text
stringlengths 0
3.06M
| meta
stringlengths 57
121
|
---|---|
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s : R
x✝ y : M
a b : R
h : a + b = 1
x : M
⊢ a • x + b • x = x
[PROOFSTEP]
rw [← add_smul, h, one_smul]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s : R
x y : M
⊢ 2 • x = x + x
[PROOFSTEP]
rw [← one_add_one_eq_two, add_smul, one_smul]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
r s : R
x✝ y : M
inst✝¹ : AddCommMonoid M₂
inst✝ : SMul R M₂
f : M₂ →+ M
hf : Injective ↑f
smul : ∀ (c : R) (x : M₂), ↑f (c • x) = c • ↑f x
src✝ : DistribMulAction R M₂ := Injective.distribMulAction f hf smul
c₁ c₂ : R
x : M₂
⊢ ↑f ((c₁ + c₂) • x) = ↑f (c₁ • x + c₂ • x)
[PROOFSTEP]
simp only [smul, f.map_add, add_smul]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
r s : R
x✝ y : M
inst✝¹ : AddCommMonoid M₂
inst✝ : SMul R M₂
f : M₂ →+ M
hf : Injective ↑f
smul : ∀ (c : R) (x : M₂), ↑f (c • x) = c • ↑f x
src✝ : DistribMulAction R M₂ := Injective.distribMulAction f hf smul
x : M₂
⊢ ↑f (0 • x) = ↑f 0
[PROOFSTEP]
simp only [smul, zero_smul, f.map_zero]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
r s : R
x✝ y : M
inst✝¹ : AddCommMonoid M₂
inst✝ : SMul R M₂
f : M →+ M₂
hf : Surjective ↑f
smul : ∀ (c : R) (x : M), ↑f (c • x) = c • ↑f x
c₁ c₂ : R
x : M₂
⊢ (c₁ + c₂) • x = c₁ • x + c₂ • x
[PROOFSTEP]
rcases hf x with ⟨x, rfl⟩
[GOAL]
case intro
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
r s : R
x✝ y : M
inst✝¹ : AddCommMonoid M₂
inst✝ : SMul R M₂
f : M →+ M₂
hf : Surjective ↑f
smul : ∀ (c : R) (x : M), ↑f (c • x) = c • ↑f x
c₁ c₂ : R
x : M
⊢ (c₁ + c₂) • ↑f x = c₁ • ↑f x + c₂ • ↑f x
[PROOFSTEP]
simp only [add_smul, ← smul, ← f.map_add]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
r s : R
x✝ y : M
inst✝¹ : AddCommMonoid M₂
inst✝ : SMul R M₂
f : M →+ M₂
hf : Surjective ↑f
smul : ∀ (c : R) (x : M), ↑f (c • x) = c • ↑f x
x : M₂
⊢ 0 • x = 0
[PROOFSTEP]
rcases hf x with ⟨x, rfl⟩
[GOAL]
case intro
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
r s : R
x✝ y : M
inst✝¹ : AddCommMonoid M₂
inst✝ : SMul R M₂
f : M →+ M₂
hf : Surjective ↑f
smul : ∀ (c : R) (x : M), ↑f (c • x) = c • ↑f x
x : M
⊢ 0 • ↑f x = 0
[PROOFSTEP]
rw [← f.map_zero, ← smul, zero_smul]
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M✝ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁷ : Semiring R✝
inst✝⁶ : AddCommMonoid M✝
inst✝⁵ : Module R✝ M✝
r s : R✝
x✝ y : M✝
R : Type u_9
S : Type u_10
M : Type u_11
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : Semiring S
inst✝ : SMul S M
f : R →+* S
hf : Surjective ↑f
hsmul : ∀ (c : R) (x : M), ↑f c • x = c • x
src✝ : DistribMulAction S M := distribMulActionLeft (↑f) hf hsmul
a b : R
x : M
⊢ (↑f a + ↑f b) • x = ↑f a • x + ↑f b • x
[PROOFSTEP]
simp only [← f.map_add, hsmul, add_smul]
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M✝ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁷ : Semiring R✝
inst✝⁶ : AddCommMonoid M✝
inst✝⁵ : Module R✝ M✝
r s : R✝
x✝ y : M✝
R : Type u_9
S : Type u_10
M : Type u_11
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : Semiring S
inst✝ : SMul S M
f : R →+* S
hf : Surjective ↑f
hsmul : ∀ (c : R) (x : M), ↑f c • x = c • x
src✝ : DistribMulAction S M := distribMulActionLeft (↑f) hf hsmul
x : M
⊢ 0 • x = 0
[PROOFSTEP]
rw [← f.map_zero, hsmul, zero_smul]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝³ : Semiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
r✝ s✝ : R
x✝ y : M
inst✝ : Semiring S
f : S →+* R
src✝¹ : MulActionWithZero S M := MulActionWithZero.compHom M (RingHom.toMonoidWithZeroHom f)
src✝ : DistribMulAction S M := DistribMulAction.compHom M ↑f
r s : S
x : M
⊢ ↑f (r + s) • x = ↑f r • x + ↑f s • x
[PROOFSTEP]
simp [add_smul]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r✝ s : R
x y : M
src✝ : R →* AddMonoid.End M := DistribMulAction.toAddMonoidEnd R M
r : M
⊢ 0 • r = 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r✝ s : R
x✝ y✝ : M
src✝ : R →* AddMonoid.End M := DistribMulAction.toAddMonoidEnd R M
x y : R
r : M
⊢ (x + y) • r = x • r + y • r
[PROOFSTEP]
simp [add_smul]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s : R
x y : M
zero_eq_one : 0 = 1
⊢ x = 0
[PROOFSTEP]
rw [← one_smul R x, ← zero_eq_one, zero_smul]
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R✝
inst✝³ : AddCommMonoid M
inst✝² : Module R✝ M
r✝ s : R✝
x y : M
R : Type u_9
inst✝¹ : Ring R
inst✝ : Module R M
r : R
m : M
⊢ r • m + (1 - r) • m = m
[PROOFSTEP]
rw [← add_smul, add_sub_cancel'_right, one_smul]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
a b : R
h : a + b = 1
⊢ a • x + b • y = b • y - b • x + (a • x + b • x)
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
a b : R
h : a + b = 1
⊢ a • x + b • y = b • y - b • x + (a • x + b • x)
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
x y : M
a b : R
h : a + b = 1
⊢ b • y - b • x + (a • x + b • x) = b • (y - x) + x
[PROOFSTEP]
rw [smul_sub, Convex.combo_self h]
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S : Type u_4
M✝ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
R : Type u_9
inst✝¹ : Semiring R
M : Type u_10
inst✝ : AddCommMonoid M
P Q : Module R M
w : ∀ (r : R) (m : M), r • m = r • m
⊢ P = Q
[PROOFSTEP]
ext
[GOAL]
case smul.h.h
α : Type u_1
R✝ : Type u_2
k : Type u_3
S : Type u_4
M✝ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
R : Type u_9
inst✝¹ : Semiring R
M : Type u_10
inst✝ : AddCommMonoid M
P Q : Module R M
w : ∀ (r : R) (m : M), r • m = r • m
x✝¹ : R
x✝ : M
⊢ SMul.smul x✝¹ x✝ = SMul.smul x✝¹ x✝
[PROOFSTEP]
exact w _ _
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
r s : R
x y : M
⊢ -r • x + r • x = 0
[PROOFSTEP]
rw [← add_smul, add_left_neg, zero_smul]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
r s : R
x y : M
⊢ -r • -x = r • x
[PROOFSTEP]
rw [neg_smul, smul_neg, neg_neg]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
r s : R
x✝ y : M
u : Rˣ
x : M
⊢ -u • x = -(u • x)
[PROOFSTEP]
rw [Units.smul_def, Units.val_neg, _root_.neg_smul, Units.smul_def]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
r s : R
x✝ y x : M
⊢ -1 • x = -x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
r✝ s✝ : R
x y✝ : M
r s : R
y : M
⊢ (r - s) • y = r • y - s • y
[PROOFSTEP]
simp [add_smul, sub_eq_add_neg]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Ring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : AddCommMonoid M := inferInstance
a : M
⊢ (fun z a => ↑z • a) 0 a = 0
[PROOFSTEP]
simpa only [Int.cast_zero] using zero_smul R a
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Ring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : AddCommMonoid M := inferInstance
z : ℕ
a : M
⊢ (fun z a => ↑z • a) (Int.ofNat (Nat.succ z)) a = a + (fun z a => ↑z • a) (Int.ofNat z) a
[PROOFSTEP]
simp [add_comm, add_smul]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Ring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : AddCommMonoid M := inferInstance
z : ℕ
a : M
⊢ (fun z a => ↑z • a) (Int.negSucc z) a = -(fun z a => ↑z • a) (↑(Nat.succ z)) a
[PROOFSTEP]
simp [← smul_assoc, neg_one_smul]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Ring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : AddCommMonoid M := inferInstance
a : M
⊢ -1 • a + a = 0
[PROOFSTEP]
nth_rw 2 [← one_smul R a]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Ring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
src✝ : AddCommMonoid M := inferInstance
a : M
⊢ -1 • a + 1 • a = 0
[PROOFSTEP]
rw [← add_smul, add_left_neg, zero_smul]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
b : M
⊢ n • b = ↑n • b
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
b : M
⊢ Nat.zero • b = ↑Nat.zero • b
[PROOFSTEP]
rw [Nat.zero_eq, Nat.cast_zero, zero_smul, zero_smul]
[GOAL]
case succ
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
b : M
n : ℕ
ih : n • b = ↑n • b
⊢ Nat.succ n • b = ↑(Nat.succ n) • b
[PROOFSTEP]
rw [Nat.succ_eq_add_one, Nat.cast_succ, add_smul, add_smul, one_smul, ih, one_smul]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
h : Module ℕ M
n : ℕ
x : M
⊢ SMul.smul n x = n • x
[PROOFSTEP]
rw [nsmul_eq_smul_cast ℕ n x, Nat.cast_id]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
h : Module ℕ M
n : ℕ
x : M
⊢ SMul.smul n x = n • x
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
⊢ Module ℕ M
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
P : Module ℕ M
n : ℕ
⊢ ∀ (m : M), n • m = n • m
[PROOFSTEP]
convert nat_smul_eq_nsmul P n
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n : ℕ
x : R
y : M
⊢ (Nat.zero • x) • y = Nat.zero • x • y
[PROOFSTEP]
simp only [Nat.zero_eq, zero_smul]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
n✝ : ℕ
x : R
y : M
n : ℕ
ih : (n • x) • y = n • x • y
⊢ (Nat.succ n • x) • y = Nat.succ n • x • y
[PROOFSTEP]
simp only [Nat.succ_eq_add_one, add_smul, one_smul, ih]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring S
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module S M
inst✝ : Module R M
n : ℤ
b : M
⊢ ↑(AddMonoidHom.flip (smulAddHom ℤ M)) b =
AddMonoidHom.comp (↑(AddMonoidHom.flip (smulAddHom R M)) b) (Int.castAddHom R)
[PROOFSTEP]
apply AddMonoidHom.ext_int
[GOAL]
case h1
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring S
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module S M
inst✝ : Module R M
n : ℤ
b : M
⊢ ↑(↑(AddMonoidHom.flip (smulAddHom ℤ M)) b) 1 =
↑(AddMonoidHom.comp (↑(AddMonoidHom.flip (smulAddHom R M)) b) (Int.castAddHom R)) 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring S
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module S M
inst✝ : Module R M
h : Module ℤ M
n : ℤ
x : M
⊢ SMul.smul n x = n • x
[PROOFSTEP]
rw [zsmul_eq_smul_cast ℤ n x, Int.cast_id]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring S
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module S M
inst✝ : Module R M
h : Module ℤ M
n : ℤ
x : M
⊢ SMul.smul n x = n • x
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring S
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module S M
inst✝ : Module R M
⊢ Module ℤ M
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring S
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module S M
inst✝ : Module R M
P : Module ℤ M
n : ℤ
⊢ ∀ (m : M), n • m = n • m
[PROOFSTEP]
convert int_smul_eq_zsmul P n
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : Ring R
inst✝² : Ring S
inst✝¹ : Module R M
inst✝ : Module S M₂
x : ℤ
a : M
⊢ ↑f (↑x • a) = ↑x • ↑f a
[PROOFSTEP]
simp only [← zsmul_eq_smul_cast, map_zsmul]
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : Semiring R
inst✝² : Semiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
x : ℕ
a : M
⊢ ↑f (↑x • a) = ↑x • ↑f a
[PROOFSTEP]
simp only [← nsmul_eq_smul_cast, AddMonoidHom.map_nsmul, map_nsmul]
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
x : M
⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x
[PROOFSTEP]
by_cases hR : (n : R) = 0
[GOAL]
case pos
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
x : M
hR : ↑n = 0
⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x
[PROOFSTEP]
by_cases hS : (n : S) = 0
[GOAL]
case neg
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
x : M
hR : ¬↑n = 0
⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x
[PROOFSTEP]
by_cases hS : (n : S) = 0
[GOAL]
case pos
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
x : M
hR : ↑n = 0
hS : ↑n = 0
⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x
[PROOFSTEP]
simp [hR, hS, map_zero f]
[GOAL]
case neg
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
x : M
hR : ↑n = 0
hS : ¬↑n = 0
⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x
[PROOFSTEP]
suffices ∀ y, f y = 0 by rw [this, this, smul_zero]
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
x : M
hR : ↑n = 0
hS : ¬↑n = 0
this : ∀ (y : M), ↑f y = 0
⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x
[PROOFSTEP]
rw [this, this, smul_zero]
[GOAL]
case neg
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
x : M
hR : ↑n = 0
hS : ¬↑n = 0
⊢ ∀ (y : M), ↑f y = 0
[PROOFSTEP]
clear x
[GOAL]
case neg
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
hR : ↑n = 0
hS : ¬↑n = 0
⊢ ∀ (y : M), ↑f y = 0
[PROOFSTEP]
intro x
[GOAL]
case neg
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
hR : ↑n = 0
hS : ¬↑n = 0
x : M
⊢ ↑f x = 0
[PROOFSTEP]
rw [← inv_smul_smul₀ hS (f x), ← map_nat_cast_smul f R S]
[GOAL]
case neg
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
hR : ↑n = 0
hS : ¬↑n = 0
x : M
⊢ (↑n)⁻¹ • ↑f (↑n • x) = 0
[PROOFSTEP]
simp [hR, map_zero f]
[GOAL]
case pos
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
x : M
hR : ¬↑n = 0
hS : ↑n = 0
⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x
[PROOFSTEP]
suffices ∀ y, f y = 0 by simp [this]
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
x : M
hR : ¬↑n = 0
hS : ↑n = 0
this : ∀ (y : M), ↑f y = 0
⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x
[PROOFSTEP]
simp [this]
[GOAL]
case pos
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
x : M
hR : ¬↑n = 0
hS : ↑n = 0
⊢ ∀ (y : M), ↑f y = 0
[PROOFSTEP]
clear x
[GOAL]
case pos
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
hR : ¬↑n = 0
hS : ↑n = 0
⊢ ∀ (y : M), ↑f y = 0
[PROOFSTEP]
intro x
[GOAL]
case pos
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
hR : ¬↑n = 0
hS : ↑n = 0
x : M
⊢ ↑f x = 0
[PROOFSTEP]
rw [← smul_inv_smul₀ hR x, map_nat_cast_smul f R S, hS, zero_smul]
[GOAL]
case neg
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommMonoid M
inst✝⁵ : AddCommMonoid M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionSemiring R
inst✝² : DivisionSemiring S
inst✝¹ : Module R M
inst✝ : Module S M₂
n : ℕ
x : M
hR : ¬↑n = 0
hS : ¬↑n = 0
⊢ ↑f ((↑n)⁻¹ • x) = (↑n)⁻¹ • ↑f x
[PROOFSTEP]
rw [← inv_smul_smul₀ hS (f _), ← map_nat_cast_smul f R S, smul_inv_smul₀ hR]
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionRing R
inst✝² : DivisionRing S
inst✝¹ : Module R M
inst✝ : Module S M₂
z : ℤ
x : M
⊢ ↑f ((↑z)⁻¹ • x) = (↑z)⁻¹ • ↑f x
[PROOFSTEP]
obtain ⟨n, rfl | rfl⟩ := z.eq_nat_or_neg
[GOAL]
case intro.inl
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionRing R
inst✝² : DivisionRing S
inst✝¹ : Module R M
inst✝ : Module S M₂
x : M
n : ℕ
⊢ ↑f ((↑↑n)⁻¹ • x) = (↑↑n)⁻¹ • ↑f x
[PROOFSTEP]
rw [Int.cast_Nat_cast, Int.cast_Nat_cast, map_inv_nat_cast_smul _ R S]
[GOAL]
case intro.inr
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionRing R
inst✝² : DivisionRing S
inst✝¹ : Module R M
inst✝ : Module S M₂
x : M
n : ℕ
⊢ ↑f ((↑(-↑n))⁻¹ • x) = (↑(-↑n))⁻¹ • ↑f x
[PROOFSTEP]
simp_rw [Int.cast_neg, Int.cast_Nat_cast, inv_neg, neg_smul, map_neg, map_inv_nat_cast_smul _ R S]
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S✝ : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁶ : AddCommGroup M
inst✝⁵ : AddCommGroup M₂
F : Type u_9
inst✝⁴ : AddMonoidHomClass F M M₂
f : F
R : Type u_10
S : Type u_11
inst✝³ : DivisionRing R
inst✝² : DivisionRing S
inst✝¹ : Module R M
inst✝ : Module S M₂
c : ℚ
x : M
⊢ ↑f (↑c • x) = ↑c • ↑f x
[PROOFSTEP]
rw [Rat.cast_def, Rat.cast_def, div_eq_mul_inv, div_eq_mul_inv, mul_smul, mul_smul, map_int_cast_smul f R S,
map_inv_nat_cast_smul f R S]
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S : Type u_4
M✝ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
R : Type u_9
M : Type u_10
N : Type u_11
inst✝⁵ : Zero R
inst✝⁴ : Zero M
inst✝³ : Zero N
inst✝² : SMul R M
inst✝¹ : SMul R N
inst✝ : NoZeroSMulDivisors R N
f : M → N
hf : Injective f
h0 : f 0 = 0
hs : ∀ (c : R) (x : M), f (c • x) = c • f x
x✝¹ : R
x✝ : M
h : x✝¹ • x✝ = 0
⊢ x✝¹ • f x✝ = 0
[PROOFSTEP]
rw [← hs, h, h0]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝³ : Zero R
inst✝² : Zero M
inst✝¹ : SMulWithZero R M
inst✝ : NoZeroSMulDivisors R M
c : R
x : M
⊢ c • x ≠ 0 ↔ c ≠ 0 ∧ x ≠ 0
[PROOFSTEP]
rw [Ne.def, smul_eq_zero, not_or]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : CharZero R
⊢ ∀ {c : ℕ} {x : M}, c • x = 0 → c = 0 ∨ x = 0
[PROOFSTEP]
intro c x
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : CharZero R
c : ℕ
x : M
⊢ c • x = 0 → c = 0 ∨ x = 0
[PROOFSTEP]
rw [nsmul_eq_smul_cast R, smul_eq_zero]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : CharZero R
c : ℕ
x : M
⊢ ↑c = 0 ∨ x = 0 → c = 0 ∨ x = 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : CharZero R
v : M
⊢ 2 • v = 0 ↔ v = 0
[PROOFSTEP]
haveI := Nat.noZeroSMulDivisors R M
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : CharZero R
v : M
this : NoZeroSMulDivisors ℕ M
⊢ 2 • v = 0 ↔ v = 0
[PROOFSTEP]
simp [smul_eq_zero]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M✝ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R M✝
M : Type u_9
inst✝² : AddCommMonoidWithOne M
inst✝¹ : CharZero M
inst✝ : Module R M
⊢ CharZero R
[PROOFSTEP]
refine' ⟨fun m n h => @Nat.cast_injective M _ _ _ _ _⟩
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M✝ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁵ : Semiring R
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R M✝
M : Type u_9
inst✝² : AddCommMonoidWithOne M
inst✝¹ : CharZero M
inst✝ : Module R M
m n : ℕ
h : ↑m = ↑n
⊢ ↑m = ↑n
[PROOFSTEP]
rw [← nsmul_one, ← nsmul_one, nsmul_eq_smul_cast R m (1 : M), nsmul_eq_smul_cast R n (1 : M), h]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : CharZero R
v : M
⊢ v = -v ↔ v = 0
[PROOFSTEP]
rw [← two_nsmul_eq_zero R M, two_smul, add_eq_zero_iff_eq_neg]
[GOAL]
α : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝⁴ : Semiring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : CharZero R
v : M
⊢ -v = v ↔ v = 0
[PROOFSTEP]
rw [eq_comm, self_eq_neg R M]
[GOAL]
α : Type u_1
R : Type u_2
k✝ : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
inst✝¹ : AddCommGroup M
inst✝ : Module ℚ M
k : ℤ
x : M
h : k • x = 0
⊢ k = 0 ∨ x = 0
[PROOFSTEP]
simpa only [zsmul_eq_smul_cast ℚ k x, smul_eq_zero, Rat.zero_iff_num_zero] using h
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
R : Type u_9
inst✝ : Semiring R
m : ℕ
⊢ m • 1 = ↑m
[PROOFSTEP]
rw [nsmul_eq_mul, mul_one]
[GOAL]
α : Type u_1
R✝ : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
M₂ : Type u_6
M₃ : Type u_7
ι : Type u_8
R : Type u_9
inst✝ : Ring R
m : ℤ
⊢ m • 1 = ↑m
[PROOFSTEP]
rw [zsmul_eq_mul, mul_one]
| {"mathlib_filename": "Mathlib.Algebra.Module.Basic", "llama_tokens": 16226} |
[GOAL]
x : PGame
⊢ Numeric x ↔
(∀ (i : LeftMoves x) (j : RightMoves x), moveLeft x i < moveRight x j) ∧
(∀ (i : LeftMoves x), Numeric (moveLeft x i)) ∧ ∀ (j : RightMoves x), Numeric (moveRight x j)
[PROOFSTEP]
cases x
[GOAL]
case mk
α✝ β✝ : Type u_1
a✝¹ : α✝ → PGame
a✝ : β✝ → PGame
⊢ Numeric (mk α✝ β✝ a✝¹ a✝) ↔
(∀ (i : LeftMoves (mk α✝ β✝ a✝¹ a✝)) (j : RightMoves (mk α✝ β✝ a✝¹ a✝)),
moveLeft (mk α✝ β✝ a✝¹ a✝) i < moveRight (mk α✝ β✝ a✝¹ a✝) j) ∧
(∀ (i : LeftMoves (mk α✝ β✝ a✝¹ a✝)), Numeric (moveLeft (mk α✝ β✝ a✝¹ a✝) i)) ∧
∀ (j : RightMoves (mk α✝ β✝ a✝¹ a✝)), Numeric (moveRight (mk α✝ β✝ a✝¹ a✝) j)
[PROOFSTEP]
rfl
[GOAL]
x : PGame
o : Numeric x
i : LeftMoves x
j : RightMoves x
⊢ moveLeft x i < moveRight x j
[PROOFSTEP]
cases x
[GOAL]
case mk
α✝ β✝ : Type u_1
a✝¹ : α✝ → PGame
a✝ : β✝ → PGame
o : Numeric (PGame.mk α✝ β✝ a✝¹ a✝)
i : LeftMoves (PGame.mk α✝ β✝ a✝¹ a✝)
j : RightMoves (PGame.mk α✝ β✝ a✝¹ a✝)
⊢ moveLeft (PGame.mk α✝ β✝ a✝¹ a✝) i < moveRight (PGame.mk α✝ β✝ a✝¹ a✝) j
[PROOFSTEP]
exact o.1 i j
[GOAL]
x : PGame
o : Numeric x
i : LeftMoves x
⊢ Numeric (PGame.moveLeft x i)
[PROOFSTEP]
cases x
[GOAL]
case mk
α✝ β✝ : Type u_1
a✝¹ : α✝ → PGame
a✝ : β✝ → PGame
o : Numeric (PGame.mk α✝ β✝ a✝¹ a✝)
i : LeftMoves (PGame.mk α✝ β✝ a✝¹ a✝)
⊢ Numeric (PGame.moveLeft (PGame.mk α✝ β✝ a✝¹ a✝) i)
[PROOFSTEP]
exact o.2.1 i
[GOAL]
x : PGame
o : Numeric x
j : RightMoves x
⊢ Numeric (PGame.moveRight x j)
[PROOFSTEP]
cases x
[GOAL]
case mk
α✝ β✝ : Type u_1
a✝¹ : α✝ → PGame
a✝ : β✝ → PGame
o : Numeric (PGame.mk α✝ β✝ a✝¹ a✝)
j : RightMoves (PGame.mk α✝ β✝ a✝¹ a✝)
⊢ Numeric (PGame.moveRight (PGame.mk α✝ β✝ a✝¹ a✝) j)
[PROOFSTEP]
exact o.2.2 j
[GOAL]
x y : PGame
r : x ≡r y
ox : Numeric x
⊢ Numeric y
[PROOFSTEP]
induction' x using PGame.moveRecOn with x IHl IHr generalizing y
[GOAL]
case IH
x✝ y✝ : PGame
r✝ : x✝ ≡r y✝
ox✝ : Numeric x✝
x : PGame
IHl : ∀ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≡r y → Numeric (PGame.moveLeft x i) → Numeric y
IHr : ∀ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≡r y → Numeric (PGame.moveRight x j) → Numeric y
y : PGame
r : x ≡r y
ox : Numeric x
⊢ Numeric y
[PROOFSTEP]
apply Numeric.mk (fun i j => ?_) (fun i => ?_) fun j => ?_
[GOAL]
x✝ y✝ : PGame
r✝ : x✝ ≡r y✝
ox✝ : Numeric x✝
x : PGame
IHl : ∀ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≡r y → Numeric (PGame.moveLeft x i) → Numeric y
IHr : ∀ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≡r y → Numeric (PGame.moveRight x j) → Numeric y
y : PGame
r : x ≡r y
ox : Numeric x
i : LeftMoves y
j : RightMoves y
⊢ PGame.moveLeft y i < PGame.moveRight y j
[PROOFSTEP]
rw [← lt_congr (r.moveLeftSymm i).equiv (r.moveRightSymm j).equiv]
[GOAL]
x✝ y✝ : PGame
r✝ : x✝ ≡r y✝
ox✝ : Numeric x✝
x : PGame
IHl : ∀ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≡r y → Numeric (PGame.moveLeft x i) → Numeric y
IHr : ∀ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≡r y → Numeric (PGame.moveRight x j) → Numeric y
y : PGame
r : x ≡r y
ox : Numeric x
i : LeftMoves y
j : RightMoves y
⊢ PGame.moveLeft x (↑(leftMovesEquiv r).symm i) < PGame.moveRight x (↑(rightMovesEquiv r).symm j)
[PROOFSTEP]
apply ox.left_lt_right
[GOAL]
x✝ y✝ : PGame
r✝ : x✝ ≡r y✝
ox✝ : Numeric x✝
x : PGame
IHl : ∀ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≡r y → Numeric (PGame.moveLeft x i) → Numeric y
IHr : ∀ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≡r y → Numeric (PGame.moveRight x j) → Numeric y
y : PGame
r : x ≡r y
ox : Numeric x
i : LeftMoves y
⊢ Numeric (PGame.moveLeft y i)
[PROOFSTEP]
exact IHl _ (r.moveLeftSymm i) (ox.moveLeft _)
[GOAL]
x✝ y✝ : PGame
r✝ : x✝ ≡r y✝
ox✝ : Numeric x✝
x : PGame
IHl : ∀ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≡r y → Numeric (PGame.moveLeft x i) → Numeric y
IHr : ∀ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≡r y → Numeric (PGame.moveRight x j) → Numeric y
y : PGame
r : x ≡r y
ox : Numeric x
j : RightMoves y
⊢ Numeric (PGame.moveRight y j)
[PROOFSTEP]
exact IHr _ (r.moveRightSymm j) (ox.moveRight _)
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
⊢ x ⧏ y → ¬y ⧏ x
[PROOFSTEP]
refine'
numeric_rec (C := fun x => ∀ z (_oz : Numeric z), x ⧏ z → ¬z ⧏ x) (fun xl xr xL xR hx _oxl _oxr IHxl IHxr => _) x ox y
oy
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
hx : ∀ (i : xl) (j : xr), xL i < xR j
_oxl : ∀ (i : xl), Numeric (xL i)
_oxr : ∀ (i : xr), Numeric (xR i)
IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i)
IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i)
⊢ (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (mk xl xr xL xR)
[PROOFSTEP]
refine' numeric_rec fun yl yr yL yR hy oyl oyr _IHyl _IHyr => _
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
hx : ∀ (i : xl) (j : xr), xL i < xR j
_oxl : ∀ (i : xl), Numeric (xL i)
_oxr : ∀ (i : xr), Numeric (xR i)
IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i)
IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i)
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
hy : ∀ (i : yl) (j : yr), yL i < yR j
oyl : ∀ (i : yl), Numeric (yL i)
oyr : ∀ (i : yr), Numeric (yR i)
_IHyl : ∀ (i : yl), mk xl xr xL xR ⧏ yL i → ¬yL i ⧏ mk xl xr xL xR
_IHyr : ∀ (i : yr), mk xl xr xL xR ⧏ yR i → ¬yR i ⧏ mk xl xr xL xR
⊢ mk xl xr xL xR ⧏ mk yl yr yL yR → ¬mk yl yr yL yR ⧏ mk xl xr xL xR
[PROOFSTEP]
rw [mk_lf_mk, mk_lf_mk]
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
hx : ∀ (i : xl) (j : xr), xL i < xR j
_oxl : ∀ (i : xl), Numeric (xL i)
_oxr : ∀ (i : xr), Numeric (xR i)
IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i)
IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i)
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
hy : ∀ (i : yl) (j : yr), yL i < yR j
oyl : ∀ (i : yl), Numeric (yL i)
oyr : ∀ (i : yr), Numeric (yR i)
_IHyl : ∀ (i : yl), mk xl xr xL xR ⧏ yL i → ¬yL i ⧏ mk xl xr xL xR
_IHyr : ∀ (i : yr), mk xl xr xL xR ⧏ yR i → ¬yR i ⧏ mk xl xr xL xR
⊢ ((∃ i, mk xl xr xL xR ≤ yL i) ∨ ∃ j, xR j ≤ mk yl yr yL yR) →
¬((∃ i, mk yl yr yL yR ≤ xL i) ∨ ∃ j, yR j ≤ mk xl xr xL xR)
[PROOFSTEP]
rintro (⟨i, h₁⟩ | ⟨j, h₁⟩) (⟨i, h₂⟩ | ⟨j, h₂⟩)
[GOAL]
case inl.intro.inl.intro
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
hx : ∀ (i : xl) (j : xr), xL i < xR j
_oxl : ∀ (i : xl), Numeric (xL i)
_oxr : ∀ (i : xr), Numeric (xR i)
IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i)
IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i)
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
hy : ∀ (i : yl) (j : yr), yL i < yR j
oyl : ∀ (i : yl), Numeric (yL i)
oyr : ∀ (i : yr), Numeric (yR i)
_IHyl : ∀ (i : yl), mk xl xr xL xR ⧏ yL i → ¬yL i ⧏ mk xl xr xL xR
_IHyr : ∀ (i : yr), mk xl xr xL xR ⧏ yR i → ¬yR i ⧏ mk xl xr xL xR
i✝ : yl
h₁ : mk xl xr xL xR ≤ yL i✝
i : xl
h₂ : mk yl yr yL yR ≤ xL i
⊢ False
[PROOFSTEP]
exact IHxl _ _ (oyl _) (h₁.moveLeft_lf _) (h₂.moveLeft_lf _)
[GOAL]
case inl.intro.inr.intro
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
hx : ∀ (i : xl) (j : xr), xL i < xR j
_oxl : ∀ (i : xl), Numeric (xL i)
_oxr : ∀ (i : xr), Numeric (xR i)
IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i)
IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i)
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
hy : ∀ (i : yl) (j : yr), yL i < yR j
oyl : ∀ (i : yl), Numeric (yL i)
oyr : ∀ (i : yr), Numeric (yR i)
_IHyl : ∀ (i : yl), mk xl xr xL xR ⧏ yL i → ¬yL i ⧏ mk xl xr xL xR
_IHyr : ∀ (i : yr), mk xl xr xL xR ⧏ yR i → ¬yR i ⧏ mk xl xr xL xR
i : yl
h₁ : mk xl xr xL xR ≤ yL i
j : yr
h₂ : yR j ≤ mk xl xr xL xR
⊢ False
[PROOFSTEP]
exact (le_trans h₂ h₁).not_gf (lf_of_lt (hy _ _))
[GOAL]
case inr.intro.inl.intro
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
hx : ∀ (i : xl) (j : xr), xL i < xR j
_oxl : ∀ (i : xl), Numeric (xL i)
_oxr : ∀ (i : xr), Numeric (xR i)
IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i)
IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i)
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
hy : ∀ (i : yl) (j : yr), yL i < yR j
oyl : ∀ (i : yl), Numeric (yL i)
oyr : ∀ (i : yr), Numeric (yR i)
_IHyl : ∀ (i : yl), mk xl xr xL xR ⧏ yL i → ¬yL i ⧏ mk xl xr xL xR
_IHyr : ∀ (i : yr), mk xl xr xL xR ⧏ yR i → ¬yR i ⧏ mk xl xr xL xR
j : xr
h₁ : xR j ≤ mk yl yr yL yR
i : xl
h₂ : mk yl yr yL yR ≤ xL i
⊢ False
[PROOFSTEP]
exact (le_trans h₁ h₂).not_gf (lf_of_lt (hx _ _))
[GOAL]
case inr.intro.inr.intro
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
hx : ∀ (i : xl) (j : xr), xL i < xR j
_oxl : ∀ (i : xl), Numeric (xL i)
_oxr : ∀ (i : xr), Numeric (xR i)
IHxl : ∀ (i : xl), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xL i)
IHxr : ∀ (i : xr), (fun x => ∀ (z : PGame), Numeric z → x ⧏ z → ¬z ⧏ x) (xR i)
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
hy : ∀ (i : yl) (j : yr), yL i < yR j
oyl : ∀ (i : yl), Numeric (yL i)
oyr : ∀ (i : yr), Numeric (yR i)
_IHyl : ∀ (i : yl), mk xl xr xL xR ⧏ yL i → ¬yL i ⧏ mk xl xr xL xR
_IHyr : ∀ (i : yr), mk xl xr xL xR ⧏ yR i → ¬yR i ⧏ mk xl xr xL xR
j✝ : xr
h₁ : xR j✝ ≤ mk yl yr yL yR
j : yr
h₂ : yR j ≤ mk xl xr xL xR
⊢ False
[PROOFSTEP]
exact IHxr _ _ (oyr _) (h₁.lf_moveRight _) (h₂.lf_moveRight _)
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
⊢ x ≤ y ↔ (∀ (i : LeftMoves x), moveLeft x i < y) ∧ ∀ (j : RightMoves y), x < moveRight y j
[PROOFSTEP]
refine' le_iff_forall_lf.trans (and_congr _ _)
[GOAL]
case refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
⊢ (∀ (i : LeftMoves x), moveLeft x i ⧏ y) ↔ ∀ (i : LeftMoves x), moveLeft x i < y
[PROOFSTEP]
refine' forall_congr' fun i => lf_iff_lt _ _
[GOAL]
case refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
⊢ (∀ (j : RightMoves y), x ⧏ moveRight y j) ↔ ∀ (j : RightMoves y), x < moveRight y j
[PROOFSTEP]
refine' forall_congr' fun i => lf_iff_lt _ _
[GOAL]
case refine'_1.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
i : LeftMoves x
⊢ Numeric (moveLeft x i)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_1.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
i : LeftMoves x
⊢ Numeric y
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_2.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
i : RightMoves y
⊢ Numeric x
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_2.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
i : RightMoves y
⊢ Numeric (moveRight y i)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
⊢ x < y ↔ (∃ i, x ≤ moveLeft y i) ∨ ∃ j, moveRight x j ≤ y
[PROOFSTEP]
rw [← lf_iff_lt ox oy, lf_iff_exists_le]
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
⊢ x < y ↔
(∃ i,
(∀ (i' : LeftMoves x), moveLeft x i' < moveLeft y i) ∧
∀ (j : RightMoves (moveLeft y i)), x < moveRight (moveLeft y i) j) ∨
∃ j,
(∀ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i < y) ∧
∀ (j' : RightMoves y), moveRight x j < moveRight y j'
[PROOFSTEP]
rw [← lf_iff_lt ox oy, lf_def]
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
⊢ ((∃ i,
(∀ (i' : LeftMoves x), moveLeft x i' ⧏ moveLeft y i) ∧
∀ (j : RightMoves (moveLeft y i)), x ⧏ moveRight (moveLeft y i) j) ∨
∃ j,
(∀ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i ⧏ y) ∧
∀ (j' : RightMoves y), moveRight x j ⧏ moveRight y j') ↔
(∃ i,
(∀ (i' : LeftMoves x), moveLeft x i' < moveLeft y i) ∧
∀ (j : RightMoves (moveLeft y i)), x < moveRight (moveLeft y i) j) ∨
∃ j,
(∀ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i < y) ∧
∀ (j' : RightMoves y), moveRight x j < moveRight y j'
[PROOFSTEP]
refine' or_congr _ _
[GOAL]
case refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
⊢ (∃ i,
(∀ (i' : LeftMoves x), moveLeft x i' ⧏ moveLeft y i) ∧
∀ (j : RightMoves (moveLeft y i)), x ⧏ moveRight (moveLeft y i) j) ↔
∃ i,
(∀ (i' : LeftMoves x), moveLeft x i' < moveLeft y i) ∧
∀ (j : RightMoves (moveLeft y i)), x < moveRight (moveLeft y i) j
[PROOFSTEP]
refine' exists_congr fun x_1 => _
[GOAL]
case refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
⊢ (∃ j,
(∀ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i ⧏ y) ∧
∀ (j' : RightMoves y), moveRight x j ⧏ moveRight y j') ↔
∃ j,
(∀ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i < y) ∧
∀ (j' : RightMoves y), moveRight x j < moveRight y j'
[PROOFSTEP]
refine' exists_congr fun x_1 => _
[GOAL]
case refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
⊢ ((∀ (i' : LeftMoves x), moveLeft x i' ⧏ moveLeft y x_1) ∧
∀ (j : RightMoves (moveLeft y x_1)), x ⧏ moveRight (moveLeft y x_1) j) ↔
(∀ (i' : LeftMoves x), moveLeft x i' < moveLeft y x_1) ∧
∀ (j : RightMoves (moveLeft y x_1)), x < moveRight (moveLeft y x_1) j
[PROOFSTEP]
refine' and_congr _ _
[GOAL]
case refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
⊢ ((∀ (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i ⧏ y) ∧
∀ (j' : RightMoves y), moveRight x x_1 ⧏ moveRight y j') ↔
(∀ (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i < y) ∧
∀ (j' : RightMoves y), moveRight x x_1 < moveRight y j'
[PROOFSTEP]
refine' and_congr _ _
[GOAL]
case refine'_1.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
⊢ (∀ (i' : LeftMoves x), moveLeft x i' ⧏ moveLeft y x_1) ↔ ∀ (i' : LeftMoves x), moveLeft x i' < moveLeft y x_1
[PROOFSTEP]
refine' forall_congr' fun i => lf_iff_lt _ _
[GOAL]
case refine'_1.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
⊢ (∀ (j : RightMoves (moveLeft y x_1)), x ⧏ moveRight (moveLeft y x_1) j) ↔
∀ (j : RightMoves (moveLeft y x_1)), x < moveRight (moveLeft y x_1) j
[PROOFSTEP]
refine' forall_congr' fun i => lf_iff_lt _ _
[GOAL]
case refine'_2.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
⊢ (∀ (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i ⧏ y) ↔
∀ (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i < y
[PROOFSTEP]
refine' forall_congr' fun i => lf_iff_lt _ _
[GOAL]
case refine'_2.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
⊢ (∀ (j' : RightMoves y), moveRight x x_1 ⧏ moveRight y j') ↔ ∀ (j' : RightMoves y), moveRight x x_1 < moveRight y j'
[PROOFSTEP]
refine' forall_congr' fun i => lf_iff_lt _ _
[GOAL]
case refine'_1.refine'_1.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
i : LeftMoves x
⊢ Numeric (moveLeft x i)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_1.refine'_1.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
i : LeftMoves x
⊢ Numeric (moveLeft y x_1)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_1.refine'_2.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
i : RightMoves (moveLeft y x_1)
⊢ Numeric x
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_1.refine'_2.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
i : RightMoves (moveLeft y x_1)
⊢ Numeric (moveRight (moveLeft y x_1) i)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_2.refine'_1.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
i : LeftMoves (moveRight x x_1)
⊢ Numeric (moveLeft (moveRight x x_1) i)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_2.refine'_1.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
i : LeftMoves (moveRight x x_1)
⊢ Numeric y
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_2.refine'_2.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
i : RightMoves y
⊢ Numeric (moveRight x x_1)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_2.refine'_2.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
i : RightMoves y
⊢ Numeric (moveRight y i)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
⊢ ∀ (i : xl ⊕ yl) (j : xr ⊕ yr),
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
i <
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
j
[PROOFSTEP]
rintro (ix | iy) (jx | jy)
[GOAL]
case inl.inl
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
ix : xl
jx : xr
⊢ (fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
(Sum.inl ix) <
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
(Sum.inl jx)
[PROOFSTEP]
exact add_lt_add_right (ox.1 ix jx) _
[GOAL]
case inl.inr
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
ix : xl
jy : yr
⊢ (fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
(Sum.inl ix) <
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
(Sum.inr jy)
[PROOFSTEP]
exact
(add_lf_add_of_lf_of_le (lf_mk _ _ ix) (oy.le_moveRight jy)).lt ((ox.moveLeft ix).add oy) (ox.add (oy.moveRight jy))
[GOAL]
case inr.inl
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
iy : yl
jx : xr
⊢ (fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
(Sum.inr iy) <
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
(Sum.inl jx)
[PROOFSTEP]
exact
(add_lf_add_of_lf_of_le (mk_lf _ _ jx) (oy.moveLeft_le iy)).lt (ox.add (oy.moveLeft iy)) ((ox.moveRight jx).add oy)
[GOAL]
case inr.inr
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
iy : yl
jy : yr
⊢ (fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
(Sum.inr iy) <
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
(Sum.inr jy)
[PROOFSTEP]
exact add_lt_add_left (oy.1 iy jy) ⟨xl, xr, xL, xR⟩
[GOAL]
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
⊢ (∀ (i : xl ⊕ yl),
Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
i)) ∧
∀ (j : xr ⊕ yr),
Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
j)
[PROOFSTEP]
constructor
[GOAL]
case left
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
⊢ ∀ (i : xl ⊕ yl),
Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
i)
[PROOFSTEP]
rintro (ix | iy)
[GOAL]
case left.inl
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
ix : xl
⊢ Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
(Sum.inl ix))
[PROOFSTEP]
exact (ox.moveLeft ix).add oy
[GOAL]
case left.inr
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
iy : yl
⊢ Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
(Sum.inr iy))
[PROOFSTEP]
exact ox.add (oy.moveLeft iy)
[GOAL]
case right
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
⊢ ∀ (j : xr ⊕ yr),
Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
j)
[PROOFSTEP]
rintro (jx | jy)
[GOAL]
case right.inl
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
jx : xr
⊢ Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
(Sum.inl jx))
[PROOFSTEP]
apply (ox.moveRight jx).add oy
[GOAL]
case right.inr
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
jy : yr
⊢ Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame → PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl ⊕ yl) (xr ⊕ yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
(Sum.inr jy))
[PROOFSTEP]
apply ox.add (oy.moveRight jy)
[GOAL]
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
x✝ :
∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } →
Numeric (y.1 + y.2.1)
ix : xl
⊢ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.moveLeft (PGame.mk xl xr xL xR) ix,
snd :=
{ fst := PGame.mk yl yr yL yR,
snd := { fst := (_ : Numeric (PGame.moveLeft (PGame.mk xl xr xL xR) ix)), snd := oy } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
x✝ :
∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } →
Numeric (y.1 + y.2.1)
jy : yr
⊢ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.mk xl xr xL xR,
snd :=
{ fst := PGame.moveRight (PGame.mk yl yr yL yR) jy,
snd := { fst := ox, snd := (_ : Numeric (PGame.moveRight (PGame.mk yl yr yL yR) jy)) } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
x✝ :
∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } →
Numeric (y.1 + y.2.1)
iy : yl
⊢ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.mk xl xr xL xR,
snd :=
{ fst := PGame.moveLeft (PGame.mk yl yr yL yR) iy,
snd := { fst := ox, snd := (_ : Numeric (PGame.moveLeft (PGame.mk yl yr yL yR) iy)) } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
x✝ :
∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } →
Numeric (y.1 + y.2.1)
jx : xr
⊢ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.moveRight (PGame.mk xl xr xL xR) jx,
snd :=
{ fst := PGame.mk yl yr yL yR,
snd := { fst := (_ : Numeric (PGame.moveRight (PGame.mk xl xr xL xR) jx)), snd := oy } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
x✝ :
∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } →
Numeric (y.1 + y.2.1)
ix : xl
⊢ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.moveLeft (PGame.mk xl xr xL xR) ix,
snd :=
{ fst := PGame.mk yl yr yL yR,
snd := { fst := (_ : Numeric (PGame.moveLeft (PGame.mk xl xr xL xR) ix)), snd := oy } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
x✝ :
∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } →
Numeric (y.1 + y.2.1)
iy : yl
⊢ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.mk xl xr xL xR,
snd := { fst := yL iy, snd := { fst := ox, snd := (_ : Numeric (PGame.moveLeft (PGame.mk yl yr yL yR) iy)) } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
x✝ :
∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } →
Numeric (y.1 + y.2.1)
jx : xr
⊢ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.moveRight (PGame.mk xl xr xL xR) jx,
snd :=
{ fst := PGame.mk yl yr yL yR,
snd := { fst := (_ : Numeric (PGame.moveRight (PGame.mk xl xr xL xR) jx)), snd := oy } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl → PGame
xR : xr → PGame
yl yr : Type u_1
yL : yl → PGame
yR : yr → PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
x✝ :
∀ (y : (x : PGame) ×' (x_1 : PGame) ×' (_ : Numeric x) ×' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } →
Numeric (y.1 + y.2.1)
jy : yr
⊢ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.mk xl xr xL xR,
snd :=
{ fst := PGame.moveRight (PGame.mk yl yr yL yR) jy,
snd := { fst := ox, snd := (_ : Numeric (PGame.moveRight (PGame.mk yl yr yL yR) jy)) } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
o : Ordinal.{u_1}
⊢ Numeric (Ordinal.toPGame o)
[PROOFSTEP]
induction' o using Ordinal.induction with o IH
[GOAL]
case h
o : Ordinal.{u_1}
IH : ∀ (k : Ordinal.{u_1}), k < o → Numeric (Ordinal.toPGame k)
⊢ Numeric (Ordinal.toPGame o)
[PROOFSTEP]
apply numeric_of_isEmpty_rightMoves
[GOAL]
case h.H
o : Ordinal.{u_1}
IH : ∀ (k : Ordinal.{u_1}), k < o → Numeric (Ordinal.toPGame k)
⊢ ∀ (i : LeftMoves (Ordinal.toPGame o)), Numeric (moveLeft (Ordinal.toPGame o) i)
[PROOFSTEP]
simpa using fun i => IH _ (Ordinal.toLeftMovesToPGame_symm_lt i)
[GOAL]
⊢ ∀ (a b c : Surreal), a + b + c = a + (b + c)
[PROOFSTEP]
rintro ⟨_⟩ ⟨_⟩ ⟨_⟩
[GOAL]
case mk.mk.mk
a✝³ : Surreal
a✝² : Subtype Numeric
b✝ : Surreal
a✝¹ : Subtype Numeric
c✝ : Surreal
a✝ : Subtype Numeric
⊢ Quot.mk Setoid.r a✝² + Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝ =
Quot.mk Setoid.r a✝² + (Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝)
[PROOFSTEP]
exact Quotient.sound add_assoc_equiv
[GOAL]
⊢ ∀ (a : Surreal), 0 + a = a
[PROOFSTEP]
rintro ⟨a⟩
[GOAL]
case mk
a✝ : Surreal
a : Subtype Numeric
⊢ 0 + Quot.mk Setoid.r a = Quot.mk Setoid.r a
[PROOFSTEP]
exact Quotient.sound (zero_add_equiv a)
[GOAL]
⊢ ∀ (a : Surreal), a + 0 = a
[PROOFSTEP]
rintro ⟨a⟩
[GOAL]
case mk
a✝ : Surreal
a : Subtype Numeric
⊢ Quot.mk Setoid.r a + 0 = Quot.mk Setoid.r a
[PROOFSTEP]
exact Quotient.sound (add_zero_equiv a)
[GOAL]
⊢ ∀ (a : Surreal), -a + a = 0
[PROOFSTEP]
rintro ⟨a⟩
[GOAL]
case mk
a✝ : Surreal
a : Subtype Numeric
⊢ -Quot.mk Setoid.r a + Quot.mk Setoid.r a = 0
[PROOFSTEP]
exact Quotient.sound (add_left_neg_equiv a)
[GOAL]
⊢ ∀ (a b : Surreal), a + b = b + a
[PROOFSTEP]
rintro ⟨_⟩ ⟨_⟩
[GOAL]
case mk.mk
a✝² : Surreal
a✝¹ : Subtype Numeric
b✝ : Surreal
a✝ : Subtype Numeric
⊢ Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝ = Quot.mk Setoid.r a✝ + Quot.mk Setoid.r a✝¹
[PROOFSTEP]
exact Quotient.sound add_comm_equiv
[GOAL]
⊢ ∀ (a : Surreal), a ≤ a
[PROOFSTEP]
rintro ⟨_⟩
[GOAL]
case mk
a✝¹ : Surreal
a✝ : Subtype Numeric
⊢ Quot.mk Setoid.r a✝ ≤ Quot.mk Setoid.r a✝
[PROOFSTEP]
apply @le_rfl PGame
[GOAL]
⊢ ∀ (a b c : Surreal), a ≤ b → b ≤ c → a ≤ c
[PROOFSTEP]
rintro ⟨_⟩ ⟨_⟩ ⟨_⟩
[GOAL]
case mk.mk.mk
a✝³ : Surreal
a✝² : Subtype Numeric
b✝ : Surreal
a✝¹ : Subtype Numeric
c✝ : Surreal
a✝ : Subtype Numeric
⊢ Quot.mk Setoid.r a✝² ≤ Quot.mk Setoid.r a✝¹ →
Quot.mk Setoid.r a✝¹ ≤ Quot.mk Setoid.r a✝ → Quot.mk Setoid.r a✝² ≤ Quot.mk Setoid.r a✝
[PROOFSTEP]
apply @le_trans PGame
[GOAL]
⊢ ∀ (a b : Surreal), a < b ↔ a ≤ b ∧ ¬b ≤ a
[PROOFSTEP]
rintro ⟨_, ox⟩ ⟨_, oy⟩
[GOAL]
case mk.mk.mk.mk
a✝ : Surreal
val✝¹ : PGame
ox : Numeric val✝¹
b✝ : Surreal
val✝ : PGame
oy : Numeric val✝
⊢ Quot.mk Setoid.r { val := val✝¹, property := ox } < Quot.mk Setoid.r { val := val✝, property := oy } ↔
Quot.mk Setoid.r { val := val✝¹, property := ox } ≤ Quot.mk Setoid.r { val := val✝, property := oy } ∧
¬Quot.mk Setoid.r { val := val✝, property := oy } ≤ Quot.mk Setoid.r { val := val✝¹, property := ox }
[PROOFSTEP]
apply @lt_iff_le_not_le PGame
[GOAL]
⊢ ∀ (a b : Surreal), a ≤ b → b ≤ a → a = b
[PROOFSTEP]
rintro ⟨_⟩ ⟨_⟩ h₁ h₂
[GOAL]
case mk.mk
a✝² : Surreal
a✝¹ : Subtype Numeric
b✝ : Surreal
a✝ : Subtype Numeric
h₁ : Quot.mk Setoid.r a✝¹ ≤ Quot.mk Setoid.r a✝
h₂ : Quot.mk Setoid.r a✝ ≤ Quot.mk Setoid.r a✝¹
⊢ Quot.mk Setoid.r a✝¹ = Quot.mk Setoid.r a✝
[PROOFSTEP]
exact Quotient.sound ⟨h₁, h₂⟩
[GOAL]
⊢ ∀ (a b : Surreal), a ≤ b → ∀ (c : Surreal), c + a ≤ c + b
[PROOFSTEP]
rintro ⟨_⟩ ⟨_⟩ hx ⟨_⟩
[GOAL]
case mk.mk.mk
a✝³ : Surreal
a✝² : Subtype Numeric
b✝ : Surreal
a✝¹ : Subtype Numeric
hx : Quot.mk Setoid.r a✝² ≤ Quot.mk Setoid.r a✝¹
c✝ : Surreal
a✝ : Subtype Numeric
⊢ Quot.mk Setoid.r a✝ + Quot.mk Setoid.r a✝² ≤ Quot.mk Setoid.r a✝ + Quot.mk Setoid.r a✝¹
[PROOFSTEP]
exact @add_le_add_left PGame _ _ _ _ _ hx _
[GOAL]
src✝ : OrderedAddCommGroup Surreal := orderedAddCommGroup
⊢ ∀ (a b : Surreal), a ≤ b ∨ b ≤ a
[PROOFSTEP]
rintro ⟨⟨x, ox⟩⟩ ⟨⟨y, oy⟩⟩
[GOAL]
case mk.mk.mk.mk
src✝ : OrderedAddCommGroup Surreal := orderedAddCommGroup
a✝ : Surreal
x : PGame
ox : Numeric x
b✝ : Surreal
y : PGame
oy : Numeric y
⊢ Quot.mk Setoid.r { val := x, property := ox } ≤ Quot.mk Setoid.r { val := y, property := oy } ∨
Quot.mk Setoid.r { val := y, property := oy } ≤ Quot.mk Setoid.r { val := x, property := ox }
[PROOFSTEP]
exact or_iff_not_imp_left.2 fun h => (PGame.not_le.1 h).le oy ox
[GOAL]
⊢ ∀ (x y : Surreal),
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(x + y) =
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
x +
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
y
[PROOFSTEP]
rintro ⟨_, _⟩ ⟨_, _⟩
[GOAL]
case mk.mk.mk.mk
x✝ : Surreal
val✝¹ : PGame
property✝¹ : Numeric val✝¹
y✝ : Surreal
val✝ : PGame
property✝ : Numeric val✝
⊢ ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame}, Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(Quot.mk Setoid.r { val := val✝¹, property := property✝¹ } +
Quot.mk Setoid.r { val := val✝, property := property✝ }) =
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(Quot.mk Setoid.r { val := val✝¹, property := property✝¹ }) +
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(Quot.mk Setoid.r { val := val✝, property := property✝ })
[PROOFSTEP]
rfl
[GOAL]
⊢ Monotone
(↑{
toZeroHom :=
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) },
map_add' :=
(_ :
∀ (x y : Surreal),
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(x + y) =
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
x +
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
y) }).toFun
[PROOFSTEP]
rintro ⟨_, _⟩ ⟨_, _⟩
[GOAL]
case mk.mk.mk.mk
a✝ : Surreal
val✝¹ : PGame
property✝¹ : Numeric val✝¹
b✝ : Surreal
val✝ : PGame
property✝ : Numeric val✝
⊢ Quot.mk Setoid.r { val := val✝¹, property := property✝¹ } ≤ Quot.mk Setoid.r { val := val✝, property := property✝ } →
ZeroHom.toFun
(↑{
toZeroHom :=
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) },
map_add' :=
(_ :
∀ (x y : Surreal),
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(x + y) =
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
x +
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
y) })
(Quot.mk Setoid.r { val := val✝¹, property := property✝¹ }) ≤
ZeroHom.toFun
(↑{
toZeroHom :=
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x → Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) },
map_add' :=
(_ :
∀ (x y : Surreal),
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(x + y) =
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
x +
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
∀ {x y : PGame},
Numeric x →
Numeric y → PGame.Equiv x y → Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
y) })
(Quot.mk Setoid.r { val := val✝, property := property✝ })
[PROOFSTEP]
exact id
[GOAL]
a b : Ordinal.{?u.73448}
h :
(fun o => Surreal.mk (toPGame o) (_ : Numeric (toPGame o))) a =
(fun o => Surreal.mk (toPGame o) (_ : Numeric (toPGame o))) b
⊢ toPGame a ≈ toPGame b
[PROOFSTEP]
apply Quotient.exact h
| {"mathlib_filename": "Mathlib.SetTheory.Surreal.Basic", "llama_tokens": 35676} |
[GOAL]
p : ℕ
pp : Prime p
m : ℕ
hm : m ∣ p
⊢ m = 1 ∨ m = p
[PROOFSTEP]
obtain ⟨n, hn⟩ := hm
[GOAL]
case intro
p : ℕ
pp : Prime p
m n : ℕ
hn : p = m * n
⊢ m = 1 ∨ m = p
[PROOFSTEP]
have := pp.isUnit_or_isUnit hn
[GOAL]
case intro
p : ℕ
pp : Prime p
m n : ℕ
hn : p = m * n
this : IsUnit m ∨ IsUnit n
⊢ m = 1 ∨ m = p
[PROOFSTEP]
rw [Nat.isUnit_iff, Nat.isUnit_iff] at this
[GOAL]
case intro
p : ℕ
pp : Prime p
m n : ℕ
hn : p = m * n
this : m = 1 ∨ n = 1
⊢ m = 1 ∨ m = p
[PROOFSTEP]
apply Or.imp_right _ this
[GOAL]
p : ℕ
pp : Prime p
m n : ℕ
hn : p = m * n
this : m = 1 ∨ n = 1
⊢ n = 1 → m = p
[PROOFSTEP]
rintro rfl
[GOAL]
p : ℕ
pp : Prime p
m : ℕ
hn : p = m * 1
this : m = 1 ∨ 1 = 1
⊢ m = p
[PROOFSTEP]
rw [hn, mul_one]
[GOAL]
p : ℕ
⊢ Prime p ↔ 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p
[PROOFSTEP]
refine'
⟨fun h => ⟨h.two_le, h.eq_one_or_self_of_dvd⟩, fun h => _⟩
-- Porting note: needed to make ℕ explicit
[GOAL]
p : ℕ
h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p
⊢ Prime p
[PROOFSTEP]
have h1 := (@one_lt_two ℕ ..).trans_le h.1
[GOAL]
p : ℕ
h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p
h1 : 1 < p
⊢ Prime p
[PROOFSTEP]
refine' ⟨mt Nat.isUnit_iff.mp h1.ne', fun a b hab => _⟩
[GOAL]
p : ℕ
h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p
h1 : 1 < p
a b : ℕ
hab : p = a * b
⊢ IsUnit a ∨ IsUnit b
[PROOFSTEP]
simp only [Nat.isUnit_iff]
[GOAL]
p : ℕ
h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p
h1 : 1 < p
a b : ℕ
hab : p = a * b
⊢ a = 1 ∨ b = 1
[PROOFSTEP]
apply Or.imp_right _ (h.2 a _)
[GOAL]
p : ℕ
h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p
h1 : 1 < p
a b : ℕ
hab : p = a * b
⊢ a = p → b = 1
[PROOFSTEP]
rintro rfl
[GOAL]
a b : ℕ
h : 2 ≤ a ∧ ∀ (m : ℕ), m ∣ a → m = 1 ∨ m = a
h1 : 1 < a
hab : a = a * b
⊢ b = 1
[PROOFSTEP]
rw [← mul_right_inj' (pos_of_gt h1).ne', ← hab, mul_one]
[GOAL]
p : ℕ
h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p
h1 : 1 < p
a b : ℕ
hab : p = a * b
⊢ a ∣ p
[PROOFSTEP]
rw [hab]
[GOAL]
p : ℕ
h : 2 ≤ p ∧ ∀ (m : ℕ), m ∣ p → m = 1 ∨ m = p
h1 : 1 < p
a b : ℕ
hab : p = a * b
⊢ a ∣ a * b
[PROOFSTEP]
exact dvd_mul_right _ _
[GOAL]
p : ℕ
p2 : 2 ≤ p
m : ℕ
h : m < p → m ∣ p → m = 1
m2 : 2 ≤ m
l : m < p
d : m ∣ p
⊢ 1 < 2
[PROOFSTEP]
decide
[GOAL]
p : ℕ
p2 : 2 ≤ p
m : ℕ
h : 2 ≤ m → m < p → ¬m ∣ p
l : m < p
d : m ∣ p
⊢ m = 1
[PROOFSTEP]
rcases m with (_ | _ | m)
[GOAL]
case zero
p : ℕ
p2 : 2 ≤ p
h : 2 ≤ zero → zero < p → ¬zero ∣ p
l : zero < p
d : zero ∣ p
⊢ zero = 1
[PROOFSTEP]
rw [eq_zero_of_zero_dvd d] at p2
[GOAL]
case zero
p : ℕ
p2 : 2 ≤ 0
h : 2 ≤ zero → zero < p → ¬zero ∣ p
l : zero < p
d : zero ∣ p
⊢ zero = 1
[PROOFSTEP]
revert p2
[GOAL]
case zero
p : ℕ
h : 2 ≤ zero → zero < p → ¬zero ∣ p
l : zero < p
d : zero ∣ p
⊢ 2 ≤ 0 → zero = 1
[PROOFSTEP]
decide
[GOAL]
case succ.zero
p : ℕ
p2 : 2 ≤ p
h : 2 ≤ succ zero → succ zero < p → ¬succ zero ∣ p
l : succ zero < p
d : succ zero ∣ p
⊢ succ zero = 1
[PROOFSTEP]
rfl
[GOAL]
case succ.succ
p : ℕ
p2 : 2 ≤ p
m : ℕ
h : 2 ≤ succ (succ m) → succ (succ m) < p → ¬succ (succ m) ∣ p
l : succ (succ m) < p
d : succ (succ m) ∣ p
⊢ succ (succ m) = 1
[PROOFSTEP]
exact (h le_add_self l).elim d
[GOAL]
p : ℕ
p2 : 2 ≤ p
a : ∀ (m : ℕ), 2 ≤ m → m ≤ sqrt p → ¬m ∣ p
this : ∀ {m k : ℕ}, m ≤ k → 1 < m → p ≠ m * k
m : ℕ
m2 : 2 ≤ m
l : m < p
x✝ : m ∣ p
k : ℕ
e : p = m * k
⊢ False
[PROOFSTEP]
cases' le_total m k with mk km
[GOAL]
case inl
p : ℕ
p2 : 2 ≤ p
a : ∀ (m : ℕ), 2 ≤ m → m ≤ sqrt p → ¬m ∣ p
this : ∀ {m k : ℕ}, m ≤ k → 1 < m → p ≠ m * k
m : ℕ
m2 : 2 ≤ m
l : m < p
x✝ : m ∣ p
k : ℕ
e : p = m * k
mk : m ≤ k
⊢ False
[PROOFSTEP]
exact this mk m2 e
[GOAL]
case inr
p : ℕ
p2 : 2 ≤ p
a : ∀ (m : ℕ), 2 ≤ m → m ≤ sqrt p → ¬m ∣ p
this : ∀ {m k : ℕ}, m ≤ k → 1 < m → p ≠ m * k
m : ℕ
m2 : 2 ≤ m
l : m < p
x✝ : m ∣ p
k : ℕ
e : p = m * k
km : k ≤ m
⊢ False
[PROOFSTEP]
rw [mul_comm] at e
[GOAL]
case inr
p : ℕ
p2 : 2 ≤ p
a : ∀ (m : ℕ), 2 ≤ m → m ≤ sqrt p → ¬m ∣ p
this : ∀ {m k : ℕ}, m ≤ k → 1 < m → p ≠ m * k
m : ℕ
m2 : 2 ≤ m
l : m < p
x✝ : m ∣ p
k : ℕ
e : p = k * m
km : k ≤ m
⊢ False
[PROOFSTEP]
refine' this km (lt_of_mul_lt_mul_right _ (zero_le m)) e
[GOAL]
case inr
p : ℕ
p2 : 2 ≤ p
a : ∀ (m : ℕ), 2 ≤ m → m ≤ sqrt p → ¬m ∣ p
this : ∀ {m k : ℕ}, m ≤ k → 1 < m → p ≠ m * k
m : ℕ
m2 : 2 ≤ m
l : m < p
x✝ : m ∣ p
k : ℕ
e : p = k * m
km : k ≤ m
⊢ 1 * m < k * m
[PROOFSTEP]
rwa [one_mul, ← e]
[GOAL]
n : ℕ
h1 : 1 < n
h : ∀ (m : ℕ), m < n → m ≠ 0 → coprime n m
⊢ Prime n
[PROOFSTEP]
refine' prime_def_lt.mpr ⟨h1, fun m mlt mdvd => _⟩
[GOAL]
n : ℕ
h1 : 1 < n
h : ∀ (m : ℕ), m < n → m ≠ 0 → coprime n m
m : ℕ
mlt : m < n
mdvd : m ∣ n
⊢ m = 1
[PROOFSTEP]
have hm : m ≠ 0 := by
rintro rfl
rw [zero_dvd_iff] at mdvd
exact mlt.ne' mdvd
[GOAL]
n : ℕ
h1 : 1 < n
h : ∀ (m : ℕ), m < n → m ≠ 0 → coprime n m
m : ℕ
mlt : m < n
mdvd : m ∣ n
⊢ m ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
n : ℕ
h1 : 1 < n
h : ∀ (m : ℕ), m < n → m ≠ 0 → coprime n m
mlt : 0 < n
mdvd : 0 ∣ n
⊢ False
[PROOFSTEP]
rw [zero_dvd_iff] at mdvd
[GOAL]
n : ℕ
h1 : 1 < n
h : ∀ (m : ℕ), m < n → m ≠ 0 → coprime n m
mlt : 0 < n
mdvd : n = 0
⊢ False
[PROOFSTEP]
exact mlt.ne' mdvd
[GOAL]
n : ℕ
h1 : 1 < n
h : ∀ (m : ℕ), m < n → m ≠ 0 → coprime n m
m : ℕ
mlt : m < n
mdvd : m ∣ n
hm : m ≠ 0
⊢ m = 1
[PROOFSTEP]
exact (h m mlt hm).symm.eq_one_of_dvd mdvd
[GOAL]
⊢ Prime 2
[PROOFSTEP]
decide
[GOAL]
⊢ Prime 3
[PROOFSTEP]
decide
[GOAL]
p : ℕ
hp : Prime p
h_two : p ≠ 2
h_three : p ≠ 3
⊢ 5 ≤ p
[PROOFSTEP]
by_contra' h
[GOAL]
p : ℕ
hp : Prime p
h_two : p ≠ 2
h_three : p ≠ 3
h : p < 5
⊢ False
[PROOFSTEP]
revert h_two h_three hp
[GOAL]
p : ℕ
h : p < 5
⊢ Prime p → p ≠ 2 → p ≠ 3 → False
[PROOFSTEP]
match p with
| 0 => decide
| 1 => decide
| 2 => decide
| 3 => decide
| 4 => decide
| n + 5 => exact (h.not_le le_add_self).elim
[GOAL]
p : ℕ
h : 0 < 5
⊢ Prime 0 → 0 ≠ 2 → 0 ≠ 3 → False
[PROOFSTEP]
decide
[GOAL]
p : ℕ
h : 1 < 5
⊢ Prime 1 → 1 ≠ 2 → 1 ≠ 3 → False
[PROOFSTEP]
decide
[GOAL]
p : ℕ
h : 2 < 5
⊢ Prime 2 → 2 ≠ 2 → 2 ≠ 3 → False
[PROOFSTEP]
decide
[GOAL]
p : ℕ
h : 3 < 5
⊢ Prime 3 → 3 ≠ 2 → 3 ≠ 3 → False
[PROOFSTEP]
decide
[GOAL]
p : ℕ
h : 4 < 5
⊢ Prime 4 → 4 ≠ 2 → 4 ≠ 3 → False
[PROOFSTEP]
decide
[GOAL]
p n : ℕ
h : n + 5 < 5
⊢ Prime (n + 5) → n + 5 ≠ 2 → n + 5 ≠ 3 → False
[PROOFSTEP]
exact (h.not_le le_add_self).elim
[GOAL]
a b : ℕ
a1 : 1 < a
b1 : 1 < b
h : Prime (a * b)
⊢ a * 1 = a * b
[PROOFSTEP]
simpa using (dvd_prime_two_le h a1).1 (dvd_mul_right _ _)
[GOAL]
a b n : ℕ
h : a * b = n
h₁ : 1 < a
h₂ : 1 < b
⊢ ¬Prime n
[PROOFSTEP]
rw [← h]
[GOAL]
a b n : ℕ
h : a * b = n
h₁ : 1 < a
h₂ : 1 < b
⊢ ¬Prime (a * b)
[PROOFSTEP]
exact not_prime_mul h₁ h₂
[GOAL]
a b : ℕ
⊢ Prime (a * b) ↔ Prime a ∧ b = 1 ∨ Prime b ∧ a = 1
[PROOFSTEP]
simp only [iff_self_iff, irreducible_mul_iff, ← irreducible_iff_nat_prime, Nat.isUnit_iff]
[GOAL]
p a : ℕ
hp : Prime p
a1 : a ≠ 1
⊢ a ∣ p ↔ p = a
[PROOFSTEP]
refine'
⟨_, by
rintro rfl
rfl⟩
[GOAL]
p a : ℕ
hp : Prime p
a1 : a ≠ 1
⊢ p = a → a ∣ p
[PROOFSTEP]
rintro rfl
[GOAL]
p : ℕ
hp : Prime p
a1 : p ≠ 1
⊢ p ∣ p
[PROOFSTEP]
rfl
[GOAL]
p a : ℕ
hp : Prime p
a1 : a ≠ 1
⊢ a ∣ p → p = a
[PROOFSTEP]
rintro ⟨j, rfl⟩
[GOAL]
case intro
a : ℕ
a1 : a ≠ 1
j : ℕ
hp : Prime (a * j)
⊢ a * j = a
[PROOFSTEP]
rcases prime_mul_iff.mp hp with (⟨_, rfl⟩ | ⟨_, rfl⟩)
[GOAL]
case intro.inl.intro
a : ℕ
a1 : a ≠ 1
left✝ : Prime a
hp : Prime (a * 1)
⊢ a * 1 = a
[PROOFSTEP]
exact mul_one _
[GOAL]
case intro.inr.intro
j : ℕ
left✝ : Prime j
a1 : 1 ≠ 1
hp : Prime (1 * j)
⊢ 1 * j = 1
[PROOFSTEP]
exact (a1 rfl).elim
[GOAL]
n k : ℕ
h : ¬n < k * k
⊢ 0 < 2
[PROOFSTEP]
decide
[GOAL]
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
⊢ Nat.minFacProp n (minFacAux n x✝)
[PROOFSTEP]
rw [minFacAux]
[GOAL]
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
⊢ Nat.minFacProp n
(if h : n < x✝ * x✝ then n
else
if x✝ ∣ n then x✝
else
let_fun this := (_ : sqrt n - x✝ < sqrt n + 2 - x✝);
minFacAux n (x✝ + 2))
[PROOFSTEP]
by_cases h : n < k * k
[GOAL]
case pos
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : n < k * k
⊢ Nat.minFacProp n
(if h : n < x✝ * x✝ then n
else
if x✝ ∣ n then x✝
else
let_fun this := (_ : sqrt n - x✝ < sqrt n + 2 - x✝);
minFacAux n (x✝ + 2))
[PROOFSTEP]
simp [h]
[GOAL]
case neg
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
⊢ Nat.minFacProp n
(if h : n < x✝ * x✝ then n
else
if x✝ ∣ n then x✝
else
let_fun this := (_ : sqrt n - x✝ < sqrt n + 2 - x✝);
minFacAux n (x✝ + 2))
[PROOFSTEP]
simp [h]
[GOAL]
case pos
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : n < k * k
⊢ Nat.minFacProp n n
[PROOFSTEP]
have pp : Prime n := prime_def_le_sqrt.2 ⟨n2, fun m m2 l d => not_lt_of_ge l <| lt_of_lt_of_le (sqrt_lt.2 h) (a m m2 d)⟩
[GOAL]
case pos
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : n < k * k
pp : Prime n
⊢ Nat.minFacProp n n
[PROOFSTEP]
exact ⟨n2, dvd_rfl, fun m m2 d => le_of_eq ((dvd_prime_two_le pp m2).1 d).symm⟩
[GOAL]
case neg
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
⊢ Nat.minFacProp n (if x✝ ∣ n then x✝ else minFacAux n (x✝ + 2))
[PROOFSTEP]
have k2 : 2 ≤ k := by
subst e
apply Nat.le_add_left
[GOAL]
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
⊢ 2 ≤ k
[PROOFSTEP]
subst e
[GOAL]
n : ℕ
n2 : 2 ≤ n
i : ℕ
k : ℕ := 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → 2 * i + 3 ≤ m
h : ¬n < k * k
⊢ 2 ≤ k
[PROOFSTEP]
apply Nat.le_add_left
[GOAL]
case neg
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
⊢ Nat.minFacProp n (if x✝ ∣ n then x✝ else minFacAux n (x✝ + 2))
[PROOFSTEP]
by_cases dk : k ∣ n
[GOAL]
case pos
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : k ∣ n
⊢ Nat.minFacProp n (if x✝ ∣ n then x✝ else minFacAux n (x✝ + 2))
[PROOFSTEP]
simp [dk]
[GOAL]
case neg
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
⊢ Nat.minFacProp n (if x✝ ∣ n then x✝ else minFacAux n (x✝ + 2))
[PROOFSTEP]
simp [dk]
[GOAL]
case pos
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : k ∣ n
⊢ Nat.minFacProp n x✝
[PROOFSTEP]
exact ⟨k2, dk, a⟩
[GOAL]
case neg
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
⊢ Nat.minFacProp n (minFacAux n (x✝ + 2))
[PROOFSTEP]
refine'
have := minFac_lemma n k h
minFacAux_has_prop n2 (k + 2) (i + 1) (by simp [e, left_distrib]) fun m m2 d => _
[GOAL]
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
this : sqrt n - k < sqrt n + 2 - k
⊢ k + 2 = 2 * (i + 1) + 3
[PROOFSTEP]
simp [e, left_distrib]
[GOAL]
case neg
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
this : sqrt n - k < sqrt n + 2 - k
m : ℕ
m2 : 2 ≤ m
d : m ∣ n
⊢ k + 2 ≤ m
[PROOFSTEP]
cases' Nat.eq_or_lt_of_le (a m m2 d) with me ml
[GOAL]
case neg.inl
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
this : sqrt n - k < sqrt n + 2 - k
m : ℕ
m2 : 2 ≤ m
d : m ∣ n
me : x✝ = m
⊢ k + 2 ≤ m
[PROOFSTEP]
subst me
[GOAL]
case neg.inl
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
this : sqrt n - k < sqrt n + 2 - k
m2 : 2 ≤ x✝
d : x✝ ∣ n
⊢ k + 2 ≤ x✝
[PROOFSTEP]
contradiction
[GOAL]
case neg.inr
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
this : sqrt n - k < sqrt n + 2 - k
m : ℕ
m2 : 2 ≤ m
d : m ∣ n
ml : x✝ < m
⊢ k + 2 ≤ m
[PROOFSTEP]
apply (Nat.eq_or_lt_of_le ml).resolve_left
[GOAL]
case neg.inr
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
this : sqrt n - k < sqrt n + 2 - k
m : ℕ
m2 : 2 ≤ m
d : m ∣ n
ml : x✝ < m
⊢ ¬succ x✝ = m
[PROOFSTEP]
intro me
[GOAL]
case neg.inr
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
this : sqrt n - k < sqrt n + 2 - k
m : ℕ
m2 : 2 ≤ m
d : m ∣ n
ml : x✝ < m
me : succ x✝ = m
⊢ False
[PROOFSTEP]
rw [← me, e] at d
[GOAL]
case neg.inr
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
this : sqrt n - k < sqrt n + 2 - k
m : ℕ
m2 : 2 ≤ m
d : succ (2 * i + 3) ∣ n
ml : x✝ < m
me : succ x✝ = m
⊢ False
[PROOFSTEP]
have d' : 2 * (i + 2) ∣ n := d
[GOAL]
case neg.inr
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
this : sqrt n - k < sqrt n + 2 - k
m : ℕ
m2 : 2 ≤ m
d : succ (2 * i + 3) ∣ n
ml : x✝ < m
me : succ x✝ = m
d' : 2 * (i + 2) ∣ n
⊢ False
[PROOFSTEP]
have := a _ le_rfl (dvd_of_mul_right_dvd d')
[GOAL]
case neg.inr
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
this✝ : sqrt n - k < sqrt n + 2 - k
m : ℕ
m2 : 2 ≤ m
d : succ (2 * i + 3) ∣ n
ml : x✝ < m
me : succ x✝ = m
d' : 2 * (i + 2) ∣ n
this : x✝ ≤ 2
⊢ False
[PROOFSTEP]
rw [e] at this
[GOAL]
case neg.inr
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
this✝ : sqrt n - k < sqrt n + 2 - k
m : ℕ
m2 : 2 ≤ m
d : succ (2 * i + 3) ∣ n
ml : x✝ < m
me : succ x✝ = m
d' : 2 * (i + 2) ∣ n
this : 2 * i + 3 ≤ 2
⊢ False
[PROOFSTEP]
exact absurd this (by contradiction)
[GOAL]
n : ℕ
n2 : 2 ≤ n
x✝ : ℕ
k : ℕ := x✝
i : ℕ
e : x✝ = 2 * i + 3
a : ∀ (m : ℕ), 2 ≤ m → m ∣ n → x✝ ≤ m
h : ¬n < k * k
k2 : 2 ≤ k
dk : ¬k ∣ n
this✝ : sqrt n - k < sqrt n + 2 - k
m : ℕ
m2 : 2 ≤ m
d : succ (2 * i + 3) ∣ n
ml : x✝ < m
me : succ x✝ = m
d' : 2 * (i + 2) ∣ n
this : 2 * i + 3 ≤ 2
⊢ ¬2 * i + 3 ≤ 2
[PROOFSTEP]
contradiction
[GOAL]
n : ℕ
n1 : n ≠ 1
⊢ Nat.minFacProp n (minFac n)
[PROOFSTEP]
by_cases n0 : n = 0
[GOAL]
case pos
n : ℕ
n1 : n ≠ 1
n0 : n = 0
⊢ Nat.minFacProp n (minFac n)
[PROOFSTEP]
simp [n0, minFacProp, GE.ge]
[GOAL]
case neg
n : ℕ
n1 : n ≠ 1
n0 : ¬n = 0
⊢ Nat.minFacProp n (minFac n)
[PROOFSTEP]
have n2 : 2 ≤ n := by
revert n0 n1
rcases n with (_ | _ | _) <;> simp [succ_le_succ]
[GOAL]
n : ℕ
n1 : n ≠ 1
n0 : ¬n = 0
⊢ 2 ≤ n
[PROOFSTEP]
revert n0 n1
[GOAL]
n : ℕ
⊢ n ≠ 1 → ¬n = 0 → 2 ≤ n
[PROOFSTEP]
rcases n with (_ | _ | _)
[GOAL]
case zero
⊢ zero ≠ 1 → ¬zero = 0 → 2 ≤ zero
[PROOFSTEP]
simp [succ_le_succ]
[GOAL]
case succ.zero
⊢ succ zero ≠ 1 → ¬succ zero = 0 → 2 ≤ succ zero
[PROOFSTEP]
simp [succ_le_succ]
[GOAL]
case succ.succ
n✝ : ℕ
⊢ succ (succ n✝) ≠ 1 → ¬succ (succ n✝) = 0 → 2 ≤ succ (succ n✝)
[PROOFSTEP]
simp [succ_le_succ]
[GOAL]
case neg
n : ℕ
n1 : n ≠ 1
n0 : ¬n = 0
n2 : 2 ≤ n
⊢ Nat.minFacProp n (minFac n)
[PROOFSTEP]
simp [minFac_eq]
[GOAL]
case neg
n : ℕ
n1 : n ≠ 1
n0 : ¬n = 0
n2 : 2 ≤ n
⊢ Nat.minFacProp n (if 2 ∣ n then 2 else minFacAux n 3)
[PROOFSTEP]
by_cases d2 : 2 ∣ n
[GOAL]
case pos
n : ℕ
n1 : n ≠ 1
n0 : ¬n = 0
n2 : 2 ≤ n
d2 : 2 ∣ n
⊢ Nat.minFacProp n (if 2 ∣ n then 2 else minFacAux n 3)
[PROOFSTEP]
simp [d2]
[GOAL]
case neg
n : ℕ
n1 : n ≠ 1
n0 : ¬n = 0
n2 : 2 ≤ n
d2 : ¬2 ∣ n
⊢ Nat.minFacProp n (if 2 ∣ n then 2 else minFacAux n 3)
[PROOFSTEP]
simp [d2]
[GOAL]
case pos
n : ℕ
n1 : n ≠ 1
n0 : ¬n = 0
n2 : 2 ≤ n
d2 : 2 ∣ n
⊢ Nat.minFacProp n 2
[PROOFSTEP]
exact ⟨le_rfl, d2, fun k k2 _ => k2⟩
[GOAL]
case neg
n : ℕ
n1 : n ≠ 1
n0 : ¬n = 0
n2 : 2 ≤ n
d2 : ¬2 ∣ n
⊢ Nat.minFacProp n (minFacAux n 3)
[PROOFSTEP]
refine' minFacAux_has_prop n2 3 0 rfl fun m m2 d => (Nat.eq_or_lt_of_le m2).resolve_left (mt _ d2)
[GOAL]
case neg
n : ℕ
n1 : n ≠ 1
n0 : ¬n = 0
n2 : 2 ≤ n
d2 : ¬2 ∣ n
m : ℕ
m2 : 2 ≤ m
d : m ∣ n
⊢ 2 = m → 2 ∣ n
[PROOFSTEP]
exact fun e => e.symm ▸ d
[GOAL]
n : ℕ
n1 : n = 1
⊢ minFac n ∣ n
[PROOFSTEP]
simp [n1]
[GOAL]
n : ℕ
⊢ ∀ {m : ℕ}, 2 ≤ m → m ∣ n → minFac n ≤ m
[PROOFSTEP]
by_cases n1 : n = 1 <;> [exact fun m2 _ => n1.symm ▸ le_trans (by decide) m2; apply (minFac_has_prop n1).2.2]
[GOAL]
n : ℕ
⊢ ∀ {m : ℕ}, 2 ≤ m → m ∣ n → minFac n ≤ m
[PROOFSTEP]
by_cases n1 : n = 1
[GOAL]
case pos
n m✝ : ℕ
n1 : n = 1
⊢ 2 ≤ m✝ → m✝ ∣ n → minFac n ≤ m✝
[PROOFSTEP]
exact fun m2 _ => n1.symm ▸ le_trans (by decide) m2
[GOAL]
n m✝ : ℕ
n1 : n = 1
m2 : 2 ≤ m✝
x✝ : m✝ ∣ n
⊢ minFac 1 ≤ 2
[PROOFSTEP]
decide
[GOAL]
case neg
n m✝ : ℕ
n1 : ¬n = 1
⊢ 2 ≤ m✝ → m✝ ∣ n → minFac n ≤ m✝
[PROOFSTEP]
apply (minFac_has_prop n1).2.2
[GOAL]
n : ℕ
⊢ 0 < minFac n
[PROOFSTEP]
by_cases n1 : n = 1 <;> [exact n1.symm ▸ (by decide); exact (minFac_prime n1).pos]
[GOAL]
n : ℕ
⊢ 0 < minFac n
[PROOFSTEP]
by_cases n1 : n = 1
[GOAL]
case pos
n : ℕ
n1 : n = 1
⊢ 0 < minFac n
[PROOFSTEP]
exact n1.symm ▸ (by decide)
[GOAL]
n : ℕ
n1 : n = 1
⊢ 0 < minFac 1
[PROOFSTEP]
decide
[GOAL]
case neg
n : ℕ
n1 : ¬n = 1
⊢ 0 < minFac n
[PROOFSTEP]
exact (minFac_prime n1).pos
[GOAL]
m n : ℕ
h : n = 1 ∨ m ≤ minFac n
p : ℕ
pp : Prime p
d : p ∣ n
⊢ n = 1 → m ≤ p
[PROOFSTEP]
rintro rfl
[GOAL]
m p : ℕ
pp : Prime p
h : 1 = 1 ∨ m ≤ minFac 1
d : p ∣ 1
⊢ m ≤ p
[PROOFSTEP]
cases pp.not_dvd_one d
[GOAL]
m n : ℕ
h : n = 1 ∨ m ≤ minFac n
p : ℕ
pp : 1 < p
d : p ∣ n
⊢ n = 1 → m ≤ p
[PROOFSTEP]
rintro rfl
[GOAL]
m p : ℕ
pp : 1 < p
h : 1 = 1 ∨ m ≤ minFac 1
d : p ∣ 1
⊢ m ≤ p
[PROOFSTEP]
cases not_le_of_lt pp (le_of_dvd (by decide) d)
[GOAL]
m p : ℕ
pp : 1 < p
h : 1 = 1 ∨ m ≤ minFac 1
d : p ∣ 1
⊢ 0 < 1
[PROOFSTEP]
decide
[GOAL]
n : ℕ
pos : 0 < n
np : ¬Prime n
h0 : n = minFac n * 0
⊢ ¬0 < n
[PROOFSTEP]
rw [h0, mul_zero]
[GOAL]
n : ℕ
pos : 0 < n
np : ¬Prime n
h0 : n = minFac n * 0
⊢ ¬0 < 0
[PROOFSTEP]
exact by decide
[GOAL]
n : ℕ
pos : 0 < n
np : ¬Prime n
h0 : n = minFac n * 0
⊢ ¬0 < 0
[PROOFSTEP]
decide
[GOAL]
n : ℕ
pos : 0 < n
np : ¬Prime n
h1 : n = minFac n * 1
⊢ minFac n ≤ n / minFac n
[PROOFSTEP]
rw [mul_one] at h1
[GOAL]
n : ℕ
pos : 0 < n
np : ¬Prime n
h1 : n = minFac n
⊢ minFac n ≤ n / minFac n
[PROOFSTEP]
rw [prime_def_minFac, not_and_or, ← h1, eq_self_iff_true, _root_.not_true, or_false_iff, not_le] at np
[GOAL]
n : ℕ
pos : 0 < n
np : n < 2
h1 : n = minFac n
⊢ minFac n ≤ n / minFac n
[PROOFSTEP]
rw [le_antisymm (le_of_lt_succ np) (succ_le_of_lt pos), minFac_one, Nat.div_one]
[GOAL]
n : ℕ
pos : 0 < n
np : ¬Prime n
x : ℕ
hx : n = minFac n * (x + 2)
⊢ minFac n ≤ n / minFac n
[PROOFSTEP]
conv_rhs =>
congr
rw [hx]
[GOAL]
n : ℕ
pos : 0 < n
np : ¬Prime n
x : ℕ
hx : n = minFac n * (x + 2)
| n / minFac n
[PROOFSTEP]
congr
rw [hx]
[GOAL]
n : ℕ
pos : 0 < n
np : ¬Prime n
x : ℕ
hx : n = minFac n * (x + 2)
| n / minFac n
[PROOFSTEP]
congr
rw [hx]
[GOAL]
n : ℕ
pos : 0 < n
np : ¬Prime n
x : ℕ
hx : n = minFac n * (x + 2)
| n / minFac n
[PROOFSTEP]
congr
[GOAL]
case a
n : ℕ
pos : 0 < n
np : ¬Prime n
x : ℕ
hx : n = minFac n * (x + 2)
| n
case a n : ℕ pos : 0 < n np : ¬Prime n x : ℕ hx : n = minFac n * (x + 2) | minFac n
[PROOFSTEP]
rw [hx]
[GOAL]
n : ℕ
pos : 0 < n
np : ¬Prime n
x : ℕ
hx : n = minFac n * (x + 2)
⊢ minFac n ≤ minFac n * (x + 2) / minFac n
[PROOFSTEP]
rw [Nat.mul_div_cancel_left _ (minFac_pos _)]
[GOAL]
n : ℕ
pos : 0 < n
np : ¬Prime n
x : ℕ
hx : n = minFac n * (x + 2)
⊢ minFac n ≤ x + 2
[PROOFSTEP]
exact minFac_le_of_dvd (le_add_left 2 x) ⟨minFac n, by rwa [mul_comm]⟩
[GOAL]
n : ℕ
pos : 0 < n
np : ¬Prime n
x : ℕ
hx : n = minFac n * (x + 2)
⊢ n = (x + 2) * minFac n
[PROOFSTEP]
rwa [mul_comm]
[GOAL]
n : ℕ
⊢ minFac n = 1 ↔ n = 1
[PROOFSTEP]
constructor
[GOAL]
case mp
n : ℕ
⊢ minFac n = 1 → n = 1
[PROOFSTEP]
intro h
[GOAL]
case mp
n : ℕ
h : minFac n = 1
⊢ n = 1
[PROOFSTEP]
by_contra hn
[GOAL]
case mp
n : ℕ
h : minFac n = 1
hn : ¬n = 1
⊢ False
[PROOFSTEP]
have := minFac_prime hn
[GOAL]
case mp
n : ℕ
h : minFac n = 1
hn : ¬n = 1
this : Prime (minFac n)
⊢ False
[PROOFSTEP]
rw [h] at this
[GOAL]
case mp
n : ℕ
h : minFac n = 1
hn : ¬n = 1
this : Prime 1
⊢ False
[PROOFSTEP]
exact not_prime_one this
[GOAL]
case mpr
n : ℕ
⊢ n = 1 → minFac n = 1
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
⊢ minFac 1 = 1
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
⊢ minFac n = 2 ↔ 2 ∣ n
[PROOFSTEP]
constructor
[GOAL]
case mp
n : ℕ
⊢ minFac n = 2 → 2 ∣ n
[PROOFSTEP]
intro h
[GOAL]
case mp
n : ℕ
h : minFac n = 2
⊢ 2 ∣ n
[PROOFSTEP]
rw [← h]
[GOAL]
case mp
n : ℕ
h : minFac n = 2
⊢ minFac n ∣ n
[PROOFSTEP]
exact minFac_dvd n
[GOAL]
case mpr
n : ℕ
⊢ 2 ∣ n → minFac n = 2
[PROOFSTEP]
intro h
[GOAL]
case mpr
n : ℕ
h : 2 ∣ n
⊢ minFac n = 2
[PROOFSTEP]
have ub := minFac_le_of_dvd (le_refl 2) h
[GOAL]
case mpr
n : ℕ
h : 2 ∣ n
ub : minFac n ≤ 2
⊢ minFac n = 2
[PROOFSTEP]
have lb := minFac_pos n
[GOAL]
case mpr
n : ℕ
h : 2 ∣ n
ub : minFac n ≤ 2
lb : 0 < minFac n
⊢ minFac n = 2
[PROOFSTEP]
refine ub.eq_or_lt.resolve_right fun h' => ?_
[GOAL]
case mpr
n : ℕ
h : 2 ∣ n
ub : minFac n ≤ 2
lb : 0 < minFac n
h' : minFac n < 2
⊢ False
[PROOFSTEP]
have := le_antisymm (Nat.succ_le_of_lt lb) (lt_succ_iff.mp h')
[GOAL]
case mpr
n : ℕ
h : 2 ∣ n
ub : minFac n ≤ 2
lb : 0 < minFac n
h' : minFac n < 2
this : succ 0 = minFac n
⊢ False
[PROOFSTEP]
rw [eq_comm, Nat.minFac_eq_one_iff] at this
[GOAL]
case mpr
n : ℕ
h : 2 ∣ n
ub : minFac n ≤ 2
lb : 0 < minFac n
h' : minFac n < 2
this : n = 1
⊢ False
[PROOFSTEP]
subst this
[GOAL]
case mpr
h : 2 ∣ 1
ub : minFac 1 ≤ 2
lb : 0 < minFac 1
h' : minFac 1 < 2
⊢ False
[PROOFSTEP]
exact not_lt_of_le (le_of_dvd zero_lt_one h) one_lt_two
[GOAL]
a b : ℕ
hdvd : ∀ (p : ℕ), Prime p → p ∣ a → p * a ∣ b
⊢ a ∣ b
[PROOFSTEP]
obtain rfl | ha := eq_or_ne a 1
[GOAL]
case inl
b : ℕ
hdvd : ∀ (p : ℕ), Prime p → p ∣ 1 → p * 1 ∣ b
⊢ 1 ∣ b
[PROOFSTEP]
apply one_dvd
[GOAL]
case inr
a b : ℕ
hdvd : ∀ (p : ℕ), Prime p → p ∣ a → p * a ∣ b
ha : a ≠ 1
⊢ a ∣ b
[PROOFSTEP]
obtain ⟨p, hp⟩ := exists_prime_and_dvd ha
[GOAL]
case inr.intro
a b : ℕ
hdvd : ∀ (p : ℕ), Prime p → p ∣ a → p * a ∣ b
ha : a ≠ 1
p : ℕ
hp : Prime p ∧ p ∣ a
⊢ a ∣ b
[PROOFSTEP]
exact _root_.trans (dvd_mul_left a p) (hdvd p hp.1 hp.2)
[GOAL]
⊢ ¬BddAbove {p | Prime p}
[PROOFSTEP]
rw [not_bddAbove_iff]
[GOAL]
⊢ ∀ (x : ℕ), ∃ y, y ∈ {p | Prime p} ∧ x < y
[PROOFSTEP]
intro n
[GOAL]
n : ℕ
⊢ ∃ y, y ∈ {p | Prime p} ∧ n < y
[PROOFSTEP]
obtain ⟨p, hi, hp⟩ := exists_infinite_primes n.succ
[GOAL]
case intro.intro
n p : ℕ
hi : succ n ≤ p
hp : Prime p
⊢ ∃ y, y ∈ {p | Prime p} ∧ n < y
[PROOFSTEP]
exact ⟨p, hp, hi⟩
[GOAL]
p : ℕ
hp : Prime p
h : p % 2 = 0
⊢ ¬2 = 1
[PROOFSTEP]
decide
[GOAL]
p : ℕ
hp : Prime p
⊢ Even p ↔ p = 2
[PROOFSTEP]
rw [even_iff_two_dvd, prime_dvd_prime_iff_eq prime_two hp, eq_comm]
[GOAL]
p : ℕ
hp : Prime p
h2 : p ≠ 2
n : ℕ
hn : p = 2 * n + 1
⊢ p - 1 = n + n
[PROOFSTEP]
rw [hn, Nat.add_sub_cancel, two_mul]
[GOAL]
p : ℕ
inst✝ : Fact (Prime p)
⊢ p % 2 = 1 ↔ p ≠ 2
[PROOFSTEP]
refine' ⟨fun h hf => _, (Nat.Prime.eq_two_or_odd <| @Fact.out p.Prime _).resolve_left⟩
[GOAL]
p : ℕ
inst✝ : Fact (Prime p)
h : p % 2 = 1
hf : p = 2
⊢ False
[PROOFSTEP]
rw [hf] at h
[GOAL]
p : ℕ
inst✝ : Fact (Prime p)
h : 2 % 2 = 1
hf : p = 2
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
m n : ℕ
H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n
⊢ coprime m n
[PROOFSTEP]
rw [coprime_iff_gcd_eq_one]
[GOAL]
m n : ℕ
H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n
⊢ gcd m n = 1
[PROOFSTEP]
by_contra g2
[GOAL]
m n : ℕ
H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n
g2 : ¬gcd m n = 1
⊢ False
[PROOFSTEP]
obtain ⟨p, hp, hpdvd⟩ := exists_prime_and_dvd g2
[GOAL]
case intro.intro
m n : ℕ
H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n
g2 : ¬gcd m n = 1
p : ℕ
hp : Prime p
hpdvd : p ∣ gcd m n
⊢ False
[PROOFSTEP]
apply H p hp
[GOAL]
case intro.intro.a
m n : ℕ
H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n
g2 : ¬gcd m n = 1
p : ℕ
hp : Prime p
hpdvd : p ∣ gcd m n
⊢ p ∣ m
[PROOFSTEP]
apply dvd_trans hpdvd
[GOAL]
case intro.intro.a
m n : ℕ
H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n
g2 : ¬gcd m n = 1
p : ℕ
hp : Prime p
hpdvd : p ∣ gcd m n
⊢ p ∣ n
[PROOFSTEP]
apply dvd_trans hpdvd
[GOAL]
case intro.intro.a
m n : ℕ
H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n
g2 : ¬gcd m n = 1
p : ℕ
hp : Prime p
hpdvd : p ∣ gcd m n
⊢ gcd m n ∣ m
[PROOFSTEP]
exact gcd_dvd_left _ _
[GOAL]
case intro.intro.a
m n : ℕ
H : ∀ (k : ℕ), Prime k → k ∣ m → ¬k ∣ n
g2 : ¬gcd m n = 1
p : ℕ
hp : Prime p
hpdvd : p ∣ gcd m n
⊢ gcd m n ∣ n
[PROOFSTEP]
exact gcd_dvd_right _ _
[GOAL]
k : ℕ
⊢ k + 2 ≠ 1
[PROOFSTEP]
apply Nat.ne_of_gt
[GOAL]
case h
k : ℕ
⊢ 1 < k + 2
[PROOFSTEP]
apply Nat.succ_lt_succ
[GOAL]
case h.a
k : ℕ
⊢ 0 < k + 1
[PROOFSTEP]
apply Nat.zero_lt_succ
[GOAL]
p n : ℕ
pp : Prime p
co : coprime p n
d : p ∣ n
⊢ p ∣ n * 1
[PROOFSTEP]
simp [d]
[GOAL]
m n : ℕ
⊢ ¬coprime m n ↔ ∃ p, Prime p ∧ p ∣ m ∧ p ∣ n
[PROOFSTEP]
apply Iff.intro
[GOAL]
case mp
m n : ℕ
⊢ ¬coprime m n → ∃ p, Prime p ∧ p ∣ m ∧ p ∣ n
[PROOFSTEP]
intro h
[GOAL]
case mp
m n : ℕ
h : ¬coprime m n
⊢ ∃ p, Prime p ∧ p ∣ m ∧ p ∣ n
[PROOFSTEP]
exact
⟨minFac (gcd m n), minFac_prime h, (minFac_dvd (gcd m n)).trans (gcd_dvd_left m n),
(minFac_dvd (gcd m n)).trans (gcd_dvd_right m n)⟩
[GOAL]
case mpr
m n : ℕ
⊢ (∃ p, Prime p ∧ p ∣ m ∧ p ∣ n) → ¬coprime m n
[PROOFSTEP]
intro h
[GOAL]
case mpr
m n : ℕ
h : ∃ p, Prime p ∧ p ∣ m ∧ p ∣ n
⊢ ¬coprime m n
[PROOFSTEP]
cases' h with p hp
[GOAL]
case mpr.intro
m n p : ℕ
hp : Prime p ∧ p ∣ m ∧ p ∣ n
⊢ ¬coprime m n
[PROOFSTEP]
apply Nat.not_coprime_of_dvd_of_dvd (Prime.one_lt hp.1) hp.2.1 hp.2.2
[GOAL]
p m n : ℕ
pp : Prime p
Hm : ¬p ∣ m
Hn : ¬p ∣ n
⊢ ¬(p ∣ m ∨ p ∣ n)
[PROOFSTEP]
simp [Hm, Hn]
[GOAL]
p m n : ℕ
pp : Prime p
h : p ∣ m ^ n
⊢ p ∣ m
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
p m n : ℕ
pp : Prime p
h✝ : p ∣ m ^ n
h : p ∣ m ^ zero
⊢ p ∣ m
[PROOFSTEP]
exact pp.not_dvd_one.elim h
[GOAL]
case succ
p m n✝ : ℕ
pp : Prime p
h✝ : p ∣ m ^ n✝
n : ℕ
IH : p ∣ m ^ n → p ∣ m
h : p ∣ m ^ succ n
⊢ p ∣ m
[PROOFSTEP]
rw [pow_succ] at h
[GOAL]
case succ
p m n✝ : ℕ
pp : Prime p
h✝ : p ∣ m ^ n✝
n : ℕ
IH : p ∣ m ^ n → p ∣ m
h : p ∣ m ^ n * m
⊢ p ∣ m
[PROOFSTEP]
exact (pp.dvd_mul.1 h).elim IH id
[GOAL]
p a k : ℕ
hp : Prime p
⊢ a ^ k = p ↔ a = p ∧ k = 1
[PROOFSTEP]
refine' ⟨fun h => _, fun h => by rw [h.1, h.2, pow_one]⟩
[GOAL]
p a k : ℕ
hp : Prime p
h : a = p ∧ k = 1
⊢ a ^ k = p
[PROOFSTEP]
rw [h.1, h.2, pow_one]
[GOAL]
p a k : ℕ
hp : Prime p
h : a ^ k = p
⊢ a = p ∧ k = 1
[PROOFSTEP]
rw [← h] at hp
[GOAL]
p a k : ℕ
hp : Prime (a ^ k)
h : a ^ k = p
⊢ a = p ∧ k = 1
[PROOFSTEP]
rw [← h, hp.eq_one_of_pow, eq_self_iff_true, and_true_iff, pow_one]
[GOAL]
n k : ℕ
hk : k ≠ 0
⊢ minFac (n ^ k) = minFac n
[PROOFSTEP]
rcases eq_or_ne n 1 with (rfl | hn)
[GOAL]
case inl
k : ℕ
hk : k ≠ 0
⊢ minFac (1 ^ k) = minFac 1
[PROOFSTEP]
simp
[GOAL]
case inr
n k : ℕ
hk : k ≠ 0
hn : n ≠ 1
⊢ minFac (n ^ k) = minFac n
[PROOFSTEP]
have hnk : n ^ k ≠ 1 := fun hk' => hn ((pow_eq_one_iff hk).1 hk')
[GOAL]
case inr
n k : ℕ
hk : k ≠ 0
hn : n ≠ 1
hnk : n ^ k ≠ 1
⊢ minFac (n ^ k) = minFac n
[PROOFSTEP]
apply (minFac_le_of_dvd (minFac_prime hn).two_le ((minFac_dvd n).pow hk)).antisymm
[GOAL]
case inr
n k : ℕ
hk : k ≠ 0
hn : n ≠ 1
hnk : n ^ k ≠ 1
⊢ minFac n ≤ minFac (n ^ k)
[PROOFSTEP]
apply minFac_le_of_dvd (minFac_prime hnk).two_le ((minFac_prime hnk).dvd_of_dvd_pow (minFac_dvd _))
[GOAL]
p k : ℕ
hp : Prime p
hk : k ≠ 0
⊢ minFac (p ^ k) = p
[PROOFSTEP]
rw [Nat.pow_minFac hk, hp.minFac_eq]
[GOAL]
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy : y ≠ 1
⊢ x * y = p ^ 2 ↔ x = p ∧ y = p
[PROOFSTEP]
refine' ⟨fun h => _, fun ⟨h₁, h₂⟩ => h₁.symm ▸ h₂.symm ▸ (sq _).symm⟩
[GOAL]
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
⊢ x = p ∧ y = p
[PROOFSTEP]
have pdvdxy : p ∣ x * y := by rw [h];
simp [sq]
-- Could be `wlog := hp.dvd_mul.1 pdvdxy using x y`, but that imports more than we want.
[GOAL]
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
⊢ p ∣ x * y
[PROOFSTEP]
rw [h]
[GOAL]
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
⊢ p ∣ p ^ 2
[PROOFSTEP]
simp [sq]
-- Could be `wlog := hp.dvd_mul.1 pdvdxy using x y`, but that imports more than we want.
