊢ maximals r s = minimals r s [PROOFSTEP] rw [minimals_of_symm, maximals_of_symm] [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α h : Set.Subsingleton s ⊢ maximals r s = s [PROOFSTEP] rcases h.eq_empty_or_singleton with (rfl | ⟨x, rfl⟩) [GOAL] case inl α : Type u_1 r r₁ r₂ : α → α → Prop t : Set α a b : α h : Set.Subsingleton ∅ ⊢ maximals r ∅ = ∅ case inr.intro α : Type u_1 r r₁ r₂ : α → α → Prop t : Set α a b x : α h : Set.Subsingleton {x} ⊢ maximals r {x} = {x} [PROOFSTEP] exacts [minimals_empty _, maximals_singleton _ _] [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α inst✝ : IsAntisymm α r₂ h : ∀ (a b : α), r₁ a b → r₂ a b a : α ha : a ∈ maximals r₂ s b : α hb : b ∈ s hab : r₁ a b ⊢ r₁ b a [PROOFSTEP] have := eq_of_mem_maximals ha hb (h _ _ hab) [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α inst✝ : IsAntisymm α r₂ h : ∀ (a b : α), r₁ a b → r₂ a b a : α ha : a ∈ maximals r₂ s b : α hb : b ∈ s hab : r₁ a b this : a = b ⊢ r₁ b a [PROOFSTEP] subst this [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b : α inst✝ : IsAntisymm α r₂ h : ∀ (a b : α), r₁ a b → r₂ a b a : α ha : a ∈ maximals r₂ s hb : a ∈ s hab : r₁ a a ⊢ r₁ a a [PROOFSTEP] exact hab [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α inst✝ : IsAntisymm α r₂ h : ∀ (a b : α), r₁ a b → r₂ a b a : α ha : a ∈ minimals r₂ s b : α hb : b ∈ s hab : r₁ b a ⊢ r₁ a b [PROOFSTEP] have := eq_of_mem_minimals ha hb (h _ _ hab) [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α inst✝ : IsAntisymm α r₂ h : ∀ (a b : α), r₁ a b → r₂ a b a : α ha : a ∈ minimals r₂ s b : α hb : b ∈ s hab : r₁ b a this : a = b ⊢ r₁ a b [PROOFSTEP] subst this [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b : α inst✝ : IsAntisymm α r₂ h : ∀ (a b : α), r₁ a b → r₂ a b a : α ha : a ∈ minimals r₂ s hb : a ∈ s hab : r₁ a a ⊢ r₁ a a [PROOFSTEP] exact hab [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α ⊢ maximals r (s ∪ t) ⊆ maximals r s ∪ maximals r t [PROOFSTEP] intro a ha [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b a : α ha : a ∈ maximals r (s ∪ t) ⊢ a ∈ maximals r s ∪ maximals r t [PROOFSTEP] obtain h | h := ha.1 [GOAL] case inl α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b a : α ha : a ∈ maximals r (s ∪ t) h : a ∈ s ⊢ a ∈ maximals r s ∪ maximals r t [PROOFSTEP] exact Or.inl ⟨h, fun b hb => ha.2 <| Or.inl hb⟩ [GOAL] case inr α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b a : α ha : a ∈ maximals r (s ∪ t) h : a ∈ t ⊢ a ∈ maximals r s ∪ maximals r t [PROOFSTEP] exact Or.inr ⟨h, fun b hb => ha.2 <| Or.inr hb⟩ [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α h : IsAntichain r s a : α ha : a ∈ s b : α hb : b ∈ s hab : r a b ⊢ r b a [PROOFSTEP] obtain rfl := h.eq ha hb hab [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b : α h : IsAntichain r s a : α ha hb : a ∈ s hab : r a a ⊢ r a a [PROOFSTEP] exact hab [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α ht : IsAntichain r t h : maximals r s ⊆ t hs : ∀ ⦃a : α⦄, a ∈ t → ∃ b, b ∈ maximals r s ∧ r b a ⊢ maximals r s = t [PROOFSTEP] refine' h.antisymm fun a ha => _ [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b : α ht : IsAntichain r t h : maximals r s ⊆ t hs : ∀ ⦃a : α⦄, a ∈ t → ∃ b, b ∈ maximals r s ∧ r b a a : α ha : a ∈ t ⊢ a ∈ maximals r s [PROOFSTEP] obtain ⟨b, hb, hr⟩ := hs ha [GOAL] case intro.intro α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α ht : IsAntichain r t h : maximals r s ⊆ t hs : ∀ ⦃a : α⦄, a ∈ t → ∃ b, b ∈ maximals r s ∧ r b a a : α ha : a ∈ t b : α hb : b ∈ maximals r s hr : r b a ⊢ a ∈ maximals r s [PROOFSTEP] rwa [of_not_not fun hab => ht (h hb) ha (Ne.symm hab) hr] [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a b : α ht : IsAntichain r t h : minimals r s ⊆ t hs : ∀ ⦃a : α⦄, a ∈ t → ∃ b, b ∈ minimals r s ∧ r a b ⊢ minimals r s = t [PROOFSTEP] refine' h.antisymm fun a ha => _ [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b : α ht : IsAntichain r t h : minimals r s ⊆ t hs : ∀ ⦃a : α⦄, a ∈ t → ∃ b, b ∈ minimals r s ∧ r a b a : α ha : a ∈ t ⊢ a ∈ minimals r s [PROOFSTEP] obtain ⟨b, hb, hr⟩ := hs ha [GOAL] case intro.intro α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α ht : IsAntichain r t h : minimals r s ⊆ t hs : ∀ ⦃a : α⦄, a ∈ t → ∃ b, b ∈ minimals r s ∧ r a b a : α ha : a ∈ t b : α hb : b ∈ minimals r s hr : r a b ⊢ a ∈ minimals r s [PROOFSTEP] rwa [of_not_not fun hab => ht ha (h hb) hab hr] [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α inst✝ : PartialOrder α hs : IsAntichain (fun x x_1 => x ≤ x_1) s a : α x✝ : a ∈ minimals (fun x x_1 => x ≤ x_1) ↑(upperClosure s) b : α hb : b ∈ s hba : b ≤ a right✝ : ∀ ⦃b : α⦄, b ∈ ↑(upperClosure s) → (fun x x_1 => x ≤ x_1) b a → (fun x x_1 => x ≤ x_1) a b ⊢ a ∈ s [PROOFSTEP] rwa [eq_of_mem_minimals ‹a ∈ _› (subset_upperClosure hb) hba] [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α inst✝ : PartialOrder α hs : IsAntichain (fun x x_1 => x ≤ x_1) s a : α ha : a ∈ s b : α x✝ : b ∈ ↑(upperClosure s) hba : (fun x x_1 => x ≤ x_1) b a c : α hc : c ∈ s hcb : c ≤ b ⊢ (fun x x_1 => x ≤ x_1) a b [PROOFSTEP] rwa [hs.eq' ha hc (hcb.trans hba)] [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) ⊢ minimals s (f '' x) = f '' minimals r x [PROOFSTEP] ext a [GOAL] case h β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a✝ b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) a : β ⊢ a ∈ minimals s (f '' x) ↔ a ∈ f '' minimals r x [PROOFSTEP] simp only [minimals, mem_image, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂] [GOAL] case h β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a✝ b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) a : β ⊢ a ∈ {a | (∃ x_1, x_1 ∈ x ∧ f x_1 = a) ∧ ∀ (a_1 : α), a_1 ∈ x → s (f a_1) a → s a (f a_1)} ↔ ∃ x_1, x_1 ∈ {a | a ∈ x ∧ ∀ ⦃b : α⦄, b ∈ x → r b a → r a b} ∧ f x_1 = a [PROOFSTEP] constructor [GOAL] case h.mp β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a✝ b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) a : β ⊢ a ∈ {a | (∃ x_1, x_1 ∈ x ∧ f x_1 = a) ∧ ∀ (a_1 : α), a_1 ∈ x → s (f a_1) a → s a (f a_1)} → ∃ x_1, x_1 ∈ {a | a ∈ x ∧ ∀ ⦃b : α⦄, b ∈ x → r b a → r a b} ∧ f x_1 = a [PROOFSTEP] rintro ⟨⟨a, ha, rfl⟩, h⟩ [GOAL] case h.mp.intro.intro.intro β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a✝ b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) a : α ha : a ∈ x h : ∀ (a_1 : α), a_1 ∈ x → s (f a_1) (f a) → s (f a) (f a_1) ⊢ ∃ x_1, x_1 ∈ {a | a ∈ x ∧ ∀ ⦃b : α⦄, b ∈ x → r b a → r a b} ∧ f x_1 = f a [PROOFSTEP] exact ⟨a, ⟨ha, fun y hy hya ↦ (hf ha hy).mpr (h _ hy ((hf hy ha).mp hya))⟩, rfl⟩ [GOAL] case h.mpr β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a✝ b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) a : β ⊢ (∃ x_1, x_1 ∈ {a | a ∈ x ∧ ∀ ⦃b : α⦄, b ∈ x → r b a → r a b} ∧ f x_1 = a) → a ∈ {a | (∃ x_1, x_1 ∈ x ∧ f x_1 = a) ∧ ∀ (a_2 : α), a_2 ∈ x → s (f a_2) a → s a (f a_2)} [PROOFSTEP] rintro ⟨a, ⟨⟨ha, h⟩, rfl⟩⟩ [GOAL] case h.mpr.intro.intro.intro β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a✝ b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) a : α ha : a ∈ x h : ∀ ⦃b : α⦄, b ∈ x → r b a → r a b ⊢ f a ∈ {a | (∃ x_1, x_1 ∈ x ∧ f x_1 = a) ∧ ∀ (a_1 : α), a_1 ∈ x → s (f a_1) a → s a (f a_1)} [PROOFSTEP] exact ⟨⟨_, ha, rfl⟩, fun y hy hya ↦ (hf ha hy).mp (h hy ((hf hy ha).mpr hya))⟩ [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop f : r ↪r s x : Set α ⊢ minimals s (↑f '' x) = ↑f '' minimals r x [PROOFSTEP] rw [minimals_image_of_rel_iff_rel] [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop f : r ↪r s x : Set α ⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (↑f a) (↑f a')) [PROOFSTEP] simp [f.map_rel_iff] [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) y : Set β ⊢ x ∩ f ⁻¹' minimals s (f '' x ∩ y) = minimals r (x ∩ f ⁻¹' y) [PROOFSTEP] ext a [GOAL] case h β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a✝ b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) y : Set β a : α ⊢ a ∈ x ∩ f ⁻¹' minimals s (f '' x ∩ y) ↔ a ∈ minimals r (x ∩ f ⁻¹' y) [PROOFSTEP] simp only [minimals, mem_inter_iff, mem_image, and_imp, forall_exists_index, forall_apply_eq_imp_iff₂, preimage_setOf_eq, mem_setOf_eq, mem_preimage] [GOAL] case h β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a✝ b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) y : Set β a : α ⊢ (a ∈ x ∧ ((∃ x_1, x_1 ∈ x ∧ f x_1 = f a) ∧ f a ∈ y) ∧ ∀ (a_1 : α), a_1 ∈ x → f a_1 ∈ y → s (f a_1) (f a) → s (f a) (f a_1)) ↔ (a ∈ x ∧ f a ∈ y) ∧ ∀ ⦃b : α⦄, b ∈ x → f b ∈ y → r b a → r a b [PROOFSTEP] exact ⟨fun ⟨hax, ⟨_, hay⟩, h2⟩ ↦ ⟨⟨hax, hay⟩, fun a₁ ha₁ ha₁y ha₁a ↦ (hf hax ha₁).mpr (h2 _ ha₁ ha₁y ((hf ha₁ hax).mp ha₁a))⟩, fun ⟨⟨hax, hay⟩, h⟩ ↦ ⟨hax, ⟨⟨_, hax, rfl⟩, hay⟩, fun a' ha' ha'y hsa' ↦ (hf hax ha').mp (h ha' ha'y ((hf ha' hax).mpr hsa'))⟩⟩ [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α y : Set β hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) hy : y ⊆ f '' x ⊢ x ∩ f ⁻¹' minimals s y = minimals r (x ∩ f ⁻¹' y) [PROOFSTEP] rw [← inter_eq_self_of_subset_right hy, inter_minimals_preimage_inter_eq_of_rel_iff_rel_on hf, preimage_inter, ← inter_assoc, inter_eq_self_of_subset_left (subset_preimage_image f x)] [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop f : r ↪r s x : Set α y : Set β ⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (↑f a) (↑f a')) [PROOFSTEP] simp [f.map_rel_iff] [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop y : Set β x : Set α f : r ↪r s h : y ⊆ ↑f '' x ⊢ x ∩ ↑f ⁻¹' minimals s y = minimals r (x ∩ ↑f ⁻¹' y) [PROOFSTEP] rw [inter_preimage_minimals_eq_of_rel_iff_rel_on_of_subset _ h] [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop y : Set β x : Set α f : r ↪r s h : y ⊆ ↑f '' x ⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (↑f a) (↑f a')) [PROOFSTEP] simp [f.map_rel_iff] [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop f : r ↪r s y : Set β ⊢ minimals r (↑f ⁻¹' y) = ↑f ⁻¹' minimals s (y ∩ range ↑f) [PROOFSTEP] convert (f.inter_preimage_minimals_eq univ y).symm [GOAL] case h.e'_2.h.e'_3 β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop f : r ↪r s y : Set β ⊢ ↑f ⁻¹' y = univ ∩ ↑f ⁻¹' y case h.e'_3 β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop f : r ↪r s y : Set β ⊢ ↑f ⁻¹' minimals s (y ∩ range ↑f) = univ ∩ ↑f ⁻¹' minimals s (↑f '' univ ∩ y) [PROOFSTEP] simp [univ_inter] [GOAL] case h.e'_3 β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop f : r ↪r s y : Set β ⊢ ↑f ⁻¹' minimals s (y ∩ range ↑f) = univ ∩ ↑f ⁻¹' minimals s (↑f '' univ ∩ y) [PROOFSTEP] simp [inter_comm] [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) y : Set β ⊢ x ∩ f ⁻¹' maximals s (f '' x ∩ y) = maximals r (x ∩ f ⁻¹' y) [PROOFSTEP] apply inter_minimals_preimage_inter_eq_of_rel_iff_rel_on [GOAL] case hf β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) y : Set β ⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a' a ↔ s (f a') (f a)) [PROOFSTEP] exact fun _ _ a b ↦ hf b a [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α y : Set β hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) hy : y ⊆ f '' x ⊢ x ∩ f ⁻¹' maximals s y = maximals r (x ∩ f ⁻¹' y) [PROOFSTEP] apply inter_preimage_minimals_eq_of_rel_iff_rel_on_of_subset _ hy [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f : α → β r : α → α → Prop s : β → β → Prop x : Set α y : Set β hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a')) hy : y ⊆ f '' x ⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a' a ↔ s (f a') (f a)) [PROOFSTEP] exact fun _ _ a b ↦ hf b a [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop f : r ↪r s x : Set α y : Set β ⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a' a ↔ s (↑f a') (↑f a)) [PROOFSTEP] simp [f.map_rel_iff] [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop y : Set β x : Set α f : r ↪r s h : y ⊆ ↑f '' x ⊢ x ∩ ↑f ⁻¹' maximals s y = maximals r (x ∩ ↑f ⁻¹' y) [PROOFSTEP] rw [inter_preimage_maximals_eq_of_rel_iff_rel_on_of_subset _ h] [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop y : Set β x : Set α f : r ↪r s h : y ⊆ ↑f '' x ⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (↑f a) (↑f a')) [PROOFSTEP] simp [f.map_rel_iff] [GOAL] β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop f : r ↪r s y : Set β ⊢ maximals r (↑f ⁻¹' y) = ↑f ⁻¹' maximals s (y ∩ range ↑f) [PROOFSTEP] convert (f.inter_preimage_maximals_eq univ y).symm [GOAL] case h.e'_2.h.e'_3 β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop f : r ↪r s y : Set β ⊢ ↑f ⁻¹' y = univ ∩ ↑f ⁻¹' y case h.e'_3 β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop f : r ↪r s y : Set β ⊢ ↑f ⁻¹' maximals s (y ∩ range ↑f) = univ ∩ ↑f ⁻¹' maximals s (↑f '' univ ∩ y) [PROOFSTEP] simp [univ_inter] [GOAL] case h.e'_3 β : Type u_2 α : Type u_1 r✝ r₁ r₂ : α → α → Prop s✝ t : Set α a b : α inst✝ : PartialOrder α f✝ : α → β r : α → α → Prop s : β → β → Prop f : r ↪r s y : Set β ⊢ ↑f ⁻¹' maximals s (y ∩ range ↑f) = univ ∩ ↑f ⁻¹' maximals s (↑f '' univ ∩ y) [PROOFSTEP] simp [inter_comm] [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α inst✝¹ inst✝ : PartialOrder α a b : α hab : a ≤ b ⊢ minimals (fun x x_1 => x ≤ x_1) (Icc a b) = {a} [PROOFSTEP] simp_rw [Icc, and_comm (a := (a ≤ _))] [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α inst✝¹ inst✝ : PartialOrder α a b : α hab : a ≤ b ⊢ minimals (fun x x_1 => x ≤ x_1) {x | x ≤ b ∧ a ≤ x} = {a} [PROOFSTEP] exact maximals_Icc (α := αᵒᵈ) hab [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α inst✝¹ inst✝ : PartialOrder α a b : α hab : a < b ⊢ minimals (fun x x_1 => x ≤ x_1) (Ico a b) = {a} [PROOFSTEP] simp_rw [Ico, and_comm (a := _ ≤ _)] [GOAL] α : Type u_1 r r₁ r₂ : α → α → Prop s t : Set α a✝ b✝ : α inst✝¹ inst✝ : PartialOrder α a b : α hab : a < b ⊢ minimals (fun x x_1 => x ≤ x_1) {x | x < b ∧ a ≤ x} = {a} [PROOFSTEP] exact maximals_Ioc (α := αᵒᵈ) hab
{"mathlib_filename": "Mathlib.Order.Minimal", "llama_tokens": 12231}
[GOAL] p q : Prop ⊢ p ≤ q ∨ q ≤ p [PROOFSTEP] by_cases h : q [GOAL] case pos p q : Prop h : q ⊢ p ≤ q ∨ q ≤ p [PROOFSTEP] simp [h] [GOAL] case neg p q : Prop h : ¬q ⊢ p ≤ q ∨ q ≤ p [PROOFSTEP] simp [h] [GOAL] ⊢ LinearOrder Prop [PROOFSTEP] classical exact Lattice.toLinearOrder Prop [GOAL] ⊢ LinearOrder Prop [PROOFSTEP] exact Lattice.toLinearOrder Prop [GOAL] ι : Type u_1 α' : ι → Type u_2 inst✝¹ : (i : ι) → PartialOrder (α' i) inst✝ : (i : ι) → OrderBot (α' i) f g : (i : ι) → α' i ⊢ Disjoint f g ↔ ∀ (i : ι), Disjoint (f i) (g i) [PROOFSTEP] classical constructor · intro h i x hf hg refine' (update_le_iff.mp <| h (update_le_iff.mpr ⟨hf, fun _ _ => _⟩) (update_le_iff.mpr ⟨hg, fun _ _ => _⟩)).1 · exact bot_le · exact bot_le · intro h x hf hg i apply h i (hf i) (hg i) [GOAL] ι : Type u_1 α' : ι → Type u_2 inst✝¹ : (i : ι) → PartialOrder (α' i) inst✝ : (i : ι) → OrderBot (α' i) f g : (i : ι) → α' i ⊢ Disjoint f g ↔ ∀ (i : ι), Disjoint (f i) (g i) [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α' : ι → Type u_2 inst✝¹ : (i : ι) → PartialOrder (α' i) inst✝ : (i : ι) → OrderBot (α' i) f g : (i : ι) → α' i ⊢ Disjoint f g → ∀ (i : ι), Disjoint (f i) (g i) [PROOFSTEP] intro h i x hf hg [GOAL] case mp ι : Type u_1 α' : ι → Type u_2 inst✝¹ : (i : ι) → PartialOrder (α' i) inst✝ : (i : ι) → OrderBot (α' i) f g : (i : ι) → α' i h : Disjoint f g i : ι x : α' i hf : x ≤ f i hg : x ≤ g i ⊢ x ≤ ⊥ [PROOFSTEP] refine' (update_le_iff.mp <| h (update_le_iff.mpr ⟨hf, fun _ _ => _⟩) (update_le_iff.mpr ⟨hg, fun _ _ => _⟩)).1 [GOAL] case mp.refine'_1 ι : Type u_1 α' : ι → Type u_2 inst✝¹ : (i : ι) → PartialOrder (α' i) inst✝ : (i : ι) → OrderBot (α' i) f g : (i : ι) → α' i h : Disjoint f g i : ι x : α' i hf : x ≤ f i hg : x ≤ g i x✝¹ : ι x✝ : x✝¹ ≠ i ⊢ ?mp.refine'_2 x✝¹ ≤ f x✝¹ [PROOFSTEP] exact bot_le [GOAL] case mp.refine'_3 ι : Type u_1 α' : ι → Type u_2 inst✝¹ : (i : ι) → PartialOrder (α' i) inst✝ : (i : ι) → OrderBot (α' i) f g : (i : ι) → α' i h : Disjoint f g i : ι x : α' i hf : x ≤ f i hg : x ≤ g i x✝¹ : ι x✝ : x✝¹ ≠ i ⊢ ⊥ ≤ g x✝¹ [PROOFSTEP] exact bot_le [GOAL] case mpr ι : Type u_1 α' : ι → Type u_2 inst✝¹ : (i : ι) → PartialOrder (α' i) inst✝ : (i : ι) → OrderBot (α' i) f g : (i : ι) → α' i ⊢ (∀ (i : ι), Disjoint (f i) (g i)) → Disjoint f g [PROOFSTEP] intro h x hf hg i [GOAL] case mpr ι : Type u_1 α' : ι → Type u_2 inst✝¹ : (i : ι) → PartialOrder (α' i) inst✝ : (i : ι) → OrderBot (α' i) f g : (i : ι) → α' i h : ∀ (i : ι), Disjoint (f i) (g i) x : (i : ι) → α' i hf : x ≤ f hg : x ≤ g i : ι ⊢ x i ≤ ⊥ i [PROOFSTEP] apply h i (hf i) (hg i) [GOAL] ι : Type u_1 α' : ι → Type u_2 inst✝¹ : (i : ι) → PartialOrder (α' i) inst✝ : (i : ι) → BoundedOrder (α' i) f g : (i : ι) → α' i ⊢ IsCompl f g ↔ ∀ (i : ι), IsCompl (f i) (g i) [PROOFSTEP] simp_rw [_root_.isCompl_iff, disjoint_iff, codisjoint_iff, forall_and] [GOAL] P Q : Prop ⊢ IsCompl P Q ↔ ¬(P ↔ Q) [PROOFSTEP] rw [_root_.isCompl_iff, Prop.disjoint_iff, Prop.codisjoint_iff, not_iff] [GOAL] P Q : Prop ⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q) [PROOFSTEP] by_cases P [GOAL] P Q : Prop ⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q) [PROOFSTEP] by_cases P [GOAL] case pos P Q : Prop h : P ⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q) [PROOFSTEP] by_cases Q [GOAL] case pos P Q : Prop h : P ⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q) [PROOFSTEP] by_cases Q [GOAL] case neg P Q : Prop h : ¬P ⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q) [PROOFSTEP] by_cases Q [GOAL] case neg P Q : Prop h : ¬P ⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q) [PROOFSTEP] by_cases Q [GOAL] case pos P Q : Prop h✝ : P h : Q ⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q) [PROOFSTEP] simp [*] [GOAL] case neg P Q : Prop h✝ : P h : ¬Q ⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q) [PROOFSTEP] simp [*] [GOAL] case pos P Q : Prop h✝ : ¬P h : Q ⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q) [PROOFSTEP] simp [*] [GOAL] case neg P Q : Prop h✝ : ¬P h : ¬Q ⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q) [PROOFSTEP] simp [*]
{"mathlib_filename": "Mathlib.Order.PropInstances", "llama_tokens": 2272}
[GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α ⊢ ⨅ (a : ι), ⨆ (b : κ a), f a b = ⨅ (a : ↑(range fun x => range (f x))), ⨆ (b : ↑↑a), ↑b [PROOFSTEP] simp_rw [iInf_subtype, iInf_range, iSup_subtype, iSup_range] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α g : (a : ↑(range fun x => range (f x))) → ↑↑a ⊢ ⨅ (a : ↑(range fun x => range (f x))), ↑(g a) ≤ ⨆ (g : (a : ι) → κ a), ⨅ (a : ι), f a (g a) [PROOFSTEP] refine le_trans ?_ <| le_iSup _ fun a => Classical.choose (g ⟨_, a, rfl⟩).2 [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α g : (a : ↑(range fun x => range (f x))) → ↑↑a ⊢ ⨅ (a : ↑(range fun x => range (f x))), ↑(g a) ≤ ⨅ (a : ι), f a ((fun a => Classical.choose (_ : ↑(g { val := (fun x => range (f x)) a, property := (_ : ∃ y, (fun x => range (f x)) y = (fun x => range (f x)) a) }) ∈ ↑{ val := (fun x => range (f x)) a, property := (_ : ∃ y, (fun x => range (f x)) y = (fun x => range (f x)) a) })) a) [PROOFSTEP] refine le_iInf fun a => le_trans (iInf_le _ ⟨range (f a), a, rfl⟩) ?_ [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α g : (a : ↑(range fun x => range (f x))) → ↑↑a a : ι ⊢ ↑(g { val := range (f a), property := (_ : ∃ y, (fun x => range (f x)) y = range (f a)) }) ≤ f a ((fun a => Classical.choose (_ : ↑(g { val := (fun x => range (f x)) a, property := (_ : ∃ y, (fun x => range (f x)) y = (fun x => range (f x)) a) }) ∈ ↑{ val := (fun x => range (f x)) a, property := (_ : ∃ y, (fun x => range (f x)) y = (fun x => range (f x)) a) })) a) [PROOFSTEP] rw [← Classical.choose_spec (g ⟨_, a, rfl⟩).2] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α ⊢ ⨆ (a : ι), ⨅ (b : κ a), f a b = ⨅ (g : (a : ι) → κ a), ⨆ (a : ι), f a (g a) [PROOFSTEP] refine le_antisymm iSup_iInf_le ?_ [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α ⊢ ⨅ (g : (a : ι) → κ a), ⨆ (a : ι), f a (g a) ≤ ⨆ (a : ι), ⨅ (b : κ a), f a b [PROOFSTEP] rw [iInf_iSup_eq] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α ⊢ ⨆ (g : ((a : ι) → κ a) → ι), ⨅ (a : (a : ι) → κ a), f (g a) (a (g a)) ≤ ⨆ (a : ι), ⨅ (b : κ a), f a b [PROOFSTEP] refine iSup_le fun g => ?_ [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α g : ((a : ι) → κ a) → ι ⊢ ⨅ (a : (a : ι) → κ a), f (g a) (a (g a)) ≤ ⨆ (a : ι), ⨅ (b : κ a), f a b [PROOFSTEP] have ⟨a, ha⟩ : ∃ a, ∀ b, ∃ f, ∃ h : a = g f, h ▸ b = f (g f) := of_not_not fun h => by push_neg at h choose h hh using h have := hh _ h rfl contradiction [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α g : ((a : ι) → κ a) → ι h : ¬∃ a, ∀ (b : κ a), ∃ f h, h ▸ b = f (g f) ⊢ False [PROOFSTEP] push_neg at h [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α g : ((a : ι) → κ a) → ι h : ∀ (a : ι), ∃ b, ∀ (f : (a : ι) → κ a) (h : a = g f), h ▸ b ≠ f (g f) ⊢ False [PROOFSTEP] choose h hh using h [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α g : ((a : ι) → κ a) → ι h : (a : ι) → κ a hh : ∀ (a : ι) (f : (a : ι) → κ a) (h_1 : a = g f), h_1 ▸ h a ≠ f (g f) ⊢ False [PROOFSTEP] have := hh _ h rfl [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α g : ((a : ι) → κ a) → ι h : (a : ι) → κ a hh : ∀ (a : ι) (f : (a : ι) → κ a) (h_1 : a = g f), h_1 ▸ h a ≠ f (g f) this : (_ : g h = g h) ▸ h (g h) ≠ h (g h) ⊢ False [PROOFSTEP] contradiction [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α g : ((a : ι) → κ a) → ι a : ι ha : ∀ (b : κ a), ∃ f h, h ▸ b = f (g f) ⊢ ⨅ (a : (a : ι) → κ a), f (g a) (a (g a)) ≤ ⨆ (a : ι), ⨅ (b : κ a), f a b [PROOFSTEP] refine le_trans ?_ (le_iSup _ a) [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α g : ((a : ι) → κ a) → ι a : ι ha : ∀ (b : κ a), ∃ f h, h ▸ b = f (g f) ⊢ ⨅ (a : (a : ι) → κ a), f (g a) (a (g a)) ≤ ⨅ (b : κ a), f a b [PROOFSTEP] refine le_iInf fun b => ?_ [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α g : ((a : ι) → κ a) → ι a : ι ha : ∀ (b : κ a), ∃ f h, h ▸ b = f (g f) b : κ a ⊢ ⨅ (a : (a : ι) → κ a), f (g a) (a (g a)) ≤ f a b [PROOFSTEP] obtain ⟨h, rfl, rfl⟩ := ha b [GOAL] case intro.intro α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α f : (a : ι) → κ a → α g : ((a : ι) → κ a) → ι h : (a : ι) → κ a ha : ∀ (b : κ (g h)), ∃ f h_1, h_1 ▸ b = f (g f) ⊢ ⨅ (a : (a : ι) → κ a), f (g a) (a (g a)) ≤ f (g h) (h (g h)) [PROOFSTEP] refine iInf_le _ _ [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α ⊢ a ⊓ sSup s = ⨅ (x : Bool), ⨆ (y : bif x then PUnit else ↑s), match x, y with | true, y => a | false, y => ↑y [PROOFSTEP] simp_rw [iInf_bool_eq, cond, iSup_const, iSup_subtype, sSup_eq_iSup] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α ⊢ (⨆ (g : (a : Bool) → bif a then PUnit else ↑s), ⨅ (a_1 : Bool), match a_1, g a_1 with | true, y => a | false, y => ↑y) ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b [PROOFSTEP] simp_rw [iInf_bool_eq] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α ⊢ ⨆ (g : (a : Bool) → bif a then PUnit else ↑s), a ⊓ ↑(g false) ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b [PROOFSTEP] refine iSup_le fun g => le_trans ?_ (le_iSup _ (g false).1) [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α g : (a : Bool) → bif a then PUnit else ↑s ⊢ a ⊓ ↑(g false) ≤ ⨆ (_ : ↑(g false) ∈ s), a ⊓ ↑(g false) [PROOFSTEP] refine le_trans ?_ (le_iSup _ (g false).2) [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α g : (a : Bool) → bif a then PUnit else ↑s ⊢ a ⊓ ↑(g false) ≤ a ⊓ ↑(g false) [PROOFSTEP] rfl -- See note [lower instance priority] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α ⊢ ⨅ (b : α) (_ : b ∈ s), a ⊔ b = ⨅ (b : ↑s), ⨆ (x : Bool), bif x then a else ↑b [PROOFSTEP] simp_rw [iInf_subtype, iSup_bool_eq, cond] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α f : ↑s → Bool ⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s [PROOFSTEP] by_cases ∀ i, f i = false [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α f : ↑s → Bool ⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s [PROOFSTEP] by_cases ∀ i, f i = false [GOAL] case pos α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α f : ↑s → Bool h : ∀ (i : ↑s), f i = false ⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s case neg α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α f : ↑s → Bool h : ¬∀ (i : ↑s), f i = false ⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s [PROOFSTEP] case pos => simp [h, iInf_subtype, ← sInf_eq_iInf] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α f : ↑s → Bool h : ∀ (i : ↑s), f i = false ⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s [PROOFSTEP] case pos => simp [h, iInf_subtype, ← sInf_eq_iInf] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α f : ↑s → Bool h : ∀ (i : ↑s), f i = false ⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s [PROOFSTEP] simp [h, iInf_subtype, ← sInf_eq_iInf] [GOAL] case neg α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α f : ↑s → Bool h : ¬∀ (i : ↑s), f i = false ⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s [PROOFSTEP] case neg => have ⟨i, h⟩ : ∃ i, f i = true := by simpa using h refine le_trans (iInf_le _ i) ?_ simp [h] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α f : ↑s → Bool h : ¬∀ (i : ↑s), f i = false ⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s [PROOFSTEP] case neg => have ⟨i, h⟩ : ∃ i, f i = true := by simpa using h refine le_trans (iInf_le _ i) ?_ simp [h] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α f : ↑s → Bool h : ¬∀ (i : ↑s), f i = false ⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s [PROOFSTEP] have ⟨i, h⟩ : ∃ i, f i = true := by simpa using h [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α f : ↑s → Bool h : ¬∀ (i : ↑s), f i = false ⊢ ∃ i, f i = true [PROOFSTEP] simpa using h [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α f : ↑s → Bool h✝ : ¬∀ (i : ↑s), f i = false i : ↑s h : f i = true ⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s [PROOFSTEP] refine le_trans (iInf_le _ i) ?_ [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompletelyDistribLattice α a : α s : Set α f : ↑s → Bool h✝ : ¬∀ (i : ↑s), f i = false i : ↑s h : f i = true ⊢ (bif f i then a else ↑i) ≤ a ⊔ sInf s [PROOFSTEP] simp [h] [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ ⊢ ⨅ (a : α), ⨆ (b : β a), g a b = ⨆ (g_1 : (a : α) → β a), ⨅ (a : α), g a (g_1 a) [PROOFSTEP] let lhs := ⨅ a, ⨆ b, g a b [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b ⊢ ⨅ (a : α), ⨆ (b : β a), g a b = ⨆ (g_1 : (a : α) → β a), ⨅ (a : α), g a (g_1 a) [PROOFSTEP] let rhs := ⨆ h : ∀ a, β a, ⨅ a, g a (h a) [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) ⊢ ⨅ (a : α), ⨆ (b : β a), g a b = ⨆ (g_1 : (a : α) → β a), ⨅ (a : α), g a (g_1 a) [PROOFSTEP] suffices lhs ≤ rhs from le_antisymm this le_iInf_iSup [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) ⊢ lhs ≤ rhs [PROOFSTEP] by_cases ∃ x, rhs < x ∧ x < lhs [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) ⊢ lhs ≤ rhs [PROOFSTEP] by_cases ∃ x, rhs < x ∧ x < lhs [GOAL] case pos α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) h : ∃ x, rhs < x ∧ x < lhs ⊢ lhs ≤ rhs case neg α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) h : ¬∃ x, rhs < x ∧ x < lhs ⊢ lhs ≤ rhs [PROOFSTEP] case pos => rcases h with ⟨x, hr, hl⟩ suffices rhs ≥ x from nomatch not_lt.2 this hr have : ∀ a, ∃ b, x < g a b := fun a => lt_iSup_iff.1 <| lt_of_not_le fun h => lt_irrefl x (lt_of_lt_of_le hl (le_trans (iInf_le _ a) h)) choose f hf using this refine le_trans ?_ (le_iSup _ f) refine le_iInf fun a => le_of_lt (hf a) [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) h : ∃ x, rhs < x ∧ x < lhs ⊢ lhs ≤ rhs [PROOFSTEP] case pos => rcases h with ⟨x, hr, hl⟩ suffices rhs ≥ x from nomatch not_lt.2 this hr have : ∀ a, ∃ b, x < g a b := fun a => lt_iSup_iff.1 <| lt_of_not_le fun h => lt_irrefl x (lt_of_lt_of_le hl (le_trans (iInf_le _ a) h)) choose f hf using this refine le_trans ?_ (le_iSup _ f) refine le_iInf fun a => le_of_lt (hf a) [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) h : ∃ x, rhs < x ∧ x < lhs ⊢ lhs ≤ rhs [PROOFSTEP] rcases h with ⟨x, hr, hl⟩ [GOAL] case intro.intro α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) x : α✝ hr : rhs < x hl : x < lhs ⊢ lhs ≤ rhs [PROOFSTEP] suffices rhs ≥ x from nomatch not_lt.2 this hr [GOAL] case intro.intro α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) x : α✝ hr : rhs < x hl : x < lhs ⊢ rhs ≥ x [PROOFSTEP] have : ∀ a, ∃ b, x < g a b := fun a => lt_iSup_iff.1 <| lt_of_not_le fun h => lt_irrefl x (lt_of_lt_of_le hl (le_trans (iInf_le _ a) h)) [GOAL] case intro.intro α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) x : α✝ hr : rhs < x hl : x < lhs this : ∀ (a : α), ∃ b, x < g a b ⊢ rhs ≥ x [PROOFSTEP] choose f hf using this [GOAL] case intro.intro α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) x : α✝ hr : rhs < x hl : x < lhs f : (a : α) → β a hf : ∀ (a : α), x < g a (f a) ⊢ rhs ≥ x [PROOFSTEP] refine le_trans ?_ (le_iSup _ f) [GOAL] case intro.intro α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) x : α✝ hr : rhs < x hl : x < lhs f : (a : α) → β a hf : ∀ (a : α), x < g a (f a) ⊢ x ≤ ⨅ (a : α), g a (f a) [PROOFSTEP] refine le_iInf fun a => le_of_lt (hf a) [GOAL] case neg α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) h : ¬∃ x, rhs < x ∧ x < lhs ⊢ lhs ≤ rhs [PROOFSTEP] case neg => refine le_of_not_lt fun hrl : rhs < lhs => not_le_of_lt hrl ?_ replace h : ∀ x, x ≤ rhs ∨ lhs ≤ x := by simpa only [not_exists, not_and_or, not_or, not_lt] using h have : ∀ a, ∃ b, rhs < g a b := fun a => lt_iSup_iff.1 <| lt_of_lt_of_le hrl (iInf_le _ a) choose f hf using this have : ∀ a, lhs ≤ g a (f a) := fun a => (h (g a (f a))).resolve_left (by simpa using hf a) refine le_trans ?_ (le_iSup _ f) refine le_iInf fun a => this _ [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) h : ¬∃ x, rhs < x ∧ x < lhs ⊢ lhs ≤ rhs [PROOFSTEP] case neg => refine le_of_not_lt fun hrl : rhs < lhs => not_le_of_lt hrl ?_ replace h : ∀ x, x ≤ rhs ∨ lhs ≤ x := by simpa only [not_exists, not_and_or, not_or, not_lt] using h have : ∀ a, ∃ b, rhs < g a b := fun a => lt_iSup_iff.1 <| lt_of_lt_of_le hrl (iInf_le _ a) choose f hf using this have : ∀ a, lhs ≤ g a (f a) := fun a => (h (g a (f a))).resolve_left (by simpa using hf a) refine le_trans ?_ (le_iSup _ f) refine le_iInf fun a => this _ [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) h : ¬∃ x, rhs < x ∧ x < lhs ⊢ lhs ≤ rhs [PROOFSTEP] refine le_of_not_lt fun hrl : rhs < lhs => not_le_of_lt hrl ?_ [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) h : ¬∃ x, rhs < x ∧ x < lhs hrl : rhs < lhs ⊢ lhs ≤ rhs [PROOFSTEP] replace h : ∀ x, x ≤ rhs ∨ lhs ≤ x := by simpa only [not_exists, not_and_or, not_or, not_lt] using h [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) h : ¬∃ x, rhs < x ∧ x < lhs hrl : rhs < lhs ⊢ ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x [PROOFSTEP] simpa only [not_exists, not_and_or, not_or, not_lt] using h [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) hrl : rhs < lhs h : ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x ⊢ lhs ≤ rhs [PROOFSTEP] have : ∀ a, ∃ b, rhs < g a b := fun a => lt_iSup_iff.1 <| lt_of_lt_of_le hrl (iInf_le _ a) [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) hrl : rhs < lhs h : ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x this : ∀ (a : α), ∃ b, rhs < g a b ⊢ lhs ≤ rhs [PROOFSTEP] choose f hf using this [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) hrl : rhs < lhs h : ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x f : (a : α) → β a hf : ∀ (a : α), rhs < g a (f a) ⊢ lhs ≤ rhs [PROOFSTEP] have : ∀ a, lhs ≤ g a (f a) := fun a => (h (g a (f a))).resolve_left (by simpa using hf a) [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) hrl : rhs < lhs h : ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x f : (a : α) → β a hf : ∀ (a : α), rhs < g a (f a) a : α ⊢ ¬g a (f a) ≤ rhs [PROOFSTEP] simpa using hf a [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) hrl : rhs < lhs h : ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x f : (a : α) → β a hf : ∀ (a : α), rhs < g a (f a) this : ∀ (a : α), lhs ≤ g a (f a) ⊢ lhs ≤ rhs [PROOFSTEP] refine le_trans ?