[GOAL]
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
⊢ x = p ∧ y = p
[PROOFSTEP]
suffices ∀ x' y' : ℕ, x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p by
obtain hx | hy := hp.dvd_mul.1 pdvdxy <;> [skip; rw [And.comm]] <;> [skip; rw [mul_comm] at h pdvdxy ] <;>
apply this <;>
assumption
[GOAL]
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
⊢ x = p ∧ y = p
[PROOFSTEP]
obtain hx | hy := hp.dvd_mul.1 pdvdxy <;> [skip; rw [And.comm]] <;> [skip; rw [mul_comm] at h pdvdxy ]
[GOAL]
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
⊢ x = p ∧ y = p
[PROOFSTEP]
obtain hx | hy := hp.dvd_mul.1 pdvdxy <;> [skip; rw [And.comm]]
[GOAL]
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
⊢ x = p ∧ y = p
[PROOFSTEP]
obtain hx | hy := hp.dvd_mul.1 pdvdxy
[GOAL]
case inl
x y p : ℕ
hp : Prime p
hx✝ : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hx : p ∣ x
⊢ x = p ∧ y = p
[PROOFSTEP]
skip
[GOAL]
case inr
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy✝ : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hy : p ∣ y
⊢ x = p ∧ y = p
[PROOFSTEP]
rw [And.comm]
[GOAL]
case inl
x y p : ℕ
hp : Prime p
hx✝ : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hx : p ∣ x
⊢ x = p ∧ y = p
[PROOFSTEP]
skip
[GOAL]
case inr
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy✝ : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hy : p ∣ y
⊢ y = p ∧ x = p
[PROOFSTEP]
rw [mul_comm] at h pdvdxy
[GOAL]
case inl
x y p : ℕ
hp : Prime p
hx✝ : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hx : p ∣ x
⊢ x = p ∧ y = p
[PROOFSTEP]
apply this
[GOAL]
case inr
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy✝ : y ≠ 1
h : y * x = p ^ 2
pdvdxy : p ∣ y * x
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hy : p ∣ y
⊢ y = p ∧ x = p
[PROOFSTEP]
apply this
[GOAL]
case inl.a
x y p : ℕ
hp : Prime p
hx✝ : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hx : p ∣ x
⊢ x ≠ 1
[PROOFSTEP]
assumption
[GOAL]
case inl.a
x y p : ℕ
hp : Prime p
hx✝ : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hx : p ∣ x
⊢ y ≠ 1
[PROOFSTEP]
assumption
[GOAL]
case inl.a
x y p : ℕ
hp : Prime p
hx✝ : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hx : p ∣ x
⊢ x * y = p ^ 2
[PROOFSTEP]
assumption
[GOAL]
case inl.a
x y p : ℕ
hp : Prime p
hx✝ : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hx : p ∣ x
⊢ p ∣ x
[PROOFSTEP]
assumption
[GOAL]
case inr.a
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy✝ : y ≠ 1
h : y * x = p ^ 2
pdvdxy : p ∣ y * x
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hy : p ∣ y
⊢ y ≠ 1
[PROOFSTEP]
assumption
[GOAL]
case inr.a
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy✝ : y ≠ 1
h : y * x = p ^ 2
pdvdxy : p ∣ y * x
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hy : p ∣ y
⊢ x ≠ 1
[PROOFSTEP]
assumption
[GOAL]
case inr.a
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy✝ : y ≠ 1
h : y * x = p ^ 2
pdvdxy : p ∣ y * x
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hy : p ∣ y
⊢ y * x = p ^ 2
[PROOFSTEP]
assumption
[GOAL]
case inr.a
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy✝ : y ≠ 1
h : y * x = p ^ 2
pdvdxy : p ∣ y * x
this : ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
hy : p ∣ y
⊢ p ∣ y
[PROOFSTEP]
assumption
[GOAL]
x y p : ℕ
hp : Prime p
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
pdvdxy : p ∣ x * y
⊢ ∀ (x' y' : ℕ), x' ≠ 1 → y' ≠ 1 → x' * y' = p ^ 2 → p ∣ x' → x' = p ∧ y' = p
[PROOFSTEP]
rintro x y hx hy h ⟨a, ha⟩
[GOAL]
case intro
x✝ y✝ p : ℕ
hp : Prime p
hx✝ : x✝ ≠ 1
hy✝ : y✝ ≠ 1
h✝ : x✝ * y✝ = p ^ 2
pdvdxy : p ∣ x✝ * y✝
x y : ℕ
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
a : ℕ
ha : x = p * a
⊢ x = p ∧ y = p
[PROOFSTEP]
have : a ∣ p := ⟨y, by rwa [ha, sq, mul_assoc, mul_right_inj' hp.ne_zero, eq_comm] at h ⟩
[GOAL]
x✝ y✝ p : ℕ
hp : Prime p
hx✝ : x✝ ≠ 1
hy✝ : y✝ ≠ 1
h✝ : x✝ * y✝ = p ^ 2
pdvdxy : p ∣ x✝ * y✝
x y : ℕ
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
a : ℕ
ha : x = p * a
⊢ p = a * y
[PROOFSTEP]
rwa [ha, sq, mul_assoc, mul_right_inj' hp.ne_zero, eq_comm] at h
[GOAL]
case intro
x✝ y✝ p : ℕ
hp : Prime p
hx✝ : x✝ ≠ 1
hy✝ : y✝ ≠ 1
h✝ : x✝ * y✝ = p ^ 2
pdvdxy : p ∣ x✝ * y✝
x y : ℕ
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
a : ℕ
ha : x = p * a
this : a ∣ p
⊢ x = p ∧ y = p
[PROOFSTEP]
obtain ha1 | hap := (Nat.dvd_prime hp).mp ‹a ∣ p›
[GOAL]
case intro.inl
x✝ y✝ p : ℕ
hp : Prime p
hx✝ : x✝ ≠ 1
hy✝ : y✝ ≠ 1
h✝ : x✝ * y✝ = p ^ 2
pdvdxy : p ∣ x✝ * y✝
x y : ℕ
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
a : ℕ
ha : x = p * a
this : a ∣ p
ha1 : a = 1
⊢ x = p ∧ y = p
[PROOFSTEP]
subst ha1
[GOAL]
case intro.inl
x✝ y✝ p : ℕ
hp : Prime p
hx✝ : x✝ ≠ 1
hy✝ : y✝ ≠ 1
h✝ : x✝ * y✝ = p ^ 2
pdvdxy : p ∣ x✝ * y✝
x y : ℕ
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
ha : x = p * 1
this : 1 ∣ p
⊢ x = p ∧ y = p
[PROOFSTEP]
rw [mul_one] at ha
[GOAL]
case intro.inl
x✝ y✝ p : ℕ
hp : Prime p
hx✝ : x✝ ≠ 1
hy✝ : y✝ ≠ 1
h✝ : x✝ * y✝ = p ^ 2
pdvdxy : p ∣ x✝ * y✝
x y : ℕ
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
ha : x = p
this : 1 ∣ p
⊢ x = p ∧ y = p
[PROOFSTEP]
subst ha
[GOAL]
case intro.inl
x✝ y✝ : ℕ
hx✝ : x✝ ≠ 1
hy✝ : y✝ ≠ 1
x y : ℕ
hx : x ≠ 1
hy : y ≠ 1
hp : Prime x
h✝ : x✝ * y✝ = x ^ 2
pdvdxy : x ∣ x✝ * y✝
h : x * y = x ^ 2
this : 1 ∣ x
⊢ x = x ∧ y = x
[PROOFSTEP]
simp only [sq, mul_right_inj' hp.ne_zero] at h
[GOAL]
case intro.inl
x✝ y✝ : ℕ
hx✝ : x✝ ≠ 1
hy✝ : y✝ ≠ 1
x y : ℕ
hx : x ≠ 1
hy : y ≠ 1
hp : Prime x
h✝ : x✝ * y✝ = x ^ 2
pdvdxy : x ∣ x✝ * y✝
this : 1 ∣ x
h : y = x
⊢ x = x ∧ y = x
[PROOFSTEP]
subst h
[GOAL]
case intro.inl
x y✝ : ℕ
hx✝ : x ≠ 1
hy✝ : y✝ ≠ 1
y : ℕ
hy hx : y ≠ 1
hp : Prime y
h : x * y✝ = y ^ 2
pdvdxy : y ∣ x * y✝
this : 1 ∣ y
⊢ y = y ∧ y = y
[PROOFSTEP]
exact ⟨rfl, rfl⟩
[GOAL]
case intro.inr
x✝ y✝ p : ℕ
hp : Prime p
hx✝ : x✝ ≠ 1
hy✝ : y✝ ≠ 1
h✝ : x✝ * y✝ = p ^ 2
pdvdxy : p ∣ x✝ * y✝
x y : ℕ
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
a : ℕ
ha : x = p * a
this : a ∣ p
hap : a = p
⊢ x = p ∧ y = p
[PROOFSTEP]
refine' (hy ?_).elim
[GOAL]
case intro.inr
x✝ y✝ p : ℕ
hp : Prime p
hx✝ : x✝ ≠ 1
hy✝ : y✝ ≠ 1
h✝ : x✝ * y✝ = p ^ 2
pdvdxy : p ∣ x✝ * y✝
x y : ℕ
hx : x ≠ 1
hy : y ≠ 1
h : x * y = p ^ 2
a : ℕ
ha : x = p * a
this : a ∣ p
hap : a = p
⊢ y = 1
[PROOFSTEP]
subst hap
[GOAL]
case intro.inr
x✝ y✝ : ℕ
hx✝ : x✝ ≠ 1
hy✝ : y✝ ≠ 1
x y : ℕ
hx : x ≠ 1
hy : y ≠ 1
a : ℕ
hp : Prime a
h✝ : x✝ * y✝ = a ^ 2
pdvdxy : a ∣ x✝ * y✝
h : x * y = a ^ 2
ha : x = a * a
this : a ∣ a
⊢ y = 1
[PROOFSTEP]
subst ha
[GOAL]
case intro.inr
x y✝ : ℕ
hx✝ : x ≠ 1
hy✝ : y✝ ≠ 1
y : ℕ
hy : y ≠ 1
a : ℕ
hp : Prime a
h✝ : x * y✝ = a ^ 2
pdvdxy : a ∣ x * y✝
this : a ∣ a
hx : a * a ≠ 1
h : a * a * y = a ^ 2
⊢ y = 1
[PROOFSTEP]
rw [sq, Nat.mul_right_eq_self_iff (Nat.mul_pos hp.pos hp.pos : 0 < a * a)] at h
[GOAL]
case intro.inr
x y✝ : ℕ
hx✝ : x ≠ 1
hy✝ : y✝ ≠ 1
y : ℕ
hy : y ≠ 1
a : ℕ
hp : Prime a
h✝ : x * y✝ = a ^ 2
pdvdxy : a ∣ x * y✝
this : a ∣ a
hx : a * a ≠ 1
h : y = 1
⊢ y = 1
[PROOFSTEP]
exact h
[GOAL]
n p : ℕ
hp : Prime p
⊢ p ∣ (n + 1)! ↔ p ≤ n + 1
[PROOFSTEP]
rw [factorial_succ, hp.dvd_mul, Prime.dvd_factorial hp]
[GOAL]
n p : ℕ
hp : Prime p
⊢ p ∣ n + 1 ∨ p ≤ n ↔ p ≤ n + 1
[PROOFSTEP]
exact
⟨fun h => h.elim (le_of_dvd (succ_pos _)) le_succ_of_le, fun h =>
(_root_.lt_or_eq_of_le h).elim (Or.inr ∘ le_of_lt_succ) fun h => Or.inl <| by rw [h]⟩
[GOAL]
n p : ℕ
hp : Prime p
h✝ : p ≤ n + 1
h : p = n + 1
⊢ p ∣ n + 1
[PROOFSTEP]
rw [h]
[GOAL]
p : ℕ
pp : Prime p
i : ℕ
⊢ coprime p i ∨ p ∣ i
[PROOFSTEP]
rw [pp.dvd_iff_not_coprime]
[GOAL]
p : ℕ
pp : Prime p
i : ℕ
⊢ coprime p i ∨ ¬coprime p i
[PROOFSTEP]
apply em
[GOAL]
p : ℕ
pp : Prime p
m i : ℕ
⊢ i ∣ p ^ m ↔ ∃ k, k ≤ m ∧ i = p ^ k
[PROOFSTEP]
simp_rw [_root_.dvd_prime_pow (prime_iff.mp pp) m, associated_eq_eq]
[GOAL]
a p k : ℕ
pp : Prime p
h₁ : ¬a ∣ p ^ k
h₂ : a ∣ p ^ (k + 1)
⊢ a = p ^ (k + 1)
[PROOFSTEP]
obtain ⟨l, ⟨h, rfl⟩⟩ := (dvd_prime_pow pp).1 h₂
[GOAL]
case intro.intro
p k : ℕ
pp : Prime p
l : ℕ
h : l ≤ k + 1
h₁ : ¬p ^ l ∣ p ^ k
h₂ : p ^ l ∣ p ^ (k + 1)
⊢ p ^ l = p ^ (k + 1)
[PROOFSTEP]
congr
[GOAL]
case intro.intro.e_a
p k : ℕ
pp : Prime p
l : ℕ
h : l ≤ k + 1
h₁ : ¬p ^ l ∣ p ^ k
h₂ : p ^ l ∣ p ^ (k + 1)
⊢ l = k + 1
[PROOFSTEP]
exact le_antisymm h (not_le.1 ((not_congr (pow_dvd_pow_iff_le_right (Prime.one_lt pp))).1 h₁))
[GOAL]
⊢ 0 ≠ 1 ↔ ∃ p, Prime p ∧ p ∣ 0
[PROOFSTEP]
simpa using Exists.intro 2 Nat.prime_two
[GOAL]
⊢ 1 ≠ 1 ↔ ∃ p, Prime p ∧ p ∣ 1
[PROOFSTEP]
simp [Nat.not_prime_one]
[GOAL]
n : ℕ
⊢ n + 2 ≠ 1 ↔ ∃ p, Prime p ∧ p ∣ n + 2
[PROOFSTEP]
let a := n + 2
[GOAL]
n : ℕ
a : ℕ := n + 2
⊢ n + 2 ≠ 1 ↔ ∃ p, Prime p ∧ p ∣ n + 2
[PROOFSTEP]
let ha : a ≠ 1 := Nat.succ_succ_ne_one n
[GOAL]
n : ℕ
a : ℕ := n + 2
ha : a ≠ 1 := succ_succ_ne_one n
⊢ n + 2 ≠ 1 ↔ ∃ p, Prime p ∧ p ∣ n + 2
[PROOFSTEP]
simp only [true_iff_iff, Ne.def, not_false_iff, ha]
[GOAL]
n : ℕ
a : ℕ := n + 2
ha : a ≠ 1 := succ_succ_ne_one n
⊢ ∃ p, Prime p ∧ p ∣ n + 2
[PROOFSTEP]
exact ⟨a.minFac, Nat.minFac_prime ha, a.minFac_dvd⟩
[GOAL]
n : ℕ
⊢ n = 1 ↔ ∀ (p : ℕ), Prime p → ¬p ∣ n
[PROOFSTEP]
simpa using not_iff_not.mpr ne_one_iff_exists_prime_dvd
[GOAL]
p : ℕ
p_prime : Prime p
m n k l : ℕ
hpm : p ^ k ∣ m
hpn : p ^ l ∣ n
hpmn : p ^ (k + l + 1) ∣ m * n
⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n
[PROOFSTEP]
have hpd : p ^ (k + l) * p ∣ m * n :=
by
let hpmn' : p ^ (succ (k + l)) ∣ m * n := hpmn
rwa [pow_succ'] at hpmn'
[GOAL]
p : ℕ
p_prime : Prime p
m n k l : ℕ
hpm : p ^ k ∣ m
hpn : p ^ l ∣ n
hpmn : p ^ (k + l + 1) ∣ m * n
⊢ p ^ (k + l) * p ∣ m * n
[PROOFSTEP]
let hpmn' : p ^ (succ (k + l)) ∣ m * n := hpmn
[GOAL]
p : ℕ
p_prime : Prime p
m n k l : ℕ
hpm : p ^ k ∣ m
hpn : p ^ l ∣ n
hpmn : p ^ (k + l + 1) ∣ m * n
hpmn' : p ^ succ (k + l) ∣ m * n := hpmn
⊢ p ^ (k + l) * p ∣ m * n
[PROOFSTEP]
rwa [pow_succ'] at hpmn'
[GOAL]
p : ℕ
p_prime : Prime p
m n k l : ℕ
hpm : p ^ k ∣ m
hpn : p ^ l ∣ n
hpmn : p ^ (k + l + 1) ∣ m * n
hpd : p ^ (k + l) * p ∣ m * n
⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n
[PROOFSTEP]
have hpd2 : p ∣ m * n / p ^ (k + l) := dvd_div_of_mul_dvd hpd
[GOAL]
p : ℕ
p_prime : Prime p
m n k l : ℕ
hpm : p ^ k ∣ m
hpn : p ^ l ∣ n
hpmn : p ^ (k + l + 1) ∣ m * n
hpd : p ^ (k + l) * p ∣ m * n
hpd2 : p ∣ m * n / p ^ (k + l)
⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n
[PROOFSTEP]
have hpd3 : p ∣ m * n / (p ^ k * p ^ l) := by simpa [pow_add] using hpd2
[GOAL]
p : ℕ
p_prime : Prime p
m n k l : ℕ
hpm : p ^ k ∣ m
hpn : p ^ l ∣ n
hpmn : p ^ (k + l + 1) ∣ m * n
hpd : p ^ (k + l) * p ∣ m * n
hpd2 : p ∣ m * n / p ^ (k + l)
⊢ p ∣ m * n / (p ^ k * p ^ l)
[PROOFSTEP]
simpa [pow_add] using hpd2
[GOAL]
p : ℕ
p_prime : Prime p
m n k l : ℕ
hpm : p ^ k ∣ m
hpn : p ^ l ∣ n
hpmn : p ^ (k + l + 1) ∣ m * n
hpd : p ^ (k + l) * p ∣ m * n
hpd2 : p ∣ m * n / p ^ (k + l)
hpd3 : p ∣ m * n / (p ^ k * p ^ l)
⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n
[PROOFSTEP]
have hpd4 : p ∣ m / p ^ k * (n / p ^ l) := by simpa [Nat.div_mul_div_comm hpm hpn] using hpd3
[GOAL]
p : ℕ
p_prime : Prime p
m n k l : ℕ
hpm : p ^ k ∣ m
hpn : p ^ l ∣ n
hpmn : p ^ (k + l + 1) ∣ m * n
hpd : p ^ (k + l) * p ∣ m * n
hpd2 : p ∣ m * n / p ^ (k + l)
hpd3 : p ∣ m * n / (p ^ k * p ^ l)
⊢ p ∣ m / p ^ k * (n / p ^ l)
[PROOFSTEP]
simpa [Nat.div_mul_div_comm hpm hpn] using hpd3
[GOAL]
p : ℕ
p_prime : Prime p
m n k l : ℕ
hpm : p ^ k ∣ m
hpn : p ^ l ∣ n
hpmn : p ^ (k + l + 1) ∣ m * n
hpd : p ^ (k + l) * p ∣ m * n
hpd2 : p ∣ m * n / p ^ (k + l)
hpd3 : p ∣ m * n / (p ^ k * p ^ l)
hpd4 : p ∣ m / p ^ k * (n / p ^ l)
⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n
[PROOFSTEP]
have hpd5 : p ∣ m / p ^ k ∨ p ∣ n / p ^ l := (Prime.dvd_mul p_prime).1 hpd4
[GOAL]
p : ℕ
p_prime : Prime p
m n k l : ℕ
hpm : p ^ k ∣ m
hpn : p ^ l ∣ n
hpmn : p ^ (k + l + 1) ∣ m * n
hpd : p ^ (k + l) * p ∣ m * n
hpd2 : p ∣ m * n / p ^ (k + l)
hpd3 : p ∣ m * n / (p ^ k * p ^ l)
hpd4 : p ∣ m / p ^ k * (n / p ^ l)
hpd5 : p ∣ m / p ^ k ∨ p ∣ n / p ^ l
⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n
[PROOFSTEP]
suffices p ^ k * p ∣ m ∨ p ^ l * p ∣ n by rwa [_root_.pow_succ', _root_.pow_succ']
[GOAL]
p : ℕ
p_prime : Prime p
m n k l : ℕ
hpm : p ^ k ∣ m
hpn : p ^ l ∣ n
hpmn : p ^ (k + l + 1) ∣ m * n
hpd : p ^ (k + l) * p ∣ m * n
hpd2 : p ∣ m * n / p ^ (k + l)
hpd3 : p ∣ m * n / (p ^ k * p ^ l)
hpd4 : p ∣ m / p ^ k * (n / p ^ l)
hpd5 : p ∣ m / p ^ k ∨ p ∣ n / p ^ l
this : p ^ k * p ∣ m ∨ p ^ l * p ∣ n
⊢ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n
[PROOFSTEP]
rwa [_root_.pow_succ', _root_.pow_succ']
[GOAL]
p : ℕ
p_prime : Prime p
m n k l : ℕ
hpm : p ^ k ∣ m
hpn : p ^ l ∣ n
hpmn : p ^ (k + l + 1) ∣ m * n
hpd : p ^ (k + l) * p ∣ m * n
hpd2 : p ∣ m * n / p ^ (k + l)
hpd3 : p ∣ m * n / (p ^ k * p ^ l)
hpd4 : p ∣ m / p ^ k * (n / p ^ l)
hpd5 : p ∣ m / p ^ k ∨ p ∣ n / p ^ l
⊢ p ^ k * p ∣ m ∨ p ^ l * p ∣ n
[PROOFSTEP]
exact
hpd5.elim (fun h : p ∣ m / p ^ k => Or.inl <| mul_dvd_of_dvd_div hpm h) fun h : p ∣ n / p ^ l =>
Or.inr <| mul_dvd_of_dvd_div hpn h
[GOAL]
p : ℕ
hp : Prime p
a b : ℤ
h : ↑p ∣ a * b
⊢ ↑p ∣ a ∨ ↑p ∣ b
[PROOFSTEP]
rw [← Int.dvd_natAbs, Int.coe_nat_dvd, Int.natAbs_mul, hp.dvd_mul] at h
[GOAL]
p : ℕ
hp : Prime p
a b : ℤ
h : p ∣ Int.natAbs a ∨ p ∣ Int.natAbs b
⊢ ↑p ∣ a ∨ ↑p ∣ b
[PROOFSTEP]
rwa [← Int.dvd_natAbs, Int.coe_nat_dvd, ← Int.dvd_natAbs, Int.coe_nat_dvd]
[GOAL]
p : ℕ
hp : _root_.Prime ↑p
h : p = 1
⊢ False
[PROOFSTEP]
simp [h, not_prime_one] at hp
[GOAL]
p : ℕ
hp : _root_.Prime ↑p
a b : ℕ
⊢ p ∣ a * b → p ∣ a ∨ p ∣ b
[PROOFSTEP]
simpa only [Int.coe_nat_dvd, (Int.ofNat_mul _ _).symm] using hp.2.2 a b
| {"mathlib_filename": "Mathlib.Data.Nat.Prime", "llama_tokens": 26491} |
[GOAL]
x y : ℝ≥0
⊢ 0 ^ 2 = x ↔ x = 0
[PROOFSTEP]
rw [eq_comm, sq, zero_mul]
[GOAL]
x✝ y x : ℝ≥0
⊢ ↑sqrt x * ↑sqrt x = x
[PROOFSTEP]
rw [← sq, sq_sqrt]
[GOAL]
x✝ y x : ℝ≥0
⊢ ↑sqrt (x * x) = x
[PROOFSTEP]
rw [← sq, sqrt_sq x]
[GOAL]
x✝ y✝ x y : ℝ≥0
⊢ ↑sqrt (x * y) = ↑sqrt x * ↑sqrt y
[PROOFSTEP]
rw [sqrt_eq_iff_sq_eq, mul_pow, sq_sqrt, sq_sqrt]
[GOAL]
x y : ℝ≥0
⊢ 0 < ↑sqrt x ↔ 0 < x
[PROOFSTEP]
simp [pos_iff_ne_zero]
[GOAL]
f : CauSeq ℚ abs
⊢ 0 ≤ sqrtAux f 0
[PROOFSTEP]
rw [sqrtAux, Rat.mkRat_eq, Rat.divInt_eq_div]
[GOAL]
f : CauSeq ℚ abs
⊢ 0 ≤ ↑↑(Nat.sqrt (Int.toNat (↑f 0).num)) / ↑↑(Nat.sqrt (↑f 0).den)
[PROOFSTEP]
apply div_nonneg
[GOAL]
case ha
f : CauSeq ℚ abs
⊢ 0 ≤ ↑↑(Nat.sqrt (Int.toNat (↑f 0).num))
[PROOFSTEP]
exact Int.cast_nonneg.2 (Int.ofNat_nonneg _)
[GOAL]
case hb
f : CauSeq ℚ abs
⊢ 0 ≤ ↑↑(Nat.sqrt (↑f 0).den)
[PROOFSTEP]
exact Int.cast_nonneg.2 (Int.ofNat_nonneg _)
[GOAL]
x✝ y : ℝ
x : ℝ≥0
⊢ ↑(↑NNReal.sqrt x) = sqrt ↑x
[PROOFSTEP]
rw [Real.sqrt, Real.toNNReal_coe]
[GOAL]
x y : ℝ
h : x ≤ 0
⊢ sqrt x = 0
[PROOFSTEP]
simp [sqrt, Real.toNNReal_eq_zero.2 h]
[GOAL]
x y : ℝ
h : 0 ≤ x
⊢ sqrt x * sqrt x = x
[PROOFSTEP]
rw [sqrt, ← NNReal.coe_mul, NNReal.mul_self_sqrt, Real.coe_toNNReal _ h]
[GOAL]
x y : ℝ
⊢ sqrt x = y ↔ y * y = x ∧ 0 ≤ y ∨ x < 0 ∧ y = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
x y : ℝ
⊢ sqrt x = y → y * y = x ∧ 0 ≤ y ∨ x < 0 ∧ y = 0
[PROOFSTEP]
rintro rfl
[GOAL]
case mp
x : ℝ
⊢ sqrt x * sqrt x = x ∧ 0 ≤ sqrt x ∨ x < 0 ∧ sqrt x = 0
[PROOFSTEP]
cases' le_or_lt 0 x with hle hlt
[GOAL]
case mp.inl
x : ℝ
hle : 0 ≤ x
⊢ sqrt x * sqrt x = x ∧ 0 ≤ sqrt x ∨ x < 0 ∧ sqrt x = 0
[PROOFSTEP]
exact Or.inl ⟨mul_self_sqrt hle, sqrt_nonneg x⟩
[GOAL]
case mp.inr
x : ℝ
hlt : x < 0
⊢ sqrt x * sqrt x = x ∧ 0 ≤ sqrt x ∨ x < 0 ∧ sqrt x = 0
[PROOFSTEP]
exact Or.inr ⟨hlt, sqrt_eq_zero_of_nonpos hlt.le⟩
[GOAL]
case mpr
x y : ℝ
⊢ y * y = x ∧ 0 ≤ y ∨ x < 0 ∧ y = 0 → sqrt x = y
[PROOFSTEP]
rintro (⟨rfl, hy⟩ | ⟨hx, rfl⟩)
[GOAL]
case mpr.inl.intro
y : ℝ
hy : 0 ≤ y
⊢ sqrt (y * y) = y
case mpr.inr.intro x : ℝ hx : x < 0 ⊢ sqrt x = 0
[PROOFSTEP]
exacts [sqrt_mul_self hy, sqrt_eq_zero_of_nonpos hx.le]
[GOAL]
x y : ℝ
hx : 0 ≤ x
hy : 0 ≤ y
h : sqrt x = y
⊢ y * y = x
[PROOFSTEP]
rw [← h, mul_self_sqrt hx]
[GOAL]
x y : ℝ
hx : 0 ≤ x
hy : 0 ≤ y
h : y * y = x
⊢ sqrt x = y
[PROOFSTEP]
rw [← h, sqrt_mul_self hy]
[GOAL]
x y : ℝ
h : 0 < y
⊢ sqrt x = y ↔ y * y = x
[PROOFSTEP]
simp [sqrt_eq_cases, h.ne', h.le]
[GOAL]
x y : ℝ
⊢ 1 * 1 = x ↔ x = 1
[PROOFSTEP]
rw [eq_comm, mul_one]
[GOAL]
x y : ℝ
h : 0 ≤ x
⊢ sqrt x ^ 2 = x
[PROOFSTEP]
rw [sq, mul_self_sqrt h]
[GOAL]
x y : ℝ
h : 0 ≤ x
⊢ sqrt (x ^ 2) = x
[PROOFSTEP]
rw [sq, sqrt_mul_self h]
[GOAL]
x y : ℝ
hx : 0 ≤ x
hy : 0 ≤ y
⊢ sqrt x = y ↔ y ^ 2 = x
[PROOFSTEP]
rw [sq, sqrt_eq_iff_mul_self_eq hx hy]
[GOAL]
x✝ y x : ℝ
⊢ sqrt (x * x) = |x|
[PROOFSTEP]
rw [← abs_mul_abs_self x, sqrt_mul_self (abs_nonneg _)]
[GOAL]
x✝ y x : ℝ
⊢ sqrt (x ^ 2) = |x|
[PROOFSTEP]
rw [sq, sqrt_mul_self_eq_abs]
[GOAL]
x y : ℝ
⊢ sqrt 0 = 0
[PROOFSTEP]
simp [sqrt]
[GOAL]
x y : ℝ
⊢ sqrt 1 = 1
[PROOFSTEP]
simp [sqrt]
[GOAL]
x y : ℝ
hy : 0 ≤ y
⊢ sqrt x ≤ sqrt y ↔ x ≤ y
[PROOFSTEP]
rw [sqrt, sqrt, NNReal.coe_le_coe, NNReal.sqrt_le_sqrt_iff, Real.toNNReal_le_toNNReal_iff hy]
[GOAL]
x y : ℝ
hy : 0 < y
⊢ sqrt x < sqrt y ↔ x < y
[PROOFSTEP]
rw [sqrt, sqrt, NNReal.coe_lt_coe, NNReal.sqrt_lt_sqrt_iff, toNNReal_lt_toNNReal_iff hy]
[GOAL]
x y : ℝ
h : x ≤ y
⊢ sqrt x ≤ sqrt y
[PROOFSTEP]
rw [sqrt, sqrt, NNReal.coe_le_coe, NNReal.sqrt_le_sqrt_iff]
[GOAL]
x y : ℝ
h : x ≤ y
⊢ toNNReal x ≤ toNNReal y
[PROOFSTEP]
exact toNNReal_le_toNNReal h
[GOAL]
x y : ℝ
hy : 0 ≤ y
⊢ sqrt x ≤ y ↔ x ≤ y ^ 2
[PROOFSTEP]
rw [sqrt, ← Real.le_toNNReal_iff_coe_le hy, NNReal.sqrt_le_iff, sq, ← Real.toNNReal_mul hy,
Real.toNNReal_le_toNNReal_iff (mul_self_nonneg y), sq]
[GOAL]
x y : ℝ
⊢ sqrt x ≤ y ↔ 0 ≤ y ∧ x ≤ y ^ 2
[PROOFSTEP]
rw [← and_iff_right_of_imp fun h => (sqrt_nonneg x).trans h, and_congr_right_iff]
[GOAL]
x y : ℝ
⊢ 0 ≤ y → (sqrt x ≤ y ↔ x ≤ y ^ 2)
[PROOFSTEP]
exact sqrt_le_left
[GOAL]
x y : ℝ
hx : 0 ≤ x
hy : 0 ≤ y
⊢ sqrt x < y ↔ x < y ^ 2
[PROOFSTEP]
rw [← sqrt_lt_sqrt_iff hx, sqrt_sq hy]
[GOAL]
x y : ℝ
hy : 0 < y
⊢ sqrt x < y ↔ x < y ^ 2
[PROOFSTEP]
rw [← sqrt_lt_sqrt_iff_of_pos (pow_pos hy _), sqrt_sq hy.le]
[GOAL]
x y : ℝ
h : x ^ 2 ≤ y
⊢ |x| ≤ sqrt y
[PROOFSTEP]
rw [← sqrt_sq_eq_abs]
[GOAL]
x y : ℝ
h : x ^ 2 ≤ y
⊢ sqrt (x ^ 2) ≤ sqrt y
[PROOFSTEP]
exact sqrt_le_sqrt h
[GOAL]
x y : ℝ
h : 0 ≤ y
⊢ x ^ 2 ≤ y ↔ -sqrt y ≤ x ∧ x ≤ sqrt y
[PROOFSTEP]
constructor
[GOAL]
case mp
x y : ℝ
h : 0 ≤ y
⊢ x ^ 2 ≤ y → -sqrt y ≤ x ∧ x ≤ sqrt y
[PROOFSTEP]
simpa only [abs_le] using abs_le_sqrt
[GOAL]
case mpr
x y : ℝ
h : 0 ≤ y
⊢ -sqrt y ≤ x ∧ x ≤ sqrt y → x ^ 2 ≤ y
[PROOFSTEP]
rw [← abs_le, ← sq_abs]
[GOAL]
case mpr
x y : ℝ
h : 0 ≤ y
⊢ |x| ≤ sqrt y → |x| ^ 2 ≤ y
[PROOFSTEP]
exact (le_sqrt (abs_nonneg x) h).mp
[GOAL]
x y : ℝ
hx : 0 ≤ x
hy : 0 ≤ y
⊢ sqrt x = sqrt y ↔ x = y
[PROOFSTEP]
simp [le_antisymm_iff, hx, hy]
[GOAL]
x y : ℝ
h : 0 ≤ x
⊢ sqrt x = 0 ↔ x = 0
[PROOFSTEP]
simpa using sqrt_inj h le_rfl
[GOAL]
x y : ℝ
⊢ sqrt x = 0 ↔ x ≤ 0
[PROOFSTEP]
rw [sqrt, NNReal.coe_eq_zero, NNReal.sqrt_eq_zero, Real.toNNReal_eq_zero]
[GOAL]
x y : ℝ
h : 0 ≤ x
⊢ sqrt x ≠ 0 ↔ x ≠ 0
[PROOFSTEP]
rw [not_iff_not, sqrt_eq_zero h]
[GOAL]
x y : ℝ
⊢ sqrt x ≠ 0 ↔ 0 < x
[PROOFSTEP]
rw [← not_le, not_iff_not, sqrt_eq_zero']
[GOAL]
x y : ℝ
⊢ sqrt x ≤ 0 ↔ sqrt x = 0
[PROOFSTEP]
simp [le_antisymm_iff, sqrt_nonneg]
[GOAL]
x : ℝ
hx : 0 ≤ x
y : ℝ
⊢ sqrt (x * y) = sqrt x * sqrt y
[PROOFSTEP]
simp_rw [sqrt, ← NNReal.coe_mul, NNReal.coe_eq, Real.toNNReal_mul hx, NNReal.sqrt_mul]
[GOAL]
x y : ℝ
hy : 0 ≤ y
⊢ sqrt (x * y) = sqrt x * sqrt y
[PROOFSTEP]
rw [mul_comm, sqrt_mul hy, mul_comm]
[GOAL]
x : ℝ
⊢ sqrt x⁻¹ = (sqrt x)⁻¹
[PROOFSTEP]
rw [sqrt, Real.toNNReal_inv, NNReal.sqrt_inv, NNReal.coe_inv, sqrt]
[GOAL]
x : ℝ
hx : 0 ≤ x
y : ℝ
⊢ sqrt (x / y) = sqrt x / sqrt y
[PROOFSTEP]
rw [division_def, sqrt_mul hx, sqrt_inv, division_def]
[GOAL]
x y : ℝ
hy : 0 ≤ y
⊢ sqrt (x / y) = sqrt x / sqrt y
[PROOFSTEP]
rw [division_def, sqrt_mul' x (inv_nonneg.2 hy), sqrt_inv, division_def]
[GOAL]
x : ℝ
⊢ x / sqrt x = sqrt x
[PROOFSTEP]
cases' le_or_lt x 0 with h h
[GOAL]
case inl
x : ℝ
h : x ≤ 0
⊢ x / sqrt x = sqrt x
[PROOFSTEP]
rw [sqrt_eq_zero'.mpr h, div_zero]
[GOAL]
case inr
x : ℝ
h : 0 < x
⊢ x / sqrt x = sqrt x
[PROOFSTEP]
rw [div_eq_iff (sqrt_ne_zero'.mpr h), mul_self_sqrt h.le]
[GOAL]
x : ℝ
⊢ sqrt x / x = 1 / sqrt x
[PROOFSTEP]
rw [← div_sqrt, one_div_div, div_sqrt]
[GOAL]
x : ℝ
⊢ sqrt x / x = (sqrt x)⁻¹
[PROOFSTEP]
rw [sqrt_div_self', one_div]
[GOAL]
x y : ℝ
hx : 0 ≤ x
⊢ x < sqrt y ↔ x ^ 2 < y
[PROOFSTEP]
rw [← sqrt_lt_sqrt_iff (sq_nonneg _), sqrt_sq hx]
[GOAL]
x y : ℝ
⊢ x ^ 2 < y ↔ -sqrt y < x ∧ x < sqrt y
[PROOFSTEP]
rw [← abs_lt, ← sq_abs, lt_sqrt (abs_nonneg _)]
[GOAL]
x y : ℝ
h : sqrt x < y
⊢ x < y ^ 2
[PROOFSTEP]
have hy := x.sqrt_nonneg.trans_lt h
[GOAL]
x y : ℝ
h : sqrt x < y
hy : 0 < y
⊢ x < y ^ 2
[PROOFSTEP]
rwa [← sqrt_lt_sqrt_iff_of_pos (sq_pos_of_pos hy), sqrt_sq hy.le]
[GOAL]
a : ℕ
⊢ ↑(Nat.sqrt a) ≤ sqrt ↑a
[PROOFSTEP]
rw [Real.le_sqrt (Nat.cast_nonneg _) (Nat.cast_nonneg _)]
[GOAL]
a : ℕ
⊢ ↑(Nat.sqrt a) ^ 2 ≤ ↑a
[PROOFSTEP]
norm_cast
[GOAL]
a : ℕ
⊢ Nat.sqrt a ^ 2 ≤ a
[PROOFSTEP]
exact Nat.sqrt_le' a
[GOAL]
a : ℕ
⊢ sqrt ↑a ≤ ↑(Nat.sqrt a) + 1
[PROOFSTEP]
rw [Real.sqrt_le_iff]
[GOAL]
a : ℕ
⊢ 0 ≤ ↑(Nat.sqrt a) + 1 ∧ ↑a ≤ (↑(Nat.sqrt a) + 1) ^ 2
[PROOFSTEP]
constructor
[GOAL]
case left
a : ℕ
⊢ 0 ≤ ↑(Nat.sqrt a) + 1
[PROOFSTEP]
norm_cast
[GOAL]
case left
a : ℕ
⊢ 0 ≤ Nat.sqrt a + 1
[PROOFSTEP]
apply zero_le
[GOAL]
case right
a : ℕ
⊢ ↑a ≤ (↑(Nat.sqrt a) + 1) ^ 2
[PROOFSTEP]
norm_cast
[GOAL]
case right
a : ℕ
⊢ a ≤ (Nat.sqrt a + 1) ^ 2
[PROOFSTEP]
exact le_of_lt (Nat.lt_succ_sqrt' a)
[GOAL]
r : ℝ
⊢ 0 ≤ r ↔ ∃ s, r = star s * s
[PROOFSTEP]
refine ⟨fun hr => ⟨sqrt r, (mul_self_sqrt hr).symm⟩, ?_⟩
[GOAL]
r : ℝ
⊢ (∃ s, r = star s * s) → 0 ≤ r
[PROOFSTEP]
rintro ⟨s, rfl⟩
[GOAL]
case intro
s : ℝ
⊢ 0 ≤ star s * s
[PROOFSTEP]
exact mul_self_nonneg s
| {"mathlib_filename": "Mathlib.Data.Real.Sqrt", "llama_tokens": 4710} |
{"mathlib_filename": "Mathlib.RingTheory.Subring.Pointwise", "llama_tokens": 0} |
|
[GOAL]
x : ℝ
h : 0 < x
⊢ sin x < x
[PROOFSTEP]
cases' lt_or_le 1 x with h' h'
[GOAL]
case inl
x : ℝ
h : 0 < x
h' : 1 < x
⊢ sin x < x
[PROOFSTEP]
exact (sin_le_one x).trans_lt h'
[GOAL]
case inr
x : ℝ
h : 0 < x
h' : x ≤ 1
⊢ sin x < x
[PROOFSTEP]
have hx : |x| = x := abs_of_nonneg h.le
[GOAL]
case inr
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
⊢ sin x < x
[PROOFSTEP]
have := le_of_abs_le (sin_bound <| show |x| ≤ 1 by rwa [hx])
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
⊢ |x| ≤ 1
[PROOFSTEP]
rwa [hx]
[GOAL]
case inr
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this : sin x - (x - x ^ 3 / 6) ≤ |x| ^ 4 * (5 / 96)
⊢ sin x < x
[PROOFSTEP]
rw [sub_le_iff_le_add', hx] at this
[GOAL]
case inr
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96)
⊢ sin x < x
[PROOFSTEP]
apply this.trans_lt
[GOAL]
case inr
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96)
⊢ x - x ^ 3 / 6 + x ^ 4 * (5 / 96) < x
[PROOFSTEP]
rw [sub_add, sub_lt_self_iff, sub_pos, div_eq_mul_inv (x ^ 3)]
[GOAL]
case inr
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96)
⊢ x ^ 4 * (5 / 96) < x ^ 3 * 6⁻¹
[PROOFSTEP]
refine' mul_lt_mul' _ (by norm_num) (by norm_num) (pow_pos h 3)
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96)
⊢ 5 / 96 < 6⁻¹
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96)
⊢ 0 ≤ 5 / 96
[PROOFSTEP]
norm_num
[GOAL]
case inr
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96)
⊢ x ^ 4 ≤ x ^ 3
[PROOFSTEP]
apply pow_le_pow_of_le_one h.le h'
[GOAL]
case inr
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this : sin x ≤ x - x ^ 3 / 6 + x ^ 4 * (5 / 96)
⊢ 3 ≤ 4
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
⊢ x - x ^ 3 / 4 < sin x
[PROOFSTEP]
have hx : |x| = x := abs_of_nonneg h.le
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
⊢ x - x ^ 3 / 4 < sin x
[PROOFSTEP]
have := neg_le_of_abs_le (sin_bound <| show |x| ≤ 1 by rwa [hx])
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
⊢ |x| ≤ 1
[PROOFSTEP]
rwa [hx]
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this : -(|x| ^ 4 * (5 / 96)) ≤ sin x - (x - x ^ 3 / 6)
⊢ x - x ^ 3 / 4 < sin x
[PROOFSTEP]
rw [le_sub_iff_add_le, hx] at this
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x
⊢ x - x ^ 3 / 4 < sin x
[PROOFSTEP]
refine' lt_of_lt_of_le _ this
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x
⊢ x - x ^ 3 / 4 < -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6)
[PROOFSTEP]
have : x ^ 3 / ↑4 - x ^ 3 / ↑6 = x ^ 3 * 12⁻¹ := by ring
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x
⊢ x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹
[PROOFSTEP]
ring
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this✝ : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x
this : x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹
⊢ x - x ^ 3 / 4 < -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6)
[PROOFSTEP]
rw [add_comm, sub_add, sub_neg_eq_add, sub_lt_sub_iff_left, ← lt_sub_iff_add_lt', this]
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this✝ : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x
this : x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹
⊢ x ^ 4 * (5 / 96) < x ^ 3 * 12⁻¹
[PROOFSTEP]
refine' mul_lt_mul' _ (by norm_num) (by norm_num) (pow_pos h 3)
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this✝ : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x
this : x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹
⊢ 5 / 96 < 12⁻¹
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this✝ : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x
this : x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹
⊢ 0 ≤ 5 / 96
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this✝ : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x
this : x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹
⊢ x ^ 4 ≤ x ^ 3
[PROOFSTEP]
apply pow_le_pow_of_le_one h.le h'
[GOAL]
x : ℝ
h : 0 < x
h' : x ≤ 1
hx : |x| = x
this✝ : -(x ^ 4 * (5 / 96)) + (x - x ^ 3 / 6) ≤ sin x
this : x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹
⊢ 3 ≤ 4
[PROOFSTEP]
norm_num
[GOAL]
x : ℝ
h : cos x ≠ 0
⊢ HasDerivAt (fun y => tan y - y) (↑1 / cos x ^ 2 - 1) x
[PROOFSTEP]
simpa using (hasDerivAt_tan h).add (hasDerivAt_id x).neg
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
⊢ x < tan x
[PROOFSTEP]
let U := Ico 0 (π / 2)
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
⊢ x < tan x
[PROOFSTEP]
have intU : interior U = Ioo 0 (π / 2) := interior_Ico
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
⊢ x < tan x
[PROOFSTEP]
have half_pi_pos : 0 < π / 2 := div_pos pi_pos two_pos
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
⊢ x < tan x
[PROOFSTEP]
have cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y := by
intro y hy
exact cos_pos_of_mem_Ioo (Ico_subset_Ioo_left (neg_lt_zero.mpr half_pi_pos) hy)
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
⊢ ∀ {y : ℝ}, y ∈ U → 0 < cos y
[PROOFSTEP]
intro y hy
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
y : ℝ
hy : y ∈ U
⊢ 0 < cos y
[PROOFSTEP]
exact cos_pos_of_mem_Ioo (Ico_subset_Ioo_left (neg_lt_zero.mpr half_pi_pos) hy)
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
⊢ x < tan x
[PROOFSTEP]
have sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y :=
by
intro y hy
rw [intU] at hy
exact sin_pos_of_mem_Ioo (Ioo_subset_Ioo_right (div_le_self pi_pos.le one_le_two) hy)
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
⊢ ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
[PROOFSTEP]
intro y hy
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
y : ℝ
hy : y ∈ interior U
⊢ 0 < sin y
[PROOFSTEP]
rw [intU] at hy
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
y : ℝ
hy : y ∈ Ioo 0 (π / 2)
⊢ 0 < sin y
[PROOFSTEP]
exact sin_pos_of_mem_Ioo (Ioo_subset_Ioo_right (div_le_self pi_pos.le one_le_two) hy)
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
⊢ x < tan x
[PROOFSTEP]
have tan_cts_U : ContinuousOn tan U := by
apply ContinuousOn.mono continuousOn_tan
intro z hz
simp only [mem_setOf_eq]
exact (cos_pos hz).ne'
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
⊢ ContinuousOn tan U
[PROOFSTEP]
apply ContinuousOn.mono continuousOn_tan
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
⊢ U ⊆ {x | cos x ≠ 0}
[PROOFSTEP]
intro z hz
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
z : ℝ
hz : z ∈ U
⊢ z ∈ {x | cos x ≠ 0}
[PROOFSTEP]
simp only [mem_setOf_eq]
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
z : ℝ
hz : z ∈ U
⊢ cos z ≠ 0
[PROOFSTEP]
exact (cos_pos hz).ne'
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
⊢ x < tan x
[PROOFSTEP]
have tan_minus_id_cts : ContinuousOn (fun y : ℝ => tan y - y) U := tan_cts_U.sub continuousOn_id
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
⊢ x < tan x
[PROOFSTEP]
have deriv_pos : ∀ y : ℝ, y ∈ interior U → 0 < deriv (fun y' : ℝ => tan y' - y') y :=
by
intro y hy
have := cos_pos (interior_subset hy)
simp only [deriv_tan_sub_id y this.ne', one_div, gt_iff_lt, sub_pos]
norm_cast
have bd2 : cos y ^ 2 < 1 := by
apply lt_of_le_of_ne y.cos_sq_le_one
rw [cos_sq']
simpa only [Ne.def, sub_eq_self, pow_eq_zero_iff, Nat.succ_pos'] using (sin_pos hy).ne'
rwa [one_div, lt_inv, inv_one]
· exact zero_lt_one
simpa only [sq, mul_self_pos] using this.ne'
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
⊢ ∀ (y : ℝ), y ∈ interior U → 0 < deriv (fun y' => tan y' - y') y
[PROOFSTEP]
intro y hy
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
y : ℝ
hy : y ∈ interior U
⊢ 0 < deriv (fun y' => tan y' - y') y
[PROOFSTEP]
have := cos_pos (interior_subset hy)
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
y : ℝ
hy : y ∈ interior U
this : 0 < cos y
⊢ 0 < deriv (fun y' => tan y' - y') y
[PROOFSTEP]
simp only [deriv_tan_sub_id y this.ne', one_div, gt_iff_lt, sub_pos]
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
y : ℝ
hy : y ∈ interior U
this : 0 < cos y
⊢ 1 < ↑1 / cos y ^ 2
[PROOFSTEP]
norm_cast
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
y : ℝ
hy : y ∈ interior U
this : 0 < cos y
⊢ 1 < 1 / cos y ^ 2
[PROOFSTEP]
have bd2 : cos y ^ 2 < 1 := by
apply lt_of_le_of_ne y.cos_sq_le_one
rw [cos_sq']
simpa only [Ne.def, sub_eq_self, pow_eq_zero_iff, Nat.succ_pos'] using (sin_pos hy).ne'
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
y : ℝ
hy : y ∈ interior U
this : 0 < cos y
⊢ cos y ^ 2 < 1
[PROOFSTEP]
apply lt_of_le_of_ne y.cos_sq_le_one
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
y : ℝ
hy : y ∈ interior U
this : 0 < cos y
⊢ cos y ^ 2 ≠ 1
[PROOFSTEP]
rw [cos_sq']
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
y : ℝ
hy : y ∈ interior U
this : 0 < cos y
⊢ 1 - sin y ^ 2 ≠ 1
[PROOFSTEP]
simpa only [Ne.def, sub_eq_self, pow_eq_zero_iff, Nat.succ_pos'] using (sin_pos hy).ne'
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
y : ℝ
hy : y ∈ interior U
this : 0 < cos y
bd2 : cos y ^ 2 < 1
⊢ 1 < 1 / cos y ^ 2
[PROOFSTEP]
rwa [one_div, lt_inv, inv_one]
[GOAL]
case ha
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
y : ℝ
hy : y ∈ interior U
this : 0 < cos y
bd2 : cos y ^ 2 < 1
⊢ 0 < 1
[PROOFSTEP]
exact zero_lt_one
[GOAL]
case hb
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
y : ℝ
hy : y ∈ interior U
this : 0 < cos y
bd2 : cos y ^ 2 < 1
⊢ 0 < cos y ^ 2
[PROOFSTEP]
simpa only [sq, mul_self_pos] using this.ne'
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
deriv_pos : ∀ (y : ℝ), y ∈ interior U → 0 < deriv (fun y' => tan y' - y') y
⊢ x < tan x
[PROOFSTEP]
have mono := Convex.strictMonoOn_of_deriv_pos (convex_Ico 0 (π / 2)) tan_minus_id_cts deriv_pos
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
deriv_pos : ∀ (y : ℝ), y ∈ interior U → 0 < deriv (fun y' => tan y' - y') y
mono : StrictMonoOn (fun y => tan y - y) (Ico 0 (π / 2))
⊢ x < tan x
[PROOFSTEP]
have zero_in_U : (0 : ℝ) ∈ U := by rwa [left_mem_Ico]
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
deriv_pos : ∀ (y : ℝ), y ∈ interior U → 0 < deriv (fun y' => tan y' - y') y
mono : StrictMonoOn (fun y => tan y - y) (Ico 0 (π / 2))
⊢ 0 ∈ U
[PROOFSTEP]
rwa [left_mem_Ico]
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
deriv_pos : ∀ (y : ℝ), y ∈ interior U → 0 < deriv (fun y' => tan y' - y') y
mono : StrictMonoOn (fun y => tan y - y) (Ico 0 (π / 2))
zero_in_U : 0 ∈ U
⊢ x < tan x
[PROOFSTEP]
have x_in_U : x ∈ U := ⟨h1.le, h2⟩
[GOAL]
x : ℝ
h1 : 0 < x
h2 : x < π / 2
U : Set ℝ := Ico 0 (π / 2)
intU : interior U = Ioo 0 (π / 2)
half_pi_pos : 0 < π / 2
cos_pos : ∀ {y : ℝ}, y ∈ U → 0 < cos y
sin_pos : ∀ {y : ℝ}, y ∈ interior U → 0 < sin y
tan_cts_U : ContinuousOn tan U
tan_minus_id_cts : ContinuousOn (fun y => tan y - y) U
deriv_pos : ∀ (y : ℝ), y ∈ interior U → 0 < deriv (fun y' => tan y' - y') y
mono : StrictMonoOn (fun y => tan y - y) (Ico 0 (π / 2))
zero_in_U : 0 ∈ U
x_in_U : x ∈ U
⊢ x < tan x
[PROOFSTEP]
simpa only [tan_zero, sub_zero, sub_pos] using mono zero_in_U x_in_U h1
[GOAL]
x : ℝ
h1 : 0 ≤ x
h2 : x < π / 2
⊢ x ≤ tan x
[PROOFSTEP]
rcases eq_or_lt_of_le h1 with (rfl | h1')
[GOAL]
case inl
h1 : 0 ≤ 0
h2 : 0 < π / 2
⊢ 0 ≤ tan 0
[PROOFSTEP]
rw [tan_zero]
[GOAL]
case inr
x : ℝ
h1 : 0 ≤ x
h2 : x < π / 2
h1' : 0 < x
⊢ x ≤ tan x
[PROOFSTEP]
exact le_of_lt (lt_tan h1' h2)
[GOAL]
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
⊢ cos x < 1 / sqrt (x ^ 2 + 1)
[PROOFSTEP]
suffices ∀ {y : ℝ} (_ : 0 < y) (_ : y ≤ 3 * π / 2), cos y < ↑1 / sqrt (y ^ 2 + 1)
by
rcases lt_or_lt_iff_ne.mpr hx3.symm with ⟨h⟩
· exact this h hx2
· convert this (by linarith : 0 < -x) (by linarith) using 1
· rw [cos_neg]
· rw [neg_sq]
[GOAL]
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1)
⊢ cos x < 1 / sqrt (x ^ 2 + 1)
[PROOFSTEP]
rcases lt_or_lt_iff_ne.mpr hx3.symm with ⟨h⟩
[GOAL]
case inl
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1)
h : 0 < x
⊢ cos x < 1 / sqrt (x ^ 2 + 1)
[PROOFSTEP]
exact this h hx2
[GOAL]
case inr
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1)
h✝ : x < 0
⊢ cos x < 1 / sqrt (x ^ 2 + 1)
[PROOFSTEP]
convert this (by linarith : 0 < -x) (by linarith) using 1
[GOAL]
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1)
h✝ : x < 0
⊢ 0 < -x
[PROOFSTEP]
linarith
[GOAL]
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1)
h✝ : x < 0
⊢ -x ≤ 3 * π / 2
[PROOFSTEP]
linarith
[GOAL]
case h.e'_3
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1)
h✝ : x < 0
⊢ cos x = cos (-x)
[PROOFSTEP]
rw [cos_neg]
[GOAL]
case h.e'_4
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
this : ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1)
h✝ : x < 0
⊢ 1 / sqrt (x ^ 2 + 1) = 1 / sqrt ((-x) ^ 2 + 1)
[PROOFSTEP]
rw [neg_sq]
[GOAL]
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
⊢ ∀ {y : ℝ}, 0 < y → y ≤ 3 * π / 2 → cos y < 1 / sqrt (y ^ 2 + 1)
[PROOFSTEP]
intro y hy1 hy2
[GOAL]
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
y : ℝ
hy1 : 0 < y
hy2 : y ≤ 3 * π / 2
⊢ cos y < 1 / sqrt (y ^ 2 + 1)
[PROOFSTEP]
have hy3 : ↑0 < y ^ 2 + 1 := by linarith [sq_nonneg y]
[GOAL]
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
y : ℝ
hy1 : 0 < y
hy2 : y ≤ 3 * π / 2
⊢ 0 < y ^ 2 + 1
[PROOFSTEP]
linarith [sq_nonneg y]
[GOAL]
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
y : ℝ
hy1 : 0 < y
hy2 : y ≤ 3 * π / 2
hy3 : 0 < y ^ 2 + 1
⊢ cos y < 1 / sqrt (y ^ 2 + 1)
[PROOFSTEP]
rcases lt_or_le y (π / 2) with (hy2' | hy1')
[GOAL]
case inl
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
y : ℝ
hy1 : 0 < y
hy2 : y ≤ 3 * π / 2
hy3 : 0 < y ^ 2 + 1
hy2' : y < π / 2
⊢ cos y < 1 / sqrt (y ^ 2 + 1)
[PROOFSTEP]
have hy4 : 0 < cos y := cos_pos_of_mem_Ioo ⟨by linarith, hy2'⟩
[GOAL]
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
y : ℝ
hy1 : 0 < y
hy2 : y ≤ 3 * π / 2
hy3 : 0 < y ^ 2 + 1
hy2' : y < π / 2
⊢ -(π / 2) < y
[PROOFSTEP]
linarith
[GOAL]
case inl
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
y : ℝ
hy1 : 0 < y
hy2 : y ≤ 3 * π / 2
hy3 : 0 < y ^ 2 + 1
hy2' : y < π / 2
hy4 : 0 < cos y
⊢ cos y < 1 / sqrt (y ^ 2 + 1)
[PROOFSTEP]
rw [← abs_of_nonneg (cos_nonneg_of_mem_Icc ⟨by linarith, hy2'.le⟩), ←
abs_of_nonneg (one_div_nonneg.mpr (sqrt_nonneg _)), ← sq_lt_sq, div_pow, one_pow, sq_sqrt hy3.le,
lt_one_div (pow_pos hy4 _) hy3, ← inv_one_add_tan_sq hy4.ne', one_div, inv_inv, add_comm, add_lt_add_iff_left,
sq_lt_sq, abs_of_pos hy1, abs_of_nonneg (tan_nonneg_of_nonneg_of_le_pi_div_two hy1.le hy2'.le)]
[GOAL]
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
y : ℝ
hy1 : 0 < y
hy2 : y ≤ 3 * π / 2
hy3 : 0 < y ^ 2 + 1
hy2' : y < π / 2
hy4 : 0 < cos y
⊢ -(π / 2) ≤ y
[PROOFSTEP]
linarith
[GOAL]
case inl
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
y : ℝ
hy1 : 0 < y
hy2 : y ≤ 3 * π / 2
hy3 : 0 < y ^ 2 + 1
hy2' : y < π / 2
hy4 : 0 < cos y
⊢ y < tan y
[PROOFSTEP]
exact Real.lt_tan hy1 hy2'
[GOAL]
case inr
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
y : ℝ
hy1 : 0 < y
hy2 : y ≤ 3 * π / 2
hy3 : 0 < y ^ 2 + 1
hy1' : π / 2 ≤ y
⊢ cos y < 1 / sqrt (y ^ 2 + 1)
[PROOFSTEP]
refine' lt_of_le_of_lt _ (one_div_pos.mpr <| sqrt_pos_of_pos hy3)
[GOAL]
case inr
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
y : ℝ
hy1 : 0 < y
hy2 : y ≤ 3 * π / 2
hy3 : 0 < y ^ 2 + 1
hy1' : π / 2 ≤ y
⊢ cos y ≤ 0
[PROOFSTEP]
exact cos_nonpos_of_pi_div_two_le_of_le hy1' (by linarith [pi_pos])
[GOAL]
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
y : ℝ
hy1 : 0 < y
hy2 : y ≤ 3 * π / 2
hy3 : 0 < y ^ 2 + 1
hy1' : π / 2 ≤ y
⊢ y ≤ π + π / 2
[PROOFSTEP]
linarith [pi_pos]
[GOAL]
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
⊢ cos x ≤ 1 / sqrt (x ^ 2 + 1)
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | hx3)
[GOAL]
case inl
hx1 : -(3 * π / 2) ≤ 0
hx2 : 0 ≤ 3 * π / 2
⊢ cos 0 ≤ 1 / sqrt (0 ^ 2 + 1)
[PROOFSTEP]
simp
[GOAL]
case inr
x : ℝ
hx1 : -(3 * π / 2) ≤ x
hx2 : x ≤ 3 * π / 2
hx3 : x ≠ 0
⊢ cos x ≤ 1 / sqrt (x ^ 2 + 1)
[PROOFSTEP]
exact (cos_lt_one_div_sqrt_sq_add_one hx1 hx2 hx3).le
| {"mathlib_filename": "Mathlib.Analysis.SpecialFunctions.Trigonometric.Bounds", "llama_tokens": 12956} |
{"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Linear", "llama_tokens": 0} |
|
[GOAL]
E : Type u_1
i : SeminormedAddCommGroup E
r : ℝ
w : E
⊢ w ∈ sphere 0 r → -w ∈ sphere 0 r
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
i : SeminormedAddCommGroup E
r✝ r : ℝ
w : E
⊢ w ∈ ball 0 r → -w ∈ ball 0 r
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
i : SeminormedAddCommGroup E
r✝ r : ℝ
w : E
⊢ w ∈ closedBall 0 r → -w ∈ closedBall 0 r
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Analysis.Normed.Group.BallSphere", "llama_tokens": 189} |
[GOAL]
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
α₀ α₁ α₂ : Type u₀
β : Type u₁
f : α₀ → α₁
f' : α₁ → α₂
x : F α₀ β
⊢ fst f' (fst f x) = fst (f' ∘ f) x
[PROOFSTEP]
simp [fst, bimap_bimap]
[GOAL]
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
α₀ α₁ : Type u₀
β₀ β₁ : Type u₁
f : α₀ → α₁
f' : β₀ → β₁
x : F α₀ β₀
⊢ fst f (snd f' x) = bimap f f' x
[PROOFSTEP]
simp [fst, bimap_bimap]
[GOAL]
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
α₀ α₁ : Type u₀
β₀ β₁ : Type u₁
f : α₀ → α₁
f' : β₀ → β₁
x : F α₀ β₀
⊢ snd f' (fst f x) = bimap f f' x
[PROOFSTEP]
simp [snd, bimap_bimap]
[GOAL]
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
α : Type u₀
β₀ β₁ β₂ : Type u₁
g : β₀ → β₁
g' : β₁ → β₂
x : F α β₀
⊢ snd g' (snd g x) = snd (g' ∘ g) x
[PROOFSTEP]
simp [snd, bimap_bimap]
[GOAL]
F : Type u₀ → Type u₁ → Type u₂
inst✝ : Bifunctor F
⊢ LawfulBifunctor Prod
[PROOFSTEP]
refine' { .. }
[GOAL]
case refine'_1
F : Type u₀ → Type u₁ → Type u₂
inst✝ : Bifunctor F
⊢ ∀ {α : Type ?u.3875} {β : Type ?u.3874} (x : α × β), bimap id id x = x
[PROOFSTEP]
intros
[GOAL]
case refine'_2
F : Type u₀ → Type u₁ → Type u₂
inst✝ : Bifunctor F
⊢ ∀ {α₀ α₁ α₂ : Type ?u.3875} {β₀ β₁ β₂ : Type ?u.3874} (f : α₀ → α₁) (f' : α₁ → α₂) (g : β₀ → β₁) (g' : β₁ → β₂)
(x : α₀ × β₀), bimap f' g' (bimap f g x) = bimap (f' ∘ f) (g' ∘ g) x
[PROOFSTEP]
intros
[GOAL]
case refine'_1
F : Type u₀ → Type u₁ → Type u₂
inst✝ : Bifunctor F
α✝ : Type ?u.3875
β✝ : Type ?u.3874
x✝ : α✝ × β✝
⊢ bimap id id x✝ = x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
F : Type u₀ → Type u₁ → Type u₂
inst✝ : Bifunctor F
α₀✝ α₁✝ α₂✝ : Type ?u.3875
β₀✝ β₁✝ β₂✝ : Type ?u.3874
f✝ : α₀✝ → α₁✝
f'✝ : α₁✝ → α₂✝
g✝ : β₀✝ → β₁✝
g'✝ : β₁✝ → β₂✝
x✝ : α₀✝ × β₀✝
⊢ bimap f'✝ g'✝ (bimap f✝ g✝ x✝) = bimap (f'✝ ∘ f✝) (g'✝ ∘ g✝) x✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u₀ → Type u₁ → Type u₂
inst✝ : Bifunctor F
⊢ LawfulBifunctor Const
[PROOFSTEP]
refine' { .. }
[GOAL]
case refine'_1
F : Type u₀ → Type u₁ → Type u₂
inst✝ : Bifunctor F
⊢ ∀ {α : Type ?u.4176} {β : Type ?u.4177} (x : Const α β), bimap id id x = x
[PROOFSTEP]
intros
[GOAL]
case refine'_2
F : Type u₀ → Type u₁ → Type u₂
inst✝ : Bifunctor F
⊢ ∀ {α₀ α₁ α₂ : Type ?u.4176} {β₀ β₁ β₂ : Type ?u.4177} (f : α₀ → α₁) (f' : α₁ → α₂) (g : β₀ → β₁) (g' : β₁ → β₂)
(x : Const α₀ β₀), bimap f' g' (bimap f g x) = bimap (f' ∘ f) (g' ∘ g) x
[PROOFSTEP]
intros
[GOAL]
case refine'_1
F : Type u₀ → Type u₁ → Type u₂
inst✝ : Bifunctor F
α✝ : Type ?u.4176
β✝ : Type ?u.4177
x✝ : Const α✝ β✝
⊢ bimap id id x✝ = x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
F : Type u₀ → Type u₁ → Type u₂
inst✝ : Bifunctor F
α₀✝ α₁✝ α₂✝ : Type ?u.4176
β₀✝ β₁✝ β₂✝ : Type ?u.4177
f✝ : α₀✝ → α₁✝
f'✝ : α₁✝ → α₂✝
g✝ : β₀✝ → β₁✝
g'✝ : β₁✝ → β₂✝
x✝ : Const α₀✝ β₀✝
⊢ bimap f'✝ g'✝ (bimap f✝ g✝ x✝) = bimap (f'✝ ∘ f✝) (g'✝ ∘ g✝) x✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
⊢ LawfulBifunctor (_root_.flip F)
[PROOFSTEP]
refine' { .. }
[GOAL]
case refine'_1
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
⊢ ∀ {α : Type u₁} {β : Type u₀} (x : _root_.flip F α β), bimap id id x = x
[PROOFSTEP]
intros
[GOAL]
case refine'_2
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
⊢ ∀ {α₀ α₁ α₂ : Type u₁} {β₀ β₁ β₂ : Type u₀} (f : α₀ → α₁) (f' : α₁ → α₂) (g : β₀ → β₁) (g' : β₁ → β₂)
(x : _root_.flip F α₀ β₀), bimap f' g' (bimap f g x) = bimap (f' ∘ f) (g' ∘ g) x
[PROOFSTEP]
intros
[GOAL]
case refine'_1
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
α✝ : Type u₁
β✝ : Type u₀
x✝ : _root_.flip F α✝ β✝
⊢ bimap id id x✝ = x✝
[PROOFSTEP]
simp [bimap, functor_norm]
[GOAL]
case refine'_2
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
α₀✝ α₁✝ α₂✝ : Type u₁
β₀✝ β₁✝ β₂✝ : Type u₀
f✝ : α₀✝ → α₁✝
f'✝ : α₁✝ → α₂✝
g✝ : β₀✝ → β₁✝
g'✝ : β₁✝ → β₂✝
x✝ : _root_.flip F α₀✝ β₀✝
⊢ bimap f'✝ g'✝ (bimap f✝ g✝ x✝) = bimap (f'✝ ∘ f✝) (g'✝ ∘ g✝) x✝
[PROOFSTEP]
simp [bimap, functor_norm]
[GOAL]
F : Type u₀ → Type u₁ → Type u₂
inst✝ : Bifunctor F
⊢ LawfulBifunctor Sum
[PROOFSTEP]
refine' { .. }
[GOAL]
case refine'_1
F : Type u₀ → Type u₁ → Type u₂
inst✝ : Bifunctor F
⊢ ∀ {α : Type ?u.4990} {β : Type ?u.4989} (x : α ⊕ β), bimap id id x = x
[PROOFSTEP]
aesop
[GOAL]
case refine'_2
F : Type u₀ → Type u₁ → Type u₂
inst✝ : Bifunctor F
⊢ ∀ {α₀ α₁ α₂ : Type ?u.4990} {β₀ β₁ β₂ : Type ?u.4989} (f : α₀ → α₁) (f' : α₁ → α₂) (g : β₀ → β₁) (g' : β₁ → β₂)
(x : α₀ ⊕ β₀), bimap f' g' (bimap f g x) = bimap (f' ∘ f) (g' ∘ g) x
[PROOFSTEP]
aesop
[GOAL]
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
α : Type u₀
⊢ LawfulFunctor (F α)
[PROOFSTEP]
refine' { .. }
[GOAL]
case refine'_1
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
α : Type u₀
⊢ ∀ {α_1 β : Type u₁}, mapConst = map ∘ Function.const β
[PROOFSTEP]
intros
[GOAL]
case refine'_2
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
α : Type u₀
⊢ ∀ {α_1 : Type u₁} (x : F α α_1), id <$> x = x
[PROOFSTEP]
intros
[GOAL]
case refine'_3
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
α : Type u₀
⊢ ∀ {α_1 β γ : Type u₁} (g : α_1 → β) (h : β → γ) (x : F α α_1), (h ∘ g) <$> x = h <$> g <$> x
[PROOFSTEP]
intros
[GOAL]
case refine'_1
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
α : Type u₀
α✝ β✝ : Type u₁
⊢ mapConst = map ∘ Function.const β✝
[PROOFSTEP]
simp [mapConst, Functor.map, functor_norm]
[GOAL]
case refine'_2
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
α : Type u₀
α✝ : Type u₁
x✝ : F α α✝
⊢ id <$> x✝ = x✝
[PROOFSTEP]
simp [mapConst, Functor.map, functor_norm]
[GOAL]
case refine'_3
F : Type u₀ → Type u₁ → Type u₂
inst✝¹ : Bifunctor F
inst✝ : LawfulBifunctor F
α : Type u₀
α✝ β✝ γ✝ : Type u₁
g✝ : α✝ → β✝
h✝ : β✝ → γ✝
x✝ : F α α✝
⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝
[PROOFSTEP]
simp [mapConst, Functor.map, functor_norm]
[GOAL]
F : Type u₀ → Type u₁ → Type u₂
inst✝⁵ : Bifunctor F
G : Type u_1 → Type u₀
H : Type u_2 → Type u₁
inst✝⁴ : Functor G
inst✝³ : Functor H
inst✝² : LawfulFunctor G
inst✝¹ : LawfulFunctor H
inst✝ : LawfulBifunctor F
⊢ LawfulBifunctor (bicompl F G H)
[PROOFSTEP]
constructor
[GOAL]
case id_bimap
F : Type u₀ → Type u₁ → Type u₂
inst✝⁵ : Bifunctor F
G : Type u_1 → Type u₀
H : Type u_2 → Type u₁
inst✝⁴ : Functor G
inst✝³ : Functor H
inst✝² : LawfulFunctor G
inst✝¹ : LawfulFunctor H
inst✝ : LawfulBifunctor F
⊢ ∀ {α : Type u_1} {β : Type u_2} (x : bicompl F G H α β), bimap id id x = x
[PROOFSTEP]
intros
[GOAL]
case bimap_bimap
F : Type u₀ → Type u₁ → Type u₂
inst✝⁵ : Bifunctor F
G : Type u_1 → Type u₀
H : Type u_2 → Type u₁
inst✝⁴ : Functor G
inst✝³ : Functor H
inst✝² : LawfulFunctor G
inst✝¹ : LawfulFunctor H
inst✝ : LawfulBifunctor F
⊢ ∀ {α₀ α₁ α₂ : Type u_1} {β₀ β₁ β₂ : Type u_2} (f : α₀ → α₁) (f' : α₁ → α₂) (g : β₀ → β₁) (g' : β₁ → β₂)
(x : bicompl F G H α₀ β₀), bimap f' g' (bimap f g x) = bimap (f' ∘ f) (g' ∘ g) x
[PROOFSTEP]
intros
[GOAL]
case id_bimap
F : Type u₀ → Type u₁ → Type u₂
inst✝⁵ : Bifunctor F
G : Type u_1 → Type u₀
H : Type u_2 → Type u₁
inst✝⁴ : Functor G
inst✝³ : Functor H
inst✝² : LawfulFunctor G
inst✝¹ : LawfulFunctor H
inst✝ : LawfulBifunctor F
α✝ : Type u_1
β✝ : Type u_2
x✝ : bicompl F G H α✝ β✝
⊢ bimap id id x✝ = x✝
[PROOFSTEP]
simp [bimap, map_id, map_comp_map, functor_norm]
[GOAL]
case bimap_bimap
F : Type u₀ → Type u₁ → Type u₂
inst✝⁵ : Bifunctor F
G : Type u_1 → Type u₀
H : Type u_2 → Type u₁
inst✝⁴ : Functor G
inst✝³ : Functor H
inst✝² : LawfulFunctor G
inst✝¹ : LawfulFunctor H
inst✝ : LawfulBifunctor F
α₀✝ α₁✝ α₂✝ : Type u_1
β₀✝ β₁✝ β₂✝ : Type u_2
f✝ : α₀✝ → α₁✝
f'✝ : α₁✝ → α₂✝
g✝ : β₀✝ → β₁✝
g'✝ : β₁✝ → β₂✝
x✝ : bicompl F G H α₀✝ β₀✝
⊢ bimap f'✝ g'✝ (bimap f✝ g✝ x✝) = bimap (f'✝ ∘ f✝) (g'✝ ∘ g✝) x✝
[PROOFSTEP]
simp [bimap, map_id, map_comp_map, functor_norm]
[GOAL]
F : Type u₀ → Type u₁ → Type u₂
inst✝³ : Bifunctor F
G : Type u₂ → Type u_1
inst✝² : Functor G
inst✝¹ : LawfulFunctor G
inst✝ : LawfulBifunctor F
⊢ LawfulBifunctor (bicompr G F)
[PROOFSTEP]
constructor
[GOAL]
case id_bimap
F : Type u₀ → Type u₁ → Type u₂
inst✝³ : Bifunctor F
G : Type u₂ → Type u_1
inst✝² : Functor G
inst✝¹ : LawfulFunctor G
inst✝ : LawfulBifunctor F
⊢ ∀ {α : Type u₀} {β : Type u₁} (x : bicompr G F α β), bimap id id x = x
[PROOFSTEP]
intros
[GOAL]
case bimap_bimap
F : Type u₀ → Type u₁ → Type u₂
inst✝³ : Bifunctor F
G : Type u₂ → Type u_1
inst✝² : Functor G
inst✝¹ : LawfulFunctor G
inst✝ : LawfulBifunctor F
⊢ ∀ {α₀ α₁ α₂ : Type u₀} {β₀ β₁ β₂ : Type u₁} (f : α₀ → α₁) (f' : α₁ → α₂) (g : β₀ → β₁) (g' : β₁ → β₂)
(x : bicompr G F α₀ β₀), bimap f' g' (bimap f g x) = bimap (f' ∘ f) (g' ∘ g) x
[PROOFSTEP]
intros
[GOAL]
case id_bimap
F : Type u₀ → Type u₁ → Type u₂
inst✝³ : Bifunctor F
G : Type u₂ → Type u_1
inst✝² : Functor G
inst✝¹ : LawfulFunctor G
inst✝ : LawfulBifunctor F
α✝ : Type u₀
β✝ : Type u₁
x✝ : bicompr G F α✝ β✝
⊢ bimap id id x✝ = x✝
[PROOFSTEP]
simp [bimap, functor_norm]
[GOAL]
case bimap_bimap
F : Type u₀ → Type u₁ → Type u₂
inst✝³ : Bifunctor F
G : Type u₂ → Type u_1
inst✝² : Functor G
inst✝¹ : LawfulFunctor G
inst✝ : LawfulBifunctor F
α₀✝ α₁✝ α₂✝ : Type u₀
β₀✝ β₁✝ β₂✝ : Type u₁
f✝ : α₀✝ → α₁✝
f'✝ : α₁✝ → α₂✝
g✝ : β₀✝ → β₁✝
g'✝ : β₁✝ → β₂✝
x✝ : bicompr G F α₀✝ β₀✝
⊢ bimap f'✝ g'✝ (bimap f✝ g✝ x✝) = bimap (f'✝ ∘ f✝) (g'✝ ∘ g✝) x✝
[PROOFSTEP]
simp [bimap, functor_norm]
| {"mathlib_filename": "Mathlib.Control.Bifunctor", "llama_tokens": 5802} |
{"mathlib_filename": "Mathlib.Tactic.SimpRw", "llama_tokens": 0} |
|
[GOAL]
G A : Type u
inst✝² : Group G
inst✝¹ : IsFreeGroup G
inst✝ : MulAction G A
⊢ ∀ {X : Type u} [inst : Group X] (f : Labelling (Generators (ActionCategory G A)) X),
∃! F,
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
F.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
[PROOFSTEP]
intro X _ f
[GOAL]
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
⊢ ∃! F,
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
F.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
[PROOFSTEP]
let f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G := fun e =>
⟨fun b => @f ⟨(), _⟩ ⟨(), b⟩ ⟨e, smul_inv_smul _ b⟩, IsFreeGroup.of e⟩
[GOAL]
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
⊢ ∃! F,
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
F.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
[PROOFSTEP]
rcases IsFreeGroup.unique_lift f' with ⟨F', hF', uF'⟩
[GOAL]
case intro.intro
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
⊢ ∃! F,
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
F.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
[PROOFSTEP]
refine' ⟨uncurry F' _, _, _⟩
[GOAL]
case intro.intro.refine'_1
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
⊢ ∀ (g : G), (↑F' g).right = g
[PROOFSTEP]
suffices SemidirectProduct.rightHom.comp F' = MonoidHom.id _ by
-- Porting note: `MonoidHom.ext_iff` has been deprecated.exact FunLike.ext_iff.mp this
[GOAL]
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
this : MonoidHom.comp SemidirectProduct.rightHom F' = MonoidHom.id G
⊢ ∀ (g : G), (↑F' g).right = g
[PROOFSTEP]
exact FunLike.ext_iff.mp this
[GOAL]
case intro.intro.refine'_1
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
⊢ MonoidHom.comp SemidirectProduct.rightHom F' = MonoidHom.id G
[PROOFSTEP]
ext
[GOAL]
case intro.intro.refine'_1.h
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
a✝ : IsFreeGroup.Generators G
⊢ ↑(MonoidHom.comp SemidirectProduct.rightHom F') (IsFreeGroup.of a✝) = ↑(MonoidHom.id G) (IsFreeGroup.of a✝)
[PROOFSTEP]
rw [MonoidHom.comp_apply, hF']
[GOAL]
case intro.intro.refine'_1.h
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
a✝ : IsFreeGroup.Generators G
⊢ ↑SemidirectProduct.rightHom (f' a✝) = ↑(MonoidHom.id G) (IsFreeGroup.of a✝)
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.refine'_2
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
⊢ (fun F =>
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
F.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g)
(ActionCategory.uncurry F' (_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x))
[PROOFSTEP]
rintro ⟨⟨⟩, a : A⟩ ⟨⟨⟩, b⟩ ⟨e, h : IsFreeGroup.of e • a = b⟩
[GOAL]
case intro.intro.refine'_2.mk.unit.mk.unit.mk
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
a : A
b : (actionAsFunctor G A).obj PUnit.unit
e : IsFreeGroup.Generators G
h : IsFreeGroup.of e • a = b
⊢ (ActionCategory.uncurry F'
(_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)).map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
{ val := e, property := h }) =
f { val := e, property := h }
[PROOFSTEP]
change (F' (IsFreeGroup.of _)).left _ = _
[GOAL]
case intro.intro.refine'_2.mk.unit.mk.unit.mk
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
a : A
b : (actionAsFunctor G A).obj PUnit.unit
e : IsFreeGroup.Generators G
h : IsFreeGroup.of e • a = b
⊢ SemidirectProduct.left (↑F' (IsFreeGroup.of ↑{ val := e, property := h }))
(ActionCategory.back { fst := PUnit.unit, snd := b }) =
f { val := e, property := h }
[PROOFSTEP]
rw [hF']
[GOAL]
case intro.intro.refine'_2.mk.unit.mk.unit.mk
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
a : A
b : (actionAsFunctor G A).obj PUnit.unit
e : IsFreeGroup.Generators G
h : IsFreeGroup.of e • a = b
⊢ SemidirectProduct.left (f' ↑{ val := e, property := h }) (ActionCategory.back { fst := PUnit.unit, snd := b }) =
f { val := e, property := h }
[PROOFSTEP]
cases inv_smul_eq_iff.mpr h.symm
[GOAL]
case intro.intro.refine'_2.mk.unit.mk.unit.mk.refl
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
b : (actionAsFunctor G A).obj PUnit.unit
e : IsFreeGroup.Generators G
h : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b
⊢ SemidirectProduct.left (f' ↑{ val := e, property := h }) (ActionCategory.back { fst := PUnit.unit, snd := b }) =
f { val := e, property := h }
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.refine'_3
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
⊢ ∀ (y : ActionCategory G A ⥤ CategoryTheory.SingleObj X),
(fun F =>
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
F.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g)
y →
y =
ActionCategory.uncurry F'
(_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)
[PROOFSTEP]
intro E hE
[GOAL]
case intro.intro.refine'_3
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
⊢ E = ActionCategory.uncurry F' (_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)
[PROOFSTEP]
have : curry E = F' := by
apply uF'
intro e
ext
· convert hE _ _ _
rfl
· rfl
[GOAL]
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
⊢ ActionCategory.curry E = F'
[PROOFSTEP]
apply uF'
[GOAL]
case a
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
⊢ ∀ (a : IsFreeGroup.Generators G), ↑(ActionCategory.curry E) (IsFreeGroup.of a) = f' a
[PROOFSTEP]
intro e
[GOAL]
case a
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
e : IsFreeGroup.Generators G
⊢ ↑(ActionCategory.curry E) (IsFreeGroup.of e) = f' e
[PROOFSTEP]
ext
[GOAL]
case a.left.h
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
e : IsFreeGroup.Generators G
x✝ : A
⊢ SemidirectProduct.left (↑(ActionCategory.curry E) (IsFreeGroup.of e)) x✝ = SemidirectProduct.left (f' e) x✝
[PROOFSTEP]
convert hE _ _ _
[GOAL]
case h.e'_2.h
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
e : IsFreeGroup.Generators G
x✝ : A
e_1✝ :
X =
(E.obj
(let_fun this := { fst := (), snd := (IsFreeGroup.of e)⁻¹ • x✝ };
this) ⟶
E.obj { fst := (), snd := x✝ })
⊢ SemidirectProduct.left (↑(ActionCategory.curry E) (IsFreeGroup.of e)) x✝ =
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
{ val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • x✝ = x✝) })
[PROOFSTEP]
rfl
[GOAL]
case a.right
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
e : IsFreeGroup.Generators G
⊢ (↑(ActionCategory.curry E) (IsFreeGroup.of e)).right = (f' e).right
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.refine'_3
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
this : ActionCategory.curry E = F'
⊢ E = ActionCategory.uncurry F' (_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)
[PROOFSTEP]
apply Functor.hext
[GOAL]
case intro.intro.refine'_3.h_obj
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
this : ActionCategory.curry E = F'
⊢ ∀ (X_1 : ActionCategory G A),
E.obj X_1 =
(ActionCategory.uncurry F'
(_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)).obj
X_1
[PROOFSTEP]
intro
[GOAL]
case intro.intro.refine'_3.h_obj
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
this : ActionCategory.curry E = F'
X✝ : ActionCategory G A
⊢ E.obj X✝ =
(ActionCategory.uncurry F'
(_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)).obj
X✝
[PROOFSTEP]
apply Unit.ext
[GOAL]
case intro.intro.refine'_3.h_map
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
this : ActionCategory.curry E = F'
⊢ ∀ (X_1 Y : ActionCategory G A) (f : X_1 ⟶ Y),
HEq (E.map f)
((ActionCategory.uncurry F'
(_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)).map
f)
[PROOFSTEP]
refine' ActionCategory.cases _
[GOAL]
case intro.intro.refine'_3.h_map
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
this : ActionCategory.curry E = F'
⊢ ∀ (t : A) (g : G),
HEq (E.map (homOfPair t g))
((ActionCategory.uncurry F'
(_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)).map
(homOfPair t g))
[PROOFSTEP]
intros
[GOAL]
case intro.intro.refine'_3.h_map
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
this : ActionCategory.curry E = F'
t✝ : A
g✝ : G
⊢ HEq (E.map (homOfPair t✝ g✝))
((ActionCategory.uncurry F'
(_ : ∀ (x : G), ↑(MonoidHom.comp SemidirectProduct.rightHom F') x = ↑(MonoidHom.id G) x)).map
(homOfPair t✝ g✝))
[PROOFSTEP]
simp only [← this, uncurry_map, curry_apply_left, coe_back, homOfPair.val]
[GOAL]
case intro.intro.refine'_3.h_map
G A : Type u
inst✝³ : Group G
inst✝² : IsFreeGroup G
inst✝¹ : MulAction G A
X : Type u
inst✝ : Group X
f : Labelling (Generators (ActionCategory G A)) X
f' : IsFreeGroup.Generators G → (A → X) ⋊[mulAutArrow] G :=
fun e =>
{ left := fun b => f { val := e, property := (_ : IsFreeGroup.of e • (IsFreeGroup.of e)⁻¹ • b = b) },
right := IsFreeGroup.of e }
F' : G →* (A → X) ⋊[mulAutArrow] G
hF' : ∀ (a : IsFreeGroup.Generators G), ↑F' (IsFreeGroup.of a) = f' a
uF' :
∀ (y : G →* (A → X) ⋊[mulAutArrow] G),
(fun F => ∀ (a : IsFreeGroup.Generators G), ↑F (IsFreeGroup.of a) = f' a) y → y = F'
E : ActionCategory G A ⥤ CategoryTheory.SingleObj X
hE :
∀ (a b : Generators (ActionCategory G A)) (g : a ⟶ b),
E.map
((fun {a b} e =>
{ val := IsFreeGroup.of ↑e,
property := (_ : IsFreeGroup.of ↑e • ActionCategory.back a = ActionCategory.back b) })
g) =
f g
this : ActionCategory.curry E = F'
t✝ : A
g✝ : G
⊢ HEq (E.map (homOfPair t✝ g✝)) (E.map (homOfPair t✝ g✝))
[PROOFSTEP]
rfl
[GOAL]
G : Type u
inst✝² : Groupoid G
inst✝¹ : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
a : G
p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) a
⊢ treeHom T a = homOfPath T p
[PROOFSTEP]
rw [treeHom, Unique.default_eq]
[GOAL]
G : Type u
inst✝² : Groupoid G
inst✝¹ : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
a b : Generators G
e : a ⟶ b
H : e ∈ wideSubquiverSymmetrify T a b
⊢ loopOfHom T (of e) = 𝟙 (IsFreeGroupoid.SpanningTree.root' T)
[PROOFSTEP]
rw [loopOfHom, ← Category.assoc, IsIso.comp_inv_eq, Category.id_comp]
[GOAL]
G : Type u
inst✝² : Groupoid G
inst✝¹ : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
a b : Generators G
e : a ⟶ b
H : e ∈ wideSubquiverSymmetrify T a b
⊢ treeHom T
(let_fun this := a;
this) ≫
of e =
treeHom T b
[PROOFSTEP]
cases' H with H H
[GOAL]
case inl
G : Type u
inst✝² : Groupoid G
inst✝¹ : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
a b : Generators G
e : a ⟶ b
H : T a b (Sum.inl e)
⊢ treeHom T
(let_fun this := a;
this) ≫
of e =
treeHom T b
[PROOFSTEP]
rw [treeHom_eq T (Path.cons default ⟨Sum.inl e, H⟩), homOfPath]
[GOAL]
case inl
G : Type u
inst✝² : Groupoid G
inst✝¹ : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
a b : Generators G
e : a ⟶ b
H : T a b (Sum.inl e)
⊢ treeHom T
(let_fun this := a;
this) ≫
of e =
homOfPath T default ≫ Sum.recOn (↑{ val := Sum.inl e, property := H }) (fun e => of e) fun e => inv (of e)
[PROOFSTEP]
rfl
[GOAL]
case inr
G : Type u
inst✝² : Groupoid G
inst✝¹ : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
a b : Generators G
e : a ⟶ b
H : T b a (Sum.inr e)
⊢ treeHom T
(let_fun this := a;
this) ≫
of e =
treeHom T b
[PROOFSTEP]
rw [treeHom_eq T (Path.cons default ⟨Sum.inr e, H⟩), homOfPath]
[GOAL]
case inr
G : Type u
inst✝² : Groupoid G
inst✝¹ : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
a b : Generators G
e : a ⟶ b
H : T b a (Sum.inr e)
⊢ (homOfPath T default ≫ Sum.recOn (↑{ val := Sum.inr e, property := H }) (fun e => of e) fun e => inv (of e)) ≫ of e =
treeHom T b
[PROOFSTEP]
simp only [IsIso.inv_hom_id, Category.comp_id, Category.assoc, treeHom]
[GOAL]
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type ?u.65107
inst✝ : Monoid X
f : End (IsFreeGroupoid.SpanningTree.root' T) →* X
⊢ ∀ (X_1 : G),
{ obj := fun x => (), map := fun {X_2 Y} p => ↑f (loopOfHom T p) }.map (𝟙 X_1) =
𝟙 ({ obj := fun x => (), map := fun {X_2 Y} p => ↑f (loopOfHom T p) }.obj X_1)
[PROOFSTEP]
intro a
[GOAL]
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type ?u.65107
inst✝ : Monoid X
f : End (IsFreeGroupoid.SpanningTree.root' T) →* X
a : G
⊢ { obj := fun x => (), map := fun {X_1 Y} p => ↑f (loopOfHom T p) }.map (𝟙 a) =
𝟙 ({ obj := fun x => (), map := fun {X_1 Y} p => ↑f (loopOfHom T p) }.obj a)
[PROOFSTEP]
dsimp only [loopOfHom]
[GOAL]
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type ?u.65107
inst✝ : Monoid X
f : End (IsFreeGroupoid.SpanningTree.root' T) →* X
a : G
⊢ ↑f (treeHom T a ≫ 𝟙 a ≫ inv (treeHom T a)) = 𝟙 ()
[PROOFSTEP]
rw [Category.id_comp, IsIso.hom_inv_id, ← End.one_def, f.map_one, id_as_one]
[GOAL]
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type ?u.65107
inst✝ : Monoid X
f : End (IsFreeGroupoid.SpanningTree.root' T) →* X
⊢ ∀ {X_1 Y Z : G} (f_1 : X_1 ⟶ Y) (g : Y ⟶ Z),
{ obj := fun x => (), map := fun {X_2 Y} p => ↑f (loopOfHom T p) }.map (f_1 ≫ g) =
{ obj := fun x => (), map := fun {X_2 Y} p => ↑f (loopOfHom T p) }.map f_1 ≫
{ obj := fun x => (), map := fun {X_2 Y} p => ↑f (loopOfHom T p) }.map g
[PROOFSTEP]
intros
[GOAL]
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type ?u.65107
inst✝ : Monoid X
f : End (IsFreeGroupoid.SpanningTree.root' T) →* X
X✝ Y✝ Z✝ : G
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
⊢ { obj := fun x => (), map := fun {X_1 Y} p => ↑f (loopOfHom T p) }.map (f✝ ≫ g✝) =
{ obj := fun x => (), map := fun {X_1 Y} p => ↑f (loopOfHom T p) }.map f✝ ≫
{ obj := fun x => (), map := fun {X_1 Y} p => ↑f (loopOfHom T p) }.map g✝
[PROOFSTEP]
rw [comp_as_mul, ← f.map_mul]
[GOAL]
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type ?u.65107
inst✝ : Monoid X
f : End (IsFreeGroupoid.SpanningTree.root' T) →* X
X✝ Y✝ Z✝ : G
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
⊢ { obj := fun x => (), map := fun {X_1 Y} p => ↑f (loopOfHom T p) }.map (f✝ ≫ g✝) =
↑f (loopOfHom T g✝ * loopOfHom T f✝)
[PROOFSTEP]
simp only [IsIso.inv_hom_id_assoc, loopOfHom, End.mul_def, Category.assoc]
[GOAL]
G : Type u
inst✝² : Groupoid G
inst✝¹ : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
⊢ ∀ {H : Type u} [inst : Group H] (f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → H),
∃! F,
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ),
↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
[PROOFSTEP]
intro X _ f
[GOAL]
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
⊢ ∃! F,
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ),
↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
[PROOFSTEP]
let f' : Labelling (Generators G) X := fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f ⟨⟨a, b, e⟩, h⟩
[GOAL]
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
⊢ ∃! F,
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ),
↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
[PROOFSTEP]
rcases unique_lift f' with ⟨F', hF', uF'⟩
[GOAL]
case intro.intro
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
⊢ ∃! F,
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ),
↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
[PROOFSTEP]
refine' ⟨F'.mapEnd _, _, _⟩
[GOAL]
case intro.intro.refine'_1
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
⊢ (fun F =>
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ),
↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a)
(Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F')
[PROOFSTEP]
suffices ∀ {x y} (q : x ⟶ y), F'.map (loopOfHom T q) = (F'.map q : X)
by
rintro ⟨⟨a, b, e⟩, h⟩
erw [Functor.mapEnd_apply, this, hF']
exact dif_neg h
[GOAL]
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
this : ∀ {x y : G} (q : x ⟶ y), F'.map (loopOfHom T q) = F'.map q
⊢ (fun F =>
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ),
↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a)
(Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F')
[PROOFSTEP]
rintro ⟨⟨a, b, e⟩, h⟩
[GOAL]
case mk.mk
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
this : ∀ {x y : G} (q : x ⟶ y), F'.map (loopOfHom T q) = F'.map q
a b : Generators G
e : a ⟶ b
h : { left := a, right := b, hom := e } ∈ (↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ
⊢ ↑(Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F')
((fun e => loopOfHom T (of (↑e).hom)) { val := { left := a, right := b, hom := e }, property := h }) =
f { val := { left := a, right := b, hom := e }, property := h }
[PROOFSTEP]
erw [Functor.mapEnd_apply, this, hF']
[GOAL]
case mk.mk
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
this : ∀ {x y : G} (q : x ⟶ y), F'.map (loopOfHom T q) = F'.map q
a b : Generators G
e : a ⟶ b
h : { left := a, right := b, hom := e } ∈ (↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ
⊢ f' (↑{ val := { left := a, right := b, hom := e }, property := h }).hom =
f { val := { left := a, right := b, hom := e }, property := h }
[PROOFSTEP]
exact dif_neg h
[GOAL]
case intro.intro.refine'_1
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
⊢ ∀ {x y : G} (q : x ⟶ y), F'.map (loopOfHom T q) = F'.map q
[PROOFSTEP]
intros x y q
[GOAL]
case intro.intro.refine'_1
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
x y : G
q : x ⟶ y
⊢ F'.map (loopOfHom T q) = F'.map q
[PROOFSTEP]
suffices ∀ {a} (p : Path (root T) a), F'.map (homOfPath T p) = 1 by
simp only [this, treeHom, comp_as_mul, inv_as_inv, loopOfHom, inv_one, mul_one, one_mul, Functor.map_inv,
Functor.map_comp]
[GOAL]
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
x y : G
q : x ⟶ y
this :
∀ {a : WideSubquiver.toType (Symmetrify (Generators G)) T}
(p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) a), F'.map (homOfPath T p) = 1
⊢ F'.map (loopOfHom T q) = F'.map q
[PROOFSTEP]
simp only [this, treeHom, comp_as_mul, inv_as_inv, loopOfHom, inv_one, mul_one, one_mul, Functor.map_inv,
Functor.map_comp]
[GOAL]
case intro.intro.refine'_1
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
x y : G
q : x ⟶ y
⊢ ∀ {a : WideSubquiver.toType (Symmetrify (Generators G)) T}
(p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) a), F'.map (homOfPath T p) = 1
[PROOFSTEP]
intro a p
[GOAL]
case intro.intro.refine'_1
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
x y : G
q : x ⟶ y
a : WideSubquiver.toType (Symmetrify (Generators G)) T
p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) a
⊢ F'.map (homOfPath T p) = 1
[PROOFSTEP]
induction' p with b c p e ih
[GOAL]
case intro.intro.refine'_1.nil
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
x y : G
q : x ⟶ y
a : WideSubquiver.toType (Symmetrify (Generators G)) T
⊢ F'.map (homOfPath T Path.nil) = 1
[PROOFSTEP]
rw [homOfPath, F'.map_id, id_as_one]
[GOAL]
case intro.intro.refine'_1.cons
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
x y : G
q : x ⟶ y
a b c : WideSubquiver.toType (Symmetrify (Generators G)) T
p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) b
e : b ⟶ c
ih : F'.map (homOfPath T p) = 1
⊢ F'.map (homOfPath T (Path.cons p e)) = 1
[PROOFSTEP]
rw [homOfPath, F'.map_comp, comp_as_mul, ih, mul_one]
[GOAL]
case intro.intro.refine'_1.cons
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
x y : G
q : x ⟶ y
a b c : WideSubquiver.toType (Symmetrify (Generators G)) T
p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) b
e : b ⟶ c
ih : F'.map (homOfPath T p) = 1
⊢ F'.map (Sum.recOn (↑e) (fun e => of e) fun e => inv (of e)) = 1
[PROOFSTEP]
rcases e with ⟨e | e, eT⟩
[GOAL]
case intro.intro.refine'_1.cons.mk.inl
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
x y : G
q : x ⟶ y
a b c : WideSubquiver.toType (Symmetrify (Generators G)) T
p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) b
ih : F'.map (homOfPath T p) = 1
e : b ⟶ c
eT : Sum.inl e ∈ T b c
⊢ F'.map (Sum.recOn (↑{ val := Sum.inl e, property := eT }) (fun e => of e) fun e => inv (of e)) = 1
[PROOFSTEP]
rw [hF']
[GOAL]
case intro.intro.refine'_1.cons.mk.inl
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
x y : G
q : x ⟶ y
a b c : WideSubquiver.toType (Symmetrify (Generators G)) T
p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) b
ih : F'.map (homOfPath T p) = 1
e : b ⟶ c
eT : Sum.inl e ∈ T b c
⊢ f' e = 1
[PROOFSTEP]
exact dif_pos (Or.inl eT)
[GOAL]
case intro.intro.refine'_1.cons.mk.inr
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
x y : G
q : x ⟶ y
a b c : WideSubquiver.toType (Symmetrify (Generators G)) T
p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) b
ih : F'.map (homOfPath T p) = 1
e : c ⟶ b
eT : Sum.inr e ∈ T b c
⊢ F'.map (Sum.recOn (↑{ val := Sum.inr e, property := eT }) (fun e => of e) fun e => inv (of e)) = 1
[PROOFSTEP]
rw [F'.map_inv, inv_as_inv, inv_eq_one, hF']
[GOAL]
case intro.intro.refine'_1.cons.mk.inr
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
x y : G
q : x ⟶ y
a b c : WideSubquiver.toType (Symmetrify (Generators G)) T
p : Path (root (WideSubquiver.toType (Symmetrify (Generators G)) T)) b
ih : F'.map (homOfPath T p) = 1
e : c ⟶ b
eT : Sum.inr e ∈ T b c
⊢ f' e = 1
[PROOFSTEP]
exact dif_pos (Or.inr eT)
[GOAL]
case intro.intro.refine'_2
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
⊢ ∀ (y : End (IsFreeGroupoid.SpanningTree.root' T) →* X),
(fun F =>
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ),
↑F ((fun e => loopOfHom T (of (↑e).hom)) a) = f a)
y →
y = Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F'
[PROOFSTEP]
intro E hE
[GOAL]
case intro.intro.refine'_2
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
E : End (IsFreeGroupoid.SpanningTree.root' T) →* X
hE :
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
⊢ E = Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F'
[PROOFSTEP]
ext x
[GOAL]
case intro.intro.refine'_2.h
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
E : End (IsFreeGroupoid.SpanningTree.root' T) →* X
hE :
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
x : End (IsFreeGroupoid.SpanningTree.root' T)
⊢ ↑E x = ↑(Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F') x
[PROOFSTEP]
suffices (functorOfMonoidHom T E).map x = F'.map x by
simpa only [loopOfHom, functorOfMonoidHom, IsIso.inv_id, treeHom_root, Category.id_comp, Category.comp_id] using this
[GOAL]
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
E : End (IsFreeGroupoid.SpanningTree.root' T) →* X
hE :
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
x : End (IsFreeGroupoid.SpanningTree.root' T)
this : (functorOfMonoidHom T E).map x = F'.map x
⊢ ↑E x = ↑(Functor.mapEnd (IsFreeGroupoid.SpanningTree.root' T) F') x
[PROOFSTEP]
simpa only [loopOfHom, functorOfMonoidHom, IsIso.inv_id, treeHom_root, Category.id_comp, Category.comp_id] using this
[GOAL]
case intro.intro.refine'_2.h
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
E : End (IsFreeGroupoid.SpanningTree.root' T) →* X
hE :
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
x : End (IsFreeGroupoid.SpanningTree.root' T)
⊢ (functorOfMonoidHom T E).map x = F'.map x
[PROOFSTEP]
congr
[GOAL]
case intro.intro.refine'_2.h.h.e_5.h.e_self
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
E : End (IsFreeGroupoid.SpanningTree.root' T) →* X
hE :
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
x : End (IsFreeGroupoid.SpanningTree.root' T)
⊢ functorOfMonoidHom T E = F'
[PROOFSTEP]
apply uF'
[GOAL]
case intro.intro.refine'_2.h.h.e_5.h.e_self.a
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
E : End (IsFreeGroupoid.SpanningTree.root' T) →* X
hE :
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
x : End (IsFreeGroupoid.SpanningTree.root' T)
⊢ ∀ (a b : Generators G) (g : a ⟶ b), (functorOfMonoidHom T E).map (of g) = f' g
[PROOFSTEP]
intro a b e
[GOAL]
case intro.intro.refine'_2.h.h.e_5.h.e_self.a
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
E : End (IsFreeGroupoid.SpanningTree.root' T) →* X
hE :
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
x : End (IsFreeGroupoid.SpanningTree.root' T)
a b : Generators G
e : a ⟶ b
⊢ (functorOfMonoidHom T E).map (of e) = f' e
[PROOFSTEP]
change E (loopOfHom T _) = dite _ _ _
[GOAL]
case intro.intro.refine'_2.h.h.e_5.h.e_self.a
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
E : End (IsFreeGroupoid.SpanningTree.root' T) →* X
hE :
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
x : End (IsFreeGroupoid.SpanningTree.root' T)
a b : Generators G
e : a ⟶ b
⊢ ↑E (loopOfHom T (of e)) =
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
E : End (IsFreeGroupoid.SpanningTree.root' T) →* X
hE :
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
x : End (IsFreeGroupoid.SpanningTree.root' T)
a b : Generators G
e : a ⟶ b
h : e ∈ wideSubquiverSymmetrify T a b
⊢ ↑E (loopOfHom T (of e)) = 1
[PROOFSTEP]
rw [loopOfHom_eq_id T e h, ← End.one_def, E.map_one]
[GOAL]
case neg
G : Type u
inst✝³ : Groupoid G
inst✝² : IsFreeGroupoid G
T : WideSubquiver (Symmetrify (Generators G))
inst✝¹ : Arborescence (WideSubquiver.toType (Symmetrify (Generators G)) T)
X : Type u
inst✝ : Group X
f : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ → X
f' : Labelling (Generators G) X :=
fun a b e =>
if h : e ∈ wideSubquiverSymmetrify T a b then 1 else f { val := { left := a, right := b, hom := e }, property := h }
F' : G ⥤ CategoryTheory.SingleObj X
hF' : ∀ (a b : Generators G) (g : a ⟶ b), F'.map (of g) = f' g
uF' :
∀ (y : G ⥤ CategoryTheory.SingleObj X), (fun F => ∀ (a b : Generators G) (g : a ⟶ b), F.map (of g) = f' g) y → y = F'
E : End (IsFreeGroupoid.SpanningTree.root' T) →* X
hE :
∀ (a : ↑(↑wideSubquiverEquivSetTotal (wideSubquiverSymmetrify T))ᶜ), ↑E ((fun e => loopOfHom T (of (↑e).hom)) a) = f a
x : End (IsFreeGroupoid.SpanningTree.root' T)
a b : Generators G
e : a ⟶ b
h : ¬e ∈ wideSubquiverSymmetrify T a b
⊢ ↑E (loopOfHom T (of e)) = f { val := { left := a, right := b, hom := e }, property := h }
[PROOFSTEP]
exact hE ⟨⟨a, b, e⟩, h⟩
[GOAL]
G : Type u
inst✝¹ : Groupoid G
inst✝ : IsFreeGroupoid G
a b : G
⊢ Nonempty (a ⟶ b) → Nonempty (Path (IsFreeGroupoid.symgen a) (IsFreeGroupoid.symgen b))
[PROOFSTEP]
rintro ⟨p⟩
[GOAL]
case intro
G : Type u
inst✝¹ : Groupoid G
inst✝ : IsFreeGroupoid G
a b : G
p : a ⟶ b
⊢ Nonempty (Path (IsFreeGroupoid.symgen a) (IsFreeGroupoid.symgen b))
[PROOFSTEP]
rw [← @WeaklyConnectedComponent.eq (Generators G), eq_comm, ← FreeGroup.of_injective.eq_iff, ← mul_inv_eq_one]
[GOAL]
case intro
G : Type u
inst✝¹ : Groupoid G
inst✝ : IsFreeGroupoid G
a b : G
p : a ⟶ b
⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) *
(FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ =
1
[PROOFSTEP]
let X := FreeGroup (WeaklyConnectedComponent <| Generators G)
[GOAL]
case intro
G : Type u
inst✝¹ : Groupoid G
inst✝ : IsFreeGroupoid G
a b : G
p : a ⟶ b
X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))
⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) *
(FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ =
1
[PROOFSTEP]
let f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)
[GOAL]
case intro
G : Type u
inst✝¹ : Groupoid G
inst✝ : IsFreeGroupoid G
a b : G
p : a ⟶ b
X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))
f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)
⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) *
(FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ =
1
[PROOFSTEP]
let F : G ⥤ CategoryTheory.SingleObj.{u} (X : Type u) := SingleObj.differenceFunctor f
[GOAL]
case intro
G : Type u
inst✝¹ : Groupoid G
inst✝ : IsFreeGroupoid G
a b : G
p : a ⟶ b
X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))
f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)
F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f
⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) *
(FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ =
1
[PROOFSTEP]
change (F.map p) = ((@CategoryTheory.Functor.const G _ _ (SingleObj.category X)).obj ()).map p
[GOAL]
case intro
G : Type u
inst✝¹ : Groupoid G
inst✝ : IsFreeGroupoid G
a b : G
p : a ⟶ b
X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))
f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)
F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f
⊢ F.map p = ((Functor.const G).obj ()).map p
[PROOFSTEP]
congr
[GOAL]
case intro.h.e_5.h.e_self
G : Type u
inst✝¹ : Groupoid G
inst✝ : IsFreeGroupoid G
a b : G
p : a ⟶ b
X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))
f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)
F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f
⊢ F = (Functor.const G).obj ()
[PROOFSTEP]
ext
[GOAL]
case intro.h.e_5.h.e_self.h
G : Type u
inst✝¹ : Groupoid G
inst✝ : IsFreeGroupoid G
a b : G
p : a ⟶ b
X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))
f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)
F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f
a✝ b✝ : Generators G
e✝ : a✝ ⟶ b✝
⊢ F.map (of e✝) = ((Functor.const G).obj ()).map (of e✝)
[PROOFSTEP]
rw [Functor.const_obj_map, id_as_one, differenceFunctor_map, @mul_inv_eq_one _ _ (f _)]
[GOAL]
case intro.h.e_5.h.e_self.h
G : Type u
inst✝¹ : Groupoid G
inst✝ : IsFreeGroupoid G
a b : G
p : a ⟶ b
X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))
f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)
F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f
a✝ b✝ : Generators G
e✝ : a✝ ⟶ b✝
⊢ f b✝ =
f
(let_fun this := a✝;
this)
[PROOFSTEP]
apply congr_arg FreeGroup.of
[GOAL]
case intro.h.e_5.h.e_self.h
G : Type u
inst✝¹ : Groupoid G
inst✝ : IsFreeGroupoid G
a b : G
p : a ⟶ b
X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))
f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)
F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f
a✝ b✝ : Generators G
e✝ : a✝ ⟶ b✝
⊢ WeaklyConnectedComponent.mk b✝ =
WeaklyConnectedComponent.mk
(let_fun this := a✝;
this)
[PROOFSTEP]
apply (WeaklyConnectedComponent.eq _ _).mpr
[GOAL]
case intro.h.e_5.h.e_self.h
G : Type u
inst✝¹ : Groupoid G
inst✝ : IsFreeGroupoid G
a b : G
p : a ⟶ b
X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))
f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)
F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f
a✝ b✝ : Generators G
e✝ : a✝ ⟶ b✝
⊢ Nonempty
(Path b✝
(let_fun this := a✝;
this))
[PROOFSTEP]
exact ⟨Hom.toPath (Sum.inr (by assumption))⟩
[GOAL]
G : Type u
inst✝¹ : Groupoid G
inst✝ : IsFreeGroupoid G
a b : G
p : a ⟶ b
X : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))
f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)
F : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f
a✝ b✝ : Generators G
e✝ : a✝ ⟶ b✝
⊢ (let_fun this := a✝;
this) ⟶
b✝
[PROOFSTEP]
assumption
| {"mathlib_filename": "Mathlib.GroupTheory.NielsenSchreier", "llama_tokens": 31467} |
[GOAL]
lo hi a : ℕ
h : Nat.succ lo ≤ a ∧ a ≤ hi
⊢ Nat.succ (Nat.pred a) ≤ hi
[PROOFSTEP]
rw [Nat.succ_pred_eq_of_pos]
[GOAL]
lo hi a : ℕ
h : Nat.succ lo ≤ a ∧ a ≤ hi
⊢ a ≤ hi
lo hi a : ℕ h : Nat.succ lo ≤ a ∧ a ≤ hi ⊢ 0 < a
[PROOFSTEP]
exact h.right
[GOAL]
lo hi a : ℕ
h : Nat.succ lo ≤ a ∧ a ≤ hi
⊢ 0 < a
[PROOFSTEP]
exact lt_of_le_of_lt (Nat.zero_le lo) h.left
| {"mathlib_filename": "Mathlib.Testing.SlimCheck.Gen", "llama_tokens": 213} |
[GOAL]
n : ℕ
h : 0 < n
m : ℕ := n / 2
⊢ m < n
[PROOFSTEP]
apply Nat.div_lt_self h
[GOAL]
n : ℕ
h : 0 < n
m : ℕ := n / 2
⊢ 1 < 2
[PROOFSTEP]
decide
[GOAL]
n : ℕ
⊢ Fin.ofNat 0 ≤ Fin.ofNat __do_lift✝
[PROOFSTEP]
simp [Fin.ofNat, LE.le]
[GOAL]
n : ℕ
⊢ 0 ≤ __do_lift✝ % (n + 1)
[PROOFSTEP]
exact Nat.zero_le _
[GOAL]
⊢ 0 < List.length (String.toList " 0123abcABC:,;`\\/")
[PROOFSTEP]
decide
| {"mathlib_filename": "Mathlib.Testing.SlimCheck.Sampleable", "llama_tokens": 236} |
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
tf : TotalFunction α β
⊢ ∀ (a : α), a ∈ zeroDefaultSupp tf ↔ apply (zeroDefault tf) a ≠ 0
[PROOFSTEP]
intro a
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
tf : TotalFunction α β
a : α
⊢ a ∈ zeroDefaultSupp tf ↔ apply (zeroDefault tf) a ≠ 0
[PROOFSTEP]
rcases tf with ⟨A, y⟩
[GOAL]
case withDefault
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y : β
⊢ a ∈ zeroDefaultSupp (withDefault A y) ↔ apply (zeroDefault (withDefault A y)) a ≠ 0
[PROOFSTEP]
simp only [apply, zeroDefaultSupp, List.mem_map, List.mem_filter, exists_and_right, List.mem_toFinset, exists_eq_right,
Sigma.exists, Ne.def, zeroDefault]
[GOAL]
case withDefault
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y : β
⊢ (∃ x, { fst := a, snd := x } ∈ List.dedupKeys A ∧ (decide ¬x = 0) = true) ↔ ¬Option.getD (List.dlookup a A) 0 = 0
[PROOFSTEP]
constructor
[GOAL]
case withDefault.mp
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y : β
⊢ (∃ x, { fst := a, snd := x } ∈ List.dedupKeys A ∧ (decide ¬x = 0) = true) → ¬Option.getD (List.dlookup a A) 0 = 0
[PROOFSTEP]
rintro ⟨od, hval, hod⟩
[GOAL]
case withDefault.mp.intro.intro
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y od : β
hval : { fst := a, snd := od } ∈ List.dedupKeys A
hod : (decide ¬od = 0) = true
⊢ ¬Option.getD (List.dlookup a A) 0 = 0
[PROOFSTEP]
have := List.mem_dlookup (List.nodupKeys_dedupKeys A) hval
[GOAL]
case withDefault.mp.intro.intro
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y od : β
hval : { fst := a, snd := od } ∈ List.dedupKeys A
hod : (decide ¬od = 0) = true
this : od ∈ List.dlookup a (List.dedupKeys A)
⊢ ¬Option.getD (List.dlookup a A) 0 = 0
[PROOFSTEP]
rw [(_ : List.dlookup a A = od)]
[GOAL]
case withDefault.mp.intro.intro
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y od : β
hval : { fst := a, snd := od } ∈ List.dedupKeys A
hod : (decide ¬od = 0) = true
this : od ∈ List.dlookup a (List.dedupKeys A)
⊢ ¬Option.getD (some od) 0 = 0
[PROOFSTEP]
simpa using hod
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y od : β
hval : { fst := a, snd := od } ∈ List.dedupKeys A
hod : (decide ¬od = 0) = true
this : od ∈ List.dlookup a (List.dedupKeys A)
⊢ List.dlookup a A = some od
[PROOFSTEP]
simpa [List.dlookup_dedupKeys, WithTop.some_eq_coe]
[GOAL]
case withDefault.mpr
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y : β
⊢ ¬Option.getD (List.dlookup a A) 0 = 0 → ∃ x, { fst := a, snd := x } ∈ List.dedupKeys A ∧ (decide ¬x = 0) = true
[PROOFSTEP]
intro h
[GOAL]
case withDefault.mpr
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y : β
h : ¬Option.getD (List.dlookup a A) 0 = 0
⊢ ∃ x, { fst := a, snd := x } ∈ List.dedupKeys A ∧ (decide ¬x = 0) = true
[PROOFSTEP]
use(A.dlookup a).getD (0 : β)
[GOAL]
case h
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y : β
h : ¬Option.getD (List.dlookup a A) 0 = 0
⊢ { fst := a, snd := Option.getD (List.dlookup a A) 0 } ∈ List.dedupKeys A ∧
(decide ¬Option.getD (List.dlookup a A) 0 = 0) = true
[PROOFSTEP]
rw [← List.dlookup_dedupKeys] at h ⊢
[GOAL]
case h
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y : β
h : ¬Option.getD (List.dlookup a (List.dedupKeys A)) 0 = 0
⊢ { fst := a, snd := Option.getD (List.dlookup a (List.dedupKeys A)) 0 } ∈ List.dedupKeys A ∧
(decide ¬Option.getD (List.dlookup a (List.dedupKeys A)) 0 = 0) = true
[PROOFSTEP]
simp only [h, ← List.mem_dlookup_iff A.nodupKeys_dedupKeys, and_true_iff, not_false_iff, Option.mem_def]
[GOAL]
case h
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y : β
h : ¬Option.getD (List.dlookup a (List.dedupKeys A)) 0 = 0
⊢ List.dlookup a (List.dedupKeys A) = some (Option.getD (List.dlookup a (List.dedupKeys A)) 0)
[PROOFSTEP]
cases haA : List.dlookup a A.dedupKeys
[GOAL]
case h.none
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y : β
h : ¬Option.getD (List.dlookup a (List.dedupKeys A)) 0 = 0
haA : List.dlookup a (List.dedupKeys A) = none
⊢ none = some (Option.getD none 0)
[PROOFSTEP]
simp [haA] at h
[GOAL]
case h.some
α : Type u
β : Type v
γ : Sort w
inst✝² : Zero β
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
a : α
A : List ((_ : α) × β)
y : β
h : ¬Option.getD (List.dlookup a (List.dedupKeys A)) 0 = 0
val✝ : β
haA : List.dlookup a (List.dedupKeys A) = some val✝
⊢ some val✝ = some (Option.getD (some val✝) 0)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List (α × α)
x y z : α
⊢ applyId ((y, z) :: xs) x = if y = x then z else applyId xs x
[PROOFSTEP]
simp only [List.applyId, List.dlookup, eq_rec_constant, Prod.toSigma, List.map]
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List (α × α)
x y z : α
⊢ Option.getD (if h : y = x then some z else List.dlookup x (List.map (fun p => { fst := p.fst, snd := p.snd }) xs)) x =
if y = x then z else Option.getD (List.dlookup x (List.map (fun p => { fst := p.fst, snd := p.snd }) xs)) x
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List (α × α)
x y z : α
h✝ : y = x
⊢ Option.getD (some z) x = z
[PROOFSTEP]
rfl
[GOAL]
case neg
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List (α × α)
x y z : α
h✝ : ¬y = x
⊢ Option.getD (List.dlookup x (List.map (fun p => { fst := p.fst, snd := p.snd }) xs)) x =
Option.getD (List.dlookup x (List.map (fun p => { fst := p.fst, snd := p.snd }) xs)) x
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : List.length xs = List.length ys
x y : α
i : ℕ
h₂ : List.get? xs i = some x
⊢ applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y
[PROOFSTEP]
induction xs generalizing ys i
[GOAL]
case nil
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y : α
ys : List α
h₀ : List.Nodup []
h₁ : List.length [] = List.length ys
i : ℕ
h₂ : List.get? [] i = some x
⊢ applyId (List.zip [] ys) x = y ↔ List.get? ys i = some y
case cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y head✝ : α
tail✝ : List α
tail_ih✝ :
∀ {ys : List α},
List.Nodup tail✝ →
List.length tail✝ = List.length ys →
∀ (i : ℕ), List.get? tail✝ i = some x → (applyId (List.zip tail✝ ys) x = y ↔ List.get? ys i = some y)
ys : List α
h₀ : List.Nodup (head✝ :: tail✝)
h₁ : List.length (head✝ :: tail✝) = List.length ys
i : ℕ
h₂ : List.get? (head✝ :: tail✝) i = some x
⊢ applyId (List.zip (head✝ :: tail✝) ys) x = y ↔ List.get? ys i = some y
[PROOFSTEP]
case nil => cases h₂
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y : α
ys : List α
h₀ : List.Nodup []
h₁ : List.length [] = List.length ys
i : ℕ
h₂ : List.get? [] i = some x
⊢ applyId (List.zip [] ys) x = y ↔ List.get? ys i = some y
[PROOFSTEP]
case nil => cases h₂
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y : α
ys : List α
h₀ : List.Nodup []
h₁ : List.length [] = List.length ys
i : ℕ
h₂ : List.get? [] i = some x
⊢ applyId (List.zip [] ys) x = y ↔ List.get? ys i = some y
[PROOFSTEP]
cases h₂
[GOAL]
case cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y head✝ : α
tail✝ : List α
tail_ih✝ :
∀ {ys : List α},
List.Nodup tail✝ →
List.length tail✝ = List.length ys →
∀ (i : ℕ), List.get? tail✝ i = some x → (applyId (List.zip tail✝ ys) x = y ↔ List.get? ys i = some y)
ys : List α
h₀ : List.Nodup (head✝ :: tail✝)
h₁ : List.length (head✝ :: tail✝) = List.length ys
i : ℕ
h₂ : List.get? (head✝ :: tail✝) i = some x
⊢ applyId (List.zip (head✝ :: tail✝) ys) x = y ↔ List.get? ys i = some y
[PROOFSTEP]
case cons x' xs xs_ih =>
cases i
· injection h₂ with h₀; subst h₀
cases ys
· cases h₁
·
-- porting note: `open List` no longer makes `zip_cons_cons` visiblesimp only [List.applyId, Prod.toSigma,
Option.getD_some, List.get?, List.dlookup_cons_eq, List.zip_cons_cons, List.map, Option.some_inj]
· cases ys
· cases h₁
· cases' h₀ with _ _ h₀ h₁
simp only [List.get?, List.zip_cons_cons, List.applyId_cons] at h₂ ⊢
rw [if_neg]
· apply xs_ih <;> solve_by_elim [Nat.succ.inj]
· apply h₀; apply List.get?_mem h₂
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
ys : List α
h₀ : List.Nodup (x' :: xs)
h₁ : List.length (x' :: xs) = List.length ys
i : ℕ
h₂ : List.get? (x' :: xs) i = some x
⊢ applyId (List.zip (x' :: xs) ys) x = y ↔ List.get? ys i = some y
[PROOFSTEP]
case cons x' xs xs_ih =>
cases i
· injection h₂ with h₀; subst h₀
cases ys
· cases h₁
·
-- porting note: `open List` no longer makes `zip_cons_cons` visiblesimp only [List.applyId, Prod.toSigma,
Option.getD_some, List.get?, List.dlookup_cons_eq, List.zip_cons_cons, List.map, Option.some_inj]
· cases ys
· cases h₁
· cases' h₀ with _ _ h₀ h₁
simp only [List.get?, List.zip_cons_cons, List.applyId_cons] at h₂ ⊢
rw [if_neg]
· apply xs_ih <;> solve_by_elim [Nat.succ.inj]
· apply h₀; apply List.get?_mem h₂
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
ys : List α
h₀ : List.Nodup (x' :: xs)
h₁ : List.length (x' :: xs) = List.length ys
i : ℕ
h₂ : List.get? (x' :: xs) i = some x
⊢ applyId (List.zip (x' :: xs) ys) x = y ↔ List.get? ys i = some y
[PROOFSTEP]
cases i
[GOAL]
case zero
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
ys : List α
h₀ : List.Nodup (x' :: xs)
h₁ : List.length (x' :: xs) = List.length ys
h₂ : List.get? (x' :: xs) Nat.zero = some x
⊢ applyId (List.zip (x' :: xs) ys) x = y ↔ List.get? ys Nat.zero = some y
[PROOFSTEP]
injection h₂ with h₀
[GOAL]
case zero
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
ys : List α
h₀✝ : List.Nodup (x' :: xs)
h₁ : List.length (x' :: xs) = List.length ys
h₀ : x' = x
⊢ applyId (List.zip (x' :: xs) ys) x = y ↔ List.get? ys Nat.zero = some y
[PROOFSTEP]
subst h₀
[GOAL]
case zero
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
y x' : α
xs ys : List α
h₀ : List.Nodup (x' :: xs)
h₁ : List.length (x' :: xs) = List.length ys
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x' → (applyId (List.zip xs ys) x' = y ↔ List.get? ys i = some y)
⊢ applyId (List.zip (x' :: xs) ys) x' = y ↔ List.get? ys Nat.zero = some y
[PROOFSTEP]
cases ys
[GOAL]
case zero.nil
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
y x' : α
xs : List α
h₀ : List.Nodup (x' :: xs)
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x' → (applyId (List.zip xs ys) x' = y ↔ List.get? ys i = some y)
h₁ : List.length (x' :: xs) = List.length []
⊢ applyId (List.zip (x' :: xs) []) x' = y ↔ List.get? [] Nat.zero = some y
[PROOFSTEP]
cases h₁
[GOAL]
case zero.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
y x' : α
xs : List α
h₀ : List.Nodup (x' :: xs)
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x' → (applyId (List.zip xs ys) x' = y ↔ List.get? ys i = some y)
head✝ : α
tail✝ : List α
h₁ : List.length (x' :: xs) = List.length (head✝ :: tail✝)
⊢ applyId (List.zip (x' :: xs) (head✝ :: tail✝)) x' = y ↔ List.get? (head✝ :: tail✝) Nat.zero = some y
[PROOFSTEP]
simp only [List.applyId, Prod.toSigma, Option.getD_some, List.get?, List.dlookup_cons_eq, List.zip_cons_cons, List.map,
Option.some_inj]
[GOAL]
case succ
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
ys : List α
h₀ : List.Nodup (x' :: xs)
h₁ : List.length (x' :: xs) = List.length ys
n✝ : ℕ
h₂ : List.get? (x' :: xs) (Nat.succ n✝) = some x
⊢ applyId (List.zip (x' :: xs) ys) x = y ↔ List.get? ys (Nat.succ n✝) = some y
[PROOFSTEP]
cases ys
[GOAL]
case succ.nil
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
h₀ : List.Nodup (x' :: xs)
n✝ : ℕ
h₂ : List.get? (x' :: xs) (Nat.succ n✝) = some x
h₁ : List.length (x' :: xs) = List.length []
⊢ applyId (List.zip (x' :: xs) []) x = y ↔ List.get? [] (Nat.succ n✝) = some y
[PROOFSTEP]
cases h₁
[GOAL]
case succ.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
h₀ : List.Nodup (x' :: xs)
n✝ : ℕ
h₂ : List.get? (x' :: xs) (Nat.succ n✝) = some x
head✝ : α
tail✝ : List α
h₁ : List.length (x' :: xs) = List.length (head✝ :: tail✝)
⊢ applyId (List.zip (x' :: xs) (head✝ :: tail✝)) x = y ↔ List.get? (head✝ :: tail✝) (Nat.succ n✝) = some y
[PROOFSTEP]
cases' h₀ with _ _ h₀ h₁
[GOAL]
case succ.cons.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
n✝ : ℕ
h₂ : List.get? (x' :: xs) (Nat.succ n✝) = some x
head✝ : α
tail✝ : List α
h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝)
h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
⊢ applyId (List.zip (x' :: xs) (head✝ :: tail✝)) x = y ↔ List.get? (head✝ :: tail✝) (Nat.succ n✝) = some y
[PROOFSTEP]
simp only [List.get?, List.zip_cons_cons, List.applyId_cons] at h₂ ⊢
[GOAL]
case succ.cons.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
n✝ : ℕ
h₂ : List.get? xs n✝ = some x
head✝ : α
tail✝ : List α
h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝)
h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
⊢ (if x' = x then head✝ else applyId (List.zip xs tail✝) x) = y ↔ List.get? tail✝ n✝ = some y
[PROOFSTEP]
rw [if_neg]
[GOAL]
case succ.cons.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
n✝ : ℕ
h₂ : List.get? xs n✝ = some x
head✝ : α
tail✝ : List α
h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝)
h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
⊢ applyId (List.zip xs tail✝) x = y ↔ List.get? tail✝ n✝ = some y
[PROOFSTEP]
apply xs_ih
[GOAL]
case succ.cons.cons.h₀
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
n✝ : ℕ
h₂ : List.get? xs n✝ = some x
head✝ : α
tail✝ : List α
h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝)
h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
⊢ List.Nodup xs
[PROOFSTEP]
solve_by_elim [Nat.succ.inj]
[GOAL]
case succ.cons.cons.h₁
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
n✝ : ℕ
h₂ : List.get? xs n✝ = some x
head✝ : α
tail✝ : List α
h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝)
h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
⊢ List.length xs = List.length tail✝
[PROOFSTEP]
solve_by_elim [Nat.succ.inj]
[GOAL]
case succ.cons.cons.h₂
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
n✝ : ℕ
h₂ : List.get? xs n✝ = some x
head✝ : α
tail✝ : List α
h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝)
h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
⊢ List.get? xs n✝ = some x
[PROOFSTEP]
solve_by_elim [Nat.succ.inj]
[GOAL]
case succ.cons.cons.hnc
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
n✝ : ℕ
h₂ : List.get? xs n✝ = some x
head✝ : α
tail✝ : List α
h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝)
h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
⊢ ¬x' = x
[PROOFSTEP]
apply h₀
[GOAL]
case succ.cons.cons.hnc.a
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x y x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.length xs = List.length ys →
∀ (i : ℕ), List.get? xs i = some x → (applyId (List.zip xs ys) x = y ↔ List.get? ys i = some y)
n✝ : ℕ
h₂ : List.get? xs n✝ = some x
head✝ : α
tail✝ : List α
h₁✝ : List.length (x' :: xs) = List.length (head✝ :: tail✝)
h₁ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
⊢ x ∈ xs
[PROOFSTEP]
apply List.get?_mem h₂
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x : α
⊢ applyId (List.zip xs ys) x ∈ ys ↔ x ∈ xs
[PROOFSTEP]
simp only [List.applyId]
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x : α
⊢ Option.getD (List.dlookup x (List.map Prod.toSigma (List.zip xs ys))) x ∈ ys ↔ x ∈ xs
[PROOFSTEP]
cases h₃ : List.dlookup x (List.map Prod.toSigma (xs.zip ys)) with
| none =>
dsimp [Option.getD]
rw [h₁.mem_iff]
| some val =>
have h₂ : ys.Nodup := h₁.nodup_iff.1 h₀
replace h₁ : xs.length = ys.length := h₁.length_eq
dsimp
induction xs generalizing ys with
| nil => contradiction
| cons x' xs xs_ih =>
cases' ys with y ys
· cases h₃
dsimp [List.dlookup] at h₃ ; split_ifs at h₃ with h
· rw [Option.some_inj] at h₃
subst x'; subst val
simp only [List.mem_cons, true_or_iff, eq_self_iff_true]
· cases' h₀ with _ _ h₀ h₅
cases' h₂ with _ _ h₂ h₄
have h₆ := Nat.succ.inj h₁
specialize xs_ih h₅ h₃ h₄ h₆
simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff]
suffices : val ∈ ys; tauto
erw [← Option.mem_def, List.mem_dlookup_iff] at h₃
simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃
rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩
apply (List.mem_zip h₃).2
simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map]
rwa [List.map_fst_zip _ _ (le_of_eq h₆)]
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x : α
x✝ : Option α
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = x✝
⊢ Option.getD x✝ x ∈ ys ↔ x ∈ xs
[PROOFSTEP]
cases h₃ : List.dlookup x (List.map Prod.toSigma (xs.zip ys)) with
| none =>
dsimp [Option.getD]
rw [h₁.mem_iff]
| some val =>
have h₂ : ys.Nodup := h₁.nodup_iff.1 h₀
replace h₁ : xs.length = ys.length := h₁.length_eq
dsimp
induction xs generalizing ys with
| nil => contradiction
| cons x' xs xs_ih =>
cases' ys with y ys
· cases h₃
dsimp [List.dlookup] at h₃ ; split_ifs at h₃ with h
· rw [Option.some_inj] at h₃
subst x'; subst val
simp only [List.mem_cons, true_or_iff, eq_self_iff_true]
· cases' h₀ with _ _ h₀ h₅
cases' h₂ with _ _ h₂ h₄
have h₆ := Nat.succ.inj h₁
specialize xs_ih h₅ h₃ h₄ h₆
simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff]
suffices : val ∈ ys; tauto
erw [← Option.mem_def, List.mem_dlookup_iff] at h₃
simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃
rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩
apply (List.mem_zip h₃).2
simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map]
rwa [List.map_fst_zip _ _ (le_of_eq h₆)]
[GOAL]
case none
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x : α
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = none
⊢ Option.getD none x ∈ ys ↔ x ∈ xs
[PROOFSTEP]
| none =>
dsimp [Option.getD]
rw [h₁.mem_iff]
[GOAL]
case none
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x : α
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = none
⊢ Option.getD none x ∈ ys ↔ x ∈ xs
[PROOFSTEP]
dsimp [Option.getD]
[GOAL]
case none
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x : α
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = none
⊢ x ∈ ys ↔ x ∈ xs
[PROOFSTEP]
rw [h₁.mem_iff]
[GOAL]
case some
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x val : α
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
⊢ Option.getD (some val) x ∈ ys ↔ x ∈ xs
[PROOFSTEP]
| some val =>
have h₂ : ys.Nodup := h₁.nodup_iff.1 h₀
replace h₁ : xs.length = ys.length := h₁.length_eq
dsimp
induction xs generalizing ys with
| nil => contradiction
| cons x' xs xs_ih =>
cases' ys with y ys
· cases h₃
dsimp [List.dlookup] at h₃ ; split_ifs at h₃ with h
· rw [Option.some_inj] at h₃
subst x'; subst val
simp only [List.mem_cons, true_or_iff, eq_self_iff_true]
· cases' h₀ with _ _ h₀ h₅
cases' h₂ with _ _ h₂ h₄
have h₆ := Nat.succ.inj h₁
specialize xs_ih h₅ h₃ h₄ h₆
simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff]
suffices : val ∈ ys; tauto
erw [← Option.mem_def, List.mem_dlookup_iff] at h₃
simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃
rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩
apply (List.mem_zip h₃).2
simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map]
rwa [List.map_fst_zip _ _ (le_of_eq h₆)]
[GOAL]
case some
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x val : α
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
⊢ Option.getD (some val) x ∈ ys ↔ x ∈ xs
[PROOFSTEP]
have h₂ : ys.Nodup := h₁.nodup_iff.1 h₀
[GOAL]
case some
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x val : α
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
h₂ : List.Nodup ys
⊢ Option.getD (some val) x ∈ ys ↔ x ∈ xs
[PROOFSTEP]
replace h₁ : xs.length = ys.length := h₁.length_eq
[GOAL]
case some
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
x val : α
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
h₂ : List.Nodup ys
h₁ : List.length xs = List.length ys
⊢ Option.getD (some val) x ∈ ys ↔ x ∈ xs
[PROOFSTEP]
dsimp
[GOAL]
case some
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
x val : α
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
h₂ : List.Nodup ys
h₁ : List.length xs = List.length ys
⊢ val ∈ ys ↔ x ∈ xs
[PROOFSTEP]
induction xs generalizing ys with
| nil => contradiction
| cons x' xs xs_ih =>
cases' ys with y ys
· cases h₃
dsimp [List.dlookup] at h₃ ; split_ifs at h₃ with h
· rw [Option.some_inj] at h₃
subst x'; subst val
simp only [List.mem_cons, true_or_iff, eq_self_iff_true]
· cases' h₀ with _ _ h₀ h₅
cases' h₂ with _ _ h₂ h₄
have h₆ := Nat.succ.inj h₁
specialize xs_ih h₅ h₃ h₄ h₆
simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff]
suffices : val ∈ ys; tauto
erw [← Option.mem_def, List.mem_dlookup_iff] at h₃
simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃
rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩
apply (List.mem_zip h₃).2
simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map]
rwa [List.map_fst_zip _ _ (le_of_eq h₆)]
[GOAL]
case some
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
x val : α
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
h₂ : List.Nodup ys
h₁ : List.length xs = List.length ys
⊢ val ∈ ys ↔ x ∈ xs
[PROOFSTEP]
induction xs generalizing ys with
| nil => contradiction
| cons x' xs xs_ih =>
cases' ys with y ys
· cases h₃
dsimp [List.dlookup] at h₃ ; split_ifs at h₃ with h
· rw [Option.some_inj] at h₃
subst x'; subst val
simp only [List.mem_cons, true_or_iff, eq_self_iff_true]
· cases' h₀ with _ _ h₀ h₅
cases' h₂ with _ _ h₂ h₄
have h₆ := Nat.succ.inj h₁
specialize xs_ih h₅ h₃ h₄ h₆
simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff]
suffices : val ∈ ys; tauto
erw [← Option.mem_def, List.mem_dlookup_iff] at h₃
simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃
rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩
apply (List.mem_zip h₃).2
simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map]
rwa [List.map_fst_zip _ _ (le_of_eq h₆)]
[GOAL]
case some.nil
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val : α
ys : List α
h₀ : List.Nodup []
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip [] ys)) = some val
h₂ : List.Nodup ys
h₁ : List.length [] = List.length ys
⊢ val ∈ ys ↔ x ∈ []
[PROOFSTEP]
| nil => contradiction
[GOAL]
case some.nil
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val : α
ys : List α
h₀ : List.Nodup []
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip [] ys)) = some val
h₂ : List.Nodup ys
h₁ : List.length [] = List.length ys
⊢ val ∈ ys ↔ x ∈ []
[PROOFSTEP]
contradiction
[GOAL]
case some.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val →
List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs)
ys : List α
h₀ : List.Nodup (x' :: xs)
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip (x' :: xs) ys)) = some val
h₂ : List.Nodup ys
h₁ : List.length (x' :: xs) = List.length ys
⊢ val ∈ ys ↔ x ∈ x' :: xs
[PROOFSTEP]
| cons x' xs xs_ih =>
cases' ys with y ys
· cases h₃
dsimp [List.dlookup] at h₃ ; split_ifs at h₃ with h
· rw [Option.some_inj] at h₃
subst x'; subst val
simp only [List.mem_cons, true_or_iff, eq_self_iff_true]
· cases' h₀ with _ _ h₀ h₅
cases' h₂ with _ _ h₂ h₄
have h₆ := Nat.succ.inj h₁
specialize xs_ih h₅ h₃ h₄ h₆
simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff]
suffices : val ∈ ys; tauto
erw [← Option.mem_def, List.mem_dlookup_iff] at h₃
simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃
rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩
apply (List.mem_zip h₃).2
simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map]
rwa [List.map_fst_zip _ _ (le_of_eq h₆)]
[GOAL]
case some.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val →
List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs)
ys : List α
h₀ : List.Nodup (x' :: xs)
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip (x' :: xs) ys)) = some val
h₂ : List.Nodup ys
h₁ : List.length (x' :: xs) = List.length ys
⊢ val ∈ ys ↔ x ∈ x' :: xs
[PROOFSTEP]
cases' ys with y ys
[GOAL]
case some.cons.nil
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val →
List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs)
h₀ : List.Nodup (x' :: xs)
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip (x' :: xs) [])) = some val
h₂ : List.Nodup []
h₁ : List.length (x' :: xs) = List.length []
⊢ val ∈ [] ↔ x ∈ x' :: xs
[PROOFSTEP]
cases h₃
[GOAL]
case some.cons.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val →
List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs)
h₀ : List.Nodup (x' :: xs)
y : α
ys : List α
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip (x' :: xs) (y :: ys))) = some val
h₂ : List.Nodup (y :: ys)
h₁ : List.length (x' :: xs) = List.length (y :: ys)
⊢ val ∈ y :: ys ↔ x ∈ x' :: xs
[PROOFSTEP]
dsimp [List.dlookup] at h₃
[GOAL]
case some.cons.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val →
List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs)
h₀ : List.Nodup (x' :: xs)
y : α
ys : List α
h₃ : (if h : x' = x then some (h ▸ y) else List.dlookup x (List.map Prod.toSigma (List.zip xs ys))) = some val
h₂ : List.Nodup (y :: ys)
h₁ : List.length (x' :: xs) = List.length (y :: ys)
⊢ val ∈ y :: ys ↔ x ∈ x' :: xs
[PROOFSTEP]
split_ifs at h₃ with h
[GOAL]
case pos
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val →
List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs)
h₀ : List.Nodup (x' :: xs)
y : α
ys : List α
h₂ : List.Nodup (y :: ys)
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : x' = x
h₃ : some (h ▸ y) = some val
⊢ val ∈ y :: ys ↔ x ∈ x' :: xs
[PROOFSTEP]
rw [Option.some_inj] at h₃
[GOAL]
case pos
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val →
List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs)
h₀ : List.Nodup (x' :: xs)
y : α
ys : List α
h₂ : List.Nodup (y :: ys)
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : x' = x
h₃ : h ▸ y = val
⊢ val ∈ y :: ys ↔ x ∈ x' :: xs
[PROOFSTEP]
subst x'
[GOAL]
case pos
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val →
List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs)
y : α
ys : List α
h₂ : List.Nodup (y :: ys)
h₀ : List.Nodup (x :: xs)
h₁ : List.length (x :: xs) = List.length (y :: ys)
h₃ : (_ : x = x) ▸ y = val
⊢ val ∈ y :: ys ↔ x ∈ x :: xs
[PROOFSTEP]
subst val
[GOAL]
case pos
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x : α
xs : List α
y : α
ys : List α
h₂ : List.Nodup (y :: ys)
h₀ : List.Nodup (x :: xs)
h₁ : List.length (x :: xs) = List.length (y :: ys)
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some ((_ : x = x) ▸ y) →
List.Nodup ys → List.length xs = List.length ys → ((_ : x = x) ▸ y ∈ ys ↔ x ∈ xs)
⊢ (_ : x = x) ▸ y ∈ y :: ys ↔ x ∈ x :: xs
[PROOFSTEP]
simp only [List.mem_cons, true_or_iff, eq_self_iff_true]
[GOAL]
case neg
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val →
List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs)
h₀ : List.Nodup (x' :: xs)
y : α
ys : List α
h₂ : List.Nodup (y :: ys)
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
⊢ val ∈ y :: ys ↔ x ∈ x' :: xs
[PROOFSTEP]
cases' h₀ with _ _ h₀ h₅
[GOAL]
case neg.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val →
List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs)
y : α
ys : List α
h₂ : List.Nodup (y :: ys)
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
⊢ val ∈ y :: ys ↔ x ∈ x' :: xs
[PROOFSTEP]
cases' h₂ with _ _ h₂ h₄
[GOAL]
case neg.cons.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val →
List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs)
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
⊢ val ∈ y :: ys ↔ x ∈ x' :: xs
[PROOFSTEP]
have h₆ := Nat.succ.inj h₁
[GOAL]
case neg.cons.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
xs_ih :
∀ {ys : List α},
List.Nodup xs →
List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val →
List.Nodup ys → List.length xs = List.length ys → (val ∈ ys ↔ x ∈ xs)
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
⊢ val ∈ y :: ys ↔ x ∈ x' :: xs
[PROOFSTEP]
specialize xs_ih h₅ h₃ h₄ h₆
[GOAL]
case neg.cons.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
xs_ih : val ∈ ys ↔ x ∈ xs
⊢ val ∈ y :: ys ↔ x ∈ x' :: xs
[PROOFSTEP]
simp only [Ne.symm h, xs_ih, List.mem_cons, false_or_iff]
[GOAL]
case neg.cons.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
xs_ih : val ∈ ys ↔ x ∈ xs
⊢ val = y ∨ x ∈ xs ↔ x ∈ xs
[PROOFSTEP]
suffices : val ∈ ys
[GOAL]
case neg.cons.cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
xs_ih : val ∈ ys ↔ x ∈ xs
this : val ∈ ys
⊢ val = y ∨ x ∈ xs ↔ x ∈ xs
case this
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
xs_ih : val ∈ ys ↔ x ∈ xs
⊢ val ∈ ys
[PROOFSTEP]
tauto
[GOAL]
case this
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : List.dlookup x (List.map Prod.toSigma (List.zip xs ys)) = some val
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
xs_ih : val ∈ ys ↔ x ∈ xs
⊢ val ∈ ys
[PROOFSTEP]
erw [← Option.mem_def, List.mem_dlookup_iff] at h₃
[GOAL]
case this
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : { fst := x, snd := val } ∈ List.map Prod.toSigma (List.zip xs ys)
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
xs_ih : val ∈ ys ↔ x ∈ xs
⊢ val ∈ ys
case this
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : val ∈ List.dlookup x (List.map Prod.toSigma (List.zip xs ys))
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
xs_ih : val ∈ ys ↔ x ∈ xs
⊢ List.NodupKeys (List.map Prod.toSigma (List.zip xs ys))
[PROOFSTEP]
simp only [Prod.toSigma, List.mem_map, heq_iff_eq, Prod.exists] at h₃
[GOAL]
case this
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
xs_ih : val ∈ ys ↔ x ∈ xs
h₃ : ∃ a b, (a, b) ∈ List.zip xs ys ∧ { fst := a, snd := b } = { fst := x, snd := val }
⊢ val ∈ ys
case this
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : val ∈ List.dlookup x (List.map Prod.toSigma (List.zip xs ys))
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
xs_ih : val ∈ ys ↔ x ∈ xs
⊢ List.NodupKeys (List.map Prod.toSigma (List.zip xs ys))
[PROOFSTEP]
rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩
[GOAL]
case this.intro.intro.intro.refl
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
xs_ih : val ∈ ys ↔ x ∈ xs
h₃ : (x, val) ∈ List.zip xs ys
⊢ val ∈ ys
case this
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : val ∈ List.dlookup x (List.map Prod.toSigma (List.zip xs ys))
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
xs_ih : val ∈ ys ↔ x ∈ xs
⊢ List.NodupKeys (List.map Prod.toSigma (List.zip xs ys))
[PROOFSTEP]
apply (List.mem_zip h₃).2
[GOAL]
case this
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : val ∈ List.dlookup x (List.map Prod.toSigma (List.zip xs ys))
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
xs_ih : val ∈ ys ↔ x ∈ xs
⊢ List.NodupKeys (List.map Prod.toSigma (List.zip xs ys))
[PROOFSTEP]
simp only [List.NodupKeys, List.keys, comp, Prod.fst_toSigma, List.map_map]
[GOAL]
case this
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
x val x' : α
xs : List α
y : α
ys : List α
h₁ : List.length (x' :: xs) = List.length (y :: ys)
h : ¬x' = x
h₃ : val ∈ List.dlookup x (List.map Prod.toSigma (List.zip xs ys))
h₅ : List.Pairwise (fun x x_1 => x ≠ x_1) xs
h₀ : ∀ (a' : α), a' ∈ xs → x' ≠ a'
h₄ : List.Pairwise (fun x x_1 => x ≠ x_1) ys
h₂ : ∀ (a' : α), a' ∈ ys → y ≠ a'
h₆ : List.length xs = List.length ys
xs_ih : val ∈ ys ↔ x ∈ xs
⊢ List.Nodup (List.map (fun x => x.fst) (List.zip xs ys))
[PROOFSTEP]
rwa [List.map_fst_zip _ _ (le_of_eq h₆)]
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
x : α
⊢ ¬x ∈ xs → applyId (List.zip xs ys) x = x
[PROOFSTEP]
intro h
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
x : α
h : ¬x ∈ xs
⊢ applyId (List.zip xs ys) x = x
[PROOFSTEP]
dsimp [List.applyId]
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
x : α
h : ¬x ∈ xs
⊢ Option.getD (List.dlookup x (List.map Prod.toSigma (List.zip xs ys))) x = x
[PROOFSTEP]
rw [List.dlookup_eq_none.2]
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
x : α
h : ¬x ∈ xs
⊢ Option.getD none x = x
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
x : α
h : ¬x ∈ xs
⊢ ¬x ∈ List.keys (List.map Prod.toSigma (List.zip xs ys))
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
x : α
h : ¬x ∈ xs
⊢ ¬x ∈ List.keys (List.map Prod.toSigma (List.zip xs ys))
[PROOFSTEP]
simp only [List.keys, not_exists, Prod.toSigma, exists_and_right, exists_eq_right, List.mem_map, Function.comp_apply,
List.map_map, Prod.exists]
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
x : α
h : ¬x ∈ xs
⊢ ∀ (x_1 : α), ¬(x, x_1) ∈ List.zip xs ys
[PROOFSTEP]
intro y hy
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
x : α
h : ¬x ∈ xs
y : α
hy : (x, y) ∈ List.zip xs ys
⊢ False
[PROOFSTEP]
exact h (List.mem_zip hy).1
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
⊢ Injective (applyId (List.zip xs ys))
[PROOFSTEP]
intro x y h
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
⊢ x = y
[PROOFSTEP]
by_cases hx : x ∈ xs
[GOAL]
case pos
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
hx : x ∈ xs
⊢ x = y
[PROOFSTEP]
by_cases hy : y ∈ xs
[GOAL]
case neg
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
hx : ¬x ∈ xs
⊢ x = y
[PROOFSTEP]
by_cases hy : y ∈ xs
[GOAL]
case pos
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
hx : x ∈ xs
hy : y ∈ xs
⊢ x = y
[PROOFSTEP]
rw [List.mem_iff_get?] at hx hy
[GOAL]
case pos
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
hx : ∃ n, List.get? xs n = some x
hy : ∃ n, List.get? xs n = some y
⊢ x = y
[PROOFSTEP]
cases' hx with i hx
[GOAL]
case pos.intro
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
hy : ∃ n, List.get? xs n = some y
i : ℕ
hx : List.get? xs i = some x
⊢ x = y
[PROOFSTEP]
cases' hy with j hy
[GOAL]
case pos.intro.intro
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
i : ℕ
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
⊢ x = y
[PROOFSTEP]
suffices some x = some y by injection this
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
i : ℕ
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
this : some x = some y
⊢ x = y
[PROOFSTEP]
injection this
[GOAL]
case pos.intro.intro
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
i : ℕ
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
⊢ some x = some y
[PROOFSTEP]
have h₂ := h₁.length_eq
[GOAL]
case pos.intro.intro
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
i : ℕ
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
⊢ some x = some y
[PROOFSTEP]
rw [List.applyId_zip_eq h₀ h₂ _ _ _ hx] at h
[GOAL]
case pos.intro.intro
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
i : ℕ
h : List.get? ys i = some (applyId (List.zip xs ys) y)
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
⊢ some x = some y
[PROOFSTEP]
rw [← hx, ← hy]
[GOAL]
case pos.intro.intro
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
i : ℕ
h : List.get? ys i = some (applyId (List.zip xs ys) y)
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
⊢ List.get? xs i = List.get? xs j
[PROOFSTEP]
congr
[GOAL]
case pos.intro.intro.e_a
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
i : ℕ
h : List.get? ys i = some (applyId (List.zip xs ys) y)
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
⊢ i = j
[PROOFSTEP]
apply List.get?_injective _ (h₁.nodup_iff.1 h₀)
[GOAL]
case pos.intro.intro.e_a
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
i : ℕ
h : List.get? ys i = some (applyId (List.zip xs ys) y)
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
⊢ List.get? ys i = List.get? ys j
[PROOFSTEP]
symm
[GOAL]
case pos.intro.intro.e_a
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
i : ℕ
h : List.get? ys i = some (applyId (List.zip xs ys) y)
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
⊢ List.get? ys j = List.get? ys i
[PROOFSTEP]
rw [h]
[GOAL]
case pos.intro.intro.e_a
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
i : ℕ
h : List.get? ys i = some (applyId (List.zip xs ys) y)
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
⊢ List.get? ys j = some (applyId (List.zip xs ys) y)
[PROOFSTEP]
rw [← List.applyId_zip_eq]
[GOAL]
case pos.intro.intro.e_a.h₀
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
i : ℕ
h : List.get? ys i = some (applyId (List.zip xs ys) y)
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
⊢ List.Nodup xs
[PROOFSTEP]
assumption
[GOAL]
case pos.intro.intro.e_a.h₁
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
i : ℕ
h : List.get? ys i = some (applyId (List.zip xs ys) y)
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
⊢ List.length xs = List.length ys
[PROOFSTEP]
assumption
[GOAL]
case pos.intro.intro.e_a.h₂
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
i : ℕ
h : List.get? ys i = some (applyId (List.zip xs ys) y)
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
⊢ List.get? xs j = some y
[PROOFSTEP]
assumption
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
i : ℕ
h : List.get? ys i = some (applyId (List.zip xs ys) y)
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
⊢ i < List.length ys
[PROOFSTEP]
rw [← h₁.length_eq]
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
i : ℕ
h : List.get? ys i = some (applyId (List.zip xs ys) y)
hx : List.get? xs i = some x
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
⊢ i < List.length xs
[PROOFSTEP]
rw [List.get?_eq_some] at hx
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
i : ℕ
h : List.get? ys i = some (applyId (List.zip xs ys) y)
hx : ∃ h, List.get xs { val := i, isLt := h } = x
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
⊢ i < List.length xs
[PROOFSTEP]
cases' hx with hx hx'
[GOAL]
case intro
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
i : ℕ
h : List.get? ys i = some (applyId (List.zip xs ys) y)
j : ℕ
hy : List.get? xs j = some y
h₂ : List.length xs = List.length ys
hx : i < List.length xs
hx' : List.get xs { val := i, isLt := hx } = x
⊢ i < List.length xs
[PROOFSTEP]
exact hx
[GOAL]
case neg
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
hx : x ∈ xs
hy : ¬y ∈ xs
⊢ x = y
[PROOFSTEP]
rw [← applyId_mem_iff h₀ h₁] at hx hy
[GOAL]
case neg
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
hx : applyId (List.zip xs ys) x ∈ ys
hy : ¬applyId (List.zip xs ys) y ∈ ys
⊢ x = y
[PROOFSTEP]
rw [h] at hx
[GOAL]
case neg
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
hx : applyId (List.zip xs ys) y ∈ ys
hy : ¬applyId (List.zip xs ys) y ∈ ys
⊢ x = y
[PROOFSTEP]
contradiction
[GOAL]
case pos
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
hx : ¬x ∈ xs
hy : y ∈ xs
⊢ x = y
[PROOFSTEP]
rw [← applyId_mem_iff h₀ h₁] at hx hy
[GOAL]
case pos
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
hx : ¬applyId (List.zip xs ys) x ∈ ys
hy : applyId (List.zip xs ys) y ∈ ys
⊢ x = y
[PROOFSTEP]
rw [h] at hx
[GOAL]
case pos
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
hx : ¬applyId (List.zip xs ys) y ∈ ys
hy : applyId (List.zip xs ys) y ∈ ys
⊢ x = y
[PROOFSTEP]
contradiction
[GOAL]
case neg
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
hx : ¬x ∈ xs
hy : ¬y ∈ xs
⊢ x = y
[PROOFSTEP]
rwa [List.applyId_eq_self, List.applyId_eq_self] at h
[GOAL]
case neg.a
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : x = applyId (List.zip xs ys) y
hx : ¬x ∈ xs
hy : ¬y ∈ xs
⊢ ¬y ∈ xs
[PROOFSTEP]
assumption
[GOAL]
case neg.a
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs ys : List α
h₀ : List.Nodup xs
h₁ : xs ~ ys
x y : α
h : applyId (List.zip xs ys) x = applyId (List.zip xs ys) y
hx : ¬x ∈ xs
hy : ¬y ∈ xs
⊢ ¬x ∈ xs
[PROOFSTEP]
assumption
[GOAL]
α : Type u
β : Type v
γ : Sort w
x✝ : ℕ
n : ℕ := x✝
h : 0 < n
⊢ 1 < 2
[PROOFSTEP]
decide
[GOAL]
α✝ : Type u
β : Type v
γ : Sort w
α : Type
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
h₀✝ : List.map Sigma.fst xs ~ List.map Sigma.snd xs
h₁✝ : List.Nodup (List.map Sigma.snd xs)
xs' ys' : List α
h₀ : xs' ~ ys'
h₁ : List.Nodup ys'
h₃ : List.length xs' ≤ List.length ys'
h₄ : List.length ys' ≤ List.length xs'
⊢ List.map Sigma.fst (List.map Prod.toSigma (List.zip xs' ys')) ~
List.map Sigma.snd (List.map Prod.toSigma (List.zip xs' ys'))
[PROOFSTEP]
simp only [comp, List.map_fst_zip, List.map_snd_zip, *, Prod.fst_toSigma, Prod.snd_toSigma, List.map_map]
[GOAL]
α✝ : Type u
β : Type v
γ : Sort w
α : Type
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
h₀✝ : List.map Sigma.fst xs ~ List.map Sigma.snd xs
h₁✝ : List.Nodup (List.map Sigma.snd xs)
xs' ys' : List α
h₀ : xs' ~ ys'
h₁ : List.Nodup ys'
h₃ : List.length xs' ≤ List.length ys'
h₄ : List.length ys' ≤ List.length xs'
⊢ List.Nodup (List.map Sigma.snd (List.map Prod.toSigma (List.zip xs' ys')))
[PROOFSTEP]
simp only [comp, List.map_snd_zip, *, Prod.snd_toSigma, List.map_map]
[GOAL]
α : Type u
β : Type v
γ : Sort w
xs ys : List α
h : xs ~ ys
h' : List.Nodup ys
h₀ : List.length xs ≤ List.length ys
h₁ : List.length ys ≤ List.length xs
⊢ List.map Sigma.fst (List.toFinmap' (List.zip xs ys)) ~ List.map Sigma.snd (List.toFinmap' (List.zip xs ys))
[PROOFSTEP]
simp only [List.toFinmap', comp, List.map_fst_zip, List.map_snd_zip, *, Prod.fst_toSigma, Prod.snd_toSigma,
List.map_map]
[GOAL]
α : Type u
β : Type v
γ : Sort w
xs ys : List α
h : xs ~ ys
h' : List.Nodup ys
h₀ : List.length xs ≤ List.length ys
h₁ : List.length ys ≤ List.length xs
⊢ List.Nodup (List.map Sigma.snd (List.toFinmap' (List.zip xs ys)))
[PROOFSTEP]
simp only [List.toFinmap', comp, List.map_snd_zip, *, Prod.snd_toSigma, List.map_map]
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
f : InjectiveFunction α
⊢ Injective (apply f)
[PROOFSTEP]
cases' f with xs hperm hnodup
[GOAL]
case mapToSelf
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs
hnodup : List.Nodup (List.map Sigma.snd xs)
⊢ Injective (apply (mapToSelf xs hperm hnodup))
[PROOFSTEP]
generalize h₀ : List.map Sigma.fst xs = xs₀
[GOAL]
case mapToSelf
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs
hnodup : List.Nodup (List.map Sigma.snd xs)
xs₀ : List α
h₀ : List.map Sigma.fst xs = xs₀
⊢ Injective (apply (mapToSelf xs hperm hnodup))
[PROOFSTEP]
generalize h₁ : xs.map (@id ((Σ _ : α, α) → α) <| @Sigma.snd α fun _ : α => α) = xs₁
[GOAL]
case mapToSelf
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs
hnodup : List.Nodup (List.map Sigma.snd xs)
xs₀ : List α
h₀ : List.map Sigma.fst xs = xs₀
xs₁ : List α
h₁ : List.map (id Sigma.snd) xs = xs₁
⊢ Injective (apply (mapToSelf xs hperm hnodup))
[PROOFSTEP]
dsimp [id] at h₁
[GOAL]
case mapToSelf
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs
hnodup : List.Nodup (List.map Sigma.snd xs)
xs₀ : List α
h₀ : List.map Sigma.fst xs = xs₀
xs₁ : List α
h₁ : List.map Sigma.snd xs = xs₁
⊢ Injective (apply (mapToSelf xs hperm hnodup))
[PROOFSTEP]
have hxs : xs = TotalFunction.List.toFinmap' (xs₀.zip xs₁) :=
by
rw [← h₀, ← h₁, List.toFinmap']; clear h₀ h₁ xs₀ xs₁ hperm hnodup
induction xs
case nil => simp only [List.zip_nil_right, List.map_nil]
case cons xs_hd xs_tl
xs_ih =>
simp only [true_and_iff, Prod.toSigma, eq_self_iff_true, Sigma.eta, List.zip_cons_cons, List.map, List.cons_inj]
exact xs_ih
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs
hnodup : List.Nodup (List.map Sigma.snd xs)
xs₀ : List α
h₀ : List.map Sigma.fst xs = xs₀
xs₁ : List α
h₁ : List.map Sigma.snd xs = xs₁
⊢ xs = List.toFinmap' (List.zip xs₀ xs₁)
[PROOFSTEP]
rw [← h₀, ← h₁, List.toFinmap']
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs
hnodup : List.Nodup (List.map Sigma.snd xs)
xs₀ : List α
h₀ : List.map Sigma.fst xs = xs₀
xs₁ : List α
h₁ : List.map Sigma.snd xs = xs₁
⊢ xs = List.map Prod.toSigma (List.zip (List.map Sigma.fst xs) (List.map Sigma.snd xs))
[PROOFSTEP]
clear h₀ h₁ xs₀ xs₁ hperm hnodup
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
⊢ xs = List.map Prod.toSigma (List.zip (List.map Sigma.fst xs) (List.map Sigma.snd xs))
[PROOFSTEP]
induction xs
[GOAL]
case nil
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
⊢ [] = List.map Prod.toSigma (List.zip (List.map Sigma.fst []) (List.map Sigma.snd []))
case cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
head✝ : (_ : α) × α
tail✝ : List ((_ : α) × α)
tail_ih✝ : tail✝ = List.map Prod.toSigma (List.zip (List.map Sigma.fst tail✝) (List.map Sigma.snd tail✝))
⊢ head✝ :: tail✝ =
List.map Prod.toSigma (List.zip (List.map Sigma.fst (head✝ :: tail✝)) (List.map Sigma.snd (head✝ :: tail✝)))
[PROOFSTEP]
case nil => simp only [List.zip_nil_right, List.map_nil]
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
⊢ [] = List.map Prod.toSigma (List.zip (List.map Sigma.fst []) (List.map Sigma.snd []))
[PROOFSTEP]
case nil => simp only [List.zip_nil_right, List.map_nil]
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
⊢ [] = List.map Prod.toSigma (List.zip (List.map Sigma.fst []) (List.map Sigma.snd []))
[PROOFSTEP]
simp only [List.zip_nil_right, List.map_nil]
[GOAL]
case cons
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
head✝ : (_ : α) × α
tail✝ : List ((_ : α) × α)
tail_ih✝ : tail✝ = List.map Prod.toSigma (List.zip (List.map Sigma.fst tail✝) (List.map Sigma.snd tail✝))
⊢ head✝ :: tail✝ =
List.map Prod.toSigma (List.zip (List.map Sigma.fst (head✝ :: tail✝)) (List.map Sigma.snd (head✝ :: tail✝)))
[PROOFSTEP]
case cons xs_hd xs_tl
xs_ih =>
simp only [true_and_iff, Prod.toSigma, eq_self_iff_true, Sigma.eta, List.zip_cons_cons, List.map, List.cons_inj]
exact xs_ih
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs_hd : (_ : α) × α
xs_tl : List ((_ : α) × α)
xs_ih : xs_tl = List.map Prod.toSigma (List.zip (List.map Sigma.fst xs_tl) (List.map Sigma.snd xs_tl))
⊢ xs_hd :: xs_tl =
List.map Prod.toSigma (List.zip (List.map Sigma.fst (xs_hd :: xs_tl)) (List.map Sigma.snd (xs_hd :: xs_tl)))
[PROOFSTEP]
case cons xs_hd xs_tl
xs_ih =>
simp only [true_and_iff, Prod.toSigma, eq_self_iff_true, Sigma.eta, List.zip_cons_cons, List.map, List.cons_inj]
exact xs_ih
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs_hd : (_ : α) × α
xs_tl : List ((_ : α) × α)
xs_ih : xs_tl = List.map Prod.toSigma (List.zip (List.map Sigma.fst xs_tl) (List.map Sigma.snd xs_tl))
⊢ xs_hd :: xs_tl =
List.map Prod.toSigma (List.zip (List.map Sigma.fst (xs_hd :: xs_tl)) (List.map Sigma.snd (xs_hd :: xs_tl)))
[PROOFSTEP]
simp only [true_and_iff, Prod.toSigma, eq_self_iff_true, Sigma.eta, List.zip_cons_cons, List.map, List.cons_inj]
[GOAL]
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs_hd : (_ : α) × α
xs_tl : List ((_ : α) × α)
xs_ih : xs_tl = List.map Prod.toSigma (List.zip (List.map Sigma.fst xs_tl) (List.map Sigma.snd xs_tl))
⊢ xs_tl =
List.map (fun p => { fst := p.fst, snd := p.snd })
(List.zipWith Prod.mk (List.map Sigma.fst xs_tl) (List.map Sigma.snd xs_tl))
[PROOFSTEP]
exact xs_ih
[GOAL]
case mapToSelf
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs
hnodup : List.Nodup (List.map Sigma.snd xs)
xs₀ : List α
h₀ : List.map Sigma.fst xs = xs₀
xs₁ : List α
h₁ : List.map Sigma.snd xs = xs₁
hxs : xs = List.toFinmap' (List.zip xs₀ xs₁)
⊢ Injective (apply (mapToSelf xs hperm hnodup))
[PROOFSTEP]
revert hperm hnodup
[GOAL]
case mapToSelf
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
xs₀ : List α
h₀ : List.map Sigma.fst xs = xs₀
xs₁ : List α
h₁ : List.map Sigma.snd xs = xs₁
hxs : xs = List.toFinmap' (List.zip xs₀ xs₁)
⊢ ∀ (hperm : List.map Sigma.fst xs ~ List.map Sigma.snd xs) (hnodup : List.Nodup (List.map Sigma.snd xs)),
Injective (apply (mapToSelf xs hperm hnodup))
[PROOFSTEP]
rw [hxs]
[GOAL]
case mapToSelf
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
xs₀ : List α
h₀ : List.map Sigma.fst xs = xs₀
xs₁ : List α
h₁ : List.map Sigma.snd xs = xs₁
hxs : xs = List.toFinmap' (List.zip xs₀ xs₁)
⊢ ∀
(hperm :
List.map Sigma.fst (List.toFinmap' (List.zip xs₀ xs₁)) ~ List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁)))
(hnodup : List.Nodup (List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁)))),
Injective (apply (mapToSelf (List.toFinmap' (List.zip xs₀ xs₁)) hperm hnodup))
[PROOFSTEP]
intros hperm hnodup
[GOAL]
case mapToSelf
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
xs₀ : List α
h₀ : List.map Sigma.fst xs = xs₀
xs₁ : List α
h₁ : List.map Sigma.snd xs = xs₁
hxs : xs = List.toFinmap' (List.zip xs₀ xs₁)
hperm : List.map Sigma.fst (List.toFinmap' (List.zip xs₀ xs₁)) ~ List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁))
hnodup : List.Nodup (List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁)))
⊢ Injective (apply (mapToSelf (List.toFinmap' (List.zip xs₀ xs₁)) hperm hnodup))
[PROOFSTEP]
apply InjectiveFunction.applyId_injective
[GOAL]
case mapToSelf.h₀
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
xs₀ : List α
h₀ : List.map Sigma.fst xs = xs₀
xs₁ : List α
h₁ : List.map Sigma.snd xs = xs₁
hxs : xs = List.toFinmap' (List.zip xs₀ xs₁)
hperm : List.map Sigma.fst (List.toFinmap' (List.zip xs₀ xs₁)) ~ List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁))
hnodup : List.Nodup (List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁)))
⊢ List.Nodup xs₀
[PROOFSTEP]
rwa [← h₀, hxs, hperm.nodup_iff]
[GOAL]
case mapToSelf.h₁
α : Type u
β : Type v
γ : Sort w
inst✝ : DecidableEq α
xs : List ((_ : α) × α)
xs₀ : List α
h₀ : List.map Sigma.fst xs = xs₀
xs₁ : List α
h₁ : List.map Sigma.snd xs = xs₁
hxs : xs = List.toFinmap' (List.zip xs₀ xs₁)
hperm : List.map Sigma.fst (List.toFinmap' (List.zip xs₀ xs₁)) ~ List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁))
hnodup : List.Nodup (List.map Sigma.snd (List.toFinmap' (List.zip xs₀ xs₁)))
⊢ xs₀ ~ xs₁
[PROOFSTEP]
rwa [← hxs, h₀, h₁] at hperm
| {"mathlib_filename": "Mathlib.Testing.SlimCheck.Functions", "llama_tokens": 31510} |
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ @UniversallyClosed = universally (topologically @IsClosedMap)
[PROOFSTEP]
ext X Y f
[GOAL]
case h.h.h.a
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
⊢ UniversallyClosed f ↔ universally (topologically @IsClosedMap) f
[PROOFSTEP]
rw [UniversallyClosed_iff]
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ StableUnderComposition @UniversallyClosed
[PROOFSTEP]
rw [universallyClosed_eq]
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ StableUnderComposition (universally (topologically @IsClosedMap))
[PROOFSTEP]
exact StableUnderComposition.universally (fun X Y Z f g hf hg => @IsClosedMap.comp _ _ _ _ _ _ g.1.base f.1.base hg hf)
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ PropertyIsLocalAtTarget @UniversallyClosed
[PROOFSTEP]
rw [universallyClosed_eq]
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ PropertyIsLocalAtTarget (universally (topologically @IsClosedMap))
[PROOFSTEP]
apply universallyIsLocalAtTargetOfMorphismRestrict
[GOAL]
case hP₁
X Y : Scheme
f : X ⟶ Y
⊢ RespectsIso (topologically @IsClosedMap)
[PROOFSTEP]
exact
StableUnderComposition.respectsIso (fun X Y Z f g hf hg => @IsClosedMap.comp _ _ _ _ _ _ g.1.base f.1.base hg hf)
(fun f => (TopCat.homeoOfIso (Scheme.forgetToTop.mapIso f)).isClosedMap)
[GOAL]
case hP₂
X Y : Scheme
f : X ⟶ Y
⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) {ι : Type u_1} (U : ι → Opens ↑↑Y.toPresheafedSpace),
iSup U = ⊤ → (∀ (i : ι), topologically (@IsClosedMap) (f ∣_ U i)) → topologically (@IsClosedMap) f
[PROOFSTEP]
intro X Y f ι U hU H
[GOAL]
case hP₂
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
ι : Type u_1
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), topologically (@IsClosedMap) (f ∣_ U i)
⊢ topologically (@IsClosedMap) f
[PROOFSTEP]
simp_rw [topologically, morphismRestrict_base] at H
[GOAL]
case hP₂
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
ι : Type u_1
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), IsClosedMap (Set.restrictPreimage (U i).carrier ↑f.val.base)
⊢ topologically (@IsClosedMap) f
[PROOFSTEP]
exact (isClosedMap_iff_isClosedMap_of_iSup_eq_top hU).mpr H
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.Morphisms.UniversallyClosed", "llama_tokens": 991} |
{"mathlib_filename": "Mathlib.Tactic", "llama_tokens": 0} |
|
[GOAL]
X : Scheme
⊢ Continuous fun x => PEmpty.elim x
[PROOFSTEP]
continuity
[GOAL]
X : Scheme
f g : ∅ ⟶ X
⊢ f.val.base = g.val.base
[PROOFSTEP]
ext a
[GOAL]
case w
X : Scheme
f g : ∅ ⟶ X
a : (forget TopCat).obj ↑∅.toPresheafedSpace
⊢ ↑f.val.base a = ↑g.val.base a
[PROOFSTEP]
exact PEmpty.elim a
[GOAL]
X : Scheme
f g : ∅ ⟶ X
a : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
⊢ NatTrans.app (f.val.c ≫ whiskerRight (eqToHom (_ : (Opens.map f.val.base).op = (Opens.map g.val.base).op)) ∅.presheaf)
a =
NatTrans.app g.val.c a
[PROOFSTEP]
aesop_cat
[GOAL]
⊢ IsEmpty PEmpty
[PROOFSTEP]
infer_instance
[GOAL]
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑X.toPresheafedSpace
⊢ IsOpenImmersion f
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) IsOpenImmersion.of_stalk_iso
[GOAL]
case hf
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑X.toPresheafedSpace
⊢ OpenEmbedding ↑f.val.base
[PROOFSTEP]
apply openEmbedding_of_continuous_injective_open
[GOAL]
case hf.h₁
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑X.toPresheafedSpace
⊢ Continuous ↑f.val.base
[PROOFSTEP]
continuity
[GOAL]
case hf.h₂
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑X.toPresheafedSpace
⊢ Function.Injective ↑f.val.base
[PROOFSTEP]
rintro (i : X.carrier)
[GOAL]
case hf.h₂
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑X.toPresheafedSpace
i : ↑↑X.toPresheafedSpace
⊢ ∀ ⦃a₂ : (forget TopCat).obj ↑X.toPresheafedSpace⦄, ↑f.val.base i = ↑f.val.base a₂ → i = a₂
[PROOFSTEP]
exact isEmptyElim i
[GOAL]
case hf.h₃
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑X.toPresheafedSpace
⊢ IsOpenMap ↑f.val.base
[PROOFSTEP]
intro U _
[GOAL]
case hf.h₃
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑X.toPresheafedSpace
U : Set ((forget TopCat).obj ↑X.toPresheafedSpace)
a✝ : IsOpen U
⊢ IsOpen (↑f.val.base '' U)
[PROOFSTEP]
convert isOpen_empty (α := Y)
[GOAL]
case h.e'_3.h
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑X.toPresheafedSpace
U : Set ((forget TopCat).obj ↑X.toPresheafedSpace)
a✝ : IsOpen U
e_1✝ : (forget TopCat).obj ↑Y.toPresheafedSpace = ↑↑Y.toPresheafedSpace
⊢ ↑f.val.base '' U = ∅
[PROOFSTEP]
ext
[GOAL]
case h.e'_3.h.h
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑X.toPresheafedSpace
U : Set ((forget TopCat).obj ↑X.toPresheafedSpace)
a✝ : IsOpen U
e_1✝ : (forget TopCat).obj ↑Y.toPresheafedSpace = ↑↑Y.toPresheafedSpace
x✝ : (forget TopCat).obj ↑Y.toPresheafedSpace
⊢ x✝ ∈ ↑f.val.base '' U ↔ x✝ ∈ ∅
[PROOFSTEP]
rw [Set.mem_empty_iff_false, iff_false_iff]
[GOAL]
case h.e'_3.h.h
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑X.toPresheafedSpace
U : Set ((forget TopCat).obj ↑X.toPresheafedSpace)
a✝ : IsOpen U
e_1✝ : (forget TopCat).obj ↑Y.toPresheafedSpace = ↑↑Y.toPresheafedSpace
x✝ : (forget TopCat).obj ↑Y.toPresheafedSpace
⊢ ¬x✝ ∈ ↑f.val.base '' U
[PROOFSTEP]
exact fun x => isEmptyElim (show X.carrier from x.choose)
[GOAL]
case inst
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑X.toPresheafedSpace
⊢ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x)
[PROOFSTEP]
rintro (i : X.carrier)
[GOAL]
case inst
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑X.toPresheafedSpace
i : ↑↑X.toPresheafedSpace
⊢ IsIso (PresheafedSpace.stalkMap f.val i)
[PROOFSTEP]
exact isEmptyElim i
[GOAL]
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑Y.toPresheafedSpace
⊢ IsIso f
[PROOFSTEP]
haveI : IsEmpty X.carrier := ⟨fun x => isEmptyElim (show Y.carrier from f.1.base x)⟩
[GOAL]
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑Y.toPresheafedSpace
this : IsEmpty ↑↑X.toPresheafedSpace
⊢ IsIso f
[PROOFSTEP]
have : Epi f.1.base
[GOAL]
case this
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑Y.toPresheafedSpace
this : IsEmpty ↑↑X.toPresheafedSpace
⊢ Epi f.val.base
[PROOFSTEP]
rw [TopCat.epi_iff_surjective]
[GOAL]
case this
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑Y.toPresheafedSpace
this : IsEmpty ↑↑X.toPresheafedSpace
⊢ Function.Surjective ↑f.val.base
[PROOFSTEP]
rintro (x : Y.carrier)
[GOAL]
case this
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑Y.toPresheafedSpace
this : IsEmpty ↑↑X.toPresheafedSpace
x : ↑↑Y.toPresheafedSpace
⊢ ∃ a, ↑f.val.base a = x
[PROOFSTEP]
exact isEmptyElim x
[GOAL]
X Y : Scheme
f : X ⟶ Y
inst✝ : IsEmpty ↑↑Y.toPresheafedSpace
this✝ : IsEmpty ↑↑X.toPresheafedSpace
this : Epi f.val.base
⊢ IsIso f
[PROOFSTEP]
apply IsOpenImmersion.to_iso
[GOAL]
X : Scheme
⊢ IsAffineOpen ⊥
[PROOFSTEP]
convert rangeIsAffineOpenOfOpenImmersion (initial.to X)
[GOAL]
case h.e'_2
X : Scheme
⊢ ⊥ = Scheme.Hom.opensRange (initial.to X)
[PROOFSTEP]
ext
-- Porting note : added this `erw` to turn LHS to `False`
[GOAL]
case h.e'_2.h.h
X : Scheme
x✝ : ↑↑X.toPresheafedSpace
⊢ x✝ ∈ ↑⊥ ↔ x✝ ∈ ↑(Scheme.Hom.opensRange (initial.to X))
[PROOFSTEP]
erw [Set.mem_empty_iff_false]
[GOAL]
case h.e'_2.h.h
X : Scheme
x✝ : ↑↑X.toPresheafedSpace
⊢ False ↔ x✝ ∈ ↑(Scheme.Hom.opensRange (initial.to X))
[PROOFSTEP]
rw [false_iff_iff]
[GOAL]
case h.e'_2.h.h
X : Scheme
x✝ : ↑↑X.toPresheafedSpace
⊢ ¬x✝ ∈ ↑(Scheme.Hom.opensRange (initial.to X))
[PROOFSTEP]
exact fun x => isEmptyElim (show (⊥_ Scheme).carrier from x.choose)
[GOAL]
A : Scheme
f : A ⟶ ⊥_ Scheme
⊢ IsIso f
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.Limits", "llama_tokens": 2545} |
{"mathlib_filename": "Mathlib.Testing.SlimCheck.Testable", "llama_tokens": 0} |
|
[GOAL]
C : Type u_1
inst✝ : Category.{?u.34375, u_1} C
⊢ Category.{?u.34397, max (max (?u.34414 + 1) ?u.34375) u_1} (InducedCategory (PresheafedSpace C) toPresheafedSpace)
[PROOFSTEP]
infer_instance
-- Porting note: adding an ext lemma.
-- See https://github.com/leanprover-community/mathlib4/issues/5229
[GOAL]
C : Type u_1
inst✝ : Category.{?u.34683, u_1} C
X Y : SheafedSpace C
α β : X ⟶ Y
w : α.base = β.base
⊢ (Opens.map α.base).op = (Opens.map β.base).op
[PROOFSTEP]
rw [w]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.158005, u_1} C
X : SheafedSpace C
U : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
⊢ X.presheaf.obj U = ((𝟙 X).base _* X.presheaf).obj U
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X : SheafedSpace C
U : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
⊢ NatTrans.app (𝟙 X).c U =
eqToHom (_ : X.presheaf.obj U = X.presheaf.obj ((Opens.map (𝟙 ↑X.toPresheafedSpace)).op.obj U))
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u_1
inst✝ : Category.{?u.162894, u_1} C
X Y : SheafedSpace C
α β : X ⟶ Y
h : α = β
U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ
⊢ (Opens.map β.base).op.obj U = (Opens.map α.base).op.obj U
[PROOFSTEP]
subst h
[GOAL]
C : Type u_1
inst✝ : Category.{?u.162894, u_1} C
X Y : SheafedSpace C
α : X ⟶ Y
U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ
⊢ (Opens.map α.base).op.obj U = (Opens.map α.base).op.obj U
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.SheafedSpace", "llama_tokens": 735} |
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ @LocallyOfFiniteType = affineLocally @RingHom.FiniteType
[PROOFSTEP]
ext X Y f
[GOAL]
case h.h.h.a
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
⊢ LocallyOfFiniteType f ↔ affineLocally (@RingHom.FiniteType) f
[PROOFSTEP]
rw [LocallyOfFiniteType_iff, affineLocally_iff_affineOpens_le]
[GOAL]
case h.h.h.a.hP
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
⊢ RingHom.RespectsIso @RingHom.FiniteType
[PROOFSTEP]
exact RingHom.finiteType_respectsIso
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
hf : LocallyOfFiniteType (f ≫ g)
⊢ LocallyOfFiniteType f
[PROOFSTEP]
revert hf
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
⊢ ∀ [hf : LocallyOfFiniteType (f ≫ g)], LocallyOfFiniteType f
[PROOFSTEP]
rw [locallyOfFiniteType_eq]
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
⊢ ∀ [hf : affineLocally (@RingHom.FiniteType) (f ≫ g)], affineLocally (@RingHom.FiniteType) f
[PROOFSTEP]
apply RingHom.finiteType_is_local.affineLocally_of_comp
[GOAL]
case H
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
⊢ ∀ {R S T : Type u_1} [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : CommRing T] (f : R →+* S) (g : S →+* T),
RingHom.FiniteType (RingHom.comp g f) → RingHom.FiniteType g
[PROOFSTEP]
introv H
[GOAL]
case H
X✝ Y✝ : Scheme
f✝¹ : X✝ ⟶ Y✝
X Y Z : Scheme
f✝ : X ⟶ Y
g✝ : Y ⟶ Z
R S T : Type u_1
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CommRing T
f : R →+* S
g : S →+* T
H : RingHom.FiniteType (RingHom.comp g f)
⊢ RingHom.FiniteType g
[PROOFSTEP]
exact RingHom.FiniteType.of_comp_finiteType H
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.Morphisms.FiniteType", "llama_tokens": 902} |
[GOAL]
X✝ : LocallyRingedSpace
X : LocallyRingedSpace
x : ↑↑X.toPresheafedSpace
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (𝟙 X.toSheafedSpace) x)
[PROOFSTEP]
erw [PresheafedSpace.stalkMap.id]
[GOAL]
X✝ : LocallyRingedSpace
X : LocallyRingedSpace
x : ↑↑X.toPresheafedSpace
⊢ IsLocalRingHom (𝟙 (PresheafedSpace.stalk X.toPresheafedSpace x))
[PROOFSTEP]
apply isLocalRingHom_id
[GOAL]
X✝ : LocallyRingedSpace
X Y Z : LocallyRingedSpace
f : Hom X Y
g : Hom Y Z
x : ↑↑X.toPresheafedSpace
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (f.val ≫ g.val) x)
[PROOFSTEP]
erw [PresheafedSpace.stalkMap.comp]
[GOAL]
X✝ : LocallyRingedSpace
X Y Z : LocallyRingedSpace
f : Hom X Y
g : Hom Y Z
x : ↑↑X.toPresheafedSpace
⊢ IsLocalRingHom (PresheafedSpace.stalkMap g.val (↑f.val.base x) ≫ PresheafedSpace.stalkMap f.val x)
[PROOFSTEP]
exact @isLocalRingHom_comp _ _ _ _ _ _ _ _ (f.2 _) (g.2 _)
[GOAL]
X✝ : LocallyRingedSpace
X Y : LocallyRingedSpace
f : X ⟶ Y
⊢ (𝟙 X ≫ f).val = f.val
[PROOFSTEP]
simp [comp]
[GOAL]
X✝ : LocallyRingedSpace
X Y : LocallyRingedSpace
f : X ⟶ Y
⊢ (f ≫ 𝟙 Y).val = f.val
[PROOFSTEP]
simp [comp]
[GOAL]
X : LocallyRingedSpace
x✝³ x✝² x✝¹ x✝ : LocallyRingedSpace
f : x✝³ ⟶ x✝²
g : x✝² ⟶ x✝¹
h : x✝¹ ⟶ x✝
⊢ ((f ≫ g) ≫ h).val = (f ≫ g ≫ h).val
[PROOFSTEP]
simp [comp]
[GOAL]
X✝ : LocallyRingedSpace
X Y : LocallyRingedSpace
f : X.toSheafedSpace ⟶ Y.toSheafedSpace
inst✝ : IsIso f
x : ↑↑X.toPresheafedSpace
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (SheafedSpace.forgetToPresheafedSpace.map f) x)
[PROOFSTEP]
infer_instance
[GOAL]
X✝ : LocallyRingedSpace
U : TopCat
X : LocallyRingedSpace
f : U ⟶ toTopCat X
h : OpenEmbedding ↑f
⊢ ∀ (x : ↑↑(SheafedSpace.restrict X.toSheafedSpace h).toPresheafedSpace),
LocalRing ↑(Presheaf.stalk (SheafedSpace.restrict X.toSheafedSpace h).toPresheafedSpace.presheaf x)
[PROOFSTEP]
intro x
[GOAL]
X✝ : LocallyRingedSpace
U : TopCat
X : LocallyRingedSpace
f : U ⟶ toTopCat X
h : OpenEmbedding ↑f
x : ↑↑(SheafedSpace.restrict X.toSheafedSpace h).toPresheafedSpace
⊢ LocalRing ↑(Presheaf.stalk (SheafedSpace.restrict X.toSheafedSpace h).toPresheafedSpace.presheaf x)
[PROOFSTEP]
apply @RingEquiv.localRing _ _ _ (X.localRing (f x))
[GOAL]
case e
X✝ : LocallyRingedSpace
U : TopCat
X : LocallyRingedSpace
f : U ⟶ toTopCat X
h : OpenEmbedding ↑f
x : ↑↑(SheafedSpace.restrict X.toSheafedSpace h).toPresheafedSpace
⊢ ↑(Presheaf.stalk X.presheaf (↑f x)) ≃+*
↑(Presheaf.stalk (SheafedSpace.restrict X.toSheafedSpace h).toPresheafedSpace.presheaf x)
[PROOFSTEP]
exact (X.restrictStalkIso h x).symm.commRingCatIsoToRingEquiv
[GOAL]
X✝ : LocallyRingedSpace
X Y : LocallyRingedSpace
f : X ⟶ Y
U : Opens ↑(toTopCat Y)
s : ↑(Y.presheaf.obj (op U))
⊢ (Opens.map f.val.base).obj (RingedSpace.basicOpen (toRingedSpace Y) s) =
RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app f.val.c (op U)) s)
[PROOFSTEP]
ext x
[GOAL]
case h.h
X✝ : LocallyRingedSpace
X Y : LocallyRingedSpace
f : X ⟶ Y
U : Opens ↑(toTopCat Y)
s : ↑(Y.presheaf.obj (op U))
x : ↑↑X.toPresheafedSpace
⊢ x ∈ ↑((Opens.map f.val.base).obj (RingedSpace.basicOpen (toRingedSpace Y) s)) ↔
x ∈ ↑(RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app f.val.c (op U)) s))
[PROOFSTEP]
constructor
[GOAL]
case h.h.mp
X✝ : LocallyRingedSpace
X Y : LocallyRingedSpace
f : X ⟶ Y
U : Opens ↑(toTopCat Y)
s : ↑(Y.presheaf.obj (op U))
x : ↑↑X.toPresheafedSpace
⊢ x ∈ ↑((Opens.map f.val.base).obj (RingedSpace.basicOpen (toRingedSpace Y) s)) →
x ∈ ↑(RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app f.val.c (op U)) s))
[PROOFSTEP]
rintro ⟨⟨y, hyU⟩, hy : IsUnit _, rfl : y = _⟩
[GOAL]
case h.h.mp.intro.mk.intro
X✝ : LocallyRingedSpace
X Y : LocallyRingedSpace
f : X ⟶ Y
U : Opens ↑(toTopCat Y)
s : ↑(Y.presheaf.obj (op U))
x : ↑↑X.toPresheafedSpace
hyU : ↑f.val.base x ∈ U
hy : IsUnit (↑(Presheaf.germ (toRingedSpace Y).toPresheafedSpace.presheaf { val := ↑f.val.base x, property := hyU }) s)
⊢ x ∈ ↑(RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app f.val.c (op U)) s))
[PROOFSTEP]
erw [RingedSpace.mem_basicOpen _ _ ⟨x, show x ∈ (Opens.map f.1.base).obj U from hyU⟩, ←
PresheafedSpace.stalkMap_germ_apply]
[GOAL]
case h.h.mp.intro.mk.intro
X✝ : LocallyRingedSpace
X Y : LocallyRingedSpace
f : X ⟶ Y
U : Opens ↑(toTopCat Y)
s : ↑(Y.presheaf.obj (op U))
x : ↑↑X.toPresheafedSpace
hyU : ↑f.val.base x ∈ U
hy : IsUnit (↑(Presheaf.germ (toRingedSpace Y).toPresheafedSpace.presheaf { val := ↑f.val.base x, property := hyU }) s)
⊢ IsUnit
(↑(PresheafedSpace.stalkMap f.val ↑{ val := x, property := (_ : x ∈ (Opens.map f.val.base).obj U) })
(↑(Presheaf.germ Y.presheaf
{ val := ↑f.val.base ↑{ val := x, property := (_ : x ∈ (Opens.map f.val.base).obj U) },
property :=
(_ :
↑{ val := x, property := (_ : x ∈ (Opens.map f.val.base).obj U) } ∈ (Opens.map f.val.base).obj U) })
s))
[PROOFSTEP]
exact (PresheafedSpace.stalkMap f.1 _).isUnit_map hy
[GOAL]
case h.h.mpr
X✝ : LocallyRingedSpace
X Y : LocallyRingedSpace
f : X ⟶ Y
U : Opens ↑(toTopCat Y)
s : ↑(Y.presheaf.obj (op U))
x : ↑↑X.toPresheafedSpace
⊢ x ∈ ↑(RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app f.val.c (op U)) s)) →
x ∈ ↑((Opens.map f.val.base).obj (RingedSpace.basicOpen (toRingedSpace Y) s))
[PROOFSTEP]
rintro ⟨y, hy : IsUnit _, rfl⟩
[GOAL]
case h.h.mpr.intro.intro
X✝ : LocallyRingedSpace
X Y : LocallyRingedSpace
f : X ⟶ Y
U : Opens ↑(toTopCat Y)
s : ↑(Y.presheaf.obj (op U))
y : { x // x ∈ (Opens.map f.val.base).obj U }
hy : IsUnit (↑(Presheaf.germ (toRingedSpace X).toPresheafedSpace.presheaf y) (↑(NatTrans.app f.val.c (op U)) s))
⊢ ↑y ∈ ↑((Opens.map f.val.base).obj (RingedSpace.basicOpen (toRingedSpace Y) s))
[PROOFSTEP]
erw [RingedSpace.mem_basicOpen _ _ ⟨f.1.base y.1, y.2⟩]
[GOAL]
case h.h.mpr.intro.intro
X✝ : LocallyRingedSpace
X Y : LocallyRingedSpace
f : X ⟶ Y
U : Opens ↑(toTopCat Y)
s : ↑(Y.presheaf.obj (op U))
y : { x // x ∈ (Opens.map f.val.base).obj U }
hy : IsUnit (↑(Presheaf.germ (toRingedSpace X).toPresheafedSpace.presheaf y) (↑(NatTrans.app f.val.c (op U)) s))
⊢ IsUnit (↑(Presheaf.germ Y.presheaf { val := ↑f.val.base ↑y, property := (_ : ↑y ∈ (Opens.map f.val.base).obj U) }) s)
[PROOFSTEP]
erw [← PresheafedSpace.stalkMap_germ_apply] at hy
[GOAL]
case h.h.mpr.intro.intro
X✝ : LocallyRingedSpace
X Y : LocallyRingedSpace
f : X ⟶ Y
U : Opens ↑(toTopCat Y)
s : ↑(Y.presheaf.obj (op U))
y : { x // x ∈ (Opens.map f.val.base).obj U }
hy :
IsUnit
(↑(PresheafedSpace.stalkMap f.val ↑y)
(↑(Presheaf.germ Y.presheaf { val := ↑f.val.base ↑y, property := (_ : ↑y ∈ (Opens.map f.val.base).obj U) }) s))
⊢ IsUnit (↑(Presheaf.germ Y.presheaf { val := ↑f.val.base ↑y, property := (_ : ↑y ∈ (Opens.map f.val.base).obj U) }) s)
[PROOFSTEP]
exact (isUnit_map_iff (PresheafedSpace.stalkMap f.1 _) _).mp hy
[GOAL]
X✝ : LocallyRingedSpace
X : LocallyRingedSpace
U : Opens ↑↑X.toPresheafedSpace
⊢ RingedSpace.basicOpen (toRingedSpace X) 0 = ⊥
[PROOFSTEP]
ext x
[GOAL]
case h.h
X✝ : LocallyRingedSpace
X : LocallyRingedSpace
U : Opens ↑↑X.toPresheafedSpace
x : ↑↑(toRingedSpace X).toPresheafedSpace
⊢ x ∈ ↑(RingedSpace.basicOpen (toRingedSpace X) 0) ↔ x ∈ ↑⊥
[PROOFSTEP]
simp only [RingedSpace.basicOpen, Opens.coe_mk, Set.mem_image, Set.mem_setOf_eq, Subtype.exists, exists_and_right,
exists_eq_right, Opens.coe_bot, Set.mem_empty_iff_false, iff_false, not_exists]
[GOAL]
case h.h
X✝ : LocallyRingedSpace
X : LocallyRingedSpace
U : Opens ↑↑X.toPresheafedSpace
x : ↑↑(toRingedSpace X).toPresheafedSpace
⊢ ∀ (x_1 : x ∈ U),
¬IsUnit (↑(Presheaf.germ (toRingedSpace X).toPresheafedSpace.presheaf { val := x, property := (_ : x ∈ U) }) 0)
[PROOFSTEP]
intros hx
[GOAL]
case h.h
X✝ : LocallyRingedSpace
X : LocallyRingedSpace
U : Opens ↑↑X.toPresheafedSpace
x : ↑↑(toRingedSpace X).toPresheafedSpace
hx : x ∈ U
⊢ ¬IsUnit (↑(Presheaf.germ (toRingedSpace X).toPresheafedSpace.presheaf { val := x, property := (_ : x ∈ U) }) 0)
[PROOFSTEP]
rw [map_zero, isUnit_zero_iff]
[GOAL]
case h.h
X✝ : LocallyRingedSpace
X : LocallyRingedSpace
U : Opens ↑↑X.toPresheafedSpace
x : ↑↑(toRingedSpace X).toPresheafedSpace
hx : x ∈ U
⊢ ¬0 = 1
[PROOFSTEP]
change (0 : X.stalk x) ≠ (1 : X.stalk x)
[GOAL]
case h.h
X✝ : LocallyRingedSpace
X : LocallyRingedSpace
U : Opens ↑↑X.toPresheafedSpace
x : ↑↑(toRingedSpace X).toPresheafedSpace
hx : x ∈ U
⊢ 0 ≠ 1
[PROOFSTEP]
exact zero_ne_one
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.LocallyRingedSpace", "llama_tokens": 4091} |
[GOAL]
X Y Z : Scheme
f✝ : X ⟶ Y
g : Y ⟶ Z
f : X ⟶ Y
⊢ IsOpenImmersion f ↔
OpenEmbedding ↑f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x)
[PROOFSTEP]
constructor
[GOAL]
case mp
X Y Z : Scheme
f✝ : X ⟶ Y
g : Y ⟶ Z
f : X ⟶ Y
⊢ IsOpenImmersion f →
OpenEmbedding ↑f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x)
[PROOFSTEP]
intro h
[GOAL]
case mp
X Y Z : Scheme
f✝ : X ⟶ Y
g : Y ⟶ Z
f : X ⟶ Y
h : IsOpenImmersion f
⊢ OpenEmbedding ↑f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x)
[PROOFSTEP]
exact ⟨h.1, inferInstance⟩
[GOAL]
case mpr
X Y Z : Scheme
f✝ : X ⟶ Y
g : Y ⟶ Z
f : X ⟶ Y
⊢ (OpenEmbedding ↑f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x)) →
IsOpenImmersion f
[PROOFSTEP]
rintro ⟨h₁, h₂⟩
[GOAL]
case mpr.intro
X Y Z : Scheme
f✝ : X ⟶ Y
g : Y ⟶ Z
f : X ⟶ Y
h₁ : OpenEmbedding ↑f.val.base
h₂ : ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x)
⊢ IsOpenImmersion f
[PROOFSTEP]
exact IsOpenImmersion.of_stalk_iso f h₁
[GOAL]
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
⊢ MorphismProperty.StableUnderComposition @IsOpenImmersion
[PROOFSTEP]
intro X Y Z f g h₁ h₂
[GOAL]
X✝ Y✝ Z✝ : Scheme
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
h₁ : IsOpenImmersion f
h₂ : IsOpenImmersion g
⊢ IsOpenImmersion (f ≫ g)
[PROOFSTEP]
exact LocallyRingedSpace.IsOpenImmersion.comp f g
[GOAL]
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
⊢ MorphismProperty.RespectsIso @IsOpenImmersion
[PROOFSTEP]
apply isOpenImmersion_stableUnderComposition.respectsIso
[GOAL]
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
⊢ ∀ {X Y : Scheme} (e : X ≅ Y), IsOpenImmersion e.hom
[PROOFSTEP]
intro _ _ _
[GOAL]
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
X✝ Y✝ : Scheme
e✝ : X✝ ≅ Y✝
⊢ IsOpenImmersion e✝.hom
[PROOFSTEP]
infer_instance
[GOAL]
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
⊢ PropertyIsLocalAtTarget @IsOpenImmersion
[PROOFSTEP]
constructor
[GOAL]
case RespectsIso
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
⊢ MorphismProperty.RespectsIso @IsOpenImmersion
[PROOFSTEP]
exact isOpenImmersion_respectsIso
[GOAL]
case restrict
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) (U : Opens ↑↑Y.toPresheafedSpace), IsOpenImmersion f → IsOpenImmersion (f ∣_ U)
[PROOFSTEP]
intros
[GOAL]
case restrict
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
U✝ : Opens ↑↑Y✝.toPresheafedSpace
a✝ : IsOpenImmersion f✝
⊢ IsOpenImmersion (f✝ ∣_ U✝)
[PROOFSTEP]
infer_instance
[GOAL]
case of_openCover
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), IsOpenImmersion pullback.snd) → IsOpenImmersion f
[PROOFSTEP]
intro X Y f 𝒰 H
[GOAL]
case of_openCover
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Y✝
g : Y✝ ⟶ Z
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd
⊢ IsOpenImmersion f
[PROOFSTEP]
rw [isOpenImmersion_iff_stalk]
[GOAL]
case of_openCover
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Y✝
g : Y✝ ⟶ Z
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd
⊢ OpenEmbedding ↑f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x)
[PROOFSTEP]
constructor
[GOAL]
case of_openCover.left
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Y✝
g : Y✝ ⟶ Z
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd
⊢ OpenEmbedding ↑f.val.base
[PROOFSTEP]
apply (openEmbedding_iff_openEmbedding_of_iSup_eq_top 𝒰.iSup_opensRange f.1.base.2).mpr
[GOAL]
case of_openCover.left
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Y✝
g : Y✝ ⟶ Z
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd
⊢ ∀ (i : 𝒰.J),
OpenEmbedding (Set.restrictPreimage (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i)).carrier f.val.base.toFun)
[PROOFSTEP]
intro i
[GOAL]
case of_openCover.left
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Y✝
g : Y✝ ⟶ Z
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd
i : 𝒰.J
⊢ OpenEmbedding (Set.restrictPreimage (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i)).carrier f.val.base.toFun)
[PROOFSTEP]
have := ((isOpenImmersion_respectsIso.arrow_iso_iff (morphismRestrictOpensRange f (𝒰.map i))).mpr (H i)).1
[GOAL]
case of_openCover.left
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Y✝
g : Y✝ ⟶ Z
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd
i : 𝒰.J
this : OpenEmbedding ↑(Arrow.mk (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))).hom.val.base
⊢ OpenEmbedding (Set.restrictPreimage (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i)).carrier f.val.base.toFun)
[PROOFSTEP]
erw [Arrow.mk_hom, morphismRestrict_val_base] at this
[GOAL]
case of_openCover.left
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Y✝
g : Y✝ ⟶ Z
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd
i : 𝒰.J
this : OpenEmbedding (Set.restrictPreimage (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i)).carrier ↑f.val.base)
⊢ OpenEmbedding (Set.restrictPreimage (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i)).carrier f.val.base.toFun)
[PROOFSTEP]
norm_cast
[GOAL]
case of_openCover.right
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Y✝
g : Y✝ ⟶ Z
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd
⊢ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x)
[PROOFSTEP]
intro x
[GOAL]
case of_openCover.right
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Y✝
g : Y✝ ⟶ Z
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd
x : ↑↑X.toPresheafedSpace
⊢ IsIso (PresheafedSpace.stalkMap f.val x)
[PROOFSTEP]
have := Arrow.iso_w (morphismRestrictStalkMap f (Scheme.Hom.opensRange (𝒰.map <| 𝒰.f <| f.1.base x)) ⟨x, 𝒰.Covers _⟩)
[GOAL]
case of_openCover.right
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Y✝
g : Y✝ ⟶ Z
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd
x : ↑↑X.toPresheafedSpace
this :
(Arrow.mk
(PresheafedSpace.stalkMap f.val
↑{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) })).hom =
(morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))))
{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).inv.left ≫
(Arrow.mk
(PresheafedSpace.stalkMap
(f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).val
{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) })).hom ≫
(morphismRestrictStalkMap f
(Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))))
{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).hom.right
⊢ IsIso (PresheafedSpace.stalkMap f.val x)
[PROOFSTEP]
dsimp only [Arrow.mk_hom] at this
[GOAL]
case of_openCover.right
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Y✝
g : Y✝ ⟶ Z
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd
x : ↑↑X.toPresheafedSpace
this :
PresheafedSpace.stalkMap f.val x =
(morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))))
{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).inv.left ≫
PresheafedSpace.stalkMap
(f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).val
{ val := x,
property :=
(_ :
↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) } ≫
(morphismRestrictStalkMap f
(Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))))
{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).hom.right
⊢ IsIso (PresheafedSpace.stalkMap f.val x)
[PROOFSTEP]
rw [this]
[GOAL]
case of_openCover.right
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Y✝
g : Y✝ ⟶ Z
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd
x : ↑↑X.toPresheafedSpace
this :
PresheafedSpace.stalkMap f.val x =
(morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))))
{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).inv.left ≫
PresheafedSpace.stalkMap
(f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).val
{ val := x,
property :=
(_ :
↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) } ≫
(morphismRestrictStalkMap f
(Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))))
{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).hom.right
⊢ IsIso
((morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))))
{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).inv.left ≫
PresheafedSpace.stalkMap
(f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).val
{ val := x,
property :=
(_ :
↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) } ≫
(morphismRestrictStalkMap f
(Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))))
{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).hom.right)
[PROOFSTEP]
haveI : IsOpenImmersion (f ∣_ Scheme.Hom.opensRange (𝒰.map <| 𝒰.f <| f.1.base x)) :=
(isOpenImmersion_respectsIso.arrow_iso_iff (morphismRestrictOpensRange f (𝒰.map _))).mpr (H _)
[GOAL]
case of_openCover.right
X✝ Y✝ Z : Scheme
f✝ : X✝ ⟶ Y✝
g : Y✝ ⟶ Z
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), IsOpenImmersion pullback.snd
x : ↑↑X.toPresheafedSpace
this✝ :
PresheafedSpace.stalkMap f.val x =
(morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))))
{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).inv.left ≫
PresheafedSpace.stalkMap
(f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).val
{ val := x,
property :=
(_ :
↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) } ≫
(morphismRestrictStalkMap f
(Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))))
{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).hom.right
this : IsOpenImmersion (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))))
⊢ IsIso
((morphismRestrictStalkMap f (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))))
{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).inv.left ≫
PresheafedSpace.stalkMap
(f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).val
{ val := x,
property :=
(_ :
↑f.val.base x ∈ Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) } ≫
(morphismRestrictStalkMap f
(Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))))
{ val := x,
property :=
(_ :
↑f.val.base x ∈
Set.range ↑(Scheme.OpenCover.map 𝒰 (Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base) }).hom.right)
[PROOFSTEP]
infer_instance
[GOAL]
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
⊢ ∀ (X Y S : Scheme) (f : X ⟶ S) (g : Y ⟶ S), IsOpenImmersion g → IsOpenImmersion pullback.fst
[PROOFSTEP]
intro X Y Z f g H
[GOAL]
X✝ Y✝ Z✝ : Scheme
f✝ : X✝ ⟶ Y✝
g✝ : Y✝ ⟶ Z✝
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
H : IsOpenImmersion g
⊢ IsOpenImmersion pullback.fst
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.Morphisms.OpenImmersion", "llama_tokens": 6749} |
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
U : Opens ↑↑Y
x : { x // x ∈ (Opens.map α.base).obj U }
⊢ germ Y.presheaf { val := ↑α.base ↑x, property := (_ : ↑x ∈ (Opens.map α.base).obj U) } ≫ stalkMap α ↑x =
NatTrans.app α.c (op U) ≫ germ X.presheaf x
[PROOFSTEP]
rw [stalkMap, stalkFunctor_map_germ_assoc, stalkPushforward_germ]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
h : OpenEmbedding ↑f
V : Opens ↑U
x : ↑U
hx : x ∈ V
⊢ germ X.presheaf { val := ↑f x, property := (_ : ↑f x ∈ (IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) } ≫
(restrictStalkIso X h x).inv =
germ (restrict X h).presheaf { val := x, property := hx }
[PROOFSTEP]
rw [← restrictStalkIso_hom_eq_germ, Category.assoc, Iso.hom_inv_id, Category.comp_id]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
h : OpenEmbedding ↑f
x : ↑U
⊢ (restrictStalkIso X h x).inv = stalkMap (ofRestrict X h) x
[PROOFSTEP]
refine colimit.hom_ext fun V => ?_
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
h : OpenEmbedding ↑f
x : ↑U
V : (OpenNhds (↑f x))ᵒᵖ
⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf)
V ≫
(restrictStalkIso X h x).inv =
colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf)
V ≫
stalkMap (ofRestrict X h) x
[PROOFSTEP]
induction V with
| h V => ?_
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
h : OpenEmbedding ↑f
x : ↑U
V : (OpenNhds (↑f x))ᵒᵖ
⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf)
V ≫
(restrictStalkIso X h x).inv =
colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf)
V ≫
stalkMap (ofRestrict X h) x
[PROOFSTEP]
induction V with
| h V => ?_
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
h : OpenEmbedding ↑f
x : ↑U
V : OpenNhds (↑f x)
⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf)
(op V) ≫
(restrictStalkIso X h x).inv =
colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf)
(op V) ≫
stalkMap (ofRestrict X h) x
[PROOFSTEP]
let i : (h.isOpenMap.functorNhds x).obj ((OpenNhds.map f x).obj V) ⟶ V := homOfLE (Set.image_preimage_subset f _)
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
h : OpenEmbedding ↑f
x : ↑U
V : OpenNhds (↑f x)
i : (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).obj ((OpenNhds.map f x).obj V) ⟶ V :=
homOfLE (_ : ↑f '' (↑f ⁻¹' V.obj.1) ⊆ V.obj.1)
⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf)
(op V) ≫
(restrictStalkIso X h x).inv =
colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf)
(op V) ≫
stalkMap (ofRestrict X h) x
[PROOFSTEP]
erw [Iso.comp_inv_eq, colimit.ι_map_assoc, colimit.ι_map_assoc, colimit.ι_pre]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
h : OpenEmbedding ↑f
x : ↑U
V : OpenNhds (↑f x)
i : (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).obj ((OpenNhds.map f x).obj V) ⟶ V :=
homOfLE (_ : ↑f '' (↑f ⁻¹' V.obj.1) ⊆ V.obj.1)
⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf)
(op V) =
(NatTrans.app
(((whiskeringLeft (OpenNhds (↑(ofRestrict X h).base x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj
(OpenNhds.inclusion (↑(ofRestrict X h).base x)).op).map
(ofRestrict X h).c)
(op V) ≫
NatTrans.app
(whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso (ofRestrict X h).base x).inv) (restrict X h).presheaf)
(op V) ≫
colimit.ι
(((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑↑(restrict X h))ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj
(restrict X h).presheaf)
((OpenNhds.map (ofRestrict X h).base x).op.obj (op V))) ≫
(restrictStalkIso X h x).hom
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
h : OpenEmbedding ↑f
x : ↑U
V : OpenNhds (↑f x)
i : (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).obj ((OpenNhds.map f x).obj V) ⟶ V :=
homOfLE (_ : ↑f '' (↑f ⁻¹' V.obj.1) ⊆ V.obj.1)
⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf)
(op V) =
NatTrans.app
(((whiskeringLeft (OpenNhds (↑(ofRestrict X h).base x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj
(OpenNhds.inclusion (↑(ofRestrict X h).base x)).op).map
(ofRestrict X h).c)
(op V) ≫
NatTrans.app
(whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso (ofRestrict X h).base x).inv) (restrict X h).presheaf)
(op V) ≫
colimit.ι
(((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑↑(restrict X h))ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj
(restrict X h).presheaf)
((OpenNhds.map (ofRestrict X h).base x).op.obj (op V)) ≫
(restrictStalkIso X h x).hom
[PROOFSTEP]
erw [colimit.ι_pre ((OpenNhds.inclusion (f x)).op ⋙ X.presheaf) (h.isOpenMap.functorNhds x).op]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
h : OpenEmbedding ↑f
x : ↑U
V : OpenNhds (↑f x)
i : (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).obj ((OpenNhds.map f x).obj V) ⟶ V :=
homOfLE (_ : ↑f '' (↑f ⁻¹' V.obj.1) ⊆ V.obj.1)
⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf)
(op V) =
NatTrans.app
(((whiskeringLeft (OpenNhds (↑(ofRestrict X h).base x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj
(OpenNhds.inclusion (↑(ofRestrict X h).base x)).op).map
(ofRestrict X h).c)
(op V) ≫
NatTrans.app
(whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso (ofRestrict X h).base x).inv) (restrict X h).presheaf)
(op V) ≫
colimit.ι ((OpenNhds.inclusion (↑f x)).op ⋙ X.presheaf)
((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj ((OpenNhds.map (ofRestrict X h).base x).op.obj (op V)))
[PROOFSTEP]
erw [← X.presheaf.map_comp_assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
h : OpenEmbedding ↑f
x : ↑U
V : OpenNhds (↑f x)
i : (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).obj ((OpenNhds.map f x).obj V) ⟶ V :=
homOfLE (_ : ↑f '' (↑f ⁻¹' V.obj.1) ⊆ V.obj.1)
⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj X.presheaf)
(op V) =
X.presheaf.map
((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit
((OpenNhds.inclusion (↑(ofRestrict X h).base x)).op.obj (op V)).unop).op ≫
(IsOpenMap.functor (_ : IsOpenMap ↑f)).op.map
(NatTrans.app (NatTrans.op (OpenNhds.inclusionMapIso (ofRestrict X h).base x).inv) (op V))) ≫
colimit.ι ((OpenNhds.inclusion (↑f x)).op ⋙ X.presheaf)
((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj ((OpenNhds.map (ofRestrict X h).base x).op.obj (op V)))
[PROOFSTEP]
exact (colimit.w ((OpenNhds.inclusion (f x)).op ⋙ X.presheaf) i.op).symm
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
h : OpenEmbedding ↑f
x : ↑U
⊢ IsIso (stalkMap (ofRestrict X h) x)
[PROOFSTEP]
rw [← restrictStalkIso_inv_eq_ofRestrict]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
h : OpenEmbedding ↑f
x : ↑U
⊢ IsIso (restrictStalkIso X h x).inv
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X : PresheafedSpace C
x : ↑↑X
⊢ stalkMap (𝟙 X) x = 𝟙 (stalk X x)
[PROOFSTEP]
dsimp [stalkMap]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X : PresheafedSpace C
x : ↑↑X
⊢ (stalkFunctor C (↑(𝟙 ↑X) x)).map (𝟙 X).c ≫ stalkPushforward C (𝟙 ↑X) X.presheaf x = 𝟙 (stalk X x)
[PROOFSTEP]
simp only [stalkPushforward.id]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X : PresheafedSpace C
x : ↑↑X
⊢ (stalkFunctor C (↑(𝟙 ↑X) x)).map (𝟙 X).c ≫ (stalkFunctor C x).map (Pushforward.id X.presheaf).hom = 𝟙 (stalk X x)
[PROOFSTEP]
erw [← map_comp]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X : PresheafedSpace C
x : ↑↑X
⊢ (stalkFunctor C (↑(𝟙 ↑X) x)).map ((𝟙 X).c ≫ (Pushforward.id X.presheaf).hom) = 𝟙 (stalk X x)
[PROOFSTEP]
convert (stalkFunctor C x).map_id X.presheaf
[GOAL]
case h.e'_2.h.h.e'_8
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X : PresheafedSpace C
x : ↑↑X
e_1✝ : (stalk X (↑(𝟙 ↑X) x) ⟶ stalk X x) = ((stalkFunctor C x).obj X.presheaf ⟶ (stalkFunctor C x).obj X.presheaf)
⊢ (𝟙 X).c ≫ (Pushforward.id X.presheaf).hom = 𝟙 X.presheaf
[PROOFSTEP]
ext
[GOAL]
case h.e'_2.h.h.e'_8.w
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X : PresheafedSpace C
x : ↑↑X
e_1✝ : (stalk X (↑(𝟙 ↑X) x) ⟶ stalk X x) = ((stalkFunctor C x).obj X.presheaf ⟶ (stalkFunctor C x).obj X.presheaf)
U✝ : Opens ↑↑X
⊢ NatTrans.app ((𝟙 X).c ≫ (Pushforward.id X.presheaf).hom) (op U✝) = NatTrans.app (𝟙 X.presheaf) (op U✝)
[PROOFSTEP]
simp only [id_c, id_comp, Pushforward.id_hom_app, op_obj, eqToHom_refl, map_id]
[GOAL]
case h.e'_2.h.h.e'_8.w
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X : PresheafedSpace C
x : ↑↑X
e_1✝ : (stalk X (↑(𝟙 ↑X) x) ⟶ stalk X x) = ((stalkFunctor C x).obj X.presheaf ⟶ (stalkFunctor C x).obj X.presheaf)
U✝ : Opens ↑↑X
⊢ 𝟙 (X.presheaf.obj (op ((Opens.map (𝟙 ↑X)).obj (op U✝).unop))) = NatTrans.app (𝟙 X.presheaf) (op U✝)
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y Z : PresheafedSpace C
α : X ⟶ Y
β : Y ⟶ Z
x : ↑↑X
⊢ stalkMap (α ≫ β) x = stalkMap β (↑α.base x) ≫ stalkMap α x
[PROOFSTEP]
dsimp [stalkMap, stalkFunctor, stalkPushforward]
-- We can't use `ext` here due to https://github.com/leanprover/std4/pull/159
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y Z : PresheafedSpace C
α : X ⟶ Y
β : Y ⟶ Z
x : ↑↑X
⊢ colimMap (whiskerLeft (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op (α ≫ β).c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map (α.base ≫ β.base) x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map (α.base ≫ β.base) x).op =
(colimMap (whiskerLeft (OpenNhds.inclusion (↑β.base (↑α.base x))).op β.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map β.base (↑α.base x) ⋙ OpenNhds.inclusion (↑α.base x)).op) Y.presheaf) ≫
colimit.pre ((OpenNhds.inclusion (↑α.base x)).op ⋙ Y.presheaf) (OpenNhds.map β.base (↑α.base x)).op) ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑α.base x)).op α.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map α.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map α.base x).op
[PROOFSTEP]
refine colimit.hom_ext fun U => ?_
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y Z : PresheafedSpace C
α : X ⟶ Y
β : Y ⟶ Z
x : ↑↑X
U : (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ
⊢ colimit.ι
(((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj
(OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj
Z.presheaf)
U ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op (α ≫ β).c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map (α.base ≫ β.base) x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map (α.base ≫ β.base) x).op =
colimit.ι
(((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj
(OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj
Z.presheaf)
U ≫
(colimMap (whiskerLeft (OpenNhds.inclusion (↑β.base (↑α.base x))).op β.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map β.base (↑α.base x) ⋙ OpenNhds.inclusion (↑α.base x)).op) Y.presheaf) ≫
colimit.pre ((OpenNhds.inclusion (↑α.base x)).op ⋙ Y.presheaf) (OpenNhds.map β.base (↑α.base x)).op) ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑α.base x)).op α.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map α.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map α.base x).op
[PROOFSTEP]
induction U with
| h U => ?_
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y Z : PresheafedSpace C
α : X ⟶ Y
β : Y ⟶ Z
x : ↑↑X
U : (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ
⊢ colimit.ι
(((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj
(OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj
Z.presheaf)
U ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op (α ≫ β).c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map (α.base ≫ β.base) x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map (α.base ≫ β.base) x).op =
colimit.ι
(((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj
(OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj
Z.presheaf)
U ≫
(colimMap (whiskerLeft (OpenNhds.inclusion (↑β.base (↑α.base x))).op β.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map β.base (↑α.base x) ⋙ OpenNhds.inclusion (↑α.base x)).op) Y.presheaf) ≫
colimit.pre ((OpenNhds.inclusion (↑α.base x)).op ⋙ Y.presheaf) (OpenNhds.map β.base (↑α.base x)).op) ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑α.base x)).op α.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map α.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map α.base x).op
[PROOFSTEP]
induction U with
| h U => ?_
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y Z : PresheafedSpace C
α : X ⟶ Y
β : Y ⟶ Z
x : ↑↑X
U : OpenNhds (↑(α.base ≫ β.base) x)
⊢ colimit.ι
(((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj
(OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj
Z.presheaf)
(op U) ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op (α ≫ β).c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map (α.base ≫ β.base) x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map (α.base ≫ β.base) x).op =
colimit.ι
(((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj
(OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj
Z.presheaf)
(op U) ≫
(colimMap (whiskerLeft (OpenNhds.inclusion (↑β.base (↑α.base x))).op β.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map β.base (↑α.base x) ⋙ OpenNhds.inclusion (↑α.base x)).op) Y.presheaf) ≫
colimit.pre ((OpenNhds.inclusion (↑α.base x)).op ⋙ Y.presheaf) (OpenNhds.map β.base (↑α.base x)).op) ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑α.base x)).op α.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map α.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map α.base x).op
[PROOFSTEP]
cases U
[GOAL]
case h.mk
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y Z : PresheafedSpace C
α : X ⟶ Y
β : Y ⟶ Z
x : ↑↑X
obj✝ : Opens ↑↑Z
property✝ : ↑(α.base ≫ β.base) x ∈ obj✝
⊢ colimit.ι
(((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj
(OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj
Z.presheaf)
(op { obj := obj✝, property := property✝ }) ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op (α ≫ β).c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map (α.base ≫ β.base) x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map (α.base ≫ β.base) x).op =
colimit.ι
(((whiskeringLeft (OpenNhds (↑(α.base ≫ β.base) x))ᵒᵖ (Opens ↑↑Z)ᵒᵖ C).obj
(OpenNhds.inclusion (↑(α.base ≫ β.base) x)).op).obj
Z.presheaf)
(op { obj := obj✝, property := property✝ }) ≫
(colimMap (whiskerLeft (OpenNhds.inclusion (↑β.base (↑α.base x))).op β.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map β.base (↑α.base x) ⋙ OpenNhds.inclusion (↑α.base x)).op) Y.presheaf) ≫
colimit.pre ((OpenNhds.inclusion (↑α.base x)).op ⋙ Y.presheaf) (OpenNhds.map β.base (↑α.base x)).op) ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑α.base x)).op α.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map α.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map α.base x).op
[PROOFSTEP]
simp only [whiskeringLeft_obj_obj, comp_obj, op_obj, unop_op, OpenNhds.inclusion_obj, ι_colimMap_assoc,
pushforwardObj_obj, Opens.map_comp_obj, whiskerLeft_app, comp_c_app, OpenNhds.map_obj, whiskerRight_app,
NatTrans.id_app, map_id, colimit.ι_pre, id_comp, assoc, colimit.ι_pre_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
α β : X ⟶ Y
h₁ : α = β
x x' : ↑↑X
h₂ : x = x'
⊢ stalk X x = stalk X x'
[PROOFSTEP]
rw [h₂]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
α β : X ⟶ Y
h₁ : α = β
x x' : ↑↑X
h₂ : x = x'
⊢ stalk Y (↑α.base x) = stalk Y (↑β.base x')
[PROOFSTEP]
rw [h₁, h₂]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
α β : X ⟶ Y
h₁ : α = β
x x' : ↑↑X
h₂ : x = x'
⊢ stalkMap α x ≫ eqToHom (_ : stalk X x = stalk X x') =
eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑β.base x')) ≫ stalkMap β x'
[PROOFSTEP]
ext
[GOAL]
case ih
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
α β : X ⟶ Y
h₁ : α = β
x x' : ↑↑X
h₂ : x = x'
U✝ : Opens ↑↑Y
hxU✝ : ↑α.base x ∈ U✝
⊢ germ Y.presheaf { val := ↑α.base x, property := hxU✝ } ≫ stalkMap α x ≫ eqToHom (_ : stalk X x = stalk X x') =
germ Y.presheaf { val := ↑α.base x, property := hxU✝ } ≫
eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑β.base x')) ≫ stalkMap β x'
[PROOFSTEP]
substs h₁ h₂
[GOAL]
case ih
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
x : ↑↑X
U✝ : Opens ↑↑Y
hxU✝ : ↑α.base x ∈ U✝
⊢ germ Y.presheaf { val := ↑α.base x, property := hxU✝ } ≫ stalkMap α x ≫ eqToHom (_ : stalk X x = stalk X x) =
germ Y.presheaf { val := ↑α.base x, property := hxU✝ } ≫
eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑α.base x)) ≫ stalkMap α x
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
α β : X ⟶ Y
h : α = β
x : ↑↑X
⊢ stalk Y (↑α.base x) = stalk Y (↑β.base x)
[PROOFSTEP]
rw [h]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
α β : X ⟶ Y
h : α = β
x : ↑↑X
⊢ stalkMap α x = eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑β.base x)) ≫ stalkMap β x
[PROOFSTEP]
rw [← stalkMap.congr α β h x x rfl, eqToHom_refl, Category.comp_id]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
x x' : ↑↑X
h : x = x'
⊢ stalk X x = stalk X x'
[PROOFSTEP]
rw [h]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
x x' : ↑↑X
h : x = x'
⊢ stalk Y (↑α.base x) = stalk Y (↑α.base x')
[PROOFSTEP]
rw [h]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
x x' : ↑↑X
h : x = x'
⊢ stalkMap α x ≫ eqToHom (_ : stalk X x = stalk X x') =
eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑α.base x')) ≫ stalkMap α x'
[PROOFSTEP]
rw [stalkMap.congr α α rfl x x' h]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
inst✝ : IsIso α
x : ↑↑X
⊢ ∃ inv, stalkMap α x ≫ inv = 𝟙 (stalk Y (↑α.base x)) ∧ inv ≫ stalkMap α x = 𝟙 (stalk X x)
[PROOFSTEP]
let β : Y ⟶ X := CategoryTheory.inv α
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
inst✝ : IsIso α
x : ↑↑X
β : Y ⟶ X := CategoryTheory.inv α
⊢ ∃ inv, stalkMap α x ≫ inv = 𝟙 (stalk Y (↑α.base x)) ∧ inv ≫ stalkMap α x = 𝟙 (stalk X x)
[PROOFSTEP]
have h_eq : (α ≫ β).base x = x := by
rw [IsIso.hom_inv_id α, id_base, TopCat.id_app]
-- Intuitively, the inverse of the stalk map of `α` at `x` should just be the stalk map of `β`
-- at `α x`. Unfortunately, we have a problem with dependent type theory here: Because `x`
-- is not *definitionally* equal to `β (α x)`, the map `stalk_map β (α x)` has not the correct
-- type for an inverse.
-- To get a proper inverse, we need to compose with the `eq_to_hom` arrow
-- `X.stalk x ⟶ X.stalk ((α ≫ β).base x)`.
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
inst✝ : IsIso α
x : ↑↑X
β : Y ⟶ X := CategoryTheory.inv α
⊢ ↑(α ≫ β).base x = x
[PROOFSTEP]
rw [IsIso.hom_inv_id α, id_base, TopCat.id_app]
-- Intuitively, the inverse of the stalk map of `α` at `x` should just be the stalk map of `β`
-- at `α x`. Unfortunately, we have a problem with dependent type theory here: Because `x`
-- is not *definitionally* equal to `β (α x)`, the map `stalk_map β (α x)` has not the correct
-- type for an inverse.
-- To get a proper inverse, we need to compose with the `eq_to_hom` arrow
-- `X.stalk x ⟶ X.stalk ((α ≫ β).base x)`.