_ (le_iSup _ f) [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteLinearOrder α✝ α : Type u β : α → Type u g : (a : α) → β a → α✝ lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a) hrl : rhs < lhs h : ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x f : (a : α) → β a hf : ∀ (a : α), rhs < g a (f a) this : ∀ (a : α), lhs ≤ g a (f a) ⊢ lhs ≤ ⨅ (a : α), g a (f a) [PROOFSTEP] refine le_iInf fun a => this _ [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Frame α s t : Set α a b : α ⊢ sSup s ⊓ b = ⨆ (a : α) (_ : a ∈ s), a ⊓ b [PROOFSTEP] simpa only [inf_comm] using @inf_sSup_eq α _ s b [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Frame α s t : Set α a✝ b : α f : ι → α a : α ⊢ (⨆ (i : ι), f i) ⊓ a = ⨆ (i : ι), f i ⊓ a [PROOFSTEP] rw [iSup, sSup_inf_eq, iSup_range] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Frame α s t : Set α a✝ b a : α f : ι → α ⊢ a ⊓ ⨆ (i : ι), f i = ⨆ (i : ι), a ⊓ f i [PROOFSTEP] simpa only [inf_comm] using iSup_inf_eq f a [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝² : Frame α✝ s✝ t : Set α✝ a✝ b : α✝ α : Type ?u.26817 β : Type ?u.26820 inst✝¹ : Frame α inst✝ : Frame β src✝ : CompleteLattice (α × β) := completeLattice α β a : α × β s : Set (α × β) ⊢ a ⊓ sSup s ≤ ⨆ (b : α × β) (_ : b ∈ s), a ⊓ b [PROOFSTEP] simp [Prod.le_def, sSup_eq_iSup, fst_iSup, snd_iSup, fst_iInf, snd_iInf, inf_iSup_eq] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Frame α s t : Set α a✝ b : α f : (i : ι) → κ i → α a : α ⊢ (⨆ (i : ι) (j : κ i), f i j) ⊓ a = ⨆ (i : ι) (j : κ i), f i j ⊓ a [PROOFSTEP] simp only [iSup_inf_eq] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Frame α s t : Set α a✝ b : α f : (i : ι) → κ i → α a : α ⊢ a ⊓ ⨆ (i : ι) (j : κ i), f i j = ⨆ (i : ι) (j : κ i), a ⊓ f i j [PROOFSTEP] simp only [inf_iSup_eq] [GOAL] α : Type u β : Type v ι✝ : Sort w κ : ι✝ → Sort w' inst✝ : Frame α s t : Set α a b : α ι : Type u_1 ι' : Type u_2 f : ι → α g : ι' → α ⊢ (⨆ (i : ι), f i) ⊓ ⨆ (j : ι'), g j = ⨆ (i : ι × ι'), f i.fst ⊓ g i.snd [PROOFSTEP] simp_rw [iSup_inf_eq, inf_iSup_eq, iSup_prod] [GOAL] α : Type u β : Type v ι✝ : Sort w κ : ι✝ → Sort w' inst✝ : Frame α s✝ t✝ : Set α a b : α ι : Type u_1 ι' : Type u_2 f : ι → α g : ι' → α s : Set ι t : Set ι' ⊢ (⨆ (i : ι) (_ : i ∈ s), f i) ⊓ ⨆ (j : ι') (_ : j ∈ t), g j = ⨆ (p : ι × ι') (_ : p ∈ s ×ˢ t), f p.fst ⊓ g p.snd [PROOFSTEP] simp only [iSup_subtype', iSup_inf_iSup] [GOAL] α : Type u β : Type v ι✝ : Sort w κ : ι✝ → Sort w' inst✝ : Frame α s✝ t✝ : Set α a b : α ι : Type u_1 ι' : Type u_2 f : ι → α g : ι' → α s : Set ι t : Set ι' ⊢ ⨆ (i : { i // i ∈ s } × { i // i ∈ t }), f ↑i.fst ⊓ g ↑i.snd = ⨆ (x : { i // i ∈ s ×ˢ t }), f (↑x).fst ⊓ g (↑x).snd [PROOFSTEP] exact (Equiv.surjective _).iSup_congr (Equiv.Set.prod s t).symm fun x => rfl [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Frame α s t : Set α a b : α ⊢ sSup s ⊓ sSup t = ⨆ (p : α × α) (_ : p ∈ s ×ˢ t), p.fst ⊓ p.snd [PROOFSTEP] simp only [sSup_eq_iSup, biSup_inf_biSup] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Frame α s t : Set α a b : α f : ι → α ⊢ Disjoint (⨆ (i : ι), f i) a ↔ ∀ (i : ι), Disjoint (f i) a [PROOFSTEP] simp only [disjoint_iff, iSup_inf_eq, iSup_eq_bot] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Frame α s t : Set α a b : α f : ι → α ⊢ Disjoint a (⨆ (i : ι), f i) ↔ ∀ (i : ι), Disjoint a (f i) [PROOFSTEP] simpa only [disjoint_comm] using @iSup_disjoint_iff [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Frame α s t : Set α a b : α f : (i : ι) → κ i → α ⊢ Disjoint (⨆ (i : ι) (j : κ i), f i j) a ↔ ∀ (i : ι) (j : κ i), Disjoint (f i j) a [PROOFSTEP] simp_rw [iSup_disjoint_iff] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Frame α s t : Set α a b : α f : (i : ι) → κ i → α ⊢ Disjoint a (⨆ (i : ι) (j : κ i), f i j) ↔ ∀ (i : ι) (j : κ i), Disjoint a (f i j) [PROOFSTEP] simp_rw [disjoint_iSup_iff] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Frame α s✝ t : Set α a b : α s : Set α ⊢ Disjoint (sSup s) a ↔ ∀ (b : α), b ∈ s → Disjoint b a [PROOFSTEP] simp only [disjoint_iff, sSup_inf_eq, iSup_eq_bot] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Frame α s✝ t : Set α a b : α s : Set α ⊢ Disjoint a (sSup s) ↔ ∀ (b : α), b ∈ s → Disjoint a b [PROOFSTEP] simpa only [disjoint_comm] using @sSup_disjoint_iff [GOAL] α : Type u β : Type v ι✝ : Sort w κ : ι✝ → Sort w' inst✝² : Frame α s t : Set α a b : α ι : Type u_1 inst✝¹ : Preorder ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 f g : ι → α hf : Monotone f hg : Monotone g ⊢ ⨆ (i : ι), f i ⊓ g i = (⨆ (i : ι), f i) ⊓ ⨆ (i : ι), g i [PROOFSTEP] refine' (le_iSup_inf_iSup f g).antisymm _ [GOAL] α : Type u β : Type v ι✝ : Sort w κ : ι✝ → Sort w' inst✝² : Frame α s t : Set α a b : α ι : Type u_1 inst✝¹ : Preorder ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 f g : ι → α hf : Monotone f hg : Monotone g ⊢ (⨆ (i : ι), f i) ⊓ ⨆ (i : ι), g i ≤ ⨆ (i : ι), f i ⊓ g i [PROOFSTEP] rw [iSup_inf_iSup] [GOAL] α : Type u β : Type v ι✝ : Sort w κ : ι✝ → Sort w' inst✝² : Frame α s t : Set α a b : α ι : Type u_1 inst✝¹ : Preorder ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 f g : ι → α hf : Monotone f hg : Monotone g ⊢ ⨆ (i : ι × ι), f i.fst ⊓ g i.snd ≤ ⨆ (i : ι), f i ⊓ g i [PROOFSTEP] refine' iSup_mono' fun i => _ [GOAL] α : Type u β : Type v ι✝ : Sort w κ : ι✝ → Sort w' inst✝² : Frame α s t : Set α a b : α ι : Type u_1 inst✝¹ : Preorder ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 f g : ι → α hf : Monotone f hg : Monotone g i : ι × ι ⊢ ∃ i', f i.fst ⊓ g i.snd ≤ f i' ⊓ g i' [PROOFSTEP] rcases directed_of (· ≤ ·) i.1 i.2 with ⟨j, h₁, h₂⟩ [GOAL] case intro.intro α : Type u β : Type v ι✝ : Sort w κ : ι✝ → Sort w' inst✝² : Frame α s t : Set α a b : α ι : Type u_1 inst✝¹ : Preorder ι inst✝ : IsDirected ι fun x x_1 => x ≤ x_1 f g : ι → α hf : Monotone f hg : Monotone g i : ι × ι j : ι h₁ : i.fst ≤ j h₂ : i.snd ≤ j ⊢ ∃ i', f i.fst ⊓ g i.snd ≤ f i' ⊓ g i' [PROOFSTEP] exact ⟨j, inf_le_inf (hf h₁) (hg h₂)⟩ [GOAL] α : Type u β : Type v ι✝ : Sort w κ : ι✝ → Sort w' inst✝¹ : Frame α s✝ t : Set α a✝ b : α ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → Frame (π i) src✝ : CompleteLattice ((i : ι) → π i) := completeLattice a : (i : ι) → π i s : Set ((i : ι) → π i) i : ι ⊢ (a ⊓ sSup s) i ≤ iSup (fun b => ⨆ (_ : b ∈ s), a ⊓ b) i [PROOFSTEP] simp only [sSup_apply, iSup_apply, inf_apply, inf_iSup_eq, ← iSup_subtype''] [GOAL] α : Type u β : Type v ι✝ : Sort w κ : ι✝ → Sort w' inst✝¹ : Frame α s✝ t : Set α a✝ b : α ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → Frame (π i) src✝ : CompleteLattice ((i : ι) → π i) := completeLattice a : (i : ι) → π i s : Set ((i : ι) → π i) i : ι ⊢ ⨆ (i_1 : ↑s), a i ⊓ ↑i_1 i ≤ ⨆ (i_1 : ↑s), a i ⊓ ↑i_1 i [PROOFSTEP] rfl [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Frame α s t : Set α a✝ b✝ a b c : α ⊢ a ⊓ (b ⊔ c) ≤ a ⊓ b ⊔ a ⊓ c [PROOFSTEP] rw [← sSup_pair, ← sSup_pair, inf_sSup_eq, ← sSup_image, image_pair] [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' inst✝² : Coframe α✝ s✝ t : Set α✝ a✝ b : α✝ α : Type ?u.87146 β : Type ?u.87149 inst✝¹ : Coframe α inst✝ : Coframe β src✝ : CompleteLattice (α × β) := completeLattice α β a : α × β s : Set (α × β) ⊢ ⨅ (b : α × β) (_ : b ∈ s), a ⊔ b ≤ a ⊔ sInf s [PROOFSTEP] simp [Prod.le_def, sInf_eq_iInf, fst_iSup, snd_iSup, fst_iInf, snd_iInf, sup_iInf_eq] [GOAL] α : Type u β : Type v ι✝ : Sort w κ : ι✝ → Sort w' inst✝¹ : Coframe α s✝ t : Set α a✝ b : α ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → Coframe (π i) src✝ : CompleteLattice ((i : ι) → π i) := completeLattice a : (i : ι) → π i s : Set ((i : ι) → π i) i : ι ⊢ iInf (fun b => ⨅ (_ : b ∈ s), a ⊔ b) i ≤ (a ⊔ sInf s) i [PROOFSTEP] simp only [sInf_apply, iInf_apply, sup_apply, sup_iInf_eq, ← iInf_subtype''] [GOAL] α : Type u β : Type v ι✝ : Sort w κ : ι✝ → Sort w' inst✝¹ : Coframe α s✝ t : Set α a✝ b : α ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → Coframe (π i) src✝ : CompleteLattice ((i : ι) → π i) := completeLattice a : (i : ι) → π i s : Set ((i : ι) → π i) i : ι ⊢ ⨅ (i_1 : ↑s), a i ⊔ ↑i_1 i ≤ ⨅ (i_1 : ↑s), a i ⊔ ↑i_1 i [PROOFSTEP] rfl [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : Coframe α s t : Set α a✝ b✝ : α src✝ : Coframe α := inst✝ a b c : α ⊢ (a ⊔ b) ⊓ (a ⊔ c) ≤ a ⊔ b ⊓ c [PROOFSTEP] rw [← sInf_pair, ← sInf_pair, sup_sInf_eq, ← sInf_image, image_pair] [GOAL] α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' α : Type ?u.137509 β : Type ?u.137512 inst✝¹ : CompletelyDistribLattice α inst✝ : CompletelyDistribLattice β src✝ : CompleteLattice (α × β) := completeLattice α β ι✝ : Type (max ?u.137509 ?u.137512) κ✝ : ι✝ → Type (max ?u.137509 ?u.137512) f : (a : ι✝) → κ✝ a → α × β ⊢ ⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b = ⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a) [PROOFSTEP] ext [GOAL] case h₁ α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' α : Type ?u.137509 β : Type ?u.137512 inst✝¹ : CompletelyDistribLattice α inst✝ : CompletelyDistribLattice β src✝ : CompleteLattice (α × β) := completeLattice α β ι✝ : Type (max ?u.137509 ?u.137512) κ✝ : ι✝ → Type (max ?u.137509 ?u.137512) f : (a : ι✝) → κ✝ a → α × β ⊢ (⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b).fst = (⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a)).fst [PROOFSTEP] simp [fst_iSup, fst_iInf, snd_iSup, snd_iInf, iInf_iSup_eq] [GOAL] case h₂ α✝ : Type u β✝ : Type v ι : Sort w κ : ι → Sort w' α : Type ?u.137509 β : Type ?u.137512 inst✝¹ : CompletelyDistribLattice α inst✝ : CompletelyDistribLattice β src✝ : CompleteLattice (α × β) := completeLattice α β ι✝ : Type (max ?u.137509 ?u.137512) κ✝ : ι✝ → Type (max ?u.137509 ?u.137512) f : (a : ι✝) → κ✝ a → α × β ⊢ (⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b).snd = (⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a)).snd [PROOFSTEP] simp [fst_iSup, fst_iInf, snd_iSup, snd_iInf, iInf_iSup_eq] [GOAL] α : Type u β : Type v ι✝¹ : Sort w κ : ι✝¹ → Sort w' ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → CompletelyDistribLattice (π i) src✝ : CompleteLattice ((i : ι) → π i) := completeLattice ι✝ : Type (max u_1 u_2) κ✝ : ι✝ → Type (max u_1 u_2) f : (a : ι✝) → κ✝ a → (i : ι) → π i ⊢ ⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b = ⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a) [PROOFSTEP] ext i [GOAL] case h α : Type u β : Type v ι✝¹ : Sort w κ : ι✝¹ → Sort w' ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → CompletelyDistribLattice (π i) src✝ : CompleteLattice ((i : ι) → π i) := completeLattice ι✝ : Type (max u_1 u_2) κ✝ : ι✝ → Type (max u_1 u_2) f : (a : ι✝) → κ✝ a → (i : ι) → π i i : ι ⊢ iInf (fun a => ⨆ (b : κ✝ a), f a b) i = iSup (fun g => ⨅ (a : ι✝), f a (g a)) i [PROOFSTEP] simp only [iInf_apply, iSup_apply, iInf_iSup_eq] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteBooleanAlgebra α a b : α s : Set α f : ι → α ⊢ (iSup f)ᶜᶜ = (⨅ (i : ι), (f i)ᶜ)ᶜ [PROOFSTEP] simp [compl_iInf] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteBooleanAlgebra α a b : α s : Set α f : ι → α ⊢ (sInf s)ᶜ = ⨆ (i : α) (_ : i ∈ s), iᶜ [PROOFSTEP] simp only [sInf_eq_iInf, compl_iInf] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝ : CompleteBooleanAlgebra α a b : α s : Set α f : ι → α ⊢ (sSup s)ᶜ = ⨅ (i : α) (_ : i ∈ s), iᶜ [PROOFSTEP] simp only [sSup_eq_iSup, compl_iSup] [GOAL] α : Type u β : Type v ι✝¹ : Sort w κ : ι✝¹ → Sort w' ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → CompleteAtomicBooleanAlgebra (π i) src✝ : CompleteBooleanAlgebra ((i : ι) → π i) := completeBooleanAlgebra ι✝ : Type (max u_1 u_2) κ✝ : ι✝ → Type (max u_1 u_2) f : (a : ι✝) → κ✝ a → (i : ι) → π i ⊢ ⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b = ⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a) [PROOFSTEP] ext [GOAL] case h α : Type u β : Type v ι✝¹ : Sort w κ : ι✝¹ → Sort w' ι : Type u_1 π : ι → Type u_2 inst✝ : (i : ι) → CompleteAtomicBooleanAlgebra (π i) src✝ : CompleteBooleanAlgebra ((i : ι) → π i) := completeBooleanAlgebra ι✝ : Type (max u_1 u_2) κ✝ : ι✝ → Type (max u_1 u_2) f : (a : ι✝) → κ✝ a → (i : ι) → π i x✝ : ι ⊢ iInf (fun a => ⨆ (b : κ✝ a), f a b) x✝ = iSup (fun g => ⨅ (a : ι✝), f a (g a)) x✝ [PROOFSTEP] rw [iInf_iSup_eq] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' src✝¹ : CompleteLattice Prop := completeLattice src✝ : BooleanAlgebra Prop := booleanAlgebra ι✝ : Type κ✝ : ι✝ → Type f : (a : ι✝) → κ✝ a → Prop ⊢ ⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b = ⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a) [PROOFSTEP] simp [Classical.skolem] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : SupSet α inst✝³ : InfSet α inst✝² : Top α inst✝¹ : Bot α inst✝ : Frame β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot a : α s : Set α ⊢ a ⊓ sSup s ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b [PROOFSTEP] change f (a ⊓ sSup s) ≤ f _ [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : SupSet α inst✝³ : InfSet α inst✝² : Top α inst✝¹ : Bot α inst✝ : Frame β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot a : α s : Set α ⊢ f (a ⊓ sSup s) ≤ f (⨆ (b : α) (_ : b ∈ s), a ⊓ b) [PROOFSTEP] rw [← sSup_image, map_inf, map_sSup s, inf_iSup₂_eq] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : SupSet α inst✝³ : InfSet α inst✝² : Top α inst✝¹ : Bot α inst✝ : Frame β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot a : α s : Set α ⊢ ⨆ (i : α) (_ : i ∈ s), f a ⊓ f i ≤ f (sSup ((fun b => a ⊓ b) '' s)) [PROOFSTEP] simp_rw [← map_inf] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : SupSet α inst✝³ : InfSet α inst✝² : Top α inst✝¹ : Bot α inst✝ : Frame β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot a : α s : Set α ⊢ ⨆ (i : α) (_ : i ∈ s), f (a ⊓ i) ≤ f (sSup ((fun a_1 => a ⊓ a_1) '' s)) [PROOFSTEP] exact ((map_sSup _).trans iSup_image).ge [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : SupSet α inst✝³ : InfSet α inst✝² : Top α inst✝¹ : Bot α inst✝ : Coframe β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot a : α s : Set α ⊢ ⨅ (b : α) (_ : b ∈ s), a ⊔ b ≤ a ⊔ sInf s [PROOFSTEP] change f _ ≤ f (a ⊔ sInf s) [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : SupSet α inst✝³ : InfSet α inst✝² : Top α inst✝¹ : Bot α inst✝ : Coframe β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot a : α s : Set α ⊢ f (⨅ (b : α) (_ : b ∈ s), a ⊔ b) ≤ f (a ⊔ sInf s) [PROOFSTEP] rw [← sInf_image, map_sup, map_sInf s, sup_iInf₂_eq] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : SupSet α inst✝³ : InfSet α inst✝² : Top α inst✝¹ : Bot α inst✝ : Coframe β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot a : α s : Set α ⊢ f (sInf ((fun b => a ⊔ b) '' s)) ≤ ⨅ (i : α) (_ : i ∈ s), f a ⊔ f i [PROOFSTEP] simp_rw [← map_sup] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : SupSet α inst✝³ : InfSet α inst✝² : Top α inst✝¹ : Bot α inst✝ : Coframe β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot a : α s : Set α ⊢ f (sInf ((fun a_1 => a ⊔ a_1) '' s)) ≤ ⨅ (i : α) (_ : i ∈ s), f (a ⊔ i) [PROOFSTEP] exact ((map_sInf _).trans iInf_image).le [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : SupSet α inst✝³ : InfSet α inst✝² : Top α inst✝¹ : Bot α inst✝ : CompletelyDistribLattice β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot ι✝ : Type u κ✝ : ι✝ → Type u g : (a : ι✝) → κ✝ a → α ⊢ f (⨅ (a : ι✝), ⨆ (b : κ✝ a), g a b) = f (⨆ (g_1 : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), g a (g_1 a)) [PROOFSTEP] simp_rw [iInf, map_sInf, iInf_range, iSup, map_sSup, iSup_range, map_sInf, iInf_range, iInf_iSup_eq] -- See note [reducible non-instances] [GOAL] α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit ⊢ CompleteAtomicBooleanAlgebra PUnit [PROOFSTEP] refine' { PUnit.booleanAlgebra with sSup := fun _ => unit sInf := fun _ => unit .. } [GOAL] case refine'_1 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra ⊢ ∀ (s : Set PUnit) (a : PUnit), a ∈ s → a ≤ sSup s [PROOFSTEP] intros [GOAL] case refine'_1 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra s✝ : Set PUnit a✝¹ : PUnit a✝ : a✝¹ ∈ s✝ ⊢ a✝¹ ≤ sSup s✝ [PROOFSTEP] trivial [GOAL] case refine'_2 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra ⊢ ∀ (s : Set PUnit) (a : PUnit), (∀ (b : PUnit), b ∈ s → b ≤ a) → sSup s ≤ a [PROOFSTEP] intros [GOAL] case refine'_2 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra s✝ : Set PUnit a✝¹ : PUnit a✝ : ∀ (b : PUnit), b ∈ s✝ → b ≤ a✝¹ ⊢ sSup s✝ ≤ a✝¹ [PROOFSTEP] trivial [GOAL] case refine'_3 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra ⊢ ∀ (s : Set PUnit) (a : PUnit), a ∈ s → sInf s ≤ a [PROOFSTEP] intros [GOAL] case refine'_3 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra s✝ : Set PUnit a✝¹ : PUnit a✝ : a✝¹ ∈ s✝ ⊢ sInf s✝ ≤ a✝¹ [PROOFSTEP] trivial [GOAL] case refine'_4 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra ⊢ ∀ (s : Set PUnit) (a : PUnit), (∀ (b : PUnit), b ∈ s → a ≤ b) → a ≤ sInf s [PROOFSTEP] intros [GOAL] case refine'_4 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra s✝ : Set PUnit a✝¹ : PUnit a✝ : ∀ (b : PUnit), b ∈ s✝ → a✝¹ ≤ b ⊢ a✝¹ ≤ sInf s✝ [PROOFSTEP] trivial [GOAL] case refine'_5 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra ⊢ ∀ {ι : Type ?u.176306} {κ : ι → Type ?u.176306} (f : (a : ι) → κ a → PUnit), ⨅ (a : ι), ⨆ (b : κ a), f a b = ⨆ (g : (a : ι) → κ a), ⨅ (a : ι), f a (g a) [PROOFSTEP] intros [GOAL] case refine'_5 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra ι✝ : Type ?u.176306 κ✝ : ι✝ → Type ?u.176306 f✝ : (a : ι✝) → κ✝ a → PUnit ⊢ ⨅ (a : ι✝), ⨆ (b : κ✝ a), f✝ a b = ⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f✝ a (g a) [PROOFSTEP] trivial [GOAL] case refine'_6 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra ⊢ ∀ (a : PUnit) (s : Set PUnit), a ⊓ sSup s ≤ ⨆ (b : PUnit) (_ : b ∈ s), a ⊓ b [PROOFSTEP] intros [GOAL] case refine'_6 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra a✝ : PUnit s✝ : Set PUnit ⊢ a✝ ⊓ sSup s✝ ≤ ⨆ (b : PUnit) (_ : b ∈ s✝), a✝ ⊓ b [PROOFSTEP] trivial [GOAL] case refine'_7 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra ⊢ ∀ (a : PUnit) (s : Set PUnit), ⨅ (b : PUnit) (_ : b ∈ s), a ⊔ b ≤ a ⊔ sInf s [PROOFSTEP] intros [GOAL] case refine'_7 α : Type u β : Type v ι : Sort w κ : ι → Sort w' s : Set PUnit x y : PUnit src✝ : BooleanAlgebra PUnit := booleanAlgebra a✝ : PUnit s✝ : Set PUnit ⊢ ⨅ (b : PUnit) (_ : b ∈ s✝), a✝ ⊔ b ≤ a✝ ⊔ sInf s✝ [PROOFSTEP] trivial
{"mathlib_filename": "Mathlib.Order.CompleteBooleanAlgebra", "llama_tokens": 24619}
[GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α ⊢ WellFoundedOn s r ↔ WellFounded fun a b => r a b ∧ a ∈ s ∧ b ∈ s [PROOFSTEP] have f : RelEmbedding (fun (a : s) (b : s) => r a b) fun a b : α => r a b ∧ a ∈ s ∧ b ∈ s := ⟨⟨(↑), Subtype.coe_injective⟩, by simp⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α ⊢ ∀ {a b : ↑s}, r (↑{ toFun := Subtype.val, inj' := (_ : Function.Injective fun a => ↑a) } a) (↑{ toFun := Subtype.val, inj' := (_ : Function.Injective fun a => ↑a) } b) ∧ ↑{ toFun := Subtype.val, inj' := (_ : Function.Injective fun a => ↑a) } a ∈ s ∧ ↑{ toFun := Subtype.val, inj' := (_ : Function.Injective fun a => ↑a) } b ∈ s ↔ r ↑a ↑b [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f✝ : β → α s t : Set α x y : α f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s ⊢ WellFoundedOn s r ↔ WellFounded fun a b => r a b ∧ a ∈ s ∧ b ∈ s [PROOFSTEP] refine' ⟨fun h => _, f.wellFounded⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f✝ : β → α s t : Set α x y : α f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s h : WellFoundedOn s r ⊢ WellFounded fun a b => r a b ∧ a ∈ s ∧ b ∈ s [PROOFSTEP] rw [WellFounded.wellFounded_iff_has_min] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f✝ : β → α s t : Set α x y : α f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s h : WellFoundedOn s r ⊢ ∀ (s_1 : Set α), Set.Nonempty s_1 → ∃ m, m ∈ s_1 ∧ ∀ (x : α), x ∈ s_1 → ¬(r x m ∧ x ∈ s ∧ m ∈ s) [PROOFSTEP] intro t ht [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f✝ : β → α s t✝ : Set α x y : α f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s h : WellFoundedOn s r t : Set α ht : Set.Nonempty t ⊢ ∃ m, m ∈ t ∧ ∀ (x : α), x ∈ t → ¬(r x m ∧ x ∈ s ∧ m ∈ s) [PROOFSTEP] by_cases hst : (s ∩ t).Nonempty [GOAL] case pos ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f✝ : β → α s t✝ : Set α x y : α f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s h : WellFoundedOn s r t : Set α ht : Set.Nonempty t hst : Set.Nonempty (s ∩ t) ⊢ ∃ m, m ∈ t ∧ ∀ (x : α), x ∈ t → ¬(r x m ∧ x ∈ s ∧ m ∈ s) [PROOFSTEP] rw [← Subtype.preimage_coe_nonempty] at hst [GOAL] case pos ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f✝ : β → α s t✝ : Set α x y : α f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s h : WellFoundedOn s r t : Set α ht : Set.Nonempty t hst : Set.Nonempty (Subtype.val ⁻¹' t) ⊢ ∃ m, m ∈ t ∧ ∀ (x : α), x ∈ t → ¬(r x m ∧ x ∈ s ∧ m ∈ s) [PROOFSTEP] rcases h.has_min (Subtype.val ⁻¹' t) hst with ⟨⟨m, ms⟩, mt, hm⟩ [GOAL] case pos.intro.mk.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f✝ : β → α s t✝ : Set α x y : α f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s h : WellFoundedOn s r t : Set α ht : Set.Nonempty t hst : Set.Nonempty (Subtype.val ⁻¹' t) m : α ms : m ∈ s mt : { val := m, property := ms } ∈ Subtype.val ⁻¹' t hm : ∀ (x : ↑s), x ∈ Subtype.val ⁻¹' t → ¬r ↑x ↑{ val := m, property := ms } ⊢ ∃ m, m ∈ t ∧ ∀ (x : α), x ∈ t → ¬(r x m ∧ x ∈ s ∧ m ∈ s) [PROOFSTEP] exact ⟨m, mt, fun x xt ⟨xm, xs, _⟩ => hm ⟨x, xs⟩ xt xm⟩ [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f✝ : β → α s t✝ : Set α x y : α f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s h : WellFoundedOn s r t : Set α ht : Set.Nonempty t hst : ¬Set.Nonempty (s ∩ t) ⊢ ∃ m, m ∈ t ∧ ∀ (x : α), x ∈ t → ¬(r x m ∧ x ∈ s ∧ m ∈ s) [PROOFSTEP] rcases ht with ⟨m, mt⟩ [GOAL] case neg.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f✝ : β → α s t✝ : Set α x y : α f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s h : WellFoundedOn s r t : Set α hst : ¬Set.Nonempty (s ∩ t) m : α mt : m ∈ t ⊢ ∃ m, m ∈ t ∧ ∀ (x : α), x ∈ t → ¬(r x m ∧ x ∈ s ∧ m ∈ s) [PROOFSTEP] exact ⟨m, mt, fun x _ ⟨_, _, ms⟩ => hst ⟨m, ⟨ms, mt⟩⟩⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α ⊢ WellFoundedOn univ r ↔ WellFounded r [PROOFSTEP] simp [wellFoundedOn_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α ⊢ WellFoundedOn (range f) r ↔ WellFounded (r on f) [PROOFSTEP] let f' : β → range f := fun c => ⟨f c, c, rfl⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α f' : β → ↑(range f) := fun c => { val := f c, property := (_ : ∃ y, f y = f c) } ⊢ WellFoundedOn (range f) r ↔ WellFounded (r on f) [PROOFSTEP] refine' ⟨fun h => (InvImage.wf f' h).mono fun c c' => id, fun h => ⟨_⟩⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α f' : β → ↑(range f) := fun c => { val := f c, property := (_ : ∃ y, f y = f c) } h : WellFounded (r on f) ⊢ ∀ (a : ↑(range f)), Acc (fun a b => r ↑a ↑b) a [PROOFSTEP] rintro ⟨_, c, rfl⟩ [GOAL] case mk.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α f' : β → ↑(range f) := fun c => { val := f c, property := (_ : ∃ y, f y = f c) } h : WellFounded (r on f) c : β ⊢ Acc (fun a b => r ↑a ↑b) { val := f c, property := (_ : ∃ y, f y = f c) } [PROOFSTEP] refine' Acc.of_downward_closed f' _ _ _ [GOAL] case mk.intro.refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α f' : β → ↑(range f) := fun c => { val := f c, property := (_ : ∃ y, f y = f c) } h : WellFounded (r on f) c : β ⊢ ∀ {a : β} {b : ↑(range f)}, r ↑b ↑(f' a) → ∃ c, f' c = b [PROOFSTEP] rintro _ ⟨_, c', rfl⟩ - [GOAL] case mk.intro.refine'_1.mk.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α f' : β → ↑(range f) := fun c => { val := f c, property := (_ : ∃ y, f y = f c) } h : WellFounded (r on f) c a✝ c' : β ⊢ ∃ c, f' c = { val := f c', property := (_ : ∃ y, f y = f c') } [PROOFSTEP] exact ⟨c', rfl⟩ [GOAL] case mk.intro.refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α f' : β → ↑(range f) := fun c => { val := f c, property := (_ : ∃ y, f y = f c) } h : WellFounded (r on f) c : β ⊢ Acc (InvImage (fun a b => r ↑a ↑b) f') c [PROOFSTEP] exact h.apply _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s✝ t : Set α x y : α s : Set β ⊢ WellFoundedOn (f '' s) r ↔ WellFoundedOn s (r on f) [PROOFSTEP] rw [image_eq_range] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s✝ t : Set α x y : α s : Set β ⊢ WellFoundedOn (range fun x => f ↑x) r ↔ WellFoundedOn s (r on f) [PROOFSTEP] exact wellFoundedOn_range [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α hs : WellFoundedOn s r hx : x ∈ s P : α → Prop hP : ∀ (y : α), y ∈ s → (∀ (z : α), z ∈ s → r z y → P z) → P y ⊢ P x [PROOFSTEP] let Q : s → Prop := fun y => P y [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α hs : WellFoundedOn s r hx : x ∈ s P : α → Prop hP : ∀ (y : α), y ∈ s → (∀ (z : α), z ∈ s → r z y → P z) → P y Q : ↑s → Prop := fun y => P ↑y ⊢ P x [PROOFSTEP] change Q ⟨x, hx⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α hs : WellFoundedOn s r hx : x ∈ s P : α → Prop hP : ∀ (y : α), y ∈ s → (∀ (z : α), z ∈ s → r z y → P z) → P y Q : ↑s → Prop := fun y => P ↑y ⊢ Q { val := x, property := hx } [PROOFSTEP] refine' WellFounded.induction hs ⟨x, hx⟩ _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α hs : WellFoundedOn s r hx : x ∈ s P : α → Prop hP : ∀ (y : α), y ∈ s → (∀ (z : α), z ∈ s → r z y → P z) → P y Q : ↑s → Prop := fun y => P ↑y ⊢ ∀ (x : ↑s), (∀ (y : ↑s), r ↑y ↑x → Q y) → Q x [PROOFSTEP] simpa only [Subtype.forall] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α h : WellFoundedOn t r' hle : r ≤ r' hst : s ⊆ t ⊢ WellFoundedOn s r [PROOFSTEP] rw [wellFoundedOn_iff] at * [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop f : β → α s t : Set α x y : α h : WellFounded fun a b => r' a b ∧ a ∈ t ∧ b ∈ t hle : r ≤ r' hst : s ⊆ t ⊢ WellFounded fun a b => r a b ∧ a ∈ s ∧ b ∈ s [PROOFSTEP] exact Subrelation.wf (fun xy => ⟨hle _ _ xy.1, hst xy.2.1, hst xy.2.2⟩) h [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r' : α✝ → α✝ → Prop f : β → α✝ s t : Set α✝ x y : α✝ α : Type u_6 r : α → α → Prop a : α ⊢ TFAE [Acc r a, WellFoundedOn {b | ReflTransGen r b a} r, WellFoundedOn {b | TransGen r b a} r] [PROOFSTEP] tfae_have 1 → 2 [GOAL] case tfae_1_to_2 ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r' : α✝ → α✝ → Prop f : β → α✝ s t : Set α✝ x y : α✝ α : Type u_6 r : α → α → Prop a : α ⊢ Acc r a → WellFoundedOn {b | ReflTransGen r b a} r [PROOFSTEP] refine fun h => ⟨fun b => InvImage.accessible _ ?_⟩ [GOAL] case tfae_1_to_2 ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r' : α✝ → α✝ → Prop f : β → α✝ s t : Set α✝ x y : α✝ α : Type u_6 r : α → α → Prop a : α h : Acc r a b : ↑{b | ReflTransGen r b a} ⊢ Acc r ↑b [PROOFSTEP] rw [← acc_transGen_iff] at h ⊢ [GOAL] case tfae_1_to_2 ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r' : α✝ → α✝ → Prop f : β → α✝ s t : Set α✝ x y : α✝ α : Type u_6 r : α → α → Prop a : α h : Acc (TransGen r) a b : ↑{b | ReflTransGen r b a} ⊢ Acc (TransGen r) ↑b [PROOFSTEP] obtain h' | h' := reflTransGen_iff_eq_or_transGen.1 b.2 [GOAL] case tfae_1_to_2.inl ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r' : α✝ → α✝ → Prop f : β → α✝ s t : Set α✝ x y : α✝ α : Type u_6 r : α → α → Prop a : α h : Acc (TransGen r) a b : ↑{b | ReflTransGen r b a} h' : a = ↑b ⊢ Acc (TransGen r) ↑b [PROOFSTEP] rwa [h'] at h [GOAL] case tfae_1_to_2.inr ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r' : α✝ → α✝ → Prop f : β → α✝ s t : Set α✝ x y : α✝ α : Type u_6 r : α → α → Prop a : α h : Acc (TransGen r) a b : ↑{b | ReflTransGen r b a} h' : TransGen r (↑b) a ⊢ Acc (TransGen r) ↑b [PROOFSTEP] exact h.inv h' [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r' : α✝ → α✝ → Prop f : β → α✝ s t : Set α✝ x y : α✝ α : Type u_6 r : α → α → Prop a : α tfae_1_to_2 : Acc r a → WellFoundedOn {b | ReflTransGen r b a} r ⊢ TFAE [Acc r a, WellFoundedOn {b | ReflTransGen r b a} r, WellFoundedOn {b | TransGen r b a} r] [PROOFSTEP] tfae_have 2 → 3 [GOAL] case tfae_2_to_3 ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r' : α✝ → α✝ → Prop f : β → α✝ s t : Set α✝ x y : α✝ α : Type u_6 r : α → α → Prop a : α tfae_1_to_2 : Acc r a → WellFoundedOn {b | ReflTransGen r b a} r ⊢ WellFoundedOn {b | ReflTransGen r b a} r → WellFoundedOn {b | TransGen r b a} r [PROOFSTEP] exact fun h => h.subset fun _ => TransGen.to_reflTransGen [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r' : α✝ → α✝ → Prop f : β → α✝ s t : Set α✝ x y : α✝ α : Type u_6 r : α → α → Prop a : α tfae_1_to_2 : Acc r a → WellFoundedOn {b | ReflTransGen r b a} r tfae_2_to_3 : WellFoundedOn {b | ReflTransGen r b a} r → WellFoundedOn {b | TransGen r b a} r ⊢ TFAE [Acc r a, WellFoundedOn {b | ReflTransGen r b a} r, WellFoundedOn {b | TransGen r b a} r] [PROOFSTEP] tfae_have 3 → 1 [GOAL] case tfae_3_to_1 ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r' : α✝ → α✝ → Prop f : β → α✝ s t : Set α✝ x y : α✝ α : Type u_6 r : α → α → Prop a : α tfae_1_to_2 : Acc r a → WellFoundedOn {b | ReflTransGen r b a} r tfae_2_to_3 : WellFoundedOn {b | ReflTransGen r b a} r → WellFoundedOn {b | TransGen r b a} r ⊢ WellFoundedOn {b | TransGen r b a} r → Acc r a [PROOFSTEP] refine fun h => Acc.intro _ (fun b hb => (h.apply ⟨b, .single hb⟩).of_fibration Subtype.val ?_) [GOAL] case tfae_3_to_1 ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r' : α✝ → α✝ → Prop f : β → α✝ s t : Set α✝ x y : α✝ α : Type u_6 r : α → α → Prop a : α tfae_1_to_2 : Acc r a → WellFoundedOn {b | ReflTransGen r b a} r tfae_2_to_3 : WellFoundedOn {b | ReflTransGen r b a} r → WellFoundedOn {b | TransGen r b a} r h : WellFoundedOn {b | TransGen r b a} r b : α hb : r b a ⊢ Fibration (fun a_1 b => r ↑a_1 ↑b) r Subtype.val [PROOFSTEP] exact fun ⟨c, hc⟩ d h => ⟨⟨d, .head h hc⟩, h, rfl⟩ [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r' : α✝ → α✝ → Prop f : β → α✝ s t : Set α✝ x y : α✝ α : Type u_6 r : α → α → Prop a : α tfae_1_to_2 : Acc r a → WellFoundedOn {b | ReflTransGen r b a} r tfae_2_to_3 : WellFoundedOn {b | ReflTransGen r b a} r → WellFoundedOn {b | TransGen r b a} r tfae_3_to_1 : WellFoundedOn {b | TransGen r b a} r → Acc r a ⊢ TFAE [Acc r a, WellFoundedOn {b | ReflTransGen r b a} r, WellFoundedOn {b | TransGen r b a} r] [PROOFSTEP] tfae_finish [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α ⊢ WellFoundedOn s r ↔ ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s [PROOFSTEP] simp only [wellFoundedOn_iff, RelEmbedding.wellFounded_iff_no_descending_seq, ← not_exists, ← not_nonempty_iff, not_iff_not] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α ⊢ Nonempty ((fun x x_1 => x > x_1) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s) ↔ ∃ x, ∀ (n : ℕ), ↑x n ∈ s [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α ⊢ Nonempty ((fun x x_1 => x > x_1) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s) → ∃ x, ∀ (n : ℕ), ↑x n ∈ s [PROOFSTEP] rintro ⟨⟨f, hf⟩⟩ [GOAL] case mp.intro.mk ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α f : ℕ ↪ α hf : ∀ {a b : ℕ}, r (↑f a) (↑f b) ∧ ↑f a ∈ s ∧ ↑f b ∈ s ↔ a > b ⊢ ∃ x, ∀ (n : ℕ), ↑x n ∈ s [PROOFSTEP] have H : ∀ n, f n ∈ s := fun n => (hf.2 n.lt_succ_self).2.2 [GOAL] case mp.intro.mk ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α f : ℕ ↪ α hf : ∀ {a b : ℕ}, r (↑f a) (↑f b) ∧ ↑f a ∈ s ∧ ↑f b ∈ s ↔ a > b H : ∀ (n : ℕ), ↑f n ∈ s ⊢ ∃ x, ∀ (n : ℕ), ↑x n ∈ s [PROOFSTEP] refine' ⟨⟨f, _⟩, H⟩ [GOAL] case mp.intro.mk ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α f : ℕ ↪ α hf : ∀ {a b : ℕ}, r (↑f a) (↑f b) ∧ ↑f a ∈ s ∧ ↑f b ∈ s ↔ a > b H : ∀ (n : ℕ), ↑f n ∈ s ⊢ ∀ {a b : ℕ}, r (↑f a) (↑f b) ↔ a > b [PROOFSTEP] simpa only [H, and_true_iff] using @hf [GOAL] case mpr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α ⊢ (∃ x, ∀ (n : ℕ), ↑x n ∈ s) → Nonempty ((fun x x_1 => x > x_1) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s) [PROOFSTEP] rintro ⟨⟨f, hf⟩, hfs : ∀ n, f n ∈ s⟩ [GOAL] case mpr.intro.mk ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α f : ℕ ↪ α hf : ∀ {a b : ℕ}, r (↑f a) (↑f b) ↔ a > b hfs : ∀ (n : ℕ), ↑f n ∈ s ⊢ Nonempty ((fun x x_1 => x > x_1) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s) [PROOFSTEP] refine' ⟨⟨f, _⟩⟩ [GOAL] case mpr.intro.mk ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α f : ℕ ↪ α hf : ∀ {a b : ℕ}, r (↑f a) (↑f b) ↔ a > b hfs : ∀ (n : ℕ), ↑f n ∈ s ⊢ ∀ {a b : ℕ}, r (↑f a) (↑f b) ∧ ↑f a ∈ s ∧ ↑f b ∈ s ↔ a > b [PROOFSTEP] simpa only [hfs, and_true_iff] using @hf [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α hs : WellFoundedOn s r ht : WellFoundedOn t r ⊢ WellFoundedOn (s ∪ t) r [PROOFSTEP] rw [wellFoundedOn_iff_no_descending_seq] at * [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α hs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s ht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t ⊢ ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s ∪ t [PROOFSTEP] rintro f hf [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α hs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s ht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t f : (fun x x_1 => x > x_1) ↪r r hf : ∀ (n : ℕ), ↑f n ∈ s ∪ t ⊢ False [PROOFSTEP] rcases Nat.exists_subseq_of_forall_mem_union f hf with ⟨g, hg | hg⟩ [GOAL] case intro.inl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α hs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s ht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t f : (fun x x_1 => x > x_1) ↪r r hf : ∀ (n : ℕ), ↑f n ∈ s ∪ t g : ℕ ↪o ℕ hg : ∀ (n : ℕ), ↑f (↑g n) ∈ s ⊢ False case intro.inr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r r' : α → α → Prop inst✝ : IsStrictOrder α r s t : Set α hs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s ht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t f : (fun x x_1 => x > x_1) ↪r r hf : ∀ (n : ℕ), ↑f n ∈ s ∪ t g : ℕ ↪o ℕ hg : ∀ (n : ℕ), ↑f (↑g n) ∈ t ⊢ False [PROOFSTEP] exacts [hs (g.dual.ltEmbedding.trans f) hg, ht (g.dual.ltEmbedding.trans f) hg] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 inst✝ : LT α s t : Set α ⊢ IsWf univ ↔ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] simp [IsWf, wellFoundedOn_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α hs : PartiallyWellOrderedOn s r ht : PartiallyWellOrderedOn t r ⊢ PartiallyWellOrderedOn (s ∪ t) r [PROOFSTEP] rintro f hf [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α hs : PartiallyWellOrderedOn s r ht : PartiallyWellOrderedOn t r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s ∪ t ⊢ ∃ m n, m < n ∧ r (f m) (f n) [PROOFSTEP] rcases Nat.exists_subseq_of_forall_mem_union f hf with ⟨g, hgs | hgt⟩ [GOAL] case intro.inl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α hs : PartiallyWellOrderedOn s r ht : PartiallyWellOrderedOn t r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s ∪ t g : ℕ ↪o ℕ hgs : ∀ (n : ℕ), f (↑g n) ∈ s ⊢ ∃ m n, m < n ∧ r (f m) (f n) [PROOFSTEP] rcases hs _ hgs with ⟨m, n, hlt, hr⟩ [GOAL] case intro.inl.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α hs : PartiallyWellOrderedOn s r ht : PartiallyWellOrderedOn t r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s ∪ t g : ℕ ↪o ℕ hgs : ∀ (n : ℕ), f (↑g n) ∈ s m n : ℕ hlt : m < n hr : r (f (↑g m)) (f (↑g n)) ⊢ ∃ m n, m < n ∧ r (f m) (f n) [PROOFSTEP] exact ⟨g m, g n, g.strictMono hlt, hr⟩ [GOAL] case intro.inr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α hs : PartiallyWellOrderedOn s r ht : PartiallyWellOrderedOn t r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s ∪ t g : ℕ ↪o ℕ hgt : ∀ (n : ℕ), f (↑g n) ∈ t ⊢ ∃ m n, m < n ∧ r (f m) (f n) [PROOFSTEP] rcases ht _ hgt with ⟨m, n, hlt, hr⟩ [GOAL] case intro.inr.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α hs : PartiallyWellOrderedOn s r ht : PartiallyWellOrderedOn t r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s ∪ t g : ℕ ↪o ℕ hgt : ∀ (n : ℕ), f (↑g n) ∈ t m n : ℕ hlt : m < n hr : r (f (↑g m)) (f (↑g n)) ⊢ ∃ m n, m < n ∧ r (f m) (f n) [PROOFSTEP] exact ⟨g m, g n, g.strictMono hlt, hr⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α hs : PartiallyWellOrderedOn s r hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂) ⊢ PartiallyWellOrderedOn (f '' s) r' [PROOFSTEP] intro g' hg' [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α hs : PartiallyWellOrderedOn s r hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂) g' : ℕ → β hg' : ∀ (n : ℕ), g' n ∈ f '' s ⊢ ∃ m n, m < n ∧ r' (g' m) (g' n) [PROOFSTEP] choose g hgs heq using hg' [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α hs : PartiallyWellOrderedOn s r hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂) g' : ℕ → β g : ℕ → α hgs : ∀ (n : ℕ), g n ∈ s heq : ∀ (n : ℕ), f (g n) = g' n ⊢ ∃ m n, m < n ∧ r' (g' m) (g' n) [PROOFSTEP] obtain rfl : f ∘ g = g' [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α hs : PartiallyWellOrderedOn s r hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂) g' : ℕ → β g : ℕ → α hgs : ∀ (n : ℕ), g n ∈ s heq : ∀ (n : ℕ), f (g n) = g' n ⊢ f ∘ g = g' ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α hs : PartiallyWellOrderedOn s r hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂) g : ℕ → α hgs : ∀ (n : ℕ), g n ∈ s heq : ∀ (n : ℕ), f (g n) = (f ∘ g) n ⊢ ∃ m n, m < n ∧ r' ((f ∘ g) m) ((f ∘ g) n) [PROOFSTEP] exact funext heq [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α hs : PartiallyWellOrderedOn s r hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂) g : ℕ → α hgs : ∀ (n : ℕ), g n ∈ s heq : ∀ (n : ℕ), f (g n) = (f ∘ g) n ⊢ ∃ m n, m < n ∧ r' ((f ∘ g) m) ((f ∘ g) n) [PROOFSTEP] obtain ⟨m, n, hlt, hmn⟩ := hs g hgs [GOAL] case intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α hs : PartiallyWellOrderedOn s r hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂) g : ℕ → α hgs : ∀ (n : ℕ), g n ∈ s heq : ∀ (n : ℕ), f (g n) = (f ∘ g) n m n : ℕ hlt : m < n hmn : r (g m) (g n) ⊢ ∃ m n, m < n ∧ r' ((f ∘ g) m) ((f ∘ g) n) [PROOFSTEP] exact ⟨m, n, hlt, hf _ (hgs m) _ (hgs n) hmn⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α ha : IsAntichain r s hp : PartiallyWellOrderedOn s r ⊢ Set.Finite s [PROOFSTEP] refine' not_infinite.1 fun hi => _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α ha : IsAntichain r s hp : PartiallyWellOrderedOn s r hi : Set.Infinite s ⊢ False [PROOFSTEP] obtain ⟨m, n, hmn, h⟩ := hp (fun n => hi.natEmbedding _ n) fun n => (hi.natEmbedding _ n).2 [GOAL] case intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α ha : IsAntichain r s hp : PartiallyWellOrderedOn s r hi : Set.Infinite s m n : ℕ hmn : m < n h : r ↑(↑(Infinite.natEmbedding s hi) m) ↑(↑(Infinite.natEmbedding s hi) n) ⊢ False [PROOFSTEP] exact hmn.ne ((hi.natEmbedding _).injective <| Subtype.val_injective <| ha.eq (hi.natEmbedding _ m).2 (hi.natEmbedding _ n).2 h) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α inst✝ : IsRefl α r hs : Set.Finite s ⊢ PartiallyWellOrderedOn s r [PROOFSTEP] intro f hf [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝ : IsRefl α r hs : Set.Finite s f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s ⊢ ∃ m n, m < n ∧ r (f m) (f n) [PROOFSTEP] obtain ⟨m, n, hmn, h⟩ := hs.exists_lt_map_eq_of_forall_mem hf [GOAL] case intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝ : IsRefl α r hs : Set.Finite s f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s m n : ℕ hmn : m < n h : f m = f n ⊢ ∃ m n, m < n ∧ r (f m) (f n) [PROOFSTEP] exact ⟨m, n, hmn, h.subst <| refl (f m)⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α inst✝ : IsRefl α r ⊢ PartiallyWellOrderedOn (insert a s) r ↔ PartiallyWellOrderedOn s r [PROOFSTEP] simp only [← singleton_union, partiallyWellOrderedOn_union, partiallyWellOrderedOn_singleton, true_and_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r ⊢ PartiallyWellOrderedOn s r ↔ ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t [PROOFSTEP] refine' ⟨fun h t ht hrt => hrt.finite_of_partiallyWellOrderedOn (h.mono ht), _⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r ⊢ (∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t) → PartiallyWellOrderedOn s r [PROOFSTEP] rintro hs f hf [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s ⊢ ∃ m n, m < n ∧ r (f m) (f n) [PROOFSTEP] by_contra' H [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) ⊢ False [PROOFSTEP] refine' infinite_range_of_injective (fun m n hmn => _) (hs _ (range_subset_iff.2 hf) _) [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) m n : ℕ hmn : f m = f n ⊢ m = n [PROOFSTEP] obtain h | h | h := lt_trichotomy m n [GOAL] case refine'_1.inl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) m n : ℕ hmn : f m = f n h : m < n ⊢ m = n [PROOFSTEP] refine' (H _ _ h _).elim [GOAL] case refine'_1.inl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) m n : ℕ hmn : f m = f n h : m < n ⊢ r (f m) (f n) [PROOFSTEP] rw [hmn] [GOAL] case refine'_1.inl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) m n : ℕ hmn : f m = f n h : m < n ⊢ r (f n) (f n) [PROOFSTEP] exact refl _ [GOAL] case refine'_1.inr.inl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) m n : ℕ hmn : f m = f n h : m = n ⊢ m = n [PROOFSTEP] exact h [GOAL] case refine'_1.inr.inr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) m n : ℕ hmn : f m = f n h : n < m ⊢ m = n [PROOFSTEP] refine' (H _ _ h _).elim [GOAL] case refine'_1.inr.inr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) m n : ℕ hmn : f m = f n h : n < m ⊢ r (f n) (f m) [PROOFSTEP] rw [hmn] [GOAL] case refine'_1.inr.inr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) m n : ℕ hmn : f m = f n h : n < m ⊢ r (f n) (f n) [PROOFSTEP] exact refl _ [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) ⊢ IsAntichain r (range fun y => f y) [PROOFSTEP] rintro _ ⟨m, hm, rfl⟩ _ ⟨n, hn, rfl⟩ hmn [GOAL] case refine'_2.intro.refl.intro.refl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) m n : ℕ hmn : (fun y => f y) m ≠ (fun y => f y) n ⊢ rᶜ ((fun y => f y) m) ((fun y => f y) n) [PROOFSTEP] obtain h | h := (ne_of_apply_ne _ hmn).lt_or_lt [GOAL] case refine'_2.intro.refl.intro.refl.inl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) m n : ℕ hmn : (fun y => f y) m ≠ (fun y => f y) n h : m < n ⊢ rᶜ ((fun y => f y) m) ((fun y => f y) n) [PROOFSTEP] exact H _ _ h [GOAL] case refine'_2.intro.refl.intro.refl.inr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsSymm α r hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n) m n : ℕ hmn : (fun y => f y) m ≠ (fun y => f y) n h : n < m ⊢ rᶜ ((fun y => f y) m) ((fun y => f y) n) [PROOFSTEP] exact mt symm (H _ _ h) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r h : PartiallyWellOrderedOn s r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s ⊢ ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n)) [PROOFSTEP] obtain ⟨g, h1 | h2⟩ := exists_increasing_or_nonincreasing_subseq r f [GOAL] case intro.inl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r h : PartiallyWellOrderedOn s r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s g : ℕ ↪o ℕ h1 : ∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n)) ⊢ ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n)) [PROOFSTEP] refine' ⟨g, fun m n hle => _⟩ [GOAL] case intro.inl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r h : PartiallyWellOrderedOn s r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s g : ℕ ↪o ℕ h1 : ∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n)) m n : ℕ hle : m ≤ n ⊢ r (f (↑g m)) (f (↑g n)) [PROOFSTEP] obtain hlt | rfl := hle.lt_or_eq [GOAL] case intro.inl.inl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r h : PartiallyWellOrderedOn s r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s g : ℕ ↪o ℕ h1 : ∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n)) m n : ℕ hle : m ≤ n hlt : m < n ⊢ r (f (↑g m)) (f (↑g n)) case intro.inl.inr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r h : PartiallyWellOrderedOn s r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s g : ℕ ↪o ℕ h1 : ∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n)) m : ℕ hle : m ≤ m ⊢ r (f (↑g m)) (f (↑g m)) [PROOFSTEP] exacts [h1 m n hlt, refl_of r _] [GOAL] case intro.inr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r h : PartiallyWellOrderedOn s r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s g : ℕ ↪o ℕ h2 : ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) ⊢ ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n)) [PROOFSTEP] exfalso [GOAL] case intro.inr.h ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r h : PartiallyWellOrderedOn s r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s g : ℕ ↪o ℕ h2 : ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) ⊢ False [PROOFSTEP] obtain ⟨m, n, hlt, hle⟩ := h (f ∘ g) fun n => hf _ [GOAL] case intro.inr.h.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r h : PartiallyWellOrderedOn s r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s g : ℕ ↪o ℕ h2 : ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n)) m n : ℕ hlt : m < n hle : r ((f ∘ ↑g) m) ((f ∘ ↑g) n) ⊢ False [PROOFSTEP] exact h2 m n hlt hle [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r ⊢ PartiallyWellOrderedOn s r ↔ ∀ (f : ℕ → α), (∀ (n : ℕ), f n ∈ s) → ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n)) [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r ⊢ PartiallyWellOrderedOn s r → ∀ (f : ℕ → α), (∀ (n : ℕ), f n ∈ s) → ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n)) [PROOFSTEP] intro h f hf [GOAL] case mpr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r ⊢ (∀ (f : ℕ → α), (∀ (n : ℕ), f n ∈ s) → ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n))) → PartiallyWellOrderedOn s r [PROOFSTEP] intro h f hf [GOAL] case mp ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r h : PartiallyWellOrderedOn s r f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s ⊢ ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n)) [PROOFSTEP] exact h.exists_monotone_subseq f hf [GOAL] case mpr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r h : ∀ (f : ℕ → α), (∀ (n : ℕ), f n ∈ s) → ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n)) f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s ⊢ ∃ m n, m < n ∧ r (f m) (f n) [PROOFSTEP] obtain ⟨g, gmon⟩ := h f hf [GOAL] case mpr.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r h : ∀ (f : ℕ → α), (∀ (n : ℕ), f n ∈ s) → ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n)) f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s g : ℕ ↪o ℕ gmon : ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n)) ⊢ ∃ m n, m < n ∧ r (f m) (f n) [PROOFSTEP] exact ⟨g 0, g 1, g.lt_iff_lt.2 zero_lt_one, gmon _ _ zero_le_one⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t✝ : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r t : Set β hs : PartiallyWellOrderedOn s r ht : PartiallyWellOrderedOn t r' ⊢ PartiallyWellOrderedOn (s ×ˢ t) fun x y => r x.fst y.fst ∧ r' x.snd y.snd [PROOFSTEP] intro f hf [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t✝ : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r t : Set β hs : PartiallyWellOrderedOn s r ht : PartiallyWellOrderedOn t r' f : ℕ → α × β hf : ∀ (n : ℕ), f n ∈ s ×ˢ t ⊢ ∃ m n, m < n ∧ (fun x y => r x.fst y.fst ∧ r' x.snd y.snd) (f m) (f n) [PROOFSTEP] obtain ⟨g₁, h₁⟩ := hs.exists_monotone_subseq (Prod.fst ∘ f) fun n => (hf n).1 [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t✝ : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r t : Set β hs : PartiallyWellOrderedOn s r ht : PartiallyWellOrderedOn t r' f : ℕ → α × β hf : ∀ (n : ℕ), f n ∈ s ×ˢ t g₁ : ℕ ↪o ℕ h₁ : ∀ (m n : ℕ), m ≤ n → r ((Prod.fst ∘ f) (↑g₁ m)) ((Prod.fst ∘ f) (↑g₁ n)) ⊢ ∃ m n, m < n ∧ (fun x y => r x.fst y.fst ∧ r' x.snd y.snd) (f m) (f n) [PROOFSTEP] obtain ⟨m, n, hlt, hle⟩ := ht (Prod.snd ∘ f ∘ g₁) fun n => (hf _).2 [GOAL] case intro.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t✝ : Set α a : α inst✝¹ : IsRefl α r inst✝ : IsTrans α r t : Set β hs : PartiallyWellOrderedOn s r ht : PartiallyWellOrderedOn t r' f : ℕ → α × β hf : ∀ (n : ℕ), f n ∈ s ×ˢ t g₁ : ℕ ↪o ℕ h₁ : ∀ (m n : ℕ), m ≤ n → r ((Prod.fst ∘ f) (↑g₁ m)) ((Prod.fst ∘ f) (↑g₁ n)) m n : ℕ hlt : m < n hle : r' ((Prod.snd ∘ f ∘ ↑g₁) m) ((Prod.snd ∘ f ∘ ↑g₁) n) ⊢ ∃ m n, m < n ∧ (fun x y => r x.fst y.fst ∧ r' x.snd y.snd) (f m) (f n) [PROOFSTEP] exact ⟨g₁ m, g₁ n, g₁.strictMono hlt, h₁ _ _ hlt.le, hle⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α inst✝ : IsPreorder α r h : PartiallyWellOrderedOn s r ⊢ WellFoundedOn s fun a b => r a b ∧ ¬r b a [PROOFSTEP] letI : Preorder α := { le := r le_refl := refl_of r le_trans := fun _ _ _ => trans_of r } [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α inst✝ : IsPreorder α r h : PartiallyWellOrderedOn s r this : Preorder α := Preorder.mk (_ : ∀ (a : α), r a a) (_ : ∀ (x x_1 x_2 : α), r x x_1 → r x_1 x_2 → r x x_2) ⊢ WellFoundedOn s fun a b => r a b ∧ ¬r b a [PROOFSTEP] change s.WellFoundedOn (· < ·) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α inst✝ : IsPreorder α r h : PartiallyWellOrderedOn s r this : Preorder α := Preorder.mk (_ : ∀ (a : α), r a a) (_ : ∀ (x x_1 x_2 : α), r x x_1 → r x_1 x_2 → r x x_2) ⊢ WellFoundedOn s fun x x_1 => x < x_1 [PROOFSTEP] replace h : s.PartiallyWellOrderedOn (· ≤ ·) := h [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α inst✝ : IsPreorder α r this : Preorder α := Preorder.mk (_ : ∀ (a : α), r a a) (_ : ∀ (x x_1 x_2 : α), r x x_1 → r x_1 x_2 → r x x_2) h : PartiallyWellOrderedOn s fun x x_1 => x ≤ x_1 ⊢ WellFoundedOn s fun x x_1 => x < x_1 [PROOFSTEP] rw [wellFoundedOn_iff_no_descending_seq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f : α → β s t : Set α a : α inst✝ : IsPreorder α r this : Preorder α := Preorder.mk (_ : ∀ (a : α), r a a) (_ : ∀ (x x_1 x_2 : α), r x x_1 → r x_1 x_2 → r x x_2) h : PartiallyWellOrderedOn s fun x x_1 => x ≤ x_1 ⊢ ∀ (f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x < x_1), ¬∀ (n : ℕ), ↑f n ∈ s [PROOFSTEP] intro f hf [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝ : IsPreorder α r this : Preorder α := Preorder.mk (_ : ∀ (a : α), r a a) (_ : ∀ (x x_1 x_2 : α), r x x_1 → r x_1 x_2 → r x x_2) h : PartiallyWellOrderedOn s fun x x_1 => x ≤ x_1 f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x < x_1 hf : ∀ (n : ℕ), ↑f n ∈ s ⊢ False [PROOFSTEP] obtain ⟨m, n, hlt, hle⟩ := h f hf [GOAL] case intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop r' : β → β → Prop f✝ : α → β s t : Set α a : α inst✝ : IsPreorder α r this : Preorder α := Preorder.mk (_ : ∀ (a : α), r a a) (_ : ∀ (x x_1 x_2 : α), r x x_1 → r x_1 x_2 → r x x_2) h : PartiallyWellOrderedOn s fun x x_1 => x ≤ x_1 f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x < x_1 hf : ∀ (n : ℕ), ↑f n ∈ s m n : ℕ hlt : m < n hle : ↑f m ≤ ↑f n ⊢ False [PROOFSTEP] exact (f.map_rel_iff.2 hlt).not_le hle [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α h : IsPwo s ⊢ IsWf s [PROOFSTEP] simpa only [← lt_iff_le_not_le] using h.wellFoundedOn [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α a : α ⊢ IsPwo (insert a s) ↔ IsPwo s [PROOFSTEP] simp only [← singleton_union, isPwo_union, isPwo_singleton, true_and_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 inst✝¹ : Preorder α inst✝ : Preorder β s t : Set α a : α ⊢ IsWf (insert a s) ↔ IsWf s [PROOFSTEP] simp only [← singleton_union, isWf_union, isWf_singleton, true_and_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop inst✝ : IsStrictOrder α r s : Set α a : α ⊢ WellFoundedOn (insert a s) r ↔ WellFoundedOn s r [PROOFSTEP] simp only [← singleton_union, wellFoundedOn_union, wellFoundedOn_singleton, true_and_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 inst✝ : LinearOrder α s : Set α hs : IsWf s ⊢ IsPwo s [PROOFSTEP] intro f hf [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 inst✝ : LinearOrder α s : Set α hs : IsWf s f : ℕ → α hf : ∀ (n : ℕ), f n ∈ s ⊢ ∃ m n, m < n ∧ (fun x x_1 => x ≤ x_1) (f m) (f n) [PROOFSTEP] lift f to ℕ → s using hf [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 inst✝ : LinearOrder α s : Set α hs : IsWf s f : ℕ → ↑s ⊢ ∃ m n, m < n ∧ (fun x x_1 => x ≤ x_1) ((fun i => ↑(f i)) m) ((fun i => ↑(f i)) n) [PROOFSTEP] rcases hs.has_min (range f) (range_nonempty _) with ⟨_, ⟨m, rfl⟩, hm⟩ [GOAL] case intro.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 inst✝ : LinearOrder α s : Set α hs : IsWf s f : ℕ → ↑s m : ℕ hm : ∀ (x : ↑s), x ∈ range f → ¬(fun x x_1 => x < x_1) ↑x ↑(f m) ⊢ ∃ m n, m < n ∧ (fun x x_1 => x ≤ x_1) ((fun i => ↑(f i)) m) ((fun i => ↑(f i)) n) [PROOFSTEP] simp only [forall_range_iff, not_lt] at hm [GOAL] case intro.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 inst✝ : LinearOrder α s : Set α hs : IsWf s f : ℕ → ↑s m : ℕ hm : ∀ (i : ℕ), ↑(f m) ≤ ↑(f i) ⊢ ∃ m n, m < n ∧ (fun x x_1 => x ≤ x_1) ((fun i => ↑(f i)) m) ((fun i => ↑(f i)) n) [PROOFSTEP] exact ⟨m, m + 1, lt_add_one m, hm _⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop inst✝ : IsStrictOrder α r s : Finset ι f : ι → Set α ⊢ Set.WellFoundedOn (sup ∅ f) r ↔ ∀ (i : ι), i ∈ ∅ → Set.WellFoundedOn (f i) r [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop inst✝ : IsStrictOrder α r s✝ : Finset ι f : ι → Set α a : ι s : Finset ι ha : ¬a ∈ s hs : Set.WellFoundedOn (sup s f) r ↔ ∀ (i : ι), i ∈ s → Set.WellFoundedOn (f i) r ⊢ Set.WellFoundedOn (sup (cons a s ha) f) r ↔ ∀ (i : ι), i ∈ cons a s ha → Set.WellFoundedOn (f i) r [PROOFSTEP] simp [-sup_set_eq_biUnion, hs] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop s : Finset ι f : ι → Set α ⊢ Set.PartiallyWellOrderedOn (sup ∅ f) r ↔ ∀ (i : ι), i ∈ ∅ → Set.PartiallyWellOrderedOn (f i) r [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop s✝ : Finset ι f : ι → Set α a : ι s : Finset ι ha : ¬a ∈ s hs : Set.PartiallyWellOrderedOn (sup s f) r ↔ ∀ (i : ι), i ∈ s → Set.PartiallyWellOrderedOn (f i) r ⊢ Set.PartiallyWellOrderedOn (sup (cons a s ha) f) r ↔ ∀ (i : ι), i ∈ cons a s ha → Set.PartiallyWellOrderedOn (f i) r [PROOFSTEP] simp [-sup_set_eq_biUnion, hs] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop inst✝ : IsStrictOrder α r s : Finset ι f : ι → Set α ⊢ Set.WellFoundedOn (⋃ (i : ι) (_ : i ∈ s), f i) r ↔ ∀ (i : ι), i ∈ s → Set.WellFoundedOn (f i) r [PROOFSTEP] simpa only [Finset.sup_eq_iSup] using s.wellFoundedOn_sup [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop s : Finset ι f : ι → Set α ⊢ Set.PartiallyWellOrderedOn (⋃ (i : ι) (_ : i ∈ s), f i) r ↔ ∀ (i : ι), i ∈ s → Set.PartiallyWellOrderedOn (f i) r [PROOFSTEP] simpa only [Finset.sup_eq_iSup] using s.partiallyWellOrderedOn_sup [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 inst✝ : LinearOrder α s t : Set α a : α hs : IsWf s hsn : Set.Nonempty s ht : IsWf t htn : Set.Nonempty t ⊢ min (_ : IsWf (s ∪ t)) (_ : Set.Nonempty (s ∪ t)) = Min.min (min hs hsn) (min ht htn) [PROOFSTEP] refine' le_antisymm (le_min (IsWf.min_le_min_of_subset (subset_union_left _ _)) (IsWf.min_le_min_of_subset (subset_union_right _ _))) _ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 inst✝ : LinearOrder α s t : Set α a : α hs : IsWf s hsn : Set.Nonempty s ht : IsWf t htn : Set.Nonempty t ⊢ Min.min (min hs hsn) (min ht htn) ≤ min (_ : IsWf (s ∪ t)) (_ : Set.Nonempty (s ∪ t)) [PROOFSTEP] rw [min_le_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 inst✝ : LinearOrder α s t : Set α a : α hs : IsWf s hsn : Set.Nonempty s ht : IsWf t htn : Set.Nonempty t ⊢ min hs hsn ≤ min (_ : IsWf (s ∪ t)) (_ : Set.Nonempty (s ∪ t)) ∨ min ht htn ≤ min (_ : IsWf (s ∪ t)) (_ : Set.Nonempty (s ∪ t)) [PROOFSTEP] exact ((mem_union _ _ _).1 ((hs.union ht).min_mem (union_nonempty.2 (.inl hsn)))).imp (hs.min_le _) (ht.min_le _) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop s : Set α f : ℕ → α ⊢ ((∀ (n : ℕ), f n ∈ s) → ∃ m n, m < n ∧ r (f m) (f n)) ↔ ¬IsBadSeq r s f [PROOFSTEP] simp [IsBadSeq] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α n : ℕ f : ℕ → α hf : IsBadSeq r s f ⊢ { g // (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ IsMinBadSeq r rk s n g } [PROOFSTEP] classical have h : ∃ (k : ℕ) (g : ℕ → α), (∀ m, m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k := ⟨_, f, fun _ _ => rfl, hf, rfl⟩ obtain ⟨h1, h2, h3⟩ := Classical.choose_spec (Nat.find_spec h) refine' ⟨Classical.choose (Nat.find_spec h), h1, by convert h2, fun g hg1 hg2 con => _⟩ refine' Nat.find_min h _ ⟨g, fun m mn => (h1 m mn).trans (hg1 m mn), con, rfl⟩ rwa [← h3] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α n : ℕ f : ℕ → α hf : IsBadSeq r s f ⊢ { g // (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ IsMinBadSeq r rk s n g } [PROOFSTEP] have h : ∃ (k : ℕ) (g : ℕ → α), (∀ m, m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k := ⟨_, f, fun _ _ => rfl, hf, rfl⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α n : ℕ f : ℕ → α hf : IsBadSeq r s f h : ∃ k g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k ⊢ { g // (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ IsMinBadSeq r rk s n g } [PROOFSTEP] obtain ⟨h1, h2, h3⟩ := Classical.choose_spec (Nat.find_spec h) [GOAL] case intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α n : ℕ f : ℕ → α hf : IsBadSeq r s f h : ∃ k g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k h1 : ∀ (m : ℕ), m < n → f m = Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) m h2 : IsBadSeq r s (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h)) h3 : rk (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) n) = Nat.find h ⊢ { g // (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ IsMinBadSeq r rk s n g } [PROOFSTEP] refine' ⟨Classical.choose (Nat.find_spec h), h1, by convert h2, fun g hg1 hg2 con => _⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α n : ℕ f : ℕ → α hf : IsBadSeq r s f h : ∃ k g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k h1 : ∀ (m : ℕ), m < n → f m = Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) m h2 : IsBadSeq r s (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h)) h3 : rk (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) n) = Nat.find h ⊢ IsBadSeq r s (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h)) [PROOFSTEP] convert h2 [GOAL] case intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α n : ℕ f : ℕ → α hf : IsBadSeq r s f h : ∃ k g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k h1 : ∀ (m : ℕ), m < n → f m = Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) m h2 : IsBadSeq r s (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h)) h3 : rk (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) n) = Nat.find h g : ℕ → α hg1 : ∀ (m : ℕ), m < n → Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) m = g m hg2 : rk (g n) < rk (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) n) con : IsBadSeq r s g ⊢ False [PROOFSTEP] refine' Nat.find_min h _ ⟨g, fun m mn => (h1 m mn).trans (hg1 m mn), con, rfl⟩ [GOAL] case intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α n : ℕ f : ℕ → α hf : IsBadSeq r s f h : ∃ k g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k h1 : ∀ (m : ℕ), m < n → f m = Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) m h2 : IsBadSeq r s (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h)) h3 : rk (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) n) = Nat.find h g : ℕ → α hg1 : ∀ (m : ℕ), m < n → Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) m = g m hg2 : rk (g n) < rk (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) n) con : IsBadSeq r s g ⊢ rk (g n) < Nat.find h [PROOFSTEP] rwa [← h3] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α ⊢ (∃ f, IsBadSeq r s f) → ∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f [PROOFSTEP] rintro ⟨f0, hf0 : IsBadSeq r s f0⟩ [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 ⊢ ∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f [PROOFSTEP] let fs : ∀ n : ℕ, { f : ℕ → α // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := by refine' Nat.rec _ fun n fn => _ · exact ⟨(minBadSeqOfBadSeq r rk s 0 f0 hf0).1, (minBadSeqOfBadSeq r rk s 0 f0 hf0).2.2⟩ · exact ⟨(minBadSeqOfBadSeq r rk s (n + 1) fn.1 fn.2.1).1, (minBadSeqOfBadSeq r rk s (n + 1) fn.1 fn.2.1).2.2⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 ⊢ (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } [PROOFSTEP] refine' Nat.rec _ fun n fn => _ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 ⊢ { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s Nat.zero f } [PROOFSTEP] exact ⟨(minBadSeqOfBadSeq r rk s 0 f0 hf0).1, (minBadSeqOfBadSeq r rk s 0 f0 hf0).2.2⟩ [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 n : ℕ fn : { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } ⊢ { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s (Nat.succ n) f } [PROOFSTEP] exact ⟨(minBadSeqOfBadSeq r rk s (n + 1) fn.1 fn.2.1).1, (minBadSeqOfBadSeq r rk s (n + 1) fn.1 fn.2.1).2.2⟩ [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := fun t => Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) t ⊢ ∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f [PROOFSTEP] have h : ∀ m n, m ≤ n → (fs m).1 m = (fs n).1 m := fun m n mn => by obtain ⟨k, rfl⟩ := exists_add_of_le mn; clear mn induction' k with k ih · rfl · rw [ih, (minBadSeqOfBadSeq r rk s (m + k + 1) (fs (m + k)).1 (fs (m + k)).2.1).2.1 m (Nat.lt_succ_iff.2 (Nat.add_le_add_left k.zero_le m))] rfl [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := fun t => Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) t m n : ℕ mn : m ≤ n ⊢ ↑(fs m) m = ↑(fs n) m [PROOFSTEP] obtain ⟨k, rfl⟩ := exists_add_of_le mn [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := fun t => Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) t m k : ℕ mn : m ≤ m + k ⊢ ↑(fs m) m = ↑(fs (m + k)) m [PROOFSTEP] clear mn [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := fun t => Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) t m k : ℕ ⊢ ↑(fs m) m = ↑(fs (m + k)) m [PROOFSTEP] induction' k with k ih [GOAL] case intro.zero ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := fun t => Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) t m : ℕ ⊢ ↑(fs m) m = ↑(fs (m + Nat.zero)) m [PROOFSTEP] rfl [GOAL] case intro.succ ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := fun t => Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) t m k : ℕ ih : ↑(fs m) m = ↑(fs (m + k)) m ⊢ ↑(fs m) m = ↑(fs (m + Nat.succ k)) m [PROOFSTEP] rw [ih, (minBadSeqOfBadSeq r rk s (m + k + 1) (fs (m + k)).1 (fs (m + k)).2.1).2.1 m (Nat.lt_succ_iff.2 (Nat.add_le_add_left k.zero_le m))] [GOAL] case intro.succ ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := fun t => Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) t m k : ℕ ih : ↑(fs m) m = ↑(fs (m + k)) m ⊢ ↑(minBadSeqOfBadSeq r rk s (m + k + 1) ↑(fs (m + k)) (_ : IsBadSeq r s ↑(fs (m + k)))) m = ↑(fs (m + Nat.succ k)) m [PROOFSTEP] rfl [GOAL] case intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := fun t => Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) t h : ∀ (m n : ℕ), m ≤ n → ↑(fs m) m = ↑(fs n) m ⊢ ∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f [PROOFSTEP] refine ⟨fun n => (fs n).1 n, ⟨fun n => (fs n).2.1.1 n, fun m n mn => ?_⟩, fun n g hg1 hg2 => ?_⟩ [GOAL] case intro.refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := fun t => Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) t h : ∀ (m n : ℕ), m ≤ n → ↑(fs m) m = ↑(fs n) m m n : ℕ mn : m < n ⊢ ¬r ((fun n => ↑(fs n) n) m) ((fun n => ↑(fs n) n) n) [PROOFSTEP] dsimp [GOAL] case intro.refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := fun t => Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) t h : ∀ (m n : ℕ), m ≤ n → ↑(fs m) m = ↑(fs n) m m n : ℕ mn : m < n ⊢ ¬r (↑(Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) m) m) (↑(Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) n) n) [PROOFSTEP] rw [h m n mn.le] [GOAL] case intro.refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := fun t => Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) t h : ∀ (m n : ℕ), m ≤ n → ↑(fs m) m = ↑(fs n) m m n : ℕ mn : m < n ⊢ ¬r (↑(fs n) m) (↑(Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) n) n) [PROOFSTEP] exact (fs n).2.1.2 m n mn [GOAL] case intro.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := fun t => Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) t h : ∀ (m n : ℕ), m ≤ n → ↑(fs m) m = ↑(fs n) m n : ℕ g : ℕ → α hg1 : ∀ (m : ℕ), m < n → (fun n => ↑(fs n) n) m = g m hg2 : rk (g n) < rk ((fun n => ↑(fs n) n) n) ⊢ ¬IsBadSeq r s g [PROOFSTEP] refine (fs n).2.2 g (fun m mn => ?_) hg2 [GOAL] case intro.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop rk : α → ℕ s : Set α f0 : ℕ → α hf0 : IsBadSeq r s f0 fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } := fun t => Nat.rec { val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧ IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) } (fun n fn => { val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)), property := (_ : IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧ IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) }) t h : ∀ (m n : ℕ), m ≤ n → ↑(fs m) m = ↑(fs n) m n : ℕ g : ℕ → α hg1 : ∀ (m : ℕ), m < n → (fun n => ↑(fs n) n) m = g m hg2 : rk (g n) < rk ((fun n => ↑(fs n) n) n) m : ℕ mn : m < n ⊢ ↑(fs n) m = g m [PROOFSTEP] rw [← h m n mn.le, ← hg1 m mn] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop rk : α → ℕ s : Set α ⊢ PartiallyWellOrderedOn s r ↔ ¬∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f [PROOFSTEP] rw [iff_forall_not_isBadSeq, ← not_exists, not_congr] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop rk : α → ℕ s : Set α ⊢ (∃ x, IsBadSeq r s x) ↔ ∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop rk : α → ℕ s : Set α ⊢ (∃ x, IsBadSeq r s x) → ∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f [PROOFSTEP] apply exists_min_bad_of_exists_bad [GOAL] case mpr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop rk : α → ℕ s : Set α ⊢ (∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f) → ∃ x, IsBadSeq r s x [PROOFSTEP] rintro ⟨f, hf1, -⟩ [GOAL] case mpr.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r : α → α → Prop rk : α → ℕ s : Set α f : ℕ → α hf1 : IsBadSeq r s f ⊢ ∃ x, IsBadSeq r s x [PROOFSTEP] exact ⟨f, hf1⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r ⊢ PartiallyWellOrderedOn {l | ∀ (x : α), x ∈ l → x ∈ s} (List.SublistForall₂ r) [PROOFSTEP] rcases isEmpty_or_nonempty α [GOAL] case inl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : IsEmpty α ⊢ PartiallyWellOrderedOn {l | ∀ (x : α), x ∈ l → x ∈ s} (List.SublistForall₂ r) [PROOFSTEP] exact subsingleton_of_subsingleton.partiallyWellOrderedOn [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α ⊢ PartiallyWellOrderedOn {l | ∀ (x : α), x ∈ l → x ∈ s} (List.SublistForall₂ r) [PROOFSTEP] inhabit α [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α ⊢ PartiallyWellOrderedOn {l | ∀ (x : α), x ∈ l → x ∈ s} (List.SublistForall₂ r) [PROOFSTEP] rw [iff_not_exists_isMinBadSeq List.length] [GOAL] case inr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α ⊢ ¬∃ f, IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f ∧ ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f [PROOFSTEP] rintro ⟨f, hf1, hf2⟩ [GOAL] case inr.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f ⊢ False [PROOFSTEP] have hnil : ∀ n, f n ≠ List.nil := fun n con => hf1.2 n n.succ n.lt_succ_self (con.symm ▸ List.SublistForall₂.nil) [GOAL] case inr.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] ⊢ False [PROOFSTEP] have : ∀ n, (f n).headI ∈ s [GOAL] case this ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] ⊢ ∀ (n : ℕ), List.headI (f n) ∈ s [PROOFSTEP] exact fun n => hf1.1 n _ (List.head!_mem_self (hnil n)) [GOAL] case inr.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s ⊢ False [PROOFSTEP] obtain ⟨g, hg⟩ := h.exists_monotone_subseq (fun n => (f n).headI) this [GOAL] case inr.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) ⊢ False [PROOFSTEP] have hf' := hf2 (g 0) (fun n => if n < g 0 then f n else List.tail (f (g (n - g 0)))) (fun m hm => (if_pos hm).symm) ?_ [GOAL] case inr.intro.intro.intro.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : ¬IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} fun n => if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))) ⊢ False case inr.intro.intro.intro.refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) ⊢ List.length ((fun n => if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) (↑g 0)) < List.length (f (↑g 0)) [PROOFSTEP] swap [GOAL] case inr.intro.intro.intro.refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) ⊢ List.length ((fun n => if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) (↑g 0)) < List.length (f (↑g 0)) [PROOFSTEP] simp only [if_neg (lt_irrefl (g 0)), tsub_self] [GOAL] case inr.intro.intro.intro.refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) ⊢ List.length (List.tail (f (↑g 0))) < List.length (f (↑g 0)) [PROOFSTEP] rw [List.length_tail, ← Nat.pred_eq_sub_one] [GOAL] case inr.intro.intro.intro.refine_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) ⊢ Nat.pred (List.length (f (↑g 0))) < List.length (f (↑g 0)) [PROOFSTEP] exact Nat.pred_lt fun con => hnil _ (List.length_eq_zero.1 con) [GOAL] case inr.intro.intro.intro.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : ¬IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} fun n => if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))) ⊢ False [PROOFSTEP] rw [IsBadSeq] at hf' [GOAL] case inr.intro.intro.intro.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : ¬((∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) ∧ ∀ (m n : ℕ), m < n → ¬List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))) ⊢ False [PROOFSTEP] push_neg at hf' [GOAL] case inr.intro.intro.intro.refine_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ⊢ False [PROOFSTEP] obtain ⟨m, n, mn, hmn⟩ := hf' <| fun n x hx => by split_ifs at hx with hn exacts [hf1.1 _ _ hx, hf1.1 _ _ (List.tail_subset _ hx)] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) n : ℕ x : α hx : x ∈ if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))) ⊢ x ∈ s [PROOFSTEP] split_ifs at hx with hn [GOAL] case pos ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) n : ℕ x : α hn : n < ↑g 0 hx : x ∈ f n ⊢ x ∈ s case neg ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) n : ℕ x : α hn : ¬n < ↑g 0 hx : x ∈ List.tail (f (↑g (n - ↑g 0))) ⊢ x ∈ s [PROOFSTEP] exacts [hf1.1 _ _ hx, hf1.1 _ _ (List.tail_subset _ hx)] [GOAL] case inr.intro.intro.intro.refine_2.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) m n : ℕ mn : m < n hmn : List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ⊢ False [PROOFSTEP] by_cases hn : n < g 0 [GOAL] case pos ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) m n : ℕ mn : m < n hmn : List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) hn : n < ↑g 0 ⊢ False [PROOFSTEP] apply hf1.2 m n mn [GOAL] case pos ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) m n : ℕ mn : m < n hmn : List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) hn : n < ↑g 0 ⊢ List.SublistForall₂ r (f m) (f n) [PROOFSTEP] rwa [if_pos hn, if_pos (mn.trans hn)] at hmn [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) m n : ℕ mn : m < n hmn : List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) hn : ¬n < ↑g 0 ⊢ False [PROOFSTEP] obtain ⟨n', rfl⟩ := exists_add_of_le (not_lt.1 hn) [GOAL] case neg.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) m n' : ℕ mn : m < ↑g 0 + n' hmn : List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if ↑g 0 + n' < ↑g 0 then f (↑g 0 + n') else List.tail (f (↑g (↑g 0 + n' - ↑g 0)))) hn : ¬↑g 0 + n' < ↑g 0 ⊢ False [PROOFSTEP] rw [if_neg hn, add_comm (g 0) n', add_tsub_cancel_right] at hmn [GOAL] case neg.