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
inst✝ : IsIso α
x : ↑↑X
β : Y ⟶ X := CategoryTheory.inv α
h_eq : ↑(α ≫ β).base x = x
⊢ ∃ inv, stalkMap α x ≫ inv = 𝟙 (stalk Y (↑α.base x)) ∧ inv ≫ stalkMap α x = 𝟙 (stalk X x)
[PROOFSTEP]
refine' ⟨eqToHom (show X.stalk x = X.stalk ((α ≫ β).base x) by rw [h_eq]) ≫ (stalkMap β (α.base x) : _), _, _⟩
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
inst✝ : IsIso α
x : ↑↑X
β : Y ⟶ X := CategoryTheory.inv α
h_eq : ↑(α ≫ β).base x = x
⊢ stalk X x = stalk X (↑(α ≫ β).base x)
[PROOFSTEP]
rw [h_eq]
[GOAL]
case refine'_1
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
inst✝ : IsIso α
x : ↑↑X
β : Y ⟶ X := CategoryTheory.inv α
h_eq : ↑(α ≫ β).base x = x
⊢ stalkMap α x ≫ eqToHom (_ : stalk X x = stalk X (↑(α ≫ β).base x)) ≫ stalkMap β (↑α.base x) = 𝟙 (stalk Y (↑α.base x))
[PROOFSTEP]
rw [← Category.assoc, congr_point α x ((α ≫ β).base x) h_eq.symm, Category.assoc]
[GOAL]
case refine'_1
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
inst✝ : IsIso α
x : ↑↑X
β : Y ⟶ X := CategoryTheory.inv α
h_eq : ↑(α ≫ β).base x = x
⊢ eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑α.base (↑(α ≫ β).base x))) ≫
stalkMap α (↑(α ≫ β).base x) ≫ stalkMap β (↑α.base x) =
𝟙 (stalk Y (↑α.base x))
[PROOFSTEP]
erw [← stalkMap.comp β α (α.base x)]
[GOAL]
case refine'_1
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
inst✝ : IsIso α
x : ↑↑X
β : Y ⟶ X := CategoryTheory.inv α
h_eq : ↑(α ≫ β).base x = x
⊢ eqToHom (_ : stalk Y (↑α.base x) = stalk Y (↑α.base (↑(α ≫ β).base x))) ≫ stalkMap (β ≫ α) (↑α.base x) =
𝟙 (stalk Y (↑α.base x))
[PROOFSTEP]
rw [congr_hom _ _ (IsIso.inv_hom_id α), stalkMap.id, eqToHom_trans_assoc, eqToHom_refl, Category.id_comp]
[GOAL]
case refine'_2
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasColimits C
X Y : PresheafedSpace C
α : X ⟶ Y
inst✝ : IsIso α
x : ↑↑X
β : Y ⟶ X := CategoryTheory.inv α
h_eq : ↑(α ≫ β).base x = x
⊢ (eqToHom (_ : stalk X x = stalk X (↑(α ≫ β).base x)) ≫ stalkMap β (↑α.base x)) ≫ stalkMap α x = 𝟙 (stalk X x)
[PROOFSTEP]
rw [Category.assoc, ← stalkMap.comp, congr_hom _ _ (IsIso.hom_inv_id α), stalkMap.id, eqToHom_trans_assoc, eqToHom_refl,
Category.id_comp]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
f : X ⟶ Y
x y : ↑↑X
h : x ⤳ y
⊢ stalkSpecializes Y.presheaf (_ : ↑f.base x ⤳ ↑f.base y) ≫ stalkMap f x = stalkMap f y ≫ stalkSpecializes X.presheaf h
[PROOFSTEP]
dsimp [stalkSpecializes, stalkMap, stalkFunctor, stalkPushforward]
-- We can't use `ext` here due to https://github.com/leanprover/std4/pull/159
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
f : X ⟶ Y
x y : ↑↑X
h : x ⤳ y
⊢ colimit.desc ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf)
{ pt := colimit ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf),
ι :=
NatTrans.mk fun U =>
colimit.ι ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf)
(op { obj := U.unop.obj, property := (_ : ↑f.base x ∈ U.unop.obj.carrier) }) } ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base x)).op f.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op =
(colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫
colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf)
{ pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf),
ι :=
NatTrans.mk fun U =>
colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)
(op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) }
[PROOFSTEP]
refine colimit.hom_ext fun j => ?_
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
f : X ⟶ Y
x y : ↑↑X
h : x ⤳ y
j : (OpenNhds (↑f.base y))ᵒᵖ
⊢ colimit.ι
(((whiskeringLeft (OpenNhds (↑f.base y))ᵒᵖ (Opens ↑↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f.base y)).op).obj
Y.presheaf)
j ≫
colimit.desc ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf)
{ pt := colimit ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf),
ι :=
NatTrans.mk fun U =>
colimit.ι ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf)
(op { obj := U.unop.obj, property := (_ : ↑f.base x ∈ U.unop.obj.carrier) }) } ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base x)).op f.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op =
colimit.ι
(((whiskeringLeft (OpenNhds (↑f.base y))ᵒᵖ (Opens ↑↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f.base y)).op).obj
Y.presheaf)
j ≫
(colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫
colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf)
{ pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf),
ι :=
NatTrans.mk fun U =>
colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)
(op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) }
[PROOFSTEP]
induction j with
| h j => ?_
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
f : X ⟶ Y
x y : ↑↑X
h : x ⤳ y
j : (OpenNhds (↑f.base y))ᵒᵖ
⊢ colimit.ι
(((whiskeringLeft (OpenNhds (↑f.base y))ᵒᵖ (Opens ↑↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f.base y)).op).obj
Y.presheaf)
j ≫
colimit.desc ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf)
{ pt := colimit ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf),
ι :=
NatTrans.mk fun U =>
colimit.ι ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf)
(op { obj := U.unop.obj, property := (_ : ↑f.base x ∈ U.unop.obj.carrier) }) } ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base x)).op f.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op =
colimit.ι
(((whiskeringLeft (OpenNhds (↑f.base y))ᵒᵖ (Opens ↑↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f.base y)).op).obj
Y.presheaf)
j ≫
(colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫
colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf)
{ pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf),
ι :=
NatTrans.mk fun U =>
colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)
(op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) }
[PROOFSTEP]
induction j with
| h j => ?_
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
f : X ⟶ Y
x y : ↑↑X
h : x ⤳ y
j : OpenNhds (↑f.base y)
⊢ colimit.ι
(((whiskeringLeft (OpenNhds (↑f.base y))ᵒᵖ (Opens ↑↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f.base y)).op).obj
Y.presheaf)
(op j) ≫
colimit.desc ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf)
{ pt := colimit ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf),
ι :=
NatTrans.mk fun U =>
colimit.ι ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf)
(op { obj := U.unop.obj, property := (_ : ↑f.base x ∈ U.unop.obj.carrier) }) } ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base x)).op f.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op =
colimit.ι
(((whiskeringLeft (OpenNhds (↑f.base y))ᵒᵖ (Opens ↑↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f.base y)).op).obj
Y.presheaf)
(op j) ≫
(colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫
colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf)
{ pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf),
ι :=
NatTrans.mk fun U =>
colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)
(op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) }
[PROOFSTEP]
dsimp
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
f : X ⟶ Y
x y : ↑↑X
h : x ⤳ y
j : OpenNhds (↑f.base y)
⊢ colimit.ι ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf) (op j) ≫
colimit.desc ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf)
{ pt := colimit ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf),
ι :=
NatTrans.mk fun U =>
colimit.ι ((OpenNhds.inclusion (↑f.base x)).op ⋙ Y.presheaf)
(op { obj := U.unop.obj, property := (_ : ↑f.base x ∈ U.unop.obj.carrier) }) } ≫
colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base x)).op f.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map f.base x ⋙ OpenNhds.inclusion x).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion x).op ⋙ X.presheaf) (OpenNhds.map f.base x).op =
colimit.ι ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf) (op j) ≫
(colimMap (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c) ≫
colimMap (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf) ≫
colimit.pre ((OpenNhds.inclusion y).op ⋙ X.presheaf) (OpenNhds.map f.base y).op) ≫
colimit.desc ((OpenNhds.inclusion y).op ⋙ X.presheaf)
{ pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf),
ι :=
NatTrans.mk fun U =>
colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)
(op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) }
[PROOFSTEP]
simp only [colimit.ι_desc_assoc, comp_obj, op_obj, unop_op, ι_colimMap_assoc, colimit.map_desc, OpenNhds.inclusion_obj,
pushforwardObj_obj, whiskerLeft_app, OpenNhds.map_obj, whiskerRight_app, NatTrans.id_app, map_id, colimit.ι_pre,
id_comp, assoc, colimit.pre_desc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
f : X ⟶ Y
x y : ↑↑X
h : x ⤳ y
j : OpenNhds (↑f.base y)
⊢ NatTrans.app f.c (op j.obj) ≫
colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)
(op { obj := (Opens.map f.base).obj j.obj, property := (_ : ↑f.base x ∈ (op j).unop.obj.carrier) }) =
colimit.ι ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf) (op j) ≫
colimit.desc ((OpenNhds.inclusion (↑f.base y)).op ⋙ Y.presheaf)
((Cocones.precompose (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c)).obj
((Cocones.precompose (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf)).obj
(Cocone.whisker (OpenNhds.map f.base y).op
{ pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf),
ι :=
NatTrans.mk fun U =>
colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)
(op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) })))
[PROOFSTEP]
erw [colimit.ι_desc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
f : X ⟶ Y
x y : ↑↑X
h : x ⤳ y
j : OpenNhds (↑f.base y)
⊢ NatTrans.app f.c (op j.obj) ≫
colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)
(op { obj := (Opens.map f.base).obj j.obj, property := (_ : ↑f.base x ∈ (op j).unop.obj.carrier) }) =
NatTrans.app
((Cocones.precompose (whiskerLeft (OpenNhds.inclusion (↑f.base y)).op f.c)).obj
((Cocones.precompose (whiskerRight (𝟙 (OpenNhds.map f.base y ⋙ OpenNhds.inclusion y).op) X.presheaf)).obj
(Cocone.whisker (OpenNhds.map f.base y).op
{ pt := colimit ((OpenNhds.inclusion x).op ⋙ X.presheaf),
ι :=
NatTrans.mk fun U =>
colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)
(op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) }))).ι
(op j)
[PROOFSTEP]
dsimp
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
f : X ⟶ Y
x y : ↑↑X
h : x ⤳ y
j : OpenNhds (↑f.base y)
⊢ NatTrans.app f.c (op j.obj) ≫
colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)
(op { obj := (Opens.map f.base).obj j.obj, property := (_ : ↑f.base x ∈ (op j).unop.obj.carrier) }) =
NatTrans.app f.c (op ((OpenNhds.inclusion (↑f.base y)).obj j)) ≫
X.presheaf.map (𝟙 (op ((OpenNhds.inclusion y).obj ((OpenNhds.map f.base y).obj j)))) ≫
colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)
(op
{ obj := ((OpenNhds.map f.base y).obj j).obj,
property := (_ : x ∈ (op ((OpenNhds.map f.base y).obj j)).unop.obj.carrier) })
[PROOFSTEP]
erw [X.presheaf.map_id, id_comp]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasColimits C
X Y : PresheafedSpace C
f : X ⟶ Y
x y : ↑↑X
h : x ⤳ y
j : OpenNhds (↑f.base y)
⊢ NatTrans.app f.c (op j.obj) ≫
colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)
(op { obj := (Opens.map f.base).obj j.obj, property := (_ : ↑f.base x ∈ (op j).unop.obj.carrier) }) =
NatTrans.app f.c (op ((OpenNhds.inclusion (↑f.base y)).obj j)) ≫
colimit.ι ((OpenNhds.inclusion x).op ⋙ X.presheaf)
(op
{ obj := ((OpenNhds.map f.base y).obj j).obj,
property := (_ : x ∈ (op ((OpenNhds.map f.base y).obj j)).unop.obj.carrier) })
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.Stalks", "llama_tokens": 18112} |
[GOAL]
k : Type u
inst✝⁹ : CommRing k
G : Type u
inst✝⁸ : Group G
V : Type v
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
W : Type w
inst✝³ : AddCommGroup W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
π : W →ₗ[k] V
i : V →ₗ[MonoidAlgebra k G] W
h : ∀ (v : V), ↑π (↑i v) = v
g : G
v : V
⊢ ↑(conjugate π g) (↑i v) = v
[PROOFSTEP]
rw [conjugate_apply, ← i.map_smul, h, ← mul_smul, single_mul_single, mul_one, mul_left_inv, ← one_def, one_smul]
[GOAL]
k : Type u
inst✝¹⁰ : CommRing k
G : Type u
inst✝⁹ : Group G
V : Type v
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module k V
inst✝⁶ : Module (MonoidAlgebra k G) V
inst✝⁵ : IsScalarTower k (MonoidAlgebra k G) V
W : Type w
inst✝⁴ : AddCommGroup W
inst✝³ : Module k W
inst✝² : Module (MonoidAlgebra k G) W
inst✝¹ : IsScalarTower k (MonoidAlgebra k G) W
π : W →ₗ[k] V
i : V →ₗ[MonoidAlgebra k G] W
h : ∀ (v : V), ↑π (↑i v) = v
inst✝ : Fintype G
g : G
v : W
⊢ ↑(sumOfConjugates G π) (MonoidAlgebra.single g 1 • v) = MonoidAlgebra.single g 1 • ↑(sumOfConjugates G π) v
[PROOFSTEP]
simp only [sumOfConjugates_apply, Finset.smul_sum, conjugate_apply]
[GOAL]
k : Type u
inst✝¹⁰ : CommRing k
G : Type u
inst✝⁹ : Group G
V : Type v
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module k V
inst✝⁶ : Module (MonoidAlgebra k G) V
inst✝⁵ : IsScalarTower k (MonoidAlgebra k G) V
W : Type w
inst✝⁴ : AddCommGroup W
inst✝³ : Module k W
inst✝² : Module (MonoidAlgebra k G) W
inst✝¹ : IsScalarTower k (MonoidAlgebra k G) W
π : W →ₗ[k] V
i : V →ₗ[MonoidAlgebra k G] W
h : ∀ (v : V), ↑π (↑i v) = v
inst✝ : Fintype G
g : G
v : W
⊢ ∑ x : G, MonoidAlgebra.single x⁻¹ 1 • ↑π (MonoidAlgebra.single x 1 • MonoidAlgebra.single g 1 • v) =
∑ x : G, MonoidAlgebra.single g 1 • MonoidAlgebra.single x⁻¹ 1 • ↑π (MonoidAlgebra.single x 1 • v)
[PROOFSTEP]
refine Fintype.sum_bijective (· * g) (Group.mulRight_bijective g) _ _ fun i ↦ ?_
[GOAL]
k : Type u
inst✝¹⁰ : CommRing k
G : Type u
inst✝⁹ : Group G
V : Type v
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module k V
inst✝⁶ : Module (MonoidAlgebra k G) V
inst✝⁵ : IsScalarTower k (MonoidAlgebra k G) V
W : Type w
inst✝⁴ : AddCommGroup W
inst✝³ : Module k W
inst✝² : Module (MonoidAlgebra k G) W
inst✝¹ : IsScalarTower k (MonoidAlgebra k G) W
π : W →ₗ[k] V
i✝ : V →ₗ[MonoidAlgebra k G] W
h : ∀ (v : V), ↑π (↑i✝ v) = v
inst✝ : Fintype G
g : G
v : W
i : G
⊢ MonoidAlgebra.single i⁻¹ 1 • ↑π (MonoidAlgebra.single i 1 • MonoidAlgebra.single g 1 • v) =
MonoidAlgebra.single g 1 •
MonoidAlgebra.single ((fun x => x * g) i)⁻¹ 1 • ↑π (MonoidAlgebra.single ((fun x => x * g) i) 1 • v)
[PROOFSTEP]
simp only [smul_smul, single_mul_single, mul_inv_rev, mul_inv_cancel_left, one_mul]
[GOAL]
k : Type u
inst✝¹¹ : CommRing k
G : Type u
inst✝¹⁰ : Group G
V : Type v
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module k V
inst✝⁷ : Module (MonoidAlgebra k G) V
inst✝⁶ : IsScalarTower k (MonoidAlgebra k G) V
W : Type w
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module k W
inst✝³ : Module (MonoidAlgebra k G) W
inst✝² : IsScalarTower k (MonoidAlgebra k G) W
π : W →ₗ[k] V
i : V →ₗ[MonoidAlgebra k G] W
h : ∀ (v : V), ↑π (↑i v) = v
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
v : W
⊢ ↑(equivariantProjection G π) v = ⅟↑(Fintype.card G) • ∑ g : G, ↑(conjugate π g) v
[PROOFSTEP]
simp only [equivariantProjection, smul_apply, sumOfConjugatesEquivariant_apply]
[GOAL]
k : Type u
inst✝¹¹ : CommRing k
G : Type u
inst✝¹⁰ : Group G
V : Type v
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module k V
inst✝⁷ : Module (MonoidAlgebra k G) V
inst✝⁶ : IsScalarTower k (MonoidAlgebra k G) V
W : Type w
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module k W
inst✝³ : Module (MonoidAlgebra k G) W
inst✝² : IsScalarTower k (MonoidAlgebra k G) W
π : W →ₗ[k] V
i : V →ₗ[MonoidAlgebra k G] W
h : ∀ (v : V), ↑π (↑i v) = v
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
v : V
⊢ ↑(equivariantProjection G π) (↑i v) = v
[PROOFSTEP]
rw [equivariantProjection_apply]
[GOAL]
k : Type u
inst✝¹¹ : CommRing k
G : Type u
inst✝¹⁰ : Group G
V : Type v
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module k V
inst✝⁷ : Module (MonoidAlgebra k G) V
inst✝⁶ : IsScalarTower k (MonoidAlgebra k G) V
W : Type w
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module k W
inst✝³ : Module (MonoidAlgebra k G) W
inst✝² : IsScalarTower k (MonoidAlgebra k G) W
π : W →ₗ[k] V
i : V →ₗ[MonoidAlgebra k G] W
h : ∀ (v : V), ↑π (↑i v) = v
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
v : V
⊢ ⅟↑(Fintype.card G) • ∑ g : G, ↑(conjugate π g) (↑i v) = v
[PROOFSTEP]
simp only [conjugate_i π i h]
[GOAL]
k : Type u
inst✝¹¹ : CommRing k
G : Type u
inst✝¹⁰ : Group G
V : Type v
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module k V
inst✝⁷ : Module (MonoidAlgebra k G) V
inst✝⁶ : IsScalarTower k (MonoidAlgebra k G) V
W : Type w
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module k W
inst✝³ : Module (MonoidAlgebra k G) W
inst✝² : IsScalarTower k (MonoidAlgebra k G) W
π : W →ₗ[k] V
i : V →ₗ[MonoidAlgebra k G] W
h : ∀ (v : V), ↑π (↑i v) = v
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
v : V
⊢ ⅟↑(Fintype.card G) • ∑ x : G, v = v
[PROOFSTEP]
rw [Finset.sum_const, Finset.card_univ, nsmul_eq_smul_cast k, smul_smul, Invertible.invOf_mul_self, one_smul]
[GOAL]
k : Type u
inst✝¹¹ : Field k
G : Type u
inst✝¹⁰ : Fintype G
inst✝⁹ : Invertible ↑(Fintype.card G)
inst✝⁸ : Group G
V : Type u
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
W : Type u
inst✝³ : AddCommGroup W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
f : V →ₗ[MonoidAlgebra k G] W
hf : LinearMap.ker f = ⊥
⊢ ∃ g, LinearMap.comp g f = LinearMap.id
[PROOFSTEP]
obtain ⟨φ, hφ⟩ :=
(f.restrictScalars k).exists_leftInverse_of_injective <| by
simp only [hf, Submodule.restrictScalars_bot, LinearMap.ker_restrictScalars]
[GOAL]
k : Type u
inst✝¹¹ : Field k
G : Type u
inst✝¹⁰ : Fintype G
inst✝⁹ : Invertible ↑(Fintype.card G)
inst✝⁸ : Group G
V : Type u
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
W : Type u
inst✝³ : AddCommGroup W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
f : V →ₗ[MonoidAlgebra k G] W
hf : LinearMap.ker f = ⊥
⊢ LinearMap.ker (↑k f) = ⊥
[PROOFSTEP]
simp only [hf, Submodule.restrictScalars_bot, LinearMap.ker_restrictScalars]
[GOAL]
case intro
k : Type u
inst✝¹¹ : Field k
G : Type u
inst✝¹⁰ : Fintype G
inst✝⁹ : Invertible ↑(Fintype.card G)
inst✝⁸ : Group G
V : Type u
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
W : Type u
inst✝³ : AddCommGroup W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
f : V →ₗ[MonoidAlgebra k G] W
hf : LinearMap.ker f = ⊥
φ : W →ₗ[k] V
hφ : LinearMap.comp φ (↑k f) = LinearMap.id
⊢ ∃ g, LinearMap.comp g f = LinearMap.id
[PROOFSTEP]
refine ⟨φ.equivariantProjection G, FunLike.ext _ _ ?_⟩
[GOAL]
case intro
k : Type u
inst✝¹¹ : Field k
G : Type u
inst✝¹⁰ : Fintype G
inst✝⁹ : Invertible ↑(Fintype.card G)
inst✝⁸ : Group G
V : Type u
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
W : Type u
inst✝³ : AddCommGroup W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
f : V →ₗ[MonoidAlgebra k G] W
hf : LinearMap.ker f = ⊥
φ : W →ₗ[k] V
hφ : LinearMap.comp φ (↑k f) = LinearMap.id
⊢ ∀ (x : V), ↑(LinearMap.comp (LinearMap.equivariantProjection G φ) f) x = ↑LinearMap.id x
[PROOFSTEP]
exact φ.equivariantProjection_condition G _ <| FunLike.congr_fun hφ
[GOAL]
k : Type u
inst✝¹¹ : Field k
G : Type u
inst✝¹⁰ : Fintype G
inst✝⁹ : Invertible ↑(Fintype.card G)
inst✝⁸ : Group G
V : Type u
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
W : Type u
inst✝³ : AddCommGroup W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
p : Submodule (MonoidAlgebra k G) V
⊢ ∃ q, IsCompl p q
[PROOFSTEP]
have : IsScalarTower k (MonoidAlgebra k G) p := p.isScalarTower'
[GOAL]
k : Type u
inst✝¹¹ : Field k
G : Type u
inst✝¹⁰ : Fintype G
inst✝⁹ : Invertible ↑(Fintype.card G)
inst✝⁸ : Group G
V : Type u
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
W : Type u
inst✝³ : AddCommGroup W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
p : Submodule (MonoidAlgebra k G) V
this : IsScalarTower k (MonoidAlgebra k G) { x // x ∈ p }
⊢ ∃ q, IsCompl p q
[PROOFSTEP]
rcases MonoidAlgebra.exists_leftInverse_of_injective p.subtype p.ker_subtype with ⟨f, hf⟩
[GOAL]
case intro
k : Type u
inst✝¹¹ : Field k
G : Type u
inst✝¹⁰ : Fintype G
inst✝⁹ : Invertible ↑(Fintype.card G)
inst✝⁸ : Group G
V : Type u
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
W : Type u
inst✝³ : AddCommGroup W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
p : Submodule (MonoidAlgebra k G) V
this : IsScalarTower k (MonoidAlgebra k G) { x // x ∈ p }
f : V →ₗ[MonoidAlgebra k G] { x // x ∈ p }
hf : LinearMap.comp f (Submodule.subtype p) = LinearMap.id
⊢ ∃ q, IsCompl p q
[PROOFSTEP]
refine ⟨LinearMap.ker f, LinearMap.isCompl_of_proj ?_⟩
[GOAL]
case intro
k : Type u
inst✝¹¹ : Field k
G : Type u
inst✝¹⁰ : Fintype G
inst✝⁹ : Invertible ↑(Fintype.card G)
inst✝⁸ : Group G
V : Type u
inst✝⁷ : AddCommGroup V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
W : Type u
inst✝³ : AddCommGroup W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
p : Submodule (MonoidAlgebra k G) V
this : IsScalarTower k (MonoidAlgebra k G) { x // x ∈ p }
f : V →ₗ[MonoidAlgebra k G] { x // x ∈ p }
hf : LinearMap.comp f (Submodule.subtype p) = LinearMap.id
⊢ ∀ (x : { x // x ∈ p }), ↑f ↑x = x
[PROOFSTEP]
exact FunLike.congr_fun hf
| {"mathlib_filename": "Mathlib.RepresentationTheory.Maschke", "llama_tokens": 5099} |
[GOAL]
R : Type u
inst✝ : CommRing R
x✝¹ x✝ : MaximalSpectrum R
asIdeal✝¹ : Ideal R
IsMaximal✝¹ : Ideal.IsMaximal asIdeal✝¹
asIdeal✝ : Ideal R
IsMaximal✝ : Ideal.IsMaximal asIdeal✝
h :
toPrimeSpectrum { asIdeal := asIdeal✝¹, IsMaximal := IsMaximal✝¹ } =
toPrimeSpectrum { asIdeal := asIdeal✝, IsMaximal := IsMaximal✝ }
⊢ { asIdeal := asIdeal✝¹, IsMaximal := IsMaximal✝¹ } = { asIdeal := asIdeal✝, IsMaximal := IsMaximal✝ }
[PROOFSTEP]
simpa only [MaximalSpectrum.mk.injEq] using (PrimeSpectrum.ext_iff _ _).mp h
[GOAL]
R : Type u
inst✝ : CommRing R
⊢ range toPrimeSpectrum = {x | IsClosed {x}}
[PROOFSTEP]
simp only [isClosed_singleton_iff_isMaximal]
[GOAL]
R : Type u
inst✝ : CommRing R
⊢ range toPrimeSpectrum = {x | Ideal.IsMaximal x.asIdeal}
[PROOFSTEP]
ext ⟨x, _⟩
[GOAL]
case h.mk
R : Type u
inst✝ : CommRing R
x : Ideal R
IsPrime✝ : Ideal.IsPrime x
⊢ { asIdeal := x, IsPrime := IsPrime✝ } ∈ range toPrimeSpectrum ↔
{ asIdeal := x, IsPrime := IsPrime✝ } ∈ {x | Ideal.IsMaximal x.asIdeal}
[PROOFSTEP]
exact ⟨fun ⟨y, hy⟩ => hy ▸ y.IsMaximal, fun hx => ⟨⟨x, hx⟩, rfl⟩⟩
[GOAL]
R : Type u
inst✝ : CommRing R
x : MaximalSpectrum R
⊢ toPrimeSpectrum ⁻¹' {toPrimeSpectrum x} = {x}
[PROOFSTEP]
simpa only [← image_singleton] using preimage_image_eq { x } toPrimeSpectrum_injective
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
⊢ ⨅ (v : MaximalSpectrum R),
Localization.subalgebra.ofField K (Ideal.primeCompl v.asIdeal)
(_ : Ideal.primeCompl v.asIdeal ≤ nonZeroDivisors R) =
⊥
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
⊢ x ∈
⨅ (v : MaximalSpectrum R),
Localization.subalgebra.ofField K (Ideal.primeCompl v.asIdeal)
(_ : Ideal.primeCompl v.asIdeal ≤ nonZeroDivisors R) ↔
x ∈ ⊥
[PROOFSTEP]
rw [Algebra.mem_bot, Algebra.mem_iInf]
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
⊢ (∀ (i : MaximalSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)) ↔
x ∈ range ↑(algebraMap R K)
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
⊢ (∀ (i : MaximalSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)) →
x ∈ range ↑(algebraMap R K)
[PROOFSTEP]
contrapose
[GOAL]
case h.mp
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
⊢ ¬x ∈ range ↑(algebraMap R K) →
¬∀ (i : MaximalSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
[PROOFSTEP]
intro hrange hlocal
[GOAL]
case h.mp
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
hrange : ¬x ∈ range ↑(algebraMap R K)
hlocal :
∀ (i : MaximalSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
⊢ False
[PROOFSTEP]
let denom : Ideal R := (Submodule.span R {1} : Submodule R K).colon (Submodule.span R { x })
[GOAL]
case h.mp
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
hrange : ¬x ∈ range ↑(algebraMap R K)
hlocal :
∀ (i : MaximalSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x})
⊢ False
[PROOFSTEP]
have hdenom : (1 : R) ∉ denom := by
intro hdenom
rcases Submodule.mem_span_singleton.mp (Submodule.mem_colon.mp hdenom x <| Submodule.mem_span_singleton_self x) with
⟨y, hy⟩
exact hrange ⟨y, by rw [← mul_one <| algebraMap R K y, ← Algebra.smul_def, hy, one_smul]⟩
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
hrange : ¬x ∈ range ↑(algebraMap R K)
hlocal :
∀ (i : MaximalSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x})
⊢ ¬1 ∈ denom
[PROOFSTEP]
intro hdenom
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
hrange : ¬x ∈ range ↑(algebraMap R K)
hlocal :
∀ (i : MaximalSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x})
hdenom : 1 ∈ denom
⊢ False
[PROOFSTEP]
rcases Submodule.mem_span_singleton.mp (Submodule.mem_colon.mp hdenom x <| Submodule.mem_span_singleton_self x) with
⟨y, hy⟩
[GOAL]
case intro
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
hrange : ¬x ∈ range ↑(algebraMap R K)
hlocal :
∀ (i : MaximalSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x})
hdenom : 1 ∈ denom
y : R
hy : y • 1 = 1 • x
⊢ False
[PROOFSTEP]
exact hrange ⟨y, by rw [← mul_one <| algebraMap R K y, ← Algebra.smul_def, hy, one_smul]⟩
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
hrange : ¬x ∈ range ↑(algebraMap R K)
hlocal :
∀ (i : MaximalSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x})
hdenom : 1 ∈ denom
y : R
hy : y • 1 = 1 • x
⊢ ↑(algebraMap R K) y = x
[PROOFSTEP]
rw [← mul_one <| algebraMap R K y, ← Algebra.smul_def, hy, one_smul]
[GOAL]
case h.mp
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
hrange : ¬x ∈ range ↑(algebraMap R K)
hlocal :
∀ (i : MaximalSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x})
hdenom : ¬1 ∈ denom
⊢ False
[PROOFSTEP]
rcases denom.exists_le_maximal fun h => (h ▸ hdenom) Submodule.mem_top with ⟨max, hmax, hle⟩
[GOAL]
case h.mp.intro.intro
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
hrange : ¬x ∈ range ↑(algebraMap R K)
hlocal :
∀ (i : MaximalSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
denom : Ideal R := Submodule.colon (Submodule.span R {1}) (Submodule.span R {x})
hdenom : ¬1 ∈ denom
max : Ideal R
hmax : Ideal.IsMaximal max
hle : denom ≤ max
⊢ False
[PROOFSTEP]
rcases hlocal ⟨max, hmax⟩ with ⟨n, d, hd, rfl⟩
[GOAL]
case h.mp.intro.intro.intro.intro.intro
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
max : Ideal R
hmax : Ideal.IsMaximal max
n d : R
hd : d ∈ Ideal.primeCompl { asIdeal := max, IsMaximal := hmax }.asIdeal
hrange : ¬↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ range ↑(algebraMap R K)
hlocal :
∀ (i : MaximalSpectrum R),
↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
denom : Ideal R :=
Submodule.colon (Submodule.span R {1}) (Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹})
hdenom : ¬1 ∈ denom
hle : denom ≤ max
⊢ False
[PROOFSTEP]
apply hd (hle <| Submodule.mem_colon.mpr fun _ hy => _)
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
max : Ideal R
hmax : Ideal.IsMaximal max
n d : R
hd : d ∈ Ideal.primeCompl { asIdeal := max, IsMaximal := hmax }.asIdeal
hrange : ¬↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ range ↑(algebraMap R K)
hlocal :
∀ (i : MaximalSpectrum R),
↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
denom : Ideal R :=
Submodule.colon (Submodule.span R {1}) (Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹})
hdenom : ¬1 ∈ denom
hle : denom ≤ max
⊢ ∀ (x : K), x ∈ Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹} → d • x ∈ Submodule.span R {1}
[PROOFSTEP]
intro _ hy
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
max : Ideal R
hmax : Ideal.IsMaximal max
n d : R
hd : d ∈ Ideal.primeCompl { asIdeal := max, IsMaximal := hmax }.asIdeal
hrange : ¬↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ range ↑(algebraMap R K)
hlocal :
∀ (i : MaximalSpectrum R),
↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
denom : Ideal R :=
Submodule.colon (Submodule.span R {1}) (Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹})
hdenom : ¬1 ∈ denom
hle : denom ≤ max
x✝ : K
hy : x✝ ∈ Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹}
⊢ d • x✝ ∈ Submodule.span R {1}
[PROOFSTEP]
rcases Submodule.mem_span_singleton.mp hy with ⟨y, rfl⟩
[GOAL]
case intro
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
max : Ideal R
hmax : Ideal.IsMaximal max
n d : R
hd : d ∈ Ideal.primeCompl { asIdeal := max, IsMaximal := hmax }.asIdeal
hrange : ¬↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ range ↑(algebraMap R K)
hlocal :
∀ (i : MaximalSpectrum R),
↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
denom : Ideal R :=
Submodule.colon (Submodule.span R {1}) (Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹})
hdenom : ¬1 ∈ denom
hle : denom ≤ max
y : R
hy :
y • (↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹) ∈ Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹}
⊢ d • y • (↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹) ∈ Submodule.span R {1}
[PROOFSTEP]
exact
Submodule.mem_span_singleton.mpr
⟨y * n, by
rw [Algebra.smul_def, mul_one, map_mul, smul_comm, Algebra.smul_def, Algebra.smul_def,
mul_comm <| algebraMap R K d,
inv_mul_cancel_right₀ <|
(map_ne_zero_iff _ <| NoZeroSMulDivisors.algebraMap_injective R K).mpr fun h => (h ▸ hd) max.zero_mem]⟩
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
max : Ideal R
hmax : Ideal.IsMaximal max
n d : R
hd : d ∈ Ideal.primeCompl { asIdeal := max, IsMaximal := hmax }.asIdeal
hrange : ¬↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈ range ↑(algebraMap R K)
hlocal :
∀ (i : MaximalSpectrum R),
↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹ ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
denom : Ideal R :=
Submodule.colon (Submodule.span R {1}) (Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹})
hdenom : ¬1 ∈ denom
hle : denom ≤ max
y : R
hy :
y • (↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹) ∈ Submodule.span R {↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹}
⊢ (y * n) • 1 = d • y • (↑(algebraMap R K) n * (↑(algebraMap R K) d)⁻¹)
[PROOFSTEP]
rw [Algebra.smul_def, mul_one, map_mul, smul_comm, Algebra.smul_def, Algebra.smul_def, mul_comm <| algebraMap R K d,
inv_mul_cancel_right₀ <|
(map_ne_zero_iff _ <| NoZeroSMulDivisors.algebraMap_injective R K).mpr fun h => (h ▸ hd) max.zero_mem]
[GOAL]
case h.mpr
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
⊢ x ∈ range ↑(algebraMap R K) →
∀ (i : MaximalSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
[PROOFSTEP]
rintro ⟨y, rfl⟩ ⟨v, hv⟩
[GOAL]
case h.mpr.intro.mk
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
y : R
v : Ideal R
hv : Ideal.IsMaximal v
⊢ ↑(algebraMap R K) y ∈
Localization.subalgebra.ofField K (Ideal.primeCompl { asIdeal := v, IsMaximal := hv }.asIdeal)
(_ : Ideal.primeCompl { asIdeal := v, IsMaximal := hv }.asIdeal ≤ nonZeroDivisors R)
[PROOFSTEP]
exact ⟨y, 1, v.ne_top_iff_one.mp hv.ne_top, by rw [map_one, inv_one, mul_one]⟩
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
y : R
v : Ideal R
hv : Ideal.IsMaximal v
⊢ ↑(algebraMap R K) y = ↑(algebraMap R K) y * (↑(algebraMap R K) 1)⁻¹
[PROOFSTEP]
rw [map_one, inv_one, mul_one]
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
⊢ ⨅ (v : PrimeSpectrum R),
Localization.subalgebra.ofField K (Ideal.primeCompl v.asIdeal)
(_ : Ideal.primeCompl v.asIdeal ≤ nonZeroDivisors R) =
⊥
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
⊢ x ∈
⨅ (v : PrimeSpectrum R),
Localization.subalgebra.ofField K (Ideal.primeCompl v.asIdeal)
(_ : Ideal.primeCompl v.asIdeal ≤ nonZeroDivisors R) ↔
x ∈ ⊥
[PROOFSTEP]
rw [Algebra.mem_iInf]
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
⊢ (∀ (i : PrimeSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)) ↔
x ∈ ⊥
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
⊢ (∀ (i : PrimeSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)) →
x ∈ ⊥
[PROOFSTEP]
rw [← MaximalSpectrum.iInf_localization_eq_bot, Algebra.mem_iInf]
[GOAL]
case h.mp
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
⊢ (∀ (i : PrimeSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)) →
∀ (i : MaximalSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
[PROOFSTEP]
exact fun hx ⟨v, hv⟩ => hx ⟨v, hv.isPrime⟩
[GOAL]
case h.mpr
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
⊢ x ∈ ⊥ →
∀ (i : PrimeSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
[PROOFSTEP]
rw [Algebra.mem_bot]
[GOAL]
case h.mpr
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
x : K
⊢ x ∈ Set.range ↑(algebraMap R K) →
∀ (i : PrimeSpectrum R),
x ∈
Localization.subalgebra.ofField K (Ideal.primeCompl i.asIdeal)
(_ : Ideal.primeCompl i.asIdeal ≤ nonZeroDivisors R)
[PROOFSTEP]
rintro ⟨y, rfl⟩ ⟨v, hv⟩
[GOAL]
case h.mpr.intro.mk
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
y : R
v : Ideal R
hv : Ideal.IsPrime v
⊢ ↑(algebraMap R K) y ∈
Localization.subalgebra.ofField K (Ideal.primeCompl { asIdeal := v, IsPrime := hv }.asIdeal)
(_ : Ideal.primeCompl { asIdeal := v, IsPrime := hv }.asIdeal ≤ nonZeroDivisors R)
[PROOFSTEP]
exact ⟨y, 1, v.ne_top_iff_one.mp hv.ne_top, by rw [map_one, inv_one, mul_one]⟩
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
K : Type v
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsFractionRing R K
y : R
v : Ideal R
hv : Ideal.IsPrime v
⊢ ↑(algebraMap R K) y = ↑(algebraMap R K) y * (↑(algebraMap R K) 1)⁻¹
[PROOFSTEP]
rw [map_one, inv_one, mul_one]
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal", "llama_tokens": 8178} |
[GOAL]
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f)
[PROOFSTEP]
obtain ⟨g', heq⟩ := h.exists_right_inv
[GOAL]
case intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
g' : (CategoryTheory.forget CommRingCat).obj (stalk X.presheaf ↑x)
heq : ↑(germ X.presheaf x) f * g' = 1
⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f)
[PROOFSTEP]
obtain ⟨V, hxV, g, rfl⟩ := X.presheaf.germ_exist x.1 g'
[GOAL]
case intro.intro.intro.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
V : Opens ↑↑X.toPresheafedSpace
hxV : ↑x ∈ V
g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V))
heq : ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1
⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f)
[PROOFSTEP]
let W := U ⊓ V
[GOAL]
case intro.intro.intro.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
V : Opens ↑↑X.toPresheafedSpace
hxV : ↑x ∈ V
g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V))
heq : ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1
W : Opens ↑↑X.toPresheafedSpace := U ⊓ V
⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f)
[PROOFSTEP]
have hxW : x.1 ∈ W :=
⟨x.2, hxV⟩
-- Porting note : `erw` can't write into `HEq`, so this is replaced with another `HEq` in the
-- desired form
[GOAL]
case intro.intro.intro.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
V : Opens ↑↑X.toPresheafedSpace
hxV : ↑x ∈ V
g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V))
heq : ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1
W : Opens ↑↑X.toPresheafedSpace := U ⊓ V
hxW : ↑x ∈ W
⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f)
[PROOFSTEP]
replace heq :
(X.presheaf.germ ⟨x.val, hxW⟩) ((X.presheaf.map (U.infLELeft V).op) f * (X.presheaf.map (U.infLERight V).op) g) =
(X.presheaf.germ ⟨x.val, hxW⟩) 1
[GOAL]
case heq
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
V : Opens ↑↑X.toPresheafedSpace
hxV : ↑x ∈ V
g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V))
heq : ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1
W : Opens ↑↑X.toPresheafedSpace := U ⊓ V
hxW : ↑x ∈ W
⊢ ↑(germ X.presheaf { val := ↑x, property := hxW })
(↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) =
↑(germ X.presheaf { val := ↑x, property := hxW }) 1
[PROOFSTEP]
dsimp [germ]
[GOAL]
case heq
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
V : Opens ↑↑X.toPresheafedSpace
hxV : ↑x ∈ V
g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V))
heq : ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1
W : Opens ↑↑X.toPresheafedSpace := U ⊓ V
hxW : ↑x ∈ W
⊢ ↑(Limits.colimit.ι ((OpenNhds.inclusion ↑x).op ⋙ X.presheaf)
(op { obj := U ⊓ V, property := (_ : ↑{ val := ↑x, property := hxW } ∈ U ⊓ V) }))
(↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) =
↑(Limits.colimit.ι ((OpenNhds.inclusion ↑x).op ⋙ X.presheaf)
(op { obj := U ⊓ V, property := (_ : ↑{ val := ↑x, property := hxW } ∈ U ⊓ V) }))
1
[PROOFSTEP]
erw [map_mul, map_one,
show X.presheaf.germ ⟨x, hxW⟩ ((X.presheaf.map (U.infLELeft V).op) f) = X.presheaf.germ x f from
X.presheaf.germ_res_apply (Opens.infLELeft U V) ⟨x.1, hxW⟩ f,
show X.presheaf.germ ⟨x, hxW⟩ (X.presheaf.map (U.infLERight V).op g) = X.presheaf.germ ⟨x, hxV⟩ g from
X.presheaf.germ_res_apply (Opens.infLERight U V) ⟨x.1, hxW⟩ g]
[GOAL]
case heq
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
V : Opens ↑↑X.toPresheafedSpace
hxV : ↑x ∈ V
g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V))
heq : ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1
W : Opens ↑↑X.toPresheafedSpace := U ⊓ V
hxW : ↑x ∈ W
⊢ ↑(germ X.presheaf x) f * ↑(germ X.presheaf { val := ↑x, property := hxV }) g = 1
[PROOFSTEP]
exact heq
[GOAL]
case intro.intro.intro.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
V : Opens ↑↑X.toPresheafedSpace
hxV : ↑x ∈ V
g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V))
W : Opens ↑↑X.toPresheafedSpace := U ⊓ V
hxW : ↑x ∈ W
heq :
↑(germ X.presheaf { val := ↑x, property := hxW })
(↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) =
↑(germ X.presheaf { val := ↑x, property := hxW }) 1
⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f)
[PROOFSTEP]
obtain ⟨W', hxW', i₁, i₂, heq'⟩ := X.presheaf.germ_eq x.1 hxW hxW _ _ heq
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
V : Opens ↑↑X.toPresheafedSpace
hxV : ↑x ∈ V
g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V))
W : Opens ↑↑X.toPresheafedSpace := U ⊓ V
hxW : ↑x ∈ W
heq :
↑(germ X.presheaf { val := ↑x, property := hxW })
(↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) =
↑(germ X.presheaf { val := ↑x, property := hxW }) 1
W' : Opens ↑↑X.toPresheafedSpace
hxW' : ↑x ∈ W'
i₁ i₂ : W' ⟶ W
heq' :
↑(X.presheaf.map i₁.op)
(↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) =
↑(X.presheaf.map i₂.op) 1
⊢ ∃ V i x, IsUnit (↑(X.presheaf.map i.op) f)
[PROOFSTEP]
use W', i₁ ≫ Opens.infLELeft U V, hxW'
[GOAL]
case h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
V : Opens ↑↑X.toPresheafedSpace
hxV : ↑x ∈ V
g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V))
W : Opens ↑↑X.toPresheafedSpace := U ⊓ V
hxW : ↑x ∈ W
heq :
↑(germ X.presheaf { val := ↑x, property := hxW })
(↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) =
↑(germ X.presheaf { val := ↑x, property := hxW }) 1
W' : Opens ↑↑X.toPresheafedSpace
hxW' : ↑x ∈ W'
i₁ i₂ : W' ⟶ W
heq' :
↑(X.presheaf.map i₁.op)
(↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) =
↑(X.presheaf.map i₂.op) 1
⊢ IsUnit (↑(X.presheaf.map (i₁ ≫ Opens.infLELeft U V).op) f)
[PROOFSTEP]
rw [(X.presheaf.map i₂.op).map_one, (X.presheaf.map i₁.op).map_mul] at heq'
[GOAL]
case h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
V : Opens ↑↑X.toPresheafedSpace
hxV : ↑x ∈ V
g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V))
W : Opens ↑↑X.toPresheafedSpace := U ⊓ V
hxW : ↑x ∈ W
heq :
↑(germ X.presheaf { val := ↑x, property := hxW })
(↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) =
↑(germ X.presheaf { val := ↑x, property := hxW }) 1
W' : Opens ↑↑X.toPresheafedSpace
hxW' : ↑x ∈ W'
i₁ i₂ : W' ⟶ W
heq' :
↑(X.presheaf.map i₁.op) (↑(X.presheaf.map (Opens.infLELeft U V).op) f) *
↑(X.presheaf.map i₁.op) (↑(X.presheaf.map (Opens.infLERight U V).op) g) =
1
⊢ IsUnit (↑(X.presheaf.map (i₁ ≫ Opens.infLELeft U V).op) f)
[PROOFSTEP]
rw [← comp_apply, ← X.presheaf.map_comp, ← comp_apply, ← X.presheaf.map_comp, ← op_comp] at heq'
[GOAL]
case h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
V : Opens ↑↑X.toPresheafedSpace
hxV : ↑x ∈ V
g : (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op V))
W : Opens ↑↑X.toPresheafedSpace := U ⊓ V
hxW : ↑x ∈ W
heq :
↑(germ X.presheaf { val := ↑x, property := hxW })
(↑(X.presheaf.map (Opens.infLELeft U V).op) f * ↑(X.presheaf.map (Opens.infLERight U V).op) g) =
↑(germ X.presheaf { val := ↑x, property := hxW }) 1
W' : Opens ↑↑X.toPresheafedSpace
hxW' : ↑x ∈ W'
i₁ i₂ : W' ⟶ W
heq' : ↑(X.presheaf.map (i₁ ≫ Opens.infLELeft U V).op) f * ↑(X.presheaf.map ((Opens.infLERight U V).op ≫ i₁.op)) g = 1
⊢ IsUnit (↑(X.presheaf.map (i₁ ≫ Opens.infLELeft U V).op) f)
[PROOFSTEP]
exact isUnit_of_mul_eq_one _ _ heq'
[GOAL]
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
⊢ IsUnit f
[PROOFSTEP]
choose V iVU m h_unit using fun x : U => X.isUnit_res_of_isUnit_germ U f x (h x)
[GOAL]
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
⊢ IsUnit f
[PROOFSTEP]
have hcover : U ≤ iSup V
[GOAL]
case hcover
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
⊢ U ≤ iSup V
[PROOFSTEP]
intro x hxU
[GOAL]
case hcover
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
x : ↑↑X.toPresheafedSpace
hxU : x ∈ ↑U
⊢ x ∈ ↑(iSup V)
[PROOFSTEP]
erw [Opens.mem_iSup]
[GOAL]
case hcover
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
x : ↑↑X.toPresheafedSpace
hxU : x ∈ ↑U
⊢ ∃ i, x ∈ V i
[PROOFSTEP]
exact
⟨⟨x, hxU⟩, m ⟨x, hxU⟩⟩
-- Let `g x` denote the inverse of `f` in `U x`.
[GOAL]
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
⊢ IsUnit f
[PROOFSTEP]
choose g hg using fun x : U => IsUnit.exists_right_inv (h_unit x)
[GOAL]
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
⊢ IsUnit f
[PROOFSTEP]
have ic : IsCompatible (sheaf X).val V g
[GOAL]
case ic
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
⊢ IsCompatible (sheaf X).val V g
[PROOFSTEP]
intro x y
[GOAL]
case ic
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
x y : { x // x ∈ U }
⊢ ↑((sheaf X).val.map (Opens.infLELeft (V x) (V y)).op) (g x) =
↑((sheaf X).val.map (Opens.infLERight (V x) (V y)).op) (g y)
[PROOFSTEP]
apply section_ext X.sheaf (V x ⊓ V y)
[GOAL]
case ic.h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
x y : { x // x ∈ U }
⊢ ∀ (x_1 : { x_1 // x_1 ∈ V x ⊓ V y }),
↑(germ (Sheaf.presheaf (sheaf X)) x_1) (↑((sheaf X).val.map (Opens.infLELeft (V x) (V y)).op) (g x)) =
↑(germ (Sheaf.presheaf (sheaf X)) x_1) (↑((sheaf X).val.map (Opens.infLERight (V x) (V y)).op) (g y))
[PROOFSTEP]
rintro ⟨z, hzVx, hzVy⟩
[GOAL]
case ic.h.mk.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
x y : { x // x ∈ U }
z : ↑↑X.toPresheafedSpace
hzVx : z ∈ ↑(V x)
hzVy : z ∈ ↑(V y)
⊢ ↑(germ (Sheaf.presheaf (sheaf X)) { val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) })
(↑((sheaf X).val.map (Opens.infLELeft (V x) (V y)).op) (g x)) =
↑(germ (Sheaf.presheaf (sheaf X)) { val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) })
(↑((sheaf X).val.map (Opens.infLERight (V x) (V y)).op) (g y))
[PROOFSTEP]
erw [germ_res_apply, germ_res_apply]
[GOAL]
case ic.h.mk.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
x y : { x // x ∈ U }
z : ↑↑X.toPresheafedSpace
hzVx : z ∈ ↑(V x)
hzVy : z ∈ ↑(V y)
⊢ ↑(germ (Sheaf.presheaf (sheaf X))
((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑(V x)) })
{ val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) }))
(g x) =
↑(germ (Sheaf.presheaf (sheaf X))
((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑(V y)) })
{ val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) }))
(g y)
[PROOFSTEP]
apply (IsUnit.mul_right_inj (h ⟨z, (iVU x).le hzVx⟩)).mp
[GOAL]
case ic.h.mk.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
x y : { x // x ∈ U }
z : ↑↑X.toPresheafedSpace
hzVx : z ∈ ↑(V x)
hzVy : z ∈ ↑(V y)
⊢ ↑(germ X.presheaf { val := z, property := (_ : z ∈ ↑U) }) f *
↑(germ (Sheaf.presheaf (sheaf X))
((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑(V x)) })
{ val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) }))
(g x) =
↑(germ X.presheaf { val := z, property := (_ : z ∈ ↑U) }) f *
↑(germ (Sheaf.presheaf (sheaf X))
((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑(V y)) })
{ val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) }))
(g y)
[PROOFSTEP]
rw [←
show X.presheaf.germ ⟨z, hzVx⟩ (X.presheaf.map (iVU x).op f) = X.presheaf.germ ⟨z, ((iVU x) ⟨z, hzVx⟩).2⟩ f from
X.presheaf.germ_res_apply (iVU x) ⟨z, hzVx⟩ f]
-- Porting note : change was not necessary in Lean3
[GOAL]
case ic.h.mk.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
x y : { x // x ∈ U }
z : ↑↑X.toPresheafedSpace
hzVx : z ∈ ↑(V x)
hzVy : z ∈ ↑(V y)
⊢ ↑(germ X.presheaf { val := z, property := hzVx }) (↑(X.presheaf.map (iVU x).op) f) *
↑(germ (Sheaf.presheaf (sheaf X))
((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑(V x)) })
{ val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) }))
(g x) =
↑(germ X.presheaf { val := z, property := hzVx }) (↑(X.presheaf.map (iVU x).op) f) *
↑(germ (Sheaf.presheaf (sheaf X))
((fun x_1 => { val := ↑x_1, property := (_ : ↑x_1 ∈ ↑(V y)) })
{ val := z, property := (_ : z ∈ ↑(V x) ∧ z ∈ ↑(V y)) }))
(g y)
[PROOFSTEP]
change
X.presheaf.germ ⟨z, hzVx⟩ _ * (X.presheaf.germ ⟨z, hzVx⟩ _) =
X.presheaf.germ ⟨z, hzVx⟩ _ * X.presheaf.germ ⟨z, hzVy⟩ (g y)
[GOAL]
case ic.h.mk.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
x y : { x // x ∈ U }
z : ↑↑X.toPresheafedSpace
hzVx : z ∈ ↑(V x)
hzVy : z ∈ ↑(V y)
⊢ ↑(germ X.presheaf { val := z, property := hzVx }) (↑(X.presheaf.map (iVU x).op) f) *
↑(germ X.presheaf { val := z, property := hzVx }) (g x) =
↑(germ X.presheaf { val := z, property := hzVx }) (↑(X.presheaf.map (iVU x).op) f) *
↑(germ X.presheaf { val := z, property := hzVy }) (g y)
[PROOFSTEP]
rw [← RingHom.map_mul, congr_arg (X.presheaf.germ (⟨z, hzVx⟩ : V x)) (hg x),
-- Porting note : now need explicitly typing the rewritesshow
X.presheaf.germ ⟨z, hzVx⟩ (X.presheaf.map (iVU x).op f) = X.presheaf.germ ⟨z, ((iVU x) ⟨z, hzVx⟩).2⟩ f from
X.presheaf.germ_res_apply _ _ f,
-- Porting note : now need explicitly typing the rewrites←
show X.presheaf.germ ⟨z, hzVy⟩ (X.presheaf.map (iVU y).op f) = X.presheaf.germ ⟨z, ((iVU x) ⟨z, hzVx⟩).2⟩ f from
X.presheaf.germ_res_apply (iVU y) ⟨z, hzVy⟩ f,
← RingHom.map_mul, congr_arg (X.presheaf.germ (⟨z, hzVy⟩ : V y)) (hg y), RingHom.map_one, RingHom.map_one]
-- We claim that these local inverses glue together to a global inverse of `f`.
[GOAL]
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
ic : IsCompatible (sheaf X).val V g
⊢ IsUnit f
[PROOFSTEP]
obtain ⟨gl, gl_spec, -⟩ := X.sheaf.existsUnique_gluing' V U iVU hcover g ic
[GOAL]
case intro.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
ic : IsCompatible (sheaf X).val V g
gl : (CategoryTheory.forget CommRingCat).obj ((sheaf X).val.obj (op U))
gl_spec : ∀ (i : { x // x ∈ U }), ↑((sheaf X).val.map (iVU i).op) gl = g i
⊢ IsUnit f
[PROOFSTEP]
apply isUnit_of_mul_eq_one f gl
[GOAL]
case intro.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
ic : IsCompatible (sheaf X).val V g
gl : (CategoryTheory.forget CommRingCat).obj ((sheaf X).val.obj (op U))
gl_spec : ∀ (i : { x // x ∈ U }), ↑((sheaf X).val.map (iVU i).op) gl = g i
⊢ f * gl = 1
[PROOFSTEP]
apply X.sheaf.eq_of_locally_eq' V U iVU hcover
[GOAL]
case intro.intro.h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
ic : IsCompatible (sheaf X).val V g
gl : (CategoryTheory.forget CommRingCat).obj ((sheaf X).val.obj (op U))
gl_spec : ∀ (i : { x // x ∈ U }), ↑((sheaf X).val.map (iVU i).op) gl = g i
⊢ ∀ (i : { x // x ∈ U }), ↑((sheaf X).val.map (iVU i).op) (f * gl) = ↑((sheaf X).val.map (iVU i).op) 1
[PROOFSTEP]
intro i
[GOAL]
case intro.intro.h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
ic : IsCompatible (sheaf X).val V g
gl : (CategoryTheory.forget CommRingCat).obj ((sheaf X).val.obj (op U))
gl_spec : ∀ (i : { x // x ∈ U }), ↑((sheaf X).val.map (iVU i).op) gl = g i
i : { x // x ∈ U }
⊢ ↑((sheaf X).val.map (iVU i).op) (f * gl) = ↑((sheaf X).val.map (iVU i).op) 1
[PROOFSTEP]
rw [RingHom.map_one, RingHom.map_mul, gl_spec]
[GOAL]
case intro.intro.h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
h : ∀ (x : { x // x ∈ U }), IsUnit (↑(germ X.presheaf x) f)
V : { x // x ∈ U } → Opens ↑↑X.toPresheafedSpace
iVU : (x : { x // x ∈ U }) → V x ⟶ U
m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x
h_unit : ∀ (x : { x // x ∈ U }), IsUnit (↑(X.presheaf.map (iVU x).op) f)
hcover : U ≤ iSup V
g : (x : { x // x ∈ U }) → (fun x_1 => (CategoryTheory.forget CommRingCat).obj (X.presheaf.obj (op (V x)))) f
hg : ∀ (x : { x // x ∈ U }), ↑(X.presheaf.map (iVU x).op) f * g x = 1
ic : IsCompatible (sheaf X).val V g
gl : (CategoryTheory.forget CommRingCat).obj ((sheaf X).val.obj (op U))
gl_spec : ∀ (i : { x // x ∈ U }), ↑((sheaf X).val.map (iVU i).op) gl = g i
i : { x // x ∈ U }
⊢ ↑((sheaf X).val.map (iVU i).op) f * g i = 1
[PROOFSTEP]
exact hg i
[GOAL]
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
⊢ IsOpen (Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)})
[PROOFSTEP]
rw [isOpen_iff_forall_mem_open]
[GOAL]
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
⊢ ∀ (x : ↑↑X.toPresheafedSpace),
x ∈ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} →
∃ t, t ⊆ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} ∧ IsOpen t ∧ x ∈ t
[PROOFSTEP]
rintro _ ⟨x, hx, rfl⟩
[GOAL]
case intro.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
⊢ ∃ t, t ⊆ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} ∧ IsOpen t ∧ ↑x ∈ t
[PROOFSTEP]
obtain ⟨V, i, hxV, hf⟩ := X.isUnit_res_of_isUnit_germ U f x hx
[GOAL]
case intro.intro.intro.intro.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
V : Opens ↑↑X.toPresheafedSpace
i : V ⟶ U
hxV : ↑x ∈ V
hf : IsUnit (↑(X.presheaf.map i.op) f)
⊢ ∃ t, t ⊆ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} ∧ IsOpen t ∧ ↑x ∈ t
[PROOFSTEP]
use V.1
[GOAL]
case h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
V : Opens ↑↑X.toPresheafedSpace
i : V ⟶ U
hxV : ↑x ∈ V
hf : IsUnit (↑(X.presheaf.map i.op) f)
⊢ V.carrier ⊆ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} ∧ IsOpen V.carrier ∧ ↑x ∈ V.carrier
[PROOFSTEP]
refine' ⟨_, V.2, hxV⟩
[GOAL]
case h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
V : Opens ↑↑X.toPresheafedSpace
i : V ⟶ U
hxV : ↑x ∈ V
hf : IsUnit (↑(X.presheaf.map i.op) f)
⊢ V.carrier ⊆ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)}
[PROOFSTEP]
intro y hy
[GOAL]
case h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
V : Opens ↑↑X.toPresheafedSpace
i : V ⟶ U
hxV : ↑x ∈ V
hf : IsUnit (↑(X.presheaf.map i.op) f)
y : ↑↑X.toPresheafedSpace
hy : y ∈ V.carrier
⊢ y ∈ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)}
[PROOFSTEP]
use(⟨y, i.le hy⟩ : U)
[GOAL]
case h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
V : Opens ↑↑X.toPresheafedSpace
i : V ⟶ U
hxV : ↑x ∈ V
hf : IsUnit (↑(X.presheaf.map i.op) f)
y : ↑↑X.toPresheafedSpace
hy : y ∈ V.carrier
⊢ { val := y, property := (_ : y ∈ ↑U) } ∈ {x | IsUnit (↑(germ X.presheaf x) f)} ∧
↑{ val := y, property := (_ : y ∈ ↑U) } = y
[PROOFSTEP]
rw [Set.mem_setOf_eq]
[GOAL]
case h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
V : Opens ↑↑X.toPresheafedSpace
i : V ⟶ U
hxV : ↑x ∈ V
hf : IsUnit (↑(X.presheaf.map i.op) f)
y : ↑↑X.toPresheafedSpace
hy : y ∈ V.carrier
⊢ IsUnit (↑(germ X.presheaf { val := y, property := (_ : y ∈ ↑U) }) f) ∧ ↑{ val := y, property := (_ : y ∈ ↑U) } = y
[PROOFSTEP]
constructor
[GOAL]
case h.left
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
V : Opens ↑↑X.toPresheafedSpace
i : V ⟶ U
hxV : ↑x ∈ V
hf : IsUnit (↑(X.presheaf.map i.op) f)
y : ↑↑X.toPresheafedSpace
hy : y ∈ V.carrier
⊢ IsUnit (↑(germ X.presheaf { val := y, property := (_ : y ∈ ↑U) }) f)
[PROOFSTEP]
convert RingHom.isUnit_map (X.presheaf.germ ⟨y, hy⟩) hf
[GOAL]
case h.e'_3
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
V : Opens ↑↑X.toPresheafedSpace
i : V ⟶ U
hxV : ↑x ∈ V
hf : IsUnit (↑(X.presheaf.map i.op) f)
y : ↑↑X.toPresheafedSpace
hy : y ∈ V.carrier
⊢ ↑(germ X.presheaf { val := y, property := (_ : y ∈ ↑U) }) f =
↑(germ X.presheaf { val := y, property := hy }) (↑(X.presheaf.map i.op) f)
[PROOFSTEP]
exact (X.presheaf.germ_res_apply i ⟨y, hy⟩ f).symm
[GOAL]
case h.right
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
V : Opens ↑↑X.toPresheafedSpace
i : V ⟶ U
hxV : ↑x ∈ V
hf : IsUnit (↑(X.presheaf.map i.op) f)
y : ↑↑X.toPresheafedSpace
hy : y ∈ V.carrier
⊢ ↑{ val := y, property := (_ : y ∈ ↑U) } = y
[PROOFSTEP]
rfl
[GOAL]
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
⊢ ↑x ∈ basicOpen X f ↔ IsUnit (↑(germ X.presheaf x) f)
[PROOFSTEP]
constructor
[GOAL]
case mp
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
⊢ ↑x ∈ basicOpen X f → IsUnit (↑(germ X.presheaf x) f)
[PROOFSTEP]
rintro ⟨x, hx, a⟩
[GOAL]
case mp.intro.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x✝ x : { x // x ∈ U }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
a : ↑x = ↑x✝
⊢ IsUnit (↑(germ X.presheaf x✝) f)
[PROOFSTEP]
cases Subtype.eq a
[GOAL]
case mp.intro.intro.refl
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
a : ↑x = ↑x
⊢ IsUnit (↑(germ X.presheaf x) f)
[PROOFSTEP]
exact hx
[GOAL]
case mpr
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
⊢ IsUnit (↑(germ X.presheaf x) f) → ↑x ∈ basicOpen X f
[PROOFSTEP]
intro h
[GOAL]
case mpr
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
h : IsUnit (↑(germ X.presheaf x) f)
⊢ ↑x ∈ basicOpen X f
[PROOFSTEP]
exact ⟨x, h, rfl⟩
[GOAL]
X : RingedSpace
f : ↑(X.presheaf.obj (op ⊤))
x : ↑↑X.toPresheafedSpace
⊢ x ∈ ⊤
[PROOFSTEP]
trivial
[GOAL]
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
⊢ basicOpen X f ≤ U
[PROOFSTEP]
rintro _ ⟨x, _, rfl⟩
[GOAL]
case intro.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
left✝ : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
⊢ ↑x ∈ ↑U
[PROOFSTEP]
exact x.2
[GOAL]
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
⊢ IsUnit (↑(X.presheaf.map (homOfLE (_ : basicOpen X f ≤ U)).op) f)
[PROOFSTEP]
apply isUnit_of_isUnit_germ
[GOAL]
case h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
⊢ ∀ (x : { x // x ∈ basicOpen X f }),
IsUnit (↑(germ X.presheaf x) (↑(X.presheaf.map (homOfLE (_ : basicOpen X f ≤ U)).op) f))
[PROOFSTEP]
rintro ⟨_, ⟨x, (hx : IsUnit _), rfl⟩⟩
[GOAL]
case h.mk.intro.intro
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
hx : IsUnit (↑(germ X.presheaf x) f)
⊢ IsUnit
(↑(germ X.presheaf { val := ↑x, property := (_ : ∃ a, a ∈ {x | IsUnit (↑(germ X.presheaf x) f)} ∧ ↑a = ↑x) })
(↑(X.presheaf.map (homOfLE (_ : basicOpen X f ≤ U)).op) f))
[PROOFSTEP]
convert hx
[GOAL]
case h.e'_3
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : { x // x ∈ U }
hx : IsUnit (↑(germ X.presheaf x) f)
⊢ ↑(germ X.presheaf { val := ↑x, property := (_ : ∃ a, a ∈ {x | IsUnit (↑(germ X.presheaf x) f)} ∧ ↑a = ↑x) })
(↑(X.presheaf.map (homOfLE (_ : basicOpen X f ≤ U)).op) f) =
↑(germ X.presheaf x) f
[PROOFSTEP]
convert X.presheaf.germ_res_apply _ _ _
[GOAL]
X : RingedSpace
U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
i : U ⟶ V
f : ↑(X.presheaf.obj U)
⊢ basicOpen X (↑(X.presheaf.map i) f) = V.unop ⊓ basicOpen X f
[PROOFSTEP]
induction U using Opposite.rec'
[GOAL]
case h
X : RingedSpace
V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
X✝ : Opens ↑↑X.toPresheafedSpace
i : op X✝ ⟶ V
f : ↑(X.presheaf.obj (op X✝))
⊢ basicOpen X (↑(X.presheaf.map i) f) = V.unop ⊓ basicOpen X f
[PROOFSTEP]
induction V using Opposite.rec'
[GOAL]
case h.h
X : RingedSpace
X✝¹ : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op X✝¹))
X✝ : Opens ↑↑X.toPresheafedSpace
i : op X✝¹ ⟶ op X✝
⊢ basicOpen X (↑(X.presheaf.map i) f) = (op X✝).unop ⊓ basicOpen X f
[PROOFSTEP]
let g := i.unop
[GOAL]
case h.h
X : RingedSpace
X✝¹ : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op X✝¹))
X✝ : Opens ↑↑X.toPresheafedSpace
i : op X✝¹ ⟶ op X✝
g : (op X✝).unop ⟶ (op X✝¹).unop := i.unop
⊢ basicOpen X (↑(X.presheaf.map i) f) = (op X✝).unop ⊓ basicOpen X f
[PROOFSTEP]
have : i = g.op := rfl
[GOAL]
case h.h
X : RingedSpace
X✝¹ : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op X✝¹))
X✝ : Opens ↑↑X.toPresheafedSpace
i : op X✝¹ ⟶ op X✝
g : (op X✝).unop ⟶ (op X✝¹).unop := i.unop
this : i = g.op
⊢ basicOpen X (↑(X.presheaf.map i) f) = (op X✝).unop ⊓ basicOpen X f
[PROOFSTEP]
clear_value g
[GOAL]
case h.h
X : RingedSpace
X✝¹ : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op X✝¹))
X✝ : Opens ↑↑X.toPresheafedSpace
i : op X✝¹ ⟶ op X✝
g : (op X✝).unop ⟶ (op X✝¹).unop
this : i = g.op
⊢ basicOpen X (↑(X.presheaf.map i) f) = (op X✝).unop ⊓ basicOpen X f
[PROOFSTEP]
subst this
[GOAL]
case h.h
X : RingedSpace
X✝¹ : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op X✝¹))
X✝ : Opens ↑↑X.toPresheafedSpace
g : (op X✝).unop ⟶ (op X✝¹).unop
⊢ basicOpen X (↑(X.presheaf.map g.op) f) = (op X✝).unop ⊓ basicOpen X f
[PROOFSTEP]
ext
[GOAL]
case h.h.h.h
X : RingedSpace
X✝¹ : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op X✝¹))
X✝ : Opens ↑↑X.toPresheafedSpace
g : (op X✝).unop ⟶ (op X✝¹).unop
x✝ : ↑↑X.toPresheafedSpace
⊢ x✝ ∈ ↑(basicOpen X (↑(X.presheaf.map g.op) f)) ↔ x✝ ∈ ↑((op X✝).unop ⊓ basicOpen X f)
[PROOFSTEP]
constructor
[GOAL]
case h.h.h.h.mp
X : RingedSpace
X✝¹ : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op X✝¹))
X✝ : Opens ↑↑X.toPresheafedSpace
g : (op X✝).unop ⟶ (op X✝¹).unop
x✝ : ↑↑X.toPresheafedSpace
⊢ x✝ ∈ ↑(basicOpen X (↑(X.presheaf.map g.op) f)) → x✝ ∈ ↑((op X✝).unop ⊓ basicOpen X f)
[PROOFSTEP]
rintro ⟨x, hx : IsUnit _, rfl⟩
[GOAL]
case h.h.h.h.mp.intro.intro
X : RingedSpace
X✝¹ : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op X✝¹))
X✝ : Opens ↑↑X.toPresheafedSpace
g : (op X✝).unop ⟶ (op X✝¹).unop
x : { x // x ∈ (op X✝).unop }
hx : IsUnit (↑(germ X.presheaf x) (↑(X.presheaf.map g.op) f))
⊢ ↑x ∈ ↑((op X✝).unop ⊓ basicOpen X f)
[PROOFSTEP]
erw [X.presheaf.germ_res_apply _ _ _] at hx
[GOAL]
case h.h.h.h.mp.intro.intro
X : RingedSpace
X✝¹ : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op X✝¹))
X✝ : Opens ↑↑X.toPresheafedSpace
g : (op X✝).unop ⟶ (op X✝¹).unop
x : { x // x ∈ (op X✝).unop }
hx : IsUnit (↑(germ X.presheaf ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op X✝¹).unop) }) x)) f)
⊢ ↑x ∈ ↑((op X✝).unop ⊓ basicOpen X f)
[PROOFSTEP]
exact ⟨x.2, g x, hx, rfl⟩
[GOAL]
case h.h.h.h.mpr
X : RingedSpace
X✝¹ : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op X✝¹))
X✝ : Opens ↑↑X.toPresheafedSpace
g : (op X✝).unop ⟶ (op X✝¹).unop
x✝ : ↑↑X.toPresheafedSpace
⊢ x✝ ∈ ↑((op X✝).unop ⊓ basicOpen X f) → x✝ ∈ ↑(basicOpen X (↑(X.presheaf.map g.op) f))
[PROOFSTEP]
rintro ⟨hxV, x, hx, rfl⟩
[GOAL]
case h.h.h.h.mpr.intro.intro.intro
X : RingedSpace
X✝¹ : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op X✝¹))
X✝ : Opens ↑↑X.toPresheafedSpace
g : (op X✝).unop ⟶ (op X✝¹).unop
x : { x // x ∈ (op X✝¹).unop }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
hxV : ↑x ∈ ↑(op X✝).unop
⊢ ↑x ∈ ↑(basicOpen X (↑(X.presheaf.map g.op) f))
[PROOFSTEP]
refine' ⟨⟨x, hxV⟩, (_ : IsUnit _), rfl⟩
[GOAL]
case h.h.h.h.mpr.intro.intro.intro
X : RingedSpace
X✝¹ : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op X✝¹))
X✝ : Opens ↑↑X.toPresheafedSpace
g : (op X✝).unop ⟶ (op X✝¹).unop
x : { x // x ∈ (op X✝¹).unop }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
hxV : ↑x ∈ ↑(op X✝).unop
⊢ IsUnit (↑(germ X.presheaf { val := ↑x, property := hxV }) (↑(X.presheaf.map g.op) f))
[PROOFSTEP]
erw [X.presheaf.germ_res_apply _ _ _]
[GOAL]
case h.h.h.h.mpr.intro.intro.intro
X : RingedSpace
X✝¹ : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op X✝¹))
X✝ : Opens ↑↑X.toPresheafedSpace
g : (op X✝).unop ⟶ (op X✝¹).unop
x : { x // x ∈ (op X✝¹).unop }
hx : x ∈ {x | IsUnit (↑(germ X.presheaf x) f)}
hxV : ↑x ∈ ↑(op X✝).unop
⊢ IsUnit
(↑(germ X.presheaf ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op X✝¹).unop) }) { val := ↑x, property := hxV }))
f)
[PROOFSTEP]
exact hx
[GOAL]
X : RingedSpace
U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
i : U ⟶ V
inst✝ : IsIso i
f : ↑(X.presheaf.obj U)
⊢ basicOpen X (↑(X.presheaf.map i) f) = basicOpen X f
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
X : RingedSpace
U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
i : U ⟶ V
inst✝ : IsIso i
f : ↑(X.presheaf.obj U)
⊢ basicOpen X (↑(X.presheaf.map i) f) ≤ basicOpen X f
[PROOFSTEP]
rw [X.basicOpen_res i f]
[GOAL]
case a
X : RingedSpace
U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
i : U ⟶ V
inst✝ : IsIso i
f : ↑(X.presheaf.obj U)
⊢ V.unop ⊓ basicOpen X f ≤ basicOpen X f
[PROOFSTEP]
exact inf_le_right
[GOAL]
case a
X : RingedSpace
U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
i : U ⟶ V
inst✝ : IsIso i
f : ↑(X.presheaf.obj U)
⊢ basicOpen X f ≤ basicOpen X (↑(X.presheaf.map i) f)
[PROOFSTEP]
have := X.basicOpen_res (inv i) (X.presheaf.map i f)
[GOAL]
case a
X : RingedSpace
U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
i : U ⟶ V
inst✝ : IsIso i
f : ↑(X.presheaf.obj U)
this : basicOpen X (↑(X.presheaf.map (inv i)) (↑(X.presheaf.map i) f)) = U.unop ⊓ basicOpen X (↑(X.presheaf.map i) f)
⊢ basicOpen X f ≤ basicOpen X (↑(X.presheaf.map i) f)
[PROOFSTEP]
rw [← comp_apply, ← X.presheaf.map_comp, IsIso.hom_inv_id, X.presheaf.map_id, id_apply] at this
[GOAL]
case a
X : RingedSpace
U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
i : U ⟶ V
inst✝ : IsIso i
f : ↑(X.presheaf.obj U)
this : basicOpen X f = U.unop ⊓ basicOpen X (↑(X.presheaf.map i) f)
⊢ basicOpen X f ≤ basicOpen X (↑(X.presheaf.map i) f)
[PROOFSTEP]
rw [this]
[GOAL]
case a
X : RingedSpace
U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
i : U ⟶ V
inst✝ : IsIso i
f : ↑(X.presheaf.obj U)
this : basicOpen X f = U.unop ⊓ basicOpen X (↑(X.presheaf.map i) f)
⊢ U.unop ⊓ basicOpen X (↑(X.presheaf.map i) f) ≤ basicOpen X (↑(X.presheaf.map i) f)
[PROOFSTEP]
exact inf_le_right
[GOAL]
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f g : ↑(X.presheaf.obj (op U))
⊢ basicOpen X (f * g) = basicOpen X f ⊓ basicOpen X g
[PROOFSTEP]
ext1
[GOAL]
case h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f g : ↑(X.presheaf.obj (op U))
⊢ ↑(basicOpen X (f * g)) = ↑(basicOpen X f ⊓ basicOpen X g)
[PROOFSTEP]
dsimp [RingedSpace.basicOpen]
[GOAL]
case h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f g : ↑(X.presheaf.obj (op U))
⊢ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) (f * g))} =
Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) f)} ∩ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) g)}
[PROOFSTEP]
rw [← Set.image_inter Subtype.coe_injective]
[GOAL]
case h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f g : ↑(X.presheaf.obj (op U))
⊢ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) (f * g))} =
(fun a => ↑a) '' ({x | IsUnit (↑(germ X.presheaf x) f)} ∩ {x | IsUnit (↑(germ X.presheaf x) g)})
[PROOFSTEP]
congr
[GOAL]
case h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f g : ↑(X.presheaf.obj (op U))
⊢ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) (f * g))} =
(fun a => ↑a) '' ({x | IsUnit (↑(germ X.presheaf x) f)} ∩ {x | IsUnit (↑(germ X.presheaf x) g)})
[PROOFSTEP]
ext x
[GOAL]
case h.h
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f g : ↑(X.presheaf.obj (op U))
x : ↑↑X.toPresheafedSpace
⊢ x ∈ Subtype.val '' {x | IsUnit (↑(germ X.presheaf x) (f * g))} ↔
x ∈ (fun a => ↑a) '' ({x | IsUnit (↑(germ X.presheaf x) f)} ∩ {x | IsUnit (↑(germ X.presheaf x) g)})
[PROOFSTEP]
simp [map_mul, Set.mem_image]
[GOAL]
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
hf : IsUnit f
⊢ basicOpen X f = U
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
hf : IsUnit f
⊢ basicOpen X f ≤ U
[PROOFSTEP]
exact X.basicOpen_le f
[GOAL]
case a
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
hf : IsUnit f
⊢ U ≤ basicOpen X f
[PROOFSTEP]
intro x hx
[GOAL]
case a
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
hf : IsUnit f
x : ↑↑X.toPresheafedSpace
hx : x ∈ ↑U
⊢ x ∈ ↑(basicOpen X f)
[PROOFSTEP]
erw [X.mem_basicOpen f (⟨x, hx⟩ : U)]
[GOAL]
case a
X : RingedSpace
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
hf : IsUnit f
x : ↑↑X.toPresheafedSpace
hx : x ∈ ↑U
⊢ IsUnit (↑(germ X.presheaf { val := x, property := hx }) f)
[PROOFSTEP]
exact RingHom.isUnit_map _ hf
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.RingedSpace", "llama_tokens": 22502} |
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I : Ideal R
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I
[PROOFSTEP]
refine'
IsNoetherian.induction (P := fun I => ∃ Z : Multiset (PrimeSpectrum R), Multiset.prod (Z.map asIdeal) ≤ I)
(fun (M : Ideal R) hgt => _) I
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M
[PROOFSTEP]
by_cases h_prM : M.IsPrime
[GOAL]
case pos
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : Ideal.IsPrime M
⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M
[PROOFSTEP]
use{⟨M, h_prM⟩}
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : Ideal.IsPrime M
⊢ Multiset.prod (Multiset.map asIdeal {{ asIdeal := M, IsPrime := h_prM }}) ≤ M
[PROOFSTEP]
rw [Multiset.map_singleton, Multiset.prod_singleton]
[GOAL]
case neg
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M
[PROOFSTEP]
by_cases htop : M = ⊤
[GOAL]
case pos
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : M = ⊤
⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M
[PROOFSTEP]
rw [htop]
[GOAL]
case pos
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : M = ⊤
⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) ⊤
[PROOFSTEP]
exact ⟨0, le_top⟩
[GOAL]
case neg
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M
[PROOFSTEP]
have lt_add : ∀ (z) (_ : z ∉ M), M < M + span R { z } :=
by
intro z hz
refine' lt_of_le_of_ne le_sup_left fun m_eq => hz _
rw [m_eq]
exact Ideal.mem_sup_right (mem_span_singleton_self z)
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
⊢ ∀ (z : R), ¬z ∈ M → M < M + span R {z}
[PROOFSTEP]
intro z hz
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
z : R
hz : ¬z ∈ M
⊢ M < M + span R {z}
[PROOFSTEP]
refine' lt_of_le_of_ne le_sup_left fun m_eq => hz _
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
z : R
hz : ¬z ∈ M
m_eq : M = M + span R {z}
⊢ z ∈ M
[PROOFSTEP]
rw [m_eq]
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
z : R
hz : ¬z ∈ M
m_eq : M = M + span R {z}
⊢ z ∈ M + span R {z}
[PROOFSTEP]
exact Ideal.mem_sup_right (mem_span_singleton_self z)
[GOAL]
case neg
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z}
⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M
[PROOFSTEP]
obtain ⟨x, hx, y, hy, hxy⟩ := (Ideal.not_isPrime_iff.mp h_prM).resolve_left htop
[GOAL]
case neg.intro.intro.intro.intro
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z}
x : R
hx : ¬x ∈ M
y : R
hy : ¬y ∈ M
hxy : x * y ∈ M
⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M
[PROOFSTEP]
obtain ⟨Wx, h_Wx⟩ := hgt (M + span R { x }) (lt_add _ hx)
[GOAL]
case neg.intro.intro.intro.intro.intro
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z}
x : R
hx : ¬x ∈ M
y : R
hy : ¬y ∈ M
hxy : x * y ∈ M
Wx : Multiset (PrimeSpectrum R)
h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x}
⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M
[PROOFSTEP]
obtain ⟨Wy, h_Wy⟩ := hgt (M + span R { y }) (lt_add _ hy)
[GOAL]
case neg.intro.intro.intro.intro.intro.intro
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z}
x : R
hx : ¬x ∈ M
y : R
hy : ¬y ∈ M
hxy : x * y ∈ M
Wx : Multiset (PrimeSpectrum R)
h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x}
Wy : Multiset (PrimeSpectrum R)
h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y}
⊢ (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) M
[PROOFSTEP]
use Wx + Wy
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z}
x : R
hx : ¬x ∈ M
y : R
hy : ¬y ∈ M
hxy : x * y ∈ M
Wx : Multiset (PrimeSpectrum R)
h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x}
Wy : Multiset (PrimeSpectrum R)
h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y}
⊢ Multiset.prod (Multiset.map asIdeal (Wx + Wy)) ≤ M
[PROOFSTEP]
rw [Multiset.map_add, Multiset.prod_add]
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z}
x : R
hx : ¬x ∈ M
y : R
hy : ¬y ∈ M
hxy : x * y ∈ M
Wx : Multiset (PrimeSpectrum R)
h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x}
Wy : Multiset (PrimeSpectrum R)
h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y}
⊢ Multiset.prod (Multiset.map asIdeal Wx) * Multiset.prod (Multiset.map asIdeal Wy) ≤ M
[PROOFSTEP]
apply le_trans (Submodule.mul_le_mul h_Wx h_Wy)
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z}
x : R
hx : ¬x ∈ M
y : R
hy : ¬y ∈ M
hxy : x * y ∈ M
Wx : Multiset (PrimeSpectrum R)
h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x}
Wy : Multiset (PrimeSpectrum R)
h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y}
⊢ (M + span R {x}) * (M + span R {y}) ≤ M
[PROOFSTEP]
rw [add_mul]
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z}
x : R
hx : ¬x ∈ M
y : R
hy : ¬y ∈ M
hxy : x * y ∈ M
Wx : Multiset (PrimeSpectrum R)
h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x}
Wy : Multiset (PrimeSpectrum R)
h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y}
⊢ M * (M + span R {y}) + span R {x} * (M + span R {y}) ≤ M
[PROOFSTEP]
apply sup_le (show M * (M + span R { y }) ≤ M from Ideal.mul_le_right)
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z}
x : R
hx : ¬x ∈ M
y : R
hy : ¬y ∈ M
hxy : x * y ∈ M
Wx : Multiset (PrimeSpectrum R)
h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x}
Wy : Multiset (PrimeSpectrum R)
h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y}
⊢ span R {x} * (M + span R {y}) ≤ M
[PROOFSTEP]
rw [mul_add]
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z}
x : R
hx : ¬x ∈ M
y : R
hy : ¬y ∈ M
hxy : x * y ∈ M
Wx : Multiset (PrimeSpectrum R)
h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x}
Wy : Multiset (PrimeSpectrum R)
h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y}
⊢ span R {x} * M + span R {x} * span R {y} ≤ M
[PROOFSTEP]
apply sup_le (show span R { x } * M ≤ M from Ideal.mul_le_left)
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
I M : Ideal R
hgt : ∀ (J : Submodule R R), J > M → (fun I => ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I) J
h_prM : ¬Ideal.IsPrime M
htop : ¬M = ⊤
lt_add : ∀ (z : R), ¬z ∈ M → M < M + span R {z}
x : R
hx : ¬x ∈ M
y : R
hy : ¬y ∈ M
hxy : x * y ∈ M
Wx : Multiset (PrimeSpectrum R)
h_Wx : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span R {x}
Wy : Multiset (PrimeSpectrum R)
h_Wy : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span R {y}
⊢ span R {x} * span R {y} ≤ M
[PROOFSTEP]
rwa [span_mul_span, Set.singleton_mul_singleton, span_singleton_le_iff_mem]
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I : Ideal A
h_nzI : I ≠ ⊥
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
revert h_nzI
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I : Ideal A
⊢ I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
refine'
IsNoetherian.induction (P := fun I =>
I ≠ ⊥ → ∃ Z : Multiset (PrimeSpectrum A), Multiset.prod (Z.map asIdeal) ≤ I ∧ Multiset.prod (Z.map asIdeal) ≠ ⊥)
(fun (M : Ideal A) hgt => _) I
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
⊢ (fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) M
[PROOFSTEP]
intro h_nzM
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
have hA_nont : Nontrivial A
[GOAL]
case hA_nont
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
⊢ Nontrivial A
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
apply IsDomain.toNontrivial
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
by_cases h_topM : M = ⊤
[GOAL]
case pos
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : M = ⊤
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
rcases h_topM with rfl
[GOAL]
case pos
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I : Ideal A
hA_nont : Nontrivial A
hgt :
∀ (J : Submodule A A),
J > ⊤ →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : ⊤ ≠ ⊥
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ ⊤ ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
obtain ⟨p_id, h_nzp, h_pp⟩ : ∃ p : Ideal A, p ≠ ⊥ ∧ p.IsPrime := by apply Ring.not_isField_iff_exists_prime.mp h_fA
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I : Ideal A
hA_nont : Nontrivial A
hgt :
∀ (J : Submodule A A),
J > ⊤ →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : ⊤ ≠ ⊥
⊢ ∃ p, p ≠ ⊥ ∧ Ideal.IsPrime p
[PROOFSTEP]
apply Ring.not_isField_iff_exists_prime.mp h_fA
[GOAL]
case pos.intro.intro
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I : Ideal A
hA_nont : Nontrivial A
hgt :
∀ (J : Submodule A A),
J > ⊤ →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : ⊤ ≠ ⊥
p_id : Ideal A
h_nzp : p_id ≠ ⊥
h_pp : Ideal.IsPrime p_id
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ ⊤ ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
use({⟨p_id, h_pp⟩} : Multiset (PrimeSpectrum A)), le_top
[GOAL]
case right
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I : Ideal A
hA_nont : Nontrivial A
hgt :
∀ (J : Submodule A A),
J > ⊤ →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : ⊤ ≠ ⊥
p_id : Ideal A
h_nzp : p_id ≠ ⊥
h_pp : Ideal.IsPrime p_id
⊢ Multiset.prod (Multiset.map asIdeal {{ asIdeal := p_id, IsPrime := h_pp }}) ≠ ⊥
[PROOFSTEP]
rwa [Multiset.map_singleton, Multiset.prod_singleton]
[GOAL]
case neg
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
by_cases h_prM : M.IsPrime
[GOAL]
case pos
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : Ideal.IsPrime M
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
use({⟨M, h_prM⟩} : Multiset (PrimeSpectrum A))
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : Ideal.IsPrime M
⊢ Multiset.prod (Multiset.map asIdeal {{ asIdeal := M, IsPrime := h_prM }}) ≤ M ∧
Multiset.prod (Multiset.map asIdeal {{ asIdeal := M, IsPrime := h_prM }}) ≠ ⊥
[PROOFSTEP]
rw [Multiset.map_singleton, Multiset.prod_singleton]
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : Ideal.IsPrime M
⊢ { asIdeal := M, IsPrime := h_prM }.asIdeal ≤ M ∧ { asIdeal := M, IsPrime := h_prM }.asIdeal ≠ ⊥
[PROOFSTEP]
exact ⟨le_rfl, h_nzM⟩
[GOAL]
case neg
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
obtain ⟨x, hx, y, hy, h_xy⟩ := (Ideal.not_isPrime_iff.mp h_prM).resolve_left h_topM
[GOAL]
case neg.intro.intro.intro.intro
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
have lt_add : ∀ (z) (_ : z ∉ M), M < M + span A { z } :=
by
intro z hz
refine' lt_of_le_of_ne le_sup_left fun m_eq => hz _
rw [m_eq]
exact mem_sup_right (mem_span_singleton_self z)
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
⊢ ∀ (z : A), ¬z ∈ M → M < M + span A {z}
[PROOFSTEP]
intro z hz
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
z : A
hz : ¬z ∈ M
⊢ M < M + span A {z}
[PROOFSTEP]
refine' lt_of_le_of_ne le_sup_left fun m_eq => hz _
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
z : A
hz : ¬z ∈ M
m_eq : M = M + span A {z}
⊢ z ∈ M
[PROOFSTEP]
rw [m_eq]
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
z : A
hz : ¬z ∈ M
m_eq : M = M + span A {z}
⊢ z ∈ M + span A {z}
[PROOFSTEP]
exact mem_sup_right (mem_span_singleton_self z)
[GOAL]
case neg.intro.intro.intro.intro
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z}
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
obtain ⟨Wx, h_Wx_le, h_Wx_ne⟩ := hgt (M + span A { x }) (lt_add _ hx) (ne_bot_of_gt (lt_add _ hx))
[GOAL]
case neg.intro.intro.intro.intro.intro.intro
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z}
Wx : Multiset (PrimeSpectrum A)
h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x}
h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
obtain ⟨Wy, h_Wy_le, h_Wx_ne⟩ := hgt (M + span A { y }) (lt_add _ hy) (ne_bot_of_gt (lt_add _ hy))
[GOAL]
case neg.intro.intro.intro.intro.intro.intro.intro.intro
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z}
Wx : Multiset (PrimeSpectrum A)
h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x}
h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥
Wy : Multiset (PrimeSpectrum A)
h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y}
h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥
⊢ ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ M ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥
[PROOFSTEP]
use Wx + Wy
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z}
Wx : Multiset (PrimeSpectrum A)
h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x}
h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥
Wy : Multiset (PrimeSpectrum A)
h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y}
h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥
⊢ Multiset.prod (Multiset.map asIdeal (Wx + Wy)) ≤ M ∧ Multiset.prod (Multiset.map asIdeal (Wx + Wy)) ≠ ⊥
[PROOFSTEP]
rw [Multiset.map_add, Multiset.prod_add]
[GOAL]
case h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z}
Wx : Multiset (PrimeSpectrum A)
h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x}
h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥
Wy : Multiset (PrimeSpectrum A)
h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y}
h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥
⊢ Multiset.prod (Multiset.map asIdeal Wx) * Multiset.prod (Multiset.map asIdeal Wy) ≤ M ∧
Multiset.prod (Multiset.map asIdeal Wx) * Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥
[PROOFSTEP]
refine' ⟨le_trans (Submodule.mul_le_mul h_Wx_le h_Wy_le) _, mt Ideal.mul_eq_bot.mp _⟩
[GOAL]
case h.refine'_1
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z}
Wx : Multiset (PrimeSpectrum A)
h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x}
h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥
Wy : Multiset (PrimeSpectrum A)
h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y}
h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥
⊢ (M + span A {x}) * (M + span A {y}) ≤ M
[PROOFSTEP]
rw [add_mul]
[GOAL]
case h.refine'_1
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z}
Wx : Multiset (PrimeSpectrum A)
h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x}
h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥
Wy : Multiset (PrimeSpectrum A)
h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y}
h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥
⊢ M * (M + span A {y}) + span A {x} * (M + span A {y}) ≤ M
[PROOFSTEP]
apply sup_le (show M * (M + span A { y }) ≤ M from Ideal.mul_le_right)
[GOAL]
case h.refine'_1
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z}
Wx : Multiset (PrimeSpectrum A)
h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x}
h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥
Wy : Multiset (PrimeSpectrum A)
h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y}
h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥
⊢ span A {x} * (M + span A {y}) ≤ M
[PROOFSTEP]
rw [mul_add]
[GOAL]
case h.refine'_1
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z}
Wx : Multiset (PrimeSpectrum A)
h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x}
h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥
Wy : Multiset (PrimeSpectrum A)
h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y}
h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥
⊢ span A {x} * M + span A {x} * span A {y} ≤ M
[PROOFSTEP]
apply sup_le (show span A { x } * M ≤ M from Ideal.mul_le_left)
[GOAL]
case h.refine'_1
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z}
Wx : Multiset (PrimeSpectrum A)
h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x}
h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥
Wy : Multiset (PrimeSpectrum A)
h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y}
h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥
⊢ span A {x} * span A {y} ≤ M
[PROOFSTEP]
rwa [span_mul_span, Set.singleton_mul_singleton, span_singleton_le_iff_mem]
[GOAL]
case h.refine'_2
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z}
Wx : Multiset (PrimeSpectrum A)
h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x}
h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥
Wy : Multiset (PrimeSpectrum A)
h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y}
h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥
⊢ ¬(Multiset.prod (Multiset.map asIdeal Wx) = ⊥ ∨ Multiset.prod (Multiset.map asIdeal Wy) = ⊥)
[PROOFSTEP]
rintro (hx | hy)
[GOAL]
case h.refine'_2.inl
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx✝ : ¬x ∈ M
y : A
hy : ¬y ∈ M
h_xy : x * y ∈ M
lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z}
Wx : Multiset (PrimeSpectrum A)
h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x}
h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥
Wy : Multiset (PrimeSpectrum A)
h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y}
h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥
hx : Multiset.prod (Multiset.map asIdeal Wx) = ⊥
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case h.refine'_2.inr
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
h_fA : ¬IsField A
I M : Ideal A
hgt :
∀ (J : Submodule A A),
J > M →
(fun I => I ≠ ⊥ → ∃ Z, Multiset.prod (Multiset.map asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map asIdeal Z) ≠ ⊥) J
h_nzM : M ≠ ⊥
hA_nont : Nontrivial A
h_topM : ¬M = ⊤
h_prM : ¬Ideal.IsPrime M
x : A
hx : ¬x ∈ M
y : A
hy✝ : ¬y ∈ M
h_xy : x * y ∈ M
lt_add : ∀ (z : A), ¬z ∈ M → M < M + span A {z}
Wx : Multiset (PrimeSpectrum A)
h_Wx_le : Multiset.prod (Multiset.map asIdeal Wx) ≤ M + span A {x}
h_Wx_ne✝ : Multiset.prod (Multiset.map asIdeal Wx) ≠ ⊥
Wy : Multiset (PrimeSpectrum A)
h_Wy_le : Multiset.prod (Multiset.map asIdeal Wy) ≤ M + span A {y}
h_Wx_ne : Multiset.prod (Multiset.map asIdeal Wy) ≠ ⊥
hy : Multiset.prod (Multiset.map asIdeal Wy) = ⊥
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
⊢ NoetherianSpace (PrimeSpectrum R)
[PROOFSTEP]
apply ((noetherianSpace_TFAE <| PrimeSpectrum R).out 0 1).mpr
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
⊢ WellFounded fun s t => s < t
[PROOFSTEP]
have H := ‹IsNoetherianRing R›
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
H : IsNoetherianRing R
⊢ WellFounded fun s t => s < t
[PROOFSTEP]
rw [isNoetherianRing_iff, isNoetherian_iff_wellFounded] at H
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsNoetherianRing R
A : Type u
inst✝² : CommRing A
inst✝¹ : IsDomain A
inst✝ : IsNoetherianRing A
H : WellFounded fun x x_1 => x > x_1
⊢ WellFounded fun s t => s < t
[PROOFSTEP]
exact (closedsEmbedding R).dual.wellFounded H
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.PrimeSpectrum.Noetherian", "llama_tokens": 19884} |
[GOAL]
R : Type u_1
inst✝ : CommRing R
f : R[X]
⊢ IsOpen (imageOfDf f)
[PROOFSTEP]
rw [imageOfDf, setOf_exists fun i (x : PrimeSpectrum R) => coeff f i ∉ x.asIdeal]
[GOAL]
R : Type u_1
inst✝ : CommRing R
f : R[X]
⊢ IsOpen (⋃ (i : ℕ), {x | ¬coeff f i ∈ x.asIdeal})
[PROOFSTEP]
exact isOpen_iUnion fun i => isOpen_basicOpen
[GOAL]
R : Type u_1
inst✝ : CommRing R
f : R[X]
⊢ imageOfDf f = ↑(PrimeSpectrum.comap C) '' (zeroLocus {f})ᶜ
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝ : CommRing R
f : R[X]
x : PrimeSpectrum R
⊢ x ∈ imageOfDf f ↔ x ∈ ↑(PrimeSpectrum.comap C) '' (zeroLocus {f})ᶜ
[PROOFSTEP]
refine' ⟨fun hx => ⟨⟨map C x.asIdeal, isPrime_map_C_of_isPrime x.IsPrime⟩, ⟨_, _⟩⟩, _⟩
[GOAL]
case h.refine'_1
R : Type u_1
inst✝ : CommRing R
f : R[X]
x : PrimeSpectrum R
hx : x ∈ imageOfDf f
⊢ { asIdeal := Ideal.map C x.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x.asIdeal)) } ∈ (zeroLocus {f})ᶜ
[PROOFSTEP]
rw [mem_compl_iff, mem_zeroLocus, singleton_subset_iff]
[GOAL]
case h.refine'_1
R : Type u_1
inst✝ : CommRing R
f : R[X]
x : PrimeSpectrum R
hx : x ∈ imageOfDf f
⊢ ¬f ∈ ↑{ asIdeal := Ideal.map C x.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x.asIdeal)) }.asIdeal
[PROOFSTEP]
cases' hx with i hi
[GOAL]
case h.refine'_1.intro
R : Type u_1
inst✝ : CommRing R
f : R[X]
x : PrimeSpectrum R
i : ℕ
hi : ¬coeff f i ∈ x.asIdeal
⊢ ¬f ∈ ↑{ asIdeal := Ideal.map C x.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x.asIdeal)) }.asIdeal
[PROOFSTEP]
exact fun a => hi (mem_map_C_iff.mp a i)
[GOAL]
case h.refine'_2
R : Type u_1
inst✝ : CommRing R
f : R[X]
x : PrimeSpectrum R
hx : x ∈ imageOfDf f
⊢ ↑(PrimeSpectrum.comap C)
{ asIdeal := Ideal.map C x.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x.asIdeal)) } =
x
[PROOFSTEP]
ext x
[GOAL]
case h.refine'_2.asIdeal.h
R : Type u_1
inst✝ : CommRing R
f : R[X]
x✝ : PrimeSpectrum R
hx : x✝ ∈ imageOfDf f
x : R
⊢ x ∈
(↑(PrimeSpectrum.comap C)
{ asIdeal := Ideal.map C x✝.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x✝.asIdeal)) }).asIdeal ↔
x ∈ x✝.asIdeal
[PROOFSTEP]
refine' ⟨fun h => _, fun h => subset_span (mem_image_of_mem C.1 h)⟩
[GOAL]
case h.refine'_2.asIdeal.h
R : Type u_1
inst✝ : CommRing R
f : R[X]
x✝ : PrimeSpectrum R
hx : x✝ ∈ imageOfDf f
x : R
h :
x ∈
(↑(PrimeSpectrum.comap C)
{ asIdeal := Ideal.map C x✝.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x✝.asIdeal)) }).asIdeal
⊢ x ∈ x✝.asIdeal
[PROOFSTEP]
rw [← @coeff_C_zero R x _]
[GOAL]
case h.refine'_2.asIdeal.h
R : Type u_1
inst✝ : CommRing R
f : R[X]
x✝ : PrimeSpectrum R
hx : x✝ ∈ imageOfDf f
x : R
h :
x ∈
(↑(PrimeSpectrum.comap C)
{ asIdeal := Ideal.map C x✝.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map C x✝.asIdeal)) }).asIdeal
⊢ coeff (↑C x) 0 ∈ x✝.asIdeal
[PROOFSTEP]
exact mem_map_C_iff.mp h 0
[GOAL]
case h.refine'_3
R : Type u_1
inst✝ : CommRing R
f : R[X]
x : PrimeSpectrum R
⊢ x ∈ ↑(PrimeSpectrum.comap C) '' (zeroLocus {f})ᶜ → x ∈ imageOfDf f
[PROOFSTEP]
rintro ⟨xli, complement, rfl⟩
[GOAL]
case h.refine'_3.intro.intro
R : Type u_1
inst✝ : CommRing R
f : R[X]
xli : PrimeSpectrum R[X]
complement : xli ∈ (zeroLocus {f})ᶜ
⊢ ↑(PrimeSpectrum.comap C) xli ∈ imageOfDf f
[PROOFSTEP]
exact comap_C_mem_imageOfDf complement
[GOAL]
R : Type u_1
inst✝ : CommRing R
f : R[X]
⊢ IsOpenMap ↑(PrimeSpectrum.comap C)
[PROOFSTEP]
rintro U ⟨s, z⟩
[GOAL]
case intro
R : Type u_1
inst✝ : CommRing R
f : R[X]
U : Set (PrimeSpectrum R[X])
s : Set R[X]
z : zeroLocus s = Uᶜ
⊢ IsOpen (↑(PrimeSpectrum.comap C) '' U)
[PROOFSTEP]
rw [← compl_compl U, ← z, ← iUnion_of_singleton_coe s, zeroLocus_iUnion, compl_iInter, image_iUnion]
[GOAL]
case intro
R : Type u_1
inst✝ : CommRing R
f : R[X]
U : Set (PrimeSpectrum R[X])
s : Set R[X]
z : zeroLocus s = Uᶜ
⊢ IsOpen (⋃ (i : ↑s), ↑(PrimeSpectrum.comap C) '' (zeroLocus {↑i})ᶜ)
[PROOFSTEP]
simp_rw [← imageOfDf_eq_comap_C_compl_zeroLocus]
[GOAL]
case intro
R : Type u_1
inst✝ : CommRing R
f : R[X]
U : Set (PrimeSpectrum R[X])
s : Set R[X]
z : zeroLocus s = Uᶜ
⊢ IsOpen (⋃ (i : ↑s), imageOfDf ↑i)
[PROOFSTEP]
exact isOpen_iUnion fun f => isOpen_imageOfDf
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.PrimeSpectrum.IsOpenComapC", "llama_tokens": 2207} |
[GOAL]
X : Scheme
U : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ
⊢ U = U
[PROOFSTEP]
induction' U with U
[GOAL]
case h
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
⊢ op U = op U
[PROOFSTEP]
cases U
[GOAL]
case h.mk
X : Scheme
carrier✝ : Set ↑↑X.toPresheafedSpace
is_open'✝ : IsOpen carrier✝
⊢ op { carrier := carrier✝, is_open' := is_open'✝ } = op { carrier := carrier✝, is_open' := is_open'✝ }
[PROOFSTEP]
rfl
[GOAL]
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
x : ↑↑X.toPresheafedSpace
⊢ ↑(f ≫ g).val.base x = ↑g.val.base (↑f.val.base x)
[PROOFSTEP]
simp
[GOAL]
X Y : Scheme
f g : X ⟶ Y
e : f = g
U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ
⊢ (Opens.map g.val.base).op.obj U = (Opens.map f.val.base).op.obj U
[PROOFSTEP]
subst e
[GOAL]
X Y : Scheme
f : X ⟶ Y
U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ
⊢ (Opens.map f.val.base).op.obj U = (Opens.map f.val.base).op.obj U
[PROOFSTEP]
rfl
[GOAL]
X Y : Scheme
f g : X ⟶ Y
e : f = g
U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ
⊢ NatTrans.app f.val.c U =
NatTrans.app g.val.c U ≫
X.presheaf.map (eqToHom (_ : (Opens.map g.val.base).op.obj U = (Opens.map f.val.base).op.obj U))
[PROOFSTEP]
subst e
[GOAL]
X Y : Scheme
f : X ⟶ Y
U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ
⊢ NatTrans.app f.val.c U =
NatTrans.app f.val.c U ≫
X.presheaf.map (eqToHom (_ : (Opens.map f.val.base).op.obj U = (Opens.map f.val.base).op.obj U))
[PROOFSTEP]
dsimp
[GOAL]
X Y : Scheme
f : X ⟶ Y
U : (Opens ↑↑Y.toPresheafedSpace)ᵒᵖ
⊢ NatTrans.app f.val.c U = NatTrans.app f.val.c U ≫ X.presheaf.map (𝟙 (op ((Opens.map f.val.base).obj U.unop)))
[PROOFSTEP]
simp
[GOAL]
X Y : Scheme
f : X ⟶ Y
U V : Opens ↑↑Y.toPresheafedSpace
e : U = V
⊢ NatTrans.app f.val.c (op U) =
Y.presheaf.map (eqToHom (_ : V = U)).op ≫
NatTrans.app f.val.c (op V) ≫
X.presheaf.map (eqToHom (_ : (Opens.map f.val.base).obj U = (Opens.map f.val.base).obj V)).op
[PROOFSTEP]
rw [← IsIso.inv_comp_eq, ← Functor.map_inv, f.val.c.naturality, Presheaf.pushforwardObj_map]
[GOAL]
X Y : Scheme
f : X ⟶ Y
U V : Opens ↑↑Y.toPresheafedSpace
e : U = V
⊢ NatTrans.app f.val.c (op V) ≫ X.presheaf.map ((Opens.map f.val.base).op.map (inv (eqToHom (_ : V = U)).op)) =
NatTrans.app f.val.c (op V) ≫
X.presheaf.map (eqToHom (_ : (Opens.map f.val.base).obj U = (Opens.map f.val.base).obj V)).op
[PROOFSTEP]
cases e
[GOAL]
case refl
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
⊢ NatTrans.app f.val.c (op U) ≫ X.presheaf.map ((Opens.map f.val.base).op.map (inv (eqToHom (_ : U = U)).op)) =
NatTrans.app f.val.c (op U) ≫
X.presheaf.map (eqToHom (_ : (Opens.map f.val.base).obj U = (Opens.map f.val.base).obj U)).op
[PROOFSTEP]
rfl
[GOAL]
X : Scheme
U V : Opens ↑↑X.toPresheafedSpace
i : U = V
⊢ X.presheaf.map (eqToHom i).op = eqToHom (_ : X.presheaf.obj (op V) = X.presheaf.obj (op U))
[PROOFSTEP]
rw [eqToHom_op, eqToHom_map]
[GOAL]
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑X.toPresheafedSpace
⊢ (Opens.map (f ≫ inv f).val.base).obj U = U
[PROOFSTEP]
rw [IsIso.hom_inv_id]
[GOAL]
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑X.toPresheafedSpace
⊢ (Opens.map (𝟙 X).val.base).obj U = U
[PROOFSTEP]
ext1
[GOAL]
case h
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑X.toPresheafedSpace
⊢ ↑((Opens.map (𝟙 X).val.base).obj U) = ↑U
[PROOFSTEP]
rfl
[GOAL]
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑X.toPresheafedSpace
⊢ NatTrans.app (inv f).val.c (op U) =
X.presheaf.map (eqToHom (_ : (Opens.map (f ≫ inv f).val.base).obj U = U)).op ≫
inv (NatTrans.app f.val.c (op ((Opens.map (inv f).val.base).obj U)))
[PROOFSTEP]
rw [IsIso.eq_comp_inv]
[GOAL]
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑X.toPresheafedSpace
⊢ NatTrans.app (inv f).val.c (op U) ≫ NatTrans.app f.val.c (op ((Opens.map (inv f).val.base).obj U)) =
X.presheaf.map (eqToHom (_ : (Opens.map (f ≫ inv f).val.base).obj U = U)).op
[PROOFSTEP]
erw [← Scheme.comp_val_c_app]
[GOAL]
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Opens ↑↑X.toPresheafedSpace
⊢ NatTrans.app (f ≫ inv f).val.c (op U) = X.presheaf.map (eqToHom (_ : (Opens.map (f ≫ inv f).val.base).obj U = U)).op
[PROOFSTEP]
rw [Scheme.congr_app (IsIso.hom_inv_id f), Scheme.id_app, ← Functor.map_comp, eqToHom_trans, eqToHom_op]
[GOAL]
R : CommRingCatᵒᵖ
⊢ { obj := fun R => specObj R.unop, map := fun {X Y} f => specMap f.unop }.map (𝟙 R) =
𝟙 ({ obj := fun R => specObj R.unop, map := fun {X Y} f => specMap f.unop }.obj R)
[PROOFSTEP]
simp
[GOAL]