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) m n' : ℕ mn : m < ↑g 0 + n' hmn : List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (List.tail (f (↑g n'))) hn : ¬↑g 0 + n' < ↑g 0 ⊢ False [PROOFSTEP] split_ifs at hmn with hm [GOAL] case pos ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) m n' : ℕ mn : m < ↑g 0 + n' hn : ¬↑g 0 + n' < ↑g 0 hm : m < ↑g 0 hmn : List.SublistForall₂ r (f m) (List.tail (f (↑g n'))) ⊢ False [PROOFSTEP] apply hf1.2 m (g n') (lt_of_lt_of_le hm (g.monotone n'.zero_le)) [GOAL] case pos ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) m n' : ℕ mn : m < ↑g 0 + n' hn : ¬↑g 0 + n' < ↑g 0 hm : m < ↑g 0 hmn : List.SublistForall₂ r (f m) (List.tail (f (↑g n'))) ⊢ List.SublistForall₂ r (f m) (f (↑g n')) [PROOFSTEP] exact _root_.trans hmn (List.tail_sublistForall₂_self _) [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) m n' : ℕ mn : m < ↑g 0 + n' hn : ¬↑g 0 + n' < ↑g 0 hm : ¬m < ↑g 0 hmn : List.SublistForall₂ r (List.tail (f (↑g (m - ↑g 0)))) (List.tail (f (↑g n'))) ⊢ False [PROOFSTEP] rw [← tsub_lt_iff_left (le_of_not_lt hm)] at mn [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) m n' : ℕ mn : m - ↑g 0 < n' hn : ¬↑g 0 + n' < ↑g 0 hm : ¬m < ↑g 0 hmn : List.SublistForall₂ r (List.tail (f (↑g (m - ↑g 0)))) (List.tail (f (↑g n'))) ⊢ False [PROOFSTEP] apply hf1.2 _ _ (g.lt_iff_lt.2 mn) [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) m n' : ℕ mn : m - ↑g 0 < n' hn : ¬↑g 0 + n' < ↑g 0 hm : ¬m < ↑g 0 hmn : List.SublistForall₂ r (List.tail (f (↑g (m - ↑g 0)))) (List.tail (f (↑g n'))) ⊢ List.SublistForall₂ r (f (↑g (m - ↑g 0))) (f (↑g n')) [PROOFSTEP] rw [← List.cons_head!_tail (hnil (g (m - g 0))), ← List.cons_head!_tail (hnil (g n'))] [GOAL] case neg ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 r✝ r : α → α → Prop inst✝¹ : IsRefl α r inst✝ : IsTrans α r s : Set α h : PartiallyWellOrderedOn s r h✝ : Nonempty α inhabited_h : Inhabited α f : ℕ → List α hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f hnil : ∀ (n : ℕ), f n ≠ [] this : ∀ (n : ℕ), List.headI (f n) ∈ s g : ℕ ↪o ℕ hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n))) hf' : (∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) → ∃ m n, m < n ∧ List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) m n' : ℕ mn : m - ↑g 0 < n' hn : ¬↑g 0 + n' < ↑g 0 hm : ¬m < ↑g 0 hmn : List.SublistForall₂ r (List.tail (f (↑g (m - ↑g 0)))) (List.tail (f (↑g n'))) ⊢ List.SublistForall₂ r (List.head! (f (↑g (m - ↑g 0))) :: List.tail (f (↑g (m - ↑g 0)))) (List.head! (f (↑g n')) :: List.tail (f (↑g n'))) [PROOFSTEP] exact List.SublistForall₂.cons (hg _ _ (le_of_lt mn)) hmn [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 α : ι → Type u_6 inst✝² : (i : ι) → LinearOrder (α i) inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1 inst✝ : Finite ι s : Set ((i : ι) → α i) ⊢ IsPwo s [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 α : ι → Type u_6 inst✝² : (i : ι) → LinearOrder (α i) inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1 inst✝ : Finite ι s : Set ((i : ι) → α i) val✝ : Fintype ι ⊢ IsPwo s [PROOFSTEP] suffices ∀ (s : Finset ι) (f : ℕ → ∀ s, α s), ∃ g : ℕ ↪o ℕ, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ x, x ∈ s → (f ∘ g) a x ≤ (f ∘ g) b x by refine isPwo_iff_exists_monotone_subseq.2 fun f _ => ?_ simpa only [Finset.mem_univ, true_imp_iff] using this Finset.univ f [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 α : ι → Type u_6 inst✝² : (i : ι) → LinearOrder (α i) inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1 inst✝ : Finite ι s : Set ((i : ι) → α i) val✝ : Fintype ι this : ∀ (s : Finset ι) (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x ⊢ IsPwo s [PROOFSTEP] refine isPwo_iff_exists_monotone_subseq.2 fun f _ => ?_ [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 α : ι → Type u_6 inst✝² : (i : ι) → LinearOrder (α i) inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1 inst✝ : Finite ι s : Set ((i : ι) → α i) val✝ : Fintype ι this : ∀ (s : Finset ι) (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x f : ℕ → (i : ι) → α i x✝ : ∀ (n : ℕ), f n ∈ s ⊢ ∃ g, Monotone (f ∘ ↑g) [PROOFSTEP] simpa only [Finset.mem_univ, true_imp_iff] using this Finset.univ f [GOAL] case intro ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 α : ι → Type u_6 inst✝² : (i : ι) → LinearOrder (α i) inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1 inst✝ : Finite ι s : Set ((i : ι) → α i) val✝ : Fintype ι ⊢ ∀ (s : Finset ι) (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x [PROOFSTEP] refine' Finset.cons_induction _ _ [GOAL] case intro.refine'_1 ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 α : ι → Type u_6 inst✝² : (i : ι) → LinearOrder (α i) inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1 inst✝ : Finite ι s : Set ((i : ι) → α i) val✝ : Fintype ι ⊢ ∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ ∅ → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x [PROOFSTEP] intro f [GOAL] case intro.refine'_1 ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 α : ι → Type u_6 inst✝² : (i : ι) → LinearOrder (α i) inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1 inst✝ : Finite ι s : Set ((i : ι) → α i) val✝ : Fintype ι f : ℕ → (s : ι) → α s ⊢ ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ ∅ → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x [PROOFSTEP] exists RelEmbedding.refl (· ≤ ·) [GOAL] case intro.refine'_1 ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 α : ι → Type u_6 inst✝² : (i : ι) → LinearOrder (α i) inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1 inst✝ : Finite ι s : Set ((i : ι) → α i) val✝ : Fintype ι f : ℕ → (s : ι) → α s ⊢ ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ ∅ → (f ∘ ↑(RelEmbedding.refl fun x x_1 => x ≤ x_1)) a x ≤ (f ∘ ↑(RelEmbedding.refl fun x x_1 => x ≤ x_1)) b x [PROOFSTEP] simp only [IsEmpty.forall_iff, imp_true_iff, forall_const, Finset.not_mem_empty] [GOAL] case intro.refine'_2 ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 α : ι → Type u_6 inst✝² : (i : ι) → LinearOrder (α i) inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1 inst✝ : Finite ι s : Set ((i : ι) → α i) val✝ : Fintype ι ⊢ ∀ ⦃a : ι⦄ {s : Finset ι} (h : ¬a ∈ s), (∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x) → ∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a_2 b : ℕ⦄, a_2 ≤ b → ∀ (x : ι), x ∈ Finset.cons a s h → (f ∘ ↑g) a_2 x ≤ (f ∘ ↑g) b x [PROOFSTEP] intro x s hx ih f [GOAL] case intro.refine'_2 ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 α : ι → Type u_6 inst✝² : (i : ι) → LinearOrder (α i) inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1 inst✝ : Finite ι s✝ : Set ((i : ι) → α i) val✝ : Fintype ι x : ι s : Finset ι hx : ¬x ∈ s ih : ∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x f : ℕ → (s : ι) → α s ⊢ ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x_1 : ι), x_1 ∈ Finset.cons x s hx → (f ∘ ↑g) a x_1 ≤ (f ∘ ↑g) b x_1 [PROOFSTEP] obtain ⟨g, hg⟩ := (IsWellFounded.wf.isWf univ).isPwo.exists_monotone_subseq (fun n => f n x) mem_univ [GOAL] case intro.refine'_2.intro ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 α : ι → Type u_6 inst✝² : (i : ι) → LinearOrder (α i) inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1 inst✝ : Finite ι s✝ : Set ((i : ι) → α i) val✝ : Fintype ι x : ι s : Finset ι hx : ¬x ∈ s ih : ∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x f : ℕ → (s : ι) → α s g : ℕ ↪o ℕ hg : Monotone ((fun n => f n x) ∘ ↑g) ⊢ ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x_1 : ι), x_1 ∈ Finset.cons x s hx → (f ∘ ↑g) a x_1 ≤ (f ∘ ↑g) b x_1 [PROOFSTEP] obtain ⟨g', hg'⟩ := ih (f ∘ g) [GOAL] case intro.refine'_2.intro.intro ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 α : ι → Type u_6 inst✝² : (i : ι) → LinearOrder (α i) inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1 inst✝ : Finite ι s✝ : Set ((i : ι) → α i) val✝ : Fintype ι x : ι s : Finset ι hx : ¬x ∈ s ih : ∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x f : ℕ → (s : ι) → α s g : ℕ ↪o ℕ hg : Monotone ((fun n => f n x) ∘ ↑g) g' : ℕ ↪o ℕ hg' : ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → ((f ∘ ↑g) ∘ ↑g') a x ≤ ((f ∘ ↑g) ∘ ↑g') b x ⊢ ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x_1 : ι), x_1 ∈ Finset.cons x s hx → (f ∘ ↑g) a x_1 ≤ (f ∘ ↑g) b x_1 [PROOFSTEP] refine' ⟨g'.trans g, fun a b hab => (Finset.forall_mem_cons _ _).2 _⟩ [GOAL] case intro.refine'_2.intro.intro ι : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 α : ι → Type u_6 inst✝² : (i : ι) → LinearOrder (α i) inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1 inst✝ : Finite ι s✝ : Set ((i : ι) → α i) val✝ : Fintype ι x : ι s : Finset ι hx : ¬x ∈ s ih : ∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x f : ℕ → (s : ι) → α s g : ℕ ↪o ℕ hg : Monotone ((fun n => f n x) ∘ ↑g) g' : ℕ ↪o ℕ hg' : ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → ((f ∘ ↑g) ∘ ↑g') a x ≤ ((f ∘ ↑g) ∘ ↑g') b x a b : ℕ hab : a ≤ b ⊢ (f ∘ ↑(RelEmbedding.trans g' g)) a x ≤ (f ∘ ↑(RelEmbedding.trans g' g)) b x ∧ ∀ (x : ι), x ∈ s → (f ∘ ↑(RelEmbedding.trans g' g)) a x ≤ (f ∘ ↑(RelEmbedding.trans g' g)) b x [PROOFSTEP] exact ⟨hg (OrderHomClass.mono g' hab), hg' hab⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFounded (rα on f) hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g) ⊢ WellFounded (Prod.Lex rα rβ on fun c => (f c, g c)) [PROOFSTEP] refine' (PSigma.lex_wf (wellFoundedOn_range.2 hα) fun a => hβ a).onFun.mono fun c c' h => _ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFounded (rα on f) hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g) ⊢ γ → (a : ↑(range f)) ×' ↑(f ⁻¹' {↑a}) case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFounded (rα on f) hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g) c c' : γ h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c' ⊢ ((PSigma.Lex (fun a b => rα ↑a ↑b) fun a a_1 b => (rβ on g) ↑a_1 ↑b) on ?refine'_1) c c' [PROOFSTEP] exact fun c => ⟨⟨_, c, rfl⟩, c, rfl⟩ [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFounded (rα on f) hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g) c c' : γ h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c' ⊢ ((PSigma.Lex (fun a b => rα ↑a ↑b) fun a a_1 b => (rβ on g) ↑a_1 ↑b) on fun c => { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } }) c c' [PROOFSTEP] obtain h' | h' := Prod.lex_iff.1 h [GOAL] case refine'_2.inl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFounded (rα on f) hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g) c c' : γ h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c' h' : rα ((fun c => (f c, g c)) c).fst ((fun c => (f c, g c)) c').fst ⊢ ((PSigma.Lex (fun a b => rα ↑a ↑b) fun a a_1 b => (rβ on g) ↑a_1 ↑b) on fun c => { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } }) c c' [PROOFSTEP] exact PSigma.Lex.left _ _ h' [GOAL] case refine'_2.inr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFounded (rα on f) hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g) c c' : γ h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c' h' : ((fun c => (f c, g c)) c).fst = ((fun c => (f c, g c)) c').fst ∧ rβ ((fun c => (f c, g c)) c).snd ((fun c => (f c, g c)) c').snd ⊢ ((PSigma.Lex (fun a b => rα ↑a ↑b) fun a a_1 b => (rβ on g) ↑a_1 ↑b) on fun c => { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } }) c c' [PROOFSTEP] dsimp only [InvImage, (· on ·)] at h' ⊢ [GOAL] case refine'_2.inr ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFounded (rα on f) hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g) c c' : γ h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c' h' : f c = f c' ∧ rβ (g c) (g c') ⊢ PSigma.Lex (fun a b => rα ↑a ↑b) (fun a a_1 b => rβ (g ↑a_1) (g ↑b)) { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } } { fst := { val := f c', property := (_ : ∃ y, f y = f c') }, snd := { val := c', property := (_ : f c' = f c') } } [PROOFSTEP] convert PSigma.Lex.right (⟨_, c', rfl⟩ : range f) _ using 1 [GOAL] case h.e'_5.h ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFounded (rα on f) hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g) c c' : γ h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c' h' : f c = f c' ∧ rβ (g c) (g c') ⊢ { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } } = { fst := { val := f c', property := (_ : ∃ y, f y = f c') }, snd := ?refine'_2.inr.convert_4 } case refine'_2.inr.convert_4 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFounded (rα on f) hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g) c c' : γ h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c' h' : f c = f c' ∧ rβ (g c) (g c') ⊢ ↑(f ⁻¹' {↑{ val := f c', property := (_ : ∃ y, f y = f c') }}) case refine'_2.inr.convert_6 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFounded (rα on f) hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g) c c' : γ h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c' h' : f c = f c' ∧ rβ (g c) (g c') ⊢ rβ (g ↑?refine'_2.inr.convert_4) (g ↑{ val := c', property := (_ : f c' = f c') }) [PROOFSTEP] swap [GOAL] case refine'_2.inr.convert_4 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFounded (rα on f) hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g) c c' : γ h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c' h' : f c = f c' ∧ rβ (g c) (g c') ⊢ ↑(f ⁻¹' {↑{ val := f c', property := (_ : ∃ y, f y = f c') }}) case h.e'_5.h ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFounded (rα on f) hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g) c c' : γ h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c' h' : f c = f c' ∧ rβ (g c) (g c') ⊢ { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } } = { fst := { val := f c', property := (_ : ∃ y, f y = f c') }, snd := ?refine'_2.inr.convert_4 } case refine'_2.inr.convert_6 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFounded (rα on f) hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g) c c' : γ h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c' h' : f c = f c' ∧ rβ (g c) (g c') ⊢ rβ (g ↑?refine'_2.inr.convert_4) (g ↑{ val := c', property := (_ : f c' = f c') }) [PROOFSTEP] exacts [⟨c, h'.1⟩, PSigma.subtype_ext (Subtype.ext h'.1) rfl, h'.2] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFoundedOn s (rα on f) hβ : ∀ (a : α), WellFoundedOn (s ∩ f ⁻¹' {a}) (rβ on g) ⊢ WellFoundedOn s (Prod.Lex rα rβ on fun c => (f c, g c)) [PROOFSTEP] refine' WellFounded.prod_lex_of_wellFoundedOn_fiber hα fun a ↦ (hβ a).onFun.mono (fun b c h ↦ _) [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFoundedOn s (rα on f) hβ : ∀ (a : α), WellFoundedOn (s ∩ f ⁻¹' {a}) (rβ on g) a : α b c : ↑((fun a => f ↑a) ⁻¹' {a}) h : (rβ on fun a => g ↑a) ↑b ↑c ⊢ ((fun a_1 b => (rβ on g) ↑a_1 ↑b) on ?refine'_2 a) b c case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFoundedOn s (rα on f) hβ : ∀ (a : α), WellFoundedOn (s ∩ f ⁻¹' {a}) (rβ on g) ⊢ (a : α) → ↑((fun a => f ↑a) ⁻¹' {a}) → ↑(s ∩ f ⁻¹' {a}) [PROOFSTEP] swap [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFoundedOn s (rα on f) hβ : ∀ (a : α), WellFoundedOn (s ∩ f ⁻¹' {a}) (rβ on g) ⊢ (a : α) → ↑((fun a => f ↑a) ⁻¹' {a}) → ↑(s ∩ f ⁻¹' {a}) case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFoundedOn s (rα on f) hβ : ∀ (a : α), WellFoundedOn (s ∩ f ⁻¹' {a}) (rβ on g) a : α b c : ↑((fun a => f ↑a) ⁻¹' {a}) h : (rβ on fun a => g ↑a) ↑b ↑c ⊢ ((fun a_1 b => (rβ on g) ↑a_1 ↑b) on ?refine'_2 a) b c [PROOFSTEP] exact fun _ x => ⟨x, x.1.2, x.2⟩ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rα : α → α → Prop rβ : β → β → Prop f : γ → α g : γ → β s : Set γ hα : WellFoundedOn s (rα on f) hβ : ∀ (a : α), WellFoundedOn (s ∩ f ⁻¹' {a}) (rβ on g) a : α b c : ↑((fun a => f ↑a) ⁻¹' {a}) h : (rβ on fun a => g ↑a) ↑b ↑c ⊢ ((fun a_1 b => (rβ on g) ↑a_1 ↑b) on fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ s ∧ ↑↑x ∈ f ⁻¹' {a}) }) b c [PROOFSTEP] assumption [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) ⊢ WellFounded (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) [PROOFSTEP] refine' (PSigma.lex_wf (wellFoundedOn_range.2 hι) fun a => hπ a).onFun.mono fun c c' h => _ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) ⊢ γ → (a : ↑(range f)) ×' ↑(f ⁻¹' {↑a}) case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' ⊢ ((PSigma.Lex (fun a b => rι ↑a ↑b) fun a a_1 b => (rπ ↑a on g ↑a) ↑a_1 ↑b) on ?refine'_1) c c' [PROOFSTEP] exact fun c => ⟨⟨_, c, rfl⟩, c, rfl⟩ [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' ⊢ ((PSigma.Lex (fun a b => rι ↑a ↑b) fun a a_1 b => (rπ ↑a on g ↑a) ↑a_1 ↑b) on fun c => { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } }) c c' [PROOFSTEP] obtain h' | ⟨h', h''⟩ := Sigma.lex_iff.1 h [GOAL] case refine'_2.inl ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' h' : rι ((fun c => { fst := f c, snd := g (f c) c }) c).fst ((fun c => { fst := f c, snd := g (f c) c }) c').fst ⊢ ((PSigma.Lex (fun a b => rι ↑a ↑b) fun a a_1 b => (rπ ↑a on g ↑a) ↑a_1 ↑b) on fun c => { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } }) c c' [PROOFSTEP] exact PSigma.Lex.left _ _ h' [GOAL] case refine'_2.inr.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' h' : ((fun c => { fst := f c, snd := g (f c) c }) c).fst = ((fun c => { fst := f c, snd := g (f c) c }) c').fst h'' : rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd) ((fun c => { fst := f c, snd := g (f c) c }) c').snd ⊢ ((PSigma.Lex (fun a b => rι ↑a ↑b) fun a a_1 b => (rπ ↑a on g ↑a) ↑a_1 ↑b) on fun c => { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } }) c c' [PROOFSTEP] dsimp only [InvImage, (· on ·)] at h' ⊢ [GOAL] case refine'_2.inr.intro ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' h' : f c = f c' h'' : rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd) ((fun c => { fst := f c, snd := g (f c) c }) c').snd ⊢ PSigma.Lex (fun a b => rι ↑a ↑b) (fun a a_1 b => rπ (↑a) (g ↑a ↑a_1) (g ↑a ↑b)) { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } } { fst := { val := f c', property := (_ : ∃ y, f y = f c') }, snd := { val := c', property := (_ : f c' = f c') } } [PROOFSTEP] convert PSigma.Lex.right (⟨_, c', rfl⟩ : range f) _ using 1 [GOAL] case h.e'_5.h ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' h' : f c = f c' h'' : rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd) ((fun c => { fst := f c, snd := g (f c) c }) c').snd ⊢ { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } } = { fst := { val := f c', property := (_ : ∃ y, f y = f c') }, snd := ?refine'_2.inr.intro.convert_4 } case refine'_2.inr.intro.convert_4 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' h' : f c = f c' h'' : rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd) ((fun c => { fst := f c, snd := g (f c) c }) c').snd ⊢ ↑(f ⁻¹' {↑{ val := f c', property := (_ : ∃ y, f y = f c') }}) case refine'_2.inr.intro.convert_6 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' h' : f c = f c' h'' : rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd) ((fun c => { fst := f c, snd := g (f c) c }) c').snd ⊢ rπ (↑{ val := f c', property := (_ : ∃ y, f y = f c') }) (g ↑{ val := f c', property := (_ : ∃ y, f y = f c') } ↑?refine'_2.inr.intro.convert_4) (g ↑{ val := f c', property := (_ : ∃ y, f y = f c') } ↑{ val := c', property := (_ : f c' = f c') }) [PROOFSTEP] swap [GOAL] case refine'_2.inr.intro.convert_4 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' h' : f c = f c' h'' : rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd) ((fun c => { fst := f c, snd := g (f c) c }) c').snd ⊢ ↑(f ⁻¹' {↑{ val := f c', property := (_ : ∃ y, f y = f c') }}) [PROOFSTEP] exact ⟨c, h'⟩ [GOAL] case h.e'_5.h ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' h' : f c = f c' h'' : rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd) ((fun c => { fst := f c, snd := g (f c) c }) c').snd ⊢ { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } } = { fst := { val := f c', property := (_ : ∃ y, f y = f c') }, snd := { val := c, property := h' } } [PROOFSTEP] exact PSigma.subtype_ext (Subtype.ext h') rfl [GOAL] case refine'_2.inr.intro.convert_6 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' h' : f c = f c' h'' : rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd) ((fun c => { fst := f c, snd := g (f c) c }) c').snd ⊢ rπ (↑{ val := f c', property := (_ : ∃ y, f y = f c') }) (g ↑{ val := f c', property := (_ : ∃ y, f y = f c') } ↑{ val := c, property := h' }) (g ↑{ val := f c', property := (_ : ∃ y, f y = f c') } ↑{ val := c', property := (_ : f c' = f c') }) [PROOFSTEP] dsimp only [Subtype.coe_mk] at * [GOAL] case refine'_2.inr.intro.convert_6 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' h' : f c = f c' h'' : rπ (f c') (h' ▸ g (f c) c) (g (f c') c') ⊢ rπ (f c') (g (f c') c) (g (f c') c') [PROOFSTEP] revert h' [GOAL] case refine'_2.inr.intro.convert_6 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' ⊢ ∀ (h' : f c = f c'), rπ (f c') (h' ▸ g (f c) c) (g (f c') c') → rπ (f c') (g (f c') c) (g (f c') c') [PROOFSTEP] generalize f c = d [GOAL] case refine'_2.inr.intro.convert_6 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' d : ι ⊢ ∀ (h' : d = f c'), rπ (f c') (h' ▸ g d c) (g (f c') c') → rπ (f c') (g (f c') c) (g (f c') c') [PROOFSTEP] rintro rfl h'' [GOAL] case refine'_2.inr.intro.convert_6 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFounded (rι on f) hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i) c c' : γ h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c' h'' : rπ (f c') ((_ : f c' = f c') ▸ g (f c') c) (g (f c') c') ⊢ rπ (f c') (g (f c') c) (g (f c') c') [PROOFSTEP] exact h'' [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFoundedOn s (rι on f) hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i) ⊢ WellFoundedOn s (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) [PROOFSTEP] show WellFounded (Sigma.Lex rι rπ on fun c : s => ⟨f c, g (f c) c⟩) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFoundedOn s (rι on f) hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i) ⊢ WellFounded (Sigma.Lex rι rπ on fun c => { fst := f ↑c, snd := g (f ↑c) ↑c }) [PROOFSTEP] refine' @WellFounded.sigma_lex_of_wellFoundedOn_fiber _ s _ _ rπ (fun c => f c) (fun i c => g _ c) hι fun i => (hπ i).onFun.mono (fun b c h => _) [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFoundedOn s (rι on f) hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i) i : ι b c : ↑((fun c => f ↑c) ⁻¹' {i}) h : (rπ i on (fun i c => g i ↑c) i) ↑b ↑c ⊢ ((fun a b => (rπ i on g i) ↑a ↑b) on ?refine'_2 i) b c case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFoundedOn s (rι on f) hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i) ⊢ (i : ι) → ↑((fun c => f ↑c) ⁻¹' {i}) → ↑(s ∩ f ⁻¹' {i}) [PROOFSTEP] swap [GOAL] case refine'_2 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFoundedOn s (rι on f) hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i) ⊢ (i : ι) → ↑((fun c => f ↑c) ⁻¹' {i}) → ↑(s ∩ f ⁻¹' {i}) case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFoundedOn s (rι on f) hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i) i : ι b c : ↑((fun c => f ↑c) ⁻¹' {i}) h : (rπ i on (fun i c => g i ↑c) i) ↑b ↑c ⊢ ((fun a b => (rπ i on g i) ↑a ↑b) on ?refine'_2 i) b c [PROOFSTEP] exact fun _ x => ⟨x, x.1.2, x.2⟩ [GOAL] case refine'_1 ι : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 π : ι → Type u_5 rι : ι → ι → Prop rπ : (i : ι) → π i → π i → Prop f : γ → ι g : (i : ι) → γ → π i s : Set γ hι : WellFoundedOn s (rι on f) hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i) i : ι b c : ↑((fun c => f ↑c) ⁻¹' {i}) h : (rπ i on (fun i c => g i ↑c) i) ↑b ↑c ⊢ ((fun a b => (rπ i on g i) ↑a ↑b) on fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ s ∧ ↑↑x ∈ f ⁻¹' {i}) }) b c [PROOFSTEP] assumption
{"mathlib_filename": "Mathlib.Order.WellFoundedSet", "llama_tokens": 69957}
[GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c d : Concept α β r h : c.fst = d.fst ⊢ c = d [PROOFSTEP] obtain ⟨⟨s₁, t₁⟩, h₁, _⟩ := c [GOAL] case mk.mk ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁✝ s₂ : Set α t t₁✝ t₂ : Set β d : Concept α β r s₁ : Set α t₁ : Set β h₁ : intentClosure r (s₁, t₁).fst = (s₁, t₁).snd closure_snd✝ : extentClosure r (s₁, t₁).snd = (s₁, t₁).fst h : { toProd := (s₁, t₁), closure_fst := h₁, closure_snd := closure_snd✝ }.toProd.fst = d.fst ⊢ { toProd := (s₁, t₁), closure_fst := h₁, closure_snd := closure_snd✝ } = d [PROOFSTEP] obtain ⟨⟨s₂, t₂⟩, h₂, _⟩ := d [GOAL] case mk.mk.mk.mk ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁✝ s₂✝ : Set α t t₁✝ t₂✝ : Set β s₁ : Set α t₁ : Set β h₁ : intentClosure r (s₁, t₁).fst = (s₁, t₁).snd closure_snd✝¹ : extentClosure r (s₁, t₁).snd = (s₁, t₁).fst s₂ : Set α t₂ : Set β h₂ : intentClosure r (s₂, t₂).fst = (s₂, t₂).snd closure_snd✝ : extentClosure r (s₂, t₂).snd = (s₂, t₂).fst h : { toProd := (s₁, t₁), closure_fst := h₁, closure_snd := closure_snd✝¹ }.toProd.fst = { toProd := (s₂, t₂), closure_fst := h₂, closure_snd := closure_snd✝ }.toProd.fst ⊢ { toProd := (s₁, t₁), closure_fst := h₁, closure_snd := closure_snd✝¹ } = { toProd := (s₂, t₂), closure_fst := h₂, closure_snd := closure_snd✝ } [PROOFSTEP] dsimp at h₁ h₂ h [GOAL] case mk.mk.mk.mk ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁✝ s₂✝ : Set α t t₁✝ t₂✝ : Set β s₁ : Set α t₁ : Set β h₁ : intentClosure r s₁ = t₁ closure_snd✝¹ : extentClosure r (s₁, t₁).snd = (s₁, t₁).fst s₂ : Set α t₂ : Set β h₂ : intentClosure r s₂ = t₂ closure_snd✝ : extentClosure r (s₂, t₂).snd = (s₂, t₂).fst h : s₁ = s₂ ⊢ { toProd := (s₁, t₁), closure_fst := h₁, closure_snd := closure_snd✝¹ } = { toProd := (s₂, t₂), closure_fst := h₂, closure_snd := closure_snd✝ } [PROOFSTEP] substs h h₁ h₂ [GOAL] case mk.mk.mk.mk ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁✝ s₂ : Set α t t₁ t₂ : Set β s₁ : Set α closure_snd✝¹ closure_snd✝ : extentClosure r (s₁, intentClosure r s₁).snd = (s₁, intentClosure r s₁).fst ⊢ { toProd := (s₁, intentClosure r s₁), closure_fst := (_ : intentClosure r s₁ = intentClosure r s₁), closure_snd := closure_snd✝¹ } = { toProd := (s₁, intentClosure r s₁), closure_fst := (_ : intentClosure r s₁ = intentClosure r s₁), closure_snd := closure_snd✝ } [PROOFSTEP] rfl [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c d : Concept α β r h : c.snd = d.snd ⊢ c = d [PROOFSTEP] obtain ⟨⟨s₁, t₁⟩, _, h₁⟩ := c [GOAL] case mk.mk ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁✝ s₂ : Set α t t₁✝ t₂ : Set β d : Concept α β r s₁ : Set α t₁ : Set β closure_fst✝ : intentClosure r (s₁, t₁).fst = (s₁, t₁).snd h₁ : extentClosure r (s₁, t₁).snd = (s₁, t₁).fst h : { toProd := (s₁, t₁), closure_fst := closure_fst✝, closure_snd := h₁ }.toProd.snd = d.snd ⊢ { toProd := (s₁, t₁), closure_fst := closure_fst✝, closure_snd := h₁ } = d [PROOFSTEP] obtain ⟨⟨s₂, t₂⟩, _, h₂⟩ := d [GOAL] case mk.mk.mk.mk ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁✝ s₂✝ : Set α t t₁✝ t₂✝ : Set β s₁ : Set α t₁ : Set β closure_fst✝¹ : intentClosure r (s₁, t₁).fst = (s₁, t₁).snd h₁ : extentClosure r (s₁, t₁).snd = (s₁, t₁).fst s₂ : Set α t₂ : Set β closure_fst✝ : intentClosure r (s₂, t₂).fst = (s₂, t₂).snd h₂ : extentClosure r (s₂, t₂).snd = (s₂, t₂).fst h : { toProd := (s₁, t₁), closure_fst := closure_fst✝¹, closure_snd := h₁ }.toProd.snd = { toProd := (s₂, t₂), closure_fst := closure_fst✝, closure_snd := h₂ }.toProd.snd ⊢ { toProd := (s₁, t₁), closure_fst := closure_fst✝¹, closure_snd := h₁ } = { toProd := (s₂, t₂), closure_fst := closure_fst✝, closure_snd := h₂ } [PROOFSTEP] dsimp at h₁ h₂ h [GOAL] case mk.mk.mk.mk ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁✝ s₂✝ : Set α t t₁✝ t₂✝ : Set β s₁ : Set α t₁ : Set β closure_fst✝¹ : intentClosure r (s₁, t₁).fst = (s₁, t₁).snd h₁ : extentClosure r t₁ = s₁ s₂ : Set α t₂ : Set β closure_fst✝ : intentClosure r (s₂, t₂).fst = (s₂, t₂).snd h₂ : extentClosure r t₂ = s₂ h : t₁ = t₂ ⊢ { toProd := (s₁, t₁), closure_fst := closure_fst✝¹, closure_snd := h₁ } = { toProd := (s₂, t₂), closure_fst := closure_fst✝, closure_snd := h₂ } [PROOFSTEP] substs h h₁ h₂ [GOAL] case mk.mk.mk.mk ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁✝ t₂ t₁ : Set β closure_fst✝¹ closure_fst✝ : intentClosure r (extentClosure r t₁, t₁).fst = (extentClosure r t₁, t₁).snd ⊢ { toProd := (extentClosure r t₁, t₁), closure_fst := closure_fst✝¹, closure_snd := (_ : extentClosure r t₁ = extentClosure r t₁) } = { toProd := (extentClosure r t₁, t₁), closure_fst := closure_fst✝, closure_snd := (_ : extentClosure r t₁ = extentClosure r t₁) } [PROOFSTEP] rfl [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c✝ d✝ c d : Concept α β r ⊢ intentClosure r (extentClosure r (c.snd ∩ d.snd), c.snd ∩ d.snd).fst = (extentClosure r (c.snd ∩ d.snd), c.snd ∩ d.snd).snd [PROOFSTEP] rw [← c.closure_fst, ← d.closure_fst, ← intentClosure_union, intentClosure_extentClosure_intentClosure] [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c✝ d✝ c d : Concept α β r ⊢ extentClosure r (c.fst ∩ d.fst, intentClosure r (c.fst ∩ d.fst)).snd = (c.fst ∩ d.fst, intentClosure r (c.fst ∩ d.fst)).fst [PROOFSTEP] rw [← c.closure_snd, ← d.closure_snd, ← extentClosure_union, extentClosure_intentClosure_extentClosure] [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c d : Concept α β r ⊢ c.snd ⊆ d.snd ↔ d ≤ c [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c d : Concept α β r h : c.snd ⊆ d.snd ⊢ d ≤ c [PROOFSTEP] rw [← fst_subset_fst_iff, ← c.closure_snd, ← d.closure_snd] [GOAL] case refine'_1 ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c d : Concept α β r h : c.snd ⊆ d.snd ⊢ extentClosure r d.snd ⊆ extentClosure r c.snd [PROOFSTEP] exact extentClosure_anti _ h [GOAL] case refine'_2 ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c d : Concept α β r h : d ≤ c ⊢ c.snd ⊆ d.snd [PROOFSTEP] rw [← c.closure_fst, ← d.closure_fst] [GOAL] case refine'_2 ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c d : Concept α β r h : d ≤ c ⊢ intentClosure r c.fst ⊆ intentClosure r d.fst [PROOFSTEP] exact intentClosure_anti _ h [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c d : Concept α β r ⊢ c.snd ⊂ d.snd ↔ d < c [PROOFSTEP] rw [ssubset_iff_subset_not_subset, lt_iff_le_not_le, snd_subset_snd_iff, snd_subset_snd_iff] [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c✝ d✝ : Concept α β r src✝ : SemilatticeInf (Concept α β r) := instSemilatticeInfConcept c d e : Concept α β r ⊢ c ≤ e → d ≤ e → c ⊔ d ≤ e [PROOFSTEP] simp_rw [← snd_subset_snd_iff] [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c✝ d✝ : Concept α β r src✝ : SemilatticeInf (Concept α β r) := instSemilatticeInfConcept c d e : Concept α β r ⊢ e.snd ⊆ c.snd → e.snd ⊆ d.snd → e.snd ⊆ (c ⊔ d).snd [PROOFSTEP] exact subset_inter [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c d : Concept α β r S : Set (Concept α β r) ⊢ intentClosure r (extentClosure r (⋂ (c : Concept α β r) (_ : c ∈ S), c.snd), ⋂ (c : Concept α β r) (_ : c ∈ S), c.snd).fst = (extentClosure r (⋂ (c : Concept α β r) (_ : c ∈ S), c.snd), ⋂ (c : Concept α β r) (_ : c ∈ S), c.snd).snd [PROOFSTEP] simp_rw [← closure_fst, ← intentClosure_iUnion₂, intentClosure_extentClosure_intentClosure] [GOAL] ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 κ : ι → Sort u_5 r : α → β → Prop s s₁ s₂ : Set α t t₁ t₂ : Set β c d : Concept α β r S : Set (Concept α β r) ⊢ extentClosure r (⋂ (c : Concept α β r) (_ : c ∈ S), c.fst, intentClosure r (⋂ (c : Concept α β r) (_ : c ∈ S), c.fst)).snd = (⋂ (c : Concept α β r) (_ : c ∈ S), c.fst, intentClosure r (⋂ (c : Concept α β r) (_ : c ∈ S), c.fst)).fst [PROOFSTEP] simp_rw [← closure_snd, ← extentClosure_Union₂, extentClosure_intentClosure_extentClosure]
{"mathlib_filename": "Mathlib.Order.Concept", "llama_tokens": 4926}
[GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 inst✝ : PartialOrder α x y : α ⊢ x ≤ y → y = x ↔ ¬x < y [PROOFSTEP] rw [lt_iff_le_and_ne, not_and, Classical.not_not, eq_comm] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α a b : α ⊢ min a b = if b ≤ a then b else a [PROOFSTEP] rw [min_def] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α a b : α ⊢ (if a ≤ b then a else b) = if b ≤ a then b else a [PROOFSTEP] rcases lt_trichotomy a b with (lt | eq | gt) [GOAL] case inl ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α a b : α lt : a < b ⊢ (if a ≤ b then a else b) = if b ≤ a then b else a [PROOFSTEP] rw [if_pos lt.le, if_neg (not_le.mpr lt)] [GOAL] case inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α a b : α eq : a = b ⊢ (if a ≤ b then a else b) = if b ≤ a then b else a [PROOFSTEP] rw [if_pos eq.le, if_pos eq.ge, eq] [GOAL] case inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α a b : α gt : b < a ⊢ (if a ≤ b then a else b) = if b ≤ a then b else a [PROOFSTEP] rw [if_neg (not_le.mpr gt.gt), if_pos gt.le] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α a b : α ⊢ max a b = if b ≤ a then a else b [PROOFSTEP] rw [max_def] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α a b : α ⊢ (if a ≤ b then b else a) = if b ≤ a then a else b [PROOFSTEP] rcases lt_trichotomy a b with (lt | eq | gt) [GOAL] case inl ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α a b : α lt : a < b ⊢ (if a ≤ b then b else a) = if b ≤ a then a else b [PROOFSTEP] rw [if_pos lt.le, if_neg (not_le.mpr lt)] [GOAL] case inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α a b : α eq : a = b ⊢ (if a ≤ b then b else a) = if b ≤ a then a else b [PROOFSTEP] rw [if_pos eq.le, if_pos eq.ge, eq] [GOAL] case inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α a b : α gt : b < a ⊢ (if a ≤ b then b else a) = if b ≤ a then a else b [PROOFSTEP] rw [if_neg (not_le.mpr gt.gt), if_pos gt.le] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : PartialOrder α f : α → α → α comm : Commutative f assoc : ∀ (a b c : α), f (f a b) c ≤ f a (f b c) a b c : α ⊢ f a (f b c) ≤ f (f a b) c [PROOFSTEP] rw [comm, comm b, comm _ c, comm a] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : PartialOrder α f : α → α → α comm : Commutative f assoc : ∀ (a b c : α), f (f a b) c ≤ f a (f b c) a b c : α ⊢ f (f c b) a ≤ f c (f b a) [PROOFSTEP] exact assoc _ _ _ [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : Preorder α le✝¹ A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le✝ B_lt : α → α → Prop le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a h : toLE = toLE ⊢ mk le_refl✝¹ le_trans✝¹ = mk le_refl✝ le_trans✝ [PROOFSTEP] cases h [GOAL] case refl ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : Preorder α le✝ A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a B_lt : α → α → Prop le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a ⊢ mk le_refl✝¹ le_trans✝¹ = mk le_refl✝ le_trans✝ [PROOFSTEP] have : A_lt = B_lt := by funext a b show (LT.mk A_lt).lt a b = (LT.mk B_lt).lt a b rw [A_iff, B_iff] [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : Preorder α le✝ A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a B_lt : α → α → Prop le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a ⊢ A_lt = B_lt [PROOFSTEP] funext a b [GOAL] case h.h ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : Preorder α le✝ A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a B_lt : α → α → Prop le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a a b : α ⊢ A_lt a b = B_lt a b [PROOFSTEP] show (LT.mk A_lt).lt a b = (LT.mk B_lt).lt a b [GOAL] case h.h ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : Preorder α le✝ A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a B_lt : α → α → Prop le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a a b : α ⊢ (a < b) = (a < b) [PROOFSTEP] rw [A_iff, B_iff] [GOAL] case refl ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : Preorder α le✝ A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a B_lt : α → α → Prop le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a this : A_lt = B_lt ⊢ mk le_refl✝¹ le_trans✝¹ = mk le_refl✝ le_trans✝ [PROOFSTEP] cases this [GOAL] case refl.refl ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : Preorder α le✝ A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a ⊢ mk le_refl✝¹ le_trans✝¹ = mk le_refl✝ le_trans✝ [PROOFSTEP] congr [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : PartialOrder α h : toPreorder = toPreorder ⊢ A = B [PROOFSTEP] cases A [GOAL] case mk ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 B : PartialOrder α toPreorder✝ : Preorder α le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b h : toPreorder = toPreorder ⊢ mk le_antisymm✝ = B [PROOFSTEP] cases B [GOAL] case mk.mk ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 toPreorder✝¹ : Preorder α le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b toPreorder✝ : Preorder α le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b h : toPreorder = toPreorder ⊢ mk le_antisymm✝¹ = mk le_antisymm✝ [PROOFSTEP] cases h [GOAL] case mk.mk.refl ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 toPreorder✝ : Preorder α le_antisymm✝¹ le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b ⊢ mk le_antisymm✝¹ = mk le_antisymm✝ [PROOFSTEP] congr [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_le B_lt : α → α → Prop le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b B_min B_max : α → α → α B_compare : α → α → Ordering le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 B_decidableEq : DecidableEq α B_decidableLT : DecidableRel fun x x_1 => x < x_1 B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b h : toPartialOrder = toPartialOrder ⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ B_decidableLE B_decidableEq B_decidableLT [PROOFSTEP] cases h [GOAL] case refl ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min B_max : α → α → α B_compare : α → α → Ordering B_decidableEq : DecidableEq α le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 B_decidableLT : DecidableRel fun x x_1 => x < x_1 B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b ⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ B_decidableLE B_decidableEq B_decidableLT [PROOFSTEP] obtain rfl : A_decidableLE = B_decidableLE := Subsingleton.elim _ _ [GOAL] case refl ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min B_max : α → α → α B_compare : α → α → Ordering B_decidableEq : DecidableEq α le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_decidableLT : DecidableRel fun x x_1 => x < x_1 B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a ⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE B_decidableEq B_decidableLT [PROOFSTEP] obtain rfl : A_decidableEq = B_decidableEq := Subsingleton.elim _ _ [GOAL] case refl ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min B_max : α → α → α B_compare : α → α → Ordering le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_decidableLT : DecidableRel fun x x_1 => x < x_1 B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b ⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq B_decidableLT [PROOFSTEP] obtain rfl : A_decidableLT = B_decidableLT := Subsingleton.elim _ _ [GOAL] case refl ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min B_max : α → α → α B_compare : α → α → Ordering le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b ⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq A_decidableLT [PROOFSTEP] have : A_min = B_min := by funext a b exact (A_min_def _ _).trans (B_min_def _ _).symm [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min B_max : α → α → α B_compare : α → α → Ordering le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b ⊢ A_min = B_min [PROOFSTEP] funext a b [GOAL] case h.h ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min B_max : α → α → α B_compare : α → α → Ordering le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b a b : α ⊢ A_min a b = B_min a b [PROOFSTEP] exact (A_min_def _ _).trans (B_min_def _ _).symm [GOAL] case refl ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min B_max : α → α → α B_compare : α → α → Ordering le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b this : A_min = B_min ⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq A_decidableLT [PROOFSTEP] cases this [GOAL] case refl.refl ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_max : α → α → α B_compare : α → α → Ordering le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b ⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq A_decidableLT [PROOFSTEP] have : A_max = B_max := by funext a b exact (A_max_def _ _).trans (B_max_def _ _).symm [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_max : α → α → α B_compare : α → α → Ordering le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b ⊢ A_max = B_max [PROOFSTEP] funext a b [GOAL] case h.h ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_max : α → α → α B_compare : α → α → Ordering le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b a b : α ⊢ A_max a b = B_max a b [PROOFSTEP] exact (A_max_def _ _).trans (B_max_def _ _).symm [GOAL] case refl.refl ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_max : α → α → α B_compare : α → α → Ordering le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b this : A_max = B_max ⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq A_decidableLT [PROOFSTEP] cases this [GOAL] case refl.refl.refl ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_compare : α → α → Ordering le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a ⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq A_decidableLT [PROOFSTEP] have : A_compare = B_compare := by funext a b exact (A_compare_canonical _ _).trans (B_compare_canonical _ _).symm [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_compare : α → α → Ordering le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a ⊢ A_compare = B_compare [PROOFSTEP] funext a b [GOAL] case h.h ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_compare : α → α → Ordering le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a a b : α ⊢ A_compare a b = B_compare a b [PROOFSTEP] exact (A_compare_canonical _ _).trans (B_compare_canonical _ _).symm [GOAL] case refl.refl.refl ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α A_le A_lt : α → α → Prop le_refl✝¹ : ∀ (a : α), a ≤ a le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b A_min A_max : α → α → α A_compare : α → α → Ordering le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1 A_decidableEq : DecidableEq α A_decidableLT : DecidableRel fun x x_1 => x < x_1 A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_compare : α → α → Ordering le_refl✝ : ∀ (a : α), a ≤ a le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a this : A_compare = B_compare ⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq A_decidableLT [PROOFSTEP] congr [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : Preorder α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ A = B [PROOFSTEP] ext x y [GOAL] case a.le.h.h.a ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : Preorder α H : ∀ (x y : α), x ≤ y ↔ x ≤ y x y : α ⊢ x ≤ y ↔ x ≤ y [PROOFSTEP] exact H x y [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : PartialOrder α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ A = B [PROOFSTEP] ext x y [GOAL] case a.a.le.h.h.a ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : PartialOrder α H : ∀ (x y : α), x ≤ y ↔ x ≤ y x y : α ⊢ x ≤ y ↔ x ≤ y [PROOFSTEP] exact H x y [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α H : ∀ (x y : α), x ≤ y ↔ x ≤ y ⊢ A = B [PROOFSTEP] ext x y [GOAL] case a.a.a.le.h.h.a ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 A B : LinearOrder α H : ∀ (x y : α), x ≤ y ↔ x ≤ y x y : α ⊢ x ≤ y ↔ x ≤ y [PROOFSTEP] exact H x y [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 inst✝ : LinearOrder α src✝ : PartialOrder αᵒᵈ := inferInstanceAs (PartialOrder αᵒᵈ) a b : αᵒᵈ ⊢ max a b = if a ≤ b then a else b [PROOFSTEP] rw [max_comm, max_def] [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 inst✝ : LinearOrder α src✝ : PartialOrder αᵒᵈ := inferInstanceAs (PartialOrder αᵒᵈ) a b : αᵒᵈ ⊢ (if b ≤ a then a else b) = if a ≤ b then a else b [PROOFSTEP] rfl [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 inst✝ : LinearOrder α src✝ : PartialOrder αᵒᵈ := inferInstanceAs (PartialOrder αᵒᵈ) a b : αᵒᵈ ⊢ min a b = if a ≤ b then b else a [PROOFSTEP] rw [min_comm, min_def] [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type u_3 inst✝ : LinearOrder α src✝ : PartialOrder αᵒᵈ := inferInstanceAs (PartialOrder αᵒᵈ) a b : αᵒᵈ ⊢ (if b ≤ a then b else a) = if a ≤ b then b else a [PROOFSTEP] rfl [GOAL] ι✝ : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι✝ → Type u_2 r : α✝ → α✝ → Prop ι : Type u α : ι → Type v inst✝ : (i : ι) → Preorder (α i) x y : (i : ι) → α i ⊢ x < y ↔ x ≤ y ∧ ∃ i, x i < y i [PROOFSTEP] simp (config := { contextual := true }) [lt_iff_le_not_le, Pi.le_def] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : (i : ι) → Preorder (π i) a b c : (i : ι) → π i inst✝ : Nonempty ι h : a ≺ b ⊢ a < b [PROOFSTEP] inhabit ι [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : (i : ι) → Preorder (π i) a b c : (i : ι) → π i inst✝ : Nonempty ι h : a ≺ b inhabited_h : Inhabited ι ⊢ a < b [PROOFSTEP] exact Pi.lt_def.2 ⟨le_of_strongLT h, default, h _⟩ [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : DecidableEq ι inst✝ : (i : ι) → Preorder (π i) x y : (i : ι) → π i i : ι a b : π i ⊢ update x i a ≤ update y i b ↔ a ≤ b ∧ ∀ (j : ι), j ≠ i → x j ≤ y j [PROOFSTEP] simp (config := { contextual := true }) [update_le_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : DecidableEq ι inst✝ : (i : ι) → Preorder (π i) x y : (i : ι) → π i i : ι a b : π i ⊢ update x i a ≤ update x i b ↔ a ≤ b [PROOFSTEP] simp [update_le_update_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : DecidableEq ι inst✝ : (i : ι) → Preorder (π i) x y : (i : ι) → π i i : ι a b : π i ⊢ x ≤ update x i a ↔ x i ≤ a [PROOFSTEP] simp [le_update_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : DecidableEq ι inst✝ : (i : ι) → Preorder (π i) x y : (i : ι) → π i i : ι a b : π i ⊢ update x i a ≤ x ↔ a ≤ x i [PROOFSTEP] simp [update_le_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : DecidableEq ι inst✝ : (i : ι) → Preorder (π i) x y : (i : ι) → π i i : ι a b : π i ⊢ x < update x i a ↔ x i < a [PROOFSTEP] simp [lt_iff_le_not_le] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : DecidableEq ι inst✝ : (i : ι) → Preorder (π i) x y : (i : ι) → π i i : ι a b : π i ⊢ update x i a < x ↔ a < x i [PROOFSTEP] simp [lt_iff_le_not_le] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Nonempty β a b : α ⊢ const β a ≤ const β b ↔ a ≤ b [PROOFSTEP] simp [Pi.le_def] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Nonempty β a b : α ⊢ const β a < const β b ↔ a < b [PROOFSTEP] simpa [Pi.lt_def] using le_of_lt [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α p : α → Prop x✝ y✝ x y : α ⊢ min x y = if x < y then x else y [PROOFSTEP] rw [min_comm, min_def, ← ite_not] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α p : α → Prop x✝ y✝ x y : α ⊢ (if ¬y ≤ x then x else y) = if x < y then x else y [PROOFSTEP] simp only [not_le] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α p : α → Prop x✝ y✝ x y : α ⊢ max x y = if x < y then y else x [PROOFSTEP] rw [max_comm, max_def, ← ite_not] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α p : α → Prop x✝ y✝ x y : α ⊢ (if ¬y ≤ x then y else x) = if x < y then y else x [PROOFSTEP] simp only [not_le] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) ⊢ compare (f a) (f b) = compareOfLessAndEq a b [PROOFSTEP] have h := LinearOrder.compare_eq_compareOfLessAndEq (f a) (f b) [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) ⊢ compare (f a) (f b) = compareOfLessAndEq a b [PROOFSTEP] simp only [h, compareOfLessAndEq] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) ⊢ (if f a < f b then Ordering.lt else if f a = f b then Ordering.eq else Ordering.gt) = if a < b then Ordering.lt else if a = b then Ordering.eq else Ordering.gt [PROOFSTEP] split_ifs [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝¹ : f a < f b h✝ : a < b ⊢ Ordering.lt = Ordering.lt [PROOFSTEP] try (first | rfl | contradiction) [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝¹ : f a < f b h✝ : a < b ⊢ Ordering.lt = Ordering.lt [PROOFSTEP] first | rfl | contradiction [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝¹ : f a < f b h✝ : a < b ⊢ Ordering.lt = Ordering.lt [PROOFSTEP] rfl [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : f a < f b h✝¹ : ¬a < b h✝ : a = b ⊢ False [PROOFSTEP] try (first | rfl | contradiction) [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : f a < f b h✝¹ : ¬a < b h✝ : a = b ⊢ False [PROOFSTEP] first | rfl | contradiction [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : f a < f b h✝¹ : ¬a < b h✝ : a = b ⊢ False [PROOFSTEP] rfl [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : f a < f b h✝¹ : ¬a < b h✝ : a = b ⊢ False [PROOFSTEP] contradiction [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : f a < f b h✝¹ : ¬a < b h✝ : ¬a = b ⊢ False [PROOFSTEP] try (first | rfl | contradiction) [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : f a < f b h✝¹ : ¬a < b h✝ : ¬a = b ⊢ False [PROOFSTEP] first | rfl | contradiction [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : f a < f b h✝¹ : ¬a < b h✝ : ¬a = b ⊢ False [PROOFSTEP] rfl [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : f a < f b h✝¹ : ¬a < b h✝ : ¬a = b ⊢ False [PROOFSTEP] contradiction [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : ¬f a < f b h✝¹ : f a = f b h✝ : a < b ⊢ False [PROOFSTEP] try (first | rfl | contradiction) [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : ¬f a < f b h✝¹ : f a = f b h✝ : a < b ⊢ False [PROOFSTEP] first | rfl | contradiction [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : ¬f a < f b h✝¹ : f a = f b h✝ : a < b ⊢ False [PROOFSTEP] rfl [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : ¬f a < f b h✝¹ : f a = f b h✝ : a < b ⊢ False [PROOFSTEP] contradiction [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : f a = f b h✝¹ : ¬a < b h✝ : a = b ⊢ Ordering.eq = Ordering.eq [PROOFSTEP] try (first | rfl | contradiction) [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : f a = f b h✝¹ : ¬a < b h✝ : a = b ⊢ Ordering.eq = Ordering.eq [PROOFSTEP] first | rfl | contradiction [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : f a = f b h✝¹ : ¬a < b h✝ : a = b ⊢ Ordering.eq = Ordering.eq [PROOFSTEP] rfl [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : f a = f b h✝¹ : ¬a < b h✝ : ¬a = b ⊢ False [PROOFSTEP] try (first | rfl | contradiction) [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : f a = f b h✝¹ : ¬a < b h✝ : ¬a = b ⊢ False [PROOFSTEP] first | rfl | contradiction [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : f a = f b h✝¹ : ¬a < b h✝ : ¬a = b ⊢ False [PROOFSTEP] rfl [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : f a = f b h✝¹ : ¬a < b h✝ : ¬a = b ⊢ False [PROOFSTEP] contradiction [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : ¬f a < f b h✝¹ : ¬f a = f b h✝ : a < b ⊢ False [PROOFSTEP] try (first | rfl | contradiction) [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : ¬f a < f b h✝¹ : ¬f a = f b h✝ : a < b ⊢ False [PROOFSTEP] first | rfl | contradiction [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : ¬f a < f b h✝¹ : ¬f a = f b h✝ : a < b ⊢ False [PROOFSTEP] rfl [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : ¬f a < f b h✝¹ : ¬f a = f b h✝ : a < b ⊢ False [PROOFSTEP] contradiction [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : ¬f a = f b h✝¹ : ¬a < b h✝ : a = b ⊢ False [PROOFSTEP] try (first | rfl | contradiction) [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : ¬f a = f b h✝¹ : ¬a < b h✝ : a = b ⊢ False [PROOFSTEP] first | rfl | contradiction [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : ¬f a = f b h✝¹ : ¬a < b h✝ : a = b ⊢ False [PROOFSTEP] rfl [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : ¬f a = f b h✝¹ : ¬a < b h✝ : a = b ⊢ False [PROOFSTEP] contradiction [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : ¬f a = f b h✝¹ : ¬a < b h✝ : ¬a = b ⊢ Ordering.gt = Ordering.gt [PROOFSTEP] try (first | rfl | contradiction) [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : ¬f a = f b h✝¹ : ¬a < b h✝ : ¬a = b ⊢ Ordering.gt = Ordering.gt [PROOFSTEP] first | rfl | contradiction [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : ¬f a = f b h✝¹ : ¬a < b h✝ : ¬a = b ⊢ Ordering.gt = Ordering.gt [PROOFSTEP] rfl [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : f a = f b h✝¹ : ¬a < b h✝ : ¬a = b ⊢ False [PROOFSTEP] have : ¬f a = f b := by rename_i h; exact inj.ne h [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : f a = f b h✝¹ : ¬a < b h✝ : ¬a = b ⊢ ¬f a = f b [PROOFSTEP] rename_i h [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h✝³ : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : ¬f a < f b h✝¹ : f a = f b h✝ : ¬a < b h : ¬a = b ⊢ ¬f a = f b [PROOFSTEP] exact inj.ne h [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : f a = f b h✝¹ : ¬a < b h✝ : ¬a = b this : ¬f a = f b ⊢ False [PROOFSTEP] contradiction [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : ¬f a = f b h✝¹ : ¬a < b h✝ : a = b ⊢ False [PROOFSTEP] have : f a = f b := by rename_i h; exact congrArg f h [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : ¬f a = f b h✝¹ : ¬a < b h✝ : a = b ⊢ f a = f b [PROOFSTEP] rename_i h [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h✝³ : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝² : ¬f a < f b h✝¹ : ¬f a = f b h✝ : ¬a < b h : a = b ⊢ f a = f b [PROOFSTEP] exact congrArg f h [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : α inst✝² : LinearOrder β inst✝¹ : DecidableEq α f : α → β inj : Injective f inst✝ : Decidable (a < b) h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b) h✝³ : ¬f a < f b h✝² : ¬f a = f b h✝¹ : ¬a < b h✝ : a = b this : f a = f b ⊢ False [PROOFSTEP] contradiction [GOAL] ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.96324 β : Type ?u.96321 inst✝² : LinearOrder β inst✝¹ : Sup α inst✝ : Inf α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) } decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj ⊢ ∀ (a b : α), min a b = if a ≤ b then a else b [PROOFSTEP] intros x y [GOAL] ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.96324 β : Type ?u.96321 inst✝² : LinearOrder β inst✝¹ : Sup α inst✝ : Inf α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) } decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj x y : α ⊢ min x y = if x ≤ y then x else y [PROOFSTEP] apply inj [GOAL] case a ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.96324 β : Type ?u.96321 inst✝² : LinearOrder β inst✝¹ : Sup α inst✝ : Inf α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) } decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj x y : α ⊢ f (min x y) = f (if x ≤ y then x else y) [PROOFSTEP] rw [apply_ite f] [GOAL] case a ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.96324 β : Type ?u.96321 inst✝² : LinearOrder β inst✝¹ : Sup α inst✝ : Inf α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) } decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj x y : α ⊢ f (min x y) = if x ≤ y then f x else f y [PROOFSTEP] exact (hinf _ _).trans (min_def _ _) [GOAL] ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.96324 β : Type ?u.96321 inst✝² : LinearOrder β inst✝¹ : Sup α inst✝ : Inf α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) } decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj ⊢ ∀ (a b : α), max a b = if a ≤ b then b else a [PROOFSTEP] intros x y [GOAL] ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.96324 β : Type ?u.96321 inst✝² : LinearOrder β inst✝¹ : Sup α inst✝ : Inf α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) } decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj x y : α ⊢ max x y = if x ≤ y then y else x [PROOFSTEP] apply inj [GOAL] case a ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.96324 β : Type ?u.96321 inst✝² : LinearOrder β inst✝¹ : Sup α inst✝ : Inf α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) } decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj x y : α ⊢ f (max x y) = f (if x ≤ y then y else x) [PROOFSTEP] rw [apply_ite f] [GOAL] case a ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.96324 β : Type ?u.96321 inst✝² : LinearOrder β inst✝¹ : Sup α inst✝ : Inf α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) } decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj x y : α ⊢ f (max x y) = if x ≤ y then f y else f x [PROOFSTEP] exact (hsup _ _).trans (max_def _ _) [GOAL] ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.97808 β : Type ?u.97805 inst✝³ : LinearOrder β inst✝² : Sup α inst✝¹ : Inf α inst✝ : Ord α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) compare_f : ∀ (a b : α), compare a b = compare (f a) (f b) decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj ⊢ ∀ (a b : α), min a b = if a ≤ b then a else b [PROOFSTEP] intros x y [GOAL] ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.97808 β : Type ?u.97805 inst✝³ : LinearOrder β inst✝² : Sup α inst✝¹ : Inf α inst✝ : Ord α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) compare_f : ∀ (a b : α), compare a b = compare (f a) (f b) decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj x y : α ⊢ min x y = if x ≤ y then x else y [PROOFSTEP] apply inj [GOAL] case a ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.97808 β : Type ?u.97805 inst✝³ : LinearOrder β inst✝² : Sup α inst✝¹ : Inf α inst✝ : Ord α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) compare_f : ∀ (a b : α), compare a b = compare (f a) (f b) decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj x y : α ⊢ f (min x y) = f (if x ≤ y then x else y) [PROOFSTEP] rw [apply_ite f] [GOAL] case a ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.97808 β : Type ?u.97805 inst✝³ : LinearOrder β inst✝² : Sup α inst✝¹ : Inf α inst✝ : Ord α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) compare_f : ∀ (a b : α), compare a b = compare (f a) (f b) decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj x y : α ⊢ f (min x y) = if x ≤ y then f x else f y [PROOFSTEP] exact (hinf _ _).trans (min_def _ _) [GOAL] ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.97808 β : Type ?u.97805 inst✝³ : LinearOrder β inst✝² : Sup α inst✝¹ : Inf α inst✝ : Ord α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) compare_f : ∀ (a b : α), compare a b = compare (f a) (f b) decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj ⊢ ∀ (a b : α), max a b = if a ≤ b then b else a [PROOFSTEP] intros x y [GOAL] ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.97808 β : Type ?u.97805 inst✝³ : LinearOrder β inst✝² : Sup α inst✝¹ : Inf α inst✝ : Ord α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) compare_f : ∀ (a b : α), compare a b = compare (f a) (f b) decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj x y : α ⊢ max x y = if x ≤ y then y else x [PROOFSTEP] apply inj [GOAL] case a ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.97808 β : Type ?u.97805 inst✝³ : LinearOrder β inst✝² : Sup α inst✝¹ : Inf α inst✝ : Ord α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) compare_f : ∀ (a b : α), compare a b = compare (f a) (f b) decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj x y : α ⊢ f (max x y) = f (if x ≤ y then y else x) [PROOFSTEP] rw [apply_ite f] [GOAL] case a ι : Type u_1 α✝ : Type u β✝ : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : Type ?u.97808 β : Type ?u.97805 inst✝³ : LinearOrder β inst✝² : Sup α inst✝¹ : Inf α inst✝ : Ord α f : α → β inj : Injective f hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y) hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y) compare_f : ∀ (a b : α), compare a b = compare (f a) (f b) decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y) src✝ : PartialOrder α := PartialOrder.lift f inj x y : α ⊢ f (max x y) = if x ≤ y then f y else f x [PROOFSTEP] exact (hsup _ _).trans (max_def _ _) [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β ⊢ x < y ↔ x.fst < y.fst ∧ x.snd ≤ y.snd ∨ x.fst ≤ y.fst ∧ x.snd < y.snd [PROOFSTEP] refine' ⟨fun h ↦ _, _⟩ [GOAL] case refine'_1 ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β h : x < y ⊢ x.fst < y.fst ∧ x.snd ≤ y.snd ∨ x.fst ≤ y.fst ∧ x.snd < y.snd [PROOFSTEP] by_cases h₁ : y.1 ≤ x.1 [GOAL] case pos ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β h : x < y h₁ : y.fst ≤ x.fst ⊢ x.fst < y.fst ∧ x.snd ≤ y.snd ∨ x.fst ≤ y.fst ∧ x.snd < y.snd [PROOFSTEP] exact Or.inr ⟨h.1.1, LE.le.lt_of_not_le h.1.2 fun h₂ ↦ h.2 ⟨h₁, h₂⟩⟩ [GOAL] case neg ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β h : x < y h₁ : ¬y.fst ≤ x.fst ⊢ x.fst < y.fst ∧ x.snd ≤ y.snd ∨ x.fst ≤ y.fst ∧ x.snd < y.snd [PROOFSTEP] exact Or.inl ⟨LE.le.lt_of_not_le h.1.1 h₁, h.1.2⟩ [GOAL] case refine'_2 ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β ⊢ x.fst < y.fst ∧ x.snd ≤ y.snd ∨ x.fst ≤ y.fst ∧ x.snd < y.snd → x < y [PROOFSTEP] rintro (⟨h₁, h₂⟩ | ⟨h₁, h₂⟩) [GOAL] case refine'_2.inl.intro ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β h₁ : x.fst < y.fst h₂ : x.snd ≤ y.snd ⊢ x < y [PROOFSTEP] exact ⟨⟨h₁.le, h₂⟩, fun h ↦ h₁.not_le h.1⟩ [GOAL] case refine'_2.inr.intro ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝¹ : Preorder α inst✝ : Preorder β a a₁ a₂ : α b b₁ b₂ : β x y : α × β h₁ : x.fst ≤ y.fst h₂ : x.snd < y.snd ⊢ x < y [PROOFSTEP] exact ⟨⟨h₁, h₂.le⟩, fun h ↦ h₂.not_le h.2⟩ [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LT α ⊢ DenselyOrdered αᵒᵈ → DenselyOrdered α [PROOFSTEP] convert @OrderDual.denselyOrdered αᵒᵈ _ [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : DenselyOrdered α inst✝ : DenselyOrdered β a b : α × β ⊢ a < b → ∃ a_2, a < a_2 ∧ a_2 < b [PROOFSTEP] simp_rw [Prod.lt_iff] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : DenselyOrdered α inst✝ : DenselyOrdered β a b : α × β ⊢ a.fst < b.fst ∧ a.snd ≤ b.snd ∨ a.fst ≤ b.fst ∧ a.snd < b.snd → ∃ a_2, (a.fst < a_2.fst ∧ a.snd ≤ a_2.snd ∨ a.fst ≤ a_2.fst ∧ a.snd < a_2.snd) ∧ (a_2.fst < b.fst ∧ a_2.snd ≤ b.snd ∨ a_2.fst ≤ b.fst ∧ a_2.snd < b.snd) [PROOFSTEP] rintro (⟨h₁, h₂⟩ | ⟨h₁, h₂⟩) [GOAL] case inl.intro ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : DenselyOrdered α inst✝ : DenselyOrdered β a b : α × β h₁ : a.fst < b.fst h₂ : a.snd ≤ b.snd ⊢ ∃ a_1, (a.fst < a_1.fst ∧ a.snd ≤ a_1.snd ∨ a.fst ≤ a_1.fst ∧ a.snd < a_1.snd) ∧ (a_1.fst < b.fst ∧ a_1.snd ≤ b.snd ∨ a_1.fst ≤ b.fst ∧ a_1.snd < b.snd) [PROOFSTEP] obtain ⟨c, ha, hb⟩ := exists_between h₁ [GOAL] case inl.intro.intro.intro ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : DenselyOrdered α inst✝ : DenselyOrdered β a b : α × β h₁ : a.fst < b.fst h₂ : a.snd ≤ b.snd c : α ha : a.fst < c hb : c < b.fst ⊢ ∃ a_1, (a.fst < a_1.fst ∧ a.snd ≤ a_1.snd ∨ a.fst ≤ a_1.fst ∧ a.snd < a_1.snd) ∧ (a_1.fst < b.fst ∧ a_1.snd ≤ b.snd ∨ a_1.fst ≤ b.fst ∧ a_1.snd < b.snd) [PROOFSTEP] exact ⟨(c, _), Or.inl ⟨ha, h₂⟩, Or.inl ⟨hb, le_rfl⟩⟩ [GOAL] case inr.intro ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : DenselyOrdered α inst✝ : DenselyOrdered β a b : α × β h₁ : a.fst ≤ b.fst h₂ : a.snd < b.snd ⊢ ∃ a_1, (a.fst < a_1.fst ∧ a.snd ≤ a_1.snd ∨ a.fst ≤ a_1.fst ∧ a.snd < a_1.snd) ∧ (a_1.fst < b.fst ∧ a_1.snd ≤ b.snd ∨ a_1.fst ≤ b.fst ∧ a_1.snd < b.snd) [PROOFSTEP] obtain ⟨c, ha, hb⟩ := exists_between h₂ [GOAL] case inr.intro.intro.intro ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝³ : Preorder α inst✝² : Preorder β inst✝¹ : DenselyOrdered α inst✝ : DenselyOrdered β a b : α × β h₁ : a.fst ≤ b.fst h₂ : a.snd < b.snd c : β ha : a.snd < c hb : c < b.snd ⊢ ∃ a_1, (a.fst < a_1.fst ∧ a.snd ≤ a_1.snd ∨ a.fst ≤ a_1.fst ∧ a.snd < a_1.snd) ∧ (a_1.fst < b.fst ∧ a_1.snd ≤ b.snd ∨ a_1.fst ≤ b.fst ∧ a_1.snd < b.snd) [PROOFSTEP] exact ⟨(_, c), Or.inr ⟨h₁, ha⟩, Or.inr ⟨le_rfl, hb⟩⟩ [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : ι → Type u_3 inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) a b : (i : ι) → α i ⊢ a < b → ∃ a_2, a < a_2 ∧ a_2 < b [PROOFSTEP] classical simp_rw [Pi.lt_def] rintro ⟨hab, i, hi⟩ obtain ⟨c, ha, hb⟩ := exists_between hi exact ⟨Function.update a i c, ⟨le_update_iff.2 ⟨ha.le, fun _ _ ↦ le_rfl⟩, i, by rwa [update_same]⟩, update_le_iff.2 ⟨hb.le, fun _ _ ↦ hab _⟩, i, by rwa [update_same]⟩ [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : ι → Type u_3 inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) a b : (i : ι) → α i ⊢ a < b → ∃ a_2, a < a_2 ∧ a_2 < b [PROOFSTEP] simp_rw [Pi.lt_def] [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : ι → Type u_3 inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) a b : (i : ι) → α i ⊢ (a ≤ b ∧ ∃ i, a i < b i) → ∃ a_2, (a ≤ a_2 ∧ ∃ i, a i < a_2 i) ∧ a_2 ≤ b ∧ ∃ i, a_2 i < b i [PROOFSTEP] rintro ⟨hab, i, hi⟩ [GOAL] case intro.intro ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : ι → Type u_3 inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) a b : (i : ι) → α i hab : a ≤ b i : ι hi : a i < b i ⊢ ∃ a_1, (a ≤ a_1 ∧ ∃ i, a i < a_1 i) ∧ a_1 ≤ b ∧ ∃ i, a_1 i < b i [PROOFSTEP] obtain ⟨c, ha, hb⟩ := exists_between hi [GOAL] case intro.intro.intro.intro ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : ι → Type u_3 inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) a b : (i : ι) → α i hab : a ≤ b i : ι hi : a i < b i c : α i ha : a i < c hb : c < b i ⊢ ∃ a_1, (a ≤ a_1 ∧ ∃ i, a i < a_1 i) ∧ a_1 ≤ b ∧ ∃ i, a_1 i < b i [PROOFSTEP] exact ⟨Function.update a i c, ⟨le_update_iff.2 ⟨ha.le, fun _ _ ↦ le_rfl⟩, i, by rwa [update_same]⟩, update_le_iff.2 ⟨hb.le, fun _ _ ↦ hab _⟩, i, by rwa [update_same]⟩ [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : ι → Type u_3 inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) a b : (i : ι) → α i hab : a ≤ b i : ι hi : a i < b i c : α i ha : a i < c hb : c < b i ⊢ a i < update a i c i [PROOFSTEP] rwa [update_same] [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w π : ι → Type u_2 r : α✝ → α✝ → Prop α : ι → Type u_3 inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) a b : (i : ι) → α i hab : a ≤ b i : ι hi : a i < b i c : α i ha : a i < c hb : c < b i ⊢ update a i c i < b i [PROOFSTEP] rwa [update_same] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α ⊢ x = y ∨ y = z ∨ x = z [PROOFSTEP] by_contra hne [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : ¬(x = y ∨ y = z ∨ x = z) ⊢ False [PROOFSTEP] simp only [not_or, ← Ne.def] at hne [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z ⊢ False [PROOFSTEP] cases' hne.1.lt_or_lt with h₁ h₁ [GOAL] case inl ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : x < y ⊢ False [PROOFSTEP] cases' hne.2.1.lt_or_lt with h₂ h₂ [GOAL] case inr ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : y < x ⊢ False [PROOFSTEP] cases' hne.2.1.lt_or_lt with h₂ h₂ [GOAL] case inl.inl ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : x < y h₂ : y < z ⊢ False [PROOFSTEP] cases' hne.2.2.lt_or_lt with h₃ h₃ [GOAL] case inl.inr ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : x < y h₂ : z < y ⊢ False [PROOFSTEP] cases' hne.2.2.lt_or_lt with h₃ h₃ [GOAL] case inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : y < x h₂ : y < z ⊢ False [PROOFSTEP] cases' hne.2.2.lt_or_lt with h₃ h₃ [GOAL] case inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : y < x h₂ : z < y ⊢ False [PROOFSTEP] cases' hne.2.2.lt_or_lt with h₃ h₃ [GOAL] case inl.inl.inl ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : x < y h₂ : y < z h₃ : x < z ⊢ False case inl.inl.inr ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : x < y h₂ : y < z h₃ : z < x ⊢ False case inl.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : x < y h₂ : z < y h₃ : x < z ⊢ False case inl.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : x < y h₂ : z < y h₃ : z < x ⊢ False case inr.inl.inl ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : y < x h₂ : y < z h₃ : x < z ⊢ False case inr.inl.inr ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : y < x h₂ : y < z h₃ : z < x ⊢ False case inr.inr.inl ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : y < x h₂ : z < y h₃ : x < z ⊢ False case inr.inr.inr ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop inst✝ : LinearOrder α h : ∀ ⦃x y z : α⦄, x < y → y < z → False x y z : α hne : x ≠ y ∧ y ≠ z ∧ x ≠ z h₁ : y < x h₂ : z < y h₃ : z < x ⊢ False [PROOFSTEP] exacts [h h₁ h₂, h h₂ h₃, h h₃ h₂, h h₃ h₁, h h₁ h₃, h h₂ h₃, h h₁ h₃, h h₂ h₁] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : PUnit ⊢ ∀ (a : PUnit), a ≤ a [PROOFSTEP] intros [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : PUnit a✝ : PUnit ⊢ a✝ ≤ a✝ [PROOFSTEP] trivial [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : PUnit ⊢ ∀ (a b c : PUnit), a ≤ b → b ≤ c → a ≤ c [PROOFSTEP] intros [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : PUnit a✝² b✝ c✝ : PUnit a✝¹ : a✝² ≤ b✝ a✝ : b✝ ≤ c✝ ⊢ a✝² ≤ c✝ [PROOFSTEP] trivial [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : PUnit ⊢ ∀ (a b : PUnit), a < b ↔ a ≤ b ∧ ¬b ≤ a [PROOFSTEP] simp only [not_true, and_false, forall_const] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : PUnit ⊢ ∀ (a b : PUnit), a ≤ b → b ≤ a → a = b [PROOFSTEP] intros [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : PUnit a✝² b✝ : PUnit a✝¹ : a✝² ≤ b✝ a✝ : b✝ ≤ a✝² ⊢ a✝² = b✝ [PROOFSTEP] rfl [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : PUnit ⊢ ∀ (a b : PUnit), a ≤ b ∨ b ≤ a [PROOFSTEP] intros [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w π : ι → Type u_2 r : α → α → Prop a b : PUnit a✝ b✝ : PUnit ⊢ a✝ ≤ b✝ ∨ b✝ ≤ a✝ [PROOFSTEP] exact Or.inl trivial