X✝ Y✝ Z✝ : CommRingCatᵒᵖ
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ { obj := fun R => specObj R.unop, map := fun {X Y} f => specMap f.unop }.map (f ≫ g) =
{ obj := fun R => specObj R.unop, map := fun {X Y} f => specMap f.unop }.map f ≫
{ obj := fun R => specObj R.unop, map := fun {X Y} f => specMap f.unop }.map g
[PROOFSTEP]
simp [specMap_comp]
[GOAL]
X : Scheme
V U✝ : Opens ↑↑X.toPresheafedSpace
f✝ g : ↑(X.presheaf.obj (op U✝))
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : ↑↑X.toPresheafedSpace
⊢ x ∈ basicOpen X f ↔ ∃ m, IsUnit (↑(Presheaf.germ X.presheaf { val := x, property := m }) f)
[PROOFSTEP]
fconstructor
[GOAL]
case mp
X : Scheme
V U✝ : Opens ↑↑X.toPresheafedSpace
f✝ g : ↑(X.presheaf.obj (op U✝))
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : ↑↑X.toPresheafedSpace
⊢ x ∈ basicOpen X f → ∃ m, IsUnit (↑(Presheaf.germ X.presheaf { val := x, property := m }) f)
[PROOFSTEP]
rintro ⟨y, hy1, rfl⟩
[GOAL]
case mp.intro.intro
X : Scheme
V U✝ : Opens ↑↑X.toPresheafedSpace
f✝ g : ↑(X.presheaf.obj (op U✝))
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
y : { x // x ∈ U }
hy1 :
y ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) f)}
⊢ ∃ m, IsUnit (↑(Presheaf.germ X.presheaf { val := ↑y, property := m }) f)
[PROOFSTEP]
exact ⟨y.2, hy1⟩
[GOAL]
case mpr
X : Scheme
V U✝ : Opens ↑↑X.toPresheafedSpace
f✝ g : ↑(X.presheaf.obj (op U✝))
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : ↑↑X.toPresheafedSpace
⊢ (∃ m, IsUnit (↑(Presheaf.germ X.presheaf { val := x, property := m }) f)) → x ∈ basicOpen X f
[PROOFSTEP]
rintro ⟨m, hm⟩
[GOAL]
case mpr.intro
X : Scheme
V U✝ : Opens ↑↑X.toPresheafedSpace
f✝ g : ↑(X.presheaf.obj (op U✝))
U : Opens ↑↑X.toPresheafedSpace
f : ↑(X.presheaf.obj (op U))
x : ↑↑X.toPresheafedSpace
m : x ∈ U
hm : IsUnit (↑(Presheaf.germ X.presheaf { val := x, property := m }) f)
⊢ x ∈ basicOpen X f
[PROOFSTEP]
exact ⟨⟨x, m⟩, hm, rfl⟩
[GOAL]
R : CommRingCat
f : ↑R
⊢ Scheme.basicOpen (Scheme.Spec.obj (op R)) (↑(SpecΓIdentity.app R).inv f) = PrimeSpectrum.basicOpen f
[PROOFSTEP]
ext x
[GOAL]
case h.h
R : CommRingCat
f : ↑R
x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace
⊢ x ∈ ↑(Scheme.basicOpen (Scheme.Spec.obj (op R)) (↑(SpecΓIdentity.app R).inv f)) ↔ x ∈ ↑(PrimeSpectrum.basicOpen f)
[PROOFSTEP]
erw [Scheme.mem_basicOpen_top]
[GOAL]
case h.h
R : CommRingCat
f : ↑R
x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace
⊢ IsUnit
(↑(Presheaf.germ (Scheme.Spec.obj (op R)).presheaf { val := x, property := _root_.trivial })
(↑(SpecΓIdentity.app R).inv f)) ↔
x ∈ ↑(PrimeSpectrum.basicOpen f)
[PROOFSTEP]
suffices IsUnit (StructureSheaf.toStalk R x f) ↔ f ∉ PrimeSpectrum.asIdeal x by exact this
[GOAL]
R : CommRingCat
f : ↑R
x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace
this : IsUnit (↑(StructureSheaf.toStalk (↑R) x) f) ↔ ¬f ∈ x.asIdeal
⊢ IsUnit
(↑(Presheaf.germ (Scheme.Spec.obj (op R)).presheaf { val := x, property := _root_.trivial })
(↑(SpecΓIdentity.app R).inv f)) ↔
x ∈ ↑(PrimeSpectrum.basicOpen f)
[PROOFSTEP]
exact this
[GOAL]
case h.h
R : CommRingCat
f : ↑R
x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace
⊢ IsUnit (↑(StructureSheaf.toStalk (↑R) x) f) ↔ ¬f ∈ x.asIdeal
[PROOFSTEP]
erw [← isUnit_map_iff (StructureSheaf.stalkToFiberRingHom R x), StructureSheaf.stalkToFiberRingHom_toStalk]
[GOAL]
case h.h
R : CommRingCat
f : ↑R
x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace
⊢ IsUnit (↑(algebraMap (↑R) (Localization.AtPrime x.asIdeal)) f) ↔ ¬f ∈ x.asIdeal
[PROOFSTEP]
exact
(IsLocalization.AtPrime.isUnit_to_map_iff (Localization.AtPrime (PrimeSpectrum.asIdeal x)) (PrimeSpectrum.asIdeal x)
f :
_)
[GOAL]
R : CommRingCat
f : ↑((Spec.toSheafedSpace.obj (op R)).presheaf.obj (op ⊤))
⊢ Scheme.basicOpen (Scheme.Spec.obj (op R)) f = PrimeSpectrum.basicOpen (↑(SpecΓIdentity.app R).hom f)
[PROOFSTEP]
convert basicOpen_eq_of_affine ((SpecΓIdentity.app R).hom f)
[GOAL]
case h.e'_2.h.h.e'_3.h.h
R : CommRingCat
f : ↑((Spec.toSheafedSpace.obj (op R)).presheaf.obj (op ⊤))
e_1✝¹ :
Opens ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace =
Opens ↑↑(Scheme.Spec.obj (op ((𝟭 CommRingCat).obj R))).toPresheafedSpace
e_1✝ : Scheme.Spec.obj (op R) = Scheme.Spec.obj (op ((𝟭 CommRingCat).obj R))
he✝ : ⊤ = ⊤
⊢ f = ↑(SpecΓIdentity.app ((𝟭 CommRingCat).obj R)).inv (↑(SpecΓIdentity.app R).hom f)
[PROOFSTEP]
exact (Iso.hom_inv_id_apply (SpecΓIdentity.app R) f).symm
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.Scheme", "llama_tokens": 4505} |
[GOAL]
X Y : Scheme
f : X ⟶ Y
x✝ : QuasiCompact f
h : ∀ (U : Set ↑↑Y.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑f.val.base ⁻¹' U)
⊢ Continuous ↑f.val.base
[PROOFSTEP]
continuity
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
⊢ QuasiCompact f
[PROOFSTEP]
constructor
[GOAL]
case isCompact_preimage
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
⊢ ∀ (U : Set ↑↑Y.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑f.val.base ⁻¹' U)
[PROOFSTEP]
intro U _ hU'
[GOAL]
case isCompact_preimage
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Set ↑↑Y.toPresheafedSpace
a✝ : IsOpen U
hU' : IsCompact U
⊢ IsCompact (↑f.val.base ⁻¹' U)
[PROOFSTEP]
convert hU'.image (inv f.1.base).continuous_toFun using 1
[GOAL]
case h.e'_3.h
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Set ↑↑Y.toPresheafedSpace
a✝ : IsOpen U
hU' : IsCompact U
e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace
⊢ ↑f.val.base ⁻¹' U = (inv f.val.base).toFun '' U
[PROOFSTEP]
rw [Set.image_eq_preimage_of_inverse]
[GOAL]
case h.e'_3.h.h₁
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Set ↑↑Y.toPresheafedSpace
a✝ : IsOpen U
hU' : IsCompact U
e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace
⊢ Function.LeftInverse (↑f.val.base) (inv f.val.base).toFun
case h.e'_3.h.h₂
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Set ↑↑Y.toPresheafedSpace
a✝ : IsOpen U
hU' : IsCompact U
e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace
⊢ Function.RightInverse (↑f.val.base) (inv f.val.base).toFun
[PROOFSTEP]
delta Function.LeftInverse
[GOAL]
case h.e'_3.h.h₁
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Set ↑↑Y.toPresheafedSpace
a✝ : IsOpen U
hU' : IsCompact U
e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace
⊢ ∀ (x : ↑↑Y.toPresheafedSpace), ↑f.val.base (ContinuousMap.toFun (inv f.val.base) x) = x
case h.e'_3.h.h₂
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
inst✝ : IsIso f
U : Set ↑↑Y.toPresheafedSpace
a✝ : IsOpen U
hU' : IsCompact U
e_1✝ : (forget TopCat).obj ↑X.toPresheafedSpace = ↑↑X.toPresheafedSpace
⊢ Function.RightInverse (↑f.val.base) (inv f.val.base).toFun
[PROOFSTEP]
exacts [IsIso.inv_hom_id_apply f.1.base, IsIso.hom_inv_id_apply f.1.base]
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
inst✝¹ : QuasiCompact f
inst✝ : QuasiCompact g
⊢ QuasiCompact (f ≫ g)
[PROOFSTEP]
constructor
[GOAL]
case isCompact_preimage
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
inst✝¹ : QuasiCompact f
inst✝ : QuasiCompact g
⊢ ∀ (U : Set ↑↑Z.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑(f ≫ g).val.base ⁻¹' U)
[PROOFSTEP]
intro U hU hU'
[GOAL]
case isCompact_preimage
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
inst✝¹ : QuasiCompact f
inst✝ : QuasiCompact g
U : Set ↑↑Z.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
⊢ IsCompact (↑(f ≫ g).val.base ⁻¹' U)
[PROOFSTEP]
rw [Scheme.comp_val_base, coe_comp, Set.preimage_comp]
[GOAL]
case isCompact_preimage
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
inst✝¹ : QuasiCompact f
inst✝ : QuasiCompact g
U : Set ↑↑Z.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
⊢ IsCompact (↑f.val.base ⁻¹' (↑g.val.base ⁻¹' U))
[PROOFSTEP]
apply QuasiCompact.isCompact_preimage
[GOAL]
case isCompact_preimage.a
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
inst✝¹ : QuasiCompact f
inst✝ : QuasiCompact g
U : Set ↑↑Z.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
⊢ IsOpen (↑g.val.base ⁻¹' U)
[PROOFSTEP]
exact
Continuous.isOpen_preimage
(by
-- porting note: `continuity` failed
-- see https://github.com/leanprover-community/mathlib4/issues/5030exact Scheme.Hom.continuous g)
_ hU
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
inst✝¹ : QuasiCompact f
inst✝ : QuasiCompact g
U : Set ↑↑Z.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
⊢ Continuous ↑g.val.base
[PROOFSTEP]
exact Scheme.Hom.continuous g
[GOAL]
case isCompact_preimage.a
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
inst✝¹ : QuasiCompact f
inst✝ : QuasiCompact g
U : Set ↑↑Z.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
⊢ IsCompact (↑g.val.base ⁻¹' U)
[PROOFSTEP]
apply QuasiCompact.isCompact_preimage
[GOAL]
case isCompact_preimage.a.a
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
inst✝¹ : QuasiCompact f
inst✝ : QuasiCompact g
U : Set ↑↑Z.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
⊢ IsOpen U
[PROOFSTEP]
assumption
[GOAL]
case isCompact_preimage.a.a
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
inst✝¹ : QuasiCompact f
inst✝ : QuasiCompact g
U : Set ↑↑Z.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
⊢ IsCompact U
[PROOFSTEP]
assumption
[GOAL]
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
U : Set ↑↑X.toPresheafedSpace
⊢ IsCompact U ∧ IsOpen U ↔ ∃ s, Set.Finite s ∧ U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
[PROOFSTEP]
apply Opens.IsBasis.isCompact_open_iff_eq_finite_iUnion (fun (U : X.affineOpens) => (U : Opens X.carrier))
[GOAL]
case hb
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
U : Set ↑↑X.toPresheafedSpace
⊢ Opens.IsBasis (Set.range fun U => ↑U)
[PROOFSTEP]
rw [Subtype.range_coe]
[GOAL]
case hb
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
U : Set ↑↑X.toPresheafedSpace
⊢ Opens.IsBasis (Scheme.affineOpens X)
[PROOFSTEP]
exact isBasis_affine_open X
[GOAL]
case hb'
X✝ Y : Scheme
f : X✝ ⟶ Y
X : Scheme
U : Set ↑↑X.toPresheafedSpace
⊢ ∀ (i : ↑(Scheme.affineOpens X)), IsCompact ↑↑i
[PROOFSTEP]
exact fun i => i.2.isCompact
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ QuasiCompact f ↔ ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)
[PROOFSTEP]
rw [QuasiCompact_iff]
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ (∀ (U : Set ↑↑Y.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑f.val.base ⁻¹' U)) ↔
∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)
[PROOFSTEP]
refine' ⟨fun H U hU => H U U.isOpen hU.isCompact, _⟩
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)) →
∀ (U : Set ↑↑Y.toPresheafedSpace), IsOpen U → IsCompact U → IsCompact (↑f.val.base ⁻¹' U)
[PROOFSTEP]
intro H U hU hU'
[GOAL]
X Y : Scheme
f : X ⟶ Y
H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)
U : Set ↑↑Y.toPresheafedSpace
hU : IsOpen U
hU' : IsCompact U
⊢ IsCompact (↑f.val.base ⁻¹' U)
[PROOFSTEP]
obtain ⟨S, hS, rfl⟩ := (isCompact_open_iff_eq_finset_affine_union U).mp ⟨hU', hU⟩
[GOAL]
case intro.intro
X Y : Scheme
f : X ⟶ Y
H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)
S : Set ↑(Scheme.affineOpens Y)
hS : Set.Finite S
hU : IsOpen (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i)
hU' : IsCompact (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i)
⊢ IsCompact (↑f.val.base ⁻¹' ⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i)
[PROOFSTEP]
simp only [Set.preimage_iUnion]
[GOAL]
case intro.intro
X Y : Scheme
f : X ⟶ Y
H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)
S : Set ↑(Scheme.affineOpens Y)
hS : Set.Finite S
hU : IsOpen (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i)
hU' : IsCompact (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑↑i)
⊢ IsCompact (⋃ (i : ↑(Scheme.affineOpens Y)) (_ : i ∈ S), ↑f.val.base ⁻¹' ↑↑i)
[PROOFSTEP]
exact Set.Finite.isCompact_biUnion hS (fun i _ => H i i.prop)
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
⊢ AffineTargetMorphismProperty.toProperty affineProperty f ↔ IsAffine Y ∧ CompactSpace ↑↑X.toPresheafedSpace
[PROOFSTEP]
delta AffineTargetMorphismProperty.toProperty QuasiCompact.affineProperty
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
f : X ⟶ Y
⊢ (∃ h, CompactSpace ↑↑X.toPresheafedSpace) ↔ IsAffine Y ∧ CompactSpace ↑↑X.toPresheafedSpace
[PROOFSTEP]
simp
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ QuasiCompact f ↔ targetAffineLocally QuasiCompact.affineProperty f
[PROOFSTEP]
rw [quasiCompact_iff_forall_affine]
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)) ↔
targetAffineLocally QuasiCompact.affineProperty f
[PROOFSTEP]
trans ∀ U : Y.affineOpens, IsCompact (f.1.base ⁻¹' (U : Set Y.carrier))
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), IsAffineOpen U → IsCompact (↑f.val.base ⁻¹' ↑U)) ↔
∀ (U : ↑(Scheme.affineOpens Y)), IsCompact (↑f.val.base ⁻¹' ↑↑U)
[PROOFSTEP]
exact ⟨fun h U => h U U.prop, fun h U hU => h ⟨U, hU⟩⟩
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ (∀ (U : ↑(Scheme.affineOpens Y)), IsCompact (↑f.val.base ⁻¹' ↑↑U)) ↔ targetAffineLocally QuasiCompact.affineProperty f
[PROOFSTEP]
apply forall_congr'
[GOAL]
case h
X Y : Scheme
f : X ⟶ Y
⊢ ∀ (a : ↑(Scheme.affineOpens Y)), IsCompact (↑f.val.base ⁻¹' ↑↑a) ↔ QuasiCompact.affineProperty (f ∣_ ↑a)
[PROOFSTEP]
exact fun _ => isCompact_iff_compactSpace
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ @QuasiCompact = targetAffineLocally QuasiCompact.affineProperty
[PROOFSTEP]
ext
[GOAL]
case h.h.h.a
X Y : Scheme
f : X ⟶ Y
x✝² x✝¹ : Scheme
x✝ : x✝² ⟶ x✝¹
⊢ QuasiCompact x✝ ↔ targetAffineLocally QuasiCompact.affineProperty x✝
[PROOFSTEP]
exact quasiCompact_iff_affineProperty _
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
⊢ IsCompact ↑(Scheme.basicOpen X f)
[PROOFSTEP]
classical
refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1
obtain ⟨s, hs, e⟩ := (isCompact_open_iff_eq_finset_affine_union _).mp ⟨hU, U.isOpen⟩
let g : s → X.affineOpens := by
intro V
use V.1 ⊓ X.basicOpen f
have : V.1.1 ⟶ U := by
apply homOfLE; change _ ⊆ (U : Set X.carrier); rw [e]
convert @Set.subset_iUnion₂ _ _ _ (fun (U : X.affineOpens) (_ : U ∈ s) => ↑U) V V.prop using 1
erw [← X.toLocallyRingedSpace.toRingedSpace.basicOpen_res this.op]
exact IsAffineOpen.basicOpenIsAffine V.1.prop _
haveI : Finite s := hs.to_subtype
refine' ⟨Set.range g, Set.finite_range g, _⟩
refine' (Set.inter_eq_right_iff_subset.mpr (SetLike.coe_subset_coe.2 <| RingedSpace.basicOpen_le _ _)).symm.trans _
rw [e, Set.iUnion₂_inter]
apply le_antisymm <;> apply Set.iUnion₂_subset
· intro i hi
exact
Set.Subset.trans (Set.Subset.rfl : _ ≤ g ⟨i, hi⟩)
(@Set.subset_iUnion₂ _ _ _ (fun (i : Scheme.affineOpens X) (_ : i ∈ Set.range g) => (i : Set X.toPresheafedSpace))
_ (Set.mem_range_self ⟨i, hi⟩))
· rintro ⟨i, hi⟩ ⟨⟨j, hj⟩, hj'⟩
rw [← hj']
refine' Set.Subset.trans _ (Set.subset_iUnion₂ j hj)
exact Set.Subset.rfl
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
⊢ IsCompact ↑(Scheme.basicOpen X f)
[PROOFSTEP]
refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
⊢ ∃ s, Set.Finite s ∧ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
[PROOFSTEP]
obtain ⟨s, hs, e⟩ := (isCompact_open_iff_eq_finset_affine_union _).mp ⟨hU, U.isOpen⟩
[GOAL]
case intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
⊢ ∃ s, Set.Finite s ∧ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
[PROOFSTEP]
let g : s → X.affineOpens := by
intro V
use V.1 ⊓ X.basicOpen f
have : V.1.1 ⟶ U := by
apply homOfLE; change _ ⊆ (U : Set X.carrier); rw [e]
convert @Set.subset_iUnion₂ _ _ _ (fun (U : X.affineOpens) (_ : U ∈ s) => ↑U) V V.prop using 1
erw [← X.toLocallyRingedSpace.toRingedSpace.basicOpen_res this.op]
exact IsAffineOpen.basicOpenIsAffine V.1.prop _
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
⊢ ↑s → ↑(Scheme.affineOpens X)
[PROOFSTEP]
intro V
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
V : ↑s
⊢ ↑(Scheme.affineOpens X)
[PROOFSTEP]
use V.1 ⊓ X.basicOpen f
[GOAL]
case property
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
V : ↑s
⊢ ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X
[PROOFSTEP]
have : V.1.1 ⟶ U := by
apply homOfLE; change _ ⊆ (U : Set X.carrier); rw [e]
convert @Set.subset_iUnion₂ _ _ _ (fun (U : X.affineOpens) (_ : U ∈ s) => ↑U) V V.prop using 1
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
V : ↑s
⊢ ↑↑V ⟶ U
[PROOFSTEP]
apply homOfLE
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
V : ↑s
⊢ ↑↑V ≤ U
[PROOFSTEP]
change _ ⊆ (U : Set X.carrier)
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
V : ↑s
⊢ ↑↑↑V ⊆ ↑U
[PROOFSTEP]
rw [e]
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
V : ↑s
⊢ ↑↑↑V ⊆ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
[PROOFSTEP]
convert @Set.subset_iUnion₂ _ _ _ (fun (U : X.affineOpens) (_ : U ∈ s) => ↑U) V V.prop using 1
[GOAL]
case property
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
V : ↑s
this : ↑↑V ⟶ U
⊢ ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X
[PROOFSTEP]
erw [← X.toLocallyRingedSpace.toRingedSpace.basicOpen_res this.op]
[GOAL]
case property
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
V : ↑s
this : ↑↑V ⟶ U
⊢ RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace)
(↑((LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf.map this.op) f) ∈
Scheme.affineOpens X
[PROOFSTEP]
exact IsAffineOpen.basicOpenIsAffine V.1.prop _
[GOAL]
case intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
g : ↑s → ↑(Scheme.affineOpens X) :=
fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) }
⊢ ∃ s, Set.Finite s ∧ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
[PROOFSTEP]
haveI : Finite s := hs.to_subtype
[GOAL]
case intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
g : ↑s → ↑(Scheme.affineOpens X) :=
fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) }
this : Finite ↑s
⊢ ∃ s, Set.Finite s ∧ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
[PROOFSTEP]
refine' ⟨Set.range g, Set.finite_range g, _⟩
[GOAL]
case intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
g : ↑s → ↑(Scheme.affineOpens X) :=
fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) }
this : Finite ↑s
⊢ ↑(Scheme.basicOpen X f) = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i
[PROOFSTEP]
refine' (Set.inter_eq_right_iff_subset.mpr (SetLike.coe_subset_coe.2 <| RingedSpace.basicOpen_le _ _)).symm.trans _
[GOAL]
case intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
g : ↑s → ↑(Scheme.affineOpens X) :=
fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) }
this : Finite ↑s
⊢ ↑U ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) =
⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i
[PROOFSTEP]
rw [e, Set.iUnion₂_inter]
[GOAL]
case intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
g : ↑s → ↑(Scheme.affineOpens X) :=
fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) }
this : Finite ↑s
⊢ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s),
↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) =
⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i
[PROOFSTEP]
apply le_antisymm
[GOAL]
case intro.intro.a
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
g : ↑s → ↑(Scheme.affineOpens X) :=
fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) }
this : Finite ↑s
⊢ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s),
↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) ≤
⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i
[PROOFSTEP]
apply Set.iUnion₂_subset
[GOAL]
case intro.intro.a
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
g : ↑s → ↑(Scheme.affineOpens X) :=
fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) }
this : Finite ↑s
⊢ ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i ≤
⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s),
↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f)
[PROOFSTEP]
apply Set.iUnion₂_subset
[GOAL]
case intro.intro.a.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
g : ↑s → ↑(Scheme.affineOpens X) :=
fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) }
this : Finite ↑s
⊢ ∀ (i : ↑(Scheme.affineOpens X)),
i ∈ s →
↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) ⊆
⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i
[PROOFSTEP]
intro i hi
[GOAL]
case intro.intro.a.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
g : ↑s → ↑(Scheme.affineOpens X) :=
fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) }
this : Finite ↑s
i : ↑(Scheme.affineOpens X)
hi : i ∈ s
⊢ ↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f) ⊆
⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ Set.range g), ↑↑i
[PROOFSTEP]
exact
Set.Subset.trans (Set.Subset.rfl : _ ≤ g ⟨i, hi⟩)
(@Set.subset_iUnion₂ _ _ _ (fun (i : Scheme.affineOpens X) (_ : i ∈ Set.range g) => (i : Set X.toPresheafedSpace)) _
(Set.mem_range_self ⟨i, hi⟩))
[GOAL]
case intro.intro.a.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
g : ↑s → ↑(Scheme.affineOpens X) :=
fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) }
this : Finite ↑s
⊢ ∀ (i : ↑(Scheme.affineOpens X)),
i ∈ Set.range g →
↑↑i ⊆
⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s),
↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f)
[PROOFSTEP]
rintro ⟨i, hi⟩ ⟨⟨j, hj⟩, hj'⟩
[GOAL]
case intro.intro.a.h.mk.intro.mk
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
g : ↑s → ↑(Scheme.affineOpens X) :=
fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) }
this : Finite ↑s
i : Opens ↑↑X.toPresheafedSpace
hi : i ∈ Scheme.affineOpens X
j : ↑(Scheme.affineOpens X)
hj : j ∈ s
hj' : g { val := j, property := hj } = { val := i, property := hi }
⊢ ↑↑{ val := i, property := hi } ⊆
⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s),
↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f)
[PROOFSTEP]
rw [← hj']
[GOAL]
case intro.intro.a.h.mk.intro.mk
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
g : ↑s → ↑(Scheme.affineOpens X) :=
fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) }
this : Finite ↑s
i : Opens ↑↑X.toPresheafedSpace
hi : i ∈ Scheme.affineOpens X
j : ↑(Scheme.affineOpens X)
hj : j ∈ s
hj' : g { val := j, property := hj } = { val := i, property := hi }
⊢ ↑↑(g { val := j, property := hj }) ⊆
⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s),
↑↑i ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f)
[PROOFSTEP]
refine' Set.Subset.trans _ (Set.subset_iUnion₂ j hj)
[GOAL]
case intro.intro.a.h.mk.intro.mk
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact ↑U
f : ↑(X.presheaf.obj (op U))
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : ↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
g : ↑s → ↑(Scheme.affineOpens X) :=
fun V => { val := ↑↑V ⊓ Scheme.basicOpen X f, property := (_ : ↑↑V ⊓ Scheme.basicOpen X f ∈ Scheme.affineOpens X) }
this : Finite ↑s
i : Opens ↑↑X.toPresheafedSpace
hi : i ∈ Scheme.affineOpens X
j : ↑(Scheme.affineOpens X)
hj : j ∈ s
hj' : g { val := j, property := hj } = { val := i, property := hi }
⊢ ↑↑(g { val := j, property := hj }) ⊆
↑↑j ∩ ↑(RingedSpace.basicOpen (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace) f)
[PROOFSTEP]
exact Set.Subset.rfl
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ AffineTargetMorphismProperty.IsLocal affineProperty
[PROOFSTEP]
constructor
[GOAL]
case RespectsIso
X Y : Scheme
f : X ⟶ Y
⊢ MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty affineProperty)
[PROOFSTEP]
apply AffineTargetMorphismProperty.respectsIso_mk
[GOAL]
case RespectsIso.h₁
X Y : Scheme
f : X ⟶ Y
⊢ ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], affineProperty f → affineProperty (e.hom ≫ f)
[PROOFSTEP]
rintro X Y Z e _ _ H
[GOAL]
case RespectsIso.h₂
X Y : Scheme
f : X ⟶ Y
⊢ ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], affineProperty f → affineProperty (f ≫ e.hom)
[PROOFSTEP]
rintro X Y Z e _ _ H
[GOAL]
case RespectsIso.h₁
X✝ Y✝ : Scheme
f : X✝ ⟶ Y✝
X Y Z : Scheme
e : X ≅ Y
f✝ : Y ⟶ Z
inst✝ : IsAffine Z
H : affineProperty f✝
⊢ affineProperty (e.hom ≫ f✝)
case RespectsIso.h₂
X✝ Y✝ : Scheme
f : X✝ ⟶ Y✝
X Y Z : Scheme
e : Y ≅ Z
f✝ : X ⟶ Y
h✝ : IsAffine Y
H : affineProperty f✝
⊢ affineProperty (f✝ ≫ e.hom)
[PROOFSTEP]
exacts [@Homeomorph.compactSpace _ _ _ _ H (TopCat.homeoOfIso (asIso e.inv.1.base)), H]
[GOAL]
case toBasicOpen
X Y : Scheme
f : X ⟶ Y
⊢ ∀ {X Y : Scheme} [inst : IsAffine Y] (f : X ⟶ Y) (r : ↑(Y.presheaf.obj (op ⊤))),
affineProperty f → affineProperty (f ∣_ Scheme.basicOpen Y r)
[PROOFSTEP]
introv H
[GOAL]
case toBasicOpen
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
H : affineProperty f
⊢ affineProperty (f ∣_ Scheme.basicOpen Y r)
[PROOFSTEP]
dsimp [affineProperty] at H ⊢
[GOAL]
case toBasicOpen
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
H : CompactSpace ↑↑X.toPresheafedSpace
⊢ CompactSpace ↑((Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (Scheme.basicOpen Y r)))
[PROOFSTEP]
change CompactSpace ((Opens.map f.val.base).obj (Y.basicOpen r))
[GOAL]
case toBasicOpen
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
H : CompactSpace ↑↑X.toPresheafedSpace
⊢ CompactSpace { x // x ∈ (Opens.map f.val.base).obj (Scheme.basicOpen Y r) }
[PROOFSTEP]
rw [Scheme.preimage_basicOpen f r]
[GOAL]
case toBasicOpen
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
H : CompactSpace ↑↑X.toPresheafedSpace
⊢ CompactSpace { x // x ∈ Scheme.basicOpen X (↑(NatTrans.app f.val.c (op ⊤)) r) }
[PROOFSTEP]
erw [← isCompact_iff_compactSpace]
[GOAL]
case toBasicOpen
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
H : CompactSpace ↑↑X.toPresheafedSpace
⊢ IsCompact ↑(Scheme.basicOpen X (↑(NatTrans.app f.val.c (op ⊤)) r))
[PROOFSTEP]
rw [← isCompact_univ_iff] at H
[GOAL]
case toBasicOpen
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
H : IsCompact Set.univ
⊢ IsCompact ↑(Scheme.basicOpen X (↑(NatTrans.app f.val.c (op ⊤)) r))
[PROOFSTEP]
apply isCompact_basicOpen
[GOAL]
case toBasicOpen.hU
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
H : IsCompact Set.univ
⊢ IsCompact ↑((Opens.map f.val.base).obj ⊤)
[PROOFSTEP]
exact H
[GOAL]
case ofBasicOpenCover
X Y : Scheme
f : X ⟶ Y
⊢ ∀ {X Y : Scheme} [inst : IsAffine Y] (f : X ⟶ Y) (s : Finset ↑(Y.presheaf.obj (op ⊤))),
Ideal.span ↑s = ⊤ → (∀ (r : { x // x ∈ s }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)) → affineProperty f
[PROOFSTEP]
rintro X Y H f S hS hS'
[GOAL]
case ofBasicOpenCover
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : Ideal.span ↑S = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ affineProperty f
[PROOFSTEP]
rw [← IsAffineOpen.basicOpen_union_eq_self_iff] at hS
[GOAL]
case ofBasicOpenCover
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ affineProperty f
case ofBasicOpenCover.hU
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : Ideal.span ↑S = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ IsAffineOpen ⊤
[PROOFSTEP]
delta QuasiCompact.affineProperty
[GOAL]
case ofBasicOpenCover
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ CompactSpace ↑↑X.toPresheafedSpace
case ofBasicOpenCover.hU
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : Ideal.span ↑S = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ IsAffineOpen ⊤
[PROOFSTEP]
rw [← isCompact_univ_iff]
[GOAL]
case ofBasicOpenCover
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ IsCompact Set.univ
case ofBasicOpenCover.hU
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : Ideal.span ↑S = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ IsAffineOpen ⊤
[PROOFSTEP]
change IsCompact ((Opens.map f.val.base).obj ⊤).1
[GOAL]
case ofBasicOpenCover
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ IsCompact ((Opens.map f.val.base).obj ⊤).carrier
case ofBasicOpenCover.hU
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : Ideal.span ↑S = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ IsAffineOpen ⊤
[PROOFSTEP]
rw [← hS]
[GOAL]
case ofBasicOpenCover
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ IsCompact ((Opens.map f.val.base).obj (⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f)).carrier
case ofBasicOpenCover.hU
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : Ideal.span ↑S = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ IsAffineOpen ⊤
[PROOFSTEP]
dsimp [Opens.map]
[GOAL]
case ofBasicOpenCover
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ IsCompact (↑f.val.base ⁻¹' ↑(⨆ (f : { x // x ∈ S }), Scheme.basicOpen Y ↑f))
case ofBasicOpenCover.hU
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : Ideal.span ↑S = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ IsAffineOpen ⊤
[PROOFSTEP]
simp only [Opens.iSup_mk, Opens.carrier_eq_coe, Opens.coe_mk, Set.preimage_iUnion]
[GOAL]
case ofBasicOpenCover
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : ⨆ (f : ↑↑S), Scheme.basicOpen Y ↑f = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ IsCompact (⋃ (i : { x // x ∈ S }), ↑f.val.base ⁻¹' ↑(Scheme.basicOpen Y ↑i))
case ofBasicOpenCover.hU
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y : Scheme
H : IsAffine Y
f : X ⟶ Y
S : Finset ↑(Y.presheaf.obj (op ⊤))
hS : Ideal.span ↑S = ⊤
hS' : ∀ (r : { x // x ∈ S }), affineProperty (f ∣_ Scheme.basicOpen Y ↑r)
⊢ IsAffineOpen ⊤
[PROOFSTEP]
exacts [isCompact_iUnion fun i => isCompact_iff_compactSpace.mpr (hS' i), topIsAffineOpen _]
[GOAL]
X Y : Scheme
f : X ⟶ Y
⊢ AffineTargetMorphismProperty.StableUnderBaseChange affineProperty
[PROOFSTEP]
intro X Y S _ _ f g h
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y S : Scheme
inst✝¹ : IsAffine S
inst✝ : IsAffine X
f : X ⟶ S
g : Y ⟶ S
h : affineProperty g
⊢ affineProperty pullback.fst
[PROOFSTEP]
rw [QuasiCompact.affineProperty] at h ⊢
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y S : Scheme
inst✝¹ : IsAffine S
inst✝ : IsAffine X
f : X ⟶ S
g : Y ⟶ S
h : CompactSpace ↑↑Y.toPresheafedSpace
⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
skip
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y S : Scheme
inst✝¹ : IsAffine S
inst✝ : IsAffine X
f : X ⟶ S
g : Y ⟶ S
h : CompactSpace ↑↑Y.toPresheafedSpace
⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
let 𝒰 := Scheme.Pullback.openCoverOfRight Y.affineCover.finiteSubcover f g
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y S : Scheme
inst✝¹ : IsAffine S
inst✝ : IsAffine X
f : X ⟶ S
g : Y ⟶ S
h : CompactSpace ↑↑Y.toPresheafedSpace
𝒰 : Scheme.OpenCover (pullback f g) :=
Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g
⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
have : Finite 𝒰.J := by dsimp; infer_instance
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y S : Scheme
inst✝¹ : IsAffine S
inst✝ : IsAffine X
f : X ⟶ S
g : Y ⟶ S
h : CompactSpace ↑↑Y.toPresheafedSpace
𝒰 : Scheme.OpenCover (pullback f g) :=
Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g
⊢ Finite 𝒰.J
[PROOFSTEP]
dsimp
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y S : Scheme
inst✝¹ : IsAffine S
inst✝ : IsAffine X
f : X ⟶ S
g : Y ⟶ S
h : CompactSpace ↑↑Y.toPresheafedSpace
𝒰 : Scheme.OpenCover (pullback f g) :=
Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g
⊢ Finite (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)).J
[PROOFSTEP]
infer_instance
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y S : Scheme
inst✝¹ : IsAffine S
inst✝ : IsAffine X
f : X ⟶ S
g : Y ⟶ S
h : CompactSpace ↑↑Y.toPresheafedSpace
𝒰 : Scheme.OpenCover (pullback f g) :=
Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g
this : Finite 𝒰.J
⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
have : ∀ i, CompactSpace (𝒰.obj i).carrier := by intro i; dsimp; infer_instance
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y S : Scheme
inst✝¹ : IsAffine S
inst✝ : IsAffine X
f : X ⟶ S
g : Y ⟶ S
h : CompactSpace ↑↑Y.toPresheafedSpace
𝒰 : Scheme.OpenCover (pullback f g) :=
Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g
this : Finite 𝒰.J
⊢ ∀ (i : 𝒰.J), CompactSpace ↑↑(Scheme.OpenCover.obj 𝒰 i).toPresheafedSpace
[PROOFSTEP]
intro i
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y S : Scheme
inst✝¹ : IsAffine S
inst✝ : IsAffine X
f : X ⟶ S
g : Y ⟶ S
h : CompactSpace ↑↑Y.toPresheafedSpace
𝒰 : Scheme.OpenCover (pullback f g) :=
Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g
this : Finite 𝒰.J
i : 𝒰.J
⊢ CompactSpace ↑↑(Scheme.OpenCover.obj 𝒰 i).toPresheafedSpace
[PROOFSTEP]
dsimp
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y S : Scheme
inst✝¹ : IsAffine S
inst✝ : IsAffine X
f : X ⟶ S
g : Y ⟶ S
h : CompactSpace ↑↑Y.toPresheafedSpace
𝒰 : Scheme.OpenCover (pullback f g) :=
Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g
this : Finite 𝒰.J
i : 𝒰.J
⊢ CompactSpace
↑↑(pullback f
(Scheme.OpenCover.map (Scheme.affineCover Y) (Scheme.OpenCover.f (Scheme.affineCover Y) ↑i) ≫
g)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
infer_instance
[GOAL]
X✝ Y✝ : Scheme
f✝ : X✝ ⟶ Y✝
X Y S : Scheme
inst✝¹ : IsAffine S
inst✝ : IsAffine X
f : X ⟶ S
g : Y ⟶ S
h : CompactSpace ↑↑Y.toPresheafedSpace
𝒰 : Scheme.OpenCover (pullback f g) :=
Scheme.Pullback.openCoverOfRight (Scheme.OpenCover.finiteSubcover (Scheme.affineCover Y)) f g
this✝ : Finite 𝒰.J
this : ∀ (i : 𝒰.J), CompactSpace ↑↑(Scheme.OpenCover.obj 𝒰 i).toPresheafedSpace
⊢ CompactSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
exact 𝒰.compactSpace
[GOAL]
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
⊢ P S
[PROOFSTEP]
classical
obtain ⟨s, hs, hs'⟩ := (isCompact_open_iff_eq_finset_affine_union S.1).mp ⟨hS, S.2⟩
replace hs' : S = iSup fun i : s => (i : Opens X.carrier) := by ext1; simpa using hs'
subst hs'
apply @Set.Finite.induction_on _ _ _ hs
· convert h₁; rw [iSup_eq_bot]; rintro ⟨_, h⟩; exact h.elim
· intro x s _ hs h₄
have : IsCompact (⨆ i : s, (i : Opens X.carrier)).1 := by
refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1; exact ⟨s, hs, by simp⟩
convert h₂ _ this x h₄
rw [iSup_subtype, sup_comm]
conv_rhs => rw [iSup_subtype]
exact iSup_insert
[GOAL]
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
⊢ P S
[PROOFSTEP]
obtain ⟨s, hs, hs'⟩ := (isCompact_open_iff_eq_finset_affine_union S.1).mp ⟨hS, S.2⟩
[GOAL]
case intro.intro
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
hs' : S.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
⊢ P S
[PROOFSTEP]
replace hs' : S = iSup fun i : s => (i : Opens X.carrier) := by ext1; simpa using hs'
[GOAL]
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
hs' : S.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
⊢ S = ⨆ (i : ↑s), ↑↑i
[PROOFSTEP]
ext1
[GOAL]
case h
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
hs' : S.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
⊢ ↑S = ↑(⨆ (i : ↑s), ↑↑i)
[PROOFSTEP]
simpa using hs'
[GOAL]
case intro.intro
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
S : Opens ↑↑X.toPresheafedSpace
hS : IsCompact S.carrier
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
hs' : S = ⨆ (i : ↑s), ↑↑i
⊢ P S
[PROOFSTEP]
subst hs'
[GOAL]
case intro.intro
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
⊢ P (⨆ (i : ↑s), ↑↑i)
[PROOFSTEP]
apply @Set.Finite.induction_on _ _ _ hs
[GOAL]
case intro.intro.H0
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
⊢ P (⨆ (i : ↑∅), ↑↑i)
[PROOFSTEP]
convert h₁
[GOAL]
case h.e'_1
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
⊢ ⨆ (i : ↑∅), ↑↑i = ⊥
[PROOFSTEP]
rw [iSup_eq_bot]
[GOAL]
case h.e'_1
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
⊢ ∀ (i : ↑∅), ↑↑i = ⊥
[PROOFSTEP]
rintro ⟨_, h⟩
[GOAL]
case h.e'_1.mk
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
val✝ : ↑(Scheme.affineOpens X)
h : val✝ ∈ ∅
⊢ ↑↑{ val := val✝, property := h } = ⊥
[PROOFSTEP]
exact h.elim
[GOAL]
case intro.intro.H1
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
hS : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
⊢ ∀ {a : ↑(Scheme.affineOpens X)} {s : Set ↑(Scheme.affineOpens X)},
¬a ∈ s → Set.Finite s → P (⨆ (i : ↑s), ↑↑i) → P (⨆ (i : ↑(insert a s)), ↑↑i)
[PROOFSTEP]
intro x s _ hs h₄
[GOAL]
case intro.intro.H1
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s✝ : Set ↑(Scheme.affineOpens X)
hs✝ : Set.Finite s✝
hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier
x : ↑(Scheme.affineOpens X)
s : Set ↑(Scheme.affineOpens X)
a✝ : ¬x ∈ s
hs : Set.Finite s
h₄ : P (⨆ (i : ↑s), ↑↑i)
⊢ P (⨆ (i : ↑(insert x s)), ↑↑i)
[PROOFSTEP]
have : IsCompact (⨆ i : s, (i : Opens X.carrier)).1 := by
refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1; exact ⟨s, hs, by simp⟩
[GOAL]
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s✝ : Set ↑(Scheme.affineOpens X)
hs✝ : Set.Finite s✝
hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier
x : ↑(Scheme.affineOpens X)
s : Set ↑(Scheme.affineOpens X)
a✝ : ¬x ∈ s
hs : Set.Finite s
h₄ : P (⨆ (i : ↑s), ↑↑i)
⊢ IsCompact (⨆ (i : ↑s), ↑↑i).carrier
[PROOFSTEP]
refine' ((isCompact_open_iff_eq_finset_affine_union _).mpr _).1
[GOAL]
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s✝ : Set ↑(Scheme.affineOpens X)
hs✝ : Set.Finite s✝
hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier
x : ↑(Scheme.affineOpens X)
s : Set ↑(Scheme.affineOpens X)
a✝ : ¬x ∈ s
hs : Set.Finite s
h₄ : P (⨆ (i : ↑s), ↑↑i)
⊢ ∃ s_1, Set.Finite s_1 ∧ (⨆ (i : ↑s), ↑↑i).carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s_1), ↑↑i
[PROOFSTEP]
exact ⟨s, hs, by simp⟩
[GOAL]
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s✝ : Set ↑(Scheme.affineOpens X)
hs✝ : Set.Finite s✝
hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier
x : ↑(Scheme.affineOpens X)
s : Set ↑(Scheme.affineOpens X)
a✝ : ¬x ∈ s
hs : Set.Finite s
h₄ : P (⨆ (i : ↑s), ↑↑i)
⊢ (⨆ (i : ↑s), ↑↑i).carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
[PROOFSTEP]
simp
[GOAL]
case intro.intro.H1
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s✝ : Set ↑(Scheme.affineOpens X)
hs✝ : Set.Finite s✝
hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier
x : ↑(Scheme.affineOpens X)
s : Set ↑(Scheme.affineOpens X)
a✝ : ¬x ∈ s
hs : Set.Finite s
h₄ : P (⨆ (i : ↑s), ↑↑i)
this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
⊢ P (⨆ (i : ↑(insert x s)), ↑↑i)
[PROOFSTEP]
convert h₂ _ this x h₄
[GOAL]
case h.e'_1
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s✝ : Set ↑(Scheme.affineOpens X)
hs✝ : Set.Finite s✝
hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier
x : ↑(Scheme.affineOpens X)
s : Set ↑(Scheme.affineOpens X)
a✝ : ¬x ∈ s
hs : Set.Finite s
h₄ : P (⨆ (i : ↑s), ↑↑i)
this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
⊢ ⨆ (i : ↑(insert x s)), ↑↑i = (⨆ (i : ↑s), ↑↑i) ⊔ ↑x
[PROOFSTEP]
rw [iSup_subtype, sup_comm]
[GOAL]
case h.e'_1
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s✝ : Set ↑(Scheme.affineOpens X)
hs✝ : Set.Finite s✝
hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier
x : ↑(Scheme.affineOpens X)
s : Set ↑(Scheme.affineOpens X)
a✝ : ¬x ∈ s
hs : Set.Finite s
h₄ : P (⨆ (i : ↑s), ↑↑i)
this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
⊢ ⨆ (i : ↑(Scheme.affineOpens X)) (h : i ∈ insert x s), ↑↑{ val := i, property := h } = ↑x ⊔ ⨆ (i : ↑s), ↑↑i
[PROOFSTEP]
conv_rhs => rw [iSup_subtype]
[GOAL]
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s✝ : Set ↑(Scheme.affineOpens X)
hs✝ : Set.Finite s✝
hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier
x : ↑(Scheme.affineOpens X)
s : Set ↑(Scheme.affineOpens X)
a✝ : ¬x ∈ s
hs : Set.Finite s
h₄ : P (⨆ (i : ↑s), ↑↑i)
this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
| ↑x ⊔ ⨆ (i : ↑s), ↑↑i
[PROOFSTEP]
rw [iSup_subtype]
[GOAL]
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s✝ : Set ↑(Scheme.affineOpens X)
hs✝ : Set.Finite s✝
hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier
x : ↑(Scheme.affineOpens X)
s : Set ↑(Scheme.affineOpens X)
a✝ : ¬x ∈ s
hs : Set.Finite s
h₄ : P (⨆ (i : ↑s), ↑↑i)
this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
| ↑x ⊔ ⨆ (i : ↑s), ↑↑i
[PROOFSTEP]
rw [iSup_subtype]
[GOAL]
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s✝ : Set ↑(Scheme.affineOpens X)
hs✝ : Set.Finite s✝
hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier
x : ↑(Scheme.affineOpens X)
s : Set ↑(Scheme.affineOpens X)
a✝ : ¬x ∈ s
hs : Set.Finite s
h₄ : P (⨆ (i : ↑s), ↑↑i)
this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
| ↑x ⊔ ⨆ (i : ↑s), ↑↑i
[PROOFSTEP]
rw [iSup_subtype]
[GOAL]
case h.e'_1
X Y : Scheme
f : X ⟶ Y
Z : Scheme
P : Opens ↑↑X.toPresheafedSpace → Prop
h₁ : P ⊥
h₂ : ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), P S → P (S ⊔ ↑U)
s✝ : Set ↑(Scheme.affineOpens X)
hs✝ : Set.Finite s✝
hS : IsCompact (⨆ (i : ↑s✝), ↑↑i).carrier
x : ↑(Scheme.affineOpens X)
s : Set ↑(Scheme.affineOpens X)
a✝ : ¬x ∈ s
hs : Set.Finite s
h₄ : P (⨆ (i : ↑s), ↑↑i)
this : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
⊢ ⨆ (i : ↑(Scheme.affineOpens X)) (h : i ∈ insert x s), ↑↑{ val := i, property := h } =
↑x ⊔ ⨆ (i : ↑(Scheme.affineOpens X)) (h : i ∈ s), ↑↑{ val := i, property := h }
[PROOFSTEP]
exact iSup_insert
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z : Scheme
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
⊢ ∃ n, f ^ n * x = 0
[PROOFSTEP]
rw [← map_zero (X.presheaf.map (homOfLE <| X.basicOpen_le f : X.basicOpen f ⟶ U).op)] at H
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z : Scheme
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X f ≤ U)).op) 0
⊢ ∃ n, f ^ n * x = 0
[PROOFSTEP]
obtain ⟨⟨_, n, rfl⟩, e⟩ := (isLocalization_basicOpen hU f).eq_iff_exists'.mp H
[GOAL]
case intro.mk.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z : Scheme
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X f ≤ U)).op) 0
n : ℕ
e :
↑{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } *
x =
↑{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } *
0
⊢ ∃ n, f ^ n * x = 0
[PROOFSTEP]
exact ⟨n, by simpa [mul_comm x] using e⟩
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z : Scheme
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X f ≤ U)).op) 0
n : ℕ
e :
↑{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } *
x =
↑{ val := (fun x x_1 => x ^ x_1) f n,
property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } *
0
⊢ f ^ n * x = 0
[PROOFSTEP]
simpa [mul_comm x] using e
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
⊢ ∃ n, f ^ n * x = 0
[PROOFSTEP]
obtain ⟨s, hs, e⟩ := (isCompact_open_iff_eq_finset_affine_union U.1).mp ⟨hU, U.2⟩
[GOAL]
case intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
⊢ ∃ n, f ^ n * x = 0
[PROOFSTEP]
replace e : U = iSup fun i : s => (i : Opens X.carrier)
[GOAL]
case e
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
⊢ U = ⨆ (i : ↑s), ↑↑i
[PROOFSTEP]
ext1
[GOAL]
case e.h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U.carrier = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i
⊢ ↑U = ↑(⨆ (i : ↑s), ↑↑i)
[PROOFSTEP]
simpa using e
[GOAL]
case intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
⊢ ∃ n, f ^ n * x = 0
[PROOFSTEP]
have h₁ : ∀ i : s, i.1.1 ≤ U := by
intro i
change (i : Opens X.carrier) ≤ U
rw [e]
-- porting note: `exact le_iSup _ _` no longer works
exact le_iSup (fun (i : s) => (i : Opens (X.toPresheafedSpace))) _
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
⊢ ∀ (i : ↑s), ↑↑i ≤ U
[PROOFSTEP]
intro i
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
i : ↑s
⊢ ↑↑i ≤ U
[PROOFSTEP]
change (i : Opens X.carrier) ≤ U
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
i : ↑s
⊢ ↑↑i ≤ U
[PROOFSTEP]
rw [e]
-- porting note: `exact le_iSup _ _` no longer works
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
i : ↑s
⊢ ↑↑i ≤ ⨆ (i : ↑s), ↑↑i
[PROOFSTEP]
exact le_iSup (fun (i : s) => (i : Opens (X.toPresheafedSpace))) _
[GOAL]
case intro.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
⊢ ∃ n, f ^ n * x = 0
[PROOFSTEP]
have H' := fun i : s =>
exists_pow_mul_eq_zero_of_res_basicOpen_eq_zero_of_isAffineOpen X i.1.2 (X.presheaf.map (homOfLE (h₁ i)).op x)
(X.presheaf.map (homOfLE (h₁ i)).op f) ?_
[GOAL]
case intro.intro.refine_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
H' :
∀ (i : ↑s),
∃ n, ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0
⊢ ∃ n, f ^ n * x = 0
case intro.intro.refine_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
i : ↑s
⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x |_
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f) =
0
[PROOFSTEP]
swap
[GOAL]
case intro.intro.refine_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
i : ↑s
⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x |_
Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f) =
0
[PROOFSTEP]
delta TopCat.Presheaf.restrictOpen TopCat.Presheaf.restrict at H ⊢
[GOAL]
case intro.intro.refine_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
i : ↑s
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f)) → a ∈ ↑↑↑i)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x) =
0
[PROOFSTEP]
convert congr_arg (X.presheaf.map (homOfLE _).op) H
[GOAL]
case h.e'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
i : ↑s
⊢ ↑(X.presheaf.map
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f)) → a ∈ ↑↑↑i)).op)
(↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x) =
↑(X.presheaf.map (homOfLE ?intro.intro.refine_1.convert_1).op)
(↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x)
[PROOFSTEP]
simp only [← comp_apply, ← Functor.map_comp]
[GOAL]
case h.e'_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
i : ↑s
⊢ ↑(X.presheaf.map
((homOfLE (_ : ↑↑i ≤ U)).op ≫
(homOfLE
(_ :
∀ ⦃a : ↑↑X.toPresheafedSpace⦄,
a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f)) → a ∈ ↑↑↑i)).op))
x =
↑(X.presheaf.map
((homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op ≫
(homOfLE ?intro.intro.refine_1.convert_1).op))
x
[PROOFSTEP]
rfl
[GOAL]
case h.e'_3
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
i : ↑s
⊢ 0 = ↑(X.presheaf.map (homOfLE ?intro.intro.refine_1.convert_1).op) 0
[PROOFSTEP]
rw [map_zero]
[GOAL]
case intro.intro.refine_1.convert_1
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) x = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
i : ↑s
⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f) ≤ Scheme.basicOpen X f
[PROOFSTEP]
simp only [Scheme.basicOpen_res, ge_iff_le, inf_le_right]
[GOAL]
case intro.intro.refine_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
H' :
∀ (i : ↑s),
∃ n, ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0
⊢ ∃ n, f ^ n * x = 0
[PROOFSTEP]
choose n hn using H'
[GOAL]
case intro.intro.refine_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
n : ↑s → ℕ
hn :
∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0
⊢ ∃ n, f ^ n * x = 0
[PROOFSTEP]
haveI := hs.to_subtype
[GOAL]
case intro.intro.refine_2
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
n : ↑s → ℕ
hn :
∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0
this : Finite ↑s
⊢ ∃ n, f ^ n * x = 0
[PROOFSTEP]
cases nonempty_fintype s
[GOAL]
case intro.intro.refine_2.intro
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
n : ↑s → ℕ
hn :
∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0
this : Finite ↑s
val✝ : Fintype ↑s
⊢ ∃ n, f ^ n * x = 0
[PROOFSTEP]
use Finset.univ.sup n
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
n : ↑s → ℕ
hn :
∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0
this : Finite ↑s
val✝ : Fintype ↑s
⊢ f ^ Finset.sup Finset.univ n * x = 0
[PROOFSTEP]
suffices ∀ i : s, X.presheaf.map (homOfLE (h₁ i)).op (f ^ Finset.univ.sup n * x) = 0
by
subst e
apply TopCat.Sheaf.eq_of_locally_eq X.sheaf fun i : s => (i : Opens X.carrier)
intro i
rw [map_zero]
apply this
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
n : ↑s → ℕ
hn :
∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0
this✝ : Finite ↑s
val✝ : Fintype ↑s
this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0
⊢ f ^ Finset.sup Finset.univ n * x = 0
[PROOFSTEP]
subst e
[GOAL]
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
n : ↑s → ℕ
this✝ : Finite ↑s
val✝ : Fintype ↑s
hU : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
x f : ↑(X.presheaf.obj (op (⨆ (i : ↑s), ↑↑i)))
H : x |_ Scheme.basicOpen X f = 0
h₁ : ∀ (i : ↑s), ↑↑i ≤ ⨆ (i : ↑s), ↑↑i
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) f ^ n i *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) x =
0
this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) (f ^ Finset.sup Finset.univ n * x) = 0
⊢ f ^ Finset.sup Finset.univ n * x = 0
[PROOFSTEP]
apply TopCat.Sheaf.eq_of_locally_eq X.sheaf fun i : s => (i : Opens X.carrier)
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
n : ↑s → ℕ
this✝ : Finite ↑s
val✝ : Fintype ↑s
hU : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
x f : ↑(X.presheaf.obj (op (⨆ (i : ↑s), ↑↑i)))
H : x |_ Scheme.basicOpen X f = 0
h₁ : ∀ (i : ↑s), ↑↑i ≤ ⨆ (i : ↑s), ↑↑i
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) f ^ n i *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) x =
0
this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) (f ^ Finset.sup Finset.univ n * x) = 0
⊢ ∀ (i : ↑s),
↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) (f ^ Finset.sup Finset.univ n * x) =
↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) 0
[PROOFSTEP]
intro i
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
n : ↑s → ℕ
this✝ : Finite ↑s
val✝ : Fintype ↑s
hU : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
x f : ↑(X.presheaf.obj (op (⨆ (i : ↑s), ↑↑i)))
H : x |_ Scheme.basicOpen X f = 0
h₁ : ∀ (i : ↑s), ↑↑i ≤ ⨆ (i : ↑s), ↑↑i
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) f ^ n i *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) x =
0
this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) (f ^ Finset.sup Finset.univ n * x) = 0
i : ↑s
⊢ ↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) (f ^ Finset.sup Finset.univ n * x) =
↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) 0
[PROOFSTEP]
rw [map_zero]
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
n : ↑s → ℕ
this✝ : Finite ↑s
val✝ : Fintype ↑s
hU : IsCompact (⨆ (i : ↑s), ↑↑i).carrier
x f : ↑(X.presheaf.obj (op (⨆ (i : ↑s), ↑↑i)))
H : x |_ Scheme.basicOpen X f = 0
h₁ : ∀ (i : ↑s), ↑↑i ≤ ⨆ (i : ↑s), ↑↑i
hn :
∀ (i : ↑s),
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) f ^ n i *
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) x =
0
this : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ⨆ (i : ↑s), ↑↑i)).op) (f ^ Finset.sup Finset.univ n * x) = 0
i : ↑s
⊢ ↑((Scheme.sheaf X).val.map (Opens.leSupr (fun i => ↑↑i) i).op) (f ^ Finset.sup Finset.univ n * x) = 0
[PROOFSTEP]
apply this
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
n : ↑s → ℕ
hn :
∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0
this : Finite ↑s
val✝ : Fintype ↑s
⊢ ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0
[PROOFSTEP]
intro i
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
n : ↑s → ℕ
hn :
∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x = 0
this : Finite ↑s
val✝ : Fintype ↑s
i : ↑s
⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0
[PROOFSTEP]
replace hn := congr_arg (fun x => X.presheaf.map (homOfLE (h₁ i)).op (f ^ (Finset.univ.sup n - n i)) * x) (hn i)
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
n : ↑s → ℕ
this : Finite ↑s
val✝ : Fintype ↑s
i : ↑s
hn :
(fun x => ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * x)
(↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x) =
(fun x => ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * x) 0
⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0
[PROOFSTEP]
dsimp at hn
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
n : ↑s → ℕ
this : Finite ↑s
val✝ : Fintype ↑s
i : ↑s
hn :
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) *
(↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) f ^ n i * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) x) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * 0
⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0
[PROOFSTEP]
simp only [← map_mul, ← map_pow] at hn
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
n : ↑s → ℕ
this : Finite ↑s
val✝ : Fintype ↑s
i : ↑s
hn :
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i) * (f ^ n i * x)) =
↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * 0
⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ Finset.sup Finset.univ n * x) = 0
[PROOFSTEP]
rwa [mul_zero, ← mul_assoc, ← pow_add, tsub_add_cancel_of_le] at hn
[GOAL]
case h
X✝ Y : Scheme
f✝ : X✝ ⟶ Y
Z X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hU : IsCompact U.carrier
x f : ↑(X.presheaf.obj (op U))
H : x |_ Scheme.basicOpen X f = 0
s : Set ↑(Scheme.affineOpens X)
hs : Set.Finite s
e : U = ⨆ (i : ↑s), ↑↑i
h₁ : ∀ (i : ↑s), ↑↑i ≤ U
n : ↑s → ℕ
this : Finite ↑s
val✝ : Fintype ↑s
i : ↑s
hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ U)).op) (f ^ (Finset.sup Finset.univ n - n i + n i) * x) = 0
⊢ n i ≤ Finset.sup Finset.univ n
[PROOFSTEP]
apply Finset.le_sup (Finset.mem_univ i)
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.Morphisms.QuasiCompact", "llama_tokens": 37467} |
[GOAL]
X : Scheme
inst✝ : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
h : Nonempty { x // x ∈ U }
⊢ Set.Nonempty (⊤ ∩ ↑U)
[PROOFSTEP]
simpa using h
[GOAL]
X : Scheme
inst✝ : IsIntegral X
⊢ Field ↑(Scheme.functionField X)
[PROOFSTEP]
apply fieldOfIsUnitOrEqZero
[GOAL]
case h
X : Scheme
inst✝ : IsIntegral X
⊢ ∀ (a : ↑(Scheme.functionField X)), IsUnit a ∨ a = 0
[PROOFSTEP]
intro a
[GOAL]
case h
X : Scheme
inst✝ : IsIntegral X
a : ↑(Scheme.functionField X)
⊢ IsUnit a ∨ a = 0
[PROOFSTEP]
obtain ⟨U, m, s, rfl⟩ := TopCat.Presheaf.germ_exist _ _ a
[GOAL]
case h.intro.intro.intro
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
m : genericPoint ↑↑X.toPresheafedSpace ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
⊢ IsUnit (↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s) ∨
↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s = 0
[PROOFSTEP]
rw [or_iff_not_imp_right, ← (X.presheaf.germ ⟨_, m⟩).map_zero]
[GOAL]
case h.intro.intro.intro
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
m : genericPoint ↑↑X.toPresheafedSpace ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
⊢ ¬↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s =
↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) 0 →
IsUnit (↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s)
[PROOFSTEP]
intro ha
[GOAL]
case h.intro.intro.intro
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
m : genericPoint ↑↑X.toPresheafedSpace ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
ha :
¬↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s =
↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) 0
⊢ IsUnit (↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s)
[PROOFSTEP]
replace ha := ne_of_apply_ne _ ha
[GOAL]
case h.intro.intro.intro
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
m : genericPoint ↑↑X.toPresheafedSpace ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
ha : s ≠ 0
⊢ IsUnit (↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s)
[PROOFSTEP]
have hs : genericPoint X.carrier ∈ RingedSpace.basicOpen _ s :=
by
rw [← SetLike.mem_coe, (genericPoint_spec X.carrier).mem_open_set_iff, Set.top_eq_univ, Set.univ_inter,
Set.nonempty_iff_ne_empty, Ne.def, ← Opens.coe_bot, ← SetLike.ext'_iff]
erw [basicOpen_eq_bot_iff]
exacts [ha, (RingedSpace.basicOpen _ _).isOpen]
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
m : genericPoint ↑↑X.toPresheafedSpace ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
ha : s ≠ 0
⊢ genericPoint ↑↑X.toPresheafedSpace ∈ RingedSpace.basicOpen X.toSheafedSpace s
[PROOFSTEP]
rw [← SetLike.mem_coe, (genericPoint_spec X.carrier).mem_open_set_iff, Set.top_eq_univ, Set.univ_inter,
Set.nonempty_iff_ne_empty, Ne.def, ← Opens.coe_bot, ← SetLike.ext'_iff]
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
m : genericPoint ↑↑X.toPresheafedSpace ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
ha : s ≠ 0
⊢ ¬RingedSpace.basicOpen X.toSheafedSpace s = ⊥
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
m : genericPoint ↑↑X.toPresheafedSpace ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
ha : s ≠ 0
⊢ IsOpen ↑(RingedSpace.basicOpen X.toSheafedSpace s)
[PROOFSTEP]
erw [basicOpen_eq_bot_iff]
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
m : genericPoint ↑↑X.toPresheafedSpace ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
ha : s ≠ 0
⊢ ¬s = 0
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
m : genericPoint ↑↑X.toPresheafedSpace ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
ha : s ≠ 0
⊢ IsOpen ↑(RingedSpace.basicOpen X.toSheafedSpace s)
[PROOFSTEP]
exacts [ha, (RingedSpace.basicOpen _ _).isOpen]
[GOAL]
case h.intro.intro.intro
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
m : genericPoint ↑↑X.toPresheafedSpace ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
ha : s ≠ 0
hs : genericPoint ↑↑X.toPresheafedSpace ∈ RingedSpace.basicOpen X.toSheafedSpace s
⊢ IsUnit (↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s)
[PROOFSTEP]
have := (X.presheaf.germ ⟨_, hs⟩).isUnit_map (RingedSpace.isUnit_res_basicOpen _ s)
[GOAL]
case h.intro.intro.intro
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
m : genericPoint ↑↑X.toPresheafedSpace ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
ha : s ≠ 0
hs : genericPoint ↑↑X.toPresheafedSpace ∈ RingedSpace.basicOpen X.toSheafedSpace s
this :
IsUnit
(↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := hs })
(↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace s ≤ U)).op) s))
⊢ IsUnit (↑(Presheaf.germ X.presheaf { val := genericPoint ↑↑X.toPresheafedSpace, property := m }) s)
[PROOFSTEP]
rwa [TopCat.Presheaf.germ_res_apply] at this
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
⊢ Function.Injective ↑(Presheaf.germ X.presheaf x)
[PROOFSTEP]
rw [injective_iff_map_eq_zero]
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
⊢ ∀ (a : (forget CommRingCat).obj (X.presheaf.obj (op U))), ↑(Presheaf.germ X.presheaf x) a = 0 → a = 0
[PROOFSTEP]
intro y hy
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
y : (forget CommRingCat).obj (X.presheaf.obj (op U))
hy : ↑(Presheaf.germ X.presheaf x) y = 0
⊢ y = 0
[PROOFSTEP]
rw [← (X.presheaf.germ x).map_zero] at hy
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
y : (forget CommRingCat).obj (X.presheaf.obj (op U))
hy : ↑(Presheaf.germ X.presheaf x) y = ↑(Presheaf.germ X.presheaf x) 0
⊢ y = 0
[PROOFSTEP]
obtain ⟨W, hW, iU, iV, e⟩ := X.presheaf.germ_eq _ x.prop x.prop _ _ hy
[GOAL]
case intro.intro.intro.intro
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
y : (forget CommRingCat).obj (X.presheaf.obj (op U))
hy : ↑(Presheaf.germ X.presheaf x) y = ↑(Presheaf.germ X.presheaf x) 0
W : Opens ↑↑X.toPresheafedSpace
hW : ↑x ∈ W
iU iV : W ⟶ U
e : ↑(X.presheaf.map iU.op) y = ↑(X.presheaf.map iV.op) 0
⊢ y = 0
[PROOFSTEP]
cases show iU = iV from Subsingleton.elim _ _
[GOAL]
case intro.intro.intro.intro.refl
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
y : (forget CommRingCat).obj (X.presheaf.obj (op U))
hy : ↑(Presheaf.germ X.presheaf x) y = ↑(Presheaf.germ X.presheaf x) 0
W : Opens ↑↑X.toPresheafedSpace
hW : ↑x ∈ W
iU : W ⟶ U
e : ↑(X.presheaf.map iU.op) y = ↑(X.presheaf.map iU.op) 0
⊢ y = 0
[PROOFSTEP]
haveI : Nonempty W := ⟨⟨_, hW⟩⟩
[GOAL]
case intro.intro.intro.intro.refl
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
y : (forget CommRingCat).obj (X.presheaf.obj (op U))
hy : ↑(Presheaf.germ X.presheaf x) y = ↑(Presheaf.germ X.presheaf x) 0
W : Opens ↑↑X.toPresheafedSpace
hW : ↑x ∈ W
iU : W ⟶ U
e : ↑(X.presheaf.map iU.op) y = ↑(X.presheaf.map iU.op) 0
this : Nonempty { x // x ∈ W }
⊢ y = 0
[PROOFSTEP]
exact map_injective_of_isIntegral X iU e
[GOAL]
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
hX : IrreducibleSpace ↑↑X.toPresheafedSpace
inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace
⊢ ↑f.val.base (genericPoint ↑↑X.toPresheafedSpace) = genericPoint ↑↑Y.toPresheafedSpace
[PROOFSTEP]
apply ((genericPoint_spec Y).eq _).symm
[GOAL]
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
hX : IrreducibleSpace ↑↑X.toPresheafedSpace
inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace
⊢ IsGenericPoint (↑f.val.base (genericPoint ↑↑X.toPresheafedSpace)) ⊤
[PROOFSTEP]
convert (genericPoint_spec X.carrier).image (show Continuous f.1.base from ContinuousMap.continuous_toFun _)
[GOAL]
case h.e'_4.h
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
hX : IrreducibleSpace ↑↑X.toPresheafedSpace
inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace
e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace
⊢ ⊤ = closure (↑f.val.base '' ⊤)
[PROOFSTEP]
symm
[GOAL]
case h.e'_4.h
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
hX : IrreducibleSpace ↑↑X.toPresheafedSpace
inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace
e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace
⊢ closure (↑f.val.base '' ⊤) = ⊤
[PROOFSTEP]
rw [eq_top_iff, Set.top_eq_univ, Set.top_eq_univ]
[GOAL]
case h.e'_4.h
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
hX : IrreducibleSpace ↑↑X.toPresheafedSpace
inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace
e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace
⊢ Set.univ ≤ closure (↑f.val.base '' Set.univ)
[PROOFSTEP]
convert subset_closure_inter_of_isPreirreducible_of_isOpen _ H.base_open.open_range _
[GOAL]
case h.e'_2.h.e'_3
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
hX : IrreducibleSpace ↑↑X.toPresheafedSpace
inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace
e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace
⊢ ↑f.val.base '' Set.univ = Set.univ ∩ Set.range ↑f.val.base
case h.e'_4.h.convert_2
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
hX : IrreducibleSpace ↑↑X.toPresheafedSpace
inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace
e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace
⊢ IsPreirreducible Set.univ
case h.e'_4.h.convert_3
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
hX : IrreducibleSpace ↑↑X.toPresheafedSpace
inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace
e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace
⊢ Set.Nonempty (Set.univ ∩ Set.range ↑f.val.base)
[PROOFSTEP]
rw [Set.univ_inter, Set.image_univ]
[GOAL]
case h.e'_4.h.convert_2
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
hX : IrreducibleSpace ↑↑X.toPresheafedSpace
inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace
e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace
⊢ IsPreirreducible Set.univ
case h.e'_4.h.convert_3
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
hX : IrreducibleSpace ↑↑X.toPresheafedSpace
inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace
e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace
⊢ Set.Nonempty (Set.univ ∩ Set.range ↑f.val.base)
[PROOFSTEP]
apply PreirreducibleSpace.isPreirreducible_univ (α := Y.carrier)
[GOAL]
case h.e'_4.h.convert_3
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
hX : IrreducibleSpace ↑↑X.toPresheafedSpace
inst✝ : IrreducibleSpace ↑↑Y.toPresheafedSpace
e_1✝ : ↑↑Y.toPresheafedSpace = (forget TopCat).obj ↑Y.toPresheafedSpace
⊢ Set.Nonempty (Set.univ ∩ Set.range ↑f.val.base)
[PROOFSTEP]
exact ⟨_, trivial, Set.mem_range_self hX.2.some⟩
[GOAL]
X : Scheme
inst✝ : IrreducibleSpace ↑↑X.toPresheafedSpace
x : ↑↑X.toPresheafedSpace
⊢ Algebra ↑(Presheaf.stalk X.presheaf x) ↑(Scheme.functionField X)
[PROOFSTEP]
apply RingHom.toAlgebra
[GOAL]
case i
X : Scheme
inst✝ : IrreducibleSpace ↑↑X.toPresheafedSpace
x : ↑↑X.toPresheafedSpace
⊢ ↑(Presheaf.stalk X.presheaf x) →+* ↑(Scheme.functionField X)
[PROOFSTEP]
exact X.presheaf.stalkSpecializes ((genericPoint_spec X.carrier).specializes trivial)
[GOAL]
X : Scheme
inst✝¹ : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
inst✝ : Nonempty { x // x ∈ U }
⊢ IsScalarTower ↑(X.presheaf.obj (op U)) ↑(Presheaf.stalk X.presheaf ↑x) ↑(Scheme.functionField X)
[PROOFSTEP]
apply IsScalarTower.of_algebraMap_eq'
[GOAL]
case h
X : Scheme
inst✝¹ : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
inst✝ : Nonempty { x // x ∈ U }
⊢ algebraMap ↑(X.presheaf.obj (op U)) ↑(Scheme.functionField X) =
RingHom.comp (algebraMap ↑(Presheaf.stalk X.presheaf ↑x) ↑(Scheme.functionField X))
(algebraMap ↑(X.presheaf.obj (op U)) ↑(Presheaf.stalk X.presheaf ↑x))
[PROOFSTEP]
simp_rw [RingHom.algebraMap_toAlgebra]
[GOAL]
case h
X : Scheme
inst✝¹ : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
inst✝ : Nonempty { x // x ∈ U }
⊢ Scheme.germToFunctionField X U =
RingHom.comp (Presheaf.stalkSpecializes X.presheaf (_ : genericPoint ↑↑X.toPresheafedSpace ⤳ ↑x))
(Presheaf.germ X.presheaf x)
[PROOFSTEP]
change _ = X.presheaf.germ x ≫ _
[GOAL]
case h
X : Scheme
inst✝¹ : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
inst✝ : Nonempty { x // x ∈ U }
⊢ Scheme.germToFunctionField X U =
Presheaf.germ X.presheaf x ≫ Presheaf.stalkSpecializes X.presheaf (_ : genericPoint ↑↑X.toPresheafedSpace ⤳ ↑x)
[PROOFSTEP]
rw [X.presheaf.germ_stalkSpecializes]
[GOAL]
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
⊢ ↑R →+* ↑(Scheme.functionField (Scheme.Spec.obj (op R)))
[PROOFSTEP]
change CommRingCat.of R ⟶ _
[GOAL]
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
⊢ CommRingCat.of ↑R ⟶ Scheme.functionField (Scheme.Spec.obj (op R))
[PROOFSTEP]
apply StructureSheaf.toStalk
[GOAL]
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
⊢ genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace = { asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }
[PROOFSTEP]
apply (genericPoint_spec (Scheme.Spec.obj <| op R).carrier).eq
[GOAL]
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
⊢ IsGenericPoint { asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) } ⊤
[PROOFSTEP]
rw [isGenericPoint_def]
[GOAL]
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
⊢ closure {{ asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }} = ⊤
[PROOFSTEP]
rw [← PrimeSpectrum.zeroLocus_vanishingIdeal_eq_closure, PrimeSpectrum.vanishingIdeal_singleton]
[GOAL]
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
⊢ PrimeSpectrum.zeroLocus ↑{ asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }.asIdeal = ⊤
[PROOFSTEP]
rw [Set.top_eq_univ, ← PrimeSpectrum.zeroLocus_singleton_zero]
[GOAL]
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
⊢ PrimeSpectrum.zeroLocus ↑{ asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }.asIdeal = PrimeSpectrum.zeroLocus {0}
[PROOFSTEP]
rfl
[GOAL]
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
⊢ IsFractionRing ↑R ↑(Scheme.functionField (Scheme.Spec.obj (op R)))
[PROOFSTEP]
convert StructureSheaf.IsLocalization.to_stalk R (genericPoint _)
[GOAL]
case a
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
⊢ IsFractionRing ↑R ↑(Scheme.functionField (Scheme.Spec.obj (op R))) ↔
IsLocalization.AtPrime
(↑(Presheaf.stalk (Sheaf.presheaf (Spec.structureSheaf ↑R))
(genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace)))
(genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace).asIdeal
[PROOFSTEP]
delta IsFractionRing IsLocalization.AtPrime
[GOAL]
case a
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
⊢ IsLocalization (nonZeroDivisors ↑R) ↑(Scheme.functionField (Scheme.Spec.obj (op R))) ↔
IsLocalization (Ideal.primeCompl (genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace).asIdeal)
↑(Presheaf.stalk (Sheaf.presheaf (Spec.structureSheaf ↑R))
(genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace))
[PROOFSTEP]
apply Eq.to_iff
[GOAL]
case a.a
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
⊢ IsLocalization (nonZeroDivisors ↑R) ↑(Scheme.functionField (Scheme.Spec.obj (op R))) =
IsLocalization (Ideal.primeCompl (genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace).asIdeal)
↑(Presheaf.stalk (Sheaf.presheaf (Spec.structureSheaf ↑R))
(genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace))
[PROOFSTEP]
congr 1
[GOAL]
case a.a.e_M
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
⊢ nonZeroDivisors ↑R = Ideal.primeCompl (genericPoint ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace).asIdeal
[PROOFSTEP]
rw [genericPoint_eq_bot_of_affine]
[GOAL]
case a.a.e_M
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
⊢ nonZeroDivisors ↑R = Ideal.primeCompl { asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }.asIdeal
[PROOFSTEP]
ext
[GOAL]
case a.a.e_M.h
X : Scheme
R : CommRingCat
inst✝ : IsDomain ↑R
x✝ : ↑R
⊢ x✝ ∈ nonZeroDivisors ↑R ↔ x✝ ∈ Ideal.primeCompl { asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }.asIdeal
[PROOFSTEP]
exact mem_nonZeroDivisors_iff_ne_zero
[GOAL]
X✝ : Scheme
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
h : Nonempty { x // x ∈ U }
⊢ Set.Nonempty (⊤ ∩ ↑U)
[PROOFSTEP]
simpa using h
[GOAL]
X✝ : Scheme
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
h : Nonempty { x // x ∈ U }
⊢ primeIdealOf hU
{ val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) } =
genericPoint ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace
[PROOFSTEP]
haveI : IsAffine _ := hU
[GOAL]
X✝ : Scheme
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
h : Nonempty { x // x ∈ U }
this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
⊢ primeIdealOf hU
{ val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) } =
genericPoint ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace
[PROOFSTEP]
have e : U.openEmbedding.isOpenMap.functor.obj ⊤ = U := by ext1; exact Set.image_univ.trans Subtype.range_coe
[GOAL]
X✝ : Scheme
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
h : Nonempty { x // x ∈ U }
this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U
[PROOFSTEP]
ext1
[GOAL]
case h
X✝ : Scheme
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
h : Nonempty { x // x ∈ U }
this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
⊢ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤) = ↑U
[PROOFSTEP]
exact Set.image_univ.trans Subtype.range_coe
[GOAL]
X✝ : Scheme
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
h : Nonempty { x // x ∈ U }
this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
e : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U
⊢ primeIdealOf hU
{ val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) } =
genericPoint ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace
[PROOFSTEP]
delta IsAffineOpen.primeIdealOf
[GOAL]
X✝ : Scheme
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
h : Nonempty { x // x ∈ U }
this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
e : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U
⊢ ↑(Scheme.Spec.map
(X.presheaf.map
(eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.base
(↑(Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom.val.base
{ val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) }) =
genericPoint ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace
[PROOFSTEP]
erw [← Scheme.comp_val_base_apply]
[GOAL]
X✝ : Scheme
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
h : Nonempty { x // x ∈ U }
this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
e : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U
⊢ ↑((Scheme.isoSpec (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom ≫
Scheme.Spec.map
(X.presheaf.map
(eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op).op).val.base
{ val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) } =
genericPoint ↑↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace
[PROOFSTEP]
convert
genericPoint_eq_of_isOpenImmersion
((X.restrict U.openEmbedding).isoSpec.hom ≫ Scheme.Spec.map (X.presheaf.map (eqToHom e).op).op)
-- Porting note: this was `ext1`
[GOAL]
case h.e'_2.h.h.e'_6
X✝ : Scheme
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
h : Nonempty { x // x ∈ U }
this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
e : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U
e_1✝ :
PrimeSpectrum ↑(X.presheaf.obj (op U)) =
(fun x => (forget TopCat).obj ↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace)
(genericPoint
↑↑(Scheme.restrict X
(_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
⊢ { val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) } =
genericPoint
↑↑(Scheme.restrict X
(_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
[PROOFSTEP]
apply Subtype.ext
[GOAL]
case h.e'_2.h.h.e'_6.a
X✝ : Scheme
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
h : Nonempty { x // x ∈ U }
this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
e : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U
e_1✝ :
PrimeSpectrum ↑(X.presheaf.obj (op U)) =
(fun x => (forget TopCat).obj ↑(Scheme.Spec.obj (op (X.presheaf.obj (op U)))).toPresheafedSpace)
(genericPoint
↑↑(Scheme.restrict X
(_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
⊢ ↑{ val := genericPoint ↑↑X.toPresheafedSpace, property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) } =
↑(genericPoint
↑↑(Scheme.restrict X
(_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
[PROOFSTEP]
exact (genericPoint_eq_of_isOpenImmersion (X.ofRestrict U.openEmbedding)).symm
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
hU' : Nonempty { x // x ∈ U }
⊢ IsFractionRing ↑(X.presheaf.obj (op U)) ↑(Scheme.functionField X)
[PROOFSTEP]
haveI : IsAffine _ := hU
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
hU' : Nonempty { x // x ∈ U }
this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
⊢ IsFractionRing ↑(X.presheaf.obj (op U)) ↑(Scheme.functionField X)
[PROOFSTEP]
haveI : Nonempty (X.restrict U.openEmbedding).carrier := hU'
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
hU' : Nonempty { x // x ∈ U }
this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
this :
Nonempty
↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ IsFractionRing ↑(X.presheaf.obj (op U)) ↑(Scheme.functionField X)
[PROOFSTEP]
haveI : IsIntegral (X.restrict U.openEmbedding) :=
@isIntegralOfIsAffineIsDomain _ _ _ (by dsimp; rw [Opens.openEmbedding_obj_top]; infer_instance)
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
hU' : Nonempty { x // x ∈ U }
this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
this :
Nonempty
↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ IsDomain
↑((Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj
(op ⊤))
[PROOFSTEP]
dsimp
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
hU' : Nonempty { x // x ∈ U }
this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
this :
Nonempty
↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ IsDomain ↑(X.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)))
[PROOFSTEP]
rw [Opens.openEmbedding_obj_top]
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
hU' : Nonempty { x // x ∈ U }
this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
this :
Nonempty
↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ IsDomain ↑(X.presheaf.obj (op U))
[PROOFSTEP]
infer_instance
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
hU' : Nonempty { x // x ∈ U }
this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
this✝ :
Nonempty
↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
this : IsIntegral (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
⊢ IsFractionRing ↑(X.presheaf.obj (op U)) ↑(Scheme.functionField X)
[PROOFSTEP]
delta IsFractionRing Scheme.functionField
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
hU' : Nonempty { x // x ∈ U }
this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
this✝ :
Nonempty
↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
this : IsIntegral (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
⊢ IsLocalization (nonZeroDivisors ↑(X.presheaf.obj (op U)))
↑(Presheaf.stalk X.presheaf (genericPoint ↑↑X.toPresheafedSpace))
[PROOFSTEP]
convert hU.isLocalization_stalk ⟨genericPoint X.carrier, _⟩ using 1
[GOAL]
case h.e'_3.h
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
hU' : Nonempty { x // x ∈ U }
this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
this✝ :
Nonempty
↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
this : IsIntegral (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
⊢ nonZeroDivisors ↑(X.presheaf.obj (op U)) =
Ideal.primeCompl
(IsAffineOpen.primeIdealOf hU
{ val := genericPoint ↑↑X.toPresheafedSpace,
property := (_ : genericPoint ↑↑X.toPresheafedSpace ∈ ↑U) }).asIdeal
[PROOFSTEP]
rw [hU.primeIdealOf_genericPoint, genericPoint_eq_bot_of_affine]
[GOAL]
case h.e'_3.h
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
hU' : Nonempty { x // x ∈ U }
this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
this✝ :
Nonempty
↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
this : IsIntegral (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
⊢ nonZeroDivisors ↑(X.presheaf.obj (op U)) = Ideal.primeCompl { asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }.asIdeal
[PROOFSTEP]
ext
[GOAL]
case h.e'_3.h.h
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
hU : IsAffineOpen U
hU' : Nonempty { x // x ∈ U }
this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
this✝ :
Nonempty
↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
this : IsIntegral (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))
x✝ : ↑(X.presheaf.obj (op U))
⊢ x✝ ∈ nonZeroDivisors ↑(X.presheaf.obj (op U)) ↔
x✝ ∈ Ideal.primeCompl { asIdeal := 0, IsPrime := (_ : Ideal.IsPrime ⊥) }.asIdeal
[PROOFSTEP]
exact mem_nonZeroDivisors_iff_ne_zero
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.FunctionField", "llama_tokens": 12759} |
[GOAL]
L : Language
M : Type u_1
s : Setoid M
ps : Prestructure L s
n : ℕ
f : Functions L n
x : Fin n → M
⊢ (funMap f fun i => Quotient.mk s (x i)) = Quotient.mk s (funMap f x)
[PROOFSTEP]
change Quotient.map (@funMap L M ps.toStructure n f) Prestructure.fun_equiv (Quotient.finChoice _) = _
[GOAL]
L : Language
M : Type u_1
s : Setoid M
ps : Prestructure L s
n : ℕ
f : Functions L n
x : Fin n → M
⊢ Quotient.map (funMap f) (_ : ∀ (x y : Fin n → M), x ≈ y → funMap f x ≈ funMap f y)
(Quotient.finChoice fun i => Quotient.mk s (x i)) =
Quotient.mk s (funMap f x)
[PROOFSTEP]
rw [Quotient.finChoice_eq, Quotient.map_mk]
[GOAL]
L : Language
M : Type u_1
s : Setoid M
ps : Prestructure L s
n : ℕ
r : Relations L n
x : Fin n → M
⊢ (RelMap r fun i => Quotient.mk s (x i)) ↔ RelMap r x
[PROOFSTEP]
change Quotient.lift (@RelMap L M ps.toStructure n r) Prestructure.rel_equiv (Quotient.finChoice _) ↔ _
[GOAL]
L : Language
M : Type u_1
s : Setoid M
ps : Prestructure L s
n : ℕ
r : Relations L n
x : Fin n → M
⊢ Quotient.lift (RelMap r) (_ : ∀ (x y : Fin n → M), x ≈ y → RelMap r x = RelMap r y)
(Quotient.finChoice fun i => Quotient.mk s (x i)) ↔
RelMap r x
[PROOFSTEP]
rw [Quotient.finChoice_eq, Quotient.lift_mk]
[GOAL]
L : Language
M : Type u_1
s : Setoid M
ps : Prestructure L s
β : Type u_2
t : Term L β
x : β → M
⊢ realize (fun i => Quotient.mk s (x i)) t = Quotient.mk s (realize x t)
[PROOFSTEP]
induction' t with _ _ _ _ ih
[GOAL]
case var
L : Language
M : Type u_1
s : Setoid M
ps : Prestructure L s
β : Type u_2
x : β → M
_a✝ : β
⊢ realize (fun i => Quotient.mk s (x i)) (var _a✝) = Quotient.mk s (realize x (var _a✝))
[PROOFSTEP]
rfl
[GOAL]
case func
L : Language
M : Type u_1
s : Setoid M
ps : Prestructure L s
β : Type u_2
x : β → M
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L β
ih : ∀ (a : Fin l✝), realize (fun i => Quotient.mk s (x i)) (_ts✝ a) = Quotient.mk s (realize x (_ts✝ a))
⊢ realize (fun i => Quotient.mk s (x i)) (func _f✝ _ts✝) = Quotient.mk s (realize x (func _f✝ _ts✝))
[PROOFSTEP]
simp only [ih, funMap_quotient_mk', Term.realize]
| {"mathlib_filename": "Mathlib.ModelTheory.Quotients", "llama_tokens": 986} |
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasLimits C
J : Type v
inst✝ : Category.{v, v} J
F : J ⥤ SheafedSpace C
X Y : SheafedSpace C
f g : X ⟶ Y
⊢ Epi (coequalizer.π f g).base
[PROOFSTEP]
erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasLimits C
J : Type v
inst✝ : Category.{v, v} J
F : J ⥤ SheafedSpace C
X Y : SheafedSpace C
f g : X ⟶ Y
⊢ Epi (coequalizer.π ((forget C).map f) ((forget C).map g) ≫ coequalizerComparison f g (forget C))
[PROOFSTEP]
rw [← PreservesCoequalizer.iso_hom]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasLimits C
J : Type v
inst✝ : Category.{v, v} J
F : J ⥤ SheafedSpace C
X Y : SheafedSpace C
f g : X ⟶ Y
⊢ Epi (coequalizer.π ((forget C).map f) ((forget C).map g) ≫ (PreservesCoequalizer.iso (forget C) f g).hom)
[PROOFSTEP]
apply epi_comp
[GOAL]
ι : Type u
F : Discrete ι ⥤ LocallyRingedSpace
x : ↑↑(colimit (F ⋙ forgetToSheafedSpace)).toPresheafedSpace
⊢ LocalRing ↑(TopCat.Presheaf.stalk (colimit (F ⋙ forgetToSheafedSpace)).toPresheafedSpace.presheaf x)
[PROOFSTEP]
obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x
[GOAL]
case intro.intro.refl
ι : Type u
F : Discrete ι ⥤ LocallyRingedSpace
i : Discrete ι
y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace
⊢ LocalRing
↑(TopCat.Presheaf.stalk (colimit (F ⋙ forgetToSheafedSpace)).toPresheafedSpace.presheaf
(↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y))
[PROOFSTEP]
haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _
[GOAL]
case intro.intro.refl
ι : Type u
F : Discrete ι ⥤ LocallyRingedSpace
i : Discrete ι
y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace
this : LocalRing ↑(PresheafedSpace.stalk ((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace y)
⊢ LocalRing
↑(TopCat.Presheaf.stalk (colimit (F ⋙ forgetToSheafedSpace)).toPresheafedSpace.presheaf
(↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y))
[PROOFSTEP]
exact
(asIso
(PresheafedSpace.stalkMap
(colimit.ι (C := SheafedSpace.{u + 1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _)
y)).symm.commRingCatIsoToRingEquiv.localRing
[GOAL]
ι : Type u
F : Discrete ι ⥤ LocallyRingedSpace
x✝² x✝¹ : Discrete ι
j j' : ι
x✝ : { as := j } ⟶ { as := j' }
f : j = j'
⊢ F.map { down := { down := f } } ≫
(fun j =>
{ val := colimit.ι (F ⋙ forgetToSheafedSpace) j,
prop :=
(_ :
∀ (x : ↑↑(F.obj j).toPresheafedSpace),
IsLocalRingHom (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) j) x)) })
{ as := j' } =
(fun j =>
{ val := colimit.ι (F ⋙ forgetToSheafedSpace) j,
prop :=
(_ :
∀ (x : ↑↑(F.obj j).toPresheafedSpace),
IsLocalRingHom (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) j) x)) })
{ as := j } ≫
((Functor.const (Discrete ι)).obj (coproduct F)).map { down := { down := f } }
[PROOFSTEP]
subst f
[GOAL]
ι : Type u
F : Discrete ι ⥤ LocallyRingedSpace
x✝² x✝¹ : Discrete ι
j : ι
x✝ : { as := j } ⟶ { as := j }
⊢ F.map { down := { down := (_ : j = j) } } ≫
(fun j =>
{ val := colimit.ι (F ⋙ forgetToSheafedSpace) j,
prop :=
(_ :
∀ (x : ↑↑(F.obj j).toPresheafedSpace),
IsLocalRingHom (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) j) x)) })
{ as := j } =
(fun j =>
{ val := colimit.ι (F ⋙ forgetToSheafedSpace) j,
prop :=
(_ :
∀ (x : ↑↑(F.obj j).toPresheafedSpace),
IsLocalRingHom (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) j) x)) })
{ as := j } ≫
((Functor.const (Discrete ι)).obj (coproduct F)).map { down := { down := (_ : j = j) } }
[PROOFSTEP]
aesop
[GOAL]
ι : Type u
F : Discrete ι ⥤ LocallyRingedSpace
s : Cocone F
⊢ ∀ (x : ↑↑(coproductCofan F).pt.toPresheafedSpace),
IsLocalRingHom
(PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) x)
[PROOFSTEP]
intro x
[GOAL]
ι : Type u
F : Discrete ι ⥤ LocallyRingedSpace
s : Cocone F
x : ↑↑(coproductCofan F).pt.toPresheafedSpace
⊢ IsLocalRingHom
(PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) x)
[PROOFSTEP]
obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x
[GOAL]
case intro.intro.refl
ι : Type u
F : Discrete ι ⥤ LocallyRingedSpace
s : Cocone F
i : Discrete ι
y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace
⊢ IsLocalRingHom
(PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s))
(↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y))
[PROOFSTEP]
have :=
PresheafedSpace.stalkMap.comp
(colimit.ι (C := SheafedSpace.{u + 1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i)
(colimit.desc (C := SheafedSpace.{u + 1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace)
(forgetToSheafedSpace.mapCocone s))
y
[GOAL]
case intro.intro.refl
ι : Type u
F : Discrete ι ⥤ LocallyRingedSpace
s : Cocone F
i : Discrete ι
y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace
this :
PresheafedSpace.stalkMap
(colimit.ι (F ⋙ forgetToSheafedSpace) i ≫
colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s))
y =
PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s))
(↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y) ≫
PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y
⊢ IsLocalRingHom
(PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s))
(↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y))
[PROOFSTEP]
rw [← IsIso.comp_inv_eq] at this
[GOAL]
case intro.intro.refl
ι : Type u
F : Discrete ι ⥤ LocallyRingedSpace
s : Cocone F
i : Discrete ι
y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace
this :
PresheafedSpace.stalkMap
(colimit.ι (F ⋙ forgetToSheafedSpace) i ≫
colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s))
y ≫
inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y) =
PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s))
(↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y)
⊢ IsLocalRingHom
(PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s))
(↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y))
[PROOFSTEP]
erw [← this,
PresheafedSpace.stalkMap.congr_hom _ _
(colimit.ι_desc (C := SheafedSpace.{u + 1, u, u} CommRingCatMax.{u, u}) (forgetToSheafedSpace.mapCocone s) i : _)]
[GOAL]
case intro.intro.refl
ι : Type u
F : Discrete ι ⥤ LocallyRingedSpace
s : Cocone F
i : Discrete ι
y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace
this :
PresheafedSpace.stalkMap
(colimit.ι (F ⋙ forgetToSheafedSpace) i ≫
colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s))
y ≫
inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y) =
PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s))
(↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y)
⊢ IsLocalRingHom
((eqToHom
(_ :
PresheafedSpace.stalk (forgetToSheafedSpace.mapCocone s).pt.toPresheafedSpace
(↑(colimit.ι (F ⋙ forgetToSheafedSpace) i ≫
colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)).base
y) =
PresheafedSpace.stalk (forgetToSheafedSpace.mapCocone s).pt.toPresheafedSpace
(↑(NatTrans.app (forgetToSheafedSpace.mapCocone s).ι i).base y)) ≫
PresheafedSpace.stalkMap (NatTrans.app (forgetToSheafedSpace.mapCocone s).ι i) y) ≫
inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y))
[PROOFSTEP]
haveI : IsLocalRingHom (PresheafedSpace.stalkMap ((forgetToSheafedSpace.mapCocone s).ι.app i) y) := (s.ι.app i).2 y
[GOAL]
case intro.intro.refl
ι : Type u
F : Discrete ι ⥤ LocallyRingedSpace
s : Cocone F
i : Discrete ι
y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace
this✝ :
PresheafedSpace.stalkMap
(colimit.ι (F ⋙ forgetToSheafedSpace) i ≫
colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s))
y ≫
inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y) =
PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s))
(↑(colimit.ι (F ⋙ forgetToSheafedSpace) i).base y)
this : IsLocalRingHom (PresheafedSpace.stalkMap (NatTrans.app (forgetToSheafedSpace.mapCocone s).ι i) y)
⊢ IsLocalRingHom
((eqToHom
(_ :
PresheafedSpace.stalk (forgetToSheafedSpace.mapCocone s).pt.toPresheafedSpace
(↑(colimit.ι (F ⋙ forgetToSheafedSpace) i ≫
colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)).base
y) =
PresheafedSpace.stalk (forgetToSheafedSpace.mapCocone s).pt.toPresheafedSpace
(↑(NatTrans.app (forgetToSheafedSpace.mapCocone s).ι i).base y)) ≫
PresheafedSpace.stalkMap (NatTrans.app (forgetToSheafedSpace.mapCocone s).ι i) y) ≫
inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y))
[PROOFSTEP]
infer_instance
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
⊢ IsLocalRingHom (NatTrans.app (coequalizer.π f.val g.val).c (op U))
[PROOFSTEP]
have := ι_comp_coequalizerComparison f.1 g.1 SheafedSpace.forgetToPresheafedSpace
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
this :
coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫
coequalizerComparison f.val g.val SheafedSpace.forgetToPresheafedSpace =
SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val)
⊢ IsLocalRingHom (NatTrans.app (coequalizer.π f.val g.val).c (op U))
[PROOFSTEP]
rw [← PreservesCoequalizer.iso_hom] at this
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
this :
coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫
(PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom =
SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val)
⊢ IsLocalRingHom (NatTrans.app (coequalizer.π f.val g.val).c (op U))
[PROOFSTEP]
erw [SheafedSpace.congr_app this.symm (op U)]
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
this :
coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫
(PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom =
SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val)
⊢ IsLocalRingHom
(NatTrans.app
(coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val)
(SheafedSpace.forgetToPresheafedSpace.map g.val) ≫
(PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom).c
(op U) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map
(coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val)
(SheafedSpace.forgetToPresheafedSpace.map g.val) ≫
(PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom).base).op.obj
(op U) =
(Opens.map (SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val)).base).op.obj (op U))))
[PROOFSTEP]
rw [PresheafedSpace.comp_c_app, ← PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit_hom_π]
-- Porting note : this instance has to be manually added
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
this :
coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫
(PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom =
SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val)
⊢ IsLocalRingHom
((NatTrans.app (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.c (op U) ≫
(PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit
(parallelPair (SheafedSpace.forgetToPresheafedSpace.map f.val)
(SheafedSpace.forgetToPresheafedSpace.map g.val))
((Opens.map (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.base).obj
(op U).unop)).hom ≫
limit.π
(PresheafedSpace.componentwiseDiagram
(parallelPair (SheafedSpace.forgetToPresheafedSpace.map f.val)
(SheafedSpace.forgetToPresheafedSpace.map g.val))
((Opens.map (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.base).obj
(op U).unop))
(op WalkingParallelPair.one)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map
(coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val)
(SheafedSpace.forgetToPresheafedSpace.map g.val) ≫
(PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom).base).op.obj
(op U) =
(Opens.map (SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val)).base).op.obj (op U))))
[PROOFSTEP]
haveI : IsIso (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.c :=
PresheafedSpace.c_isIso_of_iso _
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
this✝ :
coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫
(PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom =
SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val)
this : IsIso (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.c