{"mathlib_filename": "Mathlib.Order.Basic", "llama_tokens": 41941}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop ⊢ WellFounded r ↔ ∀ (s : Set α), Set.Nonempty s → ∃ m, m ∈ s ∧ ∀ (x : α), x ∈ s → ¬r x m [PROOFSTEP] refine ⟨fun h => h.has_min, fun h => ⟨fun x => ?_⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop h : ∀ (s : Set α), Set.Nonempty s → ∃ m, m ∈ s ∧ ∀ (x : α), x ∈ s → ¬r x m x : α ⊢ Acc r x [PROOFSTEP] by_contra hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop h : ∀ (s : Set α), Set.Nonempty s → ∃ m, m ∈ s ∧ ∀ (x : α), x ∈ s → ¬r x m x : α hx : ¬Acc r x ⊢ False [PROOFSTEP] obtain ⟨m, hm, hm'⟩ := h {x | ¬Acc r x} ⟨x, hx⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop h : ∀ (s : Set α), Set.Nonempty s → ∃ m, m ∈ s ∧ ∀ (x : α), x ∈ s → ¬r x m x : α hx : ¬Acc r x m : α hm : m ∈ {x | ¬Acc r x} hm' : ∀ (x : α), x ∈ {x | ¬Acc r x} → ¬r x m ⊢ False [PROOFSTEP] refine' hm ⟨_, fun y hy => _⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop h : ∀ (s : Set α), Set.Nonempty s → ∃ m, m ∈ s ∧ ∀ (x : α), x ∈ s → ¬r x m x : α hx : ¬Acc r x m : α hm : m ∈ {x | ¬Acc r x} hm' : ∀ (x : α), x ∈ {x | ¬Acc r x} → ¬r x m y : α hy : r y m ⊢ Acc r y [PROOFSTEP] by_contra hy' [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop h : ∀ (s : Set α), Set.Nonempty s → ∃ m, m ∈ s ∧ ∀ (x : α), x ∈ s → ¬r x m x : α hx : ¬Acc r x m : α hm : m ∈ {x | ¬Acc r x} hm' : ∀ (x : α), x ∈ {x | ¬Acc r x} → ¬r x m y : α hy : r y m hy' : ¬Acc r y ⊢ False [PROOFSTEP] exact hm' y hy' hy [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wf : WellFounded r x : α h : ∃ y, r x y ⊢ r x (WellFounded.succ wf x) [PROOFSTEP] rw [WellFounded.succ, dif_pos h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wf : WellFounded r x : α h : ∃ y, r x y ⊢ r x (min wf {y | r x y} h) [PROOFSTEP] apply min_mem [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α ⊢ r y (WellFounded.succ (_ : WellFounded r) x) ↔ r y x ∨ y = x [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α ⊢ r y (WellFounded.succ (_ : WellFounded r) x) → r y x ∨ y = x [PROOFSTEP] intro h' [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) ⊢ r y x ∨ y = x [PROOFSTEP] have : ¬r x y := by intro hy rw [WellFounded.succ, dif_pos] at h' exact wo.wf.not_lt_min _ h hy h' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) ⊢ ¬r x y [PROOFSTEP] intro hy [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) hy : r x y ⊢ False [PROOFSTEP] rw [WellFounded.succ, dif_pos] at h' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h'✝ : r y (if h : ∃ y, r x y then min (_ : WellFounded r) {y | r x y} h else x) h' : r y (min (_ : WellFounded r) {y | r x y} ?hc) hy : r x y ⊢ False case hc α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (if h : ∃ y, r x y then min (_ : WellFounded r) {y | r x y} h else x) hy : r x y ⊢ ∃ y, r x y [PROOFSTEP] exact wo.wf.not_lt_min _ h hy h' [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) this : ¬r x y ⊢ r y x ∨ y = x [PROOFSTEP] rcases trichotomous_of r x y with (hy | hy | hy) [GOAL] case mp.inl α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) this : ¬r x y hy : r x y ⊢ r y x ∨ y = x case mp.inr.inl α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) this : ¬r x y hy : x = y ⊢ r y x ∨ y = x case mp.inr.inr α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) this : ¬r x y hy : r y x ⊢ r y x ∨ y = x [PROOFSTEP] exfalso [GOAL] case mp.inl.h α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) this : ¬r x y hy : r x y ⊢ False case mp.inr.inl α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) this : ¬r x y hy : x = y ⊢ r y x ∨ y = x case mp.inr.inr α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) this : ¬r x y hy : r y x ⊢ r y x ∨ y = x [PROOFSTEP] exact this hy [GOAL] case mp.inr.inl α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) this : ¬r x y hy : x = y ⊢ r y x ∨ y = x case mp.inr.inr α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) this : ¬r x y hy : r y x ⊢ r y x ∨ y = x [PROOFSTEP] right [GOAL] case mp.inr.inl.h α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) this : ¬r x y hy : x = y ⊢ y = x case mp.inr.inr α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) this : ¬r x y hy : r y x ⊢ r y x ∨ y = x [PROOFSTEP] exact hy.symm [GOAL] case mp.inr.inr α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) this : ¬r x y hy : r y x ⊢ r y x ∨ y = x [PROOFSTEP] left [GOAL] case mp.inr.inr.h α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α h' : r y (WellFounded.succ (_ : WellFounded r) x) this : ¬r x y hy : r y x ⊢ r y x [PROOFSTEP] exact hy [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α ⊢ r y x ∨ y = x → r y (WellFounded.succ (_ : WellFounded r) x) [PROOFSTEP] rintro (hy | rfl) [GOAL] case mpr.inl α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r x : α h : ∃ y, r x y y : α hy : r y x ⊢ r y (WellFounded.succ (_ : WellFounded r) x) case mpr.inr α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r y : α h : ∃ y_1, r y y_1 ⊢ r y (WellFounded.succ (_ : WellFounded r) y) [PROOFSTEP] exact _root_.trans hy (wo.wf.lt_succ h) [GOAL] case mpr.inr α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r' r : α → α → Prop wo : IsWellOrder α r y : α h : ∃ y_1, r y y_1 ⊢ r y (WellFounded.succ (_ : WellFounded r) y) [PROOFSTEP] exact wo.wf.lt_succ h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f g : β → γ hf : StrictMono f hg : StrictMono g hfg : range f = range g b : β H : ∀ (a : β), a < b → f a = g a ⊢ f b ≤ g b [PROOFSTEP] obtain ⟨c, hc⟩ : g b ∈ Set.range f := by rw [hfg] exact Set.mem_range_self b [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f g : β → γ hf : StrictMono f hg : StrictMono g hfg : range f = range g b : β H : ∀ (a : β), a < b → f a = g a ⊢ g b ∈ range f [PROOFSTEP] rw [hfg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f g : β → γ hf : StrictMono f hg : StrictMono g hfg : range f = range g b : β H : ∀ (a : β), a < b → f a = g a ⊢ g b ∈ range g [PROOFSTEP] exact Set.mem_range_self b [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f g : β → γ hf : StrictMono f hg : StrictMono g hfg : range f = range g b : β H : ∀ (a : β), a < b → f a = g a c : β hc : f c = g b ⊢ f b ≤ g b [PROOFSTEP] cases' lt_or_le c b with hcb hbc [GOAL] case intro.inl α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f g : β → γ hf : StrictMono f hg : StrictMono g hfg : range f = range g b : β H : ∀ (a : β), a < b → f a = g a c : β hc : f c = g b hcb : c < b ⊢ f b ≤ g b [PROOFSTEP] rw [H c hcb] at hc [GOAL] case intro.inl α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f g : β → γ hf : StrictMono f hg : StrictMono g hfg : range f = range g b : β H : ∀ (a : β), a < b → f a = g a c : β hc : g c = g b hcb : c < b ⊢ f b ≤ g b [PROOFSTEP] rw [hg.injective hc] at hcb [GOAL] case intro.inl α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f g : β → γ hf : StrictMono f hg : StrictMono g hfg : range f = range g b : β H : ∀ (a : β), a < b → f a = g a c : β hc : g c = g b hcb : b < b ⊢ f b ≤ g b [PROOFSTEP] exact hcb.false.elim [GOAL] case intro.inr α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f g : β → γ hf : StrictMono f hg : StrictMono g hfg : range f = range g b : β H : ∀ (a : β), a < b → f a = g a c : β hc : f c = g b hbc : b ≤ c ⊢ f b ≤ g b [PROOFSTEP] rw [← hc] [GOAL] case intro.inr α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f g : β → γ hf : StrictMono f hg : StrictMono g hfg : range f = range g b : β H : ∀ (a : β), a < b → f a = g a c : β hc : f c = g b hbc : b ≤ c ⊢ f b ≤ f c [PROOFSTEP] exact hf.monotone hbc [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f g : β → γ hf : StrictMono f hg : StrictMono g hfg : range f = range g ⊢ f = g [PROOFSTEP] funext a [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f g : β → γ hf : StrictMono f hg : StrictMono g hfg : range f = range g a : β ⊢ f a = g a [PROOFSTEP] apply h.induction a [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f g : β → γ hf : StrictMono f hg : StrictMono g hfg : range f = range g a : β ⊢ ∀ (x : β), (∀ (y : β), y < x → f y = g y) → f x = g x [PROOFSTEP] exact fun b H => le_antisymm (eq_strictMono_iff_eq_range_aux hf hg hfg H) (eq_strictMono_iff_eq_range_aux hg hf hfg.symm fun a hab => (H a hab).symm) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f : β → β hf : StrictMono f ⊢ ∀ (n : β), n ≤ f n [PROOFSTEP] by_contra' h₁ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f : β → β hf : StrictMono f h₁ : ∃ n, f n < n ⊢ False [PROOFSTEP] have h₂ := h.min_mem _ h₁ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r r' : α → α → Prop inst✝¹ : LinearOrder β h : WellFounded fun x x_1 => x < x_1 inst✝ : PartialOrder γ f : β → β hf : StrictMono f h₁ : ∃ n, f n < n h₂ : min h (fun x => Preorder.toLT.1 (f x) x) h₁ ∈ fun x => Preorder.toLT.1 (f x) x ⊢ False [PROOFSTEP] exact h.not_lt_min _ h₁ (hf h₂) h₂
{"mathlib_filename": "Mathlib.Order.WellFounded", "llama_tokens": 6602}
[GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u inst✝ : CompleteLattice α k : α ⊢ IsCompactElement k ↔ ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s [PROOFSTEP] classical constructor · intro H ι s hs obtain ⟨t, ht, ht'⟩ := H (Set.range s) hs have : ∀ x : t, ∃ i, s i = x := fun x => ht x.prop choose f hf using this refine' ⟨Finset.univ.image f, ht'.trans _⟩ · rw [Finset.sup_le_iff] intro b hb rw [← show s (f ⟨b, hb⟩) = id b from hf _] exact Finset.le_sup (Finset.mem_image_of_mem f <| Finset.mem_univ (Subtype.mk b hb)) · intro H s hs obtain ⟨t, ht⟩ := H s Subtype.val (by delta iSup rwa [Subtype.range_coe]) refine' ⟨t.image Subtype.val, by simp, ht.trans _⟩ rw [Finset.sup_le_iff] exact fun x hx => @Finset.le_sup _ _ _ _ _ id _ (Finset.mem_image_of_mem Subtype.val hx) [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u inst✝ : CompleteLattice α k : α ⊢ IsCompactElement k ↔ ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s [PROOFSTEP] constructor [GOAL] case mp ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u inst✝ : CompleteLattice α k : α ⊢ IsCompactElement k → ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s [PROOFSTEP] intro H ι s hs [GOAL] case mp ι✝ : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι✝ → α✝ α : Type u inst✝ : CompleteLattice α k : α H : IsCompactElement k ι : Type u s : ι → α hs : k ≤ iSup s ⊢ ∃ t, k ≤ Finset.sup t s [PROOFSTEP] obtain ⟨t, ht, ht'⟩ := H (Set.range s) hs [GOAL] case mp.intro.intro ι✝ : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι✝ → α✝ α : Type u inst✝ : CompleteLattice α k : α H : IsCompactElement k ι : Type u s : ι → α hs : k ≤ iSup s t : Finset α ht : ↑t ⊆ Set.range s ht' : k ≤ Finset.sup t id ⊢ ∃ t, k ≤ Finset.sup t s [PROOFSTEP] have : ∀ x : t, ∃ i, s i = x := fun x => ht x.prop [GOAL] case mp.intro.intro ι✝ : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι✝ → α✝ α : Type u inst✝ : CompleteLattice α k : α H : IsCompactElement k ι : Type u s : ι → α hs : k ≤ iSup s t : Finset α ht : ↑t ⊆ Set.range s ht' : k ≤ Finset.sup t id this : ∀ (x : { x // x ∈ t }), ∃ i, s i = ↑x ⊢ ∃ t, k ≤ Finset.sup t s [PROOFSTEP] choose f hf using this [GOAL] case mp.intro.intro ι✝ : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι✝ → α✝ α : Type u inst✝ : CompleteLattice α k : α H : IsCompactElement k ι : Type u s : ι → α hs : k ≤ iSup s t : Finset α ht : ↑t ⊆ Set.range s ht' : k ≤ Finset.sup t id f : { x // x ∈ t } → ι hf : ∀ (x : { x // x ∈ t }), s (f x) = ↑x ⊢ ∃ t, k ≤ Finset.sup t s [PROOFSTEP] refine' ⟨Finset.univ.image f, ht'.trans _⟩ [GOAL] case mp.intro.intro ι✝ : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι✝ → α✝ α : Type u inst✝ : CompleteLattice α k : α H : IsCompactElement k ι : Type u s : ι → α hs : k ≤ iSup s t : Finset α ht : ↑t ⊆ Set.range s ht' : k ≤ Finset.sup t id f : { x // x ∈ t } → ι hf : ∀ (x : { x // x ∈ t }), s (f x) = ↑x ⊢ Finset.sup t id ≤ Finset.sup (Finset.image f Finset.univ) s [PROOFSTEP] rw [Finset.sup_le_iff] [GOAL] case mp.intro.intro ι✝ : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι✝ → α✝ α : Type u inst✝ : CompleteLattice α k : α H : IsCompactElement k ι : Type u s : ι → α hs : k ≤ iSup s t : Finset α ht : ↑t ⊆ Set.range s ht' : k ≤ Finset.sup t id f : { x // x ∈ t } → ι hf : ∀ (x : { x // x ∈ t }), s (f x) = ↑x ⊢ ∀ (b : α), b ∈ t → id b ≤ Finset.sup (Finset.image f Finset.univ) s [PROOFSTEP] intro b hb [GOAL] case mp.intro.intro ι✝ : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι✝ → α✝ α : Type u inst✝ : CompleteLattice α k : α H : IsCompactElement k ι : Type u s : ι → α hs : k ≤ iSup s t : Finset α ht : ↑t ⊆ Set.range s ht' : k ≤ Finset.sup t id f : { x // x ∈ t } → ι hf : ∀ (x : { x // x ∈ t }), s (f x) = ↑x b : α hb : b ∈ t ⊢ id b ≤ Finset.sup (Finset.image f Finset.univ) s [PROOFSTEP] rw [← show s (f ⟨b, hb⟩) = id b from hf _] [GOAL] case mp.intro.intro ι✝ : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι✝ → α✝ α : Type u inst✝ : CompleteLattice α k : α H : IsCompactElement k ι : Type u s : ι → α hs : k ≤ iSup s t : Finset α ht : ↑t ⊆ Set.range s ht' : k ≤ Finset.sup t id f : { x // x ∈ t } → ι hf : ∀ (x : { x // x ∈ t }), s (f x) = ↑x b : α hb : b ∈ t ⊢ s (f { val := b, property := hb }) ≤ Finset.sup (Finset.image f Finset.univ) s [PROOFSTEP] exact Finset.le_sup (Finset.mem_image_of_mem f <| Finset.mem_univ (Subtype.mk b hb)) [GOAL] case mpr ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u inst✝ : CompleteLattice α k : α ⊢ (∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s) → IsCompactElement k [PROOFSTEP] intro H s hs [GOAL] case mpr ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u inst✝ : CompleteLattice α k : α H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s s : Set α hs : k ≤ sSup s ⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id [PROOFSTEP] obtain ⟨t, ht⟩ := H s Subtype.val (by delta iSup rwa [Subtype.range_coe]) [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u inst✝ : CompleteLattice α k : α H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s s : Set α hs : k ≤ sSup s ⊢ k ≤ iSup Subtype.val [PROOFSTEP] delta iSup [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u inst✝ : CompleteLattice α k : α H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s s : Set α hs : k ≤ sSup s ⊢ k ≤ sSup (Set.range Subtype.val) [PROOFSTEP] rwa [Subtype.range_coe] [GOAL] case mpr.intro ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u inst✝ : CompleteLattice α k : α H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s s : Set α hs : k ≤ sSup s t : Finset ↑s ht : k ≤ Finset.sup t Subtype.val ⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id [PROOFSTEP] refine' ⟨t.image Subtype.val, by simp, ht.trans _⟩ [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u inst✝ : CompleteLattice α k : α H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s s : Set α hs : k ≤ sSup s t : Finset ↑s ht : k ≤ Finset.sup t Subtype.val ⊢ ↑(Finset.image Subtype.val t) ⊆ s [PROOFSTEP] simp [GOAL] case mpr.intro ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u inst✝ : CompleteLattice α k : α H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s s : Set α hs : k ≤ sSup s t : Finset ↑s ht : k ≤ Finset.sup t Subtype.val ⊢ Finset.sup t Subtype.val ≤ Finset.sup (Finset.image Subtype.val t) id [PROOFSTEP] rw [Finset.sup_le_iff] [GOAL] case mpr.intro ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u inst✝ : CompleteLattice α k : α H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s s : Set α hs : k ≤ sSup s t : Finset ↑s ht : k ≤ Finset.sup t Subtype.val ⊢ ∀ (b : ↑s), b ∈ t → ↑b ≤ Finset.sup (Finset.image Subtype.val t) id [PROOFSTEP] exact fun x hx => @Finset.le_sup _ _ _ _ _ id _ (Finset.mem_image_of_mem Subtype.val hx) [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α ⊢ IsCompactElement k ↔ ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x [PROOFSTEP] classical constructor · intro hk s hne hdir hsup obtain ⟨t, ht⟩ := hk s hsup have t_below_s : ∀ x ∈ t, ∃ y ∈ s, x ≤ y := fun x hxt => ⟨x, ht.left hxt, le_rfl⟩ obtain ⟨x, ⟨hxs, hsupx⟩⟩ := Finset.sup_le_of_le_directed s hne hdir t t_below_s exact ⟨x, ⟨hxs, le_trans ht.right hsupx⟩⟩ · intro hk s hsup let S : Set α := {x | ∃ t : Finset α, ↑t ⊆ s ∧ x = t.sup id} -- S is directed, nonempty, and still has sup above k. have dir_US : DirectedOn (· ≤ ·) S := by rintro x ⟨c, hc⟩ y ⟨d, hd⟩ use x ⊔ y constructor · use c ∪ d constructor · simp only [hc.left, hd.left, Set.union_subset_iff, Finset.coe_union, and_self_iff] · simp only [hc.right, hd.right, Finset.sup_union] simp only [and_self_iff, le_sup_left, le_sup_right] have sup_S : sSup s ≤ sSup S := by apply sSup_le_sSup intro x hx use{ x } simpa only [and_true_iff, id.def, Finset.coe_singleton, eq_self_iff_true, Finset.sup_singleton, Set.singleton_subset_iff] have Sne : S.Nonempty := by suffices : ⊥ ∈ S exact Set.nonempty_of_mem this use∅ simp only [Set.empty_subset, Finset.coe_empty, Finset.sup_empty, eq_self_iff_true, and_self_iff] -- Now apply the defn of compact and finish. obtain ⟨j, ⟨hjS, hjk⟩⟩ := hk S Sne dir_US (le_trans hsup sup_S) obtain ⟨t, ⟨htS, htsup⟩⟩ := hjS use t exact ⟨htS, by rwa [← htsup]⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α ⊢ IsCompactElement k ↔ ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x [PROOFSTEP] constructor [GOAL] case mp ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α ⊢ IsCompactElement k → ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x [PROOFSTEP] intro hk s hne hdir hsup [GOAL] case mp ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : IsCompactElement k s : Set α hne : Set.Nonempty s hdir : DirectedOn (fun x x_1 => x ≤ x_1) s hsup : k ≤ sSup s ⊢ ∃ x, x ∈ s ∧ k ≤ x [PROOFSTEP] obtain ⟨t, ht⟩ := hk s hsup [GOAL] case mp.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : IsCompactElement k s : Set α hne : Set.Nonempty s hdir : DirectedOn (fun x x_1 => x ≤ x_1) s hsup : k ≤ sSup s t : Finset α ht : ↑t ⊆ s ∧ k ≤ Finset.sup t id ⊢ ∃ x, x ∈ s ∧ k ≤ x [PROOFSTEP] have t_below_s : ∀ x ∈ t, ∃ y ∈ s, x ≤ y := fun x hxt => ⟨x, ht.left hxt, le_rfl⟩ [GOAL] case mp.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : IsCompactElement k s : Set α hne : Set.Nonempty s hdir : DirectedOn (fun x x_1 => x ≤ x_1) s hsup : k ≤ sSup s t : Finset α ht : ↑t ⊆ s ∧ k ≤ Finset.sup t id t_below_s : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ x ≤ y ⊢ ∃ x, x ∈ s ∧ k ≤ x [PROOFSTEP] obtain ⟨x, ⟨hxs, hsupx⟩⟩ := Finset.sup_le_of_le_directed s hne hdir t t_below_s [GOAL] case mp.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : IsCompactElement k s : Set α hne : Set.Nonempty s hdir : DirectedOn (fun x x_1 => x ≤ x_1) s hsup : k ≤ sSup s t : Finset α ht : ↑t ⊆ s ∧ k ≤ Finset.sup t id t_below_s : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ x ≤ y x : α hxs : x ∈ s hsupx : Finset.sup t id ≤ x ⊢ ∃ x, x ∈ s ∧ k ≤ x [PROOFSTEP] exact ⟨x, ⟨hxs, le_trans ht.right hsupx⟩⟩ [GOAL] case mpr ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α ⊢ (∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x) → IsCompactElement k [PROOFSTEP] intro hk s hsup [GOAL] case mpr ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s ⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id [PROOFSTEP] let S : Set α := {x | ∃ t : Finset α, ↑t ⊆ s ∧ x = t.sup id} -- S is directed, nonempty, and still has sup above k. [GOAL] case mpr ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} ⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id [PROOFSTEP] have dir_US : DirectedOn (· ≤ ·) S := by rintro x ⟨c, hc⟩ y ⟨d, hd⟩ use x ⊔ y constructor · use c ∪ d constructor · simp only [hc.left, hd.left, Set.union_subset_iff, Finset.coe_union, and_self_iff] · simp only [hc.right, hd.right, Finset.sup_union] simp only [and_self_iff, le_sup_left, le_sup_right] [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} ⊢ DirectedOn (fun x x_1 => x ≤ x_1) S [PROOFSTEP] rintro x ⟨c, hc⟩ y ⟨d, hd⟩ [GOAL] case intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} x : α c : Finset α hc : ↑c ⊆ s ∧ x = Finset.sup c id y : α d : Finset α hd : ↑d ⊆ s ∧ y = Finset.sup d id ⊢ ∃ z, z ∈ S ∧ (fun x x_1 => x ≤ x_1) x z ∧ (fun x x_1 => x ≤ x_1) y z [PROOFSTEP] use x ⊔ y [GOAL] case h ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} x : α c : Finset α hc : ↑c ⊆ s ∧ x = Finset.sup c id y : α d : Finset α hd : ↑d ⊆ s ∧ y = Finset.sup d id ⊢ x ⊔ y ∈ S ∧ (fun x x_1 => x ≤ x_1) x (x ⊔ y) ∧ (fun x x_1 => x ≤ x_1) y (x ⊔ y) [PROOFSTEP] constructor [GOAL] case h.left ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} x : α c : Finset α hc : ↑c ⊆ s ∧ x = Finset.sup c id y : α d : Finset α hd : ↑d ⊆ s ∧ y = Finset.sup d id ⊢ x ⊔ y ∈ S [PROOFSTEP] use c ∪ d [GOAL] case h ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} x : α c : Finset α hc : ↑c ⊆ s ∧ x = Finset.sup c id y : α d : Finset α hd : ↑d ⊆ s ∧ y = Finset.sup d id ⊢ ↑(c ∪ d) ⊆ s ∧ x ⊔ y = Finset.sup (c ∪ d) id [PROOFSTEP] constructor [GOAL] case h.left ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} x : α c : Finset α hc : ↑c ⊆ s ∧ x = Finset.sup c id y : α d : Finset α hd : ↑d ⊆ s ∧ y = Finset.sup d id ⊢ ↑(c ∪ d) ⊆ s [PROOFSTEP] simp only [hc.left, hd.left, Set.union_subset_iff, Finset.coe_union, and_self_iff] [GOAL] case h.right ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} x : α c : Finset α hc : ↑c ⊆ s ∧ x = Finset.sup c id y : α d : Finset α hd : ↑d ⊆ s ∧ y = Finset.sup d id ⊢ x ⊔ y = Finset.sup (c ∪ d) id [PROOFSTEP] simp only [hc.right, hd.right, Finset.sup_union] [GOAL] case h.right ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} x : α c : Finset α hc : ↑c ⊆ s ∧ x = Finset.sup c id y : α d : Finset α hd : ↑d ⊆ s ∧ y = Finset.sup d id ⊢ (fun x x_1 => x ≤ x_1) x (x ⊔ y) ∧ (fun x x_1 => x ≤ x_1) y (x ⊔ y) [PROOFSTEP] simp only [and_self_iff, le_sup_left, le_sup_right] [GOAL] case mpr ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S ⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id [PROOFSTEP] have sup_S : sSup s ≤ sSup S := by apply sSup_le_sSup intro x hx use{ x } simpa only [and_true_iff, id.def, Finset.coe_singleton, eq_self_iff_true, Finset.sup_singleton, Set.singleton_subset_iff] [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S ⊢ sSup s ≤ sSup S [PROOFSTEP] apply sSup_le_sSup [GOAL] case h ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S ⊢ s ⊆ S [PROOFSTEP] intro x hx [GOAL] case h ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S x : α hx : x ∈ s ⊢ x ∈ S [PROOFSTEP] use{ x } [GOAL] case h ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S x : α hx : x ∈ s ⊢ ↑{x} ⊆ s ∧ x = Finset.sup {x} id [PROOFSTEP] simpa only [and_true_iff, id.def, Finset.coe_singleton, eq_self_iff_true, Finset.sup_singleton, Set.singleton_subset_iff] [GOAL] case mpr ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S sup_S : sSup s ≤ sSup S ⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id [PROOFSTEP] have Sne : S.Nonempty := by suffices : ⊥ ∈ S exact Set.nonempty_of_mem this use∅ simp only [Set.empty_subset, Finset.coe_empty, Finset.sup_empty, eq_self_iff_true, and_self_iff] -- Now apply the defn of compact and finish. [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S sup_S : sSup s ≤ sSup S ⊢ Set.Nonempty S [PROOFSTEP] suffices : ⊥ ∈ S [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S sup_S : sSup s ≤ sSup S this : ⊥ ∈ S ⊢ Set.Nonempty S case this ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S sup_S : sSup s ≤ sSup S ⊢ ⊥ ∈ S [PROOFSTEP] exact Set.nonempty_of_mem this [GOAL] case this ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S sup_S : sSup s ≤ sSup S ⊢ ⊥ ∈ S [PROOFSTEP] use∅ [GOAL] case h ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S sup_S : sSup s ≤ sSup S ⊢ ↑∅ ⊆ s ∧ ⊥ = Finset.sup ∅ id [PROOFSTEP] simp only [Set.empty_subset, Finset.coe_empty, Finset.sup_empty, eq_self_iff_true, and_self_iff] -- Now apply the defn of compact and finish. [GOAL] case mpr ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S sup_S : sSup s ≤ sSup S Sne : Set.Nonempty S ⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id [PROOFSTEP] obtain ⟨j, ⟨hjS, hjk⟩⟩ := hk S Sne dir_US (le_trans hsup sup_S) [GOAL] case mpr.intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S sup_S : sSup s ≤ sSup S Sne : Set.Nonempty S j : α hjS : j ∈ S hjk : k ≤ j ⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id [PROOFSTEP] obtain ⟨t, ⟨htS, htsup⟩⟩ := hjS [GOAL] case mpr.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S sup_S : sSup s ≤ sSup S Sne : Set.Nonempty S j : α hjk : k ≤ j t : Finset α htS : ↑t ⊆ s htsup : j = Finset.sup t id ⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id [PROOFSTEP] use t [GOAL] case h ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S sup_S : sSup s ≤ sSup S Sne : Set.Nonempty S j : α hjk : k ≤ j t : Finset α htS : ↑t ⊆ s htsup : j = Finset.sup t id ⊢ ↑t ⊆ s ∧ k ≤ Finset.sup t id [PROOFSTEP] exact ⟨htS, by rwa [← htsup]⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hsup : k ≤ sSup s S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id} dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S sup_S : sSup s ≤ sSup S Sne : Set.Nonempty S j : α hjk : k ≤ j t : Finset α htS : ↑t ⊆ s htsup : j = Finset.sup t id ⊢ k ≤ Finset.sup t id [PROOFSTEP] rwa [← htsup] [GOAL] ι✝ : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f✝ : ι✝ → α k : α hk : IsCompactElement k ι : Type u_3 f : ι → α h : k ≤ ⨆ (i : ι), f i ⊢ ∃ s, k ≤ ⨆ (i : ι) (_ : i ∈ s), f i [PROOFSTEP] classical let g : Finset ι → α := fun s => ⨆ i ∈ s, f i have h1 : DirectedOn (· ≤ ·) (Set.range g) := by rintro - ⟨s, rfl⟩ - ⟨t, rfl⟩ exact ⟨g (s ∪ t), ⟨s ∪ t, rfl⟩, iSup_le_iSup_of_subset (Finset.subset_union_left s t), iSup_le_iSup_of_subset (Finset.subset_union_right s t)⟩ have h2 : k ≤ sSup (Set.range g) := h.trans (iSup_le fun i => le_sSup_of_le ⟨{ i }, rfl⟩ (le_iSup_of_le i (le_iSup_of_le (Finset.mem_singleton_self i) le_rfl))) obtain ⟨-, ⟨s, rfl⟩, hs⟩ := (isCompactElement_iff_le_of_directed_sSup_le α k).mp hk (Set.range g) (Set.range_nonempty g) h1 h2 exact ⟨s, hs⟩ [GOAL] ι✝ : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f✝ : ι✝ → α k : α hk : IsCompactElement k ι : Type u_3 f : ι → α h : k ≤ ⨆ (i : ι), f i ⊢ ∃ s, k ≤ ⨆ (i : ι) (_ : i ∈ s), f i [PROOFSTEP] let g : Finset ι → α := fun s => ⨆ i ∈ s, f i [GOAL] ι✝ : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f✝ : ι✝ → α k : α hk : IsCompactElement k ι : Type u_3 f : ι → α h : k ≤ ⨆ (i : ι), f i g : Finset ι → α := fun s => ⨆ (i : ι) (_ : i ∈ s), f i ⊢ ∃ s, k ≤ ⨆ (i : ι) (_ : i ∈ s), f i [PROOFSTEP] have h1 : DirectedOn (· ≤ ·) (Set.range g) := by rintro - ⟨s, rfl⟩ - ⟨t, rfl⟩ exact ⟨g (s ∪ t), ⟨s ∪ t, rfl⟩, iSup_le_iSup_of_subset (Finset.subset_union_left s t), iSup_le_iSup_of_subset (Finset.subset_union_right s t)⟩ [GOAL] ι✝ : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f✝ : ι✝ → α k : α hk : IsCompactElement k ι : Type u_3 f : ι → α h : k ≤ ⨆ (i : ι), f i g : Finset ι → α := fun s => ⨆ (i : ι) (_ : i ∈ s), f i ⊢ DirectedOn (fun x x_1 => x ≤ x_1) (Set.range g) [PROOFSTEP] rintro - ⟨s, rfl⟩ - ⟨t, rfl⟩ [GOAL] case intro.intro ι✝ : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f✝ : ι✝ → α k : α hk : IsCompactElement k ι : Type u_3 f : ι → α h : k ≤ ⨆ (i : ι), f i g : Finset ι → α := fun s => ⨆ (i : ι) (_ : i ∈ s), f i s t : Finset ι ⊢ ∃ z, z ∈ Set.range g ∧ (fun x x_1 => x ≤ x_1) (g s) z ∧ (fun x x_1 => x ≤ x_1) (g t) z [PROOFSTEP] exact ⟨g (s ∪ t), ⟨s ∪ t, rfl⟩, iSup_le_iSup_of_subset (Finset.subset_union_left s t), iSup_le_iSup_of_subset (Finset.subset_union_right s t)⟩ [GOAL] ι✝ : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f✝ : ι✝ → α k : α hk : IsCompactElement k ι : Type u_3 f : ι → α h : k ≤ ⨆ (i : ι), f i g : Finset ι → α := fun s => ⨆ (i : ι) (_ : i ∈ s), f i h1 : DirectedOn (fun x x_1 => x ≤ x_1) (Set.range g) ⊢ ∃ s, k ≤ ⨆ (i : ι) (_ : i ∈ s), f i [PROOFSTEP] have h2 : k ≤ sSup (Set.range g) := h.trans (iSup_le fun i => le_sSup_of_le ⟨{ i }, rfl⟩ (le_iSup_of_le i (le_iSup_of_le (Finset.mem_singleton_self i) le_rfl))) [GOAL] ι✝ : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f✝ : ι✝ → α k : α hk : IsCompactElement k ι : Type u_3 f : ι → α h : k ≤ ⨆ (i : ι), f i g : Finset ι → α := fun s => ⨆ (i : ι) (_ : i ∈ s), f i h1 : DirectedOn (fun x x_1 => x ≤ x_1) (Set.range g) h2 : k ≤ sSup (Set.range g) ⊢ ∃ s, k ≤ ⨆ (i : ι) (_ : i ∈ s), f i [PROOFSTEP] obtain ⟨-, ⟨s, rfl⟩, hs⟩ := (isCompactElement_iff_le_of_directed_sSup_le α k).mp hk (Set.range g) (Set.range_nonempty g) h1 h2 [GOAL] case intro.intro.intro ι✝ : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f✝ : ι✝ → α k : α hk : IsCompactElement k ι : Type u_3 f : ι → α h : k ≤ ⨆ (i : ι), f i g : Finset ι → α := fun s => ⨆ (i : ι) (_ : i ∈ s), f i h1 : DirectedOn (fun x x_1 => x ≤ x_1) (Set.range g) h2 : k ≤ sSup (Set.range g) s : Finset ι hs : k ≤ g s ⊢ ∃ s, k ≤ ⨆ (i : ι) (_ : i ∈ s), f i [PROOFSTEP] exact ⟨s, hs⟩ [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u_3 inst✝ : CompleteLattice α k : α hk : IsCompactElement k s : Set α hemp : Set.Nonempty s hdir : DirectedOn (fun x x_1 => x ≤ x_1) s hbelow : ∀ (x : α), x ∈ s → x < k ⊢ sSup s < k [PROOFSTEP] rw [isCompactElement_iff_le_of_directed_sSup_le] at hk [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u_3 inst✝ : CompleteLattice α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hemp : Set.Nonempty s hdir : DirectedOn (fun x x_1 => x ≤ x_1) s hbelow : ∀ (x : α), x ∈ s → x < k ⊢ sSup s < k [PROOFSTEP] by_contra h [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u_3 inst✝ : CompleteLattice α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hemp : Set.Nonempty s hdir : DirectedOn (fun x x_1 => x ≤ x_1) s hbelow : ∀ (x : α), x ∈ s → x < k h : ¬sSup s < k ⊢ False [PROOFSTEP] have sSup' : sSup s ≤ k := sSup_le s k fun s hs => (hbelow s hs).le [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u_3 inst✝ : CompleteLattice α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hemp : Set.Nonempty s hdir : DirectedOn (fun x x_1 => x ≤ x_1) s hbelow : ∀ (x : α), x ∈ s → x < k h : ¬sSup s < k sSup' : sSup s ≤ k ⊢ False [PROOFSTEP] replace sSup : sSup s = k := eq_iff_le_not_lt.mpr ⟨sSup', h⟩ [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u_3 inst✝ : CompleteLattice α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ SupSet.sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hemp : Set.Nonempty s hdir : DirectedOn (fun x x_1 => x ≤ x_1) s hbelow : ∀ (x : α), x ∈ s → x < k h : ¬SupSet.sSup s < k sSup' : SupSet.sSup s ≤ k sSup : SupSet.sSup s = k ⊢ False [PROOFSTEP] obtain ⟨x, hxs, hkx⟩ := hk s hemp hdir sSup.symm.le [GOAL] case intro.intro ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u_3 inst✝ : CompleteLattice α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ SupSet.sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hemp : Set.Nonempty s hdir : DirectedOn (fun x x_1 => x ≤ x_1) s hbelow : ∀ (x : α), x ∈ s → x < k h : ¬SupSet.sSup s < k sSup' : SupSet.sSup s ≤ k sSup : SupSet.sSup s = k x : α hxs : x ∈ s hkx : k ≤ x ⊢ False [PROOFSTEP] obtain hxk := hbelow x hxs [GOAL] case intro.intro ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f : ι → α✝ α : Type u_3 inst✝ : CompleteLattice α k : α hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ SupSet.sSup s → ∃ x, x ∈ s ∧ k ≤ x s : Set α hemp : Set.Nonempty s hdir : DirectedOn (fun x x_1 => x ≤ x_1) s hbelow : ∀ (x : α), x ∈ s → x < k h : ¬SupSet.sSup s < k sSup' : SupSet.sSup s ≤ k sSup : SupSet.sSup s = k x : α hxs : x ∈ s hkx : k ≤ x hxk : x < k ⊢ False [PROOFSTEP] exact hxk.ne (hxk.le.antisymm hkx) [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι → α✝ α : Type u_3 β : Type u_4 inst✝ : CompleteLattice α f : β → α s : Finset β h : ∀ (x : β), x ∈ s → IsCompactElement (f x) ⊢ IsCompactElement (Finset.sup s f) [PROOFSTEP] classical rw [isCompactElement_iff_le_of_directed_sSup_le] intro d hemp hdir hsup rw [← Function.comp.left_id f] rw [← Finset.sup_image] apply Finset.sup_le_of_le_directed d hemp hdir rintro x hx obtain ⟨p, ⟨hps, rfl⟩⟩ := Finset.mem_image.mp hx specialize h p hps rw [isCompactElement_iff_le_of_directed_sSup_le] at h specialize h d hemp hdir (le_trans (Finset.le_sup hps) hsup) simpa only [exists_prop] [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι → α✝ α : Type u_3 β : Type u_4 inst✝ : CompleteLattice α f : β → α s : Finset β h : ∀ (x : β), x ∈ s → IsCompactElement (f x) ⊢ IsCompactElement (Finset.sup s f) [PROOFSTEP] rw [isCompactElement_iff_le_of_directed_sSup_le] [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι → α✝ α : Type u_3 β : Type u_4 inst✝ : CompleteLattice α f : β → α s : Finset β h : ∀ (x : β), x ∈ s → IsCompactElement (f x) ⊢ ∀ (s_1 : Set α), Set.Nonempty s_1 → DirectedOn (fun x x_1 => x ≤ x_1) s_1 → Finset.sup s f ≤ sSup s_1 → ∃ x, x ∈ s_1 ∧ Finset.sup s f ≤ x [PROOFSTEP] intro d hemp hdir hsup [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι → α✝ α : Type u_3 β : Type u_4 inst✝ : CompleteLattice α f : β → α s : Finset β h : ∀ (x : β), x ∈ s → IsCompactElement (f x) d : Set α hemp : Set.Nonempty d hdir : DirectedOn (fun x x_1 => x ≤ x_1) d hsup : Finset.sup s f ≤ sSup d ⊢ ∃ x, x ∈ d ∧ Finset.sup s f ≤ x [PROOFSTEP] rw [← Function.comp.left_id f] [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι → α✝ α : Type u_3 β : Type u_4 inst✝ : CompleteLattice α f : β → α s : Finset β h : ∀ (x : β), x ∈ s → IsCompactElement (f x) d : Set α hemp : Set.Nonempty d hdir : DirectedOn (fun x x_1 => x ≤ x_1) d hsup : Finset.sup s f ≤ sSup d ⊢ ∃ x, x ∈ d ∧ Finset.sup s (id ∘ f) ≤ x [PROOFSTEP] rw [← Finset.sup_image] [GOAL] ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι → α✝ α : Type u_3 β : Type u_4 inst✝ : CompleteLattice α f : β → α s : Finset β h : ∀ (x : β), x ∈ s → IsCompactElement (f x) d : Set α hemp : Set.Nonempty d hdir : DirectedOn (fun x x_1 => x ≤ x_1) d hsup : Finset.sup s f ≤ sSup d ⊢ ∃ x, x ∈ d ∧ Finset.sup (Finset.image f s) id ≤ x [PROOFSTEP] apply Finset.sup_le_of_le_directed d hemp hdir [GOAL] case a ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι → α✝ α : Type u_3 β : Type u_4 inst✝ : CompleteLattice α f : β → α s : Finset β h : ∀ (x : β), x ∈ s → IsCompactElement (f x) d : Set α hemp : Set.Nonempty d hdir : DirectedOn (fun x x_1 => x ≤ x_1) d hsup : Finset.sup s f ≤ sSup d ⊢ ∀ (x : α), x ∈ Finset.image f s → ∃ y, y ∈ d ∧ x ≤ y [PROOFSTEP] rintro x hx [GOAL] case a ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι → α✝ α : Type u_3 β : Type u_4 inst✝ : CompleteLattice α f : β → α s : Finset β h : ∀ (x : β), x ∈ s → IsCompactElement (f x) d : Set α hemp : Set.Nonempty d hdir : DirectedOn (fun x x_1 => x ≤ x_1) d hsup : Finset.sup s f ≤ sSup d x : α hx : x ∈ Finset.image f s ⊢ ∃ y, y ∈ d ∧ x ≤ y [PROOFSTEP] obtain ⟨p, ⟨hps, rfl⟩⟩ := Finset.mem_image.mp hx [GOAL] case a.intro.intro ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι → α✝ α : Type u_3 β : Type u_4 inst✝ : CompleteLattice α f : β → α s : Finset β h : ∀ (x : β), x ∈ s → IsCompactElement (f x) d : Set α hemp : Set.Nonempty d hdir : DirectedOn (fun x x_1 => x ≤ x_1) d hsup : Finset.sup s f ≤ sSup d p : β hps : p ∈ s hx : f p ∈ Finset.image f s ⊢ ∃ y, y ∈ d ∧ f p ≤ y [PROOFSTEP] specialize h p hps [GOAL] case a.intro.intro ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι → α✝ α : Type u_3 β : Type u_4 inst✝ : CompleteLattice α f : β → α s : Finset β d : Set α hemp : Set.Nonempty d hdir : DirectedOn (fun x x_1 => x ≤ x_1) d hsup : Finset.sup s f ≤ sSup d p : β hps : p ∈ s hx : f p ∈ Finset.image f s h : IsCompactElement (f p) ⊢ ∃ y, y ∈ d ∧ f p ≤ y [PROOFSTEP] rw [isCompactElement_iff_le_of_directed_sSup_le] at h [GOAL] case a.intro.intro ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι → α✝ α : Type u_3 β : Type u_4 inst✝ : CompleteLattice α f : β → α s : Finset β d : Set α hemp : Set.Nonempty d hdir : DirectedOn (fun x x_1 => x ≤ x_1) d hsup : Finset.sup s f ≤ sSup d p : β hps : p ∈ s hx : f p ∈ Finset.image f s h : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → f p ≤ sSup s → ∃ x, x ∈ s ∧ f p ≤ x ⊢ ∃ y, y ∈ d ∧ f p ≤ y [PROOFSTEP] specialize h d hemp hdir (le_trans (Finset.le_sup hps) hsup) [GOAL] case a.intro.intro ι : Sort u_1 α✝ : Type u_2 inst✝¹ : CompleteLattice α✝ f✝ : ι → α✝ α : Type u_3 β : Type u_4 inst✝ : CompleteLattice α f : β → α s : Finset β d : Set α hemp : Set.Nonempty d hdir : DirectedOn (fun x x_1 => x ≤ x_1) d hsup : Finset.sup s f ≤ sSup d p : β hps : p ∈ s hx : f p ∈ Finset.image f s h : ∃ x, x ∈ d ∧ f p ≤ x ⊢ ∃ y, y ∈ d ∧ f p ≤ y [PROOFSTEP] simpa only [exists_prop] [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α ⊢ ∃ t, ↑t ⊆ s ∧ sSup s = Finset.sup t id [PROOFSTEP] let S := {x | ∃ t : Finset α, ↑t ⊆ s ∧ t.sup id = x} [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x} ⊢ ∃ t, ↑t ⊆ s ∧ sSup s = Finset.sup t id [PROOFSTEP] obtain ⟨m, ⟨t, ⟨ht₁, rfl⟩⟩, hm⟩ := h.has_min S ⟨⊥, ∅, by simp⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x} ⊢ ↑∅ ⊆ s ∧ Finset.sup ∅ id = ⊥ [PROOFSTEP] simp [GOAL] case intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x} t : Finset α ht₁ : ↑t ⊆ s hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id ⊢ ∃ t, ↑t ⊆ s ∧ sSup s = Finset.sup t id [PROOFSTEP] refine' ⟨t, ht₁, (sSup_le _ _ fun y hy => _).antisymm _⟩ [GOAL] case intro.intro.intro.intro.refine'_1 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x} t : Finset α ht₁ : ↑t ⊆ s hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id y : α hy : y ∈ s ⊢ y ≤ Finset.sup t id [PROOFSTEP] classical rw [eq_of_le_of_not_lt (Finset.sup_mono (t.subset_insert y)) (hm _ ⟨insert y t, by simp [Set.insert_subset_iff, hy, ht₁]⟩)] simp [GOAL] case intro.intro.intro.intro.refine'_1 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x} t : Finset α ht₁ : ↑t ⊆ s hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id y : α hy : y ∈ s ⊢ y ≤ Finset.sup t id [PROOFSTEP] rw [eq_of_le_of_not_lt (Finset.sup_mono (t.subset_insert y)) (hm _ ⟨insert y t, by simp [Set.insert_subset_iff, hy, ht₁]⟩)] [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x} t : Finset α ht₁ : ↑t ⊆ s hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id y : α hy : y ∈ s ⊢ ↑(insert y t) ⊆ s ∧ Finset.sup (insert y t) id = Finset.sup (insert y t) id [PROOFSTEP] simp [Set.insert_subset_iff, hy, ht₁] [GOAL] case intro.intro.intro.intro.refine'_1 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x} t : Finset α ht₁ : ↑t ⊆ s hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id y : α hy : y ∈ s ⊢ y ≤ Finset.sup (insert y t) id [PROOFSTEP] simp [GOAL] case intro.intro.intro.intro.refine'_2 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x} t : Finset α ht₁ : ↑t ⊆ s hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id ⊢ Finset.sup t id ≤ sSup s [PROOFSTEP] rw [Finset.sup_id_eq_sSup] [GOAL] case intro.intro.intro.intro.refine'_2 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x} t : Finset α ht₁ : ↑t ⊆ s hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id ⊢ sSup ↑t ≤ sSup s [PROOFSTEP] exact sSup_le_sSup ht₁ [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupFiniteCompact α ⊢ IsSupClosedCompact α [PROOFSTEP] intro s hne hsc [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupFiniteCompact α s : Set α hne : Set.Nonempty s hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s ⊢ sSup s ∈ s [PROOFSTEP] obtain ⟨t, ht₁, ht₂⟩ := h s [GOAL] case intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupFiniteCompact α s : Set α hne : Set.Nonempty s hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id ⊢ sSup s ∈ s [PROOFSTEP] clear h [GOAL] case intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α s : Set α hne : Set.Nonempty s hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id ⊢ sSup s ∈ s [PROOFSTEP] cases' t.eq_empty_or_nonempty with h h [GOAL] case intro.intro.inl ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α s : Set α hne : Set.Nonempty s hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id h : t = ∅ ⊢ sSup s ∈ s [PROOFSTEP] subst h [GOAL] case intro.intro.inl ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α s : Set α hne : Set.Nonempty s hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s ht₁ : ↑∅ ⊆ s ht₂ : sSup s = Finset.sup ∅ id ⊢ sSup s ∈ s [PROOFSTEP] rw [Finset.sup_empty] at ht₂ [GOAL] case intro.intro.inl ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α s : Set α hne : Set.Nonempty s hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s ht₁ : ↑∅ ⊆ s ht₂ : sSup s = ⊥ ⊢ sSup s ∈ s [PROOFSTEP] rw [ht₂] [GOAL] case intro.intro.inl ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α s : Set α hne : Set.Nonempty s hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s ht₁ : ↑∅ ⊆ s ht₂ : sSup s = ⊥ ⊢ ⊥ ∈ s [PROOFSTEP] simp [eq_singleton_bot_of_sSup_eq_bot_of_nonempty ht₂ hne] [GOAL] case intro.intro.inr ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α s : Set α hne : Set.Nonempty s hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id h : Finset.Nonempty t ⊢ sSup s ∈ s [PROOFSTEP] rw [ht₂] [GOAL] case intro.intro.inr ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α s : Set α hne : Set.Nonempty s hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id h : Finset.Nonempty t ⊢ Finset.sup t id ∈ s [PROOFSTEP] exact t.sup_closed_of_sup_closed h ht₁ hsc [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α ⊢ WellFounded fun x x_1 => x > x_1 [PROOFSTEP] refine' RelEmbedding.wellFounded_iff_no_descending_seq.mpr ⟨fun a => _⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 ⊢ False [PROOFSTEP] suffices sSup (Set.range a) ∈ Set.range a by obtain ⟨n, hn⟩ := Set.mem_range.mp this have h' : sSup (Set.range a) < a (n + 1) := by change _ > _ simp [← hn, a.map_rel_iff] apply lt_irrefl (a (n + 1)) apply lt_of_le_of_lt _ h' apply le_sSup apply Set.mem_range_self [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 this : sSup (Set.range ↑a) ∈ Set.range ↑a ⊢ False [PROOFSTEP] obtain ⟨n, hn⟩ := Set.mem_range.mp this [GOAL] case intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 this : sSup (Set.range ↑a) ∈ Set.range ↑a n : ℕ hn : ↑a n = sSup (Set.range ↑a) ⊢ False [PROOFSTEP] have h' : sSup (Set.range a) < a (n + 1) := by change _ > _ simp [← hn, a.map_rel_iff] [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 this : sSup (Set.range ↑a) ∈ Set.range ↑a n : ℕ hn : ↑a n = sSup (Set.range ↑a) ⊢ sSup (Set.range ↑a) < ↑a (n + 1) [PROOFSTEP] change _ > _ [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 this : sSup (Set.range ↑a) ∈ Set.range ↑a n : ℕ hn : ↑a n = sSup (Set.range ↑a) ⊢ ↑a (n + 1) > sSup (Set.range ↑a) [PROOFSTEP] simp [← hn, a.map_rel_iff] [GOAL] case intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 this : sSup (Set.range ↑a) ∈ Set.range ↑a n : ℕ hn : ↑a n = sSup (Set.range ↑a) h' : sSup (Set.range ↑a) < ↑a (n + 1) ⊢ False [PROOFSTEP] apply lt_irrefl (a (n + 1)) [GOAL] case intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 this : sSup (Set.range ↑a) ∈ Set.range ↑a n : ℕ hn : ↑a n = sSup (Set.range ↑a) h' : sSup (Set.range ↑a) < ↑a (n + 1) ⊢ ↑a (n + 1) < ↑a (n + 1) [PROOFSTEP] apply lt_of_le_of_lt _ h' [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 this : sSup (Set.range ↑a) ∈ Set.range ↑a n : ℕ hn : ↑a n = sSup (Set.range ↑a) h' : sSup (Set.range ↑a) < ↑a (n + 1) ⊢ ↑a (n + 1) ≤ sSup (Set.range ↑a) [PROOFSTEP] apply le_sSup [GOAL] case a ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 this : sSup (Set.range ↑a) ∈ Set.range ↑a n : ℕ hn : ↑a n = sSup (Set.range ↑a) h' : sSup (Set.range ↑a) < ↑a (n + 1) ⊢ ↑a (n + 1) ∈ Set.range ↑a [PROOFSTEP] apply Set.mem_range_self [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 ⊢ sSup (Set.range ↑a) ∈ Set.range ↑a [PROOFSTEP] apply h (Set.range a) [GOAL] case x ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 ⊢ Set.Nonempty (Set.range ↑a) [PROOFSTEP] use a 37 [GOAL] case h ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 ⊢ ↑a 37 ∈ Set.range ↑a [PROOFSTEP] apply Set.mem_range_self [GOAL] case a ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 ⊢ ∀ (a_1 : α), a_1 ∈ Set.range ↑a → ∀ (b : α), b ∈ Set.range ↑a → a_1 ⊔ b ∈ Set.range ↑a [PROOFSTEP] rintro x ⟨m, hm⟩ y ⟨n, hn⟩ [GOAL] case a.intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 x : α m : ℕ hm : ↑a m = x y : α n : ℕ hn : ↑a n = y ⊢ x ⊔ y ∈ Set.range ↑a [PROOFSTEP] use m ⊔ n [GOAL] case h ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 x : α m : ℕ hm : ↑a m = x y : α n : ℕ hn : ↑a n = y ⊢ ↑a (m ⊔ n) = x ⊔ y [PROOFSTEP] rw [← hm, ← hn] [GOAL] case h ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupClosedCompact α a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1 x : α m : ℕ hm : ↑a m = x y : α n : ℕ hn : ↑a n = y ⊢ ↑a (m ⊔ n) = ↑a m ⊔ ↑a n [PROOFSTEP] apply RelHomClass.map_sup a [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α ⊢ IsSupFiniteCompact α ↔ ∀ (k : α), IsCompactElement k [PROOFSTEP] refine' ⟨fun h k s hs => _, fun h s => _⟩ [GOAL] case refine'_1 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupFiniteCompact α k : α s : Set α hs : k ≤ sSup s ⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id [PROOFSTEP] obtain ⟨t, ⟨hts, htsup⟩⟩ := h s [GOAL] case refine'_1.intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupFiniteCompact α k : α s : Set α hs : k ≤ sSup s t : Finset α hts : ↑t ⊆ s htsup : sSup s = Finset.sup t id ⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id [PROOFSTEP] use t, hts [GOAL] case right ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : IsSupFiniteCompact α k : α s : Set α hs : k ≤ sSup s t : Finset α hts : ↑t ⊆ s htsup : sSup s = Finset.sup t id ⊢ k ≤ Finset.sup t id [PROOFSTEP] rwa [← htsup] [GOAL] case refine'_2 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : ∀ (k : α), IsCompactElement k s : Set α ⊢ ∃ t, ↑t ⊆ s ∧ sSup s = Finset.sup t id [PROOFSTEP] obtain ⟨t, ⟨hts, htsup⟩⟩ := h (sSup s) s (by rfl) [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : ∀ (k : α), IsCompactElement k s : Set α ⊢ sSup s ≤ sSup s [PROOFSTEP] rfl [GOAL] case refine'_2.intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : ∀ (k : α), IsCompactElement k s : Set α t : Finset α hts : ↑t ⊆ s htsup : sSup s ≤ Finset.sup t id ⊢ ∃ t, ↑t ⊆ s ∧ sSup s = Finset.sup t id [PROOFSTEP] have : sSup s = t.sup id := by suffices t.sup id ≤ sSup s by apply le_antisymm <;> assumption simp only [id.def, Finset.sup_le_iff] intro x hx exact le_sSup _ _ (hts hx) [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : ∀ (k : α), IsCompactElement k s : Set α t : Finset α hts : ↑t ⊆ s htsup : sSup s ≤ Finset.sup t id ⊢ sSup s = Finset.sup t id [PROOFSTEP] suffices t.sup id ≤ sSup s by apply le_antisymm <;> assumption [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : ∀ (k : α), IsCompactElement k s : Set α t : Finset α hts : ↑t ⊆ s htsup : sSup s ≤ Finset.sup t id this : Finset.sup t id ≤ sSup s ⊢ sSup s = Finset.sup t id [PROOFSTEP] apply le_antisymm [GOAL] case a ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : ∀ (k : α), IsCompactElement k s : Set α t : Finset α hts : ↑t ⊆ s htsup : sSup s ≤ Finset.sup t id this : Finset.sup t id ≤ sSup s ⊢ sSup s ≤ Finset.sup t id [PROOFSTEP] assumption [GOAL] case a ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : ∀ (k : α), IsCompactElement k s : Set α t : Finset α hts : ↑t ⊆ s htsup : sSup s ≤ Finset.sup t id this : Finset.sup t id ≤ sSup s ⊢ Finset.sup t id ≤ sSup s [PROOFSTEP] assumption [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : ∀ (k : α), IsCompactElement k s : Set α t : Finset α hts : ↑t ⊆ s htsup : sSup s ≤ Finset.sup t id ⊢ Finset.sup t id ≤ sSup s [PROOFSTEP] simp only [id.def, Finset.sup_le_iff] [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : ∀ (k : α), IsCompactElement k s : Set α t : Finset α hts : ↑t ⊆ s htsup : sSup s ≤ Finset.sup t id ⊢ ∀ (b : α), b ∈ t → b ≤ sSup s [PROOFSTEP] intro x hx [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : ∀ (k : α), IsCompactElement k s : Set α t : Finset α hts : ↑t ⊆ s htsup : sSup s ≤ Finset.sup t id x : α hx : x ∈ t ⊢ x ≤ sSup s [PROOFSTEP] exact le_sSup _ _ (hts hx) [GOAL] case refine'_2.intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : ∀ (k : α), IsCompactElement k s : Set α t : Finset α hts : ↑t ⊆ s htsup : sSup s ≤ Finset.sup t id this : sSup s = Finset.sup t id ⊢ ∃ t, ↑t ⊆ s ∧ sSup s = Finset.sup t id [PROOFSTEP] exact ⟨t, hts, this⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α ⊢ TFAE [WellFounded fun x x_1 => x > x_1, IsSupFiniteCompact α, IsSupClosedCompact α, ∀ (k : α), IsCompactElement k] [PROOFSTEP] tfae_have 1 → 2 [GOAL] case tfae_1_to_2 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α ⊢ (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α [PROOFSTEP] exact WellFounded.isSupFiniteCompact α [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α ⊢ TFAE [WellFounded fun x x_1 => x > x_1, IsSupFiniteCompact α, IsSupClosedCompact α, ∀ (k : α), IsCompactElement k] [PROOFSTEP] tfae_have 2 → 3 [GOAL] case tfae_2_to_3 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α ⊢ IsSupFiniteCompact α → IsSupClosedCompact α [PROOFSTEP] exact IsSupFiniteCompact.isSupClosedCompact α [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α tfae_2_to_3 : IsSupFiniteCompact α → IsSupClosedCompact α ⊢ TFAE [WellFounded fun x x_1 => x > x_1, IsSupFiniteCompact α, IsSupClosedCompact α, ∀ (k : α), IsCompactElement k] [PROOFSTEP] tfae_have 3 → 1 [GOAL] case tfae_3_to_1 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α tfae_2_to_3 : IsSupFiniteCompact α → IsSupClosedCompact α ⊢ IsSupClosedCompact α → WellFounded fun x x_1 => x > x_1 [PROOFSTEP] exact IsSupClosedCompact.wellFounded α [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α tfae_2_to_3 : IsSupFiniteCompact α → IsSupClosedCompact α tfae_3_to_1 : IsSupClosedCompact α → WellFounded fun x x_1 => x > x_1 ⊢ TFAE [WellFounded fun x x_1 => x > x_1, IsSupFiniteCompact α, IsSupClosedCompact α, ∀ (k : α), IsCompactElement k] [PROOFSTEP] tfae_have 2 ↔ 4 [GOAL] case tfae_2_iff_4 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α tfae_2_to_3 : IsSupFiniteCompact α → IsSupClosedCompact α tfae_3_to_1 : IsSupClosedCompact α → WellFounded fun x x_1 => x > x_1 ⊢ IsSupFiniteCompact α ↔ ∀ (k : α), IsCompactElement k [PROOFSTEP] exact isSupFiniteCompact_iff_all_elements_compact α [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α tfae_2_to_3 : IsSupFiniteCompact α → IsSupClosedCompact α tfae_3_to_1 : IsSupClosedCompact α → WellFounded fun x x_1 => x > x_1 tfae_2_iff_4 : IsSupFiniteCompact α ↔ ∀ (k : α), IsCompactElement k ⊢ TFAE [WellFounded fun x x_1 => x > x_1, IsSupFiniteCompact α, IsSupClosedCompact α, ∀ (k : α), IsCompactElement k] [PROOFSTEP] tfae_finish [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s ⊢ Set.Finite s [PROOFSTEP] classical refine' Set.not_infinite.mp fun contra => _ obtain ⟨t, ht₁, ht₂⟩ := WellFounded.isSupFiniteCompact α h s replace contra : ∃ x : α, x ∈ s ∧ x ≠ ⊥ ∧ x ∉ t · have : (s \ (insert ⊥ t : Finset α)).Infinite := contra.diff (Finset.finite_toSet _) obtain ⟨x, hx₁, hx₂⟩ := this.nonempty exact ⟨x, hx₁, by simpa [not_or] using hx₂⟩ obtain ⟨x, hx₀, hx₁, hx₂⟩ := contra replace hs : x ⊓ sSup s = ⊥ · have := hs.mono (by simp [ht₁, hx₀, -Set.union_singleton] : ↑t ∪ { x } ≤ s) (by simp : x ∈ _) simpa [Disjoint, hx₂, ← t.sup_id_eq_sSup, ← ht₂] using this.eq_bot apply hx₁ rw [← hs, eq_comm, inf_eq_left] exact le_sSup _ _ hx₀ [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s ⊢ Set.Finite s [PROOFSTEP] refine' Set.not_infinite.mp fun contra => _ [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s contra : Set.Infinite s ⊢ False [PROOFSTEP] obtain ⟨t, ht₁, ht₂⟩ := WellFounded.isSupFiniteCompact α h s [GOAL] case intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s contra : Set.Infinite s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id ⊢ False [PROOFSTEP] replace contra : ∃ x : α, x ∈ s ∧ x ≠ ⊥ ∧ x ∉ t [GOAL] case contra ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s contra : Set.Infinite s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id ⊢ ∃ x, x ∈ s ∧ x ≠ ⊥ ∧ ¬x ∈ t [PROOFSTEP] have : (s \ (insert ⊥ t : Finset α)).Infinite := contra.diff (Finset.finite_toSet _) [GOAL] case contra ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s contra : Set.Infinite s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id this : Set.Infinite (s \ ↑(insert ⊥ t)) ⊢ ∃ x, x ∈ s ∧ x ≠ ⊥ ∧ ¬x ∈ t [PROOFSTEP] obtain ⟨x, hx₁, hx₂⟩ := this.nonempty [GOAL] case contra.intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s contra : Set.Infinite s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id this : Set.Infinite (s \ ↑(insert ⊥ t)) x : α hx₁ : x ∈ s hx₂ : ¬x ∈ ↑(insert ⊥ t) ⊢ ∃ x, x ∈ s ∧ x ≠ ⊥ ∧ ¬x ∈ t [PROOFSTEP] exact ⟨x, hx₁, by simpa [not_or] using hx₂⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s contra : Set.Infinite s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id this : Set.Infinite (s \ ↑(insert ⊥ t)) x : α hx₁ : x ∈ s hx₂ : ¬x ∈ ↑(insert ⊥ t) ⊢ x ≠ ⊥ ∧ ¬x ∈ t [PROOFSTEP] simpa [not_or] using hx₂ [GOAL] case intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id contra : ∃ x, x ∈ s ∧ x ≠ ⊥ ∧ ¬x ∈ t ⊢ False [PROOFSTEP] obtain ⟨x, hx₀, hx₁, hx₂⟩ := contra [GOAL] case intro.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id x : α hx₀ : x ∈ s hx₁ : x ≠ ⊥ hx₂ : ¬x ∈ t ⊢ False [PROOFSTEP] replace hs : x ⊓ sSup s = ⊥ [GOAL] case hs ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id x : α hx₀ : x ∈ s hx₁ : x ≠ ⊥ hx₂ : ¬x ∈ t ⊢ x ⊓ sSup s = ⊥ [PROOFSTEP] have := hs.mono (by simp [ht₁, hx₀, -Set.union_singleton] : ↑t ∪ { x } ≤ s) (by simp : x ∈ _) [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id x : α hx₀ : x ∈ s hx₁ : x ≠ ⊥ hx₂ : ¬x ∈ t ⊢ ↑t ∪ {x} ≤ s [PROOFSTEP] simp [ht₁, hx₀, -Set.union_singleton] [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id x : α hx₀ : x ∈ s hx₁ : x ≠ ⊥ hx₂ : ¬x ∈ t ⊢ x ∈ ↑t ∪ {x} [PROOFSTEP] simp [GOAL] case hs ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α hs : SetIndependent s t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id x : α hx₀ : x ∈ s hx₁ : x ≠ ⊥ hx₂ : ¬x ∈ t this : Disjoint x (sSup ((↑t ∪ {x}) \ {x})) ⊢ x ⊓ sSup s = ⊥ [PROOFSTEP] simpa [Disjoint, hx₂, ← t.sup_id_eq_sSup, ← ht₂] using this.eq_bot [GOAL] case intro.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id x : α hx₀ : x ∈ s hx₁ : x ≠ ⊥ hx₂ : ¬x ∈ t hs : x ⊓ sSup s = ⊥ ⊢ False [PROOFSTEP] apply hx₁ [GOAL] case intro.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id x : α hx₀ : x ∈ s hx₁ : x ≠ ⊥ hx₂ : ¬x ∈ t hs : x ⊓ sSup s = ⊥ ⊢ x = ⊥ [PROOFSTEP] rw [← hs, eq_comm, inf_eq_left] [GOAL] case intro.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 s : Set α t : Finset α ht₁ : ↑t ⊆ s ht₂ : sSup s = Finset.sup t id x : α hx₀ : x ∈ s hx₁ : x ≠ ⊥ hx₂ : ¬x ∈ t hs : x ⊓ sSup s = ⊥ ⊢ x ≤ sSup s [PROOFSTEP] exact le_sSup _ _ hx₀ [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b✝ : α s : Set α b : α ⊢ sSup {c | CompleteLattice.IsCompactElement c ∧ c ≤ b} = b [PROOFSTEP] rcases IsCompactlyGenerated.exists_sSup_eq b with ⟨s, hs, rfl⟩ [GOAL] case intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s✝ s : Set α hs : ∀ (x : α), x ∈ s → CompleteLattice.IsCompactElement x ⊢ sSup {c | CompleteLattice.IsCompactElement c ∧ c ≤ sSup s} = sSup s [PROOFSTEP] exact le_antisymm (sSup_le fun c hc => hc.2) (sSup_le_sSup fun c cs => ⟨hs c cs, le_sSup cs⟩) [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α ⊢ sSup {a | CompleteLattice.IsCompactElement a} = ⊤ [PROOFSTEP] refine' Eq.trans (congr rfl (Set.ext fun x => _)) (sSup_compact_le_eq ⊤) [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α x : α ⊢ x ∈ {a | CompleteLattice.IsCompactElement a} ↔ x ∈ {c | CompleteLattice.IsCompactElement c ∧ c ≤ ⊤} [PROOFSTEP] exact (and_iff_left le_top).symm [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b✝ : α s : Set α a b : α h : ∀ (c : α), CompleteLattice.IsCompactElement c → c ≤ a → c ≤ b ⊢ a ≤ b [PROOFSTEP] rw [← sSup_compact_le_eq a, ← sSup_compact_le_eq b] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b✝ : α s : Set α a b : α h : ∀ (c : α), CompleteLattice.IsCompactElement c → c ≤ a → c ≤ b ⊢ sSup {c | CompleteLattice.IsCompactElement c ∧ c ≤ a} ≤ sSup {c | CompleteLattice.IsCompactElement c ∧ c ≤ b} [PROOFSTEP] exact sSup_le_sSup fun c hc => ⟨hc.1, h c hc.1 hc.2⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : DirectedOn (fun x x_1 => x ≤ x_1) s ⊢ a ⊓ sSup s ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b [PROOFSTEP] rw [le_iff_compact_le_imp] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : DirectedOn (fun x x_1 => x ≤ x_1) s ⊢ ∀ (c : α), CompleteLattice.IsCompactElement c → c ≤ a ⊓ sSup s → c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b [PROOFSTEP] by_cases hs : s.Nonempty [GOAL] case pos ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : DirectedOn (fun x x_1 => x ≤ x_1) s hs : Set.Nonempty s ⊢ ∀ (c : α), CompleteLattice.IsCompactElement c → c ≤ a ⊓ sSup s → c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b [PROOFSTEP] intro c hc hcinf [GOAL] case pos ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : DirectedOn (fun x x_1 => x ≤ x_1) s hs : Set.Nonempty s c : α hc : CompleteLattice.IsCompactElement c hcinf : c ≤ a ⊓ sSup s ⊢ c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b [PROOFSTEP] rw [le_inf_iff] at hcinf [GOAL] case pos ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : DirectedOn (fun x x_1 => x ≤ x_1) s hs : Set.Nonempty s c : α hc : CompleteLattice.IsCompactElement c hcinf : c ≤ a ∧ c ≤ sSup s ⊢ c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b [PROOFSTEP] rw [CompleteLattice.isCompactElement_iff_le_of_directed_sSup_le] at hc [GOAL] case pos ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : DirectedOn (fun x x_1 => x ≤ x_1) s hs : Set.Nonempty s c : α hc : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → c ≤ sSup s → ∃ x, x ∈ s ∧ c ≤ x hcinf : c ≤ a ∧ c ≤ sSup s ⊢ c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b [PROOFSTEP] rcases hc s hs h hcinf.2 with ⟨d, ds, cd⟩ [GOAL] case pos.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : DirectedOn (fun x x_1 => x ≤ x_1) s hs : Set.Nonempty s c : α hc : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → c ≤ sSup s → ∃ x, x ∈ s ∧ c ≤ x hcinf : c ≤ a ∧ c ≤ sSup s d : α ds : d ∈ s cd : c ≤ d ⊢ c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b [PROOFSTEP] refine' (le_inf hcinf.1 cd).trans (le_trans _ (le_iSup₂ d ds)) [GOAL] case pos.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : DirectedOn (fun x x_1 => x ≤ x_1) s hs : Set.Nonempty s c : α hc : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → c ≤ sSup s → ∃ x, x ∈ s ∧ c ≤ x hcinf : c ≤ a ∧ c ≤ sSup s d : α ds : d ∈ s cd : c ≤ d ⊢ a ⊓ d ≤ a ⊓ d [PROOFSTEP] rfl [GOAL] case neg ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : DirectedOn (fun x x_1 => x ≤ x_1) s hs : ¬Set.Nonempty s ⊢ ∀ (c : α), CompleteLattice.IsCompactElement c → c ≤ a ⊓ sSup s → c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b [PROOFSTEP] rw [Set.not_nonempty_iff_eq_empty] at hs [GOAL] case neg ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : DirectedOn (fun x x_1 => x ≤ x_1) s hs : s = ∅ ⊢ ∀ (c : α), CompleteLattice.IsCompactElement c → c ≤ a ⊓ sSup s → c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b [PROOFSTEP] simp [hs] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : DirectedOn (fun x x_1 => x ≤ x_1) s ⊢ sSup s ⊓ a = ⨆ (b : α) (_ : b ∈ s), b ⊓ a [PROOFSTEP] simp_rw [@inf_comm _ _ _ a, h.inf_sSup_eq] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : Directed (fun x x_1 => x ≤ x_1) f ⊢ a ⊓ ⨆ (i : ι), f i = ⨆ (i : ι), a ⊓ f i [PROOFSTEP] rw [iSup, h.directedOn_range.inf_sSup_eq, iSup_range] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : Directed (fun x x_1 => x ≤ x_1) f ⊢ (⨆ (i : ι), f i) ⊓ a = ⨆ (i : ι), f i ⊓ a [PROOFSTEP] rw [iSup, h.directedOn_range.sSup_inf_eq, iSup_range] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : DirectedOn (fun x x_1 => x ≤ x_1) s ⊢ Disjoint a (sSup s) ↔ ∀ ⦃b : α⦄, b ∈ s → Disjoint a b [PROOFSTEP] simp_rw [disjoint_iff, h.inf_sSup_eq, iSup_eq_bot] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : DirectedOn (fun x x_1 => x ≤ x_1) s ⊢ Disjoint (sSup s) a ↔ ∀ ⦃b : α⦄, b ∈ s → Disjoint b a [PROOFSTEP] simp_rw [disjoint_iff, h.sSup_inf_eq, iSup_eq_bot] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : Directed (fun x x_1 => x ≤ x_1) f ⊢ Disjoint a (⨆ (i : ι), f i) ↔ ∀ (i : ι), Disjoint a (f i) [PROOFSTEP] simp_rw [disjoint_iff, h.inf_iSup_eq, iSup_eq_bot] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α h : Directed (fun x x_1 => x ≤ x_1) f ⊢ Disjoint (⨆ (i : ι), f i) a ↔ ∀ (i : ι), Disjoint (f i) a [PROOFSTEP] simp_rw [disjoint_iff, h.iSup_inf_eq, iSup_eq_bot] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α ⊢ a ⊓ sSup s ≤ ⨆ (t : Finset α) (_ : ↑t ⊆ s), a ⊓ Finset.sup t id [PROOFSTEP] rw [le_iff_compact_le_imp] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α ⊢ ∀ (c : α), CompleteLattice.IsCompactElement c → c ≤ a ⊓ sSup s → c ≤ ⨆ (t : Finset α) (_ : ↑t ⊆ s), a ⊓ Finset.sup t id [PROOFSTEP] intro c hc hcinf [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α c : α hc : CompleteLattice.IsCompactElement c hcinf : c ≤ a ⊓ sSup s ⊢ c ≤ ⨆ (t : Finset α) (_ : ↑t ⊆ s), a ⊓ Finset.sup t id [PROOFSTEP] rw [le_inf_iff] at hcinf [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α c : α hc : CompleteLattice.IsCompactElement c hcinf : c ≤ a ∧ c ≤ sSup s ⊢ c ≤ ⨆ (t : Finset α) (_ : ↑t ⊆ s), a ⊓ Finset.sup t id [PROOFSTEP] rcases hc s hcinf.2 with ⟨t, ht1, ht2⟩ [GOAL] case intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α c : α hc : CompleteLattice.IsCompactElement c hcinf : c ≤ a ∧ c ≤ sSup s t : Finset α ht1 : ↑t ⊆ s ht2 : c ≤ Finset.sup t id ⊢ c ≤ ⨆ (t : Finset α) (_ : ↑t ⊆ s), a ⊓ Finset.sup t id [PROOFSTEP] refine' (le_inf hcinf.1 ht2).trans (le_trans _ (le_iSup₂ t ht1)) [GOAL] case intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s : Set α c : α hc : CompleteLattice.IsCompactElement c hcinf : c ≤ a ∧ c ≤ sSup s t : Finset α ht1 : ↑t ⊆ s ht2 : c ≤ Finset.sup t id ⊢ a ⊓ Finset.sup t id ≤ a ⊓ Finset.sup t id [PROOFSTEP] rfl [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b : α s✝ s : Set α h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t a : α ha : a ∈ s ⊢ Disjoint a (sSup (s \ {a})) [PROOFSTEP] rw [disjoint_iff, inf_sSup_eq_iSup_inf_sup_finset, iSup_eq_bot] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b : α s✝ s : Set α h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t a : α ha : a ∈ s ⊢ ∀ (i : Finset α), ⨆ (_ : ↑i ⊆ s \ {a}), a ⊓ Finset.sup i id = ⊥ [PROOFSTEP] intro t [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b : α s✝ s : Set α h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t a : α ha : a ∈ s t : Finset α ⊢ ⨆ (_ : ↑t ⊆ s \ {a}), a ⊓ Finset.sup t id = ⊥ [PROOFSTEP] rw [iSup_eq_bot, Finset.sup_id_eq_sSup] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b : α s✝ s : Set α h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t a : α ha : a ∈ s t : Finset α ⊢ ↑t ⊆ s \ {a} → a ⊓ sSup ↑t = ⊥ [PROOFSTEP] intro ht [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b : α s✝ s : Set α h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t a : α ha : a ∈ s t : Finset α ht : ↑t ⊆ s \ {a} ⊢ a ⊓ sSup ↑t = ⊥ [PROOFSTEP] classical have h' := (h (insert a t) ?_ (t.mem_insert_self a)).eq_bot · rwa [Finset.coe_insert, Set.insert_diff_self_of_not_mem] at h' exact fun con => ((Set.mem_diff a).1 (ht con)).2 (Set.mem_singleton a) · rw [Finset.coe_insert, Set.insert_subset_iff] exact ⟨ha, Set.Subset.trans ht (Set.diff_subset _ _)⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b : α s✝ s : Set α h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t a : α ha : a ∈ s t : Finset α ht : ↑t ⊆ s \ {a} ⊢ a ⊓ sSup ↑t = ⊥ [PROOFSTEP] have h' := (h (insert a t) ?_ (t.mem_insert_self a)).eq_bot [GOAL] case refine_2 ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b : α s✝ s : Set α h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t a : α ha : a ∈ s t : Finset α ht : ↑t ⊆ s \ {a} h' : a ⊓ sSup (↑(insert a t) \ {a}) = ⊥ ⊢ a ⊓ sSup ↑t = ⊥ [PROOFSTEP] rwa [Finset.coe_insert, Set.insert_diff_self_of_not_mem] at h' [GOAL] case refine_2 ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b : α s✝ s : Set α h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t a : α ha : a ∈ s t : Finset α ht : ↑t ⊆ s \ {a} h' : a ⊓ sSup (insert a ↑t \ {a}) = ⊥ ⊢ ¬a ∈ ↑t [PROOFSTEP] exact fun con => ((Set.mem_diff a).1 (ht con)).2 (Set.mem_singleton a) [GOAL] case refine_1 ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b : α s✝ s : Set α h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t a : α ha : a ∈ s t : Finset α ht : ↑t ⊆ s \ {a} ⊢ ↑(insert a t) ⊆ s [PROOFSTEP] rw [Finset.coe_insert, Set.insert_subset_iff] [GOAL] case refine_1 ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b : α s✝ s : Set α h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t a : α ha : a ∈ s t : Finset α ht : ↑t ⊆ s \ {a} ⊢ a ∈ s ∧ ↑t ⊆ s [PROOFSTEP] exact ⟨ha, Set.Subset.trans ht (Set.diff_subset _ _)⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s✝ : Set α η : Type u_3 s : η → Set α hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), SetIndependent (s i) ⊢ SetIndependent (⋃ (i : η), s i) [PROOFSTEP] by_cases hη : Nonempty η [GOAL] case pos ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s✝ : Set α η : Type u_3 s : η → Set α hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), SetIndependent (s i) hη : Nonempty η ⊢ SetIndependent (⋃ (i : η), s i) [PROOFSTEP] rw [CompleteLattice.setIndependent_iff_finite] [GOAL] case pos ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s✝ : Set α η : Type u_3 s : η → Set α hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), SetIndependent (s i) hη : Nonempty η ⊢ ∀ (t : Finset α), ↑t ⊆ ⋃ (i : η), s i → SetIndependent ↑t [PROOFSTEP] intro t ht [GOAL] case pos ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s✝ : Set α η : Type u_3 s : η → Set α hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), SetIndependent (s i) hη : Nonempty η t : Finset α ht : ↑t ⊆ ⋃ (i : η), s i ⊢ SetIndependent ↑t [PROOFSTEP] obtain ⟨I, fi, hI⟩ := Set.finite_subset_iUnion t.finite_toSet ht [GOAL] case pos.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s✝ : Set α η : Type u_3 s : η → Set α hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), SetIndependent (s i) hη : Nonempty η t : Finset α ht : ↑t ⊆ ⋃ (i : η), s i I : Set η fi : Set.Finite I hI : ↑t ⊆ ⋃ (i : η) (_ : i ∈ I), s i ⊢ SetIndependent ↑t [PROOFSTEP] obtain ⟨i, hi⟩ := hs.finset_le fi.toFinset [GOAL] case pos.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s✝ : Set α η : Type u_3 s : η → Set α hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), SetIndependent (s i) hη : Nonempty η t : Finset α ht : ↑t ⊆ ⋃ (i : η), s i I : Set η fi : Set.Finite I hI : ↑t ⊆ ⋃ (i : η) (_ : i ∈ I), s i i : η hi : ∀ (i_1 : η), i_1 ∈ Set.Finite.toFinset fi → s i_1 ⊆ s i ⊢ SetIndependent ↑t [PROOFSTEP] exact (h i).mono (Set.Subset.trans hI <| Set.iUnion₂_subset fun j hj => hi j (fi.mem_toFinset.2 hj)) [GOAL] case neg ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s✝ : Set α η : Type u_3 s : η → Set α hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), SetIndependent (s i) hη : ¬Nonempty η ⊢ SetIndependent (⋃ (i : η), s i) [PROOFSTEP] rintro a ⟨_, ⟨i, _⟩, _⟩ [GOAL] case neg.