⊢ IsLocalRingHom
((NatTrans.app (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.c (op U) ≫
(PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit
(parallelPair (SheafedSpace.forgetToPresheafedSpace.map f.val)
(SheafedSpace.forgetToPresheafedSpace.map g.val))
((Opens.map (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.base).obj
(op U).unop)).hom ≫
limit.π
(PresheafedSpace.componentwiseDiagram
(parallelPair (SheafedSpace.forgetToPresheafedSpace.map f.val)
(SheafedSpace.forgetToPresheafedSpace.map g.val))
((Opens.map (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom.base).obj
(op U).unop))
(op WalkingParallelPair.one)) ≫
Y.presheaf.map
(eqToHom
(_ :
(Opens.map
(coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val)
(SheafedSpace.forgetToPresheafedSpace.map g.val) ≫
(PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom).base).op.obj
(op U) =
(Opens.map (SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val)).base).op.obj (op U))))
[PROOFSTEP]
infer_instance
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' (imageBasicOpen f g U s).carrier) =
(imageBasicOpen f g U s).carrier
[PROOFSTEP]
fapply
Types.coequalizer_preimage_image_eq_of_preimage_eq (f.1.base : X.carrier.1 ⟶ Y.carrier.1)
(g.1.base : X.carrier.1 ⟶ Y.carrier.1)
[GOAL]
case e
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ ↑f.val.base ≫ ↑(coequalizer.π f.val g.val).base = ↑g.val.base ≫ ↑(coequalizer.π f.val g.val).base
[PROOFSTEP]
ext
[GOAL]
case e.h
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
a✝ : (forget TopCat).obj ↑X.toPresheafedSpace
⊢ (↑f.val.base ≫ ↑(coequalizer.π f.val g.val).base) a✝ = (↑g.val.base ≫ ↑(coequalizer.π f.val g.val).base) a✝
[PROOFSTEP]
simp_rw [types_comp_apply, ← TopCat.comp_app, ← PresheafedSpace.comp_base]
[GOAL]
case e.h
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
a✝ : (forget TopCat).obj ↑X.toPresheafedSpace
⊢ ↑(f.val ≫ coequalizer.π f.val g.val).base a✝ = ↑(g.val ≫ coequalizer.π f.val g.val).base a✝
[PROOFSTEP]
congr 2
[GOAL]
case e.h.e_a.e_self
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
a✝ : (forget TopCat).obj ↑X.toPresheafedSpace
⊢ f.val ≫ coequalizer.π f.val g.val = g.val ≫ coequalizer.π f.val g.val
[PROOFSTEP]
exact coequalizer.condition f.1 g.1
[GOAL]
case h
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ IsColimit
(Cofork.ofπ ↑(coequalizer.π f.val g.val).base
(_ : ↑f.val.base ≫ ↑(coequalizer.π f.val g.val).base = ↑g.val.base ≫ ↑(coequalizer.π f.val g.val).base))
[PROOFSTEP]
apply isColimitCoforkMapOfIsColimit (forget TopCat)
[GOAL]
case h.l
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ IsColimit (Cofork.ofπ (coequalizer.π f.val g.val).base ?h.w)
case h.w
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ f.val.base ≫ (coequalizer.π f.val g.val).base = g.val.base ≫ (coequalizer.π f.val g.val).base
[PROOFSTEP]
apply isColimitCoforkMapOfIsColimit (SheafedSpace.forget _)
[GOAL]
case h.l.l
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ IsColimit (Cofork.ofπ (coequalizer.π f.val g.val) ?h.l.w)
case h.l.w
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ f.val ≫ coequalizer.π f.val g.val = g.val ≫ coequalizer.π f.val g.val
[PROOFSTEP]
exact coequalizerIsCoequalizer f.1 g.1
[GOAL]
case H
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ ↑f.val.base ⁻¹' (imageBasicOpen f g U s).carrier = ↑g.val.base ⁻¹' (imageBasicOpen f g U s).carrier
[PROOFSTEP]
suffices
(TopologicalSpace.Opens.map f.1.base).obj (imageBasicOpen f g U s) =
(TopologicalSpace.Opens.map g.1.base).obj (imageBasicOpen f g U s)
by injection this
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
this : (Opens.map f.val.base).obj (imageBasicOpen f g U s) = (Opens.map g.val.base).obj (imageBasicOpen f g U s)
⊢ ↑f.val.base ⁻¹' (imageBasicOpen f g U s).carrier = ↑g.val.base ⁻¹' (imageBasicOpen f g U s).carrier
[PROOFSTEP]
injection this
[GOAL]
case H
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ (Opens.map f.val.base).obj (imageBasicOpen f g U s) = (Opens.map g.val.base).obj (imageBasicOpen f g U s)
[PROOFSTEP]
delta imageBasicOpen
[GOAL]
case H
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ (Opens.map f.val.base).obj
(RingedSpace.basicOpen (toRingedSpace Y)
(let_fun this := ↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s;
this)) =
(Opens.map g.val.base).obj
(RingedSpace.basicOpen (toRingedSpace Y)
(let_fun this := ↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s;
this))
[PROOFSTEP]
rw [preimage_basicOpen f, preimage_basicOpen g]
[GOAL]
case H
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ RingedSpace.basicOpen (toRingedSpace X)
(↑(NatTrans.app f.val.c
(op
{
unop :=
{ carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' ↑(op U).unop)) } }.unop))
(let_fun this := ↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s;
this)) =
RingedSpace.basicOpen (toRingedSpace X)
(↑(NatTrans.app g.val.c
(op
{
unop :=
{ carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' ↑(op U).unop,
is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' ↑(op U).unop)) } }.unop))
(let_fun this := ↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s;
this))
[PROOFSTEP]
dsimp only [Functor.op, unop_op]
-- Porting note : change `rw` to `erw`
[GOAL]
case H
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ RingedSpace.basicOpen (toRingedSpace X)
(↑(NatTrans.app f.val.c
(op
{ carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' ↑U,
is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' ↑(op U).unop)) }))
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)) =
RingedSpace.basicOpen (toRingedSpace X)
(↑(NatTrans.app g.val.c
(op
{ carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' ↑U,
is_open' := (_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' ↑(op U).unop)) }))
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s))
[PROOFSTEP]
erw [← comp_apply, ← SheafedSpace.comp_c_app', ← comp_apply, ← SheafedSpace.comp_c_app',
SheafedSpace.congr_app (coequalizer.condition f.1 g.1), comp_apply, X.toRingedSpace.basicOpen_res]
[GOAL]
case H
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ ((Opens.map (f.val ≫ coequalizer.π f.val g.val).base).op.obj (op U)).unop ⊓
RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app (g.val ≫ coequalizer.π f.val g.val).c (op U)) s) =
RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app (g.val ≫ coequalizer.π f.val g.val).c (op U)) s)
[PROOFSTEP]
apply inf_eq_right.mpr
[GOAL]
case H
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ RingedSpace.basicOpen (toRingedSpace X) (↑(NatTrans.app (g.val ≫ coequalizer.π f.val g.val).c (op U)) s) ≤
((Opens.map (f.val ≫ coequalizer.π f.val g.val).base).op.obj (op U)).unop
[PROOFSTEP]
refine' (RingedSpace.basicOpen_le _ _).trans _
[GOAL]
case H
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ ((Opens.map (g.val ≫ coequalizer.π f.val g.val).base).op.obj (op U)).unop ≤
((Opens.map (f.val ≫ coequalizer.π f.val g.val).base).op.obj (op U)).unop
[PROOFSTEP]
rw [coequalizer.condition f.1 g.1]
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ IsOpen (↑(coequalizer.π f.val g.val).base '' (imageBasicOpen f g U s).carrier)
[PROOFSTEP]
rw [← (TopCat.homeoOfIso (PreservesCoequalizer.iso (SheafedSpace.forget _) f.1 g.1)).isOpen_preimage,
TopCat.coequalizer_isOpen_iff, ← Set.preimage_comp]
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ IsOpen
(↑(TopCat.homeoOfIso (PreservesCoequalizer.iso (SheafedSpace.forget CommRingCat) f.val g.val)) ∘
↑(colimit.ι
(parallelPair ((SheafedSpace.forget CommRingCat).map f.val) ((SheafedSpace.forget CommRingCat).map g.val))
WalkingParallelPair.one) ⁻¹'
(↑(coequalizer.π f.val g.val).base '' (imageBasicOpen f g U s).carrier))
[PROOFSTEP]
erw [← coe_comp]
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ IsOpen
(↑(colimit.ι
(parallelPair ((SheafedSpace.forget CommRingCat).map f.val) ((SheafedSpace.forget CommRingCat).map g.val))
WalkingParallelPair.one ≫
(PreservesCoequalizer.iso (SheafedSpace.forget CommRingCat) f.val g.val).hom) ⁻¹'
(↑(coequalizer.π f.val g.val).base '' (imageBasicOpen f g U s).carrier))
[PROOFSTEP]
rw [PreservesCoequalizer.iso_hom, ι_comp_coequalizerComparison]
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ IsOpen
(↑((SheafedSpace.forget CommRingCat).map (coequalizer.π f.val g.val)) ⁻¹'
(↑(coequalizer.π f.val g.val).base '' (imageBasicOpen f g U s).carrier))
[PROOFSTEP]
dsimp only [SheafedSpace.forget]
-- Porting note : change `rw` to `erw`
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' (imageBasicOpen f g U s).carrier))
[PROOFSTEP]
erw [imageBasicOpen_image_preimage]
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
⊢ IsOpen (imageBasicOpen f g U s).carrier
[PROOFSTEP]
exact (imageBasicOpen f g U s).2
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
x : ↑(toTopCat Y)
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.π f.val g.val) x)
[PROOFSTEP]
constructor
[GOAL]
case map_nonunit
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
x : ↑(toTopCat Y)
⊢ ∀ (a : ↑(PresheafedSpace.stalk (coequalizer f.val g.val).toPresheafedSpace (↑(coequalizer.π f.val g.val).base x))),
IsUnit (↑(PresheafedSpace.stalkMap (coequalizer.π f.val g.val) x) a) → IsUnit a
[PROOFSTEP]
rintro a ha
[GOAL]
case map_nonunit
X Y : LocallyRingedSpace
f g : X ⟶ Y
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
x : ↑(toTopCat Y)
a : ↑(PresheafedSpace.stalk (coequalizer f.val g.val).toPresheafedSpace (↑(coequalizer.π f.val g.val).base x))
ha : IsUnit (↑(PresheafedSpace.stalkMap (coequalizer.π f.val g.val) x) a)
⊢ IsUnit a
[PROOFSTEP]
rcases TopCat.Presheaf.germ_exist _ _ a with ⟨U, hU, s, rfl⟩
[GOAL]
case map_nonunit.intro.intro.intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝))
x : ↑(toTopCat Y)
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
hU : ↑(coequalizer.π f.val g.val).base x ∈ U
s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
ha :
IsUnit
(↑(PresheafedSpace.stalkMap (coequalizer.π f.val g.val) x)
(↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf
{ val := ↑(coequalizer.π f.val g.val).base x, property := hU })
s))
⊢ IsUnit
(↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf
{ val := ↑(coequalizer.π f.val g.val).base x, property := hU })
s)
[PROOFSTEP]
erw [PresheafedSpace.stalkMap_germ_apply (coequalizer.π f.1 g.1 : _) U ⟨_, hU⟩] at ha
[GOAL]
case map_nonunit.intro.intro.intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝))
x : ↑(toTopCat Y)
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
hU : ↑(coequalizer.π f.val g.val).base x ∈ U
s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
ha :
IsUnit
(↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU })
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s))
⊢ IsUnit
(↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf
{ val := ↑(coequalizer.π f.val g.val).base x, property := hU })
s)
[PROOFSTEP]
let V := imageBasicOpen f g U s
[GOAL]
case map_nonunit.intro.intro.intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝))
x : ↑(toTopCat Y)
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
hU : ↑(coequalizer.π f.val g.val).base x ∈ U
s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
ha :
IsUnit
(↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU })
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s))
V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s
⊢ IsUnit
(↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf
{ val := ↑(coequalizer.π f.val g.val).base x, property := hU })
s)
[PROOFSTEP]
have hV : (coequalizer.π f.1 g.1).base ⁻¹' ((coequalizer.π f.1 g.1).base '' V.1) = V.1 :=
imageBasicOpen_image_preimage f g U s
[GOAL]
case map_nonunit.intro.intro.intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝))
x : ↑(toTopCat Y)
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
hU : ↑(coequalizer.π f.val g.val).base x ∈ U
s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
ha :
IsUnit
(↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU })
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s))
V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s
hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier
⊢ IsUnit
(↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf
{ val := ↑(coequalizer.π f.val g.val).base x, property := hU })
s)
[PROOFSTEP]
have hV' : V = ⟨(coequalizer.π f.1 g.1).base ⁻¹' ((coequalizer.π f.1 g.1).base '' V.1), hV.symm ▸ V.2⟩ :=
SetLike.ext' hV.symm
[GOAL]
case map_nonunit.intro.intro.intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝))
x : ↑(toTopCat Y)
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
hU : ↑(coequalizer.π f.val g.val).base x ∈ U
s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
ha :
IsUnit
(↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU })
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s))
V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s
hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier
hV' :
V =
{ carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier),
is_open' :=
(_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) }
⊢ IsUnit
(↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf
{ val := ↑(coequalizer.π f.val g.val).base x, property := hU })
s)
[PROOFSTEP]
have V_open : IsOpen ((coequalizer.π f.val g.val).base '' V.1) := imageBasicOpen_image_open f g U s
[GOAL]
case map_nonunit.intro.intro.intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝))
x : ↑(toTopCat Y)
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
hU : ↑(coequalizer.π f.val g.val).base x ∈ U
s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
ha :
IsUnit
(↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU })
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s))
V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s
hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier
hV' :
V =
{ carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier),
is_open' :=
(_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) }
V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier)
⊢ IsUnit
(↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf
{ val := ↑(coequalizer.π f.val g.val).base x, property := hU })
s)
[PROOFSTEP]
have VleU : (⟨(coequalizer.π f.val g.val).base '' V.1, V_open⟩ : TopologicalSpace.Opens _) ≤ U :=
Set.image_subset_iff.mpr (Y.toRingedSpace.basicOpen_le _)
[GOAL]
case map_nonunit.intro.intro.intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝))
x : ↑(toTopCat Y)
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
hU : ↑(coequalizer.π f.val g.val).base x ∈ U
s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
ha :
IsUnit
(↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU })
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s))
V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s
hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier
hV' :
V =
{ carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier),
is_open' :=
(_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) }
V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier)
VleU : { carrier := ↑(coequalizer.π f.val g.val).base '' V.carrier, is_open' := V_open } ≤ U
⊢ IsUnit
(↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf
{ val := ↑(coequalizer.π f.val g.val).base x, property := hU })
s)
[PROOFSTEP]
have hxV : x ∈ V := ⟨⟨_, hU⟩, ha, rfl⟩
[GOAL]
case map_nonunit.intro.intro.intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝))
x : ↑(toTopCat Y)
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
hU : ↑(coequalizer.π f.val g.val).base x ∈ U
s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
ha :
IsUnit
(↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU })
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s))
V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s
hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier
hV' :
V =
{ carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier),
is_open' :=
(_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) }
V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier)
VleU : { carrier := ↑(coequalizer.π f.val g.val).base '' V.carrier, is_open' := V_open } ≤ U
hxV : x ∈ V
⊢ IsUnit
(↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf
{ val := ↑(coequalizer.π f.val g.val).base x, property := hU })
s)
[PROOFSTEP]
erw [←
(coequalizer f.val g.val).presheaf.germ_res_apply (homOfLE VleU)
⟨_, @Set.mem_image_of_mem _ _ (coequalizer.π f.val g.val).base x V.1 hxV⟩ s]
[GOAL]
case map_nonunit.intro.intro.intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝))
x : ↑(toTopCat Y)
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
hU : ↑(coequalizer.π f.val g.val).base x ∈ U
s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
ha :
IsUnit
(↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU })
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s))
V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s
hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier
hV' :
V =
{ carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier),
is_open' :=
(_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) }
V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier)
VleU : { carrier := ↑(coequalizer.π f.val g.val).base '' V.carrier, is_open' := V_open } ≤ U
hxV : x ∈ V
⊢ IsUnit
(↑(TopCat.Presheaf.germ (coequalizer f.val g.val).toPresheafedSpace.presheaf
{ val := ↑(coequalizer.π f.val g.val).base x,
property := (_ : ↑(coequalizer.π f.val g.val).base x ∈ ↑(coequalizer.π f.val g.val).base '' V.carrier) })
(↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.map (homOfLE VleU).op) s))
[PROOFSTEP]
apply RingHom.isUnit_map
[GOAL]
case map_nonunit.intro.intro.intro.a
X Y : LocallyRingedSpace
f g : X ⟶ Y
U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝))
x : ↑(toTopCat Y)
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
hU : ↑(coequalizer.π f.val g.val).base x ∈ U
s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
ha :
IsUnit
(↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU })
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s))
V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s
hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier
hV' :
V =
{ carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier),
is_open' :=
(_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) }
V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier)
VleU : { carrier := ↑(coequalizer.π f.val g.val).base '' V.carrier, is_open' := V_open } ≤ U
hxV : x ∈ V
⊢ IsUnit (↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.map (homOfLE VleU).op) s)
[PROOFSTEP]
rw [← isUnit_map_iff ((coequalizer.π f.val g.val : _).c.app _), ← comp_apply, NatTrans.naturality, comp_apply,
TopCat.Presheaf.pushforwardObj_map, ← isUnit_map_iff (Y.presheaf.map (eqToHom hV').op)]
-- Porting note : change `rw` to `erw`
[GOAL]
case map_nonunit.intro.intro.intro.a
X Y : LocallyRingedSpace
f g : X ⟶ Y
U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝))
x : ↑(toTopCat Y)
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
hU : ↑(coequalizer.π f.val g.val).base x ∈ U
s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
ha :
IsUnit
(↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU })
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s))
V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s
hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier
hV' :
V =
{ carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier),
is_open' :=
(_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) }
V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier)
VleU : { carrier := ↑(coequalizer.π f.val g.val).base '' V.carrier, is_open' := V_open } ≤ U
hxV : x ∈ V
⊢ IsUnit
(↑(Y.presheaf.map (eqToHom hV').op)
(↑(Y.presheaf.map ((Opens.map (coequalizer.π f.val g.val).base).op.map (homOfLE VleU).op))
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s)))
[PROOFSTEP]
erw [← comp_apply, ← comp_apply, Category.assoc, ← Y.presheaf.map_comp]
[GOAL]
case map_nonunit.intro.intro.intro.a
X Y : LocallyRingedSpace
f g : X ⟶ Y
U✝ : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
s✝ : ↑((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U✝))
x : ↑(toTopCat Y)
U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace
hU : ↑(coequalizer.π f.val g.val).base x ∈ U
s : (forget CommRingCat).obj ((coequalizer f.val g.val).toPresheafedSpace.presheaf.obj (op U))
ha :
IsUnit
(↑(TopCat.Presheaf.germ Y.presheaf { val := x, property := hU })
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U)) s))
V : Opens ↑(toTopCat Y) := imageBasicOpen f g U s
hV : ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier) = V.carrier
hV' :
V =
{ carrier := ↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier),
is_open' :=
(_ : IsOpen (↑(coequalizer.π f.val g.val).base ⁻¹' (↑(coequalizer.π f.val g.val).base '' V.carrier))) }
V_open : IsOpen (↑(coequalizer.π f.val g.val).base '' V.carrier)
VleU : { carrier := ↑(coequalizer.π f.val g.val).base '' V.carrier, is_open' := V_open } ≤ U
hxV : x ∈ V
⊢ IsUnit
(↑(NatTrans.app (coequalizer.π f.val g.val).c (op U) ≫
Y.presheaf.map ((Opens.map (coequalizer.π f.val g.val).base).op.map (homOfLE VleU).op ≫ (eqToHom hV').op))
s)
[PROOFSTEP]
convert @RingedSpace.isUnit_res_basicOpen Y.toRingedSpace (unop _) (((coequalizer.π f.val g.val).c.app (op U)) s)
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
x : ↑↑(Limits.coequalizer f.val g.val).toPresheafedSpace
⊢ LocalRing ↑(TopCat.Presheaf.stalk (Limits.coequalizer f.val g.val).toPresheafedSpace.presheaf x)
[PROOFSTEP]
obtain ⟨y, rfl⟩ := (TopCat.epi_iff_surjective (coequalizer.π f.val g.val).base).mp inferInstance x
[GOAL]
case intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
y : (forget TopCat).obj ↑Y.toPresheafedSpace
⊢ LocalRing
↑(TopCat.Presheaf.stalk (Limits.coequalizer f.val g.val).toPresheafedSpace.presheaf
(↑(coequalizer.π f.val g.val).base y))
[PROOFSTEP]
exact (PresheafedSpace.stalkMap (coequalizer.π f.val g.val : _) y).domain_localRing
[GOAL]
X✝ Y✝ : LocallyRingedSpace
f✝ g✝ : X✝ ⟶ Y✝
X Y : RingedSpace
f g : X ⟶ Y
H : f = g
x : ↑↑X.toPresheafedSpace
h : IsLocalRingHom (PresheafedSpace.stalkMap f x)
⊢ IsLocalRingHom (PresheafedSpace.stalkMap g x)
[PROOFSTEP]
rw [PresheafedSpace.stalkMap.congr_hom _ _ H.symm x]
[GOAL]
X✝ Y✝ : LocallyRingedSpace
f✝ g✝ : X✝ ⟶ Y✝
X Y : RingedSpace
f g : X ⟶ Y
H : f = g
x : ↑↑X.toPresheafedSpace
h : IsLocalRingHom (PresheafedSpace.stalkMap f x)
⊢ IsLocalRingHom
(eqToHom
(_ :
PresheafedSpace.stalk Y.toPresheafedSpace (↑g.base x) =
PresheafedSpace.stalk Y.toPresheafedSpace (↑f.base x)) ≫
PresheafedSpace.stalkMap f x)
[PROOFSTEP]
infer_instance
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
⊢ IsColimit (coequalizerCofork f g)
[PROOFSTEP]
apply Cofork.IsColimit.mk'
[GOAL]
case create
X Y : LocallyRingedSpace
f g : X ⟶ Y
⊢ (s : Cofork f g) →
{ l //
Cofork.π (coequalizerCofork f g) ≫ l = Cofork.π s ∧
∀
{m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one},
Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s → m = l }
[PROOFSTEP]
intro s
[GOAL]
case create
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
⊢ { l //
Cofork.π (coequalizerCofork f g) ≫ l = Cofork.π s ∧
∀
{m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one},
Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s → m = l }
[PROOFSTEP]
have e : f.val ≫ s.π.val = g.val ≫ s.π.val := by injection s.condition
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
⊢ f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
[PROOFSTEP]
injection s.condition
[GOAL]
case create
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
⊢ { l //
Cofork.π (coequalizerCofork f g) ≫ l = Cofork.π s ∧
∀
{m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one},
Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s → m = l }
[PROOFSTEP]
refine ⟨⟨coequalizer.desc s.π.1 e, ?_⟩, ?_⟩
[GOAL]
case create.refine_1
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
⊢ ∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace),
IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)
[PROOFSTEP]
intro x
[GOAL]
case create.refine_1
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)
[PROOFSTEP]
rcases(TopCat.epi_iff_surjective (coequalizer.π f.val g.val).base).mp inferInstance x with
⟨y, rfl⟩
-- Porting note : was `apply isLocalRingHom_of_comp _ (PresheafedSpace.stalkMap ...)`, this
-- used to allow you to provide the proof that `... ≫ ...` is a local ring homomorphism later,
-- but this is no longer possible
[GOAL]
case create.refine_1.intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
y : (forget TopCat).obj ↑Y.toPresheafedSpace
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y))
[PROOFSTEP]
set h := _
[GOAL]
case create.refine_1.intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
y : (forget TopCat).obj ↑Y.toPresheafedSpace
h : ?m.154167 := ?m.154168
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y))
[PROOFSTEP]
change IsLocalRingHom h
[GOAL]
case create.refine_1.intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
y : (forget TopCat).obj ↑Y.toPresheafedSpace
h : ↑(PresheafedSpace.stalk s.pt.toPresheafedSpace
(↑(coequalizer.desc (Cofork.π s).val e).base (↑(coequalizer.π f.val g.val).base y))) →+*
↑(PresheafedSpace.stalk (coequalizerCofork f g).pt.toPresheafedSpace (↑(coequalizer.π f.val g.val).base y)) :=
PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y)
⊢ IsLocalRingHom h
[PROOFSTEP]
suffices : IsLocalRingHom ((PresheafedSpace.stalkMap (coequalizerCofork f g).π.1 _).comp h)
[GOAL]
case create.refine_1.intro
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
y : (forget TopCat).obj ↑Y.toPresheafedSpace
h : ↑(PresheafedSpace.stalk s.pt.toPresheafedSpace
(↑(coequalizer.desc (Cofork.π s).val e).base (↑(coequalizer.π f.val g.val).base y))) →+*
↑(PresheafedSpace.stalk (coequalizerCofork f g).pt.toPresheafedSpace (↑(coequalizer.π f.val g.val).base y)) :=
PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y)
this : IsLocalRingHom (RingHom.comp (PresheafedSpace.stalkMap (Cofork.π (coequalizerCofork f g)).val y) h)
⊢ IsLocalRingHom h
[PROOFSTEP]
apply isLocalRingHom_of_comp _ (PresheafedSpace.stalkMap (coequalizerCofork f g).π.1 _)
[GOAL]
case this
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
y : (forget TopCat).obj ↑Y.toPresheafedSpace
h : ↑(PresheafedSpace.stalk s.pt.toPresheafedSpace
(↑(coequalizer.desc (Cofork.π s).val e).base (↑(coequalizer.π f.val g.val).base y))) →+*
↑(PresheafedSpace.stalk (coequalizerCofork f g).pt.toPresheafedSpace (↑(coequalizer.π f.val g.val).base y)) :=
PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y)
⊢ IsLocalRingHom (RingHom.comp (PresheafedSpace.stalkMap (Cofork.π (coequalizerCofork f g)).val y) h)
[PROOFSTEP]
change IsLocalRingHom (_ ≫ PresheafedSpace.stalkMap (coequalizerCofork f g).π.val y)
[GOAL]
case this
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
y : (forget TopCat).obj ↑Y.toPresheafedSpace
h : ↑(PresheafedSpace.stalk s.pt.toPresheafedSpace
(↑(coequalizer.desc (Cofork.π s).val e).base (↑(coequalizer.π f.val g.val).base y))) →+*
↑(PresheafedSpace.stalk (coequalizerCofork f g).pt.toPresheafedSpace (↑(coequalizer.π f.val g.val).base y)) :=
PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y)
⊢ IsLocalRingHom (h ≫ PresheafedSpace.stalkMap (Cofork.π (coequalizerCofork f g)).val y)
[PROOFSTEP]
erw [← PresheafedSpace.stalkMap.comp]
[GOAL]
case this
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
y : (forget TopCat).obj ↑Y.toPresheafedSpace
h : ↑(PresheafedSpace.stalk s.pt.toPresheafedSpace
(↑(coequalizer.desc (Cofork.π s).val e).base (↑(coequalizer.π f.val g.val).base y))) →+*
↑(PresheafedSpace.stalk (coequalizerCofork f g).pt.toPresheafedSpace (↑(coequalizer.π f.val g.val).base y)) :=
PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y)
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.π f.val g.val ≫ coequalizer.desc (Cofork.π s).val e) y)
[PROOFSTEP]
apply isLocalRingHom_stalkMap_congr _ _ (coequalizer.π_desc s.π.1 e).symm y
[GOAL]
case this
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
y : (forget TopCat).obj ↑Y.toPresheafedSpace
h : ↑(PresheafedSpace.stalk s.pt.toPresheafedSpace
(↑(coequalizer.desc (Cofork.π s).val e).base (↑(coequalizer.π f.val g.val).base y))) →+*
↑(PresheafedSpace.stalk (coequalizerCofork f g).pt.toPresheafedSpace (↑(coequalizer.π f.val g.val).base y)) :=
PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) (↑(coequalizer.π f.val g.val).base y)
⊢ IsLocalRingHom (PresheafedSpace.stalkMap (Cofork.π s).val y)
[PROOFSTEP]
infer_instance
[GOAL]
case create.refine_2
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
⊢ Cofork.π (coequalizerCofork f g) ≫
{ val := coequalizer.desc (Cofork.π s).val e,
prop :=
(_ :
∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace),
IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) } =
Cofork.π s ∧
∀
{m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one},
Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s →
m =
{ val := coequalizer.desc (Cofork.π s).val e,
prop :=
(_ :
∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace),
IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) }
[PROOFSTEP]
constructor
[GOAL]
case create.refine_2.left
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
⊢ Cofork.π (coequalizerCofork f g) ≫
{ val := coequalizer.desc (Cofork.π s).val e,
prop :=
(_ :
∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace),
IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) } =
Cofork.π s
[PROOFSTEP]
exact LocallyRingedSpace.Hom.ext _ _ (coequalizer.π_desc _ _)
[GOAL]
case create.refine_2.right
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
⊢ ∀
{m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one},
Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s →
m =
{ val := coequalizer.desc (Cofork.π s).val e,
prop :=
(_ :
∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace),
IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) }
[PROOFSTEP]
intro m h
[GOAL]
case create.refine_2.right
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one
h : Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s
⊢ m =
{ val := coequalizer.desc (Cofork.π s).val e,
prop :=
(_ :
∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace),
IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) }
[PROOFSTEP]
replace h : (coequalizerCofork f g).π.1 ≫ m.1 = s.π.1 := by rw [← h]; rfl
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one
h : Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s
⊢ (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val
[PROOFSTEP]
rw [← h]
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one
h : Cofork.π (coequalizerCofork f g) ≫ m = Cofork.π s
⊢ (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π (coequalizerCofork f g) ≫ m).val
[PROOFSTEP]
rfl
[GOAL]
case create.refine_2.right
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one
h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val
⊢ m =
{ val := coequalizer.desc (Cofork.π s).val e,
prop :=
(_ :
∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace),
IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) }
[PROOFSTEP]
apply LocallyRingedSpace.Hom.ext
[GOAL]
case create.refine_2.right.val
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one
h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val
⊢ m.val =
{ val := coequalizer.desc (Cofork.π s).val e,
prop :=
(_ :
∀ (x : ↑↑(coequalizerCofork f g).pt.toPresheafedSpace),
IsLocalRingHom (PresheafedSpace.stalkMap (coequalizer.desc (Cofork.π s).val e) x)) }.val
[PROOFSTEP]
apply (colimit.isColimit (parallelPair f.1 g.1)).uniq (Cofork.ofπ s.π.1 e) m.1
[GOAL]
case create.refine_2.right.val
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one
h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val
⊢ ∀ (j : WalkingParallelPair),
NatTrans.app (colimit.cocone (parallelPair f.val g.val)).ι j ≫ m.val =
NatTrans.app (Cofork.ofπ (Cofork.π s).val e).ι j
[PROOFSTEP]
rintro ⟨⟩
[GOAL]
case create.refine_2.right.val.zero
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one
h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val
⊢ NatTrans.app (colimit.cocone (parallelPair f.val g.val)).ι WalkingParallelPair.zero ≫ m.val =
NatTrans.app (Cofork.ofπ (Cofork.π s).val e).ι WalkingParallelPair.zero
[PROOFSTEP]
rw [← (colimit.cocone (parallelPair f.val g.val)).w WalkingParallelPairHom.left, Category.assoc]
[GOAL]
case create.refine_2.right.val.zero
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one
h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val
⊢ (parallelPair f.val g.val).map WalkingParallelPairHom.left ≫
NatTrans.app (colimit.cocone (parallelPair f.val g.val)).ι WalkingParallelPair.one ≫ m.val =
NatTrans.app (Cofork.ofπ (Cofork.π s).val e).ι WalkingParallelPair.zero
[PROOFSTEP]
change _ ≫ _ ≫ _ = _ ≫ _
[GOAL]
case create.refine_2.right.val.zero
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one
h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val
⊢ (parallelPair f.val g.val).map WalkingParallelPairHom.left ≫
NatTrans.app (colimit.cocone (parallelPair f.val g.val)).ι WalkingParallelPair.one ≫ m.val =
f.val ≫ (Cofork.π s).val
[PROOFSTEP]
congr
[GOAL]
case create.refine_2.right.val.one
X Y : LocallyRingedSpace
f g : X ⟶ Y
s : Cofork f g
e : f.val ≫ (Cofork.π s).val = g.val ≫ (Cofork.π s).val
m :
((Functor.const WalkingParallelPair).obj (coequalizerCofork f g).pt).obj WalkingParallelPair.one ⟶
((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.one
h : (Cofork.π (coequalizerCofork f g)).val ≫ m.val = (Cofork.π s).val
⊢ NatTrans.app (colimit.cocone (parallelPair f.val g.val)).ι WalkingParallelPair.one ≫ m.val =
NatTrans.app (Cofork.ofπ (Cofork.π s).val e).ι WalkingParallelPair.one
[PROOFSTEP]
exact h
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
F : WalkingParallelPair ⥤ LocallyRingedSpace
⊢ PreservesColimit F forgetToSheafedSpace
[PROOFSTEP]
suffices :
PreservesColimit (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right))
forgetToSheafedSpace
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
F : WalkingParallelPair ⥤ LocallyRingedSpace
this :
PreservesColimit (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right))
forgetToSheafedSpace
⊢ PreservesColimit F forgetToSheafedSpace
[PROOFSTEP]
apply preservesColimitOfIsoDiagram _ (diagramIsoParallelPair F).symm
[GOAL]
case this
X Y : LocallyRingedSpace
f g : X ⟶ Y
F : WalkingParallelPair ⥤ LocallyRingedSpace
⊢ PreservesColimit (parallelPair (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right))
forgetToSheafedSpace
[PROOFSTEP]
apply preservesColimitOfPreservesColimitCocone (coequalizerCoforkIsColimit _ _)
[GOAL]
case this
X Y : LocallyRingedSpace
f g : X ⟶ Y
F : WalkingParallelPair ⥤ LocallyRingedSpace
⊢ IsColimit
(forgetToSheafedSpace.mapCocone
(coequalizerCofork (F.map WalkingParallelPairHom.left) (F.map WalkingParallelPairHom.right)))
[PROOFSTEP]
apply (isColimitMapCoconeCoforkEquiv _ _).symm _
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
F : WalkingParallelPair ⥤ LocallyRingedSpace
⊢ IsColimit
(Cofork.ofπ
(forgetToSheafedSpace.map
{ val := coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val,
prop :=
(_ :
∀ (x : ↑(toTopCat (F.obj WalkingParallelPair.one))),
IsLocalRingHom
(PresheafedSpace.stalkMap
(coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val)
x)) })
(_ :
forgetToSheafedSpace.map (F.map WalkingParallelPairHom.left) ≫
forgetToSheafedSpace.map
{ val := coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val,
prop :=
(_ :
∀ (x : ↑(toTopCat (F.obj WalkingParallelPair.one))),
IsLocalRingHom
(PresheafedSpace.stalkMap
(coequalizer.π (F.map WalkingParallelPairHom.left).val
(F.map WalkingParallelPairHom.right).val)
x)) } =
forgetToSheafedSpace.map (F.map WalkingParallelPairHom.right) ≫
forgetToSheafedSpace.map
{ val := coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val,
prop :=
(_ :
∀ (x : ↑(toTopCat (F.obj WalkingParallelPair.one))),
IsLocalRingHom
(PresheafedSpace.stalkMap
(coequalizer.π (F.map WalkingParallelPairHom.left).val
(F.map WalkingParallelPairHom.right).val)
x)) }))
[PROOFSTEP]
dsimp only [forgetToSheafedSpace]
[GOAL]
X Y : LocallyRingedSpace
f g : X ⟶ Y
F : WalkingParallelPair ⥤ LocallyRingedSpace
⊢ IsColimit
(Cofork.ofπ (coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val)
(_ :
(F.map WalkingParallelPairHom.left).val ≫
coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val =
(F.map WalkingParallelPairHom.right).val ≫
coequalizer.π (F.map WalkingParallelPairHom.left).val (F.map WalkingParallelPairHom.right).val))
[PROOFSTEP]
exact coequalizerIsCoequalizer _ _
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.LocallyRingedSpace.HasColimits", "llama_tokens": 28174} |
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N) → FG N
[PROOFSTEP]
rintro ⟨t', h, rfl⟩
[GOAL]
case intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
t' : Set M
h : Set.Finite t'
⊢ FG (LowerAdjoint.toFun (closure L) t')
[PROOFSTEP]
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
[GOAL]
case intro.intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
t : Finset M
h : Set.Finite ↑t
⊢ FG (LowerAdjoint.toFun (closure L) ↑t)
[PROOFSTEP]
exact ⟨t, rfl⟩
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ FG N ↔ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
[PROOFSTEP]
rw [fg_def]
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N) ↔ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
[PROOFSTEP]
constructor
[GOAL]
case mp
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N) → ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
[PROOFSTEP]
rintro ⟨S, Sfin, hS⟩
[GOAL]
case mp.intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Sfin : Set.Finite S
hS : LowerAdjoint.toFun (closure L) S = N
⊢ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
[PROOFSTEP]
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
[GOAL]
case mp.intro.intro.intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
n : ℕ
f : Fin n ↪ M
Sfin : Set.Finite (range ↑f)
hS : LowerAdjoint.toFun (closure L) (range ↑f) = N
⊢ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
[PROOFSTEP]
exact ⟨n, f, hS⟩
[GOAL]
case mpr
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (∃ n s, LowerAdjoint.toFun (closure L) (range s) = N) → ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N
[PROOFSTEP]
rintro ⟨n, s, hs⟩
[GOAL]
case mpr.intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
n : ℕ
s : Fin n → M
hs : LowerAdjoint.toFun (closure L) (range s) = N
⊢ ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N
[PROOFSTEP]
refine' ⟨range s, finite_range s, hs⟩
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
⊢ LowerAdjoint.toFun (closure L) ↑∅ = ⊥
[PROOFSTEP]
rw [Finset.coe_empty, closure_empty]
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
s : Set M
hs : Set.Finite s
⊢ LowerAdjoint.toFun (closure L) ↑(Finite.toFinset hs) = LowerAdjoint.toFun (closure L) s
[PROOFSTEP]
rw [hs.coe_toFinset]
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
N₁ N₂ : Substructure L M
hN₁ : FG N₁
hN₂ : FG N₂
t₁ : Set M
ht₁ : Set.Finite t₁ ∧ LowerAdjoint.toFun (closure L) t₁ = N₁
t₂ : Set M
ht₂ : Set.Finite t₂ ∧ LowerAdjoint.toFun (closure L) t₂ = N₂
⊢ LowerAdjoint.toFun (closure L) (t₁ ∪ t₂) = N₁ ⊔ N₂
[PROOFSTEP]
rw [closure_union, ht₁.2, ht₂.2]
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M →[L] N
s : Substructure L M
hs : FG s
t : Set M
ht : Set.Finite t ∧ LowerAdjoint.toFun (closure L) t = s
⊢ LowerAdjoint.toFun (closure L) (↑f '' t) = Substructure.map f s
[PROOFSTEP]
rw [closure_image, ht.2]
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
hs : FG (Substructure.map (Embedding.toHom f) s)
⊢ FG s
[PROOFSTEP]
rcases hs with ⟨t, h⟩
[GOAL]
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
⊢ FG s
[PROOFSTEP]
rw [fg_def]
[GOAL]
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
⊢ ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = s
[PROOFSTEP]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
[GOAL]
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
⊢ LowerAdjoint.toFun (closure L) (↑f ⁻¹' ↑t) = s
[PROOFSTEP]
have hf : Function.Injective f.toHom := f.injective
[GOAL]
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ↑(Embedding.toHom f)
⊢ LowerAdjoint.toFun (closure L) (↑f ⁻¹' ↑t) = s
[PROOFSTEP]
refine' map_injective_of_injective hf _
[GOAL]
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ↑(Embedding.toHom f)
⊢ Substructure.map (Embedding.toHom f) (LowerAdjoint.toFun (closure L) (↑f ⁻¹' ↑t)) =
Substructure.map (Embedding.toHom f) s
[PROOFSTEP]
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
[GOAL]
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ↑(Embedding.toHom f)
⊢ ↑t ⊆ range ↑f
[PROOFSTEP]
intro x hx
[GOAL]
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ↑(Embedding.toHom f)
x : N
hx : x ∈ ↑t
⊢ x ∈ range ↑f
[PROOFSTEP]
have h' := subset_closure (L := L) hx
[GOAL]
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ↑(Embedding.toHom f)
x : N
hx : x ∈ ↑t
h' : x ∈ ↑(LowerAdjoint.toFun (closure L) ↑t)
⊢ x ∈ range ↑f
[PROOFSTEP]
rw [h] at h'
[GOAL]
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ↑(Embedding.toHom f)
x : N
hx : x ∈ ↑t
h' : x ∈ ↑(Substructure.map (Embedding.toHom f) s)
⊢ x ∈ range ↑f
[PROOFSTEP]
exact Hom.map_le_range h'
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
h : FG N
⊢ CG N
[PROOFSTEP]
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
[GOAL]
case intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
s : Set M
hf : Set.Finite s
h : FG (LowerAdjoint.toFun (closure L) s)
⊢ CG (LowerAdjoint.toFun (closure L) s)
[PROOFSTEP]
refine' ⟨s, hf.countable, rfl⟩
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ CG N ↔ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
[PROOFSTEP]
rw [cg_def]
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N) ↔
↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
[PROOFSTEP]
constructor
[GOAL]
case mp
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N) →
↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
[PROOFSTEP]
rintro ⟨S, Scount, hS⟩
[GOAL]
case mp.intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Scount : Set.Countable S
hS : LowerAdjoint.toFun (closure L) S = N
⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
[PROOFSTEP]
cases' eq_empty_or_nonempty (N : Set M) with h h
[GOAL]
case mp.intro.intro.inl
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Scount : Set.Countable S
hS : LowerAdjoint.toFun (closure L) S = N
h : ↑N = ∅
⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
[PROOFSTEP]
exact Or.intro_left _ h
[GOAL]
case mp.intro.intro.inr
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Scount : Set.Countable S
hS : LowerAdjoint.toFun (closure L) S = N
h : Set.Nonempty ↑N
⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
[PROOFSTEP]
obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr
[GOAL]
case mp.intro.intro.inr.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Scount : Set.Countable S
hS : LowerAdjoint.toFun (closure L) S = N
h : Set.Nonempty ↑N
f : ℕ → M
h' : S ∪ {Set.Nonempty.some h} = range f
⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
[PROOFSTEP]
refine' Or.intro_right _ ⟨f, _⟩
[GOAL]
case mp.intro.intro.inr.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Scount : Set.Countable S
hS : LowerAdjoint.toFun (closure L) S = N
h : Set.Nonempty ↑N
f : ℕ → M
h' : S ∪ {Set.Nonempty.some h} = range f
⊢ LowerAdjoint.toFun (closure L) (range f) = N
[PROOFSTEP]
rw [← h', closure_union, hS, sup_eq_left, closure_le]
[GOAL]
case mp.intro.intro.inr.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Scount : Set.Countable S
hS : LowerAdjoint.toFun (closure L) S = N
h : Set.Nonempty ↑N
f : ℕ → M
h' : S ∪ {Set.Nonempty.some h} = range f
⊢ {Set.Nonempty.some h} ⊆ ↑N
[PROOFSTEP]
exact singleton_subset_iff.2 h.some_mem
[GOAL]
case mpr
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N) →
∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N
[PROOFSTEP]
intro h
[GOAL]
case mpr
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
h : ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N
[PROOFSTEP]
cases' h with h h
[GOAL]
case mpr.inl
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
h : ↑N = ∅
⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N
[PROOFSTEP]
refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
[GOAL]
case mpr.inl
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
h : ↑N = ∅
⊢ N ≤ LowerAdjoint.toFun (closure L) ∅
[PROOFSTEP]
rw [← SetLike.coe_subset_coe, h]
[GOAL]
case mpr.inl
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
h : ↑N = ∅
⊢ ∅ ⊆ ↑(LowerAdjoint.toFun (closure L) ∅)
[PROOFSTEP]
exact empty_subset _
[GOAL]
case mpr.inr
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
h : ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N
[PROOFSTEP]
obtain ⟨f, rfl⟩ := h
[GOAL]
case mpr.inr.intro
L : Language
M : Type u_1
inst✝ : Structure L M
f : ℕ → M
⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = LowerAdjoint.toFun (closure L) (range f)
[PROOFSTEP]
exact ⟨range f, countable_range _, rfl⟩
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
N₁ N₂ : Substructure L M
hN₁ : CG N₁
hN₂ : CG N₂
t₁ : Set M
ht₁ : Set.Countable t₁ ∧ LowerAdjoint.toFun (closure L) t₁ = N₁
t₂ : Set M
ht₂ : Set.Countable t₂ ∧ LowerAdjoint.toFun (closure L) t₂ = N₂
⊢ LowerAdjoint.toFun (closure L) (t₁ ∪ t₂) = N₁ ⊔ N₂
[PROOFSTEP]
rw [closure_union, ht₁.2, ht₂.2]
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M →[L] N
s : Substructure L M
hs : CG s
t : Set M
ht : Set.Countable t ∧ LowerAdjoint.toFun (closure L) t = s
⊢ LowerAdjoint.toFun (closure L) (↑f '' t) = Substructure.map f s
[PROOFSTEP]
rw [closure_image, ht.2]
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
hs : CG (Substructure.map (Embedding.toHom f) s)
⊢ CG s
[PROOFSTEP]
rcases hs with ⟨t, h1, h2⟩
[GOAL]
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
⊢ CG s
[PROOFSTEP]
rw [cg_def]
[GOAL]
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = s
[PROOFSTEP]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
[GOAL]
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
⊢ LowerAdjoint.toFun (closure L) (↑f ⁻¹' t) = s
[PROOFSTEP]
have hf : Function.Injective f.toHom := f.injective
[GOAL]
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ↑(Embedding.toHom f)
⊢ LowerAdjoint.toFun (closure L) (↑f ⁻¹' t) = s
[PROOFSTEP]
refine' map_injective_of_injective hf _
[GOAL]
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ↑(Embedding.toHom f)
⊢ Substructure.map (Embedding.toHom f) (LowerAdjoint.toFun (closure L) (↑f ⁻¹' t)) =
Substructure.map (Embedding.toHom f) s
[PROOFSTEP]
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
[GOAL]
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ↑(Embedding.toHom f)
⊢ t ⊆ range ↑f
[PROOFSTEP]
intro x hx
[GOAL]
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ↑(Embedding.toHom f)
x : N
hx : x ∈ t
⊢ x ∈ range ↑f
[PROOFSTEP]
have h' := subset_closure (L := L) hx
[GOAL]
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ↑(Embedding.toHom f)
x : N
hx : x ∈ t
h' : x ∈ ↑(LowerAdjoint.toFun (closure L) t)
⊢ x ∈ range ↑f
[PROOFSTEP]
rw [h2] at h'
[GOAL]
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ↑(Embedding.toHom f)
x : N
hx : x ∈ t
h' : x ∈ ↑(Substructure.map (Embedding.toHom f) s)
⊢ x ∈ range ↑f
[PROOFSTEP]
exact Hom.map_le_range h'
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
inst✝ : Countable ((l : ℕ) × Functions L l)
s : Substructure L M
⊢ CG s ↔ Countable { x // x ∈ s }
[PROOFSTEP]
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
inst✝ : Countable ((l : ℕ) × Functions L l)
s : Substructure L M
⊢ CG s → Countable { x // x ∈ s }
[PROOFSTEP]
rintro ⟨s, h, rfl⟩
[GOAL]
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
inst✝ : Countable ((l : ℕ) × Functions L l)
s : Set M
h : Set.Countable s
⊢ Countable { x // x ∈ LowerAdjoint.toFun (closure L) s }
[PROOFSTEP]
exact h.substructure_closure L
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
⊢ FG L M ↔ ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = ⊤
[PROOFSTEP]
rw [fg_def, Substructure.fg_def]
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : FG L M
f : M →[L] N
⊢ Substructure.FG (Hom.range f)
[PROOFSTEP]
rw [Hom.range_eq_map]
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : FG L M
f : M →[L] N
⊢ Substructure.FG (map f ⊤)
[PROOFSTEP]
exact (fg_def.1 h).map f
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : FG L M
f : M →[L] N
hs : Function.Surjective ↑f
⊢ FG L N
[PROOFSTEP]
rw [← Hom.range_eq_top] at hs
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : FG L M
f : M →[L] N
hs : Hom.range f = ⊤
⊢ FG L N
[PROOFSTEP]
rw [fg_def, ← hs]
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : FG L M
f : M →[L] N
hs : Hom.range f = ⊤
⊢ Substructure.FG (Hom.range f)
[PROOFSTEP]
exact h.range f
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
⊢ CG L M ↔ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = ⊤
[PROOFSTEP]
rw [cg_def, Substructure.cg_def]
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : CG L M
f : M →[L] N
⊢ Substructure.CG (Hom.range f)
[PROOFSTEP]
rw [Hom.range_eq_map]
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : CG L M
f : M →[L] N
⊢ Substructure.CG (map f ⊤)
[PROOFSTEP]
exact (cg_def.1 h).map f
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : CG L M
f : M →[L] N
hs : Function.Surjective ↑f
⊢ CG L N
[PROOFSTEP]
rw [← Hom.range_eq_top] at hs
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : CG L M
f : M →[L] N
hs : Hom.range f = ⊤
⊢ CG L N
[PROOFSTEP]
rw [cg_def, ← hs]
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : CG L M
f : M →[L] N
hs : Hom.range f = ⊤
⊢ Substructure.CG (Hom.range f)
[PROOFSTEP]
exact h.range f
[GOAL]
L : Language
M : Type u_1
inst✝¹ : Structure L M
inst✝ : Countable ((l : ℕ) × Functions L l)
⊢ CG L M ↔ Countable M
[PROOFSTEP]
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
⊢ FG S ↔ Structure.FG L { x // x ∈ S }
[PROOFSTEP]
rw [Structure.fg_def]
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
⊢ FG S ↔ FG ⊤
[PROOFSTEP]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
[GOAL]
case refine'_1
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h : FG S
⊢ FG (map (Embedding.toHom (subtype S)) ⊤)
[PROOFSTEP]
rw [← Hom.range_eq_map, range_subtype]
[GOAL]
case refine'_1
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h : FG S
⊢ FG S
[PROOFSTEP]
exact h
[GOAL]
case refine'_2
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h : FG ⊤
⊢ FG S
[PROOFSTEP]
have h := h.map S.subtype.toHom
[GOAL]
case refine'_2
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h✝ : FG ⊤
h : FG (map (Embedding.toHom (subtype S)) ⊤)
⊢ FG S
[PROOFSTEP]
rw [← Hom.range_eq_map, range_subtype] at h
[GOAL]
case refine'_2
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h✝ : FG ⊤
h : FG S
⊢ FG S
[PROOFSTEP]
exact h
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
⊢ CG S ↔ Structure.CG L { x // x ∈ S }
[PROOFSTEP]
rw [Structure.cg_def]
[GOAL]
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
⊢ CG S ↔ CG ⊤
[PROOFSTEP]
refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩
[GOAL]
case refine'_1
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h : CG S
⊢ CG (map (Embedding.toHom (subtype S)) ⊤)
[PROOFSTEP]
rw [← Hom.range_eq_map, range_subtype]
[GOAL]
case refine'_1
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h : CG S
⊢ CG S
[PROOFSTEP]
exact h
[GOAL]
case refine'_2
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h : CG ⊤
⊢ CG S
[PROOFSTEP]
have h := h.map S.subtype.toHom
[GOAL]
case refine'_2
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h✝ : CG ⊤
h : CG (map (Embedding.toHom (subtype S)) ⊤)
⊢ CG S
[PROOFSTEP]
rw [← Hom.range_eq_map, range_subtype] at h
[GOAL]
case refine'_2
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h✝ : CG ⊤
h : CG S
⊢ CG S
[PROOFSTEP]
exact h
| {"mathlib_filename": "Mathlib.ModelTheory.FinitelyGenerated", "llama_tokens": 9756} |
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
s : Set A
⊢ zeroLocus 𝒜 ↑(Ideal.span s) = zeroLocus 𝒜 s
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
s : Set A
x : ProjectiveSpectrum 𝒜
⊢ x ∈ zeroLocus 𝒜 ↑(Ideal.span s) ↔ x ∈ zeroLocus 𝒜 s
[PROOFSTEP]
exact (Submodule.gi _ _).gc s x.asHomogeneousIdeal.toIdeal
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
⊢ ↑(vanishingIdeal t) = {f | ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal}
[PROOFSTEP]
ext f
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
f : A
⊢ f ∈ ↑(vanishingIdeal t) ↔ f ∈ {f | ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal}
[PROOFSTEP]
rw [vanishingIdeal, SetLike.mem_coe, ← HomogeneousIdeal.mem_iff, HomogeneousIdeal.toIdeal_iInf, Submodule.mem_iInf]
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
f : A
⊢ (∀ (i : ProjectiveSpectrum 𝒜), f ∈ HomogeneousIdeal.toIdeal (⨅ (_ : i ∈ t), i.asHomogeneousIdeal)) ↔
f ∈ {f | ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal}
[PROOFSTEP]
refine' forall_congr' fun x => _
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
f : A
x : ProjectiveSpectrum 𝒜
⊢ f ∈ HomogeneousIdeal.toIdeal (⨅ (_ : x ∈ t), x.asHomogeneousIdeal) ↔ x ∈ t → f ∈ x.asHomogeneousIdeal
[PROOFSTEP]
rw [HomogeneousIdeal.toIdeal_iInf, Submodule.mem_iInf, HomogeneousIdeal.mem_iff]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
f : A
⊢ f ∈ vanishingIdeal t ↔ ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal
[PROOFSTEP]
rw [← SetLike.mem_coe, coe_vanishingIdeal, Set.mem_setOf_eq]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ProjectiveSpectrum 𝒜
⊢ vanishingIdeal {x} = x.asHomogeneousIdeal
[PROOFSTEP]
simp [vanishingIdeal]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
⊢ GaloisConnection (fun s => zeroLocus 𝒜 s) fun t => ↑(vanishingIdeal t)
[PROOFSTEP]
have ideal_gc : GaloisConnection Ideal.span _ := (Submodule.gi A _).gc
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
ideal_gc : GaloisConnection Ideal.span SetLike.coe
⊢ GaloisConnection (fun s => zeroLocus 𝒜 s) fun t => ↑(vanishingIdeal t)
[PROOFSTEP]
simpa [zeroLocus_span, Function.comp] using GaloisConnection.compose ideal_gc (gc_ideal 𝒜)
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
I : HomogeneousIdeal 𝒜
t : (Set (ProjectiveSpectrum 𝒜))ᵒᵈ
⊢ (fun I => zeroLocus 𝒜 ↑I) I ≤ t ↔ I ≤ (fun t => vanishingIdeal t) t
[PROOFSTEP]
simpa [show I.toIdeal ≤ (vanishingIdeal t).toIdeal ↔ I ≤ vanishingIdeal t from Iff.rfl] using
subset_zeroLocus_iff_le_vanishingIdeal t I.toIdeal
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
⊢ vanishingIdeal ∅ = ⊤
[PROOFSTEP]
simpa using (gc_ideal _).u_top
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t t' : Set (ProjectiveSpectrum 𝒜)
⊢ vanishingIdeal (t ∪ t') = vanishingIdeal t ⊓ vanishingIdeal t'
[PROOFSTEP]
ext1
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t t' : Set (ProjectiveSpectrum 𝒜)
⊢ HomogeneousIdeal.toIdeal (vanishingIdeal (t ∪ t')) = HomogeneousIdeal.toIdeal (vanishingIdeal t ⊓ vanishingIdeal t')
[PROOFSTEP]
exact (gc_ideal 𝒜).u_inf
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
s : Set (Set A)
⊢ zeroLocus 𝒜 (⋃ (s' : Set A) (_ : s' ∈ s), s') = ⋂ (s' : Set A) (_ : s' ∈ s), zeroLocus 𝒜 s'
[PROOFSTEP]
simp only [zeroLocus_iUnion]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
γ : Sort u_3
t : γ → Set (ProjectiveSpectrum 𝒜)
⊢ HomogeneousIdeal.toIdeal (vanishingIdeal (⋃ (i : γ), t i)) =
HomogeneousIdeal.toIdeal (⨅ (i : γ), vanishingIdeal (t i))
[PROOFSTEP]
convert (gc_ideal 𝒜).u_iInf
[GOAL]
case h.e'_3
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
γ : Sort u_3
t : γ → Set (ProjectiveSpectrum 𝒜)
⊢ HomogeneousIdeal.toIdeal (⨅ (i : γ), vanishingIdeal (t i)) =
⨅ (i : γ), HomogeneousIdeal.toIdeal (vanishingIdeal (t i))
[PROOFSTEP]
exact HomogeneousIdeal.toIdeal_iInf _
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
s s' : Set A
⊢ zeroLocus 𝒜 s ∪ zeroLocus 𝒜 s' = zeroLocus 𝒜 ↑(Ideal.span s ⊓ Ideal.span s')
[PROOFSTEP]
rw [zeroLocus_inf]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
s s' : Set A
⊢ zeroLocus 𝒜 s ∪ zeroLocus 𝒜 s' = zeroLocus 𝒜 ↑(Ideal.span s) ∪ zeroLocus 𝒜 ↑(Ideal.span s')
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f g : A
x : ProjectiveSpectrum 𝒜
⊢ x ∈ zeroLocus 𝒜 {f * g} ↔ x ∈ zeroLocus 𝒜 {f} ∪ zeroLocus 𝒜 {g}
[PROOFSTEP]
simpa using x.isPrime.mul_mem_iff_mem_or_mem
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
n : ℕ
hn : 0 < n
x : ProjectiveSpectrum 𝒜
⊢ x ∈ zeroLocus 𝒜 {f ^ n} ↔ x ∈ zeroLocus 𝒜 {f}
[PROOFSTEP]
simpa using x.isPrime.pow_mem_iff_mem n hn
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t t' : Set (ProjectiveSpectrum 𝒜)
⊢ vanishingIdeal t ⊔ vanishingIdeal t' ≤ vanishingIdeal (t ∩ t')
[PROOFSTEP]
intro r
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t t' : Set (ProjectiveSpectrum 𝒜)
r : A
⊢ r ∈ vanishingIdeal t ⊔ vanishingIdeal t' → r ∈ vanishingIdeal (t ∩ t')
[PROOFSTEP]
rw [← HomogeneousIdeal.mem_iff, HomogeneousIdeal.toIdeal_sup, mem_vanishingIdeal, Submodule.mem_sup]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t t' : Set (ProjectiveSpectrum 𝒜)
r : A
⊢ (∃ y,
y ∈ HomogeneousIdeal.toIdeal (vanishingIdeal t) ∧
∃ z, z ∈ HomogeneousIdeal.toIdeal (vanishingIdeal t') ∧ y + z = r) →
∀ (x : ProjectiveSpectrum 𝒜), x ∈ t ∩ t' → r ∈ x.asHomogeneousIdeal
[PROOFSTEP]
rintro ⟨f, hf, g, hg, rfl⟩ x ⟨hxt, hxt'⟩
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t t' : Set (ProjectiveSpectrum 𝒜)
f : A
hf : f ∈ HomogeneousIdeal.toIdeal (vanishingIdeal t)
g : A
hg : g ∈ HomogeneousIdeal.toIdeal (vanishingIdeal t')
x : ProjectiveSpectrum 𝒜
hxt : x ∈ t
hxt' : x ∈ t'
⊢ f + g ∈ x.asHomogeneousIdeal
[PROOFSTEP]
erw [mem_vanishingIdeal] at hf hg
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t t' : Set (ProjectiveSpectrum 𝒜)
f : A
hf : ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal
g : A
hg : ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t' → g ∈ x.asHomogeneousIdeal
x : ProjectiveSpectrum 𝒜
hxt : x ∈ t
hxt' : x ∈ t'
⊢ f + g ∈ x.asHomogeneousIdeal
[PROOFSTEP]
apply Submodule.add_mem
[GOAL]
case intro.intro.intro.intro.intro.h₁
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t t' : Set (ProjectiveSpectrum 𝒜)
f : A
hf : ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal
g : A
hg : ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t' → g ∈ x.asHomogeneousIdeal
x : ProjectiveSpectrum 𝒜
hxt : x ∈ t
hxt' : x ∈ t'
⊢ f ∈ HomogeneousIdeal.toIdeal x.asHomogeneousIdeal
[PROOFSTEP]
solve_by_elim
[GOAL]
case intro.intro.intro.intro.intro.h₂
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t t' : Set (ProjectiveSpectrum 𝒜)
f : A
hf : ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t → f ∈ x.asHomogeneousIdeal
g : A
hg : ∀ (x : ProjectiveSpectrum 𝒜), x ∈ t' → g ∈ x.asHomogeneousIdeal
x : ProjectiveSpectrum 𝒜
hxt : x ∈ t
hxt' : x ∈ t'
⊢ g ∈ HomogeneousIdeal.toIdeal x.asHomogeneousIdeal
[PROOFSTEP]
solve_by_elim
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
I : ProjectiveSpectrum 𝒜
⊢ I ∈ (zeroLocus 𝒜 {f})ᶜ ↔ ¬f ∈ I.asHomogeneousIdeal
[PROOFSTEP]
rw [Set.mem_compl_iff, mem_zeroLocus, Set.singleton_subset_iff]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
I : ProjectiveSpectrum 𝒜
⊢ ¬f ∈ ↑I.asHomogeneousIdeal ↔ ¬f ∈ I.asHomogeneousIdeal
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
⊢ zeroLocus 𝒜 Set.univ = ∅
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
⊢ ∀ (A_1 : Set (Set (ProjectiveSpectrum 𝒜))), A_1 ⊆ Set.range (zeroLocus 𝒜) → ⋂₀ A_1 ∈ Set.range (zeroLocus 𝒜)
[PROOFSTEP]
intro Zs h
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
Zs : Set (Set (ProjectiveSpectrum 𝒜))
h : Zs ⊆ Set.range (zeroLocus 𝒜)
⊢ ⋂₀ Zs ∈ Set.range (zeroLocus 𝒜)
[PROOFSTEP]
rw [Set.sInter_eq_iInter]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
Zs : Set (Set (ProjectiveSpectrum 𝒜))
h : Zs ⊆ Set.range (zeroLocus 𝒜)
⊢ ⋂ (i : ↑Zs), ↑i ∈ Set.range (zeroLocus 𝒜)
[PROOFSTEP]
let f : Zs → Set _ := fun i => Classical.choose (h i.2)
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
Zs : Set (Set (ProjectiveSpectrum 𝒜))
h : Zs ⊆ Set.range (zeroLocus 𝒜)
f : ↑Zs → Set A := fun i => Classical.choose (_ : ↑i ∈ Set.range (zeroLocus 𝒜))
⊢ ⋂ (i : ↑Zs), ↑i ∈ Set.range (zeroLocus 𝒜)
[PROOFSTEP]
have H : (Set.iInter fun i ↦ zeroLocus 𝒜 (f i)) ∈ Set.range (zeroLocus 𝒜) := ⟨_, zeroLocus_iUnion 𝒜 _⟩
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
Zs : Set (Set (ProjectiveSpectrum 𝒜))
h : Zs ⊆ Set.range (zeroLocus 𝒜)
f : ↑Zs → Set A := fun i => Classical.choose (_ : ↑i ∈ Set.range (zeroLocus 𝒜))
H : ⋂ (i : ↑Zs), zeroLocus 𝒜 (f i) ∈ Set.range (zeroLocus 𝒜)
⊢ ⋂ (i : ↑Zs), ↑i ∈ Set.range (zeroLocus 𝒜)
[PROOFSTEP]
convert H using 2
[GOAL]
case h.e'_4.h.e'_3
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
Zs : Set (Set (ProjectiveSpectrum 𝒜))
h : Zs ⊆ Set.range (zeroLocus 𝒜)
f : ↑Zs → Set A := fun i => Classical.choose (_ : ↑i ∈ Set.range (zeroLocus 𝒜))
H : ⋂ (i : ↑Zs), zeroLocus 𝒜 (f i) ∈ Set.range (zeroLocus 𝒜)
⊢ (fun i => ↑i) = fun i => zeroLocus 𝒜 (f i)
[PROOFSTEP]
funext i
[GOAL]
case h.e'_4.h.e'_3.h
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
Zs : Set (Set (ProjectiveSpectrum 𝒜))
h : Zs ⊆ Set.range (zeroLocus 𝒜)
f : ↑Zs → Set A := fun i => Classical.choose (_ : ↑i ∈ Set.range (zeroLocus 𝒜))
H : ⋂ (i : ↑Zs), zeroLocus 𝒜 (f i) ∈ Set.range (zeroLocus 𝒜)
i : ↑Zs
⊢ ↑i = zeroLocus 𝒜 (f i)
[PROOFSTEP]
exact (Classical.choose_spec (h i.2)).symm
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
⊢ ∀ (A_1 : Set (ProjectiveSpectrum 𝒜)),
A_1 ∈ Set.range (zeroLocus 𝒜) →
∀ (B : Set (ProjectiveSpectrum 𝒜)), B ∈ Set.range (zeroLocus 𝒜) → A_1 ∪ B ∈ Set.range (zeroLocus 𝒜)
[PROOFSTEP]
rintro _ ⟨s, rfl⟩ _ ⟨t, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
s t : Set A
⊢ zeroLocus 𝒜 s ∪ zeroLocus 𝒜 t ∈ Set.range (zeroLocus 𝒜)
[PROOFSTEP]
exact ⟨_, (union_zeroLocus 𝒜 s t).symm⟩
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : Set (ProjectiveSpectrum 𝒜)
⊢ IsOpen U ↔ ∃ s, Uᶜ = zeroLocus 𝒜 s
[PROOFSTEP]
simp only [@eq_comm _ Uᶜ]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : Set (ProjectiveSpectrum 𝒜)
⊢ IsOpen U ↔ ∃ s, zeroLocus 𝒜 s = Uᶜ
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
Z : Set (ProjectiveSpectrum 𝒜)
⊢ IsClosed Z ↔ ∃ s, Z = zeroLocus 𝒜 s
[PROOFSTEP]
rw [← isOpen_compl_iff, isOpen_iff, compl_compl]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
s : Set A
⊢ IsClosed (zeroLocus 𝒜 s)
[PROOFSTEP]
rw [isClosed_iff_zeroLocus]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
s : Set A
⊢ ∃ s_1, zeroLocus 𝒜 s = zeroLocus 𝒜 s_1
[PROOFSTEP]
exact ⟨s, rfl⟩
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
⊢ zeroLocus 𝒜 ↑(vanishingIdeal t) = closure t
[PROOFSTEP]
apply Set.Subset.antisymm
[GOAL]
case h₁
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
⊢ zeroLocus 𝒜 ↑(vanishingIdeal t) ⊆ closure t
[PROOFSTEP]
rintro x hx t' ⟨ht', ht⟩
[GOAL]
case h₁.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
x : ProjectiveSpectrum 𝒜
hx : x ∈ zeroLocus 𝒜 ↑(vanishingIdeal t)
t' : Set (ProjectiveSpectrum 𝒜)
ht' : IsClosed t'
ht : t ⊆ t'
⊢ x ∈ t'
[PROOFSTEP]
obtain ⟨fs, rfl⟩ : ∃ s, t' = zeroLocus 𝒜 s := by rwa [isClosed_iff_zeroLocus] at ht'
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
x : ProjectiveSpectrum 𝒜
hx : x ∈ zeroLocus 𝒜 ↑(vanishingIdeal t)
t' : Set (ProjectiveSpectrum 𝒜)
ht' : IsClosed t'
ht : t ⊆ t'
⊢ ∃ s, t' = zeroLocus 𝒜 s
[PROOFSTEP]
rwa [isClosed_iff_zeroLocus] at ht'
[GOAL]
case h₁.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
x : ProjectiveSpectrum 𝒜
hx : x ∈ zeroLocus 𝒜 ↑(vanishingIdeal t)
fs : Set A
ht' : IsClosed (zeroLocus 𝒜 fs)
ht : t ⊆ zeroLocus 𝒜 fs
⊢ x ∈ zeroLocus 𝒜 fs
[PROOFSTEP]
rw [subset_zeroLocus_iff_subset_vanishingIdeal] at ht
[GOAL]
case h₁.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
x : ProjectiveSpectrum 𝒜
hx : x ∈ zeroLocus 𝒜 ↑(vanishingIdeal t)
fs : Set A
ht' : IsClosed (zeroLocus 𝒜 fs)
ht : fs ⊆ ↑(vanishingIdeal t)
⊢ x ∈ zeroLocus 𝒜 fs
[PROOFSTEP]
exact Set.Subset.trans ht hx
[GOAL]
case h₂
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
⊢ closure t ⊆ zeroLocus 𝒜 ↑(vanishingIdeal t)
[PROOFSTEP]
rw [(isClosed_zeroLocus _ _).closure_subset_iff]
[GOAL]
case h₂
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
⊢ t ⊆ zeroLocus 𝒜 ↑(vanishingIdeal t)
[PROOFSTEP]
exact subset_zeroLocus_vanishingIdeal 𝒜 t
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
⊢ vanishingIdeal (closure t) = vanishingIdeal t
[PROOFSTEP]
have := (gc_ideal 𝒜).u_l_u_eq_u t
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
this :
HomogeneousIdeal.toIdeal (vanishingIdeal (zeroLocus 𝒜 ↑(HomogeneousIdeal.toIdeal (vanishingIdeal t)))) =
HomogeneousIdeal.toIdeal (vanishingIdeal t)
⊢ vanishingIdeal (closure t) = vanishingIdeal t
[PROOFSTEP]
ext1
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
this :
HomogeneousIdeal.toIdeal (vanishingIdeal (zeroLocus 𝒜 ↑(HomogeneousIdeal.toIdeal (vanishingIdeal t)))) =
HomogeneousIdeal.toIdeal (vanishingIdeal t)
⊢ HomogeneousIdeal.toIdeal (vanishingIdeal (closure t)) = HomogeneousIdeal.toIdeal (vanishingIdeal t)
[PROOFSTEP]
erw [zeroLocus_vanishingIdeal_eq_closure 𝒜 t] at this
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
t : Set (ProjectiveSpectrum 𝒜)
this : HomogeneousIdeal.toIdeal (vanishingIdeal (closure t)) = HomogeneousIdeal.toIdeal (vanishingIdeal t)
⊢ HomogeneousIdeal.toIdeal (vanishingIdeal (closure t)) = HomogeneousIdeal.toIdeal (vanishingIdeal t)
[PROOFSTEP]
exact this
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
r : A
x : ProjectiveSpectrum 𝒜
⊢ x ∈ ↑(basicOpen 𝒜 r) ↔ x ∈ (zeroLocus 𝒜 {r})ᶜ
[PROOFSTEP]
simp only [Set.mem_compl_iff, mem_zeroLocus, Set.singleton_subset_iff]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
r : A
x : ProjectiveSpectrum 𝒜
⊢ x ∈ ↑(basicOpen 𝒜 r) ↔ ¬r ∈ ↑x.asHomogeneousIdeal
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
⊢ ↑(basicOpen 𝒜 1) = ↑⊤
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
⊢ ↑(basicOpen 𝒜 0) = ↑⊥
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f g : A
⊢ ↑(basicOpen 𝒜 (f * g)) = ↑(basicOpen 𝒜 f ⊓ basicOpen 𝒜 g)
[PROOFSTEP]
simp [zeroLocus_singleton_mul]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f g : A
⊢ basicOpen 𝒜 (f * g) ≤ basicOpen 𝒜 f
[PROOFSTEP]
rw [basicOpen_mul 𝒜 f g]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f g : A
⊢ basicOpen 𝒜 f ⊓ basicOpen 𝒜 g ≤ basicOpen 𝒜 f
[PROOFSTEP]
exact inf_le_left
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f g : A
⊢ basicOpen 𝒜 (f * g) ≤ basicOpen 𝒜 g
[PROOFSTEP]
rw [basicOpen_mul 𝒜 f g]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f g : A
⊢ basicOpen 𝒜 f ⊓ basicOpen 𝒜 g ≤ basicOpen 𝒜 g
[PROOFSTEP]
exact inf_le_right
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
n : ℕ
hn : 0 < n
⊢ ↑(basicOpen 𝒜 (f ^ n)) = ↑(basicOpen 𝒜 f)
[PROOFSTEP]
simpa using zeroLocus_singleton_pow 𝒜 f n hn
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
z : ProjectiveSpectrum 𝒜
⊢ z ∈ ↑(basicOpen 𝒜 f) ↔ z ∈ ↑(⨆ (i : ℕ), basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f))
[PROOFSTEP]
erw [mem_coe_basicOpen, TopologicalSpace.Opens.mem_sSup]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
z : ProjectiveSpectrum 𝒜
⊢ ¬f ∈ z.asHomogeneousIdeal ↔ ∃ u, (u ∈ Set.range fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) ∧ z ∈ u
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
z : ProjectiveSpectrum 𝒜
⊢ ¬f ∈ z.asHomogeneousIdeal → ∃ u, (u ∈ Set.range fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) ∧ z ∈ u
[PROOFSTEP]
intro hz
[GOAL]
case mpr
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
z : ProjectiveSpectrum 𝒜
⊢ (∃ u, (u ∈ Set.range fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) ∧ z ∈ u) → ¬f ∈ z.asHomogeneousIdeal
[PROOFSTEP]
intro hz
[GOAL]
case mp
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
z : ProjectiveSpectrum 𝒜
hz : ¬f ∈ z.asHomogeneousIdeal
⊢ ∃ u, (u ∈ Set.range fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) ∧ z ∈ u
[PROOFSTEP]
rcases show ∃ i, GradedAlgebra.proj 𝒜 i f ∉ z.asHomogeneousIdeal
by
contrapose! hz with H
classical
rw [← DirectSum.sum_support_decompose 𝒜 f]
apply Ideal.sum_mem _ fun i _ => H i with
⟨i, hi⟩
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
z : ProjectiveSpectrum 𝒜
hz : ¬f ∈ z.asHomogeneousIdeal
⊢ ∃ i, ¬↑(GradedAlgebra.proj 𝒜 i) f ∈ z.asHomogeneousIdeal
[PROOFSTEP]
contrapose! hz with H
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
z : ProjectiveSpectrum 𝒜
H : ∀ (i : ℕ), ↑(GradedAlgebra.proj 𝒜 i) f ∈ z.asHomogeneousIdeal
⊢ f ∈ z.asHomogeneousIdeal
[PROOFSTEP]
classical
rw [← DirectSum.sum_support_decompose 𝒜 f]
apply Ideal.sum_mem _ fun i _ => H i
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
z : ProjectiveSpectrum 𝒜
H : ∀ (i : ℕ), ↑(GradedAlgebra.proj 𝒜 i) f ∈ z.asHomogeneousIdeal
⊢ f ∈ z.asHomogeneousIdeal
[PROOFSTEP]
rw [← DirectSum.sum_support_decompose 𝒜 f]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
z : ProjectiveSpectrum 𝒜
H : ∀ (i : ℕ), ↑(GradedAlgebra.proj 𝒜 i) f ∈ z.asHomogeneousIdeal
⊢ ∑ i in DFinsupp.support (↑(decompose 𝒜) f), ↑(↑(↑(decompose 𝒜) f) i) ∈ z.asHomogeneousIdeal
[PROOFSTEP]
apply Ideal.sum_mem _ fun i _ => H i
[GOAL]
case mp.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
z : ProjectiveSpectrum 𝒜
hz : ¬f ∈ z.asHomogeneousIdeal
i : ℕ
hi : ¬↑(GradedAlgebra.proj 𝒜 i) f ∈ z.asHomogeneousIdeal
⊢ ∃ u, (u ∈ Set.range fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) ∧ z ∈ u
[PROOFSTEP]
exact ⟨basicOpen 𝒜 (GradedAlgebra.proj 𝒜 i f), ⟨i, rfl⟩, by rwa [mem_basicOpen]⟩
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
z : ProjectiveSpectrum 𝒜
hz : ¬f ∈ z.asHomogeneousIdeal
i : ℕ
hi : ¬↑(GradedAlgebra.proj 𝒜 i) f ∈ z.asHomogeneousIdeal
⊢ z ∈ basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)
[PROOFSTEP]
rwa [mem_basicOpen]
[GOAL]
case mpr
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
z : ProjectiveSpectrum 𝒜
hz : ∃ u, (u ∈ Set.range fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) ∧ z ∈ u
⊢ ¬f ∈ z.asHomogeneousIdeal
[PROOFSTEP]
obtain ⟨_, ⟨i, rfl⟩, hz⟩ := hz
[GOAL]
case mpr.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
f : A
z : ProjectiveSpectrum 𝒜
i : ℕ
hz : z ∈ (fun i => basicOpen 𝒜 (↑(GradedAlgebra.proj 𝒜 i) f)) i
⊢ ¬f ∈ z.asHomogeneousIdeal
[PROOFSTEP]
exact fun rid => hz (z.1.2 i rid)
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
⊢ IsTopologicalBasis (Set.range fun r => ↑(basicOpen 𝒜 r))
[PROOFSTEP]
apply TopologicalSpace.isTopologicalBasis_of_open_of_nhds
[GOAL]
case h_open
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
⊢ ∀ (u : Set (ProjectiveSpectrum 𝒜)), (u ∈ Set.range fun r => ↑(basicOpen 𝒜 r)) → IsOpen u
[PROOFSTEP]
rintro _ ⟨r, rfl⟩
[GOAL]
case h_open.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
r : A
⊢ IsOpen ((fun r => ↑(basicOpen 𝒜 r)) r)
[PROOFSTEP]
exact isOpen_basicOpen 𝒜
[GOAL]
case h_nhds
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
⊢ ∀ (a : ProjectiveSpectrum 𝒜) (u : Set (ProjectiveSpectrum 𝒜)),
a ∈ u → IsOpen u → ∃ v, (v ∈ Set.range fun r => ↑(basicOpen 𝒜 r)) ∧ a ∈ v ∧ v ⊆ u
[PROOFSTEP]
rintro p U hp ⟨s, hs⟩
[GOAL]
case h_nhds.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
p : ProjectiveSpectrum 𝒜
U : Set (ProjectiveSpectrum 𝒜)
hp : p ∈ U
s : Set A
hs : zeroLocus 𝒜 s = Uᶜ
⊢ ∃ v, (v ∈ Set.range fun r => ↑(basicOpen 𝒜 r)) ∧ p ∈ v ∧ v ⊆ U
[PROOFSTEP]
rw [← compl_compl U, Set.mem_compl_iff, ← hs, mem_zeroLocus, Set.not_subset] at hp
[GOAL]
case h_nhds.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
p : ProjectiveSpectrum 𝒜
U : Set (ProjectiveSpectrum 𝒜)
s : Set A
hp : ∃ a, a ∈ s ∧ ¬a ∈ ↑p.asHomogeneousIdeal
hs : zeroLocus 𝒜 s = Uᶜ
⊢ ∃ v, (v ∈ Set.range fun r => ↑(basicOpen 𝒜 r)) ∧ p ∈ v ∧ v ⊆ U
[PROOFSTEP]
obtain ⟨f, hfs, hfp⟩ := hp
[GOAL]
case h_nhds.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
p : ProjectiveSpectrum 𝒜
U : Set (ProjectiveSpectrum 𝒜)
s : Set A
hs : zeroLocus 𝒜 s = Uᶜ
f : A
hfs : f ∈ s
hfp : ¬f ∈ ↑p.asHomogeneousIdeal
⊢ ∃ v, (v ∈ Set.range fun r => ↑(basicOpen 𝒜 r)) ∧ p ∈ v ∧ v ⊆ U
[PROOFSTEP]
refine' ⟨basicOpen 𝒜 f, ⟨f, rfl⟩, hfp, _⟩
[GOAL]
case h_nhds.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
p : ProjectiveSpectrum 𝒜
U : Set (ProjectiveSpectrum 𝒜)
s : Set A
hs : zeroLocus 𝒜 s = Uᶜ
f : A
hfs : f ∈ s
hfp : ¬f ∈ ↑p.asHomogeneousIdeal
⊢ ↑(basicOpen 𝒜 f) ⊆ U
[PROOFSTEP]
rw [← Set.compl_subset_compl, ← hs, basicOpen_eq_zeroLocus_compl, compl_compl]
[GOAL]
case h_nhds.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
p : ProjectiveSpectrum 𝒜
U : Set (ProjectiveSpectrum 𝒜)
s : Set A
hs : zeroLocus 𝒜 s = Uᶜ
f : A
hfs : f ∈ s
hfp : ¬f ∈ ↑p.asHomogeneousIdeal
⊢ zeroLocus 𝒜 s ⊆ zeroLocus 𝒜 {f}
[PROOFSTEP]
exact zeroLocus_anti_mono 𝒜 (Set.singleton_subset_iff.mpr hfs)
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x✝¹ x✝ : ProjectiveSpectrum 𝒜
asHomogeneousIdeal✝¹ : HomogeneousIdeal 𝒜
isPrime✝¹ : Ideal.IsPrime (HomogeneousIdeal.toIdeal asHomogeneousIdeal✝¹)
not_irrelevant_le✝¹ : ¬HomogeneousIdeal.irrelevant 𝒜 ≤ asHomogeneousIdeal✝¹
asHomogeneousIdeal✝ : HomogeneousIdeal 𝒜
isPrime✝ : Ideal.IsPrime (HomogeneousIdeal.toIdeal asHomogeneousIdeal✝)
not_irrelevant_le✝ : ¬HomogeneousIdeal.irrelevant 𝒜 ≤ asHomogeneousIdeal✝
⊢ { asHomogeneousIdeal := asHomogeneousIdeal✝¹, isPrime := isPrime✝¹,
not_irrelevant_le := not_irrelevant_le✝¹ }.asHomogeneousIdeal =
{ asHomogeneousIdeal := asHomogeneousIdeal✝, isPrime := isPrime✝,
not_irrelevant_le := not_irrelevant_le✝ }.asHomogeneousIdeal →
{ asHomogeneousIdeal := asHomogeneousIdeal✝¹, isPrime := isPrime✝¹, not_irrelevant_le := not_irrelevant_le✝¹ } =
{ asHomogeneousIdeal := asHomogeneousIdeal✝, isPrime := isPrime✝, not_irrelevant_le := not_irrelevant_le✝ }
[PROOFSTEP]
simp only [mk.injEq, imp_self]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x y : ProjectiveSpectrum 𝒜
⊢ x ≤ y ↔ y ∈ closure {x}
[PROOFSTEP]
rw [← as_ideal_le_as_ideal, ← zeroLocus_vanishingIdeal_eq_closure, mem_zeroLocus, vanishingIdeal_singleton]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x y : ProjectiveSpectrum 𝒜
⊢ x.asHomogeneousIdeal ≤ y.asHomogeneousIdeal ↔ ↑x.asHomogeneousIdeal ⊆ ↑y.asHomogeneousIdeal
[PROOFSTEP]
simp only [as_ideal_le_as_ideal, coe_subset_coe]
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Topology", "llama_tokens": 16949} |
[GOAL]
k : Type u
inst✝¹ : Field k
G : Type u
inst✝ : Monoid G
V : FdRep k G
g h : G
⊢ character V (h * g) = character V (g * h)
[PROOFSTEP]
simp only [trace_mul_comm, character, map_mul]
[GOAL]
k : Type u
inst✝¹ : Field k
G : Type u
inst✝ : Monoid G
V : FdRep k G
⊢ character V 1 = ↑(finrank k (CoeSort.coe V))
[PROOFSTEP]
simp only [character, map_one, trace_one]
[GOAL]
k : Type u
inst✝¹ : Field k
G : Type u
inst✝ : Monoid G
V W : FdRep k G
⊢ character (V ⊗ W) = character V * character W
[PROOFSTEP]
ext g
[GOAL]
case h
k : Type u
inst✝¹ : Field k
G : Type u
inst✝ : Monoid G
V W : FdRep k G
g : G
⊢ character (V ⊗ W) g = (character V * character W) g
[PROOFSTEP]
convert trace_tensorProduct' (V.ρ g) (W.ρ g)
[GOAL]
k : Type u
inst✝¹ : Field k
G : Type u
inst✝ : Monoid G
V W : FdRep k G
⊢ character
(Action.FunctorCategoryEquivalence.inverse.obj
(Action.FunctorCategoryEquivalence.functor.obj V ⊗ Action.FunctorCategoryEquivalence.functor.obj W)) =
character V * character W
[PROOFSTEP]
simp [← char_tensor]
[GOAL]
k : Type u
inst✝¹ : Field k
G : Type u
inst✝ : Monoid G
V W : FdRep k G
i : V ≅ W
⊢ character V = character W
[PROOFSTEP]
ext g
[GOAL]
case h
k : Type u
inst✝¹ : Field k
G : Type u
inst✝ : Monoid G
V W : FdRep k G
i : V ≅ W
g : G
⊢ character V g = character W g
[PROOFSTEP]
simp only [character, FdRep.Iso.conj_ρ i]
[GOAL]
case h
k : Type u
inst✝¹ : Field k
G : Type u
inst✝ : Monoid G
V W : FdRep k G
i : V ≅ W
g : G
⊢ ↑(trace k (CoeSort.coe V)) (↑(ρ V) g) =
↑(trace k (CoeSort.coe W)) (↑(LinearEquiv.conj (isoToLinearEquiv i)) (↑(ρ V) g))
[PROOFSTEP]
exact (trace_conj' (V.ρ g) _).symm
[GOAL]
k : Type u
inst✝¹ : Field k
G : Type u
inst✝ : Group G
V : FdRep k G
g h : G
⊢ character V (h * g * h⁻¹) = character V g
[PROOFSTEP]
rw [char_mul_comm, inv_mul_cancel_left]
[GOAL]
k : Type u
inst✝¹ : Field k
G : Type u
inst✝ : Group G
V W : FdRep k G
g : G
⊢ character (of (linHom (ρ V) (ρ W))) g = character V g⁻¹ * character W g
[PROOFSTEP]
rw [← char_iso (dualTensorIsoLinHom _ _), char_tensor, Pi.mul_apply, char_dual]
[GOAL]
k : Type u
inst✝³ : Field k
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
V : FdRep k G
⊢ ⅟↑(Fintype.card G) • ∑ g : G, character V g = ↑(finrank k { x // x ∈ invariants (ρ V) })
[PROOFSTEP]
erw [← (isProj_averageMap V.ρ).trace]
-- Porting note: Changed `rw` to `erw`
[GOAL]
k : Type u
inst✝³ : Field k
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
V : FdRep k G
⊢ ⅟↑(Fintype.card G) • ∑ g : G, character V g = ↑(trace k (CoeSort.coe V)) (averageMap (ρ V))
[PROOFSTEP]
simp [character, GroupAlgebra.average, _root_.map_sum]
[GOAL]
k : Type u
inst✝⁵ : Field k
G : GroupCat
inst✝⁴ : IsAlgClosed k
inst✝³ : Fintype ↑G
inst✝² : Invertible ↑(Fintype.card ↑G)
V W : FdRep k ↑G
inst✝¹ : Simple V
inst✝ : Simple W
⊢ ⅟↑(Fintype.card ↑G) • ∑ g : ↑G, character V g * character W g⁻¹ = if Nonempty (V ≅ W) then 1 else 0
[PROOFSTEP]
conv_lhs =>
enter [2, 2, g]
rw [mul_comm, ← char_dual, ← Pi.mul_apply, ← char_tensor]
rw [char_iso (FdRep.dualTensorIsoLinHom W.ρ V)]
-- The average over the group of the character of a representation equals the dimension of the
-- space of invariants.
[GOAL]
k : Type u
inst✝⁵ : Field k
G : GroupCat
inst✝⁴ : IsAlgClosed k
inst✝³ : Fintype ↑G
inst✝² : Invertible ↑(Fintype.card ↑G)
V W : FdRep k ↑G
inst✝¹ : Simple V
inst✝ : Simple W
| ⅟↑(Fintype.card ↑G) • ∑ g : ↑G, character V g * character W g⁻¹
[PROOFSTEP]
enter [2, 2, g]
rw [mul_comm, ← char_dual, ← Pi.mul_apply, ← char_tensor]
rw [char_iso (FdRep.dualTensorIsoLinHom W.ρ V)]
-- The average over the group of the character of a representation equals the dimension of the
-- space of invariants.
[GOAL]
k : Type u
inst✝⁵ : Field k
G : GroupCat
inst✝⁴ : IsAlgClosed k
inst✝³ : Fintype ↑G
inst✝² : Invertible ↑(Fintype.card ↑G)
V W : FdRep k ↑G
inst✝¹ : Simple V
inst✝ : Simple W
| ⅟↑(Fintype.card ↑G) • ∑ g : ↑G, character V g * character W g⁻¹
[PROOFSTEP]
enter [2, 2, g]
rw [mul_comm, ← char_dual, ← Pi.mul_apply, ← char_tensor]
rw [char_iso (FdRep.dualTensorIsoLinHom W.ρ V)]
-- The average over the group of the character of a representation equals the dimension of the
-- space of invariants.
[GOAL]
k : Type u
inst✝⁵ : Field k
G : GroupCat
inst✝⁴ : IsAlgClosed k
inst✝³ : Fintype ↑G
inst✝² : Invertible ↑(Fintype.card ↑G)
V W : FdRep k ↑G
inst✝¹ : Simple V
inst✝ : Simple W
| ⅟↑(Fintype.card ↑G) • ∑ g : ↑G, character V g * character W g⁻¹
[PROOFSTEP]
enter [2, 2, g]
[GOAL]
case h
k : Type u
inst✝⁵ : Field k
G : GroupCat
inst✝⁴ : IsAlgClosed k
inst✝³ : Fintype ↑G
inst✝² : Invertible ↑(Fintype.card ↑G)
V W : FdRep k ↑G
inst✝¹ : Simple V
inst✝ : Simple W
g : ↑G
| character V g * character W g⁻¹
[PROOFSTEP]
rw [mul_comm, ← char_dual, ← Pi.mul_apply, ← char_tensor]
[GOAL]
case h
k : Type u
inst✝⁵ : Field k
G : GroupCat
inst✝⁴ : IsAlgClosed k
inst✝³ : Fintype ↑G
inst✝² : Invertible ↑(Fintype.card ↑G)
V W : FdRep k ↑G
inst✝¹ : Simple V
inst✝ : Simple W
g : ↑G
| character (of (dual (ρ W)) ⊗ V) g
[PROOFSTEP]
rw [char_iso (FdRep.dualTensorIsoLinHom W.ρ V)]
-- The average over the group of the character of a representation equals the dimension of the
-- space of invariants.
[GOAL]
k : Type u
inst✝⁵ : Field k
G : GroupCat
inst✝⁴ : IsAlgClosed k
inst✝³ : Fintype ↑G
inst✝² : Invertible ↑(Fintype.card ↑G)
V W : FdRep k ↑G
inst✝¹ : Simple V
inst✝ : Simple W
⊢ ⅟↑(Fintype.card ↑G) • ∑ g : ↑G, character (of (linHom (ρ W) (ρ V))) g = if Nonempty (V ≅ W) then 1 else 0
[PROOFSTEP]
rw [average_char_eq_finrank_invariants]
[GOAL]
k : Type u
inst✝⁵ : Field k
G : GroupCat
inst✝⁴ : IsAlgClosed k
inst✝³ : Fintype ↑G
inst✝² : Invertible ↑(Fintype.card ↑G)
V W : FdRep k ↑G
inst✝¹ : Simple V
inst✝ : Simple W
⊢ ↑(finrank k { x // x ∈ invariants (ρ (of (linHom (ρ W) (ρ V)))) }) = if Nonempty (V ≅ W) then 1 else 0
[PROOFSTEP]
rw [show (of (linHom W.ρ V.ρ)).ρ = linHom W.ρ V.ρ from FdRep.of_ρ (linHom W.ρ V.ρ)]
-- The space of invariants of `Hom(W, V)` is the subspace of `G`-equivariant linear maps,
-- `Hom_G(W, V)`.
[GOAL]
k : Type u
inst✝⁵ : Field k
G : GroupCat
inst✝⁴ : IsAlgClosed k
inst✝³ : Fintype ↑G
inst✝² : Invertible ↑(Fintype.card ↑G)
V W : FdRep k ↑G
inst✝¹ : Simple V
inst✝ : Simple W
⊢ ↑(finrank k { x // x ∈ invariants (linHom (ρ W) (ρ V)) }) = if Nonempty (V ≅ W) then 1 else 0
[PROOFSTEP]
erw [(linHom.invariantsEquivFdRepHom W V).finrank_eq]
-- Porting note: Changed `rw` to `erw`
-- By Schur's Lemma, the dimension of `Hom_G(W, V)` is `1` is `V ≅ W` and `0` otherwise.
[GOAL]
k : Type u
inst✝⁵ : Field k
G : GroupCat
inst✝⁴ : IsAlgClosed k
inst✝³ : Fintype ↑G
inst✝² : Invertible ↑(Fintype.card ↑G)
V W : FdRep k ↑G
inst✝¹ : Simple V
inst✝ : Simple W
⊢ ↑(finrank k (W ⟶ V)) = if Nonempty (V ≅ W) then 1 else 0
[PROOFSTEP]
rw_mod_cast [finrank_hom_simple_simple W V, Iso.nonempty_iso_symm]
| {"mathlib_filename": "Mathlib.RepresentationTheory.Character", "llama_tokens": 3304} |
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ Function.Bijective (primeSpectrumProdOfSum R S)
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ Function.Injective (primeSpectrumProdOfSum R S)
[PROOFSTEP]
rintro (⟨I, hI⟩ | ⟨J, hJ⟩) (⟨I', hI'⟩ | ⟨J', hJ'⟩) h
[GOAL]
case left.inl.mk.inl.mk
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsPrime I
I' : Ideal R
hI' : Ideal.IsPrime I'
h :
primeSpectrumProdOfSum R S (Sum.inl { asIdeal := I, IsPrime := hI }) =
primeSpectrumProdOfSum R S (Sum.inl { asIdeal := I', IsPrime := hI' })
⊢ Sum.inl { asIdeal := I, IsPrime := hI } = Sum.inl { asIdeal := I', IsPrime := hI' }
[PROOFSTEP]
simp only [mk.injEq, Ideal.prod.ext_iff, primeSpectrumProdOfSum] at h
[GOAL]
case left.inl.mk.inr.mk
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsPrime I
J' : Ideal S
hJ' : Ideal.IsPrime J'
h :
primeSpectrumProdOfSum R S (Sum.inl { asIdeal := I, IsPrime := hI }) =
primeSpectrumProdOfSum R S (Sum.inr { asIdeal := J', IsPrime := hJ' })
⊢ Sum.inl { asIdeal := I, IsPrime := hI } = Sum.inr { asIdeal := J', IsPrime := hJ' }
[PROOFSTEP]
simp only [mk.injEq, Ideal.prod.ext_iff, primeSpectrumProdOfSum] at h
[GOAL]
case left.inr.mk.inl.mk
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
J : Ideal S
hJ : Ideal.IsPrime J
I' : Ideal R
hI' : Ideal.IsPrime I'
h :
primeSpectrumProdOfSum R S (Sum.inr { asIdeal := J, IsPrime := hJ }) =
primeSpectrumProdOfSum R S (Sum.inl { asIdeal := I', IsPrime := hI' })
⊢ Sum.inr { asIdeal := J, IsPrime := hJ } = Sum.inl { asIdeal := I', IsPrime := hI' }
[PROOFSTEP]
simp only [mk.injEq, Ideal.prod.ext_iff, primeSpectrumProdOfSum] at h
[GOAL]
case left.inr.mk.inr.mk
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
J : Ideal S
hJ : Ideal.IsPrime J
J' : Ideal S
hJ' : Ideal.IsPrime J'
h :
primeSpectrumProdOfSum R S (Sum.inr { asIdeal := J, IsPrime := hJ }) =
primeSpectrumProdOfSum R S (Sum.inr { asIdeal := J', IsPrime := hJ' })
⊢ Sum.inr { asIdeal := J, IsPrime := hJ } = Sum.inr { asIdeal := J', IsPrime := hJ' }
[PROOFSTEP]
simp only [mk.injEq, Ideal.prod.ext_iff, primeSpectrumProdOfSum] at h
[GOAL]
case left.inl.mk.inl.mk
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsPrime I
I' : Ideal R
hI' : Ideal.IsPrime I'
h : I = I' ∧ True
⊢ Sum.inl { asIdeal := I, IsPrime := hI } = Sum.inl { asIdeal := I', IsPrime := hI' }
[PROOFSTEP]
simp only [h]
[GOAL]
case left.inl.mk.inr.mk
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsPrime I
J' : Ideal S
hJ' : Ideal.IsPrime J'
h : I = ⊤ ∧ ⊤ = J'
⊢ Sum.inl { asIdeal := I, IsPrime := hI } = Sum.inr { asIdeal := J', IsPrime := hJ' }
[PROOFSTEP]
exact False.elim (hI.ne_top h.left)
[GOAL]
case left.inr.mk.inl.mk
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
J : Ideal S
hJ : Ideal.IsPrime J
I' : Ideal R
hI' : Ideal.IsPrime I'
h : ⊤ = I' ∧ J = ⊤
⊢ Sum.inr { asIdeal := J, IsPrime := hJ } = Sum.inl { asIdeal := I', IsPrime := hI' }
[PROOFSTEP]
exact False.elim (hJ.ne_top h.right)
[GOAL]
case left.inr.mk.inr.mk
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
J : Ideal S
hJ : Ideal.IsPrime J
J' : Ideal S
hJ' : Ideal.IsPrime J'
h : True ∧ J = J'
⊢ Sum.inr { asIdeal := J, IsPrime := hJ } = Sum.inr { asIdeal := J', IsPrime := hJ' }
[PROOFSTEP]
simp only [h]
[GOAL]
case right
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ Function.Surjective (primeSpectrumProdOfSum R S)
[PROOFSTEP]
rintro ⟨I, hI⟩
[GOAL]
case right.mk
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal (R × S)
hI : Ideal.IsPrime I
⊢ ∃ a, primeSpectrumProdOfSum R S a = { asIdeal := I, IsPrime := hI }
[PROOFSTEP]
rcases(Ideal.ideal_prod_prime I).mp hI with (⟨p, ⟨hp, rfl⟩⟩ | ⟨p, ⟨hp, rfl⟩⟩)
[GOAL]
case right.mk.inl.intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
p : Ideal R
hp : Ideal.IsPrime p
hI : Ideal.IsPrime (Ideal.prod p ⊤)
⊢ ∃ a, primeSpectrumProdOfSum R S a = { asIdeal := Ideal.prod p ⊤, IsPrime := hI }
[PROOFSTEP]
exact ⟨Sum.inl ⟨p, hp⟩, rfl⟩
[GOAL]
case right.mk.inr.intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
p : Ideal S
hp : Ideal.IsPrime p
hI : Ideal.IsPrime (Ideal.prod ⊤ p)
⊢ ∃ a, primeSpectrumProdOfSum R S a = { asIdeal := Ideal.prod ⊤ p, IsPrime := hI }
[PROOFSTEP]
exact ⟨Sum.inr ⟨p, hp⟩, rfl⟩
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x : PrimeSpectrum R
⊢ (↑(primeSpectrumProd R S).symm (Sum.inl x)).asIdeal = Ideal.prod x.asIdeal ⊤
[PROOFSTEP]
cases x
[GOAL]
case mk
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
asIdeal✝ : Ideal R
IsPrime✝ : Ideal.IsPrime asIdeal✝
⊢ (↑(primeSpectrumProd R S).symm (Sum.inl { asIdeal := asIdeal✝, IsPrime := IsPrime✝ })).asIdeal =
Ideal.prod { asIdeal := asIdeal✝, IsPrime := IsPrime✝ }.asIdeal ⊤
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x : PrimeSpectrum S
⊢ (↑(primeSpectrumProd R S).symm (Sum.inr x)).asIdeal = Ideal.prod ⊤ x.asIdeal
[PROOFSTEP]
cases x
[GOAL]
case mk
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
asIdeal✝ : Ideal S
IsPrime✝ : Ideal.IsPrime asIdeal✝
⊢ (↑(primeSpectrumProd R S).symm (Sum.inr { asIdeal := asIdeal✝, IsPrime := IsPrime✝ })).asIdeal =
Ideal.prod ⊤ { asIdeal := asIdeal✝, IsPrime := IsPrime✝ }.asIdeal
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set R
⊢ zeroLocus ↑(Ideal.span s) = zeroLocus s
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set R
x : PrimeSpectrum R
⊢ x ∈ zeroLocus ↑(Ideal.span s) ↔ x ∈ zeroLocus s
[PROOFSTEP]
exact (Submodule.gi R R).gc s x.asIdeal
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
⊢ ↑(vanishingIdeal t) = {f | ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal}
[PROOFSTEP]
ext f
[GOAL]
case h
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
f : R
⊢ f ∈ ↑(vanishingIdeal t) ↔ f ∈ {f | ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal}
[PROOFSTEP]
rw [vanishingIdeal, SetLike.mem_coe, Submodule.mem_iInf]
[GOAL]
case h
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
f : R
⊢ (∀ (i : PrimeSpectrum R), f ∈ ⨅ (_ : i ∈ t), i.asIdeal) ↔ f ∈ {f | ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal}
[PROOFSTEP]
apply forall_congr'
[GOAL]
case h.h
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
f : R
⊢ ∀ (a : PrimeSpectrum R), f ∈ ⨅ (_ : a ∈ t), a.asIdeal ↔ a ∈ t → f ∈ a.asIdeal
[PROOFSTEP]
intro x
[GOAL]
case h.h
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
f : R
x : PrimeSpectrum R
⊢ f ∈ ⨅ (_ : x ∈ t), x.asIdeal ↔ x ∈ t → f ∈ x.asIdeal
[PROOFSTEP]
rw [Submodule.mem_iInf]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
f : R
⊢ f ∈ vanishingIdeal t ↔ ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal
[PROOFSTEP]
rw [← SetLike.mem_coe, coe_vanishingIdeal, Set.mem_setOf_eq]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x : PrimeSpectrum R
⊢ vanishingIdeal {x} = x.asIdeal
[PROOFSTEP]
simp [vanishingIdeal]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ GaloisConnection (fun s => zeroLocus s) fun t => ↑(vanishingIdeal t)
[PROOFSTEP]
have ideal_gc : GaloisConnection Ideal.span _ := (Submodule.gi R R).gc
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
ideal_gc : GaloisConnection Ideal.span SetLike.coe
⊢ GaloisConnection (fun s => zeroLocus s) fun t => ↑(vanishingIdeal t)
[PROOFSTEP]
simpa [zeroLocus_span, Function.comp] using ideal_gc.compose (gc R)
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
f : R
⊢ f ∈ vanishingIdeal (zeroLocus ↑I) ↔ f ∈ Ideal.radical I
[PROOFSTEP]
rw [mem_vanishingIdeal, Ideal.radical_eq_sInf, Submodule.mem_sInf]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
f : R
⊢ (∀ (x : PrimeSpectrum R), x ∈ zeroLocus ↑I → f ∈ x.asIdeal) ↔
∀ (p : Submodule R R), p ∈ {J | I ≤ J ∧ Ideal.IsPrime J} → f ∈ p
[PROOFSTEP]
exact ⟨fun h x hx => h ⟨x, hx.2⟩ hx.1, fun h x hx => h x.1 ⟨hx, x.2⟩⟩
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f g : R
⊢ zeroLocus {f} ⊆ zeroLocus {g} ↔ g ∈ Ideal.radical (Ideal.span {f})
[PROOFSTEP]
rw [← zeroLocus_span { f }, ← zeroLocus_span { g }, zeroLocus_subset_zeroLocus_iff, Ideal.span_le,
Set.singleton_subset_iff, SetLike.mem_coe]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ vanishingIdeal ∅ = ⊤
[PROOFSTEP]
simpa using (gc R).u_top
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set R
h : 1 ∈ s
⊢ zeroLocus s = ∅
[PROOFSTEP]
rw [Set.eq_empty_iff_forall_not_mem]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set R
h : 1 ∈ s
⊢ ∀ (x : PrimeSpectrum R), ¬x ∈ zeroLocus s
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set R
h : 1 ∈ s
x : PrimeSpectrum R
hx : x ∈ zeroLocus s
⊢ False
[PROOFSTEP]
rw [mem_zeroLocus] at hx
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set R
h : 1 ∈ s
x : PrimeSpectrum R
hx : s ⊆ ↑x.asIdeal
⊢ False
[PROOFSTEP]
have x_prime : x.asIdeal.IsPrime := by infer_instance
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set R
h : 1 ∈ s
x : PrimeSpectrum R
hx : s ⊆ ↑x.asIdeal
⊢ Ideal.IsPrime x.asIdeal
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set R
h : 1 ∈ s
x : PrimeSpectrum R
hx : s ⊆ ↑x.asIdeal
x_prime : Ideal.IsPrime x.asIdeal
⊢ False
[PROOFSTEP]
have eq_top : x.asIdeal = ⊤ := by
rw [Ideal.eq_top_iff_one]
exact hx h
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set R
h : 1 ∈ s
x : PrimeSpectrum R
hx : s ⊆ ↑x.asIdeal
x_prime : Ideal.IsPrime x.asIdeal
⊢ x.asIdeal = ⊤
[PROOFSTEP]
rw [Ideal.eq_top_iff_one]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set R
h : 1 ∈ s
x : PrimeSpectrum R
hx : s ⊆ ↑x.asIdeal
x_prime : Ideal.IsPrime x.asIdeal
⊢ 1 ∈ x.asIdeal
[PROOFSTEP]
exact hx h
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set R
h : 1 ∈ s
x : PrimeSpectrum R
hx : s ⊆ ↑x.asIdeal
x_prime : Ideal.IsPrime x.asIdeal
eq_top : x.asIdeal = ⊤
⊢ False
[PROOFSTEP]
apply x_prime.ne_top eq_top
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
⊢ zeroLocus ↑I = ∅ ↔ I = ⊤
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
⊢ zeroLocus ↑I = ∅ → I = ⊤
[PROOFSTEP]
contrapose!