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b : α s✝ : Set α η : Type u_3 s : η → Set α hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), SetIndependent (s i) hη : ¬Nonempty η a : α w✝ : Set α right✝ : a ∈ w✝ i : η h✝ : (fun i => s i) i = w✝ ⊢ Disjoint a (sSup ((⋃ (i : η), s i) \ {a})) [PROOFSTEP] exfalso [GOAL] case neg.intro.intro.intro.h ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a✝ b : α s✝ : Set α η : Type u_3 s : η → Set α hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), SetIndependent (s i) hη : ¬Nonempty η a : α w✝ : Set α right✝ : a ∈ w✝ i : η h✝ : (fun i => s i) i = w✝ ⊢ False [PROOFSTEP] exact hη ⟨i⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s✝ : Set α s : Set (Set α) hs : DirectedOn (fun x x_1 => x ⊆ x_1) s h : ∀ (a : Set α), a ∈ s → SetIndependent a ⊢ SetIndependent (⋃₀ s) [PROOFSTEP] rw [Set.sUnion_eq_iUnion] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s✝ : Set α s : Set (Set α) hs : DirectedOn (fun x x_1 => x ⊆ x_1) s h : ∀ (a : Set α), a ∈ s → SetIndependent a ⊢ SetIndependent (⋃ (i : ↑s), ↑i) [PROOFSTEP] exact CompleteLattice.setIndependent_iUnion_of_directed hs.directed_val (by simpa using h) [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : CompleteLattice α inst✝ : IsCompactlyGenerated α a b : α s✝ : Set α s : Set (Set α) hs : DirectedOn (fun x x_1 => x ⊆ x_1) s h : ∀ (a : Set α), a ∈ s → SetIndependent a ⊢ ∀ (i : ↑s), SetIndependent ↑i [PROOFSTEP] simpa using h [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : WellFounded fun x x_1 => x > x_1 ⊢ IsCompactlyGenerated α [PROOFSTEP] rw [wellFounded_iff_isSupFiniteCompact, isSupFiniteCompact_iff_all_elements_compact] at h [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α h : ∀ (k : α), IsCompactElement k ⊢ IsCompactlyGenerated α [PROOFSTEP] exact ⟨fun x => ⟨{ x }, ⟨fun x _ => h x, sSup_singleton⟩⟩⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h : IsCompactElement k ⊢ IsCoatomic ↑(Set.Iic k) [PROOFSTEP] constructor [GOAL] case eq_top_or_exists_le_coatom ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h : IsCompactElement k ⊢ ∀ (b : ↑(Set.Iic k)), b = ⊤ ∨ ∃ a, IsCoatom a ∧ b ≤ a [PROOFSTEP] rintro ⟨b, hbk⟩ [GOAL] case eq_top_or_exists_le_coatom.mk ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h : IsCompactElement k b : α hbk : b ∈ Set.Iic k ⊢ { val := b, property := hbk } = ⊤ ∨ ∃ a, IsCoatom a ∧ { val := b, property := hbk } ≤ a [PROOFSTEP] obtain rfl | H := eq_or_ne b k [GOAL] case eq_top_or_exists_le_coatom.mk.inl ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α b : α h : IsCompactElement b hbk : b ∈ Set.Iic b ⊢ { val := b, property := hbk } = ⊤ ∨ ∃ a, IsCoatom a ∧ { val := b, property := hbk } ≤ a [PROOFSTEP] left [GOAL] case eq_top_or_exists_le_coatom.mk.inl.h ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α b : α h : IsCompactElement b hbk : b ∈ Set.Iic b ⊢ { val := b, property := hbk } = ⊤ [PROOFSTEP] ext [GOAL] case eq_top_or_exists_le_coatom.mk.inl.h.a ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α b : α h : IsCompactElement b hbk : b ∈ Set.Iic b ⊢ ↑{ val := b, property := hbk } = ↑⊤ [PROOFSTEP] simp only [Set.Iic.coe_top, Subtype.coe_mk] [GOAL] case eq_top_or_exists_le_coatom.mk.inr ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h : IsCompactElement k b : α hbk : b ∈ Set.Iic k H : b ≠ k ⊢ { val := b, property := hbk } = ⊤ ∨ ∃ a, IsCoatom a ∧ { val := b, property := hbk } ≤ a [PROOFSTEP] right [GOAL] case eq_top_or_exists_le_coatom.mk.inr.h ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h : IsCompactElement k b : α hbk : b ∈ Set.Iic k H : b ≠ k ⊢ ∃ a, IsCoatom a ∧ { val := b, property := hbk } ≤ a [PROOFSTEP] have ⟨a, a₀, ba, h⟩ := zorn_nonempty_partialOrder₀ (Set.Iio k) ?_ b (lt_of_le_of_ne hbk H) [GOAL] case eq_top_or_exists_le_coatom.mk.inr.h.refine_2 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h✝ : IsCompactElement k b : α hbk : b ∈ Set.Iic k H : b ≠ k a : α a₀ : a ∈ Set.Iio k ba : b ≤ a h : ∀ (z : α), z ∈ Set.Iio k → a ≤ z → z = a ⊢ ∃ a, IsCoatom a ∧ { val := b, property := hbk } ≤ a [PROOFSTEP] refine' ⟨⟨a, le_of_lt a₀⟩, ⟨ne_of_lt a₀, fun c hck => by_contradiction fun c₀ => _⟩, ba⟩ [GOAL] case eq_top_or_exists_le_coatom.mk.inr.h.refine_2 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h✝ : IsCompactElement k b : α hbk : b ∈ Set.Iic k H : b ≠ k a : α a₀ : a ∈ Set.Iio k ba : b ≤ a h : ∀ (z : α), z ∈ Set.Iio k → a ≤ z → z = a c : ↑(Set.Iic k) hck : { val := a, property := (_ : a ≤ k) } < c c₀ : ¬c = ⊤ ⊢ False [PROOFSTEP] cases h c.1 (lt_of_le_of_ne c.2 fun con => c₀ (Subtype.ext con)) hck.le [GOAL] case eq_top_or_exists_le_coatom.mk.inr.h.refine_2.refl ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h✝ : IsCompactElement k b : α hbk : b ∈ Set.Iic k H : b ≠ k c : ↑(Set.Iic k) c₀ : ¬c = ⊤ a₀ : ↑c ∈ Set.Iio k ba : b ≤ ↑c h : ∀ (z : α), z ∈ Set.Iio k → ↑c ≤ z → z = ↑c hck : { val := ↑c, property := (_ : ↑c ≤ k) } < c ⊢ False [PROOFSTEP] exact lt_irrefl _ hck [GOAL] case eq_top_or_exists_le_coatom.mk.inr.h.refine_1 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h : IsCompactElement k b : α hbk : b ∈ Set.Iic k H : b ≠ k ⊢ ∀ (c : Set α), c ⊆ Set.Iio k → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ Set.Iio k ∧ ∀ (z : α), z ∈ c → z ≤ ub [PROOFSTEP] intro S SC cC I _ [GOAL] case eq_top_or_exists_le_coatom.mk.inr.h.refine_1 ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h : IsCompactElement k b : α hbk : b ∈ Set.Iic k H : b ≠ k S : Set α SC : S ⊆ Set.Iio k cC : IsChain (fun x x_1 => x ≤ x_1) S I : α a✝ : I ∈ S ⊢ ∃ ub, ub ∈ Set.Iio k ∧ ∀ (z : α), z ∈ S → z ≤ ub [PROOFSTEP] by_cases hS : S.Nonempty [GOAL] case pos ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h : IsCompactElement k b : α hbk : b ∈ Set.Iic k H : b ≠ k S : Set α SC : S ⊆ Set.Iio k cC : IsChain (fun x x_1 => x ≤ x_1) S I : α a✝ : I ∈ S hS : Set.Nonempty S ⊢ ∃ ub, ub ∈ Set.Iio k ∧ ∀ (z : α), z ∈ S → z ≤ ub [PROOFSTEP] refine' ⟨sSup S, h.directed_sSup_lt_of_lt hS cC.directedOn SC, _⟩ [GOAL] case pos ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h : IsCompactElement k b : α hbk : b ∈ Set.Iic k H : b ≠ k S : Set α SC : S ⊆ Set.Iio k cC : IsChain (fun x x_1 => x ≤ x_1) S I : α a✝ : I ∈ S hS : Set.Nonempty S ⊢ ∀ (z : α), z ∈ S → z ≤ sSup S [PROOFSTEP] intro [GOAL] case pos ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h : IsCompactElement k b : α hbk : b ∈ Set.Iic k H : b ≠ k S : Set α SC : S ⊆ Set.Iio k cC : IsChain (fun x x_1 => x ≤ x_1) S I : α a✝ : I ∈ S hS : Set.Nonempty S z✝ : α ⊢ z✝ ∈ S → z✝ ≤ sSup S [PROOFSTEP] apply le_sSup [GOAL] case neg ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h : IsCompactElement k b : α hbk : b ∈ Set.Iic k H : b ≠ k S : Set α SC : S ⊆ Set.Iio k cC : IsChain (fun x x_1 => x ≤ x_1) S I : α a✝ : I ∈ S hS : ¬Set.Nonempty S ⊢ ∃ ub, ub ∈ Set.Iio k ∧ ∀ (z : α), z ∈ S → z ≤ ub [PROOFSTEP] exact ⟨b, lt_of_le_of_ne hbk H, by simp only [Set.not_nonempty_iff_eq_empty.mp hS, Set.mem_empty_iff_false, forall_const, forall_prop_of_false, not_false_iff]⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝ : CompleteLattice α f : ι → α k : α h : IsCompactElement k b : α hbk : b ∈ Set.Iic k H : b ≠ k S : Set α SC : S ⊆ Set.Iio k cC : IsChain (fun x x_1 => x ≤ x_1) S I : α a✝ : I ∈ S hS : ¬Set.Nonempty S ⊢ ∀ (z : α), z ∈ S → z ≤ b [PROOFSTEP] simp only [Set.not_nonempty_iff_eq_empty.mp hS, Set.mem_empty_iff_false, forall_const, forall_prop_of_false, not_false_iff] [GOAL] ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α ⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] by_cases h : {c : α | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} [GOAL] case pos ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : {c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} ⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] left [GOAL] case pos.h ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : {c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} ⊢ b = ⊥ [PROOFSTEP] rw [← sSup_compact_le_eq b, sSup_eq_bot] [GOAL] case pos.h ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : {c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} ⊢ ∀ (a : α), a ∈ {c | CompleteLattice.IsCompactElement c ∧ c ≤ b} → a = ⊥ [PROOFSTEP] exact h [GOAL] case neg ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} ⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] rcases Set.not_subset.1 h with ⟨c, ⟨hc, hcb⟩, hcbot⟩ [GOAL] case neg.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} c : α hcbot : ¬c ∈ {⊥} hc : CompleteLattice.IsCompactElement c hcb : c ≤ b ⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] right [GOAL] case neg.intro.intro.intro.h ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} c : α hcbot : ¬c ∈ {⊥} hc : CompleteLattice.IsCompactElement c hcb : c ≤ b ⊢ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] have hc' := CompleteLattice.Iic_coatomic_of_compact_element hc [GOAL] case neg.intro.intro.intro.h ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} c : α hcbot : ¬c ∈ {⊥} hc : CompleteLattice.IsCompactElement c hcb : c ≤ b hc' : IsCoatomic ↑(Set.Iic c) ⊢ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] rw [← isAtomic_iff_isCoatomic] at hc' [GOAL] case neg.intro.intro.intro.h ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} c : α hcbot : ¬c ∈ {⊥} hc : CompleteLattice.IsCompactElement c hcb : c ≤ b hc' : IsAtomic ↑(Set.Iic c) ⊢ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] haveI := hc' [GOAL] case neg.intro.intro.intro.h ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} c : α hcbot : ¬c ∈ {⊥} hc : CompleteLattice.IsCompactElement c hcb : c ≤ b hc' this : IsAtomic ↑(Set.Iic c) ⊢ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] obtain con | ⟨a, ha, hac⟩ := eq_bot_or_exists_atom_le (⟨c, le_refl c⟩ : Set.Iic c) [GOAL] case neg.intro.intro.intro.h.inl ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} c : α hcbot : ¬c ∈ {⊥} hc : CompleteLattice.IsCompactElement c hcb : c ≤ b hc' this : IsAtomic ↑(Set.Iic c) con : { val := c, property := (_ : c ≤ c) } = ⊥ ⊢ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] exfalso [GOAL] case neg.intro.intro.intro.h.inl.h ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} c : α hcbot : ¬c ∈ {⊥} hc : CompleteLattice.IsCompactElement c hcb : c ≤ b hc' this : IsAtomic ↑(Set.Iic c) con : { val := c, property := (_ : c ≤ c) } = ⊥ ⊢ False [PROOFSTEP] apply hcbot [GOAL] case neg.intro.intro.intro.h.inl.h ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} c : α hcbot : ¬c ∈ {⊥} hc : CompleteLattice.IsCompactElement c hcb : c ≤ b hc' this : IsAtomic ↑(Set.Iic c) con : { val := c, property := (_ : c ≤ c) } = ⊥ ⊢ c ∈ {⊥} [PROOFSTEP] simp only [Subtype.ext_iff, Set.Iic.coe_bot, Subtype.coe_mk] at con [GOAL] case neg.intro.intro.intro.h.inl.h ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} c : α hcbot : ¬c ∈ {⊥} hc : CompleteLattice.IsCompactElement c hcb : c ≤ b hc' this : IsAtomic ↑(Set.Iic c) con : c = ⊥ ⊢ c ∈ {⊥} [PROOFSTEP] exact con [GOAL] case neg.intro.intro.intro.h.inr.intro.intro ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} c : α hcbot : ¬c ∈ {⊥} hc : CompleteLattice.IsCompactElement c hcb : c ≤ b hc' this : IsAtomic ↑(Set.Iic c) a : { x // x ∈ Set.Iic c } ha : IsAtom a hac : a ≤ { val := c, property := (_ : c ≤ c) } ⊢ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] rw [← Subtype.coe_le_coe, Subtype.coe_mk] at hac [GOAL] case neg.intro.intro.intro.h.inr.intro.intro ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥} c : α hcbot : ¬c ∈ {⊥} hc : CompleteLattice.IsCompactElement c hcb : c ≤ b hc' this : IsAtomic ↑(Set.Iic c) a : { x // x ∈ Set.Iic c } ha : IsAtom a hac : ↑a ≤ ↑{ val := c, property := (_ : c ≤ c) } ⊢ ∃ a, IsAtom a ∧ a ≤ b [PROOFSTEP] exact ⟨a, ha.of_isAtom_coe_Iic, hac.trans hcb⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α ⊢ b = sSup {a | IsAtom a ∧ a ≤ b} [PROOFSTEP] symm [GOAL] ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α ⊢ sSup {a | IsAtom a ∧ a ≤ b} = b [PROOFSTEP] have hle : sSup {a : α | IsAtom a ∧ a ≤ b} ≤ b := sSup_le fun _ => And.right [GOAL] ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b ⊢ sSup {a | IsAtom a ∧ a ≤ b} = b [PROOFSTEP] apply (lt_or_eq_of_le hle).resolve_left _ [GOAL] ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b ⊢ ¬sSup {a | IsAtom a ∧ a ≤ b} < b [PROOFSTEP] intro con [GOAL] ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b con : sSup {a | IsAtom a ∧ a ≤ b} < b ⊢ False [PROOFSTEP] obtain ⟨c, hc⟩ := exists_isCompl (⟨sSup {a : α | IsAtom a ∧ a ≤ b}, hle⟩ : Set.Iic b) [GOAL] case intro ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b con : sSup {a | IsAtom a ∧ a ≤ b} < b c : { x // x ∈ Set.Iic b } hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } c ⊢ False [PROOFSTEP] obtain rfl | ⟨a, ha, hac⟩ := eq_bot_or_exists_atom_le c [GOAL] case intro.inl ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b con : sSup {a | IsAtom a ∧ a ≤ b} < b hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } ⊥ ⊢ False [PROOFSTEP] exact ne_of_lt con (Subtype.ext_iff.1 (eq_top_of_isCompl_bot hc)) [GOAL] case intro.inr.intro.intro ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b con : sSup {a | IsAtom a ∧ a ≤ b} < b c : { x // x ∈ Set.Iic b } hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } c a : { x // x ∈ Set.Iic b } ha : IsAtom a hac : a ≤ c ⊢ False [PROOFSTEP] apply ha.1 [GOAL] case intro.inr.intro.intro ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b con : sSup {a | IsAtom a ∧ a ≤ b} < b c : { x // x ∈ Set.Iic b } hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } c a : { x // x ∈ Set.Iic b } ha : IsAtom a hac : a ≤ c ⊢ a = ⊥ [PROOFSTEP] rw [eq_bot_iff] [GOAL] case intro.inr.intro.intro ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b con : sSup {a | IsAtom a ∧ a ≤ b} < b c : { x // x ∈ Set.Iic b } hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } c a : { x // x ∈ Set.Iic b } ha : IsAtom a hac : a ≤ c ⊢ a ≤ ⊥ [PROOFSTEP] apply le_trans (le_inf _ hac) hc.disjoint.le_bot [GOAL] ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b con : sSup {a | IsAtom a ∧ a ≤ b} < b c : { x // x ∈ Set.Iic b } hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } c a : { x // x ∈ Set.Iic b } ha : IsAtom a hac : a ≤ c ⊢ a ≤ { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } [PROOFSTEP] rw [← Subtype.coe_le_coe, Subtype.coe_mk] [GOAL] ι : Sort u_1 α : Type u_2 inst✝³ : CompleteLattice α f : ι → α inst✝² : IsModularLattice α inst✝¹ : IsCompactlyGenerated α inst✝ : ComplementedLattice α b : α hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b con : sSup {a | IsAtom a ∧ a ≤ b} < b c : { x // x ∈ Set.Iic b } hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } c a : { x // x ∈ Set.Iic b } ha : IsAtom a hac : a ≤ c ⊢ ↑a ≤ ↑{ val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } [PROOFSTEP] exact le_sSup ⟨ha.of_isAtom_coe_Iic, a.2⟩ [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α ⊢ ∃ s, CompleteLattice.SetIndependent s ∧ IsCompl b (sSup s) ∧ ∀ ⦃a : α⦄, a ∈ s → IsAtom a [PROOFSTEP] have := zorn_subset {s : Set α | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ a ∈ s, IsAtom a} fun c hc1 hc2 => ⟨⋃₀ c, ⟨CompleteLattice.independent_sUnion_of_directed hc2.directedOn fun s hs => (hc1 hs).1, ?_, fun a ⟨s, sc, as⟩ => (hc1 sc).2.2 a as⟩, fun _ => Set.subset_sUnion_of_mem⟩ [GOAL] case refine_2 ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α this : ∃ m, m ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} ∧ ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → m ⊆ a → a = m ⊢ ∃ s, CompleteLattice.SetIndependent s ∧ IsCompl b (sSup s) ∧ ∀ ⦃a : α⦄, a ∈ s → IsAtom a case refine_1 ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α c : Set (Set α) hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} hc2 : IsChain (fun x x_1 => x ⊆ x_1) c ⊢ Disjoint b (sSup (⋃₀ c)) [PROOFSTEP] obtain ⟨s, ⟨s_ind, b_inf_Sup_s, s_atoms⟩, s_max⟩ := this [GOAL] case refine_2.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a ⊢ ∃ s, CompleteLattice.SetIndependent s ∧ IsCompl b (sSup s) ∧ ∀ ⦃a : α⦄, a ∈ s → IsAtom a case refine_1 ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α c : Set (Set α) hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} hc2 : IsChain (fun x x_1 => x ⊆ x_1) c ⊢ Disjoint b (sSup (⋃₀ c)) [PROOFSTEP] swap [GOAL] case refine_1 ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α c : Set (Set α) hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} hc2 : IsChain (fun x x_1 => x ⊆ x_1) c ⊢ Disjoint b (sSup (⋃₀ c)) [PROOFSTEP] rw [sSup_sUnion, ← sSup_image, DirectedOn.disjoint_sSup_right] [GOAL] case refine_1 ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α c : Set (Set α) hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} hc2 : IsChain (fun x x_1 => x ⊆ x_1) c ⊢ ∀ ⦃b_1 : α⦄, b_1 ∈ (fun t => sSup t) '' c → Disjoint b b_1 [PROOFSTEP] rintro _ ⟨s, hs, rfl⟩ [GOAL] case refine_1.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α c : Set (Set α) hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} hc2 : IsChain (fun x x_1 => x ⊆ x_1) c s : Set α hs : s ∈ c ⊢ Disjoint b ((fun t => sSup t) s) [PROOFSTEP] exact (hc1 hs).2.1 [GOAL] case refine_1 ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α c : Set (Set α) hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} hc2 : IsChain (fun x x_1 => x ⊆ x_1) c ⊢ DirectedOn (fun x x_1 => x ≤ x_1) ((fun t => sSup t) '' c) [PROOFSTEP] rw [directedOn_image] [GOAL] case refine_1 ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α c : Set (Set α) hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} hc2 : IsChain (fun x x_1 => x ⊆ x_1) c ⊢ DirectedOn ((fun t => sSup t) ⁻¹'o fun x x_1 => x ≤ x_1) c [PROOFSTEP] exact hc2.directedOn.mono @fun s t => sSup_le_sSup [GOAL] case refine_2.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a ⊢ ∃ s, CompleteLattice.SetIndependent s ∧ IsCompl b (sSup s) ∧ ∀ ⦃a : α⦄, a ∈ s → IsAtom a [PROOFSTEP] refine' ⟨s, s_ind, ⟨b_inf_Sup_s, _⟩, s_atoms⟩ [GOAL] case refine_2.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a ⊢ Codisjoint b (sSup s) [PROOFSTEP] rw [codisjoint_iff_le_sup, ← h, sSup_le_iff] [GOAL] case refine_2.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a ⊢ ∀ (b_1 : α), b_1 ∈ {a | IsAtom a} → b_1 ≤ b ⊔ sSup s [PROOFSTEP] intro a ha [GOAL] case refine_2.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} ⊢ a ≤ b ⊔ sSup s [PROOFSTEP] rw [← inf_eq_left] [GOAL] case refine_2.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} ⊢ a ⊓ (b ⊔ sSup s) = a [PROOFSTEP] refine' (ha.le_iff.mp inf_le_left).resolve_left fun con => ha.1 _ [GOAL] case refine_2.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : a ⊓ (b ⊔ sSup s) = ⊥ ⊢ a = ⊥ [PROOFSTEP] rw [← con, eq_comm, inf_eq_left] [GOAL] case refine_2.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : a ⊓ (b ⊔ sSup s) = ⊥ ⊢ a ≤ b ⊔ sSup s [PROOFSTEP] refine' (le_sSup _).trans le_sup_right [GOAL] case refine_2.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : a ⊓ (b ⊔ sSup s) = ⊥ ⊢ a ∈ s [PROOFSTEP] rw [← disjoint_iff] at con [GOAL] case refine_2.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) ⊢ a ∈ s [PROOFSTEP] have a_dis_Sup_s : Disjoint a (sSup s) := con.mono_right le_sup_right [GOAL] case refine_2.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) ⊢ a ∈ s [PROOFSTEP] rw [← s_max (s ∪ { a }) ⟨fun x hx => _, _, fun x hx => _⟩ (Set.subset_union_left _ _)] [GOAL] case refine_2.intro.intro.intro.intro ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) ⊢ a ∈ s ∪ {a} [PROOFSTEP] exact Set.mem_union_right _ (Set.mem_singleton _) [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) ⊢ ∀ (x : α), x ∈ s ∪ {a} → Disjoint x (sSup ((s ∪ {a}) \ {x})) [PROOFSTEP] intro x hx [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∪ {a} ⊢ Disjoint x (sSup ((s ∪ {a}) \ {x})) [PROOFSTEP] rw [Set.mem_union, Set.mem_singleton_iff] at hx [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a ⊢ Disjoint x (sSup ((s ∪ {a}) \ {x})) [PROOFSTEP] obtain rfl | xa := eq_or_ne x a [GOAL] case inl ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a x : α ha : x ∈ {a | IsAtom a} con : Disjoint x (b ⊔ sSup s) a_dis_Sup_s : Disjoint x (sSup s) hx : x ∈ s ∨ x = x ⊢ Disjoint x (sSup ((s ∪ {x}) \ {x})) [PROOFSTEP] simp only [Set.mem_singleton, Set.insert_diff_of_mem, Set.union_singleton] [GOAL] case inl ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a x : α ha : x ∈ {a | IsAtom a} con : Disjoint x (b ⊔ sSup s) a_dis_Sup_s : Disjoint x (sSup s) hx : x ∈ s ∨ x = x ⊢ Disjoint x (sSup (s \ {x})) [PROOFSTEP] exact con.mono_right ((sSup_le_sSup <| Set.diff_subset _ _).trans le_sup_right) [GOAL] case inr ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a xa : x ≠ a ⊢ Disjoint x (sSup ((s ∪ {a}) \ {x})) [PROOFSTEP] have h : (s ∪ { a }) \ { x } = s \ { x } ∪ { a } := by simp only [Set.union_singleton] rw [Set.insert_diff_of_not_mem] rw [Set.mem_singleton_iff] exact Ne.symm xa [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a xa : x ≠ a ⊢ (s ∪ {a}) \ {x} = s \ {x} ∪ {a} [PROOFSTEP] simp only [Set.union_singleton] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a xa : x ≠ a ⊢ insert a s \ {x} = insert a (s \ {x}) [PROOFSTEP] rw [Set.insert_diff_of_not_mem] [GOAL] case h ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a xa : x ≠ a ⊢ ¬a ∈ {x} [PROOFSTEP] rw [Set.mem_singleton_iff] [GOAL] case h ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a xa : x ≠ a ⊢ ¬a = x [PROOFSTEP] exact Ne.symm xa [GOAL] case inr ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h✝ : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a xa : x ≠ a h : (s ∪ {a}) \ {x} = s \ {x} ∪ {a} ⊢ Disjoint x (sSup ((s ∪ {a}) \ {x})) [PROOFSTEP] rw [h, sSup_union, sSup_singleton] [GOAL] case inr ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h✝ : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a xa : x ≠ a h : (s ∪ {a}) \ {x} = s \ {x} ∪ {a} ⊢ Disjoint x (sSup (s \ {x}) ⊔ a) [PROOFSTEP] apply (s_ind (hx.resolve_right xa)).disjoint_sup_right_of_disjoint_sup_left (a_dis_Sup_s.mono_right _).symm [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h✝ : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a xa : x ≠ a h : (s ∪ {a}) \ {x} = s \ {x} ∪ {a} ⊢ x ⊔ sSup (s \ {x}) ≤ sSup s [PROOFSTEP] rw [← sSup_insert, Set.insert_diff_singleton, Set.insert_eq_of_mem (hx.resolve_right xa)] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) ⊢ Disjoint b (sSup (s ∪ {a})) [PROOFSTEP] rw [sSup_union, sSup_singleton] [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) ⊢ Disjoint b (sSup s ⊔ a) [PROOFSTEP] exact b_inf_Sup_s.disjoint_sup_right_of_disjoint_sup_left con.symm [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) ⊢ ∀ (x : α), x ∈ s ∪ {a} → IsAtom x [PROOFSTEP] intro x hx [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∪ {a} ⊢ IsAtom x [PROOFSTEP] rw [Set.mem_union, Set.mem_singleton_iff] at hx [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ∨ x = a ⊢ IsAtom x [PROOFSTEP] obtain hx | rfl := hx [GOAL] case inl ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a a : α ha : a ∈ {a | IsAtom a} con : Disjoint a (b ⊔ sSup s) a_dis_Sup_s : Disjoint a (sSup s) x : α hx : x ∈ s ⊢ IsAtom x [PROOFSTEP] exact s_atoms x hx [GOAL] case inr ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α h : sSup {a | IsAtom a} = ⊤ b : α s : Set α s_max : ∀ (a : Set α), a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s s_ind : CompleteLattice.SetIndependent s b_inf_Sup_s : Disjoint b (sSup s) s_atoms : ∀ (a : α), a ∈ s → IsAtom a x : α ha : x ∈ {a | IsAtom a} con : Disjoint x (b ⊔ sSup s) a_dis_Sup_s : Disjoint x (sSup s) ⊢ IsAtom x [PROOFSTEP] exact ha [GOAL] ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α ⊢ ComplementedLattice α ↔ IsAtomistic α [PROOFSTEP] constructor [GOAL] case mp ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α ⊢ ComplementedLattice α → IsAtomistic α [PROOFSTEP] intros [GOAL] case mpr ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α ⊢ IsAtomistic α → ComplementedLattice α [PROOFSTEP] intros [GOAL] case mp ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α a✝ : ComplementedLattice α ⊢ IsAtomistic α [PROOFSTEP] exact isAtomistic_of_complementedLattice [GOAL] case mpr ι : Sort u_1 α : Type u_2 inst✝² : CompleteLattice α f : ι → α inst✝¹ : IsModularLattice α inst✝ : IsCompactlyGenerated α a✝ : IsAtomistic α ⊢ ComplementedLattice α [PROOFSTEP] exact complementedLattice_of_isAtomistic
{"mathlib_filename": "Mathlib.Order.CompactlyGenerated", "llama_tokens": 62172}
[GOAL] α : Type u β : Type v ι : Sort w r r' s✝ : α → α → Prop s : Set α ⊢ DirectedOn r s ↔ Directed r Subtype.val [PROOFSTEP] simp [Directed, DirectedOn] [GOAL] α : Type u β : Type v ι : Sort w r r' s✝ : α → α → Prop s : Set α ⊢ (∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → ∃ z, z ∈ s ∧ r x z ∧ r y z) ↔ ∀ (a : α), a ∈ s → ∀ (a_1 : α), a_1 ∈ s → ∃ a_2, r a a_2 ∧ a_2 ∈ s ∧ r a_1 a_2 [PROOFSTEP] refine' ball_congr fun x _ => by simp [And.comm, and_assoc] [GOAL] α : Type u β : Type v ι : Sort w r r' s✝ : α → α → Prop s : Set α x : α x✝ : x ∈ s ⊢ (∀ (y : α), y ∈ s → ∃ z, z ∈ s ∧ r x z ∧ r y z) ↔ ∀ (a : α), a ∈ s → ∃ a_1, r x a_1 ∧ a_1 ∈ s ∧ r a a_1 [PROOFSTEP] simp [And.comm, and_assoc] [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop f : ι → α ⊢ Directed r f ↔ DirectedOn r (Set.range f) [PROOFSTEP] simp_rw [Directed, DirectedOn, Set.forall_range_iff, Set.exists_range_iff] [GOAL] α : Type u β : Type v ι : Sort w r r' s✝ : α → α → Prop s : Set β f : β → α ⊢ DirectedOn r (f '' s) ↔ DirectedOn (f ⁻¹'o r) s [PROOFSTEP] simp only [DirectedOn, Set.mem_image, exists_exists_and_eq_and, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂, Order.Preimage] [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α inst✝ : OrderBot α e : ι → β f : ι → α hf : Directed (fun x x_1 => x ≤ x_1) f he : Injective e ⊢ Directed (fun x x_1 => x ≤ x_1) (extend e f ⊥) [PROOFSTEP] intro a b [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α inst✝ : OrderBot α e : ι → β f : ι → α hf : Directed (fun x x_1 => x ≤ x_1) f he : Injective e a b : β ⊢ ∃ z, (fun x x_1 => x ≤ x_1) (extend e f ⊥ a) (extend e f ⊥ z) ∧ (fun x x_1 => x ≤ x_1) (extend e f ⊥ b) (extend e f ⊥ z) [PROOFSTEP] rcases(em (∃ i, e i = a)).symm with (ha | ⟨i, rfl⟩) [GOAL] case inl α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α inst✝ : OrderBot α e : ι → β f : ι → α hf : Directed (fun x x_1 => x ≤ x_1) f he : Injective e a b : β ha : ¬∃ i, e i = a ⊢ ∃ z, (fun x x_1 => x ≤ x_1) (extend e f ⊥ a) (extend e f ⊥ z) ∧ (fun x x_1 => x ≤ x_1) (extend e f ⊥ b) (extend e f ⊥ z) [PROOFSTEP] use b [GOAL] case h α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α inst✝ : OrderBot α e : ι → β f : ι → α hf : Directed (fun x x_1 => x ≤ x_1) f he : Injective e a b : β ha : ¬∃ i, e i = a ⊢ (fun x x_1 => x ≤ x_1) (extend e f ⊥ a) (extend e f ⊥ b) ∧ (fun x x_1 => x ≤ x_1) (extend e f ⊥ b) (extend e f ⊥ b) [PROOFSTEP] simp [Function.extend_apply' _ _ _ ha] [GOAL] case inr.intro α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α inst✝ : OrderBot α e : ι → β f : ι → α hf : Directed (fun x x_1 => x ≤ x_1) f he : Injective e b : β i : ι ⊢ ∃ z, (fun x x_1 => x ≤ x_1) (extend e f ⊥ (e i)) (extend e f ⊥ z) ∧ (fun x x_1 => x ≤ x_1) (extend e f ⊥ b) (extend e f ⊥ z) [PROOFSTEP] rcases(em (∃ i, e i = b)).symm with (hb | ⟨j, rfl⟩) [GOAL] case inr.intro.inl α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α inst✝ : OrderBot α e : ι → β f : ι → α hf : Directed (fun x x_1 => x ≤ x_1) f he : Injective e b : β i : ι hb : ¬∃ i, e i = b ⊢ ∃ z, (fun x x_1 => x ≤ x_1) (extend e f ⊥ (e i)) (extend e f ⊥ z) ∧ (fun x x_1 => x ≤ x_1) (extend e f ⊥ b) (extend e f ⊥ z) [PROOFSTEP] use e i [GOAL] case h α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α inst✝ : OrderBot α e : ι → β f : ι → α hf : Directed (fun x x_1 => x ≤ x_1) f he : Injective e b : β i : ι hb : ¬∃ i, e i = b ⊢ (fun x x_1 => x ≤ x_1) (extend e f ⊥ (e i)) (extend e f ⊥ (e i)) ∧ (fun x x_1 => x ≤ x_1) (extend e f ⊥ b) (extend e f ⊥ (e i)) [PROOFSTEP] simp [Function.extend_apply' _ _ _ hb] [GOAL] case inr.intro.inr.intro α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α inst✝ : OrderBot α e : ι → β f : ι → α hf : Directed (fun x x_1 => x ≤ x_1) f he : Injective e i j : ι ⊢ ∃ z, (fun x x_1 => x ≤ x_1) (extend e f ⊥ (e i)) (extend e f ⊥ z) ∧ (fun x x_1 => x ≤ x_1) (extend e f ⊥ (e j)) (extend e f ⊥ z) [PROOFSTEP] rcases hf i j with ⟨k, hi, hj⟩ [GOAL] case inr.intro.inr.intro.intro.intro α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α inst✝ : OrderBot α e : ι → β f : ι → α hf : Directed (fun x x_1 => x ≤ x_1) f he : Injective e i j k : ι hi : f i ≤ f k hj : f j ≤ f k ⊢ ∃ z, (fun x x_1 => x ≤ x_1) (extend e f ⊥ (e i)) (extend e f ⊥ z) ∧ (fun x x_1 => x ≤ x_1) (extend e f ⊥ (e j)) (extend e f ⊥ z) [PROOFSTEP] use e k [GOAL] case h α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α inst✝ : OrderBot α e : ι → β f : ι → α hf : Directed (fun x x_1 => x ≤ x_1) f he : Injective e i j k : ι hi : f i ≤ f k hj : f j ≤ f k ⊢ (fun x x_1 => x ≤ x_1) (extend e f ⊥ (e i)) (extend e f ⊥ (e k)) ∧ (fun x x_1 => x ≤ x_1) (extend e f ⊥ (e j)) (extend e f ⊥ (e k)) [PROOFSTEP] simp only [he.extend_apply, *, true_and_iff] [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝ : IsDirected α r ⊢ Directed r id [PROOFSTEP] convert directed_of r [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝ : IsTotal α r ⊢ IsDirected α r [PROOFSTEP] rw [← directed_id_iff] [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝ : IsTotal α r ⊢ Directed r id [PROOFSTEP] exact IsTotal.directed _ [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : LE α inst✝ : IsDirected α fun x x_1 => x ≤ x_1 ⊢ IsDirected αᵒᵈ fun x x_1 => x ≥ x_1 [PROOFSTEP] assumption [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : LE α inst✝ : IsDirected α fun x x_1 => x ≥ x_1 ⊢ IsDirected αᵒᵈ fun x x_1 => x ≤ x_1 [PROOFSTEP] assumption [GOAL] α : Type u β : Type v ι : Sort w r r' s✝ : α → α → Prop h : Reflexive r a : α s : Set α hd : DirectedOn r s ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r a c ∧ r b c ⊢ DirectedOn r (insert a s) [PROOFSTEP] rintro x (rfl | hx) y (rfl | hy) [GOAL] case inl.inl α : Type u β : Type v ι : Sort w r r' s✝ : α → α → Prop h : Reflexive r s : Set α hd : DirectedOn r s y : α ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r y c ∧ r b c ⊢ ∃ z, z ∈ insert y s ∧ r y z ∧ r y z [PROOFSTEP] exact ⟨y, Set.mem_insert _ _, h _, h _⟩ [GOAL] case inl.inr α : Type u β : Type v ι : Sort w r r' s✝ : α → α → Prop h : Reflexive r s : Set α hd : DirectedOn r s x : α ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r x c ∧ r b c y : α hy : y ∈ s ⊢ ∃ z, z ∈ insert x s ∧ r x z ∧ r y z [PROOFSTEP] obtain ⟨w, hws, hwr⟩ := ha y hy [GOAL] case inl.inr.intro.intro α : Type u β : Type v ι : Sort w r r' s✝ : α → α → Prop h : Reflexive r s : Set α hd : DirectedOn r s x : α ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r x c ∧ r b c y : α hy : y ∈ s w : α hws : w ∈ s hwr : r x w ∧ r y w ⊢ ∃ z, z ∈ insert x s ∧ r x z ∧ r y z [PROOFSTEP] exact ⟨w, Set.mem_insert_of_mem _ hws, hwr⟩ [GOAL] case inr.inl α : Type u β : Type v ι : Sort w r r' s✝ : α → α → Prop h : Reflexive r s : Set α hd : DirectedOn r s x : α hx : x ∈ s y : α ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r y c ∧ r b c ⊢ ∃ z, z ∈ insert y s ∧ r x z ∧ r y z [PROOFSTEP] obtain ⟨w, hws, hwr⟩ := ha x hx [GOAL] case inr.inl.intro.intro α : Type u β : Type v ι : Sort w r r' s✝ : α → α → Prop h : Reflexive r s : Set α hd : DirectedOn r s x : α hx : x ∈ s y : α ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r y c ∧ r b c w : α hws : w ∈ s hwr : r y w ∧ r x w ⊢ ∃ z, z ∈ insert y s ∧ r x z ∧ r y z [PROOFSTEP] exact ⟨w, Set.mem_insert_of_mem _ hws, hwr.symm⟩ [GOAL] case inr.inr α : Type u β : Type v ι : Sort w r r' s✝ : α → α → Prop h : Reflexive r a : α s : Set α hd : DirectedOn r s ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r a c ∧ r b c x : α hx : x ∈ s y : α hy : y ∈ s ⊢ ∃ z, z ∈ insert a s ∧ r x z ∧ r y z [PROOFSTEP] obtain ⟨w, hws, hwr⟩ := hd x hx y hy [GOAL] case inr.inr.intro.intro α : Type u β : Type v ι : Sort w r r' s✝ : α → α → Prop h : Reflexive r a : α s : Set α hd : DirectedOn r s ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r a c ∧ r b c x : α hx : x ∈ s y : α hy : y ∈ s w : α hws : w ∈ s hwr : r x w ∧ r y w ⊢ ∃ z, z ∈ insert a s ∧ r x z ∧ r y z [PROOFSTEP] exact ⟨w, Set.mem_insert_of_mem _ hws, hwr⟩ [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop h : Reflexive r a b : α hab : r a b ⊢ DirectedOn r {b, a} [PROOFSTEP] rw [Set.pair_comm] [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop h : Reflexive r a b : α hab : r a b ⊢ DirectedOn r {a, b} [PROOFSTEP] apply directedOn_pair h hab [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝³ : Preorder α a : α inst✝² : PartialOrder β inst✝¹ : IsDirected β fun x x_1 => x ≥ x_1 inst✝ : Nontrivial β ⊢ ∃ a b, a < b [PROOFSTEP] rcases exists_pair_ne β with ⟨a, b, hne⟩ [GOAL] case intro.intro α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝³ : Preorder α a✝ : α inst✝² : PartialOrder β inst✝¹ : IsDirected β fun x x_1 => x ≥ x_1 inst✝ : Nontrivial β a b : β hne : a ≠ b ⊢ ∃ a b, a < b [PROOFSTEP] rcases isBot_or_exists_lt a with (ha | ⟨c, hc⟩) [GOAL] case intro.intro.inl α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝³ : Preorder α a✝ : α inst✝² : PartialOrder β inst✝¹ : IsDirected β fun x x_1 => x ≥ x_1 inst✝ : Nontrivial β a b : β hne : a ≠ b ha : IsBot a ⊢ ∃ a b, a < b case intro.intro.inr.intro α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝³ : Preorder α a✝ : α inst✝² : PartialOrder β inst✝¹ : IsDirected β fun x x_1 => x ≥ x_1 inst✝ : Nontrivial β a b : β hne : a ≠ b c : β hc : c < a ⊢ ∃ a b, a < b [PROOFSTEP] exacts [⟨a, b, (ha b).lt_of_ne hne⟩, ⟨_, _, hc⟩] [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α a : α inst✝ : Preorder β f : α → β h : ScottContinuous f ⊢ Monotone f [PROOFSTEP] intro a b hab [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α a✝ : α inst✝ : Preorder β f : α → β h : ScottContinuous f a b : α hab : a ≤ b ⊢ f a ≤ f b [PROOFSTEP] have e1 : IsLUB (f '' { a, b }) (f b) := by apply h · exact Set.insert_nonempty _ _ · exact directedOn_pair le_refl hab · rw [IsLUB, upperBounds_insert, upperBounds_singleton, Set.inter_eq_self_of_subset_right (Set.Ici_subset_Ici.mpr hab)] exact isLeast_Ici [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α a✝ : α inst✝ : Preorder β f : α → β h : ScottContinuous f a b : α hab : a ≤ b ⊢ IsLUB (f '' {a, b}) (f b) [PROOFSTEP] apply h [GOAL] case a α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α a✝ : α inst✝ : Preorder β f : α → β h : ScottContinuous f a b : α hab : a ≤ b ⊢ Set.Nonempty {a, b} [PROOFSTEP] exact Set.insert_nonempty _ _ [GOAL] case a α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α a✝ : α inst✝ : Preorder β f : α → β h : ScottContinuous f a b : α hab : a ≤ b ⊢ DirectedOn (fun x x_1 => x ≤ x_1) {a, b} [PROOFSTEP] exact directedOn_pair le_refl hab [GOAL] case a α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α a✝ : α inst✝ : Preorder β f : α → β h : ScottContinuous f a b : α hab : a ≤ b ⊢ IsLUB {a, b} b [PROOFSTEP] rw [IsLUB, upperBounds_insert, upperBounds_singleton, Set.inter_eq_self_of_subset_right (Set.Ici_subset_Ici.mpr hab)] [GOAL] case a α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α a✝ : α inst✝ : Preorder β f : α → β h : ScottContinuous f a b : α hab : a ≤ b ⊢ IsLeast (Set.Ici b) b [PROOFSTEP] exact isLeast_Ici [GOAL] α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α a✝ : α inst✝ : Preorder β f : α → β h : ScottContinuous f a b : α hab : a ≤ b e1 : IsLUB (f '' {a, b}) (f b) ⊢ f a ≤ f b [PROOFSTEP] apply e1.1 [GOAL] case a α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α a✝ : α inst✝ : Preorder β f : α → β h : ScottContinuous f a b : α hab : a ≤ b e1 : IsLUB (f '' {a, b}) (f b) ⊢ f a ∈ f '' {a, b} [PROOFSTEP] rw [Set.image_pair] [GOAL] case a α : Type u β : Type v ι : Sort w r r' s : α → α → Prop inst✝¹ : Preorder α a✝ : α inst✝ : Preorder β f : α → β h : ScottContinuous f a b : α hab : a ≤ b e1 : IsLUB (f '' {a, b}) (f b) ⊢ f a ∈ {f a, f b} [PROOFSTEP] exact Set.mem_insert _ _
{"mathlib_filename": "Mathlib.Order.Directed", "llama_tokens": 6423}