[GOAL]
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
⊢ I ≠ ⊤ → zeroLocus ↑I ≠ ∅
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
h : I ≠ ⊤
⊢ zeroLocus ↑I ≠ ∅
[PROOFSTEP]
rcases Ideal.exists_le_maximal I h with ⟨M, hM, hIM⟩
[GOAL]
case mp.intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
h : I ≠ ⊤
M : Ideal R
hM : Ideal.IsMaximal M
hIM : I ≤ M
⊢ zeroLocus ↑I ≠ ∅
[PROOFSTEP]
exact Set.Nonempty.ne_empty ⟨⟨M, hM.isPrime⟩, hIM⟩
[GOAL]
case mpr
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
⊢ I = ⊤ → zeroLocus ↑I = ∅
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ zeroLocus ↑⊤ = ∅
[PROOFSTEP]
apply zeroLocus_empty_of_one_mem
[GOAL]
case mpr.h
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ 1 ∈ ↑⊤
[PROOFSTEP]
trivial
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set (PrimeSpectrum R)
⊢ vanishingIdeal s = ⊤ ↔ s = ∅
[PROOFSTEP]
rw [← top_le_iff, ← subset_zeroLocus_iff_le_vanishingIdeal, Submodule.top_coe, zeroLocus_univ, Set.subset_empty_iff]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set (Set R)
⊢ zeroLocus (⋃ (s' : Set R) (_ : s' ∈ s), s') = ⋂ (s' : Set R) (_ : s' ∈ s), zeroLocus s'
[PROOFSTEP]
simp only [zeroLocus_iUnion]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s s' : Set R
⊢ zeroLocus s ∪ zeroLocus s' = zeroLocus ↑(Ideal.span s ⊓ Ideal.span s')
[PROOFSTEP]
rw [zeroLocus_inf]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s s' : Set R
⊢ zeroLocus s ∪ zeroLocus s' = zeroLocus ↑(Ideal.span s) ∪ zeroLocus ↑(Ideal.span s')
[PROOFSTEP]
simp
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f g : R
x : PrimeSpectrum R
⊢ x ∈ zeroLocus {f * g} ↔ x ∈ zeroLocus {f} ∪ zeroLocus {g}
[PROOFSTEP]
simpa using x.2.mul_mem_iff_mem_or_mem
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
n : ℕ
hn : 0 < n
x : PrimeSpectrum R
⊢ x ∈ zeroLocus {f ^ n} ↔ x ∈ zeroLocus {f}
[PROOFSTEP]
simpa using x.2.pow_mem_iff_mem n hn
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t t' : Set (PrimeSpectrum R)
⊢ vanishingIdeal t ⊔ vanishingIdeal t' ≤ vanishingIdeal (t ∩ t')
[PROOFSTEP]
intro r
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t t' : Set (PrimeSpectrum R)
r : R
⊢ r ∈ vanishingIdeal t ⊔ vanishingIdeal t' → r ∈ vanishingIdeal (t ∩ t')
[PROOFSTEP]
rw [Submodule.mem_sup, mem_vanishingIdeal]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t t' : Set (PrimeSpectrum R)
r : R
⊢ (∃ y, y ∈ vanishingIdeal t ∧ ∃ z, z ∈ vanishingIdeal t' ∧ y + z = r) →
∀ (x : PrimeSpectrum R), x ∈ t ∩ t' → r ∈ x.asIdeal
[PROOFSTEP]
rintro ⟨f, hf, g, hg, rfl⟩ x ⟨hxt, hxt'⟩
[GOAL]
case intro.intro.intro.intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t t' : Set (PrimeSpectrum R)
f : R
hf : f ∈ vanishingIdeal t
g : R
hg : g ∈ vanishingIdeal t'
x : PrimeSpectrum R
hxt : x ∈ t
hxt' : x ∈ t'
⊢ f + g ∈ x.asIdeal
[PROOFSTEP]
rw [mem_vanishingIdeal] at hf hg
[GOAL]
case intro.intro.intro.intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t t' : Set (PrimeSpectrum R)
f : R
hf : ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal
g : R
hg : ∀ (x : PrimeSpectrum R), x ∈ t' → g ∈ x.asIdeal
x : PrimeSpectrum R
hxt : x ∈ t
hxt' : x ∈ t'
⊢ f + g ∈ x.asIdeal
[PROOFSTEP]
apply Submodule.add_mem
[GOAL]
case intro.intro.intro.intro.intro.h₁
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t t' : Set (PrimeSpectrum R)
f : R
hf : ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal
g : R
hg : ∀ (x : PrimeSpectrum R), x ∈ t' → g ∈ x.asIdeal
x : PrimeSpectrum R
hxt : x ∈ t
hxt' : x ∈ t'
⊢ f ∈ x.asIdeal
[PROOFSTEP]
solve_by_elim
[GOAL]
case intro.intro.intro.intro.intro.h₂
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t t' : Set (PrimeSpectrum R)
f : R
hf : ∀ (x : PrimeSpectrum R), x ∈ t → f ∈ x.asIdeal
g : R
hg : ∀ (x : PrimeSpectrum R), x ∈ t' → g ∈ x.asIdeal
x : PrimeSpectrum R
hxt : x ∈ t
hxt' : x ∈ t'
⊢ g ∈ x.asIdeal
[PROOFSTEP]
solve_by_elim
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
I : PrimeSpectrum R
⊢ I ∈ (zeroLocus {f})ᶜ ↔ ¬f ∈ I.asIdeal
[PROOFSTEP]
rw [Set.mem_compl_iff, mem_zeroLocus, Set.singleton_subset_iff]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
I : PrimeSpectrum R
⊢ ¬f ∈ ↑I.asIdeal ↔ ¬f ∈ I.asIdeal
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ zeroLocus Set.univ = ∅
[PROOFSTEP]
simp
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ∀ (A : Set (Set (PrimeSpectrum R))), A ⊆ Set.range zeroLocus → ⋂₀ A ∈ Set.range zeroLocus
[PROOFSTEP]
intro Zs h
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
Zs : Set (Set (PrimeSpectrum R))
h : Zs ⊆ Set.range zeroLocus
⊢ ⋂₀ Zs ∈ Set.range zeroLocus
[PROOFSTEP]
rw [Set.sInter_eq_iInter]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
Zs : Set (Set (PrimeSpectrum R))
h : Zs ⊆ Set.range zeroLocus
⊢ ⋂ (i : ↑Zs), ↑i ∈ Set.range zeroLocus
[PROOFSTEP]
choose f hf using fun i : Zs => h i.prop
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
Zs : Set (Set (PrimeSpectrum R))
h : Zs ⊆ Set.range zeroLocus
f : ↑Zs → Set R
hf : ∀ (i : ↑Zs), zeroLocus (f i) = ↑i
⊢ ⋂ (i : ↑Zs), ↑i ∈ Set.range zeroLocus
[PROOFSTEP]
simp only [← hf]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
Zs : Set (Set (PrimeSpectrum R))
h : Zs ⊆ Set.range zeroLocus
f : ↑Zs → Set R
hf : ∀ (i : ↑Zs), zeroLocus (f i) = ↑i
⊢ ⋂ (i : ↑Zs), zeroLocus (f i) ∈ Set.range zeroLocus
[PROOFSTEP]
exact ⟨_, zeroLocus_iUnion _⟩
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ∀ (A : Set (PrimeSpectrum R)),
A ∈ Set.range zeroLocus → ∀ (B : Set (PrimeSpectrum R)), B ∈ Set.range zeroLocus → A ∪ B ∈ Set.range zeroLocus
[PROOFSTEP]
rintro _ ⟨s, rfl⟩ _ ⟨t, rfl⟩
[GOAL]
case intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s t : Set R
⊢ zeroLocus s ∪ zeroLocus t ∈ Set.range zeroLocus
[PROOFSTEP]
exact ⟨_, (union_zeroLocus s t).symm⟩
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
U : Set (PrimeSpectrum R)
⊢ IsOpen U ↔ ∃ s, Uᶜ = zeroLocus s
[PROOFSTEP]
simp only [@eq_comm _ Uᶜ]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
U : Set (PrimeSpectrum R)
⊢ IsOpen U ↔ ∃ s, zeroLocus s = Uᶜ
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
Z : Set (PrimeSpectrum R)
⊢ IsClosed Z ↔ ∃ s, Z = zeroLocus s
[PROOFSTEP]
rw [← isOpen_compl_iff, isOpen_iff, compl_compl]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set R
⊢ IsClosed (zeroLocus s)
[PROOFSTEP]
rw [isClosed_iff_zeroLocus]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set R
⊢ ∃ s_1, zeroLocus s = zeroLocus s_1
[PROOFSTEP]
exact ⟨s, rfl⟩
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x : PrimeSpectrum R
⊢ IsClosed {x} ↔ Ideal.IsMaximal x.asIdeal
[PROOFSTEP]
refine' (isClosed_iff_zeroLocus _).trans ⟨fun h => _, fun h => _⟩
[GOAL]
case refine'_1
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x : PrimeSpectrum R
h : ∃ s, {x} = zeroLocus s
⊢ Ideal.IsMaximal x.asIdeal
[PROOFSTEP]
obtain ⟨s, hs⟩ := h
[GOAL]
case refine'_1.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x : PrimeSpectrum R
s : Set R
hs : {x} = zeroLocus s
⊢ Ideal.IsMaximal x.asIdeal
[PROOFSTEP]
rw [eq_comm, Set.eq_singleton_iff_unique_mem] at hs
[GOAL]
case refine'_1.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x : PrimeSpectrum R
s : Set R
hs : x ∈ zeroLocus s ∧ ∀ (x_1 : PrimeSpectrum R), x_1 ∈ zeroLocus s → x_1 = x
⊢ Ideal.IsMaximal x.asIdeal
[PROOFSTEP]
refine'
⟨⟨x.2.1, fun I hI =>
Classical.not_not.1 (mt (Ideal.exists_le_maximal I) <| not_exists.2 fun J => not_and.2 fun hJ hIJ => _)⟩⟩
[GOAL]
case refine'_1.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x : PrimeSpectrum R
s : Set R
hs : x ∈ zeroLocus s ∧ ∀ (x_1 : PrimeSpectrum R), x_1 ∈ zeroLocus s → x_1 = x
I : Ideal R
hI : x.asIdeal < I
J : Ideal R
hJ : Ideal.IsMaximal J
hIJ : I ≤ J
⊢ False
[PROOFSTEP]
exact
ne_of_lt (lt_of_lt_of_le hI hIJ)
(symm <| congr_arg PrimeSpectrum.asIdeal (hs.2 ⟨J, hJ.isPrime⟩ fun r hr => hIJ (le_of_lt hI <| hs.1 hr)))
[GOAL]
case refine'_2
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x : PrimeSpectrum R
h : Ideal.IsMaximal x.asIdeal
⊢ ∃ s, {x} = zeroLocus s
[PROOFSTEP]
refine' ⟨x.asIdeal.1, _⟩
[GOAL]
case refine'_2
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x : PrimeSpectrum R
h : Ideal.IsMaximal x.asIdeal
⊢ {x} = zeroLocus ↑x.asIdeal.toAddSubmonoid
[PROOFSTEP]
rw [eq_comm, Set.eq_singleton_iff_unique_mem]
[GOAL]
case refine'_2
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x : PrimeSpectrum R
h : Ideal.IsMaximal x.asIdeal
⊢ x ∈ zeroLocus ↑x.asIdeal.toAddSubmonoid ∧
∀ (x_1 : PrimeSpectrum R), x_1 ∈ zeroLocus ↑x.asIdeal.toAddSubmonoid → x_1 = x
[PROOFSTEP]
refine' ⟨fun _ h => h, fun y hy => PrimeSpectrum.ext _ _ (h.eq_of_le y.2.ne_top hy).symm⟩
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
⊢ zeroLocus ↑(vanishingIdeal t) = closure t
[PROOFSTEP]
apply Set.Subset.antisymm
[GOAL]
case h₁
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
⊢ zeroLocus ↑(vanishingIdeal t) ⊆ closure t
[PROOFSTEP]
rintro x hx t' ⟨ht', ht⟩
[GOAL]
case h₁.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
x : PrimeSpectrum R
hx : x ∈ zeroLocus ↑(vanishingIdeal t)
t' : Set (PrimeSpectrum R)
ht' : IsClosed t'
ht : t ⊆ t'
⊢ x ∈ t'
[PROOFSTEP]
obtain ⟨fs, rfl⟩ : ∃ s, t' = zeroLocus s := by rwa [isClosed_iff_zeroLocus] at ht'
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
x : PrimeSpectrum R
hx : x ∈ zeroLocus ↑(vanishingIdeal t)
t' : Set (PrimeSpectrum R)
ht' : IsClosed t'
ht : t ⊆ t'
⊢ ∃ s, t' = zeroLocus s
[PROOFSTEP]
rwa [isClosed_iff_zeroLocus] at ht'
[GOAL]
case h₁.intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
x : PrimeSpectrum R
hx : x ∈ zeroLocus ↑(vanishingIdeal t)
fs : Set R
ht' : IsClosed (zeroLocus fs)
ht : t ⊆ zeroLocus fs
⊢ x ∈ zeroLocus fs
[PROOFSTEP]
rw [subset_zeroLocus_iff_subset_vanishingIdeal] at ht
[GOAL]
case h₁.intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
x : PrimeSpectrum R
hx : x ∈ zeroLocus ↑(vanishingIdeal t)
fs : Set R
ht' : IsClosed (zeroLocus fs)
ht : fs ⊆ ↑(vanishingIdeal t)
⊢ x ∈ zeroLocus fs
[PROOFSTEP]
exact Set.Subset.trans ht hx
[GOAL]
case h₂
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
⊢ closure t ⊆ zeroLocus ↑(vanishingIdeal t)
[PROOFSTEP]
rw [(isClosed_zeroLocus _).closure_subset_iff]
[GOAL]
case h₂
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
t : Set (PrimeSpectrum R)
⊢ t ⊆ zeroLocus ↑(vanishingIdeal t)
[PROOFSTEP]
exact subset_zeroLocus_vanishingIdeal t
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x : PrimeSpectrum R
⊢ closure {x} = zeroLocus ↑x.asIdeal
[PROOFSTEP]
rw [← zeroLocus_vanishingIdeal_eq_closure, vanishingIdeal_singleton]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set (PrimeSpectrum R)
⊢ Ideal.IsRadical (vanishingIdeal s)
[PROOFSTEP]
rw [← vanishingIdeal_closure, ← zeroLocus_vanishingIdeal_eq_closure, vanishingIdeal_zeroLocus_eq_radical]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set (PrimeSpectrum R)
⊢ Ideal.IsRadical (Ideal.radical (vanishingIdeal s))
[PROOFSTEP]
apply Ideal.radical_isRadical
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s t : Set (PrimeSpectrum R)
ht : IsClosed t
h : vanishingIdeal t ≤ vanishingIdeal s
⊢ s ⊆ t
[PROOFSTEP]
rw [← ht.closure_subset_iff, ← ht.closure_eq]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s t : Set (PrimeSpectrum R)
ht : IsClosed t
h : vanishingIdeal t ≤ vanishingIdeal s
⊢ closure s ⊆ closure t
[PROOFSTEP]
convert ← zeroLocus_anti_mono_ideal h
[GOAL]
case h.e'_3
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s t : Set (PrimeSpectrum R)
ht : IsClosed t
h : vanishingIdeal t ≤ vanishingIdeal s
⊢ zeroLocus ↑(vanishingIdeal s) = closure s
[PROOFSTEP]
apply zeroLocus_vanishingIdeal_eq_closure
[GOAL]
case h.e'_4
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s t : Set (PrimeSpectrum R)
ht : IsClosed t
h : vanishingIdeal t ≤ vanishingIdeal s
⊢ zeroLocus ↑(vanishingIdeal t) = closure t
[PROOFSTEP]
apply zeroLocus_vanishingIdeal_eq_closure
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s t : Set (PrimeSpectrum R)
hs : IsClosed s
ht : IsClosed t
⊢ s ⊂ t ↔ vanishingIdeal t < vanishingIdeal s
[PROOFSTEP]
rw [Set.ssubset_def, vanishingIdeal_anti_mono_iff hs, vanishingIdeal_anti_mono_iff ht, lt_iff_le_not_le]
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : IsDomain R
⊢ T1Space (PrimeSpectrum R) ↔ IsField R
[PROOFSTEP]
refine' ⟨_, fun h => _⟩
[GOAL]
case refine'_1
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : IsDomain R
⊢ T1Space (PrimeSpectrum R) → IsField R
[PROOFSTEP]
intro h
[GOAL]
case refine'_1
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : IsDomain R
h : T1Space (PrimeSpectrum R)
⊢ IsField R
[PROOFSTEP]
have hbot : Ideal.IsPrime (⊥ : Ideal R) := Ideal.bot_prime
[GOAL]
case refine'_1
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : IsDomain R
h : T1Space (PrimeSpectrum R)
hbot : Ideal.IsPrime ⊥
⊢ IsField R
[PROOFSTEP]
exact
Classical.not_not.1
(mt (Ring.ne_bot_of_isMaximal_of_not_isField <| (isClosed_singleton_iff_isMaximal _).1 (T1Space.t1 ⟨⊥, hbot⟩))
(by aesop))
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : IsDomain R
h : T1Space (PrimeSpectrum R)
hbot : Ideal.IsPrime ⊥
⊢ ¬{ asIdeal := ⊥, IsPrime := hbot }.asIdeal ≠ ⊥
[PROOFSTEP]
aesop
[GOAL]
case refine'_2
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : IsDomain R
h : IsField R
⊢ T1Space (PrimeSpectrum R)
[PROOFSTEP]
refine' ⟨fun x => (isClosed_singleton_iff_isMaximal x).2 _⟩
[GOAL]
case refine'_2
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : IsDomain R
h : IsField R
x : PrimeSpectrum R
⊢ Ideal.IsMaximal x.asIdeal
[PROOFSTEP]
by_cases hx : x.asIdeal = ⊥
[GOAL]
case pos
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : IsDomain R
h : IsField R
x : PrimeSpectrum R
hx : x.asIdeal = ⊥
⊢ Ideal.IsMaximal x.asIdeal
[PROOFSTEP]
letI := h.toField
[GOAL]
case pos
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : IsDomain R
h : IsField R
x : PrimeSpectrum R
hx : x.asIdeal = ⊥
this : Field R := IsField.toField h
⊢ Ideal.IsMaximal x.asIdeal
[PROOFSTEP]
exact hx.symm ▸ Ideal.bot_isMaximal
[GOAL]
case neg
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : IsDomain R
h : IsField R
x : PrimeSpectrum R
hx : ¬x.asIdeal = ⊥
⊢ Ideal.IsMaximal x.asIdeal
[PROOFSTEP]
exact absurd h (Ring.not_isField_iff_exists_prime.2 ⟨x.asIdeal, ⟨hx, x.2⟩⟩)
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ IsIrreducible (zeroLocus ↑I) ↔ Ideal.IsPrime I
[PROOFSTEP]
rw [Ideal.isPrime_iff, IsIrreducible]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ Set.Nonempty (zeroLocus ↑I) ∧ IsPreirreducible (zeroLocus ↑I) ↔ I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ I
[PROOFSTEP]
apply and_congr
[GOAL]
case h₁
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ Set.Nonempty (zeroLocus ↑I) ↔ I ≠ ⊤
[PROOFSTEP]
rw [Set.nonempty_iff_ne_empty, Ne.def, zeroLocus_empty_iff_eq_top]
[GOAL]
case h₂
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ IsPreirreducible (zeroLocus ↑I) ↔ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ I
[PROOFSTEP]
trans ∀ x y : Ideal R, Z(I) ⊆ Z(x) ∪ Z(y) → Z(I) ⊆ Z(x) ∨ Z(I) ⊆ Z(y)
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ IsPreirreducible (zeroLocus ↑I) ↔
∀ (x y : Ideal R),
zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y
[PROOFSTEP]
simp_rw [isPreirreducible_iff_closed_union_closed, isClosed_iff_zeroLocus_ideal]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ (∀ (z₁ z₂ : Set (PrimeSpectrum R)),
(∃ I, z₁ = zeroLocus ↑I) →
(∃ I, z₂ = zeroLocus ↑I) → zeroLocus ↑I ⊆ z₁ ∪ z₂ → zeroLocus ↑I ⊆ z₁ ∨ zeroLocus ↑I ⊆ z₂) ↔
∀ (x y : Ideal R),
zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ (∀ (z₁ z₂ : Set (PrimeSpectrum R)),
(∃ I, z₁ = zeroLocus ↑I) →
(∃ I, z₂ = zeroLocus ↑I) → zeroLocus ↑I ⊆ z₁ ∪ z₂ → zeroLocus ↑I ⊆ z₁ ∨ zeroLocus ↑I ⊆ z₂) →
∀ (x y : Ideal R),
zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y
[PROOFSTEP]
rintro h x y
[GOAL]
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
h :
∀ (z₁ z₂ : Set (PrimeSpectrum R)),
(∃ I, z₁ = zeroLocus ↑I) → (∃ I, z₂ = zeroLocus ↑I) → zeroLocus ↑I ⊆ z₁ ∪ z₂ → zeroLocus ↑I ⊆ z₁ ∨ zeroLocus ↑I ⊆ z₂
x y : Ideal R
⊢ zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y
[PROOFSTEP]
exact h _ _ ⟨x, rfl⟩ ⟨y, rfl⟩
[GOAL]
case mpr
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ (∀ (x y : Ideal R),
zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y) →
∀ (z₁ z₂ : Set (PrimeSpectrum R)),
(∃ I, z₁ = zeroLocus ↑I) →
(∃ I, z₂ = zeroLocus ↑I) → zeroLocus ↑I ⊆ z₁ ∪ z₂ → zeroLocus ↑I ⊆ z₁ ∨ zeroLocus ↑I ⊆ z₂
[PROOFSTEP]
rintro h _ _ ⟨x, rfl⟩ ⟨y, rfl⟩
[GOAL]
case mpr.intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
h :
∀ (x y : Ideal R),
zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y
x y : Ideal R
⊢ zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y
[PROOFSTEP]
exact h x y
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ (∀ (x y : Ideal R),
zeroLocus ↑I ⊆ zeroLocus ↑x ∪ zeroLocus ↑y → zeroLocus ↑I ⊆ zeroLocus ↑x ∨ zeroLocus ↑I ⊆ zeroLocus ↑y) ↔
∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ I
[PROOFSTEP]
simp_rw [← zeroLocus_inf, subset_zeroLocus_iff_le_vanishingIdeal, vanishingIdeal_zeroLocus_eq_radical, hI.radical]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ (∀ (x y : Ideal R), x ⊓ y ≤ I → x ≤ I ∨ y ≤ I) ↔ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ I
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ (∀ (x y : Ideal R), x ⊓ y ≤ I → x ≤ I ∨ y ≤ I) → ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ I
[PROOFSTEP]
simp_rw [← SetLike.mem_coe, ← Set.singleton_subset_iff, ← Ideal.span_le, ← Ideal.span_singleton_mul_span_singleton]
[GOAL]
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ (∀ (x y : Ideal R), x ⊓ y ≤ I → x ≤ I ∨ y ≤ I) →
∀ {x y : R}, Ideal.span {x} * Ideal.span {y} ≤ I → Ideal.span {x} ≤ I ∨ Ideal.span {y} ≤ I
[PROOFSTEP]
refine' fun h x y h' => h _ _ _
[GOAL]
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
h : ∀ (x y : Ideal R), x ⊓ y ≤ I → x ≤ I ∨ y ≤ I
x y : R
h' : Ideal.span {x} * Ideal.span {y} ≤ I
⊢ Ideal.span {x} ⊓ Ideal.span {y} ≤ I
[PROOFSTEP]
rw [← hI.radical_le_iff] at h' ⊢
[GOAL]
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
h : ∀ (x y : Ideal R), x ⊓ y ≤ I → x ≤ I ∨ y ≤ I
x y : R
h' : Ideal.radical (Ideal.span {x} * Ideal.span {y}) ≤ I
⊢ Ideal.radical (Ideal.span {x} ⊓ Ideal.span {y}) ≤ I
[PROOFSTEP]
simpa only [Ideal.radical_inf, Ideal.radical_mul] using h'
[GOAL]
case mpr
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ (∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ I) → ∀ (x y : Ideal R), x ⊓ y ≤ I → x ≤ I ∨ y ≤ I
[PROOFSTEP]
simp_rw [or_iff_not_imp_left, SetLike.not_le_iff_exists]
[GOAL]
case mpr
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
⊢ (∀ {x y : R}, x * y ∈ I → ¬x ∈ I → y ∈ I) → ∀ (x y : Ideal R), x ⊓ y ≤ I → (∃ x_1, x_1 ∈ x ∧ ¬x_1 ∈ I) → y ≤ I
[PROOFSTEP]
rintro h s t h' ⟨x, hx, hx'⟩ y hy
[GOAL]
case mpr.intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hI : Ideal.IsRadical I
h : ∀ {x y : R}, x * y ∈ I → ¬x ∈ I → y ∈ I
s t : Ideal R
h' : s ⊓ t ≤ I
x : R
hx : x ∈ s
hx' : ¬x ∈ I
y : R
hy : y ∈ t
⊢ y ∈ I
[PROOFSTEP]
exact h (h' ⟨Ideal.mul_mem_right _ _ hx, Ideal.mul_mem_left _ _ hy⟩) hx'
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
s : Set (PrimeSpectrum R)
⊢ IsIrreducible s ↔ Ideal.IsPrime (vanishingIdeal s)
[PROOFSTEP]
rw [← isIrreducible_iff_closure, ← zeroLocus_vanishingIdeal_eq_closure,
isIrreducible_zeroLocus_iff_of_radical _ (isRadical_vanishingIdeal s)]
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : IsDomain R
⊢ IrreducibleSpace (PrimeSpectrum R)
[PROOFSTEP]
rw [irreducibleSpace_def, Set.top_eq_univ, ← zeroLocus_bot, isIrreducible_zeroLocus_iff]
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : IsDomain R
⊢ Ideal.IsPrime (Ideal.radical ⊥)
[PROOFSTEP]
simpa using Ideal.bot_prime
[GOAL]
R : Type u
S✝ : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S✝
S : Set (PrimeSpectrum R)
h₁ : IsIrreducible S
h₂ : IsClosed S
⊢ IsGenericPoint { asIdeal := vanishingIdeal S, IsPrime := (_ : Ideal.IsPrime (vanishingIdeal S)) } S
[PROOFSTEP]
rw [IsGenericPoint, closure_singleton, zeroLocus_vanishingIdeal_eq_closure, h₂.closure_eq]
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
s : Set R
⊢ (fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) }) ⁻¹'
zeroLocus s =
zeroLocus (↑f '' s)
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
s : Set R
x : PrimeSpectrum S
⊢ x ∈
(fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) }) ⁻¹'
zeroLocus s ↔
x ∈ zeroLocus (↑f '' s)
[PROOFSTEP]
simp only [mem_zeroLocus, Set.image_subset_iff]
[GOAL]
case h
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
s : Set R
x : PrimeSpectrum S
⊢ x ∈
(fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) }) ⁻¹'
zeroLocus s ↔
s ⊆ (fun a => ↑f a) ⁻¹' ↑x.asIdeal
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
⊢ Continuous fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) }
[PROOFSTEP]
simp only [continuous_iff_isClosed, isClosed_iff_zeroLocus]
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
⊢ ∀ (s : Set (PrimeSpectrum R)),
(∃ s_1, s = zeroLocus s_1) →
∃ s_1,
(fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) }) ⁻¹'
s =
zeroLocus s_1
[PROOFSTEP]
rintro _ ⟨s, rfl⟩
[GOAL]
case intro
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
s : Set R
⊢ ∃ s_1,
(fun y => { asIdeal := Ideal.comap f y.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.comap f y.asIdeal)) }) ⁻¹'
zeroLocus s =
zeroLocus s_1
[PROOFSTEP]
exact ⟨_, preimage_comap_zeroLocus_aux f s⟩
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
⊢ comap (RingHom.id R) = ContinuousMap.id (PrimeSpectrum R)
[PROOFSTEP]
ext
[GOAL]
case h.asIdeal.h
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
a✝ : PrimeSpectrum R
x✝ : R
⊢ x✝ ∈ (↑(comap (RingHom.id R)) a✝).asIdeal ↔ x✝ ∈ (↑(ContinuousMap.id (PrimeSpectrum R)) a✝).asIdeal
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
⊢ Inducing ↑(comap (algebraMap R S))
[PROOFSTEP]
constructor
[GOAL]
case induced
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
⊢ zariskiTopology = TopologicalSpace.induced (↑(comap (algebraMap R S))) zariskiTopology
[PROOFSTEP]
rw [topologicalSpace_eq_iff]
[GOAL]
case induced
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
⊢ ∀ (s : Set (PrimeSpectrum S)), IsOpen s ↔ IsOpen s
[PROOFSTEP]
intro U
[GOAL]
case induced
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
U : Set (PrimeSpectrum S)
⊢ IsOpen U ↔ IsOpen U
[PROOFSTEP]
rw [← isClosed_compl_iff, ← @isClosed_compl_iff (α := PrimeSpectrum S) (s := U)]
[GOAL]
case induced
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
U : Set (PrimeSpectrum S)
⊢ IsClosed Uᶜ ↔ IsClosed Uᶜ
[PROOFSTEP]
generalize Uᶜ = Z
[GOAL]
case induced
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
U Z : Set (PrimeSpectrum S)
⊢ IsClosed Z ↔ IsClosed Z
[PROOFSTEP]
simp_rw [isClosed_induced_iff, isClosed_iff_zeroLocus]
[GOAL]
case induced
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
U Z : Set (PrimeSpectrum S)
⊢ (∃ s, Z = zeroLocus s) ↔ ∃ t, (∃ s, t = zeroLocus s) ∧ ↑(comap (algebraMap R S)) ⁻¹' t = Z
[PROOFSTEP]
constructor
[GOAL]
case induced.mp
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
U Z : Set (PrimeSpectrum S)
⊢ (∃ s, Z = zeroLocus s) → ∃ t, (∃ s, t = zeroLocus s) ∧ ↑(comap (algebraMap R S)) ⁻¹' t = Z
[PROOFSTEP]
rintro ⟨s, rfl⟩
[GOAL]
case induced.mp.intro
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
U : Set (PrimeSpectrum S)
s : Set S
⊢ ∃ t, (∃ s, t = zeroLocus s) ∧ ↑(comap (algebraMap R S)) ⁻¹' t = zeroLocus s
[PROOFSTEP]
refine ⟨_, ⟨algebraMap R S ⁻¹' Ideal.span s, rfl⟩, ?_⟩
[GOAL]
case induced.mp.intro
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
U : Set (PrimeSpectrum S)
s : Set S
⊢ ↑(comap (algebraMap R S)) ⁻¹' zeroLocus (↑(algebraMap R S) ⁻¹' ↑(Ideal.span s)) = zeroLocus s
[PROOFSTEP]
rw [preimage_comap_zeroLocus, ← zeroLocus_span, ← zeroLocus_span s]
[GOAL]
case induced.mp.intro
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
U : Set (PrimeSpectrum S)
s : Set S
⊢ zeroLocus ↑(Ideal.span (↑(algebraMap R S) '' (↑(algebraMap R S) ⁻¹' ↑(Ideal.span s)))) = zeroLocus ↑(Ideal.span s)
[PROOFSTEP]
congr 2
[GOAL]
case induced.mp.intro
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
U : Set (PrimeSpectrum S)
s : Set S
⊢ zeroLocus ↑(Ideal.span (↑(algebraMap R S) '' (↑(algebraMap R S) ⁻¹' ↑(Ideal.span s)))) = zeroLocus ↑(Ideal.span s)
[PROOFSTEP]
exact congr_arg (zeroLocus ·) <| Submodule.carrier_inj.mpr (IsLocalization.map_comap M S (Ideal.span s))
[GOAL]
case induced.mpr
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
U Z : Set (PrimeSpectrum S)
⊢ (∃ t, (∃ s, t = zeroLocus s) ∧ ↑(comap (algebraMap R S)) ⁻¹' t = Z) → ∃ s, Z = zeroLocus s
[PROOFSTEP]
rintro ⟨_, ⟨t, rfl⟩, rfl⟩
[GOAL]
case induced.mpr.intro.intro.intro
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
U : Set (PrimeSpectrum S)
t : Set R
⊢ ∃ s, ↑(comap (algebraMap R S)) ⁻¹' zeroLocus t = zeroLocus s
[PROOFSTEP]
rw [preimage_comap_zeroLocus]
[GOAL]
case induced.mpr.intro.intro.intro
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
U : Set (PrimeSpectrum S)
t : Set R
⊢ ∃ s, zeroLocus (↑(algebraMap R S) '' t) = zeroLocus s
[PROOFSTEP]
exact ⟨_, rfl⟩
[GOAL]
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
⊢ Function.Injective ↑(comap (algebraMap R S))
[PROOFSTEP]
intro p q h
[GOAL]
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
p q : PrimeSpectrum S
h : ↑(comap (algebraMap R S)) p = ↑(comap (algebraMap R S)) q
⊢ p = q
[PROOFSTEP]
replace h := congr_arg (fun x : PrimeSpectrum R => Ideal.map (algebraMap R S) x.asIdeal) h
[GOAL]
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
p q : PrimeSpectrum S
h :
(fun x => Ideal.map (algebraMap R S) x.asIdeal) (↑(comap (algebraMap R S)) p) =
(fun x => Ideal.map (algebraMap R S) x.asIdeal) (↑(comap (algebraMap R S)) q)
⊢ p = q
[PROOFSTEP]
dsimp only [comap, ContinuousMap.coe_mk] at h
[GOAL]
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
p q : PrimeSpectrum S
h :
Ideal.map (algebraMap R S) (Ideal.comap (algebraMap R S) p.asIdeal) =
Ideal.map (algebraMap R S) (Ideal.comap (algebraMap R S) q.asIdeal)
⊢ p = q
[PROOFSTEP]
rw [IsLocalization.map_comap M S, IsLocalization.map_comap M S] at h
[GOAL]
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
p q : PrimeSpectrum S
h : p.asIdeal = q.asIdeal
⊢ p = q
[PROOFSTEP]
ext1
[GOAL]
case asIdeal
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
p q : PrimeSpectrum S
h : p.asIdeal = q.asIdeal
⊢ p.asIdeal = q.asIdeal
[PROOFSTEP]
exact h
[GOAL]
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
⊢ Set.range ↑(comap (algebraMap R S)) = {p | Disjoint ↑M ↑p.asIdeal}
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
x : PrimeSpectrum R
⊢ x ∈ Set.range ↑(comap (algebraMap R S)) ↔ x ∈ {p | Disjoint ↑M ↑p.asIdeal}
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
x : PrimeSpectrum R
⊢ x ∈ Set.range ↑(comap (algebraMap R S)) → x ∈ {p | Disjoint ↑M ↑p.asIdeal}
[PROOFSTEP]
simp_rw [disjoint_iff_inf_le]
[GOAL]
case h.mp
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
x : PrimeSpectrum R
⊢ x ∈ Set.range ↑(comap (algebraMap R S)) → x ∈ {p | ↑M ⊓ ↑p.asIdeal ≤ ⊥}
[PROOFSTEP]
rintro ⟨p, rfl⟩ x ⟨hx₁, hx₂⟩
[GOAL]
case h.mp.intro.intro
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
p : PrimeSpectrum S
x : R
hx₁ : x ∈ ↑M
hx₂ : x ∈ ↑(↑(comap (algebraMap R S)) p).asIdeal
⊢ x ∈ ⊥
[PROOFSTEP]
exact (p.2.1 : ¬_) (p.asIdeal.eq_top_of_isUnit_mem hx₂ (IsLocalization.map_units S ⟨x, hx₁⟩))
[GOAL]
case h.mpr
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
x : PrimeSpectrum R
⊢ x ∈ {p | Disjoint ↑M ↑p.asIdeal} → x ∈ Set.range ↑(comap (algebraMap R S))
[PROOFSTEP]
intro h
[GOAL]
case h.mpr
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
x : PrimeSpectrum R
h : x ∈ {p | Disjoint ↑M ↑p.asIdeal}
⊢ x ∈ Set.range ↑(comap (algebraMap R S))
[PROOFSTEP]
use⟨x.asIdeal.map (algebraMap R S), IsLocalization.isPrime_of_isPrime_disjoint M S _ x.2 h⟩
[GOAL]
case h
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
x : PrimeSpectrum R
h : x ∈ {p | Disjoint ↑M ↑p.asIdeal}
⊢ ↑(comap (algebraMap R S))
{ asIdeal := Ideal.map (algebraMap R S) x.asIdeal,
IsPrime := (_ : Ideal.IsPrime (Ideal.map (algebraMap R S) x.asIdeal)) } =
x
[PROOFSTEP]
ext1
[GOAL]
case h.asIdeal
R : Type u
S : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S
S' : Type u_1
inst✝² : CommRing S'
f : R →+* S
inst✝¹ : Algebra R S
M : Submonoid R
inst✝ : IsLocalization M S
x : PrimeSpectrum R
h : x ∈ {p | Disjoint ↑M ↑p.asIdeal}
⊢ (↑(comap (algebraMap R S))
{ asIdeal := Ideal.map (algebraMap R S) x.asIdeal,
IsPrime := (_ : Ideal.IsPrime (Ideal.map (algebraMap R S) x.asIdeal)) }).asIdeal =
x.asIdeal
[PROOFSTEP]
exact IsLocalization.comap_map_of_isPrime_disjoint M S _ x.2 h
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
⊢ zariskiTopology = TopologicalSpace.induced (↑(comap f)) zariskiTopology
[PROOFSTEP]
simp_rw [topologicalSpace_eq_iff, ← isClosed_compl_iff, ←
@isClosed_compl_iff (PrimeSpectrum S) ((TopologicalSpace.induced (comap f) zariskiTopology)), isClosed_induced_iff,
isClosed_iff_zeroLocus]
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
⊢ ∀ (s : Set (PrimeSpectrum S)), (∃ s_1, sᶜ = zeroLocus s_1) ↔ ∃ t, (∃ s, t = zeroLocus s) ∧ ↑(comap f) ⁻¹' t = sᶜ
[PROOFSTEP]
refine' fun s =>
⟨fun ⟨F, hF⟩ =>
⟨zeroLocus (f ⁻¹' F), ⟨f ⁻¹' F, rfl⟩, by rw [preimage_comap_zeroLocus, Function.Surjective.image_preimage hf, hF]⟩,
_⟩
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
s : Set (PrimeSpectrum S)
x✝ : ∃ s_1, sᶜ = zeroLocus s_1
F : Set S
hF : sᶜ = zeroLocus F
⊢ ↑(comap f) ⁻¹' zeroLocus (↑f ⁻¹' F) = sᶜ
[PROOFSTEP]
rw [preimage_comap_zeroLocus, Function.Surjective.image_preimage hf, hF]
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
s : Set (PrimeSpectrum S)
⊢ (∃ t, (∃ s, t = zeroLocus s) ∧ ↑(comap f) ⁻¹' t = sᶜ) → ∃ s_1, sᶜ = zeroLocus s_1
[PROOFSTEP]
rintro ⟨-, ⟨F, rfl⟩, hF⟩
[GOAL]
case intro.intro.intro
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
s : Set (PrimeSpectrum S)
F : Set R
hF : ↑(comap f) ⁻¹' zeroLocus F = sᶜ
⊢ ∃ s_1, sᶜ = zeroLocus s_1
[PROOFSTEP]
exact ⟨f '' F, hF.symm.trans (preimage_comap_zeroLocus f F)⟩
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
⊢ ↑(comap f) '' zeroLocus ↑I = zeroLocus ↑(Ideal.comap f I)
[PROOFSTEP]
simp only [Set.ext_iff, Set.mem_image, mem_zeroLocus, SetLike.coe_subset_coe]
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
⊢ ∀ (x : PrimeSpectrum R), (∃ x_1, I ≤ x_1.asIdeal ∧ ↑(comap f) x_1 = x) ↔ Ideal.comap f I ≤ x.asIdeal
[PROOFSTEP]
refine' fun p => ⟨_, fun h_I_p => _⟩
[GOAL]
case refine'_1
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum R
⊢ (∃ x, I ≤ x.asIdeal ∧ ↑(comap f) x = p) → Ideal.comap f I ≤ p.asIdeal
[PROOFSTEP]
rintro ⟨p, hp, rfl⟩ a ha
[GOAL]
case refine'_1.intro.intro
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum S
hp : I ≤ p.asIdeal
a : R
ha : a ∈ Ideal.comap f I
⊢ a ∈ (↑(comap f) p).asIdeal
[PROOFSTEP]
exact hp ha
[GOAL]
case refine'_2
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum R
h_I_p : Ideal.comap f I ≤ p.asIdeal
⊢ ∃ x, I ≤ x.asIdeal ∧ ↑(comap f) x = p
[PROOFSTEP]
have hp : ker f ≤ p.asIdeal := (Ideal.comap_mono bot_le).trans h_I_p
[GOAL]
case refine'_2
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum R
h_I_p : Ideal.comap f I ≤ p.asIdeal
hp : ker f ≤ p.asIdeal
⊢ ∃ x, I ≤ x.asIdeal ∧ ↑(comap f) x = p
[PROOFSTEP]
refine' ⟨⟨p.asIdeal.map f, Ideal.map_isPrime_of_surjective hf hp⟩, fun x hx => _, _⟩
[GOAL]
case refine'_2.refine'_1
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum R
h_I_p : Ideal.comap f I ≤ p.asIdeal
hp : ker f ≤ p.asIdeal
x : S
hx : x ∈ I
⊢ x ∈ { asIdeal := Ideal.map f p.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map f p.asIdeal)) }.asIdeal
[PROOFSTEP]
obtain ⟨x', rfl⟩ := hf x
[GOAL]
case refine'_2.refine'_1.intro
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum R
h_I_p : Ideal.comap f I ≤ p.asIdeal
hp : ker f ≤ p.asIdeal
x' : R
hx : ↑f x' ∈ I
⊢ ↑f x' ∈ { asIdeal := Ideal.map f p.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map f p.asIdeal)) }.asIdeal
[PROOFSTEP]
exact Ideal.mem_map_of_mem f (h_I_p hx)
[GOAL]
case refine'_2.refine'_2
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum R
h_I_p : Ideal.comap f I ≤ p.asIdeal
hp : ker f ≤ p.asIdeal
⊢ ↑(comap f) { asIdeal := Ideal.map f p.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map f p.asIdeal)) } = p
[PROOFSTEP]
ext x
[GOAL]
case refine'_2.refine'_2.asIdeal.h
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum R
h_I_p : Ideal.comap f I ≤ p.asIdeal
hp : ker f ≤ p.asIdeal
x : R
⊢ x ∈
(↑(comap f)
{ asIdeal := Ideal.map f p.asIdeal, IsPrime := (_ : Ideal.IsPrime (Ideal.map f p.asIdeal)) }).asIdeal ↔
x ∈ p.asIdeal
[PROOFSTEP]
change f x ∈ p.asIdeal.map f ↔ _
[GOAL]
case refine'_2.refine'_2.asIdeal.h
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum R
h_I_p : Ideal.comap f I ≤ p.asIdeal
hp : ker f ≤ p.asIdeal
x : R
⊢ ↑f x ∈ Ideal.map f p.asIdeal ↔ x ∈ p.asIdeal
[PROOFSTEP]
rw [Ideal.mem_map_iff_of_surjective f hf]
[GOAL]
case refine'_2.refine'_2.asIdeal.h
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum R
h_I_p : Ideal.comap f I ≤ p.asIdeal
hp : ker f ≤ p.asIdeal
x : R
⊢ (∃ x_1, x_1 ∈ p.asIdeal ∧ ↑f x_1 = ↑f x) ↔ x ∈ p.asIdeal
[PROOFSTEP]
refine' ⟨_, fun hx => ⟨x, hx, rfl⟩⟩
[GOAL]
case refine'_2.refine'_2.asIdeal.h
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum R
h_I_p : Ideal.comap f I ≤ p.asIdeal
hp : ker f ≤ p.asIdeal
x : R
⊢ (∃ x_1, x_1 ∈ p.asIdeal ∧ ↑f x_1 = ↑f x) → x ∈ p.asIdeal
[PROOFSTEP]
rintro ⟨x', hx', heq⟩
[GOAL]
case refine'_2.refine'_2.asIdeal.h.intro.intro
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum R
h_I_p : Ideal.comap f I ≤ p.asIdeal
hp : ker f ≤ p.asIdeal
x x' : R
hx' : x' ∈ p.asIdeal
heq : ↑f x' = ↑f x
⊢ x ∈ p.asIdeal
[PROOFSTEP]
rw [← sub_sub_cancel x' x]
[GOAL]
case refine'_2.refine'_2.asIdeal.h.intro.intro
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum R
h_I_p : Ideal.comap f I ≤ p.asIdeal
hp : ker f ≤ p.asIdeal
x x' : R
hx' : x' ∈ p.asIdeal
heq : ↑f x' = ↑f x
⊢ x' - (x' - x) ∈ p.asIdeal
[PROOFSTEP]
refine' p.asIdeal.sub_mem hx' (hp _)
[GOAL]
case refine'_2.refine'_2.asIdeal.h.intro.intro
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
I : Ideal S
p : PrimeSpectrum R
h_I_p : Ideal.comap f I ≤ p.asIdeal
hp : ker f ≤ p.asIdeal
x x' : R
hx' : x' ∈ p.asIdeal
heq : ↑f x' = ↑f x
⊢ x' - x ∈ ker f
[PROOFSTEP]
rwa [mem_ker, map_sub, sub_eq_zero]
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
⊢ Set.range ↑(comap f) = zeroLocus ↑(ker f)
[PROOFSTEP]
rw [← Set.image_univ]
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
⊢ ↑(comap f) '' Set.univ = zeroLocus ↑(ker f)
[PROOFSTEP]
convert image_comap_zeroLocus_eq_zeroLocus_comap _ _ hf _
[GOAL]
case h.e'_2.h.e'_4
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
⊢ Set.univ = zeroLocus ↑⊥
[PROOFSTEP]
rw [zeroLocus_bot]
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
⊢ IsClosed (Set.range ↑(comap f))
[PROOFSTEP]
rw [range_comap_of_surjective _ f hf]
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
S' : Type u_1
inst✝ : CommRing S'
f : R →+* S
hf : Surjective ↑f
⊢ IsClosed (zeroLocus ↑(ker f))
[PROOFSTEP]
exact isClosed_zeroLocus _
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
r : R
x : PrimeSpectrum R
⊢ x ∈ ↑(basicOpen r) ↔ x ∈ (zeroLocus {r})ᶜ
[PROOFSTEP]
simp only [SetLike.mem_coe, mem_basicOpen, Set.mem_compl_iff, mem_zeroLocus, Set.singleton_subset_iff]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ↑(basicOpen 1) = ↑⊤
[PROOFSTEP]
simp
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ↑(basicOpen 0) = ↑⊥
[PROOFSTEP]
simp
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f g : R
⊢ basicOpen f ≤ basicOpen g ↔ f ∈ Ideal.radical (Ideal.span {g})
[PROOFSTEP]
rw [← SetLike.coe_subset_coe, basicOpen_eq_zeroLocus_compl, basicOpen_eq_zeroLocus_compl, Set.compl_subset_compl,
zeroLocus_subset_zeroLocus_singleton_iff]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f g : R
⊢ ↑(basicOpen (f * g)) = ↑(basicOpen f ⊓ basicOpen g)
[PROOFSTEP]
simp [zeroLocus_singleton_mul]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f g : R
⊢ basicOpen (f * g) ≤ basicOpen f
[PROOFSTEP]
rw [basicOpen_mul f g]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f g : R
⊢ basicOpen f ⊓ basicOpen g ≤ basicOpen f
[PROOFSTEP]
exact inf_le_left
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f g : R
⊢ basicOpen (f * g) ≤ basicOpen g
[PROOFSTEP]
rw [basicOpen_mul f g]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f g : R
⊢ basicOpen f ⊓ basicOpen g ≤ basicOpen g
[PROOFSTEP]
exact inf_le_right
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
n : ℕ
hn : 0 < n
⊢ ↑(basicOpen (f ^ n)) = ↑(basicOpen f)
[PROOFSTEP]
simpa using zeroLocus_singleton_pow f n hn
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ TopologicalSpace.IsTopologicalBasis (Set.range fun r => ↑(basicOpen r))
[PROOFSTEP]
apply TopologicalSpace.isTopologicalBasis_of_open_of_nhds
[GOAL]
case h_open
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ∀ (u : Set (PrimeSpectrum R)), (u ∈ Set.range fun r => ↑(basicOpen r)) → IsOpen u
[PROOFSTEP]
rintro _ ⟨r, rfl⟩
[GOAL]
case h_open.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
r : R
⊢ IsOpen ((fun r => ↑(basicOpen r)) r)
[PROOFSTEP]
exact isOpen_basicOpen
[GOAL]
case h_nhds
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ∀ (a : PrimeSpectrum R) (u : Set (PrimeSpectrum R)),
a ∈ u → IsOpen u → ∃ v, (v ∈ Set.range fun r => ↑(basicOpen r)) ∧ a ∈ v ∧ v ⊆ u
[PROOFSTEP]
rintro p U hp ⟨s, hs⟩
[GOAL]
case h_nhds.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
p : PrimeSpectrum R
U : Set (PrimeSpectrum R)
hp : p ∈ U
s : Set R
hs : zeroLocus s = Uᶜ
⊢ ∃ v, (v ∈ Set.range fun r => ↑(basicOpen r)) ∧ p ∈ v ∧ v ⊆ U
[PROOFSTEP]
rw [← compl_compl U, Set.mem_compl_iff, ← hs, mem_zeroLocus, Set.not_subset] at hp
[GOAL]
case h_nhds.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
p : PrimeSpectrum R
U : Set (PrimeSpectrum R)
s : Set R
hp : ∃ a, a ∈ s ∧ ¬a ∈ ↑p.asIdeal
hs : zeroLocus s = Uᶜ
⊢ ∃ v, (v ∈ Set.range fun r => ↑(basicOpen r)) ∧ p ∈ v ∧ v ⊆ U
[PROOFSTEP]
obtain ⟨f, hfs, hfp⟩ := hp
[GOAL]
case h_nhds.intro.intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
p : PrimeSpectrum R
U : Set (PrimeSpectrum R)
s : Set R
hs : zeroLocus s = Uᶜ
f : R
hfs : f ∈ s
hfp : ¬f ∈ ↑p.asIdeal
⊢ ∃ v, (v ∈ Set.range fun r => ↑(basicOpen r)) ∧ p ∈ v ∧ v ⊆ U
[PROOFSTEP]
refine' ⟨basicOpen f, ⟨f, rfl⟩, hfp, _⟩
[GOAL]
case h_nhds.intro.intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
p : PrimeSpectrum R
U : Set (PrimeSpectrum R)
s : Set R
hs : zeroLocus s = Uᶜ
f : R
hfs : f ∈ s
hfp : ¬f ∈ ↑p.asIdeal
⊢ ↑(basicOpen f) ⊆ U
[PROOFSTEP]
rw [← Set.compl_subset_compl, ← hs, basicOpen_eq_zeroLocus_compl, compl_compl]
[GOAL]
case h_nhds.intro.intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
p : PrimeSpectrum R
U : Set (PrimeSpectrum R)
s : Set R
hs : zeroLocus s = Uᶜ
f : R
hfs : f ∈ s
hfp : ¬f ∈ ↑p.asIdeal
⊢ zeroLocus s ⊆ zeroLocus {f}
[PROOFSTEP]
exact zeroLocus_anti_mono (Set.singleton_subset_iff.mpr hfs)
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ TopologicalSpace.Opens.IsBasis (Set.range basicOpen)
[PROOFSTEP]
unfold TopologicalSpace.Opens.IsBasis
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ TopologicalSpace.IsTopologicalBasis (SetLike.coe '' Set.range basicOpen)
[PROOFSTEP]
convert isTopologicalBasis_basic_opens (R := R)
[GOAL]
case h.e'_3
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ SetLike.coe '' Set.range basicOpen = Set.range fun r => ↑(basicOpen r)
[PROOFSTEP]
rw [← Set.range_comp]
[GOAL]
case h.e'_3
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ Set.range (SetLike.coe ∘ basicOpen) = Set.range fun r => ↑(basicOpen r)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
hZ : ↑(basicOpen f) ∩ ⋂ (i : ι), Z i = ∅
⊢ ∃ t, ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ t), Z i = ∅
[PROOFSTEP]
let I : ι → Ideal R := fun i => vanishingIdeal (Z i)
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
hZ : ↑(basicOpen f) ∩ ⋂ (i : ι), Z i = ∅
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
⊢ ∃ t, ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ t), Z i = ∅
[PROOFSTEP]
have hI : ∀ i, Z i = zeroLocus (I i) := fun i => by
simpa only [zeroLocus_vanishingIdeal_eq_closure] using (hZc i).closure_eq.symm
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
hZ : ↑(basicOpen f) ∩ ⋂ (i : ι), Z i = ∅
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
i : ι
⊢ Z i = zeroLocus ↑(I i)
[PROOFSTEP]
simpa only [zeroLocus_vanishingIdeal_eq_closure] using (hZc i).closure_eq.symm
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
hZ : ↑(basicOpen f) ∩ ⋂ (i : ι), Z i = ∅
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
⊢ ∃ t, ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ t), Z i = ∅
[PROOFSTEP]
rw [basicOpen_eq_zeroLocus_compl f, Set.inter_comm, ← Set.diff_eq, Set.diff_eq_empty, funext hI, ← zeroLocus_iSup] at hZ
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f}
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
⊢ ∃ t, ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ t), Z i = ∅
[PROOFSTEP]
obtain ⟨n, hn⟩ : f ∈ (⨆ i : ι, I i).radical :=
by
rw [← vanishingIdeal_zeroLocus_eq_radical]
apply vanishingIdeal_anti_mono hZ
exact subset_vanishingIdeal_zeroLocus { f } (Set.mem_singleton f)
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f}
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
⊢ f ∈ Ideal.radical (⨆ (i : ι), I i)
[PROOFSTEP]
rw [← vanishingIdeal_zeroLocus_eq_radical]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f}
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
⊢ f ∈ vanishingIdeal (zeroLocus ↑(⨆ (i : ι), I i))
[PROOFSTEP]
apply vanishingIdeal_anti_mono hZ
[GOAL]
case a
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f}
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
⊢ f ∈ vanishingIdeal (zeroLocus {f})
[PROOFSTEP]
exact subset_vanishingIdeal_zeroLocus { f } (Set.mem_singleton f)
[GOAL]
case intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f}
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
n : ℕ
hn : f ^ n ∈ ⨆ (i : ι), I i
⊢ ∃ t, ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ t), Z i = ∅
[PROOFSTEP]
rcases Submodule.exists_finset_of_mem_iSup I hn with ⟨s, hs⟩
[GOAL]
case intro.intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f}
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
n : ℕ
hn : f ^ n ∈ ⨆ (i : ι), I i
s : Finset ι
hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i
⊢ ∃ t, ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ t), Z i = ∅
[PROOFSTEP]
use s
[GOAL]
case h
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f}
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
n : ℕ
hn : f ^ n ∈ ⨆ (i : ι), I i
s : Finset ι
hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i
⊢ ↑(basicOpen f) ∩ ⋂ (i : ι) (_ : i ∈ s), Z i = ∅
[PROOFSTEP]
simp_rw [basicOpen_eq_zeroLocus_compl f, Set.inter_comm (zeroLocus { f })ᶜ, ← Set.diff_eq, Set.diff_eq_empty]
[GOAL]
case h
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f}
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
n : ℕ
hn : f ^ n ∈ ⨆ (i : ι), I i
s : Finset ι
hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i
⊢ ⋂ (i : ι) (_ : i ∈ s), Z i ⊆ zeroLocus {f}
[PROOFSTEP]
rw [show
(Set.iInter fun i => Set.iInter fun (_ : i ∈ s) => Z i) =
Set.iInter fun i => Set.iInter fun (_ : i ∈ s) => zeroLocus (I i)
from congr_arg _ (funext fun i => congr_arg _ (funext fun _ => hI i))]
[GOAL]
case h
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f}
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
n : ℕ
hn : f ^ n ∈ ⨆ (i : ι), I i
s : Finset ι
hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i
⊢ ⋂ (i : ι) (_ : i ∈ s), zeroLocus ↑(I i) ⊆ zeroLocus {f}
[PROOFSTEP]
simp_rw [← zeroLocus_iSup]
[GOAL]
case h
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f}
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
n : ℕ
hn : f ^ n ∈ ⨆ (i : ι), I i
s : Finset ι
hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i
⊢ zeroLocus ↑(⨆ (i : ι) (_ : i ∈ s), vanishingIdeal (Z i)) ⊆ zeroLocus {f}
[PROOFSTEP]
rw [← zeroLocus_radical]
-- this one can't be in `simp_rw` because it would loop
[GOAL]
case h
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f}
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
n : ℕ
hn : f ^ n ∈ ⨆ (i : ι), I i
s : Finset ι
hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i
⊢ zeroLocus ↑(Ideal.radical (⨆ (i : ι) (_ : i ∈ s), vanishingIdeal (Z i))) ⊆ zeroLocus {f}
[PROOFSTEP]
apply zeroLocus_anti_mono
[GOAL]
case h.h
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f}
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
n : ℕ
hn : f ^ n ∈ ⨆ (i : ι), I i
s : Finset ι
hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i
⊢ {f} ⊆ ↑(Ideal.radical (⨆ (i : ι) (_ : i ∈ s), vanishingIdeal (Z i)))
[PROOFSTEP]
rw [Set.singleton_subset_iff]
[GOAL]
case h.h
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
ι : Type u
Z : ι → Set (PrimeSpectrum R)
hZc : ∀ (i : ι), IsClosed (Z i)
I : ι → Ideal R := fun i => vanishingIdeal (Z i)
hZ : zeroLocus ↑(⨆ (i : ι), I i) ⊆ zeroLocus {f}
hI : ∀ (i : ι), Z i = zeroLocus ↑(I i)
n : ℕ
hn : f ^ n ∈ ⨆ (i : ι), I i
s : Finset ι
hs : f ^ n ∈ ⨆ (i : ι) (_ : i ∈ s), I i
⊢ f ∈ ↑(Ideal.radical (⨆ (i : ι) (_ : i ∈ s), vanishingIdeal (Z i)))
[PROOFSTEP]
exact ⟨n, hs⟩
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
⊢ basicOpen f = ⊥ ↔ IsNilpotent f
[PROOFSTEP]
rw [← TopologicalSpace.Opens.coe_inj, basicOpen_eq_zeroLocus_compl]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
⊢ (zeroLocus {f})ᶜ = ↑⊥ ↔ IsNilpotent f
[PROOFSTEP]
simp only [Set.eq_univ_iff_forall, Set.singleton_subset_iff, TopologicalSpace.Opens.coe_bot, nilpotent_iff_mem_prime,
Set.compl_empty_iff, mem_zeroLocus, SetLike.mem_coe]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
f : R
⊢ (∀ (x : PrimeSpectrum R), f ∈ x.asIdeal) ↔ ∀ (J : Ideal R), Ideal.IsPrime J → f ∈ J
[PROOFSTEP]
exact ⟨fun h I hI => h ⟨I, hI⟩, fun h ⟨I, hI⟩ => h I hI⟩
[GOAL]
R : Type u
S✝ : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S✝
S : Type v
inst✝² : CommRing S
inst✝¹ : Algebra R S
r : R
inst✝ : IsLocalization.Away r S
⊢ Set.range ↑(comap (algebraMap R S)) = ↑(basicOpen r)
[PROOFSTEP]
rw [localization_comap_range S (Submonoid.powers r)]
[GOAL]
R : Type u
S✝ : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S✝
S : Type v
inst✝² : CommRing S
inst✝¹ : Algebra R S
r : R
inst✝ : IsLocalization.Away r S
⊢ {p | Disjoint ↑(Submonoid.powers r) ↑p.asIdeal} = ↑(basicOpen r)
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
S✝ : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S✝
S : Type v
inst✝² : CommRing S
inst✝¹ : Algebra R S
r : R
inst✝ : IsLocalization.Away r S
x : PrimeSpectrum R
⊢ x ∈ {p | Disjoint ↑(Submonoid.powers r) ↑p.asIdeal} ↔ x ∈ ↑(basicOpen r)
[PROOFSTEP]
simp only [mem_zeroLocus, basicOpen_eq_zeroLocus_compl, SetLike.mem_coe, Set.mem_setOf_eq, Set.singleton_subset_iff,
Set.mem_compl_iff, disjoint_iff_inf_le]
[GOAL]
case h
R : Type u
S✝ : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S✝
S : Type v
inst✝² : CommRing S
inst✝¹ : Algebra R S
r : R
inst✝ : IsLocalization.Away r S
x : PrimeSpectrum R
⊢ ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥ ↔ ¬r ∈ x.asIdeal
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u
S✝ : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S✝
S : Type v
inst✝² : CommRing S
inst✝¹ : Algebra R S
r : R
inst✝ : IsLocalization.Away r S
x : PrimeSpectrum R
⊢ ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥ → ¬r ∈ x.asIdeal
[PROOFSTEP]
intro h₁ h₂
[GOAL]
case h.mp
R : Type u
S✝ : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S✝
S : Type v
inst✝² : CommRing S
inst✝¹ : Algebra R S
r : R
inst✝ : IsLocalization.Away r S
x : PrimeSpectrum R
h₁ : ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥
h₂ : r ∈ x.asIdeal
⊢ False
[PROOFSTEP]
exact h₁ ⟨Submonoid.mem_powers r, h₂⟩
[GOAL]
case h.mpr
R : Type u
S✝ : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S✝
S : Type v
inst✝² : CommRing S
inst✝¹ : Algebra R S
r : R
inst✝ : IsLocalization.Away r S
x : PrimeSpectrum R
⊢ ¬r ∈ x.asIdeal → ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥
[PROOFSTEP]
rintro h₁ _ ⟨⟨n, rfl⟩, h₃⟩
[GOAL]
case h.mpr.intro.intro
R : Type u
S✝ : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S✝
S : Type v
inst✝² : CommRing S
inst✝¹ : Algebra R S
r : R
inst✝ : IsLocalization.Away r S
x : PrimeSpectrum R
h₁ : ¬r ∈ x.asIdeal
n : ℕ
h₃ : (fun x x_1 => x ^ x_1) r n ∈ ↑x.asIdeal
⊢ (fun x x_1 => x ^ x_1) r n ∈ ⊥
[PROOFSTEP]
exact h₁ (x.2.mem_of_pow_mem _ h₃)
[GOAL]
R : Type u
S✝ : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S✝
S : Type v
inst✝² : CommRing S
inst✝¹ : Algebra R S
r : R
inst✝ : IsLocalization.Away r S
⊢ IsOpen (Set.range ↑(comap (algebraMap R S)))
[PROOFSTEP]
rw [localization_away_comap_range S r]
[GOAL]
R : Type u
S✝ : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S✝
S : Type v
inst✝² : CommRing S
inst✝¹ : Algebra R S
r : R
inst✝ : IsLocalization.Away r S
⊢ IsOpen ↑(basicOpen r)
[PROOFSTEP]
exact isOpen_basicOpen
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ IsCompact Set.univ
[PROOFSTEP]
convert isCompact_basicOpen (1 : R)
[GOAL]
case h.e'_3
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ Set.univ = ↑(basicOpen 1)
[PROOFSTEP]
rw [basicOpen_one]
[GOAL]
case h.e'_3
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ Set.univ = ↑⊤
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x y : PrimeSpectrum R
⊢ x ≤ y ↔ y ∈ closure {x}
[PROOFSTEP]
rw [← asIdeal_le_asIdeal, ← zeroLocus_vanishingIdeal_eq_closure, mem_zeroLocus, vanishingIdeal_singleton,
SetLike.coe_subset_coe]
[GOAL]
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x y : PrimeSpectrum R
h : x ⤳ y
⊢ ∀ (y_1 : { x // x ∈ Ideal.primeCompl y.asIdeal }), IsUnit (↑(algebraMap R (Localization.AtPrime x.asIdeal)) ↑y_1)
[PROOFSTEP]
rintro ⟨a, ha⟩
[GOAL]
case mk
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x y : PrimeSpectrum R
h : x ⤳ y
a : R
ha : a ∈ Ideal.primeCompl y.asIdeal
⊢ IsUnit (↑(algebraMap R (Localization.AtPrime x.asIdeal)) ↑{ val := a, property := ha })
[PROOFSTEP]
rw [← PrimeSpectrum.le_iff_specializes, ← asIdeal_le_asIdeal, ← SetLike.coe_subset_coe, ← Set.compl_subset_compl] at h
[GOAL]
case mk
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
x y : PrimeSpectrum R
h : (↑y.asIdeal)ᶜ ⊆ (↑x.asIdeal)ᶜ
a : R
ha : a ∈ Ideal.primeCompl y.asIdeal
⊢ IsUnit (↑(algebraMap R (Localization.AtPrime x.asIdeal)) ↑{ val := a, property := ha })
[PROOFSTEP]
exact (IsLocalization.map_units (Localization.AtPrime x.asIdeal) ⟨a, show a ∈ x.asIdeal.primeCompl from h ha⟩ : _)
[GOAL]
R : Type u
S✝ : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S✝
inst✝² : LocalRing R
S : Type v
inst✝¹ : CommRing S
inst✝ : LocalRing S
f : R →+* S
⊢ IsLocalRingHom f ↔ ↑(PrimeSpectrum.comap f) (closedPoint S) = closedPoint R
[PROOFSTEP]
have := (local_hom_TFAE f).out 0 4
[GOAL]
R : Type u
S✝ : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S✝
inst✝² : LocalRing R
S : Type v
inst✝¹ : CommRing S
inst✝ : LocalRing S
f : R →+* S
this : IsLocalRingHom f ↔ Ideal.comap f (maximalIdeal S) = maximalIdeal R
⊢ IsLocalRingHom f ↔ ↑(PrimeSpectrum.comap f) (closedPoint S) = closedPoint R
[PROOFSTEP]
rw [this, PrimeSpectrum.ext_iff]
[GOAL]
R : Type u
S✝ : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing S✝
inst✝² : LocalRing R
S : Type v
inst✝¹ : CommRing S
inst✝ : LocalRing S
f : R →+* S
this : IsLocalRingHom f ↔ Ideal.comap f (maximalIdeal S) = maximalIdeal R
⊢ Ideal.comap f (maximalIdeal S) = maximalIdeal R ↔
(↑(PrimeSpectrum.comap f) (closedPoint S)).asIdeal = (closedPoint R).asIdeal
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : LocalRing R
U : TopologicalSpace.Opens (PrimeSpectrum R)
⊢ closedPoint R ∈ U ↔ U = ⊤
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : LocalRing R
U : TopologicalSpace.Opens (PrimeSpectrum R)
⊢ closedPoint R ∈ U → U = ⊤
[PROOFSTEP]
rw [eq_top_iff]
[GOAL]
case mp
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : LocalRing R
U : TopologicalSpace.Opens (PrimeSpectrum R)
⊢ closedPoint R ∈ U → ⊤ ≤ U
[PROOFSTEP]
exact fun h x _ => (specializes_closedPoint x).mem_open U.2 h
[GOAL]
case mpr
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : LocalRing R
U : TopologicalSpace.Opens (PrimeSpectrum R)
⊢ U = ⊤ → closedPoint R ∈ U
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : LocalRing R
⊢ closedPoint R ∈ ⊤
[PROOFSTEP]
trivial
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : LocalRing R
x : PrimeSpectrum (ResidueField R)
⊢ ↑(PrimeSpectrum.comap (residue R)) x = closedPoint R
[PROOFSTEP]
rw [Subsingleton.elim x ⊥]
[GOAL]
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : LocalRing R
x : PrimeSpectrum (ResidueField R)
⊢ ↑(PrimeSpectrum.comap (residue R)) ⊥ = closedPoint R
[PROOFSTEP]
ext1
[GOAL]
case asIdeal
R : Type u
S : Type v
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : LocalRing R
x : PrimeSpectrum (ResidueField R)
⊢ (↑(PrimeSpectrum.comap (residue R)) ⊥).asIdeal = (closedPoint R).asIdeal
[PROOFSTEP]
exact Ideal.mk_ker
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic", "llama_tokens": 39348} |
[GOAL]
X : Scheme
⊢ T0Space ↑↑X.toPresheafedSpace
[PROOFSTEP]
refine' T0Space.of_open_cover fun x => _
[GOAL]
X : Scheme
x : ↑↑X.toPresheafedSpace
⊢ ∃ s, x ∈ s ∧ IsOpen s ∧ T0Space ↑s
[PROOFSTEP]
obtain ⟨U, R, ⟨e⟩⟩ := X.local_affine x
[GOAL]
case intro.intro.intro
X : Scheme
x : ↑↑X.toPresheafedSpace
U : OpenNhds x
R : CommRingCat
e :
LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)
⊢ ∃ s, x ∈ s ∧ IsOpen s ∧ T0Space ↑s
[PROOFSTEP]
let e' : U.1 ≃ₜ PrimeSpectrum R :=
homeoOfIso ((LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forget _).mapIso e)
[GOAL]
case intro.intro.intro
X : Scheme
x : ↑↑X.toPresheafedSpace
U : OpenNhds x
R : CommRingCat
e :
LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅
Spec.toLocallyRingedSpace.obj (op R)
e' : { x_1 // x_1 ∈ U.obj } ≃ₜ PrimeSpectrum ↑R :=
homeoOfIso ((LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat).mapIso e)
⊢ ∃ s, x ∈ s ∧ IsOpen s ∧ T0Space ↑s
[PROOFSTEP]
exact ⟨U.1.1, U.2, U.1.2, e'.embedding.t0Space⟩
[GOAL]
X : Scheme
⊢ QuasiSober ↑↑X.toPresheafedSpace
[PROOFSTEP]
apply (config := { allowSynthFailures := true })
quasiSober_of_open_cover (Set.range fun x => Set.range <| (X.affineCover.map x).1.base)
[GOAL]
case hS
X : Scheme
⊢ ∀ (s : ↑(Set.range fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base)), IsOpen ↑s
[PROOFSTEP]
rintro ⟨_, i, rfl⟩
[GOAL]
case hS.mk.intro
X : Scheme
i : (Scheme.affineCover X).J
⊢ IsOpen
↑{ val := (fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) i,
property :=
(_ :
∃ y,
(fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) y =
(fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) i) }
[PROOFSTEP]
exact (X.affineCover.IsOpen i).base_open.open_range
[GOAL]
case hS'
X : Scheme
⊢ ∀ (s : ↑(Set.range fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base)), QuasiSober ↑↑s
[PROOFSTEP]
rintro ⟨_, i, rfl⟩
[GOAL]
case hS'.mk.intro
X : Scheme
i : (Scheme.affineCover X).J
⊢ QuasiSober
↑↑{ val := (fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) i,
property :=
(_ :
∃ y,
(fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) y =
(fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) i) }
[PROOFSTEP]
exact
@OpenEmbedding.quasiSober _ _ _ _ _
(Homeomorph.ofEmbedding _ (X.affineCover.IsOpen i).base_open.toEmbedding).symm.openEmbedding
PrimeSpectrum.quasiSober
[GOAL]
case hS''
X : Scheme
⊢ (⋃₀ Set.range fun x => Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base) = ⊤
[PROOFSTEP]
rw [Set.top_eq_univ, Set.sUnion_range, Set.eq_univ_iff_forall]
[GOAL]
case hS''
X : Scheme
⊢ ∀ (x : (forget TopCat).obj ↑X.toPresheafedSpace),
x ∈ ⋃ (x : (Scheme.affineCover X).J), Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base
[PROOFSTEP]
intro x
[GOAL]
case hS''
X : Scheme
x : (forget TopCat).obj ↑X.toPresheafedSpace
⊢ x ∈ ⋃ (x : (Scheme.affineCover X).J), Set.range ↑(Scheme.OpenCover.map (Scheme.affineCover X) x).val.base
[PROOFSTEP]
exact ⟨_, ⟨_, rfl⟩, X.affineCover.Covers x⟩
[GOAL]
X : Scheme
inst✝ : ∀ (x : ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(Presheaf.stalk X.presheaf x)
⊢ IsReduced X
[PROOFSTEP]
refine' ⟨fun U => ⟨fun s hs => _⟩⟩
[GOAL]
X : Scheme
inst✝ : ∀ (x : ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(Presheaf.stalk X.presheaf x)
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : IsNilpotent s
⊢ s = 0
[PROOFSTEP]
apply Presheaf.section_ext X.sheaf U s 0
[GOAL]
X : Scheme
inst✝ : ∀ (x : ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(Presheaf.stalk X.presheaf x)
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : IsNilpotent s
⊢ ∀ (x : { x // x ∈ U }),
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0
[PROOFSTEP]
intro x
[GOAL]
X : Scheme
inst✝ : ∀ (x : ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(Presheaf.stalk X.presheaf x)
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : IsNilpotent s
x : { x // x ∈ U }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0
[PROOFSTEP]
rw [RingHom.map_zero]
[GOAL]
X : Scheme
inst✝ : ∀ (x : ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(Presheaf.stalk X.presheaf x)
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : IsNilpotent s
x : { x // x ∈ U }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
[PROOFSTEP]
change X.presheaf.germ x s = 0
[GOAL]
X : Scheme
inst✝ : ∀ (x : ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(Presheaf.stalk X.presheaf x)
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : IsNilpotent s
x : { x // x ∈ U }
⊢ ↑(Presheaf.germ X.presheaf x) s = 0
[PROOFSTEP]
exact (hs.map _).eq_zero
[GOAL]
X : Scheme
inst✝ : IsReduced X
x : ↑↑X.toPresheafedSpace
⊢ _root_.IsReduced ↑(Presheaf.stalk X.presheaf x)
[PROOFSTEP]
constructor
[GOAL]
case eq_zero
X : Scheme
inst✝ : IsReduced X
x : ↑↑X.toPresheafedSpace
⊢ ∀ (x_1 : ↑(Presheaf.stalk X.presheaf x)), IsNilpotent x_1 → x_1 = 0
[PROOFSTEP]
rintro g ⟨n, e⟩
[GOAL]
case eq_zero.intro
X : Scheme
inst✝ : IsReduced X
x : ↑↑X.toPresheafedSpace
g : ↑(Presheaf.stalk X.presheaf x)
n : ℕ
e : g ^ n = 0
⊢ g = 0
[PROOFSTEP]
obtain ⟨U, hxU, s, rfl⟩ := X.presheaf.germ_exist x g
[GOAL]
case eq_zero.intro.intro.intro.intro
X : Scheme
inst✝ : IsReduced X
x : ↑↑X.toPresheafedSpace
n : ℕ
U : Opens ↑↑X.toPresheafedSpace
hxU : x ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
e : ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) s ^ n = 0
⊢ ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) s = 0
[PROOFSTEP]
rw [← map_pow, ← map_zero (X.presheaf.germ ⟨x, hxU⟩)] at e
[GOAL]
case eq_zero.intro.intro.intro.intro
X : Scheme
inst✝ : IsReduced X
x : ↑↑X.toPresheafedSpace
n : ℕ
U : Opens ↑↑X.toPresheafedSpace
hxU : x ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
e :
↑(Presheaf.germ X.presheaf { val := x, property := hxU }) (s ^ n) =
↑(Presheaf.germ X.presheaf { val := x, property := hxU }) 0
⊢ ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) s = 0
[PROOFSTEP]
obtain ⟨V, hxV, iU, iV, e'⟩ := X.presheaf.germ_eq x hxU hxU _ 0 e
[GOAL]
case eq_zero.intro.intro.intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsReduced X
x : ↑↑X.toPresheafedSpace
n : ℕ
U : Opens ↑↑X.toPresheafedSpace
hxU : x ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
e :
↑(Presheaf.germ X.presheaf { val := x, property := hxU }) (s ^ n) =
↑(Presheaf.germ X.presheaf { val := x, property := hxU }) 0
V : Opens ↑↑X.toPresheafedSpace
hxV : x ∈ V
iU iV : V ⟶ U
e' : ↑(X.presheaf.map iU.op) (s ^ n) = ↑(X.presheaf.map iV.op) 0
⊢ ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) s = 0
[PROOFSTEP]
rw [map_pow, map_zero] at e'
[GOAL]
case eq_zero.intro.intro.intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsReduced X
x : ↑↑X.toPresheafedSpace
n : ℕ
U : Opens ↑↑X.toPresheafedSpace
hxU : x ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
e :
↑(Presheaf.germ X.presheaf { val := x, property := hxU }) (s ^ n) =
↑(Presheaf.germ X.presheaf { val := x, property := hxU }) 0
V : Opens ↑↑X.toPresheafedSpace
hxV : x ∈ V
iU iV : V ⟶ U
e' : ↑(X.presheaf.map iU.op) s ^ n = 0
⊢ ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) s = 0
[PROOFSTEP]
replace e' := (IsNilpotent.mk _ _ e').eq_zero (R := X.presheaf.obj <| op V)
[GOAL]
case eq_zero.intro.intro.intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsReduced X
x : ↑↑X.toPresheafedSpace
n : ℕ
U : Opens ↑↑X.toPresheafedSpace
hxU : x ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
e :
↑(Presheaf.germ X.presheaf { val := x, property := hxU }) (s ^ n) =
↑(Presheaf.germ X.presheaf { val := x, property := hxU }) 0
V : Opens ↑↑X.toPresheafedSpace
hxV : x ∈ V
iU iV : V ⟶ U
e' : ↑(X.presheaf.map iU.op) s = 0
⊢ ↑(Presheaf.germ X.presheaf { val := x, property := hxU }) s = 0
[PROOFSTEP]
erw [← ConcreteCategory.congr_hom (X.presheaf.germ_res iU ⟨x, hxV⟩) s]
[GOAL]
case eq_zero.intro.intro.intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsReduced X
x : ↑↑X.toPresheafedSpace
n : ℕ
U : Opens ↑↑X.toPresheafedSpace
hxU : x ∈ U
s : (forget CommRingCat).obj (X.presheaf.obj (op U))
e :
↑(Presheaf.germ X.presheaf { val := x, property := hxU }) (s ^ n) =
↑(Presheaf.germ X.presheaf { val := x, property := hxU }) 0
V : Opens ↑↑X.toPresheafedSpace
hxV : x ∈ V
iU iV : V ⟶ U
e' : ↑(X.presheaf.map iU.op) s = 0
⊢ ↑(X.presheaf.map iU.op ≫ Presheaf.germ X.presheaf { val := x, property := hxV }) s = 0
[PROOFSTEP]
rw [comp_apply, e', map_zero]
[GOAL]
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝ : IsReduced Y
⊢ IsReduced X
[PROOFSTEP]
constructor
[GOAL]
case component_reduced
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝ : IsReduced Y
⊢ autoParam (∀ (U : Opens ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(X.presheaf.obj (op U))) _auto✝
[PROOFSTEP]
intro U
[GOAL]
case component_reduced
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝ : IsReduced Y
U : Opens ↑↑X.toPresheafedSpace
⊢ _root_.IsReduced ↑(X.presheaf.obj (op U))
[PROOFSTEP]
have : U = (Opens.map f.1.base).obj (H.base_open.isOpenMap.functor.obj U) := by ext1;
exact (Set.preimage_image_eq _ H.base_open.inj).symm
[GOAL]
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝ : IsReduced Y
U : Opens ↑↑X.toPresheafedSpace
⊢ U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)
[PROOFSTEP]
ext1
[GOAL]
case h
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝ : IsReduced Y
U : Opens ↑↑X.toPresheafedSpace
⊢ ↑U = ↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U))
[PROOFSTEP]
exact (Set.preimage_image_eq _ H.base_open.inj).symm
[GOAL]
case component_reduced
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝ : IsReduced Y
U : Opens ↑↑X.toPresheafedSpace
this : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)
⊢ _root_.IsReduced ↑(X.presheaf.obj (op U))
[PROOFSTEP]
rw [this]
[GOAL]
case component_reduced
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝ : IsReduced Y
U : Opens ↑↑X.toPresheafedSpace
this : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)
⊢ _root_.IsReduced
↑(X.presheaf.obj (op ((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U))))
[PROOFSTEP]
exact
isReduced_of_injective (inv <| f.1.c.app (op <| H.base_open.isOpenMap.functor.obj U))
(asIso <| f.1.c.app (op <| H.base_open.isOpenMap.functor.obj U) :
Y.presheaf.obj _ ≅ _).symm.commRingCatIsoToRingEquiv.injective
[GOAL]
X : Scheme
R : CommRingCat
H : _root_.IsReduced ↑R
⊢ IsReduced (Scheme.Spec.obj (op R))
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) isReducedOfStalkIsReduced
[GOAL]
case inst
X : Scheme
R : CommRingCat
H : _root_.IsReduced ↑R
⊢ ∀ (x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace),
_root_.IsReduced ↑(Presheaf.stalk (Scheme.Spec.obj (op R)).presheaf x)
[PROOFSTEP]
intro x
[GOAL]
case inst
X : Scheme
R : CommRingCat
H : _root_.IsReduced ↑R
x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace
⊢ _root_.IsReduced ↑(Presheaf.stalk (Scheme.Spec.obj (op R)).presheaf x)
[PROOFSTEP]
dsimp
[GOAL]
case inst
X : Scheme
R : CommRingCat
H : _root_.IsReduced ↑R
x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace
⊢ _root_.IsReduced ↑(Presheaf.stalk (Scheme.Spec.obj (op R)).presheaf x)
[PROOFSTEP]
have : _root_.IsReduced (CommRingCat.of <| Localization.AtPrime (PrimeSpectrum.asIdeal x)) := by dsimp; infer_instance
[GOAL]
X : Scheme
R : CommRingCat
H : _root_.IsReduced ↑R
x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace
⊢ _root_.IsReduced ↑(CommRingCat.of (Localization.AtPrime x.asIdeal))
[PROOFSTEP]
dsimp
[GOAL]
X : Scheme
R : CommRingCat
H : _root_.IsReduced ↑R
x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace
⊢ _root_.IsReduced (Localization.AtPrime x.asIdeal)
[PROOFSTEP]
infer_instance
[GOAL]
case inst
X : Scheme
R : CommRingCat
H : _root_.IsReduced ↑R
x : ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace
this : _root_.IsReduced ↑(CommRingCat.of (Localization.AtPrime x.asIdeal))
⊢ _root_.IsReduced ↑(Presheaf.stalk (Scheme.Spec.obj (op R)).presheaf x)
[PROOFSTEP]
exact
isReduced_of_injective (StructureSheaf.stalkIso R x).hom
(StructureSheaf.stalkIso R x).commRingCatIsoToRingEquiv.injective
[GOAL]
X : Scheme
R : CommRingCat
⊢ IsReduced (Scheme.Spec.obj (op R)) ↔ _root_.IsReduced ↑R
[PROOFSTEP]
refine' ⟨_, fun h => inferInstance⟩
[GOAL]
X : Scheme
R : CommRingCat
⊢ IsReduced (Scheme.Spec.obj (op R)) → _root_.IsReduced ↑R
[PROOFSTEP]
intro h
[GOAL]
X : Scheme
R : CommRingCat
h : IsReduced (Scheme.Spec.obj (op R))
⊢ _root_.IsReduced ↑R
[PROOFSTEP]
have : _root_.IsReduced (LocallyRingedSpace.Γ.obj (op <| Spec.toLocallyRingedSpace.obj <| op R)) := by
change _root_.IsReduced ((Scheme.Spec.obj <| op R).presheaf.obj <| op ⊤); infer_instance
[GOAL]
X : Scheme
R : CommRingCat
h : IsReduced (Scheme.Spec.obj (op R))
⊢ _root_.IsReduced ↑(LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op R))))
[PROOFSTEP]
change _root_.IsReduced ((Scheme.Spec.obj <| op R).presheaf.obj <| op ⊤)
[GOAL]
X : Scheme
R : CommRingCat
h : IsReduced (Scheme.Spec.obj (op R))
⊢ _root_.IsReduced ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤))
[PROOFSTEP]
infer_instance
[GOAL]
X : Scheme
R : CommRingCat
h : IsReduced (Scheme.Spec.obj (op R))
this : _root_.IsReduced ↑(LocallyRingedSpace.Γ.obj (op (Spec.toLocallyRingedSpace.obj (op R))))
⊢ _root_.IsReduced ↑R
[PROOFSTEP]
exact isReduced_of_injective (toSpecΓ R) (asIso <| toSpecΓ R).commRingCatIsoToRingEquiv.injective
[GOAL]
X : Scheme
inst✝ : IsAffine X
h : _root_.IsReduced ↑(X.presheaf.obj (op ⊤))
⊢ IsReduced (Scheme.Spec.obj (op (Scheme.Γ.obj (op X))))
[PROOFSTEP]
rw [affine_isReduced_iff]
[GOAL]
X : Scheme
inst✝ : IsAffine X
h : _root_.IsReduced ↑(X.presheaf.obj (op ⊤))
⊢ _root_.IsReduced ↑(Scheme.Γ.obj (op X))
[PROOFSTEP]
exact h
[GOAL]
X : Scheme
P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U
h₂ :
∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f],
∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) }
h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤
⊢ ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), P X U
[PROOFSTEP]
intro X U
[GOAL]
X✝ : Scheme
P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U
h₂ :
∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f],
∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) }
h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
⊢ P X U
[PROOFSTEP]
apply h₁
[GOAL]
case a
X✝ : Scheme
P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U
h₂ :
∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f],
∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) }
h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
⊢ ∀ (x : { x // x ∈ U }), ∃ V x x, P X V
[PROOFSTEP]
intro x
[GOAL]
case a
X✝ : Scheme
P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U
h₂ :
∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f],
∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) }
h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
⊢ ∃ V x x, P X V
[PROOFSTEP]
obtain ⟨_, ⟨j, rfl⟩, hx, i⟩ := X.affineBasisCover_is_basis.exists_subset_of_mem_open (SetLike.mem_coe.2 x.prop) U.isOpen
[GOAL]
case a.intro.intro.intro.intro
X✝ : Scheme
P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U
h₂ :
∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f],
∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) }
h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
j : (Scheme.affineBasisCover X).J
hx : ↑x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base
i : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base ⊆ ↑U
⊢ ∃ V x x, P X V
[PROOFSTEP]
let U' : Opens _ := ⟨_, (X.affineBasisCover.IsOpen j).base_open.open_range⟩
[GOAL]
case a.intro.intro.intro.intro
X✝ : Scheme
P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U
h₂ :
∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f],
∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) }
h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
j : (Scheme.affineBasisCover X).J
hx : ↑x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base
i : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base ⊆ ↑U
U' : Opens ((forget TopCat).obj ↑X.toPresheafedSpace) :=
{ carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) }
⊢ ∃ V x x, P X V
[PROOFSTEP]
let i' : U' ⟶ U := homOfLE i
[GOAL]
case a.intro.intro.intro.intro
X✝ : Scheme
P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U
h₂ :
∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f],
∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) }
h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
j : (Scheme.affineBasisCover X).J
hx : ↑x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base
i : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base ⊆ ↑U
U' : Opens ((forget TopCat).obj ↑X.toPresheafedSpace) :=
{ carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) }
i' : U' ⟶ U := homOfLE i
⊢ ∃ V x x, P X V
[PROOFSTEP]
refine' ⟨U', hx, i', _⟩
[GOAL]
case a.intro.intro.intro.intro
X✝ : Scheme
P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U
h₂ :
∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f],
∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) }
h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
j : (Scheme.affineBasisCover X).J
hx : ↑x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base
i : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base ⊆ ↑U
U' : Opens ((forget TopCat).obj ↑X.toPresheafedSpace) :=
{ carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) }
i' : U' ⟶ U := homOfLE i
⊢ P X U'
[PROOFSTEP]
obtain ⟨_, _, rfl, rfl, h₂'⟩ := h₂ (X.affineBasisCover.map j)
[GOAL]
case a.intro.intro.intro.intro.intro.intro.intro.intro
X✝ : Scheme
P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U
h₂ :
∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f],
∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) }
h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
j : (Scheme.affineBasisCover X).J
hx : ↑x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base
i : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base ⊆ ↑U
U' : Opens ((forget TopCat).obj ↑X.toPresheafedSpace) :=
{ carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) }
i' : U' ⟶ U := homOfLE i
h₂' :
P (Scheme.OpenCover.obj (Scheme.affineBasisCover X) j) { carrier := ⊤, is_open' := (_ : IsOpen ⊤) } →
P X
{ carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) }
⊢ P X U'
[PROOFSTEP]
apply h₂'
[GOAL]
case a.intro.intro.intro.intro.intro.intro.intro.intro
X✝ : Scheme
P : (X : Scheme) → Opens ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace), (∀ (x : { x // x ∈ U }), ∃ V x x, P X V) → P X U
h₂ :
∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f],
∃ U V hU hV, P X { carrier := U, is_open' := (_ : IsOpen U) } → P Y { carrier := V, is_open' := (_ : IsOpen V) }
h₃ : ∀ (R : CommRingCat), P (Scheme.Spec.obj (op R)) ⊤
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
x : { x // x ∈ U }
j : (Scheme.affineBasisCover X).J
hx : ↑x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base
i : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base ⊆ ↑U
U' : Opens ((forget TopCat).obj ↑X.toPresheafedSpace) :=
{ carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) }
i' : U' ⟶ U := homOfLE i
h₂' :
P (Scheme.OpenCover.obj (Scheme.affineBasisCover X) j) { carrier := ⊤, is_open' := (_ : IsOpen ⊤) } →
P X
{ carrier := Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover X) j).val.base)) }
⊢ P (Scheme.OpenCover.obj (Scheme.affineBasisCover X) j) { carrier := ⊤, is_open' := (_ : IsOpen ⊤) }
[PROOFSTEP]
apply h₃
[GOAL]
X : Scheme
P : (X : Scheme) → ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (R : CommRingCat) (x : PrimeSpectrum ↑R), P (Scheme.Spec.obj (op R)) x
h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [inst : IsOpenImmersion f] (x : ↑↑X.toPresheafedSpace), P X x → P Y (↑f.val.base x)
⊢ ∀ (X : Scheme) (x : ↑↑X.toPresheafedSpace), P X x
[PROOFSTEP]
intro X x
[GOAL]
X✝ : Scheme
P : (X : Scheme) → ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (R : CommRingCat) (x : PrimeSpectrum ↑R), P (Scheme.Spec.obj (op R)) x
h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [inst : IsOpenImmersion f] (x : ↑↑X.toPresheafedSpace), P X x → P Y (↑f.val.base x)
X : Scheme
x : ↑↑X.toPresheafedSpace
⊢ P X x
[PROOFSTEP]
obtain ⟨y, e⟩ := X.affineCover.Covers x
[GOAL]
case intro
X✝ : Scheme
P : (X : Scheme) → ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (R : CommRingCat) (x : PrimeSpectrum ↑R), P (Scheme.Spec.obj (op R)) x
h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [inst : IsOpenImmersion f] (x : ↑↑X.toPresheafedSpace), P X x → P Y (↑f.val.base x)
X : Scheme
x : ↑↑X.toPresheafedSpace
y :
(forget TopCat).obj
↑(Scheme.OpenCover.obj (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).toPresheafedSpace
e : ↑(Scheme.OpenCover.map (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).val.base y = x
⊢ P X x
[PROOFSTEP]
convert h₂ (X.affineCover.map (X.affineCover.f x)) y _
[GOAL]
case h.e'_2
X✝ : Scheme
P : (X : Scheme) → ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (R : CommRingCat) (x : PrimeSpectrum ↑R), P (Scheme.Spec.obj (op R)) x
h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [inst : IsOpenImmersion f] (x : ↑↑X.toPresheafedSpace), P X x → P Y (↑f.val.base x)
X : Scheme
x : ↑↑X.toPresheafedSpace
y :
(forget TopCat).obj
↑(Scheme.OpenCover.obj (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).toPresheafedSpace
e : ↑(Scheme.OpenCover.map (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).val.base y = x
⊢ x = ↑(Scheme.OpenCover.map (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).val.base y
[PROOFSTEP]
rw [e]
[GOAL]
case intro
X✝ : Scheme
P : (X : Scheme) → ↑↑X.toPresheafedSpace → Prop
h₁ : ∀ (R : CommRingCat) (x : PrimeSpectrum ↑R), P (Scheme.Spec.obj (op R)) x
h₂ : ∀ {X Y : Scheme} (f : X ⟶ Y) [inst : IsOpenImmersion f] (x : ↑↑X.toPresheafedSpace), P X x → P Y (↑f.val.base x)
X : Scheme
x : ↑↑X.toPresheafedSpace
y :
(forget TopCat).obj
↑(Scheme.OpenCover.obj (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).toPresheafedSpace
e : ↑(Scheme.OpenCover.map (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)).val.base y = x
⊢ P (Scheme.OpenCover.obj (Scheme.affineCover X) (Scheme.OpenCover.f (Scheme.affineCover X) x)) y
[PROOFSTEP]
apply h₁
[GOAL]
X✝ : Scheme
X : Scheme
hX : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
⊢ s = 0
[PROOFSTEP]
apply TopCat.Presheaf.section_ext X.sheaf U
[GOAL]
case h
X✝ : Scheme
X : Scheme
hX : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
⊢ ∀ (x : { x // x ∈ U }),
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0
[PROOFSTEP]
conv => intro x; rw [RingHom.map_zero]
[GOAL]
X✝ : Scheme
X : Scheme
hX : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
| ∀ (x : { x // x ∈ U }),
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0
[PROOFSTEP]
intro x; rw [RingHom.map_zero]
[GOAL]
X✝ : Scheme
X : Scheme
hX : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
| ∀ (x : { x // x ∈ U }),
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0
[PROOFSTEP]
intro x; rw [RingHom.map_zero]
[GOAL]
X✝ : Scheme
X : Scheme
hX : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
| ∀ (x : { x // x ∈ U }),
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0
[PROOFSTEP]
intro x
[GOAL]
X✝ : Scheme
X : Scheme
hX : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
x : { x // x ∈ U }
| ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) 0
[PROOFSTEP]
rw [RingHom.map_zero]
[GOAL]
case h
X✝ : Scheme
X : Scheme
hX : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
⊢ ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
[PROOFSTEP]
refine'
(@reduce_to_affine_global
(fun X U => ∀ [IsReduced X] (s : X.presheaf.obj (op U)), X.basicOpen s = ⊥ → ∀ x, (X.sheaf.presheaf.germ x) s = 0)
_ _ _)
X U s hs
[GOAL]
case h.refine'_1
X✝ : Scheme
X : Scheme
hX : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
⊢ ∀ (X : Scheme) (U : Opens ↑↑X.toPresheafedSpace),
(∀ (x : { x // x ∈ U }),
∃ V x x,
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
X V) →
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
X U
[PROOFSTEP]
intro X U hx hX s hs x
[GOAL]
case h.refine'_1
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U✝ : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U✝))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hx :
∀ (x : { x // x ∈ U }),
∃ V x x,
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
X V
hX : IsReduced X
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
x : { x // x ∈ U }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
[PROOFSTEP]
obtain ⟨V, hx, i, H⟩ := hx x
[GOAL]
case h.refine'_1.intro.intro.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U✝ : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U✝))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hx✝ :
∀ (x : { x // x ∈ U }),
∃ V x x,
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
X V
hX : IsReduced X
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
x : { x // x ∈ U }
V : Opens ↑↑X.toPresheafedSpace
hx : ↑x ∈ V
i : V ⟶ U
H :
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op V))),
Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ V }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
[PROOFSTEP]
specialize H (X.presheaf.map i.op s)
[GOAL]
case h.refine'_1.intro.intro.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U✝ : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U✝))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hx✝ :
∀ (x : { x // x ∈ U }),
∃ V x x,
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
X V
hX : IsReduced X
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
x : { x // x ∈ U }
V : Opens ↑↑X.toPresheafedSpace
hx : ↑x ∈ V
i : V ⟶ U
H :
Scheme.basicOpen X (↑(X.presheaf.map i.op) s) = ⊥ →
∀ (x : { x // x ∈ V }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) (↑(X.presheaf.map i.op) s) = 0
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
[PROOFSTEP]
erw [Scheme.basicOpen_res] at H
[GOAL]
case h.refine'_1.intro.intro.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U✝ : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U✝))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hx✝ :
∀ (x : { x // x ∈ U }),
∃ V x x,
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
X V
hX : IsReduced X
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
x : { x // x ∈ U }
V : Opens ↑↑X.toPresheafedSpace
hx : ↑x ∈ V
i : V ⟶ U
H :
V ⊓ Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ V }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) (↑(X.presheaf.map i.op) s) = 0
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
[PROOFSTEP]
rw [hs] at H
[GOAL]
case h.refine'_1.intro.intro.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U✝ : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U✝))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hx✝ :
∀ (x : { x // x ∈ U }),
∃ V x x,
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
X V
hX : IsReduced X
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
x : { x // x ∈ U }
V : Opens ↑↑X.toPresheafedSpace
hx : ↑x ∈ V
i : V ⟶ U
H :
V ⊓ ⊥ = ⊥ →
∀ (x : { x // x ∈ V }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) (↑(X.presheaf.map i.op) s) = 0
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
[PROOFSTEP]
specialize H inf_bot_eq ⟨x, hx⟩
[GOAL]
case h.refine'_1.intro.intro.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U✝ : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U✝))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hx✝ :
∀ (x : { x // x ∈ U }),
∃ V x x,
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
X V
hX : IsReduced X
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
x : { x // x ∈ U }
V : Opens ↑↑X.toPresheafedSpace
hx : ↑x ∈ V
i : V ⟶ U
H : ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) { val := ↑x, property := hx }) (↑(X.presheaf.map i.op) s) = 0
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
[PROOFSTEP]
erw [TopCat.Presheaf.germ_res_apply] at H
[GOAL]
case h.refine'_1.intro.intro.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U✝ : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U✝))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X : Scheme
U : Opens ↑↑X.toPresheafedSpace
hx✝ :
∀ (x : { x // x ∈ U }),
∃ V x x,
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
X V
hX : IsReduced X
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
x : { x // x ∈ U }
V : Opens ↑↑X.toPresheafedSpace
hx : ↑x ∈ V
i : V ⟶ U
H :
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) { val := ↑x, property := hx }))
s =
0
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
[PROOFSTEP]
exact H
[GOAL]
case h.refine'_2
X✝ : Scheme
X : Scheme
hX : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) [hf : IsOpenImmersion f],
∃ U V hU hV,
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
X { carrier := U, is_open' := (_ : IsOpen U) } →
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
Y { carrier := V, is_open' := (_ : IsOpen V) }
[PROOFSTEP]
rintro X Y f hf
[GOAL]
case h.refine'_2
X✝¹ : Scheme
X✝ : Scheme
hX : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s : ↑(X✝.presheaf.obj (op U))
hs : Scheme.basicOpen X✝ s = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
⊢ ∃ U V hU hV,
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
X { carrier := U, is_open' := (_ : IsOpen U) } →
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
Y { carrier := V, is_open' := (_ : IsOpen V) }
[PROOFSTEP]
have e : f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ := by
rw [← Set.image_univ, Set.preimage_image_eq _ hf.base_open.inj]
[GOAL]
X✝¹ : Scheme
X✝ : Scheme
hX : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s : ↑(X✝.presheaf.obj (op U))
hs : Scheme.basicOpen X✝ s = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
⊢ ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
[PROOFSTEP]
rw [← Set.image_univ, Set.preimage_image_eq _ hf.base_open.inj]
[GOAL]
case h.refine'_2
X✝¹ : Scheme
X✝ : Scheme
hX : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s : ↑(X✝.presheaf.obj (op U))
hs : Scheme.basicOpen X✝ s = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
⊢ ∃ U V hU hV,
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
X { carrier := U, is_open' := (_ : IsOpen U) } →
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ →
∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
Y { carrier := V, is_open' := (_ : IsOpen V) }
[PROOFSTEP]
refine' ⟨_, _, e, rfl, _⟩
[GOAL]
case h.refine'_2
X✝¹ : Scheme
X✝ : Scheme
hX : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s : ↑(X✝.presheaf.obj (op U))
hs : Scheme.basicOpen X✝ s = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
⊢ (fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
X
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } →
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
Y { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }
[PROOFSTEP]
rintro H hX s hs ⟨_, x, rfl⟩
[GOAL]
case h.refine'_2.mk.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
H :
∀ [inst : IsReduced X]
(s :
↑(X.presheaf.obj
(op
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))),
Scheme.basicOpen X s = ⊥ →
∀
(x :
{ x //
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }),
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
hX : IsReduced Y
s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }))
hs : Scheme.basicOpen Y s = ⊥
x : (forget TopCat).obj ↑X.toPresheafedSpace
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf Y))
{ val := ↑f.val.base x, property := (_ : ∃ y, ↑f.val.base y = ↑f.val.base x) })
s =
0
[PROOFSTEP]
haveI := isReducedOfOpenImmersion f
[GOAL]
case h.refine'_2.mk.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
H :
∀ [inst : IsReduced X]
(s :
↑(X.presheaf.obj
(op
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))),
Scheme.basicOpen X s = ⊥ →
∀
(x :
{ x //
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }),
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
hX : IsReduced Y
s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }))
hs : Scheme.basicOpen Y s = ⊥
x : (forget TopCat).obj ↑X.toPresheafedSpace
this : IsReduced X
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf Y))
{ val := ↑f.val.base x, property := (_ : ∃ y, ↑f.val.base y = ↑f.val.base x) })
s =
0
[PROOFSTEP]
specialize H (f.1.c.app _ s) _ ⟨x, by rw [Opens.mem_mk, e]; trivial⟩
[GOAL]
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
H :
∀ [inst : IsReduced X]
(s :
↑(X.presheaf.obj
(op
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))),
Scheme.basicOpen X s = ⊥ →
∀
(x :
{ x //
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }),
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
hX : IsReduced Y
s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }))
hs : Scheme.basicOpen Y s = ⊥
x : (forget TopCat).obj ↑X.toPresheafedSpace
this : IsReduced X
⊢ x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }
[PROOFSTEP]
rw [Opens.mem_mk, e]
[GOAL]
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
H :
∀ [inst : IsReduced X]
(s :
↑(X.presheaf.obj
(op
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))),
Scheme.basicOpen X s = ⊥ →
∀
(x :
{ x //
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }),
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
hX : IsReduced Y
s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }))
hs : Scheme.basicOpen Y s = ⊥
x : (forget TopCat).obj ↑X.toPresheafedSpace
this : IsReduced X
⊢ x ∈ Set.univ
[PROOFSTEP]
trivial
[GOAL]
case h.refine'_2.mk.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
H :
∀ [inst : IsReduced X]
(s :
↑(X.presheaf.obj
(op
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))),
Scheme.basicOpen X s = ⊥ →
∀
(x :
{ x //
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }),
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
hX : IsReduced Y
s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }))
hs : Scheme.basicOpen Y s = ⊥
x : (forget TopCat).obj ↑X.toPresheafedSpace
this : IsReduced X
⊢ Scheme.basicOpen X
(↑(NatTrans.app f.val.c
(op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }))
s) =
⊥
[PROOFSTEP]
rw [← Scheme.preimage_basicOpen, hs]
[GOAL]
case h.refine'_2.mk.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
H :
∀ [inst : IsReduced X]
(s :
↑(X.presheaf.obj
(op
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))),
Scheme.basicOpen X s = ⊥ →
∀
(x :
{ x //
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }),
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
hX : IsReduced Y
s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }))
hs : Scheme.basicOpen Y s = ⊥
x : (forget TopCat).obj ↑X.toPresheafedSpace
this : IsReduced X
⊢ (Opens.map f.val.base).obj ⊥ = ⊥
[PROOFSTEP]
ext1
[GOAL]
case h.refine'_2.mk.intro.h
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
H :
∀ [inst : IsReduced X]
(s :
↑(X.presheaf.obj
(op
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }))),
Scheme.basicOpen X s = ⊥ →
∀
(x :
{ x //
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) } }),
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0
hX : IsReduced Y
s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }))
hs : Scheme.basicOpen Y s = ⊥
x : (forget TopCat).obj ↑X.toPresheafedSpace
this : IsReduced X
⊢ ↑((Opens.map f.val.base).obj ⊥) = ↑⊥
[PROOFSTEP]
simp [Opens.map]
[GOAL]
case h.refine'_2.mk.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
hX : IsReduced Y
s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }))
hs : Scheme.basicOpen Y s = ⊥
x : (forget TopCat).obj ↑X.toPresheafedSpace
this : IsReduced X
H :
↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X))
{ val := x,
property :=
(_ :
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) })
(↑(NatTrans.app f.val.c
(op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }))
s) =
0
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf Y))
{ val := ↑f.val.base x, property := (_ : ∃ y, ↑f.val.base y = ↑f.val.base x) })
s =
0
[PROOFSTEP]
erw [← PresheafedSpace.stalkMap_germ_apply f.1 ⟨_, _⟩ ⟨x, _⟩] at H
[GOAL]
case h.refine'_2.mk.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
hX : IsReduced Y
s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }))
hs : Scheme.basicOpen Y s = ⊥
x : (forget TopCat).obj ↑X.toPresheafedSpace
this : IsReduced X
H :
↑(PresheafedSpace.stalkMap f.val
↑{ val := x,
property :=
(_ :
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) })
(↑(Presheaf.germ Y.presheaf
{
val :=
↑f.val.base
↑{ val := x,
property :=
(_ :
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) },
property :=
(_ :
↑{ val := x,
property :=
(_ :
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) } ∈
(Opens.map f.val.base).obj
{ carrier := fun x => ∃ y, ↑f.val.base y = x,
is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }) })
s) =
0
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf Y))
{ val := ↑f.val.base x, property := (_ : ∃ y, ↑f.val.base y = ↑f.val.base x) })
s =
0
[PROOFSTEP]
apply_fun inv <| PresheafedSpace.stalkMap f.val x at H
[GOAL]
case h.refine'_2.mk.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
hX : IsReduced Y
s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }))
hs : Scheme.basicOpen Y s = ⊥
x : (forget TopCat).obj ↑X.toPresheafedSpace
this : IsReduced X
H :
↑(inv (PresheafedSpace.stalkMap f.val x))
(↑(PresheafedSpace.stalkMap f.val
↑{ val := x,
property :=
(_ :
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) })
(↑(Presheaf.germ Y.presheaf
{
val :=
↑f.val.base
↑{ val := x,
property :=
(_ :
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) },
property :=
(_ :
↑{ val := x,
property :=
(_ :
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) } ∈
(Opens.map f.val.base).obj
{ carrier := fun x => ∃ y, ↑f.val.base y = x,
is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }) })
s)) =
↑(inv (PresheafedSpace.stalkMap f.val x)) 0
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf Y))
{ val := ↑f.val.base x, property := (_ : ∃ y, ↑f.val.base y = ↑f.val.base x) })
s =
0
[PROOFSTEP]
erw [CategoryTheory.IsIso.hom_inv_id_apply, map_zero] at H
[GOAL]
case h.refine'_2.mk.intro
X✝¹ : Scheme
X✝ : Scheme
hX✝ : IsReduced X✝
U : Opens ↑↑X✝.toPresheafedSpace
s✝ : ↑(X✝.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X✝ s✝ = ⊥
X Y : Scheme
f : X ⟶ Y
hf : IsOpenImmersion f
e : ↑f.val.base ⁻¹' Set.range ↑f.val.base = Set.univ
hX : IsReduced Y
s : ↑(Y.presheaf.obj (op { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }))
hs : Scheme.basicOpen Y s = ⊥
x : (forget TopCat).obj ↑X.toPresheafedSpace
this : IsReduced X
H :
↑(Presheaf.germ Y.presheaf
{
val :=
↑f.val.base
↑{ val := x,
property :=
(_ :
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) },
property :=
(_ :
↑{ val := x,
property :=
(_ :
x ∈
{ carrier := ↑f.val.base ⁻¹' Set.range ↑f.val.base,
is_open' := (_ : IsOpen (↑f.val.base ⁻¹' Set.range ↑f.val.base)) }) } ∈
(Opens.map f.val.base).obj
{ carrier := fun x => ∃ y, ↑f.val.base y = x, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }) })
s =
0
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf Y))
{ val := ↑f.val.base x, property := (_ : ∃ y, ↑f.val.base y = ↑f.val.base x) })
s =
0
[PROOFSTEP]
exact H
[GOAL]
case h.refine'_3
X✝ : Scheme
X : Scheme
hX : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
hs : Scheme.basicOpen X s = ⊥
⊢ ∀ (R : CommRingCat),
(fun X U =>
∀ [inst : IsReduced X] (s : ↑(X.presheaf.obj (op U))),
Scheme.basicOpen X s = ⊥ → ∀ (x : { x // x ∈ U }), ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf X)) x) s = 0)
(Scheme.Spec.obj (op R)) ⊤
[PROOFSTEP]
intro R hX s hs x
[GOAL]
case h.refine'_3
X✝ : Scheme
X : Scheme
hX✝ : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s✝ : ↑(X.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X s✝ = ⊥
R : CommRingCat
hX : IsReduced (Scheme.Spec.obj (op R))
s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤))
hs : Scheme.basicOpen (Scheme.Spec.obj (op R)) s = ⊥
x : { x // x ∈ ⊤ }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf (Scheme.Spec.obj (op R)))) x) s = 0
[PROOFSTEP]
erw [basicOpen_eq_of_affine', PrimeSpectrum.basicOpen_eq_bot_iff] at hs
[GOAL]
case h.refine'_3
X✝ : Scheme
X : Scheme
hX✝ : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s✝ : ↑(X.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X s✝ = ⊥
R : CommRingCat
hX : IsReduced (Scheme.Spec.obj (op R))
s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤))
hs : IsNilpotent (↑(SpecΓIdentity.app R).hom s)
x : { x // x ∈ ⊤ }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf (Scheme.Spec.obj (op R)))) x) s = 0
[PROOFSTEP]
replace hs := hs.map (SpecΓIdentity.app R).inv
[GOAL]
case h.refine'_3
X✝ : Scheme
X : Scheme
hX✝ : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s✝ : ↑(X.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X s✝ = ⊥
R : CommRingCat
hX : IsReduced (Scheme.Spec.obj (op R))
s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤))
x : { x // x ∈ ⊤ }
hs : IsNilpotent (↑(SpecΓIdentity.app R).inv (↑(SpecΓIdentity.app R).hom s))
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf (Scheme.Spec.obj (op R)))) x) s = 0
[PROOFSTEP]
replace hs := @IsNilpotent.eq_zero _ _ _ _ (show _ from ?_) hs
[GOAL]
case h.refine'_3.refine_2
X✝ : Scheme
X : Scheme
hX✝ : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s✝ : ↑(X.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X s✝ = ⊥
R : CommRingCat
hX : IsReduced (Scheme.Spec.obj (op R))
s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤))
x : { x // x ∈ ⊤ }
hs : ↑(SpecΓIdentity.app R).inv (↑(SpecΓIdentity.app R).hom s) = 0
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf (Scheme.Spec.obj (op R)))) x) s = 0
case h.refine'_3.refine_1
X✝ : Scheme
X : Scheme
hX✝ : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s✝ : ↑(X.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X s✝ = ⊥
R : CommRingCat
hX : IsReduced (Scheme.Spec.obj (op R))
s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤))
x : { x // x ∈ ⊤ }
hs : IsNilpotent (↑(SpecΓIdentity.app R).inv (↑(SpecΓIdentity.app R).hom s))
⊢ _root_.IsReduced
((fun x => ↑((Spec.toLocallyRingedSpace.rightOp ⋙ LocallyRingedSpace.Γ).obj R)) (↑(SpecΓIdentity.app R).hom s))
[PROOFSTEP]
rw [Iso.hom_inv_id_apply] at hs
[GOAL]
case h.refine'_3.refine_2
X✝ : Scheme
X : Scheme
hX✝ : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s✝ : ↑(X.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X s✝ = ⊥
R : CommRingCat
hX : IsReduced (Scheme.Spec.obj (op R))
s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤))
x : { x // x ∈ ⊤ }
hs : s = 0
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Scheme.sheaf (Scheme.Spec.obj (op R)))) x) s = 0
case h.refine'_3.refine_1
X✝ : Scheme
X : Scheme
hX✝ : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s✝ : ↑(X.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X s✝ = ⊥
R : CommRingCat
hX : IsReduced (Scheme.Spec.obj (op R))
s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤))
x : { x // x ∈ ⊤ }
hs : IsNilpotent (↑(SpecΓIdentity.app R).inv (↑(SpecΓIdentity.app R).hom s))
⊢ _root_.IsReduced
((fun x => ↑((Spec.toLocallyRingedSpace.rightOp ⋙ LocallyRingedSpace.Γ).obj R)) (↑(SpecΓIdentity.app R).hom s))
[PROOFSTEP]
rw [hs, map_zero]
[GOAL]
case h.refine'_3.refine_1
X✝ : Scheme
X : Scheme
hX✝ : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s✝ : ↑(X.presheaf.obj (op U))
hs✝ : Scheme.basicOpen X s✝ = ⊥
R : CommRingCat
hX : IsReduced (Scheme.Spec.obj (op R))
s : ↑((Scheme.Spec.obj (op R)).presheaf.obj (op ⊤))
x : { x // x ∈ ⊤ }
hs : IsNilpotent (↑(SpecΓIdentity.app R).inv (↑(SpecΓIdentity.app R).hom s))
⊢ _root_.IsReduced
((fun x => ↑((Spec.toLocallyRingedSpace.rightOp ⋙ LocallyRingedSpace.Γ).obj R)) (↑(SpecΓIdentity.app R).hom s))
[PROOFSTEP]
exact @IsReduced.component_reduced _ hX ⊤
[GOAL]
X✝ : Scheme
X : Scheme
inst✝ : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
⊢ Scheme.basicOpen X s = ⊥ ↔ s = 0
[PROOFSTEP]
refine' ⟨eq_zero_of_basicOpen_eq_bot s, _⟩
[GOAL]
X✝ : Scheme
X : Scheme
inst✝ : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
s : ↑(X.presheaf.obj (op U))
⊢ s = 0 → Scheme.basicOpen X s = ⊥
[PROOFSTEP]
rintro rfl
[GOAL]
X✝ : Scheme
X : Scheme
inst✝ : IsReduced X
U : Opens ↑↑X.toPresheafedSpace
⊢ Scheme.basicOpen X 0 = ⊥
[PROOFSTEP]
simp
[GOAL]
X : Scheme
h : IsIntegral X
⊢ Nonempty { x // x ∈ ⊤ }
[PROOFSTEP]
simp only [Set.univ_nonempty, Opens.nonempty_coeSort, Opens.coe_top]
[GOAL]
X : Scheme
inst✝ : IsIntegral X
⊢ IsReduced X
[PROOFSTEP]
constructor
[GOAL]
case component_reduced
X : Scheme
inst✝ : IsIntegral X
⊢ autoParam (∀ (U : Opens ↑↑X.toPresheafedSpace), _root_.IsReduced ↑(X.presheaf.obj (op U))) _auto✝
[PROOFSTEP]
intro U
[GOAL]
case component_reduced
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
⊢ _root_.IsReduced ↑(X.presheaf.obj (op U))
[PROOFSTEP]
cases' U.1.eq_empty_or_nonempty with h h
[GOAL]
case component_reduced.inl
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
h : U.carrier = ∅
⊢ _root_.IsReduced ↑(X.presheaf.obj (op U))
[PROOFSTEP]
have : U = ⊥ := SetLike.ext' h
[GOAL]
case component_reduced.inl
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
h : U.carrier = ∅
this : U = ⊥
⊢ _root_.IsReduced ↑(X.presheaf.obj (op U))
[PROOFSTEP]
haveI := CommRingCat.subsingleton_of_isTerminal (X.sheaf.isTerminalOfEqEmpty this)
[GOAL]
case component_reduced.inl
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
h : U.carrier = ∅
this✝ : U = ⊥
this : Subsingleton ↑((Scheme.sheaf X).val.obj (op U))
⊢ _root_.IsReduced ↑(X.presheaf.obj (op U))
[PROOFSTEP]
change _root_.IsReduced (X.sheaf.val.obj (op U))
[GOAL]
case component_reduced.inl
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
h : U.carrier = ∅
this✝ : U = ⊥
this : Subsingleton ↑((Scheme.sheaf X).val.obj (op U))
⊢ _root_.IsReduced ↑((Scheme.sheaf X).val.obj (op U))
[PROOFSTEP]
infer_instance
[GOAL]
case component_reduced.inr
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
h : Set.Nonempty U.carrier
⊢ _root_.IsReduced ↑(X.presheaf.obj (op U))
[PROOFSTEP]
haveI : Nonempty U := by simpa
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
h : Set.Nonempty U.carrier
⊢ Nonempty { x // x ∈ U }
[PROOFSTEP]
simpa
[GOAL]
case component_reduced.inr
X : Scheme
inst✝ : IsIntegral X
U : Opens ↑↑X.toPresheafedSpace
h : Set.Nonempty U.carrier
this : Nonempty { x // x ∈ U }
⊢ _root_.IsReduced ↑(X.presheaf.obj (op U))
[PROOFSTEP]
infer_instance
[GOAL]
X : Scheme
inst✝ : IsIntegral X
⊢ IrreducibleSpace ↑↑X.toPresheafedSpace
[PROOFSTEP]
by_contra H
[GOAL]
X : Scheme
inst✝ : IsIntegral X
H : ¬IrreducibleSpace ↑↑X.toPresheafedSpace
⊢ False
[PROOFSTEP]
replace H : ¬IsPreirreducible (⊤ : Set X.carrier) := fun h =>
H { toPreirreducibleSpace := ⟨h⟩
toNonempty := inferInstance }
[GOAL]
X : Scheme
inst✝ : IsIntegral X
H : ¬IsPreirreducible ⊤
⊢ False
[PROOFSTEP]
simp_rw [isPreirreducible_iff_closed_union_closed, not_forall, not_or] at H
[GOAL]
X : Scheme
inst✝ : IsIntegral X
H : ∃ x x_1 h h h, ¬⊤ ⊆ x ∧ ¬⊤ ⊆ x_1
⊢ False
[PROOFSTEP]
rcases H with ⟨S, T, hS, hT, h₁, h₂, h₃⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ¬⊤ ⊆ S
h₃ : ¬⊤ ⊆ T
⊢ False
[PROOFSTEP]
erw [not_forall] at h₂ h₃
[GOAL]
case intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x, ¬(x ∈ ⊤ → x ∈ S)
h₃ : ∃ x, ¬(x ∈ ⊤ → x ∈ T)
⊢ False
[PROOFSTEP]
simp_rw [not_forall] at h₂ h₃
[GOAL]
case intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
⊢ False
[PROOFSTEP]
haveI : Nonempty (⟨Sᶜ, hS.1⟩ : Opens X.carrier) := ⟨⟨_, h₂.choose_spec.choose_spec⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
⊢ False
[PROOFSTEP]
haveI : Nonempty (⟨Tᶜ, hT.1⟩ : Opens X.carrier) := ⟨⟨_, h₃.choose_spec.choose_spec⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
⊢ False
[PROOFSTEP]
haveI : Nonempty (⟨Sᶜ, hS.1⟩ ⊔ ⟨Tᶜ, hT.1⟩ : Opens X.carrier) := ⟨⟨_, Or.inl h₂.choose_spec.choose_spec⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
⊢ False
[PROOFSTEP]
let e : X.presheaf.obj _ ≅ CommRingCat.of _ :=
(X.sheaf.isProductOfDisjoint ⟨_, hS.1⟩ ⟨_, hT.1⟩ ?_).conePointUniqueUpToIso (CommRingCat.prodFanIsLimit _ _)
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_2
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
e : X.presheaf.obj
(op ({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })) ≅
CommRingCat.of
↑(CommRingCat.prodFan ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }))
((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }))).1 :=
IsLimit.conePointUniqueUpToIso
(Sheaf.isProductOfDisjoint (Scheme.sheaf X) { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }
{ carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } ?intro.intro.intro.intro.intro.intro.refine_1)
(CommRingCat.prodFanIsLimit ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }))
((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })))
⊢ False
case intro.intro.intro.intro.intro.intro.refine_1
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
⊢ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊓ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } = ⊥
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) false_of_nontrivial_of_product_domain
[GOAL]
case inst
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
e : X.presheaf.obj
(op ({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })) ≅
CommRingCat.of
↑(CommRingCat.prodFan ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }))
((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }))).1 :=
IsLimit.conePointUniqueUpToIso
(Sheaf.isProductOfDisjoint (Scheme.sheaf X) { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }
{ carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } ?intro.intro.intro.intro.intro.intro.refine_1)
(CommRingCat.prodFanIsLimit ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }))
((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })))
⊢ IsDomain (?intro.intro.intro.intro.intro.intro.refine_2.R × ?intro.intro.intro.intro.intro.intro.refine_2.S)
[PROOFSTEP]
exact e.symm.commRingCatIsoToRingEquiv.toMulEquiv.isDomain _
[GOAL]
case inst
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
e : X.presheaf.obj
(op ({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })) ≅
CommRingCat.of
↑(CommRingCat.prodFan ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }))
((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }))).1 :=
IsLimit.conePointUniqueUpToIso
(Sheaf.isProductOfDisjoint (Scheme.sheaf X) { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }
{ carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } ?intro.intro.intro.intro.intro.intro.refine_1)
(CommRingCat.prodFanIsLimit ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }))
((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })))
⊢ Nontrivial ↑((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }))
[PROOFSTEP]
apply X.toLocallyRingedSpace.component_nontrivial
[GOAL]
case inst
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
e : X.presheaf.obj
(op ({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })) ≅
CommRingCat.of
↑(CommRingCat.prodFan ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }))
((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }))).1 :=
IsLimit.conePointUniqueUpToIso
(Sheaf.isProductOfDisjoint (Scheme.sheaf X) { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }
{ carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } ?intro.intro.intro.intro.intro.intro.refine_1)
(CommRingCat.prodFanIsLimit ((Scheme.sheaf X).val.obj (op { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }))
((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })))
⊢ Nontrivial ↑((Scheme.sheaf X).val.obj (op { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }))
[PROOFSTEP]
apply X.toLocallyRingedSpace.component_nontrivial
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_1
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
⊢ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊓ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } = ⊥
[PROOFSTEP]
ext x
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_1.h.h
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
x : ↑↑X.toPresheafedSpace
⊢ x ∈ ↑({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊓ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }) ↔ x ∈ ↑⊥
[PROOFSTEP]
constructor
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_1.h.h.mp
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
x : ↑↑X.toPresheafedSpace
⊢ x ∈ ↑({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊓ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }) → x ∈ ↑⊥
[PROOFSTEP]
rintro ⟨hS, hT⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_1.h.h.mp.intro
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS✝ : IsClosed S
hT✝ : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
x : ↑↑X.toPresheafedSpace
hS : x ∈ ↑{ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }
hT : x ∈ ↑{ carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }
⊢ x ∈ ↑⊥
[PROOFSTEP]
cases' h₁ (show x ∈ ⊤ by trivial) with h h
[GOAL]
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS✝ : IsClosed S
hT✝ : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
x : ↑↑X.toPresheafedSpace
hS : x ∈ ↑{ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }
hT : x ∈ ↑{ carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }
⊢ x ∈ ⊤
[PROOFSTEP]
trivial
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_1.h.h.mp.intro.inl
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS✝ : IsClosed S
hT✝ : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
x : ↑↑X.toPresheafedSpace
hS : x ∈ ↑{ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }
hT : x ∈ ↑{ carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }
h : x ∈ S
⊢ x ∈ ↑⊥
case intro.intro.intro.intro.intro.intro.refine_1.h.h.mp.intro.inr
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS✝ : IsClosed S
hT✝ : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
x : ↑↑X.toPresheafedSpace
hS : x ∈ ↑{ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) }
hT : x ∈ ↑{ carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) }
h : x ∈ T
⊢ x ∈ ↑⊥
[PROOFSTEP]
exacts [hS h, hT h]
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_1.h.h.mpr
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
x : ↑↑X.toPresheafedSpace
⊢ x ∈ ↑⊥ → x ∈ ↑({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊓ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })
[PROOFSTEP]
intro x
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_1.h.h.mpr
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
x✝ : ↑↑X.toPresheafedSpace
x : x✝ ∈ ↑⊥
⊢ x✝ ∈ ↑({ carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊓ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) })
[PROOFSTEP]
refine' x.rec (by contradiction)
[GOAL]
X : Scheme
inst✝ : IsIntegral X
S T : Set ↑↑X.toPresheafedSpace
hS : IsClosed S
hT : IsClosed T
h₁ : ⊤ ⊆ S ∪ T
h₂ : ∃ x x_1, ¬x ∈ S
h₃ : ∃ x x_1, ¬x ∈ T
this✝¹ : Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } }
this✝ : Nonempty { x // x ∈ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
this :
Nonempty { x // x ∈ { carrier := Sᶜ, is_open' := (_ : IsOpen Sᶜ) } ⊔ { carrier := Tᶜ, is_open' := (_ : IsOpen Tᶜ) } }
x✝ : ↑↑X.toPresheafedSpace
x : x✝ ∈ ↑⊥
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
⊢ IsIntegral X
[PROOFSTEP]
constructor
[GOAL]
case nonempty
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
⊢ autoParam (Nonempty ↑↑X.toPresheafedSpace) _auto✝
[PROOFSTEP]
infer_instance
[GOAL]
case component_integral
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
⊢ autoParam (∀ (U : Opens ↑↑X.toPresheafedSpace) [inst : Nonempty { x // x ∈ U }], IsDomain ↑(X.presheaf.obj (op U)))
_auto✝
[PROOFSTEP]
intro U hU
[GOAL]
case component_integral
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
⊢ IsDomain ↑(X.presheaf.obj (op U))
[PROOFSTEP]
haveI := (@LocallyRingedSpace.component_nontrivial X.toLocallyRingedSpace U hU).1
[GOAL]
case component_integral
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : ∃ x y, x ≠ y
⊢ IsDomain ↑(X.presheaf.obj (op U))
[PROOFSTEP]
have : NoZeroDivisors (X.toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj (op U)) :=
by
refine' ⟨fun {a b} e => _⟩
simp_rw [← basicOpen_eq_bot_iff, ← Opens.not_nonempty_iff_eq_bot]
by_contra' h
obtain ⟨_, ⟨x, hx₁, rfl⟩, ⟨x, hx₂, e'⟩⟩ := nonempty_preirreducible_inter (X.basicOpen a).2 (X.basicOpen b).2 h.1 h.2
replace e' := Subtype.eq e'
subst e'
replace e := congr_arg (X.presheaf.germ x) e
rw [RingHom.map_mul, RingHom.map_zero] at e
refine' zero_ne_one' (X.presheaf.stalk x.1) (isUnit_zero_iff.1 _)
convert hx₁.mul hx₂
exact e.symm
[GOAL]
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : ∃ x y, x ≠ y
⊢ NoZeroDivisors ↑(X.presheaf.obj (op U))
[PROOFSTEP]
refine' ⟨fun {a b} e => _⟩
[GOAL]
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : ∃ x y, x ≠ y
a b : ↑(X.presheaf.obj (op U))
e : a * b = 0
⊢ a = 0 ∨ b = 0
[PROOFSTEP]
simp_rw [← basicOpen_eq_bot_iff, ← Opens.not_nonempty_iff_eq_bot]
[GOAL]
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : ∃ x y, x ≠ y
a b : ↑(X.presheaf.obj (op U))
e : a * b = 0
⊢ ¬Set.Nonempty ↑(Scheme.basicOpen X a) ∨ ¬Set.Nonempty ↑(Scheme.basicOpen X b)
[PROOFSTEP]
by_contra' h
[GOAL]
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : ∃ x y, x ≠ y
a b : ↑(X.presheaf.obj (op U))
e : a * b = 0
h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b)
⊢ False
[PROOFSTEP]
obtain ⟨_, ⟨x, hx₁, rfl⟩, ⟨x, hx₂, e'⟩⟩ := nonempty_preirreducible_inter (X.basicOpen a).2 (X.basicOpen b).2 h.1 h.2
[GOAL]
case intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : ∃ x y, x ≠ y
a b : ↑(X.presheaf.obj (op U))
e : a * b = 0
h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b)
x✝ : { x // x ∈ U }
hx₁ :
x✝ ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)}
x : { x // x ∈ U }
hx₂ :
x ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)}
e' : ↑x = ↑x✝
⊢ False
[PROOFSTEP]
replace e' := Subtype.eq e'
[GOAL]
case intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : ∃ x y, x ≠ y
a b : ↑(X.presheaf.obj (op U))
e : a * b = 0
h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b)
x✝ : { x // x ∈ U }
hx₁ :
x✝ ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)}
x : { x // x ∈ U }
hx₂ :
x ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)}
e' : x = x✝
⊢ False
[PROOFSTEP]
subst e'
[GOAL]
case intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : ∃ x y, x ≠ y
a b : ↑(X.presheaf.obj (op U))
e : a * b = 0
h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b)
x : { x // x ∈ U }
hx₂ :
x ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)}
hx₁ :
x ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)}
⊢ False
[PROOFSTEP]
replace e := congr_arg (X.presheaf.germ x) e
[GOAL]
case intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : ∃ x y, x ≠ y
a b : ↑(X.presheaf.obj (op U))
h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b)
x : { x // x ∈ U }
hx₂ :
x ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)}
hx₁ :
x ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)}
e : ↑(Presheaf.germ X.presheaf x) (a * b) = ↑(Presheaf.germ X.presheaf x) 0
⊢ False
[PROOFSTEP]
rw [RingHom.map_mul, RingHom.map_zero] at e
[GOAL]
case intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : ∃ x y, x ≠ y
a b : ↑(X.presheaf.obj (op U))
h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b)
x : { x // x ∈ U }
hx₂ :
x ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)}
hx₁ :
x ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)}
e : ↑(Presheaf.germ X.presheaf x) a * ↑(Presheaf.germ X.presheaf x) b = 0
⊢ False
[PROOFSTEP]
refine' zero_ne_one' (X.presheaf.stalk x.1) (isUnit_zero_iff.1 _)
[GOAL]
case intro.intro.intro.intro.intro.intro
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : ∃ x y, x ≠ y
a b : ↑(X.presheaf.obj (op U))
h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b)
x : { x // x ∈ U }
hx₂ :
x ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)}
hx₁ :
x ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)}
e : ↑(Presheaf.germ X.presheaf x) a * ↑(Presheaf.germ X.presheaf x) b = 0
⊢ IsUnit 0
[PROOFSTEP]
convert hx₁.mul hx₂
[GOAL]
case h.e'_3.h
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : ∃ x y, x ≠ y
a b : ↑(X.presheaf.obj (op U))
h : Set.Nonempty ↑(Scheme.basicOpen X a) ∧ Set.Nonempty ↑(Scheme.basicOpen X b)
x : { x // x ∈ U }
hx₂ :
x ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b)}
hx₁ :
x ∈
{x |
IsUnit
(↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a)}
e : ↑(Presheaf.germ X.presheaf x) a * ↑(Presheaf.germ X.presheaf x) b = 0
e_1✝ :
↑(Presheaf.stalk X.presheaf ↑x) =
(fun x_1 =>
(forget CommRingCat).obj
(Presheaf.stalk (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf ↑x))
a
⊢ 0 =
↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) a *
↑(Presheaf.germ (LocallyRingedSpace.toRingedSpace X.toLocallyRingedSpace).toPresheafedSpace.presheaf x) b
[PROOFSTEP]
exact e.symm
[GOAL]
case component_integral
X : Scheme
inst✝ : IsReduced X
H : IrreducibleSpace ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this✝ : ∃ x y, x ≠ y
this : NoZeroDivisors ↑(X.presheaf.obj (op U))
⊢ IsDomain ↑(X.presheaf.obj (op U))
[PROOFSTEP]
exact NoZeroDivisors.to_isDomain _
[GOAL]
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝¹ : IsIntegral Y
inst✝ : Nonempty ↑↑X.toPresheafedSpace
⊢ IsIntegral X
[PROOFSTEP]
constructor
[GOAL]
case nonempty
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝¹ : IsIntegral Y
inst✝ : Nonempty ↑↑X.toPresheafedSpace
⊢ autoParam (Nonempty ↑↑X.toPresheafedSpace) _auto✝
[PROOFSTEP]
infer_instance
[GOAL]
case component_integral
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝¹ : IsIntegral Y
inst✝ : Nonempty ↑↑X.toPresheafedSpace
⊢ autoParam (∀ (U : Opens ↑↑X.toPresheafedSpace) [inst : Nonempty { x // x ∈ U }], IsDomain ↑(X.presheaf.obj (op U)))
_auto✝
[PROOFSTEP]
intro U hU
[GOAL]
case component_integral
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝¹ : IsIntegral Y
inst✝ : Nonempty ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
⊢ IsDomain ↑(X.presheaf.obj (op U))
[PROOFSTEP]
have : U = (Opens.map f.1.base).obj (H.base_open.isOpenMap.functor.obj U) := by ext1;
exact (Set.preimage_image_eq _ H.base_open.inj).symm
[GOAL]
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝¹ : IsIntegral Y
inst✝ : Nonempty ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
⊢ U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)
[PROOFSTEP]
ext1
[GOAL]
case h
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝¹ : IsIntegral Y
inst✝ : Nonempty ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
⊢ ↑U = ↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U))
[PROOFSTEP]
exact (Set.preimage_image_eq _ H.base_open.inj).symm
[GOAL]
case component_integral
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝¹ : IsIntegral Y
inst✝ : Nonempty ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)
⊢ IsDomain ↑(X.presheaf.obj (op U))
[PROOFSTEP]
rw [this]
[GOAL]
case component_integral
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝¹ : IsIntegral Y
inst✝ : Nonempty ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)
⊢ IsDomain ↑(X.presheaf.obj (op ((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U))))
[PROOFSTEP]
have : IsDomain (Y.presheaf.obj (op (H.base_open.isOpenMap.functor.obj U))) :=
by
apply (config := { allowSynthFailures := true }) IsIntegral.component_integral
refine' ⟨⟨_, _, hU.some.prop, rfl⟩⟩
[GOAL]
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝¹ : IsIntegral Y
inst✝ : Nonempty ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)
⊢ IsDomain ↑(Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)))
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) IsIntegral.component_integral
[GOAL]
case inst
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝¹ : IsIntegral Y
inst✝ : Nonempty ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)
⊢ Nonempty { x // x ∈ (IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U }
[PROOFSTEP]
refine' ⟨⟨_, _, hU.some.prop, rfl⟩⟩
[GOAL]
case component_integral
X✝ : Scheme
X Y : Scheme
f : X ⟶ Y
H : IsOpenImmersion f
inst✝¹ : IsIntegral Y
inst✝ : Nonempty ↑↑X.toPresheafedSpace
U : Opens ↑↑X.toPresheafedSpace
hU : Nonempty { x // x ∈ U }
this✝ : U = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)
this : IsDomain ↑(Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U)))
⊢ IsDomain ↑(X.presheaf.obj (op ((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f.val.base)).obj U))))
[PROOFSTEP]
exact
(asIso <| f.1.c.app (op <| H.base_open.isOpenMap.functor.obj U) :
Y.presheaf.obj _ ≅ _).symm.commRingCatIsoToRingEquiv.toMulEquiv.isDomain
_
[GOAL]
X : Scheme
R : CommRingCat
H : IsDomain ↑R
⊢ IrreducibleSpace ↑↑(Scheme.Spec.obj (op R)).toPresheafedSpace
[PROOFSTEP]
convert PrimeSpectrum.irreducibleSpace (R := R)
[GOAL]
X : Scheme
inst✝¹ : IsAffine X
inst✝ : Nonempty ↑↑X.toPresheafedSpace
h : IsDomain ↑(X.presheaf.obj (op ⊤))
⊢ IsIntegral (Scheme.Spec.obj (op (Scheme.Γ.obj (op X))))
[PROOFSTEP]
rw [affine_isIntegral_iff]
[GOAL]
X : Scheme
inst✝¹ : IsAffine X
inst✝ : Nonempty ↑↑X.toPresheafedSpace
h : IsDomain ↑(X.presheaf.obj (op ⊤))
⊢ IsDomain ↑(Scheme.Γ.obj (op X))
[PROOFSTEP]
exact h
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
H : Nonempty { x // x ∈ U }
⊢ Function.Injective ↑(X.presheaf.map i.op)
[PROOFSTEP]
rw [injective_iff_map_eq_zero]
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
H : Nonempty { x // x ∈ U }
⊢ ∀ (a : (forget CommRingCat).obj (X.presheaf.obj (op V))), ↑(X.presheaf.map i.op) a = 0 → a = 0
[PROOFSTEP]
intro x hx
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
H : Nonempty { x // x ∈ U }
x : (forget CommRingCat).obj (X.presheaf.obj (op V))
hx : ↑(X.presheaf.map i.op) x = 0
⊢ x = 0
[PROOFSTEP]
rw [← basicOpen_eq_bot_iff] at hx ⊢
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
H : Nonempty { x // x ∈ U }
x : (forget CommRingCat).obj (X.presheaf.obj (op V))
hx : Scheme.basicOpen X (↑(X.presheaf.map i.op) x) = ⊥
⊢ Scheme.basicOpen X x = ⊥
[PROOFSTEP]
rw [Scheme.basicOpen_res] at hx
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
H : Nonempty { x // x ∈ U }
x : (forget CommRingCat).obj (X.presheaf.obj (op V))
hx : U ⊓ Scheme.basicOpen X x = ⊥
⊢ Scheme.basicOpen X x = ⊥
[PROOFSTEP]
revert hx
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
H : Nonempty { x // x ∈ U }
x : (forget CommRingCat).obj (X.presheaf.obj (op V))
⊢ U ⊓ Scheme.basicOpen X x = ⊥ → Scheme.basicOpen X x = ⊥
[PROOFSTEP]
contrapose!
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
H : Nonempty { x // x ∈ U }
x : (forget CommRingCat).obj (X.presheaf.obj (op V))
⊢ Scheme.basicOpen X x ≠ ⊥ → U ⊓ Scheme.basicOpen X x ≠ ⊥
[PROOFSTEP]
simp_rw [Ne.def, ← Opens.not_nonempty_iff_eq_bot, Classical.not_not]
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
H : Nonempty { x // x ∈ U }
x : (forget CommRingCat).obj (X.presheaf.obj (op V))
⊢ Set.Nonempty ↑(Scheme.basicOpen X x) → Set.Nonempty ↑(U ⊓ Scheme.basicOpen X x)
[PROOFSTEP]
apply nonempty_preirreducible_inter U.isOpen (RingedSpace.basicOpen _ _).isOpen
[GOAL]
X : Scheme
inst✝ : IsIntegral X
U V : Opens ↑↑X.toPresheafedSpace
i : U ⟶ V
H : Nonempty { x // x ∈ U }
x : (forget CommRingCat).obj (X.presheaf.obj (op V))
⊢ Set.Nonempty ↑U
[PROOFSTEP]
simpa using H
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.Properties", "llama_tokens": 45231} |
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ #((n : ℕ) × Functions (Language.sum L (skolem₁ L)) n) = #((n : ℕ) × BoundedFormula L Empty (n + 1))
[PROOFSTEP]
simp only [card_functions_sum, skolem₁_Functions, mk_sigma, sum_add_distrib']
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ ((sum fun i => lift #(Functions L i)) + sum fun i => lift #(BoundedFormula L Empty (i + 1))) =
sum fun i => #(BoundedFormula L Empty (i + 1))
[PROOFSTEP]
conv_lhs => enter [2, 1, i]; rw [lift_id'.{u, v}]
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
| (sum fun i => lift #(Functions L i)) + sum fun i => lift #(BoundedFormula L Empty (i + 1))
[PROOFSTEP]
enter [2, 1, i]; rw [lift_id'.{u, v}]
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
| (sum fun i => lift #(Functions L i)) + sum fun i => lift #(BoundedFormula L Empty (i + 1))
[PROOFSTEP]
enter [2, 1, i]; rw [lift_id'.{u, v}]
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
| (sum fun i => lift #(Functions L i)) + sum fun i => lift #(BoundedFormula L Empty (i + 1))
[PROOFSTEP]
enter [2, 1, i]
[GOAL]
case h
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
i : ℕ
| lift #(BoundedFormula L Empty (i + 1))
[PROOFSTEP]
rw [lift_id'.{u, v}]
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ ((sum fun i => lift #(Functions L i)) + sum fun i => #(BoundedFormula L Empty (i + 1))) =
sum fun i => #(BoundedFormula L Empty (i + 1))
[PROOFSTEP]
rw [add_comm, add_eq_max, max_eq_left]
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ (sum fun i => lift #(Functions L i)) ≤ sum fun i => #(BoundedFormula L Empty (i + 1))
[PROOFSTEP]
refine' sum_le_sum _ _ fun n => _
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
n : ℕ
⊢ lift #(Functions L n) ≤ #(BoundedFormula L Empty (n + 1))
[PROOFSTEP]
rw [← lift_le.{_, max u v}, lift_lift, lift_mk_le.{v}]
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
n : ℕ
⊢ Nonempty (Functions L n ↪ BoundedFormula L Empty (n + 1))
[PROOFSTEP]
refine' ⟨⟨fun f => (func f default).bdEqual (func f default), fun f g h => _⟩⟩
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
n : ℕ
f g : Functions L n
h : (fun f => func f default =' func f default) f = (fun f => func f default =' func f default) g
⊢ f = g
[PROOFSTEP]
rcases h with ⟨rfl, ⟨rfl⟩⟩
[GOAL]
case refl
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
n : ℕ
f : Functions L n
⊢ f = f
[PROOFSTEP]
rfl
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ ℵ₀ ≤ sum fun i => #(BoundedFormula L Empty (i + 1))
[PROOFSTEP]
rw [← mk_sigma]
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ ℵ₀ ≤ #((i : ℕ) × BoundedFormula L Empty (i + 1))
[PROOFSTEP]
exact infinite_iff.1 (Infinite.of_injective (fun n => ⟨n, ⊥⟩) fun x y xy => (Sigma.mk.inj_iff.1 xy).1)
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ #((n : ℕ) × Functions (Language.sum L (skolem₁ L)) n) ≤ max ℵ₀ (card L)
[PROOFSTEP]
rw [card_functions_sum_skolem₁]
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ #((n : ℕ) × BoundedFormula L Empty (n + 1)) ≤ max ℵ₀ (card L)
[PROOFSTEP]
trans #(Σ n, L.BoundedFormula Empty n)
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ #((n : ℕ) × BoundedFormula L Empty (n + 1)) ≤ #((n : ℕ) × BoundedFormula L Empty n)
[PROOFSTEP]
exact ⟨⟨Sigma.map Nat.succ fun _ => id, Nat.succ_injective.sigma_map fun _ => Function.injective_id⟩⟩
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ #((n : ℕ) × BoundedFormula L Empty n) ≤ max ℵ₀ (card L)
[PROOFSTEP]
refine' _root_.trans BoundedFormula.card_le (lift_le.{max u v}.1 _)
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ lift (max ℵ₀ (lift #Empty + lift (card L))) ≤ lift (max ℵ₀ (card L))
[PROOFSTEP]
simp only [mk_empty, lift_zero, lift_uzero, zero_add]
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ lift (max ℵ₀ (card L)) ≤ lift (max ℵ₀ (card L))
[PROOFSTEP]
rfl
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
S : Substructure (Language.sum L (skolem₁ L)) M
⊢ IsElementary (↑(LHom.substructureReduct LHom.sumInl) S)
[PROOFSTEP]
apply (LHom.sumInl.substructureReduct S).isElementary_of_exists
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
S : Substructure (Language.sum L (skolem₁ L)) M
⊢ ∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → { x // x ∈ ↑(LHom.substructureReduct LHom.sumInl) S })
(a : M),
BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) ↑b)
[PROOFSTEP]
intro n φ x a h
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
S : Substructure (Language.sum L (skolem₁ L)) M
n : ℕ
φ : BoundedFormula L Empty (n + 1)
x : Fin n → { x // x ∈ ↑(LHom.substructureReduct LHom.sumInl) S }
a : M
h : BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a)
⊢ ∃ b, BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) ↑b)
[PROOFSTEP]
let φ' : (L.sum L.skolem₁).Functions n := LHom.sumInr.onFunction φ
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
S : Substructure (Language.sum L (skolem₁ L)) M
n : ℕ
φ : BoundedFormula L Empty (n + 1)
x : Fin n → { x // x ∈ ↑(LHom.substructureReduct LHom.sumInl) S }
a : M
h : BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a)
φ' : Functions (Language.sum L (skolem₁ L)) n := LHom.onFunction LHom.sumInr φ
⊢ ∃ b, BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) ↑b)
[PROOFSTEP]
exact
⟨⟨funMap φ' ((↑) ∘ x), S.fun_mem (LHom.sumInr.onFunction φ) ((↑) ∘ x) (by exact fun i => (x i).2)⟩, by
exact Classical.epsilon_spec (p := fun a => BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a)) ⟨a, h⟩⟩
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
S : Substructure (Language.sum L (skolem₁ L)) M
n : ℕ
φ : BoundedFormula L Empty (n + 1)
x : Fin n → { x // x ∈ ↑(LHom.substructureReduct LHom.sumInl) S }
a : M
h : BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a)
φ' : Functions (Language.sum L (skolem₁ L)) n := LHom.onFunction LHom.sumInr φ
⊢ ∀ (i : Fin n), (Subtype.val ∘ x) i ∈ ↑S
[PROOFSTEP]
exact fun i => (x i).2
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
S : Substructure (Language.sum L (skolem₁ L)) M
n : ℕ
φ : BoundedFormula L Empty (n + 1)
x : Fin n → { x // x ∈ ↑(LHom.substructureReduct LHom.sumInl) S }
a : M
h : BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a)
φ' : Functions (Language.sum L (skolem₁ L)) n := LHom.onFunction LHom.sumInr φ
⊢ BoundedFormula.Realize φ default
(Fin.snoc (Subtype.val ∘ x)
↑{ val := funMap φ' (Subtype.val ∘ x),
property := (_ : funMap (LHom.onFunction LHom.sumInr φ) (Subtype.val ∘ x) ∈ ↑S) })
[PROOFSTEP]
exact Classical.epsilon_spec (p := fun a => BoundedFormula.Realize φ default (Fin.snoc (Subtype.val ∘ x) a)) ⟨a, h⟩
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ Small.{?u.38330, w} { x // x ∈ elementarySkolem₁Reduct ⊥ }
[PROOFSTEP]
rw [coeSort_elementarySkolem₁Reduct]
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
⊢ Small.{?u.38330, w} { x // x ∈ ⊥ }
[PROOFSTEP]
infer_instance
[GOAL]
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h1 : ℵ₀ ≤ κ
h2 : lift #↑s ≤ lift κ
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
⊢ ∃ S, s ⊆ ↑S ∧ lift #{ x // x ∈ S } = lift κ
[PROOFSTEP]
obtain ⟨s', hs'⟩ := Cardinal.le_mk_iff_exists_set.1 h4
[GOAL]
case intro
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h1 : ℵ₀ ≤ κ
h2 : lift #↑s ≤ lift κ
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
hs' : #↑s' = lift κ
⊢ ∃ S, s ⊆ ↑S ∧ lift #{ x // x ∈ S } = lift κ
[PROOFSTEP]
rw [← aleph0_le_lift.{_, w}] at h1
[GOAL]
case intro
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h1 : ℵ₀ ≤ lift κ
h2 : lift #↑s ≤ lift κ
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
hs' : #↑s' = lift κ
⊢ ∃ S, s ⊆ ↑S ∧ lift #{ x // x ∈ S } = lift κ
[PROOFSTEP]
rw [← hs'] at h1 h2 ⊢
[GOAL]
case intro
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
⊢ ∃ S, s ⊆ ↑S ∧ lift #{ x // x ∈ S } = #↑s'
[PROOFSTEP]
refine'
⟨elementarySkolem₁Reduct (closure (L.sum L.skolem₁) (s ∪ Equiv.ulift '' s')),
(s.subset_union_left _).trans subset_closure, _⟩
[GOAL]
case intro
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
⊢ lift
#{ x //
x ∈
elementarySkolem₁Reduct
(LowerAdjoint.toFun (closure (Language.sum L (skolem₁ L))) (s ∪ ↑Equiv.ulift '' s')) } =
#↑s'
[PROOFSTEP]
have h := mk_image_eq_lift _ s' Equiv.ulift.injective
[GOAL]
case intro
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = lift #↑s'
⊢ lift
#{ x //
x ∈
elementarySkolem₁Reduct
(LowerAdjoint.toFun (closure (Language.sum L (skolem₁ L))) (s ∪ ↑Equiv.ulift '' s')) } =
#↑s'
[PROOFSTEP]
rw [lift_umax.{w, w'}, lift_id'.{w, w'}] at h
[GOAL]
case intro
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ lift
#{ x //
x ∈
elementarySkolem₁Reduct
(LowerAdjoint.toFun (closure (Language.sum L (skolem₁ L))) (s ∪ ↑Equiv.ulift '' s')) } =
#↑s'
[PROOFSTEP]
rw [coeSort_elementarySkolem₁Reduct, ← h, lift_inj]
[GOAL]
case intro
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ #{ x // x ∈ LowerAdjoint.toFun (closure (Language.sum L (skolem₁ L))) (s ∪ ↑Equiv.ulift '' s') } =
#↑(↑Equiv.ulift '' s')
[PROOFSTEP]
refine'
le_antisymm (lift_le.1 (lift_card_closure_le.trans _))
(mk_le_mk_of_subset ((Set.subset_union_right _ _).trans subset_closure))
[GOAL]
case intro
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ max ℵ₀ (lift #↑(s ∪ ↑Equiv.ulift '' s') + lift #((i : ℕ) × Functions (Language.sum L (skolem₁ L)) i)) ≤
lift #↑(↑Equiv.ulift '' s')
[PROOFSTEP]
rw [max_le_iff, aleph0_le_lift, ← aleph0_le_lift.{_, w'}, h, add_eq_max, max_le_iff, lift_le]
[GOAL]
case intro
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ ℵ₀ ≤ #↑s' ∧
#↑(s ∪ ↑Equiv.ulift '' s') ≤ #↑(↑Equiv.ulift '' s') ∧
lift #((i : ℕ) × Functions (Language.sum L (skolem₁ L)) i) ≤ lift #↑(↑Equiv.ulift '' s')
case intro
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ ℵ₀ ≤ lift #↑(s ∪ ↑Equiv.ulift '' s')
[PROOFSTEP]
refine' ⟨h1, (mk_union_le _ _).trans _, (lift_le.2 card_functions_sum_skolem₁_le).trans _⟩
[GOAL]
case intro.refine'_1
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ #↑s + #↑(↑Equiv.ulift '' s') ≤ #↑(↑Equiv.ulift '' s')
[PROOFSTEP]
rw [← lift_le, lift_add, h, add_comm, add_eq_max h1]
[GOAL]
case intro.refine'_1
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ max (#↑s') (lift #↑s) ≤ #↑s'
[PROOFSTEP]
exact max_le le_rfl h2
[GOAL]
case intro.refine'_2
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ lift (max ℵ₀ (card L)) ≤ lift #↑(↑Equiv.ulift '' s')
[PROOFSTEP]
rw [lift_max, lift_aleph0, max_le_iff, aleph0_le_lift, and_comm, ← lift_le.{w'}, lift_lift, lift_lift, ← aleph0_le_lift,
h]
[GOAL]
case intro.refine'_2
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ lift (card L) ≤ lift #↑(↑Equiv.ulift '' s') ∧ ℵ₀ ≤ #↑s'
[PROOFSTEP]
refine' ⟨_, h1⟩
[GOAL]
case intro.refine'_2
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ lift (card L) ≤ lift #↑(↑Equiv.ulift '' s')
[PROOFSTEP]
rw [← lift_lift.{w', w}]
[GOAL]
case intro.refine'_2
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ lift (lift (card L)) ≤ lift #↑(↑Equiv.ulift '' s')
[PROOFSTEP]
refine' _root_.trans (lift_le.{w}.2 h3) _
[GOAL]
case intro.refine'_2
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ lift (lift κ) ≤ lift #↑(↑Equiv.ulift '' s')
[PROOFSTEP]
rw [lift_lift, ← lift_lift.{w, max u v}, ← hs', ← h, lift_lift]
[GOAL]
case intro
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ ℵ₀ ≤ lift #↑(s ∪ ↑Equiv.ulift '' s')
[PROOFSTEP]
refine' _root_.trans _ (lift_le.2 (mk_le_mk_of_subset (Set.subset_union_right _ _)))
[GOAL]
case intro
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ ℵ₀ ≤ lift #↑(↑Equiv.ulift '' s')
[PROOFSTEP]
rw [aleph0_le_lift, ← aleph0_le_lift, h]
[GOAL]
case intro
L : Language
M : Type w
inst✝¹ : Nonempty M
inst✝ : Structure L M
s : Set M
κ : Cardinal.{w'}
h3 : lift (card L) ≤ lift κ
h4 : lift κ ≤ lift #M
s' : Set (ULift M)
h2 : lift #↑s ≤ #↑s'
h1 : ℵ₀ ≤ #↑s'
hs' : #↑s' = lift κ
h : lift #↑(↑Equiv.ulift '' s') = #↑s'
⊢ ℵ₀ ≤ #↑s'
[PROOFSTEP]
exact h1
| {"mathlib_filename": "Mathlib.ModelTheory.Skolem", "llama_tokens": 8038} |
[GOAL]
D : GlueData
i j : D.J
⊢ LocallyRingedSpace.IsOpenImmersion (f (toLocallyRingedSpaceGlueData D).toGlueData i j)
[PROOFSTEP]
apply GlueData.f_open
[GOAL]
D : GlueData
i j : D.J
⊢ SheafedSpace.IsOpenImmersion
(f (LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)).toGlueData i j)
[PROOFSTEP]
apply GlueData.f_open
[GOAL]
D : GlueData
i j : D.J
⊢ PresheafedSpace.IsOpenImmersion
(f
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D))).toGlueData
i j)
[PROOFSTEP]
apply GlueData.f_open
[GOAL]
D : GlueData
i : D.J
⊢ LocallyRingedSpace.IsOpenImmersion (ι (toLocallyRingedSpaceGlueData D).toGlueData i)
[PROOFSTEP]
apply LocallyRingedSpace.GlueData.ι_isOpenImmersion
[GOAL]
D : GlueData
⊢ Scheme
[PROOFSTEP]
apply LocallyRingedSpace.IsOpenImmersion.scheme D.toLocallyRingedSpaceGlueData.toGlueData.glued
[GOAL]
D : GlueData
⊢ ∀ (x : ↑(LocallyRingedSpace.toTopCat (glued (toLocallyRingedSpaceGlueData D).toGlueData))),
∃ R f, x ∈ Set.range ↑f.val.base ∧ LocallyRingedSpace.IsOpenImmersion f
[PROOFSTEP]
intro x
[GOAL]
D : GlueData
x : ↑(LocallyRingedSpace.toTopCat (glued (toLocallyRingedSpaceGlueData D).toGlueData))
⊢ ∃ R f, x ∈ Set.range ↑f.val.base ∧ LocallyRingedSpace.IsOpenImmersion f
[PROOFSTEP]
obtain ⟨i, y, rfl⟩ := D.toLocallyRingedSpaceGlueData.ι_jointly_surjective x
[GOAL]
case intro.intro
D : GlueData
i : (toLocallyRingedSpaceGlueData D).toGlueData.J
y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i))
⊢ ∃ R f,
↑(ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base y ∈ Set.range ↑f.val.base ∧
LocallyRingedSpace.IsOpenImmersion f
[PROOFSTEP]
refine' ⟨_, _ ≫ D.toLocallyRingedSpaceGlueData.toGlueData.ι i, _⟩
[GOAL]
case intro.intro.refine'_1
D : GlueData
i : (toLocallyRingedSpaceGlueData D).toGlueData.J
y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i))
⊢ CommRingCat
case intro.intro.refine'_2
D : GlueData
i : (toLocallyRingedSpaceGlueData D).toGlueData.J
y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i))
⊢ Spec.toLocallyRingedSpace.obj (op ?intro.intro.refine'_1) ⟶ U (toLocallyRingedSpaceGlueData D).toGlueData i
case intro.intro.refine'_3
D : GlueData
i : (toLocallyRingedSpaceGlueData D).toGlueData.J
y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i))
⊢ ↑(ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base y ∈
Set.range ↑(?intro.intro.refine'_2 ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base ∧
LocallyRingedSpace.IsOpenImmersion (?intro.intro.refine'_2 ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i)
[PROOFSTEP]
swap
[GOAL]
case intro.intro.refine'_2
D : GlueData
i : (toLocallyRingedSpaceGlueData D).toGlueData.J
y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i))
⊢ Spec.toLocallyRingedSpace.obj (op ?intro.intro.refine'_1) ⟶ U (toLocallyRingedSpaceGlueData D).toGlueData i
case intro.intro.refine'_1
D : GlueData
i : (toLocallyRingedSpaceGlueData D).toGlueData.J
y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i))
⊢ CommRingCat
case intro.intro.refine'_3
D : GlueData
i : (toLocallyRingedSpaceGlueData D).toGlueData.J
y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i))
⊢ ↑(ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base y ∈
Set.range ↑(?intro.intro.refine'_2 ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base ∧
LocallyRingedSpace.IsOpenImmersion (?intro.intro.refine'_2 ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i)
[PROOFSTEP]
exact (D.U i).affineCover.map y
[GOAL]
case intro.intro.refine'_3
D : GlueData
i : (toLocallyRingedSpaceGlueData D).toGlueData.J
y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i))
⊢ ↑(ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base y ∈
Set.range
↑(OpenCover.map (affineCover (U D.toGlueData i)) y ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base ∧
LocallyRingedSpace.IsOpenImmersion
(OpenCover.map (affineCover (U D.toGlueData i)) y ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i)
[PROOFSTEP]
constructor
[GOAL]
case intro.intro.refine'_3.left
D : GlueData
i : (toLocallyRingedSpaceGlueData D).toGlueData.J
y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i))
⊢ ↑(ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base y ∈
Set.range
↑(OpenCover.map (affineCover (U D.toGlueData i)) y ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i).val.base
[PROOFSTEP]
dsimp [-Set.mem_range]
[GOAL]
case intro.intro.refine'_3.left
D : GlueData
i : (toLocallyRingedSpaceGlueData D).toGlueData.J
y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i))
⊢ ↑(ι (mapGlueData D.toGlueData forgetToLocallyRingedSpace) i).val.base y ∈
Set.range
↑((OpenCover.map (affineCover (U D.toGlueData i)) y).val.base ≫
(ι (mapGlueData D.toGlueData forgetToLocallyRingedSpace) i).val.base)
[PROOFSTEP]
rw [coe_comp, Set.range_comp]
[GOAL]
case intro.intro.refine'_3.left
D : GlueData
i : (toLocallyRingedSpaceGlueData D).toGlueData.J
y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i))
⊢ ↑(ι (mapGlueData D.toGlueData forgetToLocallyRingedSpace) i).val.base y ∈
↑(ι (mapGlueData D.toGlueData forgetToLocallyRingedSpace) i).val.base ''
Set.range ↑(OpenCover.map (affineCover (U D.toGlueData i)) y).val.base
[PROOFSTEP]
refine' Set.mem_image_of_mem _ _
[GOAL]
case intro.intro.refine'_3.left
D : GlueData
i : (toLocallyRingedSpaceGlueData D).toGlueData.J
y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i))
⊢ y ∈ Set.range ↑(OpenCover.map (affineCover (U D.toGlueData i)) y).val.base
[PROOFSTEP]
exact (D.U i).affineCover.Covers y
[GOAL]
case intro.intro.refine'_3.right
D : GlueData
i : (toLocallyRingedSpaceGlueData D).toGlueData.J
y : ↑(LocallyRingedSpace.toTopCat (U (toLocallyRingedSpaceGlueData D).toGlueData i))
⊢ LocallyRingedSpace.IsOpenImmersion
(OpenCover.map (affineCover (U D.toGlueData i)) y ≫ ι (toLocallyRingedSpaceGlueData D).toGlueData i)
[PROOFSTEP]
infer_instance
[GOAL]
D : GlueData
i : D.J
⊢ IsOpenImmersion (CategoryTheory.GlueData.ι D.toGlueData i)
[PROOFSTEP]
rw [← D.ι_isoLocallyRingedSpace_inv]
[GOAL]
D : GlueData
i : D.J
⊢ IsOpenImmersion
(CategoryTheory.GlueData.ι (toLocallyRingedSpaceGlueData D).toGlueData i ≫ (isoLocallyRingedSpace D).inv)
[PROOFSTEP]
infer_instance
[GOAL]
D : GlueData
i j : D.J
⊢ f D.toGlueData i j ≫ ι D i = (t D.toGlueData i j ≫ f D.toGlueData j i) ≫ ι D j
[PROOFSTEP]
simp
[GOAL]
D : GlueData
⊢ ↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≅
CategoryTheory.GlueData.glued
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData
[PROOFSTEP]
refine (PresheafedSpace.forget _).mapIso ?_ ≪≫ GlueData.gluedIso _ (PresheafedSpace.forget.{_, _, u} _)
[GOAL]
D : GlueData
⊢ (glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≅
CategoryTheory.GlueData.glued
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D))).toGlueData
[PROOFSTEP]
refine SheafedSpace.forgetToPresheafedSpace.mapIso ?_ ≪≫ SheafedSpace.GlueData.isoPresheafedSpace _
[GOAL]
D : GlueData
⊢ (glued D).toLocallyRingedSpace.toSheafedSpace ≅
CategoryTheory.GlueData.glued
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)).toGlueData
[PROOFSTEP]
refine LocallyRingedSpace.forgetToSheafedSpace.mapIso ?_ ≪≫ LocallyRingedSpace.GlueData.isoSheafedSpace _
[GOAL]
D : GlueData
⊢ (glued D).toLocallyRingedSpace ≅ CategoryTheory.GlueData.glued (toLocallyRingedSpaceGlueData D).toGlueData
[PROOFSTEP]
exact Scheme.GlueData.isoLocallyRingedSpace _
[GOAL]
D : GlueData
i : D.J
⊢ CategoryTheory.GlueData.ι
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData
i ≫
(isoCarrier D).inv =
(ι D i).val.base
[PROOFSTEP]
delta isoCarrier
[GOAL]
D : GlueData
i : D.J
⊢ CategoryTheory.GlueData.ι
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData
i ≫
((PresheafedSpace.forget CommRingCat).mapIso
(SheafedSpace.forgetToPresheafedSpace.mapIso
(LocallyRingedSpace.forgetToSheafedSpace.mapIso (isoLocallyRingedSpace D) ≪≫
LocallyRingedSpace.GlueData.isoSheafedSpace (toLocallyRingedSpaceGlueData D)) ≪≫
SheafedSpace.GlueData.isoPresheafedSpace
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D))) ≪≫
gluedIso
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D))).toGlueData
(PresheafedSpace.forget CommRingCat)).inv =
(ι D i).val.base
[PROOFSTEP]
rw [Iso.trans_inv, GlueData.ι_gluedIso_inv_assoc, Functor.mapIso_inv, Iso.trans_inv, Functor.mapIso_inv, Iso.trans_inv,
SheafedSpace.forgetToPresheafedSpace_map, forget_map, forget_map, ← comp_base, ← Category.assoc,
D.toLocallyRingedSpaceGlueData.toSheafedSpaceGlueData.ι_isoPresheafedSpace_inv i]
[GOAL]
D : GlueData
i : D.J
⊢ (CategoryTheory.GlueData.ι
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)).toGlueData i ≫
(LocallyRingedSpace.GlueData.isoSheafedSpace (toLocallyRingedSpaceGlueData D)).inv ≫
(LocallyRingedSpace.forgetToSheafedSpace.mapIso (isoLocallyRingedSpace D)).inv).base =
(ι D i).val.base
[PROOFSTEP]
erw [← Category.assoc, D.toLocallyRingedSpaceGlueData.ι_isoSheafedSpace_inv i]
[GOAL]
D : GlueData
i : D.J
⊢ ((CategoryTheory.GlueData.ι (toLocallyRingedSpaceGlueData D).toGlueData i).val ≫
(LocallyRingedSpace.forgetToSheafedSpace.mapIso (isoLocallyRingedSpace D)).inv).base =
(ι D i).val.base
[PROOFSTEP]
change (_ ≫ D.isoLocallyRingedSpace.inv).1.base = _
[GOAL]
D : GlueData
i : D.J
⊢ (CategoryTheory.GlueData.ι (toLocallyRingedSpaceGlueData D).toGlueData i ≫ (isoLocallyRingedSpace D).inv).val.base =
(ι D i).val.base
[PROOFSTEP]
rw [D.ι_isoLocallyRingedSpace_inv i]
[GOAL]
D : GlueData
i j : D.J
x : ↑↑(U D.toGlueData i).toPresheafedSpace
y : ↑↑(U D.toGlueData j).toPresheafedSpace
⊢ ↑(CategoryTheory.GlueData.ι D.toGlueData i).val.base x = ↑(CategoryTheory.GlueData.ι D.toGlueData j).val.base y ↔
Rel D { fst := i, snd := x } { fst := j, snd := y }
[PROOFSTEP]
refine'
Iff.trans _
(TopCat.GlueData.ι_eq_iff_rel
D.toLocallyRingedSpaceGlueData.toSheafedSpaceGlueData.toPresheafedSpaceGlueData.toTopGlueData i j x y)
[GOAL]
D : GlueData
i j : D.J
x : ↑↑(U D.toGlueData i).toPresheafedSpace
y : ↑↑(U D.toGlueData j).toPresheafedSpace
⊢ ↑(CategoryTheory.GlueData.ι D.toGlueData i).val.base x = ↑(CategoryTheory.GlueData.ι D.toGlueData j).val.base y ↔
↑(CategoryTheory.GlueData.ι
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData
i)
x =
↑(CategoryTheory.GlueData.ι
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData
j)
y
[PROOFSTEP]
rw [← ((TopCat.mono_iff_injective D.isoCarrier.inv).mp _).eq_iff]
[GOAL]
D : GlueData
i j : D.J
x : ↑↑(U D.toGlueData i).toPresheafedSpace
y : ↑↑(U D.toGlueData j).toPresheafedSpace
⊢ ↑(CategoryTheory.GlueData.ι D.toGlueData i).val.base x = ↑(CategoryTheory.GlueData.ι D.toGlueData j).val.base y ↔
↑(isoCarrier D).inv
(↑(CategoryTheory.GlueData.ι
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData
i)
x) =
↑(isoCarrier D).inv
(↑(CategoryTheory.GlueData.ι
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData
j)
y)
[PROOFSTEP]
simp_rw [← comp_apply, ← D.ι_isoCarrier_inv]
[GOAL]
D : GlueData
i j : D.J
x : ↑↑(U D.toGlueData i).toPresheafedSpace
y : ↑↑(U D.toGlueData j).toPresheafedSpace
⊢ ↑(CategoryTheory.GlueData.ι
(mapGlueData
(mapGlueData
(mapGlueData (mapGlueData D.toGlueData forgetToLocallyRingedSpace)
LocallyRingedSpace.forgetToSheafedSpace)
SheafedSpace.forgetToPresheafedSpace)
(PresheafedSpace.forget CommRingCat))
i ≫
(isoCarrier D).inv)
x =
↑(CategoryTheory.GlueData.ι
(mapGlueData
(mapGlueData
(mapGlueData (mapGlueData D.toGlueData forgetToLocallyRingedSpace)
LocallyRingedSpace.forgetToSheafedSpace)
SheafedSpace.forgetToPresheafedSpace)
(PresheafedSpace.forget CommRingCat))
j ≫
(isoCarrier D).inv)
y ↔
↑(CategoryTheory.GlueData.ι
(mapGlueData
(mapGlueData
(mapGlueData (mapGlueData D.toGlueData forgetToLocallyRingedSpace)
LocallyRingedSpace.forgetToSheafedSpace)
SheafedSpace.forgetToPresheafedSpace)
(PresheafedSpace.forget CommRingCat))
i ≫
(isoCarrier D).inv)
x =
↑(CategoryTheory.GlueData.ι
(mapGlueData
(mapGlueData
(mapGlueData (mapGlueData D.toGlueData forgetToLocallyRingedSpace)
LocallyRingedSpace.forgetToSheafedSpace)
SheafedSpace.forgetToPresheafedSpace)
(PresheafedSpace.forget CommRingCat))
j ≫
(isoCarrier D).inv)
y
[PROOFSTEP]
rfl
[GOAL]
D : GlueData
i j : D.J
x : ↑↑(U D.toGlueData i).toPresheafedSpace
y : ↑↑(U D.toGlueData j).toPresheafedSpace
⊢ Mono (isoCarrier D).inv
[PROOFSTEP]
infer_instance
[GOAL]
D : GlueData
U : Set ↑↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ IsOpen U ↔ ∀ (i : D.J), IsOpen (↑(ι D i).val.base ⁻¹' U)
[PROOFSTEP]
rw [← (TopCat.homeoOfIso D.isoCarrier.symm).isOpen_preimage]
[GOAL]
D : GlueData
U : Set ↑↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ IsOpen (↑(TopCat.homeoOfIso (isoCarrier D).symm) ⁻¹' U) ↔ ∀ (i : D.J), IsOpen (↑(ι D i).val.base ⁻¹' U)
[PROOFSTEP]
rw [TopCat.GlueData.isOpen_iff]
[GOAL]
D : GlueData
U : Set ↑↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ (∀
(i :
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData.J),
IsOpen
(↑(CategoryTheory.GlueData.ι
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData
i) ⁻¹'
(↑(TopCat.homeoOfIso (isoCarrier D).symm) ⁻¹' U))) ↔
∀ (i : D.J), IsOpen (↑(ι D i).val.base ⁻¹' U)
[PROOFSTEP]
apply forall_congr'
[GOAL]
case h
D : GlueData
U : Set ↑↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ ∀
(a :
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData.J),
IsOpen
(↑(CategoryTheory.GlueData.ι
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData
a) ⁻¹'
(↑(TopCat.homeoOfIso (isoCarrier D).symm) ⁻¹' U)) ↔
IsOpen (↑(ι D a).val.base ⁻¹' U)
[PROOFSTEP]
intro i
[GOAL]
case h
D : GlueData
U : Set ↑↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
i :
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData.J
⊢ IsOpen
(↑(CategoryTheory.GlueData.ι
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData
i) ⁻¹'
(↑(TopCat.homeoOfIso (isoCarrier D).symm) ⁻¹' U)) ↔
IsOpen (↑(ι D i).val.base ⁻¹' U)
[PROOFSTEP]
erw [← Set.preimage_comp, ← ι_isoCarrier_inv]
[GOAL]
case h
D : GlueData
U : Set ↑↑(glued D).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
i :
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData.J
⊢ IsOpen
(↑(TopCat.homeoOfIso (isoCarrier D).symm) ∘
↑(CategoryTheory.GlueData.ι
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData
i) ⁻¹'
U) ↔
IsOpen
(↑(CategoryTheory.GlueData.ι
(GlueData.toTopGlueData
(SheafedSpace.GlueData.toPresheafedSpaceGlueData
(LocallyRingedSpace.GlueData.toSheafedSpaceGlueData (toLocallyRingedSpaceGlueData D)))).toGlueData
i ≫
(isoCarrier D).inv) ⁻¹'
U)
[PROOFSTEP]
rfl
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ pullback pullback.fst pullback.fst ⟶ pullback pullback.fst pullback.fst
[PROOFSTEP]
refine' (pullbackRightPullbackFstIso _ _ _).hom ≫ _
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ pullback (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) ⟶ pullback pullback.fst pullback.fst
[PROOFSTEP]
refine' _ ≫ (pullbackSymmetry _ _).hom
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ pullback (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) ⟶ pullback pullback.fst pullback.fst
[PROOFSTEP]
refine' _ ≫ (pullbackRightPullbackFstIso _ _ _).inv
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ pullback (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) ⟶ pullback (pullback.fst ≫ map 𝒰 y) (map 𝒰 z)
[PROOFSTEP]
refine' pullback.map _ _ _ _ (pullbackSymmetry _ _).hom (𝟙 _) (𝟙 _) _ _
[GOAL]
case refine'_1
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ (pullback.fst ≫ map 𝒰 x) ≫ 𝟙 X = (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom ≫ pullback.fst ≫ map 𝒰 y
[PROOFSTEP]
simp [pullback.condition]
[GOAL]
case refine'_2
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ map 𝒰 z ≫ 𝟙 X = 𝟙 (obj 𝒰 z) ≫ map 𝒰 z
[PROOFSTEP]
simp
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ gluedCoverT' 𝒰 x y z ≫ pullback.fst ≫ pullback.fst = pullback.fst ≫ pullback.snd
[PROOFSTEP]
delta gluedCoverT'
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ ((pullbackRightPullbackFstIso (map 𝒰 x) (map 𝒰 z) pullback.fst).hom ≫
(pullback.map (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) (pullback.fst ≫ map 𝒰 y) (map 𝒰 z)
(pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom (𝟙 (obj 𝒰 z)) (𝟙 X)
(_ : (pullback.fst ≫ map 𝒰 x) ≫ 𝟙 X = (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom ≫ pullback.fst ≫ map 𝒰 y)
(_ : map 𝒰 z ≫ 𝟙 X = 𝟙 (obj 𝒰 z) ≫ map 𝒰 z) ≫
(pullbackRightPullbackFstIso (map 𝒰 y) (map 𝒰 z) pullback.fst).inv) ≫
(pullbackSymmetry pullback.fst pullback.fst).hom) ≫
pullback.fst ≫ pullback.fst =
pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ gluedCoverT' 𝒰 x y z ≫ pullback.fst ≫ pullback.snd = pullback.snd ≫ pullback.snd
[PROOFSTEP]
delta gluedCoverT'
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ ((pullbackRightPullbackFstIso (map 𝒰 x) (map 𝒰 z) pullback.fst).hom ≫
(pullback.map (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) (pullback.fst ≫ map 𝒰 y) (map 𝒰 z)
(pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom (𝟙 (obj 𝒰 z)) (𝟙 X)
(_ : (pullback.fst ≫ map 𝒰 x) ≫ 𝟙 X = (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom ≫ pullback.fst ≫ map 𝒰 y)
(_ : map 𝒰 z ≫ 𝟙 X = 𝟙 (obj 𝒰 z) ≫ map 𝒰 z) ≫
(pullbackRightPullbackFstIso (map 𝒰 y) (map 𝒰 z) pullback.fst).inv) ≫
(pullbackSymmetry pullback.fst pullback.fst).hom) ≫
pullback.fst ≫ pullback.snd =
pullback.snd ≫ pullback.snd
[PROOFSTEP]
simp
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ gluedCoverT' 𝒰 x y z ≫ pullback.snd ≫ pullback.fst = pullback.fst ≫ pullback.snd
[PROOFSTEP]
delta gluedCoverT'
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ ((pullbackRightPullbackFstIso (map 𝒰 x) (map 𝒰 z) pullback.fst).hom ≫
(pullback.map (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) (pullback.fst ≫ map 𝒰 y) (map 𝒰 z)
(pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom (𝟙 (obj 𝒰 z)) (𝟙 X)
(_ : (pullback.fst ≫ map 𝒰 x) ≫ 𝟙 X = (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom ≫ pullback.fst ≫ map 𝒰 y)
(_ : map 𝒰 z ≫ 𝟙 X = 𝟙 (obj 𝒰 z) ≫ map 𝒰 z) ≫
(pullbackRightPullbackFstIso (map 𝒰 y) (map 𝒰 z) pullback.fst).inv) ≫
(pullbackSymmetry pullback.fst pullback.fst).hom) ≫
pullback.snd ≫ pullback.fst =
pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ gluedCoverT' 𝒰 x y z ≫ pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.fst
[PROOFSTEP]
delta gluedCoverT'
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ ((pullbackRightPullbackFstIso (map 𝒰 x) (map 𝒰 z) pullback.fst).hom ≫
(pullback.map (pullback.fst ≫ map 𝒰 x) (map 𝒰 z) (pullback.fst ≫ map 𝒰 y) (map 𝒰 z)
(pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom (𝟙 (obj 𝒰 z)) (𝟙 X)
(_ : (pullback.fst ≫ map 𝒰 x) ≫ 𝟙 X = (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom ≫ pullback.fst ≫ map 𝒰 y)
(_ : map 𝒰 z ≫ 𝟙 X = 𝟙 (obj 𝒰 z) ≫ map 𝒰 z) ≫
(pullbackRightPullbackFstIso (map 𝒰 y) (map 𝒰 z) pullback.fst).inv) ≫
(pullbackSymmetry pullback.fst pullback.fst).hom) ≫
pullback.snd ≫ pullback.snd =
pullback.fst ≫ pullback.fst
[PROOFSTEP]
simp
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.fst = pullback.fst
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ (gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.fst) ≫ pullback.fst =
pullback.fst ≫ pullback.fst
[PROOFSTEP]
simp
[GOAL]
case h₁
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ (gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.fst) ≫ pullback.snd =
pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.snd = pullback.snd
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ (gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.snd) ≫ pullback.fst =
pullback.snd ≫ pullback.fst
[PROOFSTEP]
simp [pullback.condition]
[GOAL]
case h₁
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ (gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.snd) ≫ pullback.snd =
pullback.snd ≫ pullback.snd
[PROOFSTEP]
simp [pullback.condition]
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y = 𝟙 (pullback pullback.fst pullback.fst)
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ (gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y) ≫ pullback.fst =
𝟙 (pullback pullback.fst pullback.fst) ≫ pullback.fst
[PROOFSTEP]
simp_rw [Category.id_comp, Category.assoc]
[GOAL]
case h₁
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ (gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y) ≫ pullback.snd =
𝟙 (pullback pullback.fst pullback.fst) ≫ pullback.snd
[PROOFSTEP]
simp_rw [Category.id_comp, Category.assoc]
[GOAL]
case h₀
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.fst = pullback.fst
case h₁
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.snd = pullback.snd
[PROOFSTEP]
apply glued_cover_cocycle_fst
[GOAL]
case h₁
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ gluedCoverT' 𝒰 x y z ≫ gluedCoverT' 𝒰 y z x ≫ gluedCoverT' 𝒰 z x y ≫ pullback.snd = pullback.snd
[PROOFSTEP]
apply glued_cover_cocycle_snd
[GOAL]
X : Scheme
𝒰 : OpenCover X
x : 𝒰.J
⊢ (fun x y => (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom) x x =
𝟙
((fun x =>
match x with
| (x, y) => pullback (map 𝒰 x) (map 𝒰 y))
(x, x))
[PROOFSTEP]
simp
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ (fun x y z => gluedCoverT' 𝒰 x y z) x y z ≫ pullback.snd =
pullback.fst ≫ (fun x y => (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom) x y
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ ((fun x y z => gluedCoverT' 𝒰 x y z) x y z ≫ pullback.snd) ≫ pullback.fst =
(pullback.fst ≫ (fun x y => (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom) x y) ≫ pullback.fst
[PROOFSTEP]
simp
-- The `cocycle` field could have been `by tidy` but lean timeouts.
[GOAL]
case h₁
X : Scheme
𝒰 : OpenCover X
x y z : 𝒰.J
⊢ ((fun x y z => gluedCoverT' 𝒰 x y z) x y z ≫ pullback.snd) ≫ pullback.snd =
(pullback.fst ≫ (fun x y => (pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom) x y) ≫ pullback.snd
[PROOFSTEP]
simp
-- The `cocycle` field could have been `by tidy` but lean timeouts.
[GOAL]
X : Scheme
𝒰 : OpenCover X
⊢ GlueData.glued (gluedCover 𝒰) ⟶ X
[PROOFSTEP]
fapply Multicoequalizer.desc
[GOAL]
case k
X : Scheme
𝒰 : OpenCover X
⊢ (b : (diagram (gluedCover 𝒰).toGlueData).R) → MultispanIndex.right (diagram (gluedCover 𝒰).toGlueData) b ⟶ X
case h
X : Scheme
𝒰 : OpenCover X
⊢ ∀ (a : (diagram (gluedCover 𝒰).toGlueData).L),
MultispanIndex.fst (diagram (gluedCover 𝒰).toGlueData) a ≫
?k (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) a) =
MultispanIndex.snd (diagram (gluedCover 𝒰).toGlueData) a ≫
?k (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) a)
[PROOFSTEP]
exact fun x => 𝒰.map x
[GOAL]
case h
X : Scheme
𝒰 : OpenCover X
⊢ ∀ (a : (diagram (gluedCover 𝒰).toGlueData).L),
MultispanIndex.fst (diagram (gluedCover 𝒰).toGlueData) a ≫
map 𝒰 (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) a) =
MultispanIndex.snd (diagram (gluedCover 𝒰).toGlueData) a ≫
map 𝒰 (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) a)
[PROOFSTEP]
rintro ⟨x, y⟩
[GOAL]
case h.mk
X : Scheme
𝒰 : OpenCover X
x y : (gluedCover 𝒰).toGlueData.J
⊢ MultispanIndex.fst (diagram (gluedCover 𝒰).toGlueData) (x, y) ≫
map 𝒰 (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) (x, y)) =
MultispanIndex.snd (diagram (gluedCover 𝒰).toGlueData) (x, y) ≫
map 𝒰 (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) (x, y))
[PROOFSTEP]
change pullback.fst ≫ _ = ((pullbackSymmetry _ _).hom ≫ pullback.fst) ≫ _
[GOAL]
case h.mk
X : Scheme
𝒰 : OpenCover X
x y : (gluedCover 𝒰).toGlueData.J
⊢ pullback.fst ≫ map 𝒰 (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) (x, y)) =
((pullbackSymmetry (map 𝒰 x) (map 𝒰 y)).hom ≫ pullback.fst) ≫
map 𝒰 (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) (x, y))
[PROOFSTEP]
simpa using pullback.condition
[GOAL]
X : Scheme
𝒰 : OpenCover X
⊢ Function.Injective ↑(fromGlued 𝒰).val.base
[PROOFSTEP]
intro x y h
[GOAL]
X : Scheme
𝒰 : OpenCover X
x y :
(CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
h : ↑(fromGlued 𝒰).val.base x = ↑(fromGlued 𝒰).val.base y
⊢ x = y
[PROOFSTEP]
obtain ⟨i, x, rfl⟩ := 𝒰.gluedCover.ι_jointly_surjective x
[GOAL]
case intro.intro
X : Scheme
𝒰 : OpenCover X
y :
(CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
h : ↑(fromGlued 𝒰).val.base (↑(GlueData.ι (gluedCover 𝒰) i).val.base x) = ↑(fromGlued 𝒰).val.base y
⊢ ↑(GlueData.ι (gluedCover 𝒰) i).val.base x = y
[PROOFSTEP]
obtain ⟨j, y, rfl⟩ := 𝒰.gluedCover.ι_jointly_surjective y
[GOAL]
case intro.intro.intro.intro
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
j : (gluedCover 𝒰).toGlueData.J
y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace
h :
↑(fromGlued 𝒰).val.base (↑(GlueData.ι (gluedCover 𝒰) i).val.base x) =
↑(fromGlued 𝒰).val.base (↑(GlueData.ι (gluedCover 𝒰) j).val.base y)
⊢ ↑(GlueData.ι (gluedCover 𝒰) i).val.base x = ↑(GlueData.ι (gluedCover 𝒰) j).val.base y
[PROOFSTEP]
simp_rw [← comp_apply, ← SheafedSpace.comp_base, ← LocallyRingedSpace.comp_val] at h
[GOAL]
case intro.intro.intro.intro
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
j : (gluedCover 𝒰).toGlueData.J
y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace
h : ↑(GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val.base x = ↑(GlueData.ι (gluedCover 𝒰) j ≫ fromGlued 𝒰).val.base y
⊢ ↑(GlueData.ι (gluedCover 𝒰) i).val.base x = ↑(GlueData.ι (gluedCover 𝒰) j).val.base y
[PROOFSTEP]
erw [ι_fromGlued, ι_fromGlued] at h
[GOAL]
case intro.intro.intro.intro
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
j : (gluedCover 𝒰).toGlueData.J
y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace
h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y
⊢ ↑(GlueData.ι (gluedCover 𝒰) i).val.base x = ↑(GlueData.ι (gluedCover 𝒰) j).val.base y
[PROOFSTEP]
let e :=
(TopCat.pullbackConeIsLimit _ _).conePointUniqueUpToIso
(isLimitOfHasPullbackOfPreservesLimit Scheme.forgetToTop (𝒰.map i) (𝒰.map j))
[GOAL]
case intro.intro.intro.intro
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
j : (gluedCover 𝒰).toGlueData.J
y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace
h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y
e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅
(PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd)
(_ :
forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) =
forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt :=
IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j)))
(isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j))
⊢ ↑(GlueData.ι (gluedCover 𝒰) i).val.base x = ↑(GlueData.ι (gluedCover 𝒰) j).val.base y
[PROOFSTEP]
rw [𝒰.gluedCover.ι_eq_iff]
[GOAL]
case intro.intro.intro.intro
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
j : (gluedCover 𝒰).toGlueData.J
y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace
h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y
e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅
(PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd)
(_ :
forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) =
forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt :=
IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j)))
(isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j))
⊢ GlueData.Rel (gluedCover 𝒰) { fst := i, snd := x } { fst := j, snd := y }
[PROOFSTEP]
right
[GOAL]
case intro.intro.intro.intro.h
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
j : (gluedCover 𝒰).toGlueData.J
y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace
h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y
e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅
(PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd)
(_ :
forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) =
forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt :=
IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j)))
(isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j))
⊢ ∃ x_1,
↑(GlueData.f (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst).val.base x_1 =
{ fst := i, snd := x }.snd ∧
↑(t (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst ≫
GlueData.f (gluedCover 𝒰).toGlueData { fst := j, snd := y }.fst { fst := i, snd := x }.fst).val.base
x_1 =
{ fst := j, snd := y }.snd
[PROOFSTEP]
use e.hom ⟨⟨x, y⟩, h⟩
[GOAL]
case h
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
j : (gluedCover 𝒰).toGlueData.J
y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace
h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y
e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅
(PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd)
(_ :
forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) =
forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt :=
IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j)))
(isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j))
⊢ ↑(GlueData.f (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst).val.base
(↑e.hom { val := (x, y), property := h }) =
{ fst := i, snd := x }.snd ∧
↑(t (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst ≫
GlueData.f (gluedCover 𝒰).toGlueData { fst := j, snd := y }.fst { fst := i, snd := x }.fst).val.base
(↑e.hom { val := (x, y), property := h }) =
{ fst := j, snd := y }.snd
[PROOFSTEP]
constructor
-- Porting note: in the two subproofs below, added the `change` lines
[GOAL]
case h.left
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
j : (gluedCover 𝒰).toGlueData.J
y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace
h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y
e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅
(PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd)
(_ :
forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) =
forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt :=
IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j)))
(isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j))
⊢ ↑(GlueData.f (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst).val.base
(↑e.hom { val := (x, y), property := h }) =
{ fst := i, snd := x }.snd
[PROOFSTEP]
change (e.hom ≫ _) ⟨(x, y), h⟩ = x
[GOAL]
case h.left
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
j : (gluedCover 𝒰).toGlueData.J
y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace
h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y
e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅
(PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd)
(_ :
forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) =
forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt :=
IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j)))
(isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j))
⊢ ↑(e.hom ≫ (GlueData.f (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst).val.base)
{ val := (x, y), property := h } =
x
[PROOFSTEP]
erw [IsLimit.conePointUniqueUpToIso_hom_comp _ _ WalkingCospan.left]
[GOAL]
case h.left
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
j : (gluedCover 𝒰).toGlueData.J
y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace
h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y
e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅
(PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd)
(_ :
forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) =
forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt :=
IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j)))
(isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j))
⊢ ↑(NatTrans.app (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).π WalkingCospan.left)
{ val := (x, y), property := h } =
x
[PROOFSTEP]
rfl
[GOAL]
case h.right
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
j : (gluedCover 𝒰).toGlueData.J
y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace
h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y
e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅
(PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd)
(_ :
forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) =
forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt :=
IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j)))
(isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j))
⊢ ↑(t (gluedCover 𝒰).toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst ≫
GlueData.f (gluedCover 𝒰).toGlueData { fst := j, snd := y }.fst { fst := i, snd := x }.fst).val.base
(↑e.hom { val := (x, y), property := h }) =
{ fst := j, snd := y }.snd
[PROOFSTEP]
change (e.hom ≫ ((gluedCover 𝒰).toGlueData.t i j ≫ (gluedCover 𝒰).toGlueData.f j i).val.base) ⟨(x, y), h⟩ = y
[GOAL]
case h.right
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
j : (gluedCover 𝒰).toGlueData.J
y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace
h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y
e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅
(PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd)
(_ :
forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) =
forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt :=
IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j)))
(isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j))
⊢ ↑(e.hom ≫ (t (gluedCover 𝒰).toGlueData i j ≫ GlueData.f (gluedCover 𝒰).toGlueData j i).val.base)
{ val := (x, y), property := h } =
y
[PROOFSTEP]
erw [pullbackSymmetry_hom_comp_fst, IsLimit.conePointUniqueUpToIso_hom_comp _ _ WalkingCospan.right]
[GOAL]
case h.right
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
j : (gluedCover 𝒰).toGlueData.J
y : ↑↑(U (gluedCover 𝒰).toGlueData j).toPresheafedSpace
h : ↑(map 𝒰 i).val.base x = ↑(map 𝒰 j).val.base y
e : (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).pt ≅
(PullbackCone.mk (forgetToTop.map pullback.fst) (forgetToTop.map pullback.snd)
(_ :
forgetToTop.map pullback.fst ≫ forgetToTop.map (map 𝒰 i) =
forgetToTop.map pullback.snd ≫ forgetToTop.map (map 𝒰 j))).pt :=
IsLimit.conePointUniqueUpToIso (TopCat.pullbackConeIsLimit (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j)))
(isLimitOfHasPullbackOfPreservesLimit forgetToTop (map 𝒰 i) (map 𝒰 j))
⊢ ↑(NatTrans.app (TopCat.pullbackCone (forgetToTop.map (map 𝒰 i)) (forgetToTop.map (map 𝒰 j))).π WalkingCospan.right)
{ val := (x, y), property := h } =
y
[PROOFSTEP]
rfl
[GOAL]
X : Scheme
𝒰 : OpenCover X
x : ↑↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace
⊢ IsIso (stalkMap (fromGlued 𝒰).val x)
[PROOFSTEP]
obtain ⟨i, x, rfl⟩ := 𝒰.gluedCover.ι_jointly_surjective x
[GOAL]
case intro.intro
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
⊢ IsIso (stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x))
[PROOFSTEP]
have := PresheafedSpace.stalkMap.congr_hom _ _ (congr_arg LocallyRingedSpace.Hom.val <| 𝒰.ι_fromGlued i) x
[GOAL]
case intro.intro
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
this :
stalkMap (GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val x =
eqToHom
(_ :
stalk X.toPresheafedSpace (↑(GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val.base x) =
stalk X.toPresheafedSpace (↑(map 𝒰 i).val.base x)) ≫
stalkMap (map 𝒰 i).val x
⊢ IsIso (stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x))
[PROOFSTEP]
erw [PresheafedSpace.stalkMap.comp] at this
[GOAL]
case intro.intro
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
this :
stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x) ≫
stalkMap (GlueData.ι (gluedCover 𝒰) i).val x =
eqToHom
(_ :
stalk X.toPresheafedSpace (↑(GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val.base x) =
stalk X.toPresheafedSpace (↑(map 𝒰 i).val.base x)) ≫
stalkMap (map 𝒰 i).val x
⊢ IsIso (stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x))
[PROOFSTEP]
rw [← IsIso.eq_comp_inv] at this
[GOAL]
case intro.intro
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
this :
stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x) =
(eqToHom
(_ :
stalk X.toPresheafedSpace (↑(GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val.base x) =
stalk X.toPresheafedSpace (↑(map 𝒰 i).val.base x)) ≫
stalkMap (map 𝒰 i).val x) ≫
inv (stalkMap (GlueData.ι (gluedCover 𝒰) i).val x)
⊢ IsIso (stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x))
[PROOFSTEP]
rw [this]
[GOAL]
case intro.intro
X : Scheme
𝒰 : OpenCover X
i : (gluedCover 𝒰).toGlueData.J
x : ↑↑(U (gluedCover 𝒰).toGlueData i).toPresheafedSpace
this :
stalkMap (fromGlued 𝒰).val (↑(GlueData.ι (gluedCover 𝒰) i).val.base x) =
(eqToHom
(_ :
stalk X.toPresheafedSpace (↑(GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val.base x) =
stalk X.toPresheafedSpace (↑(map 𝒰 i).val.base x)) ≫
stalkMap (map 𝒰 i).val x) ≫
inv (stalkMap (GlueData.ι (gluedCover 𝒰) i).val x)
⊢ IsIso
((eqToHom
(_ :
stalk X.toPresheafedSpace (↑(GlueData.ι (gluedCover 𝒰) i ≫ fromGlued 𝒰).val.base x) =
stalk X.toPresheafedSpace (↑(map 𝒰 i).val.base x)) ≫
stalkMap (map 𝒰 i).val x) ≫
inv (stalkMap (GlueData.ι (gluedCover 𝒰) i).val x))
[PROOFSTEP]
infer_instance
[GOAL]
X : Scheme
𝒰 : OpenCover X
⊢ IsOpenMap ↑(fromGlued 𝒰).val.base
[PROOFSTEP]
intro U hU
[GOAL]
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : _root_.IsOpen U
⊢ _root_.IsOpen (↑(fromGlued 𝒰).val.base '' U)
[PROOFSTEP]
rw [isOpen_iff_forall_mem_open]
[GOAL]
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : _root_.IsOpen U
⊢ ∀ (x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace),
x ∈ ↑(fromGlued 𝒰).val.base '' U → ∃ t, t ⊆ ↑(fromGlued 𝒰).val.base '' U ∧ _root_.IsOpen t ∧ x ∈ t
[PROOFSTEP]
intro x hx
[GOAL]
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : _root_.IsOpen U
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hx : x ∈ ↑(fromGlued 𝒰).val.base '' U
⊢ ∃ t, t ⊆ ↑(fromGlued 𝒰).val.base '' U ∧ _root_.IsOpen t ∧ x ∈ t
[PROOFSTEP]
rw [𝒰.gluedCover.isOpen_iff] at hU
[GOAL]
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U)
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hx : x ∈ ↑(fromGlued 𝒰).val.base '' U
⊢ ∃ t, t ⊆ ↑(fromGlued 𝒰).val.base '' U ∧ _root_.IsOpen t ∧ x ∈ t
[PROOFSTEP]
use 𝒰.fromGlued.val.base '' U ∩ Set.range (𝒰.map (𝒰.f x)).1.base
[GOAL]
case h
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U)
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hx : x ∈ ↑(fromGlued 𝒰).val.base '' U
⊢ ↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base ⊆ ↑(fromGlued 𝒰).val.base '' U ∧
_root_.IsOpen (↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base) ∧
x ∈ ↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base
[PROOFSTEP]
use Set.inter_subset_left _ _
[GOAL]
case right
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U)
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hx : x ∈ ↑(fromGlued 𝒰).val.base '' U
⊢ _root_.IsOpen (↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base) ∧
x ∈ ↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base
[PROOFSTEP]
constructor
[GOAL]
case right.left
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U)
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hx : x ∈ ↑(fromGlued 𝒰).val.base '' U
⊢ _root_.IsOpen (↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base)
[PROOFSTEP]
rw [← Set.image_preimage_eq_inter_range]
[GOAL]
case right.left
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U)
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hx : x ∈ ↑(fromGlued 𝒰).val.base '' U
⊢ _root_.IsOpen (↑(map 𝒰 (f 𝒰 x)).val.base '' (↑(map 𝒰 (f 𝒰 x)).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U)))
[PROOFSTEP]
apply (show IsOpenImmersion (𝒰.map (𝒰.f x)) from inferInstance).base_open.isOpenMap
[GOAL]
case right.left.a
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U)
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hx : x ∈ ↑(fromGlued 𝒰).val.base '' U
⊢ _root_.IsOpen (↑(map 𝒰 (f 𝒰 x)).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U))
[PROOFSTEP]
convert hU (𝒰.f x) using 1
[GOAL]
case h.e'_3.h
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U)
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hx : x ∈ ↑(fromGlued 𝒰).val.base '' U
e_1✝ :
(CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U (gluedCover 𝒰).toGlueData (f 𝒰 x)).toPresheafedSpace
⊢ ↑(map 𝒰 (f 𝒰 x)).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U) = ↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ⁻¹' U
[PROOFSTEP]
rw [← ι_fromGlued]
[GOAL]
case h.e'_3.h
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U)
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hx : x ∈ ↑(fromGlued 𝒰).val.base '' U
e_1✝ :
(CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U (gluedCover 𝒰).toGlueData (f 𝒰 x)).toPresheafedSpace
⊢ ↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x) ≫ fromGlued 𝒰).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U) =
↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ⁻¹' U
[PROOFSTEP]
erw [coe_comp]
[GOAL]
case h.e'_3.h
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U)
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hx : x ∈ ↑(fromGlued 𝒰).val.base '' U
e_1✝ :
(CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U (gluedCover 𝒰).toGlueData (f 𝒰 x)).toPresheafedSpace
⊢ ↑(fromGlued 𝒰).val.base ∘ ↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U) =
↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ⁻¹' U
[PROOFSTEP]
rw [Set.preimage_comp]
[GOAL]
case h.e'_3.h
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U)
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hx : x ∈ ↑(fromGlued 𝒰).val.base '' U
e_1✝ :
(CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U (gluedCover 𝒰).toGlueData (f 𝒰 x)).toPresheafedSpace
⊢ ↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ⁻¹' (↑(fromGlued 𝒰).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U)) =
↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ⁻¹' U
[PROOFSTEP]
congr! 1
[GOAL]
case h.e'_3.h.h.e'_4
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U)
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hx : x ∈ ↑(fromGlued 𝒰).val.base '' U
e_1✝ :
(CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace =
(CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U (gluedCover 𝒰).toGlueData (f 𝒰 x)).toPresheafedSpace
⊢ ↑(fromGlued 𝒰).val.base ⁻¹' (↑(fromGlued 𝒰).val.base '' U) = U
[PROOFSTEP]
refine' Set.preimage_image_eq _ 𝒰.fromGlued_injective
[GOAL]
case right.right
X : Scheme
𝒰 : OpenCover X
U :
Set
((CategoryTheory.forget TopCat).obj
↑(GlueData.glued (gluedCover 𝒰)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace)
hU : ∀ (i : (gluedCover 𝒰).toGlueData.J), _root_.IsOpen (↑(GlueData.ι (gluedCover 𝒰) i).val.base ⁻¹' U)
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
hx : x ∈ ↑(fromGlued 𝒰).val.base '' U
⊢ x ∈ ↑(fromGlued 𝒰).val.base '' U ∩ Set.range ↑(map 𝒰 (f 𝒰 x)).val.base
[PROOFSTEP]
exact ⟨hx, 𝒰.Covers x⟩
[GOAL]
X : Scheme
𝒰 : OpenCover X
⊢ Epi (fromGlued 𝒰).val.base
[PROOFSTEP]
rw [TopCat.epi_iff_surjective]
[GOAL]
X : Scheme
𝒰 : OpenCover X
⊢ Function.Surjective ↑(fromGlued 𝒰).val.base
[PROOFSTEP]
intro x
[GOAL]
X : Scheme
𝒰 : OpenCover X
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
⊢ ∃ a, ↑(fromGlued 𝒰).val.base a = x
[PROOFSTEP]
obtain ⟨y, h⟩ := 𝒰.Covers x
[GOAL]
case intro
X : Scheme
𝒰 : OpenCover X
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
y : (CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace
h : ↑(map 𝒰 (f 𝒰 x)).val.base y = x
⊢ ∃ a, ↑(fromGlued 𝒰).val.base a = x
[PROOFSTEP]
use(𝒰.gluedCover.ι (𝒰.f x)).1.base y
[GOAL]
case h
X : Scheme
𝒰 : OpenCover X
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
y : (CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace
h : ↑(map 𝒰 (f 𝒰 x)).val.base y = x
⊢ ↑(fromGlued 𝒰).val.base (↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base y) = x
[PROOFSTEP]
rw [← comp_apply]
[GOAL]
case h
X : Scheme
𝒰 : OpenCover X
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
y : (CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace
h : ↑(map 𝒰 (f 𝒰 x)).val.base y = x
⊢ ↑((GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ≫ (fromGlued 𝒰).val.base) y = x
[PROOFSTEP]
rw [← 𝒰.ι_fromGlued (𝒰.f x)] at h
[GOAL]
case h
X : Scheme
𝒰 : OpenCover X
x : (CategoryTheory.forget TopCat).obj ↑X.toPresheafedSpace
y : (CategoryTheory.forget TopCat).obj ↑(obj 𝒰 (f 𝒰 x)).toPresheafedSpace
h : ↑(GlueData.ι (gluedCover 𝒰) (f 𝒰 x) ≫ fromGlued 𝒰).val.base y = x
⊢ ↑((GlueData.ι (gluedCover 𝒰) (f 𝒰 x)).val.base ≫ (fromGlued 𝒰).val.base) y = x
[PROOFSTEP]
exact h
[GOAL]
X : Scheme
𝒰 : OpenCover X
F : Scheme ⥤ PresheafedSpace CommRingCat :=
forgetToLocallyRingedSpace ⋙ LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace
⊢ IsIso (F.map (fromGlued 𝒰))
[PROOFSTEP]
change @IsIso (PresheafedSpace _) _ _ _ 𝒰.fromGlued.val
[GOAL]
X : Scheme
𝒰 : OpenCover X
F : Scheme ⥤ PresheafedSpace CommRingCat :=
forgetToLocallyRingedSpace ⋙ LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forgetToPresheafedSpace
⊢ IsIso (fromGlued 𝒰).val
[PROOFSTEP]
apply PresheafedSpace.IsOpenImmersion.to_iso
[GOAL]
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y
hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y
⊢ X ⟶ Y
[PROOFSTEP]
refine' inv 𝒰.fromGlued ≫ _
[GOAL]
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y
hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y
⊢ GlueData.glued (gluedCover 𝒰) ⟶ Y
[PROOFSTEP]
fapply Multicoequalizer.desc
[GOAL]
case k
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y
hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y
⊢ (b : (diagram (gluedCover 𝒰).toGlueData).R) → MultispanIndex.right (diagram (gluedCover 𝒰).toGlueData) b ⟶ Y
case h
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y
hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y
⊢ ∀ (a : (diagram (gluedCover 𝒰).toGlueData).L),
MultispanIndex.fst (diagram (gluedCover 𝒰).toGlueData) a ≫
?k (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) a) =
MultispanIndex.snd (diagram (gluedCover 𝒰).toGlueData) a ≫
?k (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) a)
[PROOFSTEP]
exact f
[GOAL]
case h
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y
hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y
⊢ ∀ (a : (diagram (gluedCover 𝒰).toGlueData).L),
MultispanIndex.fst (diagram (gluedCover 𝒰).toGlueData) a ≫
f (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) a) =
MultispanIndex.snd (diagram (gluedCover 𝒰).toGlueData) a ≫
f (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) a)
[PROOFSTEP]
rintro ⟨i, j⟩
[GOAL]
case h.mk
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y
hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y
i j : (gluedCover 𝒰).toGlueData.J
⊢ MultispanIndex.fst (diagram (gluedCover 𝒰).toGlueData) (i, j) ≫
f (MultispanIndex.fstFrom (diagram (gluedCover 𝒰).toGlueData) (i, j)) =
MultispanIndex.snd (diagram (gluedCover 𝒰).toGlueData) (i, j) ≫
f (MultispanIndex.sndFrom (diagram (gluedCover 𝒰).toGlueData) (i, j))
[PROOFSTEP]
change pullback.fst ≫ f i = (_ ≫ _) ≫ f j
[GOAL]
case h.mk
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y
hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y
i j : (gluedCover 𝒰).toGlueData.J
⊢ pullback.fst ≫ f i = (t (gluedCover 𝒰).toGlueData i j ≫ GlueData.f (gluedCover 𝒰).toGlueData j i) ≫ f j
[PROOFSTEP]
erw [pullbackSymmetry_hom_comp_fst]
[GOAL]
case h.mk
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y
hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y
i j : (gluedCover 𝒰).toGlueData.J
⊢ pullback.fst ≫ f i = pullback.snd ≫ f j
[PROOFSTEP]
exact hf i j
[GOAL]
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y
hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y
x : 𝒰.J
⊢ map 𝒰 x ≫ glueMorphisms 𝒰 f hf = f x
[PROOFSTEP]
rw [← ι_fromGlued, Category.assoc]
[GOAL]
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f : (x : 𝒰.J) → obj 𝒰 x ⟶ Y
hf : ∀ (x y : 𝒰.J), pullback.fst ≫ f x = pullback.snd ≫ f y
x : 𝒰.J
⊢ GlueData.ι (gluedCover 𝒰) x ≫ fromGlued 𝒰 ≫ glueMorphisms 𝒰 f hf = f x
[PROOFSTEP]
erw [IsIso.hom_inv_id_assoc, Multicoequalizer.π_desc]
[GOAL]
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f₁ f₂ : X ⟶ Y
h : ∀ (x : 𝒰.J), map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂
⊢ f₁ = f₂
[PROOFSTEP]
rw [← cancel_epi 𝒰.fromGlued]
[GOAL]
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f₁ f₂ : X ⟶ Y
h : ∀ (x : 𝒰.J), map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂
⊢ fromGlued 𝒰 ≫ f₁ = fromGlued 𝒰 ≫ f₂
[PROOFSTEP]
apply Multicoequalizer.hom_ext
[GOAL]
case h
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f₁ f₂ : X ⟶ Y
h : ∀ (x : 𝒰.J), map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂
⊢ ∀ (b : (diagram (gluedCover 𝒰).toGlueData).R),
Multicoequalizer.π (diagram (gluedCover 𝒰).toGlueData) b ≫ fromGlued 𝒰 ≫ f₁ =
Multicoequalizer.π (diagram (gluedCover 𝒰).toGlueData) b ≫ fromGlued 𝒰 ≫ f₂
[PROOFSTEP]
intro x
[GOAL]
case h
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f₁ f₂ : X ⟶ Y
h : ∀ (x : 𝒰.J), map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂
x : (diagram (gluedCover 𝒰).toGlueData).R
⊢ Multicoequalizer.π (diagram (gluedCover 𝒰).toGlueData) x ≫ fromGlued 𝒰 ≫ f₁ =
Multicoequalizer.π (diagram (gluedCover 𝒰).toGlueData) x ≫ fromGlued 𝒰 ≫ f₂
[PROOFSTEP]
erw [Multicoequalizer.π_desc_assoc]
[GOAL]
case h
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f₁ f₂ : X ⟶ Y
h : ∀ (x : 𝒰.J), map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂
x : (diagram (gluedCover 𝒰).toGlueData).R
⊢ map 𝒰 x ≫ f₁ = Multicoequalizer.π (diagram (gluedCover 𝒰).toGlueData) x ≫ fromGlued 𝒰 ≫ f₂
[PROOFSTEP]
erw [Multicoequalizer.π_desc_assoc]
[GOAL]
case h
X : Scheme
𝒰 : OpenCover X
Y : Scheme
f₁ f₂ : X ⟶ Y
h : ∀ (x : 𝒰.J), map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂
x : (diagram (gluedCover 𝒰).toGlueData).R
⊢ map 𝒰 x ≫ f₁ = map 𝒰 x ≫ f₂
[PROOFSTEP]
exact h x
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.Gluing", "llama_tokens": 31129} |
[GOAL]
C : Type u_1
inst✝ : Category.{?u.4128, u_1} C
X Y : PresheafedSpace C
α β : Hom X Y
w : α.base = β.base
⊢ (Opens.map α.base).op = (Opens.map β.base).op
[PROOFSTEP]
rw [w]
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
α β : Hom X Y
w : α.base = β.base
h : α.c ≫ whiskerRight (eqToHom (_ : (Opens.map α.base).op = (Opens.map β.base).op)) X.presheaf = β.c
⊢ α = β
[PROOFSTEP]
rcases α with ⟨base, c⟩
[GOAL]
case mk
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
β : Hom X Y
base : ↑X ⟶ ↑Y
c : Y.presheaf ⟶ base _* X.presheaf
w : { base := base, c := c }.base = β.base
h :
{ base := base, c := c }.c ≫
whiskerRight (eqToHom (_ : (Opens.map { base := base, c := c }.base).op = (Opens.map β.base).op)) X.presheaf =
β.c
⊢ { base := base, c := c } = β
[PROOFSTEP]
rcases β with ⟨base', c'⟩
[GOAL]
case mk.mk
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
base : ↑X ⟶ ↑Y
c : Y.presheaf ⟶ base _* X.presheaf
base' : ↑X ⟶ ↑Y
c' : Y.presheaf ⟶ base' _* X.presheaf
w : { base := base, c := c }.base = { base := base', c := c' }.base
h :
{ base := base, c := c }.c ≫
whiskerRight
(eqToHom (_ : (Opens.map { base := base, c := c }.base).op = (Opens.map { base := base', c := c' }.base).op))
X.presheaf =
{ base := base', c := c' }.c
⊢ { base := base, c := c } = { base := base', c := c' }
[PROOFSTEP]
dsimp at w
[GOAL]
case mk.mk
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
base : ↑X ⟶ ↑Y
c : Y.presheaf ⟶ base _* X.presheaf
base' : ↑X ⟶ ↑Y
c' : Y.presheaf ⟶ base' _* X.presheaf
w : base = base'
h :
{ base := base, c := c }.c ≫
whiskerRight
(eqToHom (_ : (Opens.map { base := base, c := c }.base).op = (Opens.map { base := base', c := c' }.base).op))
X.presheaf =
{ base := base', c := c' }.c
⊢ { base := base, c := c } = { base := base', c := c' }
[PROOFSTEP]
subst w
[GOAL]
case mk.mk
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
base : ↑X ⟶ ↑Y
c c' : Y.presheaf ⟶ base _* X.presheaf
h :
{ base := base, c := c }.c ≫
whiskerRight
(eqToHom (_ : (Opens.map { base := base, c := c }.base).op = (Opens.map { base := base, c := c' }.base).op))
X.presheaf =
{ base := base, c := c' }.c
⊢ { base := base, c := c } = { base := base, c := c' }
[PROOFSTEP]
dsimp at h
[GOAL]
case mk.mk
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
base : ↑X ⟶ ↑Y
c c' : Y.presheaf ⟶ base _* X.presheaf
h : c ≫ whiskerRight (𝟙 (Opens.map base).op) X.presheaf = c'
⊢ { base := base, c := c } = { base := base, c := c' }
[PROOFSTEP]
erw [whiskerRight_id', comp_id] at h
[GOAL]
case mk.mk
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
base : ↑X ⟶ ↑Y
c c' : Y.presheaf ⟶ base _* X.presheaf
h : c = c'
⊢ { base := base, c := c } = { base := base, c := c' }
[PROOFSTEP]
subst h
[GOAL]
case mk.mk
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
base : ↑X ⟶ ↑Y
c : Y.presheaf ⟶ base _* X.presheaf
⊢ { base := base, c := c } = { base := base, c := c }
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
α β : Hom X Y
w : α.base = β.base
h : HEq α.c β.c
⊢ α = β
[PROOFSTEP]
cases α
[GOAL]
case mk
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
β : Hom X Y
base✝ : ↑X ⟶ ↑Y
c✝ : Y.presheaf ⟶ base✝ _* X.presheaf
w : { base := base✝, c := c✝ }.base = β.base
h : HEq { base := base✝, c := c✝ }.c β.c
⊢ { base := base✝, c := c✝ } = β
[PROOFSTEP]
cases β
[GOAL]
case mk.mk
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
base✝¹ : ↑X ⟶ ↑Y
c✝¹ : Y.presheaf ⟶ base✝¹ _* X.presheaf
base✝ : ↑X ⟶ ↑Y
c✝ : Y.presheaf ⟶ base✝ _* X.presheaf
w : { base := base✝¹, c := c✝¹ }.base = { base := base✝, c := c✝ }.base
h : HEq { base := base✝¹, c := c✝¹ }.c { base := base✝, c := c✝ }.c
⊢ { base := base✝¹, c := c✝¹ } = { base := base✝, c := c✝ }
[PROOFSTEP]
congr
[GOAL]
C : Type u_1
inst✝ : Category.{?u.68893, u_1} C
X✝ Y✝ : PresheafedSpace C
x✝ : X✝ ⟶ Y✝
⊢ 𝟙 X✝ ≫ x✝ = x✝
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝ : Category.{?u.68893, u_1} C
X✝ Y✝ : PresheafedSpace C
x✝ : X✝ ⟶ Y✝
⊢ { base := 𝟙 ↑X✝ ≫ x✝.base, c := x✝.c ≫ (Presheaf.pushforward C x✝.base).map (𝟙 X✝.presheaf) } = x✝
[PROOFSTEP]
ext
[GOAL]
case w.w
C : Type u_1
inst✝ : Category.{?u.68893, u_1} C
X✝ Y✝ : PresheafedSpace C
x✝¹ : X✝ ⟶ Y✝
x✝ : (forget TopCat).obj ↑X✝
⊢ ↑{ base := 𝟙 ↑X✝ ≫ x✝¹.base, c := x✝¹.c ≫ (Presheaf.pushforward C x✝¹.base).map (𝟙 X✝.presheaf) }.base x✝ =
↑x✝¹.base x✝
[PROOFSTEP]
dsimp
[GOAL]
case w.w
C : Type u_1
inst✝ : Category.{?u.68893, u_1} C
X✝ Y✝ : PresheafedSpace C
x✝¹ : X✝ ⟶ Y✝
x✝ : (forget TopCat).obj ↑X✝
⊢ ↑(𝟙 ↑X✝ ≫ x✝¹.base) x✝ = ↑x✝¹.base x✝
[PROOFSTEP]
simp
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.68893, u_1} C
X✝ Y✝ : PresheafedSpace C
x✝ : X✝ ⟶ Y✝
U✝ : Opens ↑↑Y✝
⊢ NatTrans.app
({ base := 𝟙 ↑X✝ ≫ x✝.base, c := x✝.c ≫ (Presheaf.pushforward C x✝.base).map (𝟙 X✝.presheaf) }.c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map
{ base := 𝟙 ↑X✝ ≫ x✝.base,
c := x✝.c ≫ (Presheaf.pushforward C x✝.base).map (𝟙 X✝.presheaf) }.base).op =
(Opens.map x✝.base).op))
X✝.presheaf)
(op U✝) =
NatTrans.app x✝.c (op U✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.68893, u_1} C
X✝ Y✝ : PresheafedSpace C
x✝ : X✝ ⟶ Y✝
U✝ : Opens ↑↑Y✝
⊢ NatTrans.app
((x✝.c ≫ (Presheaf.pushforward C x✝.base).map (𝟙 X✝.presheaf)) ≫
whiskerRight (𝟙 (Opens.map (𝟙 ↑X✝ ≫ x✝.base)).op) X✝.presheaf)
(op U✝) =
NatTrans.app x✝.c (op U✝)
[PROOFSTEP]
simp only [map_id, whiskerRight_id', assoc]
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.68893, u_1} C
X✝ Y✝ : PresheafedSpace C
x✝ : X✝ ⟶ Y✝
U✝ : Opens ↑↑Y✝
⊢ NatTrans.app
(x✝.c ≫ 𝟙 ((Presheaf.pushforward C x✝.base).obj X✝.presheaf) ≫ 𝟙 ((Opens.map (𝟙 ↑X✝ ≫ x✝.base)).op ⋙ X✝.presheaf))
(op U✝) =
NatTrans.app x✝.c (op U✝)
[PROOFSTEP]
erw [comp_id, comp_id]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.77226, u_1} C
X Y : PresheafedSpace C
α β : X ⟶ Y
w : α.base = β.base
⊢ (Opens.map α.base).op = (Opens.map β.base).op
[PROOFSTEP]
rw [w]
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X : PresheafedSpace C
U : (Opens ↑↑X)ᵒᵖ
⊢ NatTrans.app (𝟙 X).c U = X.presheaf.map (𝟙 U)
[PROOFSTEP]
rw [id_c, map_id]
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X : PresheafedSpace C
U : (Opens ↑↑X)ᵒᵖ
⊢ NatTrans.app (𝟙 X.presheaf) U = 𝟙 (X.presheaf.obj U)
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝ : Category.{?u.143246, u_1} C
X Y : PresheafedSpace C
α β : X ⟶ Y
h : α = β
U : (Opens ↑↑Y)ᵒᵖ
⊢ (Opens.map β.base).op.obj U = (Opens.map α.base).op.obj U
[PROOFSTEP]
subst h
[GOAL]
C : Type u_1
inst✝ : Category.{?u.143246, u_1} C
X Y : PresheafedSpace C
α : X ⟶ Y
U : (Opens ↑↑Y)ᵒᵖ
⊢ (Opens.map α.base).op.obj U = (Opens.map α.base).op.obj U
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
α β : X ⟶ Y
h : α = β
U : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app α.c U =
NatTrans.app β.c U ≫ X.presheaf.map (eqToHom (_ : (Opens.map β.base).op.obj U = (Opens.map α.base).op.obj U))
[PROOFSTEP]
subst h
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X Y : PresheafedSpace C
α : X ⟶ Y
U : (Opens ↑↑Y)ᵒᵖ
⊢ NatTrans.app α.c U =
NatTrans.app α.c U ≫ X.presheaf.map (eqToHom (_ : (Opens.map α.base).op.obj U = (Opens.map α.base).op.obj U))
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
⊢ { base := H.hom, c := α.inv } ≫ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } = 𝟙 X
[PROOFSTEP]
ext
[GOAL]
case w.w
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
x✝ : (CategoryTheory.forget TopCat).obj ↑X
⊢ ↑({ base := H.hom, c := α.inv } ≫ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).base x✝ =
↑(𝟙 X).base x✝
case h.w
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
U✝ : Opens ↑↑X
⊢ NatTrans.app
(({ base := H.hom, c := α.inv } ≫ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map
({ base := H.hom, c := α.inv } ≫
{ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).base).op =
(Opens.map (𝟙 X).base).op))
X.presheaf)
(op U✝) =
NatTrans.app (𝟙 X).c (op U✝)
[PROOFSTEP]
simp only [comp_base, Iso.hom_inv_id, FunctorToTypes.map_id_apply, id_base]
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
U✝ : Opens ↑↑X
⊢ NatTrans.app
(({ base := H.hom, c := α.inv } ≫ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map
({ base := H.hom, c := α.inv } ≫
{ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).base).op =
(Opens.map (𝟙 X).base).op))
X.presheaf)
(op U✝) =
NatTrans.app (𝟙 X).c (op U✝)
[PROOFSTEP]
rw [NatTrans.comp_app]
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
U✝ : Opens ↑↑X
⊢ NatTrans.app ({ base := H.hom, c := α.inv } ≫ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).c (op U✝) ≫
NatTrans.app
(whiskerRight
(eqToHom
(_ :
(Opens.map
({ base := H.hom, c := α.inv } ≫
{ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom }).base).op =
(Opens.map (𝟙 X).base).op))
X.presheaf)
(op U✝) =
NatTrans.app (𝟙 X).c (op U✝)
[PROOFSTEP]
simp only [id_base, comp_obj, op_obj, comp_base, Presheaf.pushforwardObj_obj, Opens.map_comp_obj, comp_c_app, unop_op,
Presheaf.toPushforwardOfIso_app, assoc, Iso.hom_inv_id_app, comp_id, whiskerRight_app, eqToHom_app, id_c_app, map_id,
← Functor.map_comp, eqToHom_trans, eqToHom_refl]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
⊢ { base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv } = 𝟙 Y
[PROOFSTEP]
ext
[GOAL]
case w.w
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
x✝ : (CategoryTheory.forget TopCat).obj ↑Y
⊢ ↑({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).base x✝ =
↑(𝟙 Y).base x✝
case h.w
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
U✝ : Opens ↑↑Y
⊢ NatTrans.app
(({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map
({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫
{ base := H.hom, c := α.inv }).base).op =
(Opens.map (𝟙 Y).base).op))
Y.presheaf)
(op U✝) =
NatTrans.app (𝟙 Y).c (op U✝)
[PROOFSTEP]
dsimp
[GOAL]
case w.w
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
x✝ : (CategoryTheory.forget TopCat).obj ↑Y
⊢ ↑(H.inv ≫ H.hom) x✝ = ↑(𝟙 ↑Y) x✝
case h.w
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
U✝ : Opens ↑↑Y
⊢ NatTrans.app
(({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map
({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫
{ base := H.hom, c := α.inv }).base).op =
(Opens.map (𝟙 Y).base).op))
Y.presheaf)
(op U✝) =
NatTrans.app (𝟙 Y).c (op U✝)
[PROOFSTEP]
rw [H.inv_hom_id]
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
U✝ : Opens ↑↑Y
⊢ NatTrans.app
(({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map
({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫
{ base := H.hom, c := α.inv }).base).op =
(Opens.map (𝟙 Y).base).op))
Y.presheaf)
(op U✝) =
NatTrans.app (𝟙 Y).c (op U✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
U✝ : Opens ↑↑Y
⊢ NatTrans.app
(({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).c ≫
whiskerRight (eqToHom (_ : (Opens.map (H.inv ≫ H.hom)).op = (Opens.map (𝟙 ↑Y)).op)) Y.presheaf)
(op U✝) =
NatTrans.app (𝟙 Y).c (op U✝)
[PROOFSTEP]
rw [NatTrans.comp_app]
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
U✝ : Opens ↑↑Y
⊢ NatTrans.app ({ base := H.inv, c := Presheaf.toPushforwardOfIso H α.hom } ≫ { base := H.hom, c := α.inv }).c (op U✝) ≫
NatTrans.app (whiskerRight (eqToHom (_ : (Opens.map (H.inv ≫ H.hom)).op = (Opens.map (𝟙 ↑Y)).op)) Y.presheaf)
(op U✝) =
NatTrans.app (𝟙 Y).c (op U✝)
[PROOFSTEP]
simp only [Presheaf.pushforwardObj_obj, op_obj, Opens.map_comp_obj, comp_obj, comp_c_app, unop_op,
Presheaf.toPushforwardOfIso_app, whiskerRight_app, eqToHom_app, assoc, id_c_app, map_id]
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
U✝ : Opens ↑↑Y
⊢ NatTrans.app α.inv (op U✝) ≫
X.presheaf.map
(eqToHom
(_ :
op ((Opens.map H.hom).obj U✝) =
op
{
carrier :=
↑H.hom ⁻¹'
↑(op
{ carrier := ↑H.inv ⁻¹' ↑(op ((Opens.map H.hom).obj U✝)).unop,
is_open' := (_ : IsOpen (↑H.inv ⁻¹' ↑(op ((Opens.map H.hom).obj U✝)).unop)) }).unop,
is_open' :=
(_ :
IsOpen
(↑H.hom ⁻¹'
↑(op
{ carrier := ↑H.inv ⁻¹' ↑(op ((Opens.map H.hom).obj U✝)).unop,
is_open' :=
(_ : IsOpen (↑H.inv ⁻¹' ↑(op ((Opens.map H.hom).obj U✝)).unop)) }).unop)) })) ≫
NatTrans.app α.hom (op ((Opens.map H.inv).obj ((Opens.map H.hom).obj U✝))) ≫
Y.presheaf.map
(eqToHom (_ : (Opens.map (H.inv ≫ H.hom)).op.obj (op U✝) = (Opens.map (𝟙 ↑Y)).op.obj (op U✝))) =
𝟙 (Y.presheaf.obj (op U✝))
[PROOFSTEP]
rw [← α.hom.naturality, Presheaf.pushforwardObj_map, eqToHom_map, eqToHom_map, eqToHom_map, eqToHom_trans_assoc,
eqToHom_refl, id_comp]
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.204326, u_1} C
X Y : PresheafedSpace C
H : ↑X ≅ ↑Y
α : H.hom _* X.presheaf ≅ Y.presheaf
U✝ : Opens ↑↑Y
⊢ NatTrans.app α.inv (op U✝) ≫ NatTrans.app α.hom (op ((Opens.map (𝟙 ↑Y)).obj U✝)) = 𝟙 (Y.presheaf.obj (op U✝))
[PROOFSTEP]
apply Iso.inv_hom_id_app
[GOAL]
C : Type u_1
inst✝ : Category.{?u.217173, u_1} C
X Y : PresheafedSpace C
H : X ≅ Y
⊢ H.hom.c ≫ Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c = 𝟙 Y.presheaf
[PROOFSTEP]
ext U
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.217173, u_1} C
X Y : PresheafedSpace C
H : X ≅ Y
U : Opens ↑↑Y
⊢ NatTrans.app (H.hom.c ≫ Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c) (op U) =
NatTrans.app (𝟙 Y.presheaf) (op U)
[PROOFSTEP]
rw [NatTrans.comp_app]
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.217173, u_1} C
X Y : PresheafedSpace C
H : X ≅ Y
U : Opens ↑↑Y
⊢ NatTrans.app H.hom.c (op U) ≫ NatTrans.app (Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c) (op U) =
NatTrans.app (𝟙 Y.presheaf) (op U)
[PROOFSTEP]
simpa using congr_arg (fun f => f ≫ eqToHom _) (congr_app H.inv_hom_id (op U))
[GOAL]
C : Type u_1
inst✝ : Category.{?u.217173, u_1} C
X Y : PresheafedSpace C
H : X ≅ Y
⊢ Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c ≫ H.hom.c = 𝟙 (H.hom.base _* X.presheaf)
[PROOFSTEP]
ext U
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.217173, u_1} C
X Y : PresheafedSpace C
H : X ≅ Y
U : Opens ↑↑Y
⊢ NatTrans.app (Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c ≫ H.hom.c) (op U) =
NatTrans.app (𝟙 (H.hom.base _* X.presheaf)) (op U)
[PROOFSTEP]
dsimp
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.217173, u_1} C
X Y : PresheafedSpace C
H : X ≅ Y
U : Opens ↑↑Y
⊢ NatTrans.app (Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c ≫ H.hom.c) (op U) =
NatTrans.app (𝟙 (H.hom.base _* X.presheaf)) (op U)
[PROOFSTEP]
rw [NatTrans.comp_app, NatTrans.id_app]
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.217173, u_1} C
X Y : PresheafedSpace C
H : X ≅ Y
U : Opens ↑↑Y
⊢ NatTrans.app (Presheaf.pushforwardToOfIso ((forget C).mapIso H).symm H.inv.c) (op U) ≫ NatTrans.app H.hom.c (op U) =
𝟙 ((H.hom.base _* X.presheaf).obj (op U))
[PROOFSTEP]
simp only [Presheaf.pushforwardObj_obj, op_obj, Presheaf.pushforwardToOfIso_app, Iso.symm_inv, mapIso_hom, forget_map,
Iso.symm_hom, mapIso_inv, unop_op, eqToHom_map, assoc]
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.217173, u_1} C
X Y : PresheafedSpace C
H : X ≅ Y
U : Opens ↑↑Y
⊢ NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫
eqToHom
(_ :
Y.presheaf.obj (op ((Opens.map H.inv.base).obj ((Opens.map H.hom.base).obj U))) = Y.presheaf.obj (op U)) ≫
NatTrans.app H.hom.c (op U) =
𝟙 (X.presheaf.obj (op ((Opens.map H.hom.base).obj U)))
[PROOFSTEP]
have eq₁ := congr_app H.hom_inv_id (op ((Opens.map H.hom.base).obj U))
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.217173, u_1} C
X Y : PresheafedSpace C
H : X ≅ Y
U : Opens ↑↑Y
eq₁ :
NatTrans.app (H.hom ≫ H.inv).c (op ((Opens.map H.hom.base).obj U)) =
NatTrans.app (𝟙 X).c (op ((Opens.map H.hom.base).obj U)) ≫
X.presheaf.map
(eqToHom
(_ :
(Opens.map (𝟙 X).base).op.obj (op ((Opens.map H.hom.base).obj U)) =
(Opens.map (H.hom ≫ H.inv).base).op.obj (op ((Opens.map H.hom.base).obj U))))
⊢ NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫
eqToHom
(_ :
Y.presheaf.obj (op ((Opens.map H.inv.base).obj ((Opens.map H.hom.base).obj U))) = Y.presheaf.obj (op U)) ≫
NatTrans.app H.hom.c (op U) =
𝟙 (X.presheaf.obj (op ((Opens.map H.hom.base).obj U)))
[PROOFSTEP]
have eq₂ := H.hom.c.naturality (eqToHom (congr_obj (congr_arg Opens.map ((forget C).congr_map H.inv_hom_id.symm)) U)).op
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.217173, u_1} C
X Y : PresheafedSpace C
H : X ≅ Y
U : Opens ↑↑Y
eq₁ :
NatTrans.app (H.hom ≫ H.inv).c (op ((Opens.map H.hom.base).obj U)) =
NatTrans.app (𝟙 X).c (op ((Opens.map H.hom.base).obj U)) ≫
X.presheaf.map
(eqToHom
(_ :
(Opens.map (𝟙 X).base).op.obj (op ((Opens.map H.hom.base).obj U)) =
(Opens.map (H.hom ≫ H.inv).base).op.obj (op ((Opens.map H.hom.base).obj U))))
eq₂ :
Y.presheaf.map
(eqToHom
(_ : (Opens.map ((forget C).map (𝟙 Y))).obj U = (Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)).op ≫
NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (𝟙 Y))).obj U)) =
NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)) ≫
(H.hom.base _* X.presheaf).map
(eqToHom (_ : (Opens.map ((forget C).map (𝟙 Y))).obj U = (Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)).op
⊢ NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫
eqToHom
(_ :
Y.presheaf.obj (op ((Opens.map H.inv.base).obj ((Opens.map H.hom.base).obj U))) = Y.presheaf.obj (op U)) ≫
NatTrans.app H.hom.c (op U) =
𝟙 (X.presheaf.obj (op ((Opens.map H.hom.base).obj U)))
[PROOFSTEP]
rw [id_c, NatTrans.id_app, id_comp, eqToHom_map, comp_c_app] at eq₁
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.217173, u_1} C
X Y : PresheafedSpace C
H : X ≅ Y
U : Opens ↑↑Y
eq₁ :
NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫
NatTrans.app H.hom.c (op ((Opens.map H.inv.base).obj (op ((Opens.map H.hom.base).obj U)).unop)) =
eqToHom
(_ :
X.presheaf.obj ((Opens.map (𝟙 X).base).op.obj (op ((Opens.map H.hom.base).obj U))) =
X.presheaf.obj ((Opens.map (H.hom ≫ H.inv).base).op.obj (op ((Opens.map H.hom.base).obj U))))
eq₂ :
Y.presheaf.map
(eqToHom
(_ : (Opens.map ((forget C).map (𝟙 Y))).obj U = (Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)).op ≫
NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (𝟙 Y))).obj U)) =
NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)) ≫
(H.hom.base _* X.presheaf).map
(eqToHom (_ : (Opens.map ((forget C).map (𝟙 Y))).obj U = (Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)).op
⊢ NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫
eqToHom
(_ :
Y.presheaf.obj (op ((Opens.map H.inv.base).obj ((Opens.map H.hom.base).obj U))) = Y.presheaf.obj (op U)) ≫
NatTrans.app H.hom.c (op U) =
𝟙 (X.presheaf.obj (op ((Opens.map H.hom.base).obj U)))
[PROOFSTEP]
rw [eqToHom_op, eqToHom_map] at eq₂
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.217173, u_1} C
X Y : PresheafedSpace C
H : X ≅ Y
U : Opens ↑↑Y
eq₁ :
NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫
NatTrans.app H.hom.c (op ((Opens.map H.inv.base).obj (op ((Opens.map H.hom.base).obj U)).unop)) =
eqToHom
(_ :
X.presheaf.obj ((Opens.map (𝟙 X).base).op.obj (op ((Opens.map H.hom.base).obj U))) =
X.presheaf.obj ((Opens.map (H.hom ≫ H.inv).base).op.obj (op ((Opens.map H.hom.base).obj U))))
eq₂ :
eqToHom
(_ :
Y.presheaf.obj (op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)) =
Y.presheaf.obj (op ((Opens.map ((forget C).map (𝟙 Y))).obj U))) ≫
NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (𝟙 Y))).obj U)) =
NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)) ≫
(H.hom.base _* X.presheaf).map
(eqToHom
(_ : op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U) = op ((Opens.map ((forget C).map (𝟙 Y))).obj U)))
⊢ NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫
eqToHom
(_ :
Y.presheaf.obj (op ((Opens.map H.inv.base).obj ((Opens.map H.hom.base).obj U))) = Y.presheaf.obj (op U)) ≫
NatTrans.app H.hom.c (op U) =
𝟙 (X.presheaf.obj (op ((Opens.map H.hom.base).obj U)))
[PROOFSTEP]
erw [eq₂, reassoc_of% eq₁]
[GOAL]
case w
C : Type u_1
inst✝ : Category.{?u.217173, u_1} C
X Y : PresheafedSpace C
H : X ≅ Y
U : Opens ↑↑Y
eq₁ :
NatTrans.app H.inv.c (op ((Opens.map H.hom.base).obj U)) ≫
NatTrans.app H.hom.c (op ((Opens.map H.inv.base).obj (op ((Opens.map H.hom.base).obj U)).unop)) =
eqToHom
(_ :
X.presheaf.obj ((Opens.map (𝟙 X).base).op.obj (op ((Opens.map H.hom.base).obj U))) =
X.presheaf.obj ((Opens.map (H.hom ≫ H.inv).base).op.obj (op ((Opens.map H.hom.base).obj U))))
eq₂ :
eqToHom
(_ :
Y.presheaf.obj (op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)) =
Y.presheaf.obj (op ((Opens.map ((forget C).map (𝟙 Y))).obj U))) ≫
NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (𝟙 Y))).obj U)) =
NatTrans.app H.hom.c (op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U)) ≫
(H.hom.base _* X.presheaf).map
(eqToHom
(_ : op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U) = op ((Opens.map ((forget C).map (𝟙 Y))).obj U)))
⊢ eqToHom
(_ :
X.presheaf.obj ((Opens.map (𝟙 X).base).op.obj (op ((Opens.map H.hom.base).obj U))) =
X.presheaf.obj ((Opens.map (H.hom ≫ H.inv).base).op.obj (op ((Opens.map H.hom.base).obj U)))) ≫
(H.hom.base _* X.presheaf).map
(eqToHom
(_ :
op ((Opens.map ((forget C).map (H.inv ≫ H.hom))).obj U) = op ((Opens.map ((forget C).map (𝟙 Y))).obj U))) =
𝟙 (X.presheaf.obj (op ((Opens.map H.hom.base).obj U)))
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝ : Category.{?u.242573, u_1} C
U✝ : TopCat
X : PresheafedSpace C
f✝ : U✝ ⟶ ↑X
h : OpenEmbedding ↑f✝
U V : (Opens ↑↑X)ᵒᵖ
f : U ⟶ V
⊢ X.presheaf.map f ≫
(fun V => X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f✝)).counit V.unop).op) V =
(fun V => X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f✝)).counit V.unop).op) U ≫
X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑f✝)).op.map ((Opens.map f✝).op.map f))
[PROOFSTEP]
rw [← map_comp, ← map_comp]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.242573, u_1} C
U✝ : TopCat
X : PresheafedSpace C
f✝ : U✝ ⟶ ↑X
h : OpenEmbedding ↑f✝
U V : (Opens ↑↑X)ᵒᵖ
f : U ⟶ V
⊢ X.presheaf.map (f ≫ (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f✝)).counit V.unop).op) =
X.presheaf.map
((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f✝)).counit U.unop).op ≫
(IsOpenMap.functor (_ : IsOpenMap ↑f✝)).op.map ((Opens.map f✝).op.map f))
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
⊢ Mono (ofRestrict X hf)
[PROOFSTEP]
haveI : Mono f := (TopCat.mono_iff_injective _).mpr hf.inj
[GOAL]
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this : Mono f
⊢ Mono (ofRestrict X hf)
[PROOFSTEP]
constructor
[GOAL]
case right_cancellation
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this : Mono f
⊢ ∀ {Z : PresheafedSpace C} (g h : Z ⟶ restrict X hf), g ≫ ofRestrict X hf = h ≫ ofRestrict X hf → g = h
[PROOFSTEP]
intro Z g₁ g₂ eq
[GOAL]
case right_cancellation
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
⊢ g₁ = g₂
[PROOFSTEP]
ext1
[GOAL]
case right_cancellation.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
⊢ g₁.base = g₂.base
[PROOFSTEP]
have := congr_arg PresheafedSpace.Hom.base eq
[GOAL]
case right_cancellation.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this✝ : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
this : (g₁ ≫ ofRestrict X hf).base = (g₂ ≫ ofRestrict X hf).base
⊢ g₁.base = g₂.base
[PROOFSTEP]
simp only [PresheafedSpace.comp_base, PresheafedSpace.ofRestrict_base] at this
[GOAL]
case right_cancellation.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this✝ : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
this : g₁.base ≫ f = g₂.base ≫ f
⊢ g₁.base = g₂.base
[PROOFSTEP]
rw [cancel_mono] at this
[GOAL]
case right_cancellation.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this✝ : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
this : g₁.base = g₂.base
⊢ g₁.base = g₂.base
[PROOFSTEP]
exact this
[GOAL]
case right_cancellation.h
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
⊢ g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf = g₂.c
[PROOFSTEP]
ext V
[GOAL]
case right_cancellation.h.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
V : Opens ↑↑(restrict X hf)
⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) =
NatTrans.app g₂.c (op V)
[PROOFSTEP]
have hV : (Opens.map (X.ofRestrict hf).base).obj (hf.isOpenMap.functor.obj V) = V :=
by
ext1
exact Set.preimage_image_eq _ hf.inj
[GOAL]
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
V : Opens ↑↑(restrict X hf)
⊢ (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V
[PROOFSTEP]
ext1
[GOAL]
case h
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
V : Opens ↑↑(restrict X hf)
⊢ ↑((Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) = ↑V
[PROOFSTEP]
exact Set.preimage_image_eq _ hf.inj
[GOAL]
case right_cancellation.h.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
V : Opens ↑↑(restrict X hf)
hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V
⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) =
NatTrans.app g₂.c (op V)
[PROOFSTEP]
haveI : IsIso (hf.isOpenMap.adjunction.counit.app (unop (op (hf.isOpenMap.functor.obj V)))) :=
NatIso.isIso_app_of_isIso (whiskerLeft hf.isOpenMap.functor hf.isOpenMap.adjunction.counit) V
[GOAL]
case right_cancellation.h.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this✝ : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
V : Opens ↑↑(restrict X hf)
hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V
this :
IsIso
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)
⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) =
NatTrans.app g₂.c (op V)
[PROOFSTEP]
have := PresheafedSpace.congr_app eq (op (hf.isOpenMap.functor.obj V))
[GOAL]
case right_cancellation.h.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this✝¹ : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
V : Opens ↑↑(restrict X hf)
hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V
this✝ :
IsIso
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)
this :
NatTrans.app (g₁ ≫ ofRestrict X hf).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) =
NatTrans.app (g₂ ≫ ofRestrict X hf).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) ≫
Z.presheaf.map
(eqToHom
(_ :
(Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) =
(Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V))))
⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) =
NatTrans.app g₂.c (op V)
[PROOFSTEP]
simp only [PresheafedSpace.comp_c_app, PresheafedSpace.ofRestrict_c_app, Category.assoc, cancel_epi] at this
[GOAL]
case right_cancellation.h.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this✝¹ : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
V : Opens ↑↑(restrict X hf)
hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V
this✝ :
IsIso
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)
this :
NatTrans.app g₁.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) =
NatTrans.app g₂.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫
Z.presheaf.map
(eqToHom
(_ :
(Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) =
(Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V))))
⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) =
NatTrans.app g₂.c (op V)
[PROOFSTEP]
have h : _ ≫ _ = _ ≫ _ ≫ _ := congr_arg (fun f => (X.restrict hf).presheaf.map (eqToHom hV).op ≫ f) this
[GOAL]
case right_cancellation.h.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this✝¹ : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
V : Opens ↑↑(restrict X hf)
hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V
this✝ :
IsIso
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)
this :
NatTrans.app g₁.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) =
NatTrans.app g₂.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫
Z.presheaf.map
(eqToHom
(_ :
(Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) =
(Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V))))
h :
(restrict X hf).presheaf.map (eqToHom hV).op ≫
NatTrans.app g₁.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) =
(restrict X hf).presheaf.map (eqToHom hV).op ≫
NatTrans.app g₂.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫
Z.presheaf.map
(eqToHom
(_ :
(Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) =
(Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V))))
⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) =
NatTrans.app g₂.c (op V)
[PROOFSTEP]
erw [g₁.c.naturality, g₂.c.naturality_assoc] at h
[GOAL]
case right_cancellation.h.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this✝¹ : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
V : Opens ↑↑(restrict X hf)
hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V
this✝ :
IsIso
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)
this :
NatTrans.app g₁.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) =
NatTrans.app g₂.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫
Z.presheaf.map
(eqToHom
(_ :
(Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) =
(Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V))))
h :
NatTrans.app g₁.c (op V) ≫ (g₁.base _* Z.presheaf).map (eqToHom hV).op =
NatTrans.app g₂.c (op V) ≫
(g₂.base _* Z.presheaf).map (eqToHom hV).op ≫
Z.presheaf.map
(eqToHom
(_ :
(Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) =
(Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V))))
⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) =
NatTrans.app g₂.c (op V)
[PROOFSTEP]
simp only [Presheaf.pushforwardObj_map, eqToHom_op, Category.assoc, eqToHom_map, eqToHom_trans] at h
[GOAL]
case right_cancellation.h.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this✝¹ : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
V : Opens ↑↑(restrict X hf)
hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V
this✝ :
IsIso
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)
this :
NatTrans.app g₁.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) =
NatTrans.app g₂.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫
Z.presheaf.map
(eqToHom
(_ :
(Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) =
(Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V))))
h :
NatTrans.app g₁.c (op V) ≫
eqToHom
(_ :
Z.presheaf.obj ((Opens.map g₁.base).op.obj (op V)) =
Z.presheaf.obj
((Opens.map g₁.base).op.obj
(op ((Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V))))) =
NatTrans.app g₂.c (op V) ≫
eqToHom
(_ :
(g₂.base _* Z.presheaf).obj (op V) =
(g₁.base _* Z.presheaf).obj
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)))
⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) =
NatTrans.app g₂.c (op V)
[PROOFSTEP]
rw [← IsIso.comp_inv_eq, inv_eqToHom, Category.assoc, eqToHom_trans] at h
[GOAL]
case right_cancellation.h.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this✝¹ : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
V : Opens ↑↑(restrict X hf)
hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V
this✝ :
IsIso
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)
this :
NatTrans.app g₁.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) =
NatTrans.app g₂.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫
Z.presheaf.map
(eqToHom
(_ :
(Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) =
(Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V))))
h :
NatTrans.app g₁.c (op V) ≫ eqToHom (_ : (g₁.base _* Z.presheaf).obj (op V) = (g₂.base _* Z.presheaf).obj (op V)) =
NatTrans.app g₂.c (op V)
⊢ NatTrans.app (g₁.c ≫ whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) =
NatTrans.app g₂.c (op V)
[PROOFSTEP]
rw [NatTrans.comp_app]
[GOAL]
case right_cancellation.h.w
C : Type u_1
inst✝ : Category.{?u.247153, u_1} C
U : TopCat
X : PresheafedSpace C
f : U ⟶ ↑X
hf : OpenEmbedding ↑f
this✝¹ : Mono f
Z : PresheafedSpace C
g₁ g₂ : Z ⟶ restrict X hf
eq : g₁ ≫ ofRestrict X hf = g₂ ≫ ofRestrict X hf
V : Opens ↑↑(restrict X hf)
hV : (Opens.map (ofRestrict X hf).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V) = V
this✝ :
IsIso
(NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑f)).counit
(op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)
this :
NatTrans.app g₁.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) =
NatTrans.app g₂.c
(op ((Opens.map (ofRestrict X hf).base).obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)).unop)) ≫
Z.presheaf.map
(eqToHom
(_ :
(Opens.map (g₂ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V)) =
(Opens.map (g₁ ≫ ofRestrict X hf).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑f)).obj V))))
h :
NatTrans.app g₁.c (op V) ≫ eqToHom (_ : (g₁.base _* Z.presheaf).obj (op V) = (g₂.base _* Z.presheaf).obj (op V)) =
NatTrans.app g₂.c (op V)
⊢ NatTrans.app g₁.c (op V) ≫
NatTrans.app (whiskerRight (eqToHom (_ : (Opens.map g₁.base).op = (Opens.map g₂.base).op)) Z.presheaf) (op V) =
NatTrans.app g₂.c (op V)
[PROOFSTEP]
simpa using h
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X : PresheafedSpace C
⊢ (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).presheaf = (Opens.inclusionTopIso ↑X).inv _* X.presheaf
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X : PresheafedSpace C
⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ⊤))).op ⋙ X.presheaf =
(Opens.inclusionTopIso ↑X).inv _* X.presheaf
[PROOFSTEP]
rw [Opens.inclusion_top_functor X.carrier]
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X : PresheafedSpace C
⊢ (Opens.map (Opens.inclusionTopIso ↑X).inv).op ⋙ X.presheaf = (Opens.inclusionTopIso ↑X).inv _* X.presheaf
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝ : Category.{?u.265841, u_1} C
X : PresheafedSpace C
⊢ X.presheaf =
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).base _*
(restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).presheaf
[PROOFSTEP]
rw [restrict_top_presheaf, ← Presheaf.Pushforward.comp_eq]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.265841, u_1} C
X : PresheafedSpace C
⊢ X.presheaf =
((Opens.inclusionTopIso ↑X).inv ≫ (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).base) _* X.presheaf
[PROOFSTEP]
erw [Iso.inv_hom_id]
[GOAL]
C : Type u_1
inst✝ : Category.{?u.265841, u_1} C
X : PresheafedSpace C
⊢ X.presheaf = 𝟙 ↑X _* X.presheaf
[PROOFSTEP]
rw [Presheaf.Pushforward.id_eq]
[GOAL]
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X : PresheafedSpace C
⊢ (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).c =
eqToHom
(_ :
X.presheaf =
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).base _*
(restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).presheaf)
[PROOFSTEP]
ext
[GOAL]
case w
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X : PresheafedSpace C
U✝ : Opens ↑↑X
⊢ NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).c (op U✝) =
NatTrans.app
(eqToHom
(_ :
X.presheaf =
(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).base _*
(restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).presheaf))
(op U✝)
[PROOFSTEP]
dsimp [ofRestrict]
[GOAL]
case w
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X : PresheafedSpace C
U✝ : Opens ↑↑X
⊢ X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion ⊤))).counit U✝).op =
NatTrans.app
(eqToHom
(_ :
X.presheaf = Opens.inclusion ⊤ _* ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ⊤))).op ⋙ X.presheaf)))
(op U✝)
[PROOFSTEP]
erw [eqToHom_map, eqToHom_app]
[GOAL]
case w.p
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X : PresheafedSpace C
U✝ : Opens ↑↑X
⊢ op U✝ = op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ⊤))).obj ((Opens.map (Opens.inclusion ⊤)).obj U✝))
case w.p
C : Type u_1
inst✝ : Category.{u_2, u_1} C
X : PresheafedSpace C
U✝ : Opens ↑↑X
⊢ op U✝ = op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ⊤))).obj ((Opens.map (Opens.inclusion ⊤)).obj U✝))
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝ : Category.{?u.273541, u_1} C
X : PresheafedSpace C
⊢ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)) ≫ toRestrictTop X =
𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))
[PROOFSTEP]
ext
[GOAL]
case w.w
C : Type u_1
inst✝ : Category.{?u.273541, u_1} C
X : PresheafedSpace C
x✝ : (CategoryTheory.forget TopCat).obj ↑(restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))
⊢ ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)) ≫ toRestrictTop X).base x✝ =
↑(𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))).base x✝
[PROOFSTEP]
rfl
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.273541, u_1} C
X : PresheafedSpace C
U✝ : Opens ↑↑(restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))
⊢ NatTrans.app
((ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)) ≫ toRestrictTop X).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)) ≫ toRestrictTop X).base).op =
(Opens.map (𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))).base).op))
(restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).presheaf)
(op U✝) =
NatTrans.app (𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))).c (op U✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.273541, u_1} C
X : PresheafedSpace C
U✝ : Opens ↑↑(restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))
⊢ NatTrans.app
((ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)) ≫ toRestrictTop X).c ≫
whiskerRight (𝟙 (Opens.map (Opens.inclusion ⊤ ≫ (Opens.inclusionTopIso ↑X).inv)).op)
((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ⊤))).op ⋙ X.presheaf))
(op U✝) =
NatTrans.app (𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))).c (op U✝)
[PROOFSTEP]
erw [comp_c, toRestrictTop_c, whiskerRight_id', comp_id, ofRestrict_top_c, eqToHom_map, eqToHom_trans, eqToHom_refl]
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.273541, u_1} C
X : PresheafedSpace C
U✝ : Opens ↑↑(restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))
⊢ NatTrans.app (𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).presheaf) (op U✝) =
NatTrans.app (𝟙 (restrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)))).c (op U✝)
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝ : Category.{?u.273541, u_1} C
X : PresheafedSpace C
⊢ toRestrictTop X ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤)) = 𝟙 X
[PROOFSTEP]
ext
[GOAL]
case w.w
C : Type u_1
inst✝ : Category.{?u.273541, u_1} C
X : PresheafedSpace C
x✝ : (CategoryTheory.forget TopCat).obj ↑X
⊢ ↑(toRestrictTop X ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).base x✝ = ↑(𝟙 X).base x✝
[PROOFSTEP]
rfl
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.273541, u_1} C
X : PresheafedSpace C
U✝ : Opens ↑↑X
⊢ NatTrans.app
((toRestrictTop X ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map (toRestrictTop X ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).base).op =
(Opens.map (𝟙 X).base).op))
X.presheaf)
(op U✝) =
NatTrans.app (𝟙 X).c (op U✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.273541, u_1} C
X : PresheafedSpace C
U✝ : Opens ↑↑X
⊢ NatTrans.app
((toRestrictTop X ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ⊤))).c ≫
whiskerRight (𝟙 (Opens.map ((Opens.inclusionTopIso ↑X).inv ≫ Opens.inclusion ⊤)).op) X.presheaf)
(op U✝) =
NatTrans.app (𝟙 X).c (op U✝)
[PROOFSTEP]
erw [comp_c, ofRestrict_top_c, toRestrictTop_c, eqToHom_map, whiskerRight_id', comp_id, eqToHom_trans, eqToHom_refl]
[GOAL]
case h.w
C : Type u_1
inst✝ : Category.{?u.273541, u_1} C
X : PresheafedSpace C
U✝ : Opens ↑↑X
⊢ NatTrans.app (𝟙 X.presheaf) (op U✝) = NatTrans.app (𝟙 X).c (op U✝)
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.293007, u_1} C
D : Type u_2
inst✝ : Category.{?u.293014, u_2} D
F : C ⥤ D
X : PresheafedSpace C
⊢ { obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
(𝟙 X) =
𝟙
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X)
[PROOFSTEP]
ext U
[GOAL]
case w.w
C : Type u_1
inst✝¹ : Category.{?u.293007, u_1} C
D : Type u_2
inst✝ : Category.{?u.293014, u_2} D
F : C ⥤ D
X : PresheafedSpace C
U :
(forget TopCat).obj
↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X)
⊢ ↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
(𝟙 X)).base
U =
↑(𝟙
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X)).base
U
case h.w
C : Type u_1
inst✝¹ : Category.{?u.293007, u_1} C
D : Type u_2
inst✝ : Category.{?u.293014, u_2} D
F : C ⥤ D
X : PresheafedSpace C
U :
Opens
↑↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X)
⊢ NatTrans.app
(({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
(𝟙 X)).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
(𝟙 X)).base).op =
(Opens.map
(𝟙
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X)).base).op))
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X).presheaf)
(op U) =
NatTrans.app
(𝟙
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X)).c
(op U)
[PROOFSTEP]
rfl
[GOAL]
case h.w
C : Type u_1
inst✝¹ : Category.{?u.293007, u_1} C
D : Type u_2
inst✝ : Category.{?u.293014, u_2} D
F : C ⥤ D
X : PresheafedSpace C
U :
Opens
↑↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X)
⊢ NatTrans.app
(({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
(𝟙 X)).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
(𝟙 X)).base).op =
(Opens.map
(𝟙
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X)).base).op))
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X).presheaf)
(op U) =
NatTrans.app
(𝟙
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X)).c
(op U)
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.293007, u_1} C
D : Type u_2
inst✝ : Category.{?u.293014, u_2} D
F : C ⥤ D
X✝ Y✝ Z✝ : PresheafedSpace C
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ { obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
(f ≫ g) =
{ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
f ≫
{ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
g
[PROOFSTEP]
ext U
[GOAL]
case w.w
C : Type u_1
inst✝¹ : Category.{?u.293007, u_1} C
D : Type u_2
inst✝ : Category.{?u.293014, u_2} D
F : C ⥤ D
X✝ Y✝ Z✝ : PresheafedSpace C
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
U :
(forget TopCat).obj
↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X✝)
⊢ ↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
(f ≫ g)).base
U =
↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
f ≫
{ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
g).base
U
case h.w
C : Type u_1
inst✝¹ : Category.{?u.293007, u_1} C
D : Type u_2
inst✝ : Category.{?u.293014, u_2} D
F : C ⥤ D
X✝ Y✝ Z✝ : PresheafedSpace C
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
U :
Opens
↑↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
Z✝)
⊢ NatTrans.app
(({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
(f ≫ g)).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
(f ≫ g)).base).op =
(Opens.map
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
f ≫
{ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
g).base).op))
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X✝).presheaf)
(op U) =
NatTrans.app
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
f ≫
{ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
g).c
(op U)
[PROOFSTEP]
rfl
[GOAL]
case h.w
C : Type u_1
inst✝¹ : Category.{?u.293007, u_1} C
D : Type u_2
inst✝ : Category.{?u.293014, u_2} D
F : C ⥤ D
X✝ Y✝ Z✝ : PresheafedSpace C
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
U :
Opens
↑↑({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
Z✝)
⊢ NatTrans.app
(({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
(f ≫ g)).c ≫
whiskerRight
(eqToHom
(_ :
(Opens.map
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
(f ≫ g)).base).op =
(Opens.map
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
f ≫
{ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
g).base).op))
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.obj
X✝).presheaf)
(op U) =
NatTrans.app
({ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
f ≫
{ obj := fun X => { carrier := ↑X, presheaf := X.presheaf ⋙ F },
map := fun {X Y} f => { base := f.base, c := whiskerRight f.c F } }.map
g).c
(op U)
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.PresheafedSpace", "llama_tokens": 28360} |
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
ϕ : L →ᴸ L'
L'' : Language
F G : L →ᴸ L'
h_fun : F.onFunction = G.onFunction
h_rel : F.onRelation = G.onRelation
⊢ F = G
[PROOFSTEP]
cases' F with Ff Fr
[GOAL]
case mk
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
ϕ : L →ᴸ L'
L'' : Language
G : L →ᴸ L'
Ff : ⦃n : ℕ⦄ → Functions L n → Functions L' n
Fr : ⦃n : ℕ⦄ → Relations L n → Relations L' n
h_fun : { onFunction := Ff, onRelation := Fr }.onFunction = G.onFunction
h_rel : { onFunction := Ff, onRelation := Fr }.onRelation = G.onRelation
⊢ { onFunction := Ff, onRelation := Fr } = G
[PROOFSTEP]
cases' G with Gf Gr
[GOAL]
case mk.mk
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
ϕ : L →ᴸ L'
L'' : Language
Ff : ⦃n : ℕ⦄ → Functions L n → Functions L' n
Fr : ⦃n : ℕ⦄ → Relations L n → Relations L' n
Gf : ⦃n : ℕ⦄ → Functions L n → Functions L' n
Gr : ⦃n : ℕ⦄ → Relations L n → Relations L' n
h_fun : { onFunction := Ff, onRelation := Fr }.onFunction = { onFunction := Gf, onRelation := Gr }.onFunction
h_rel : { onFunction := Ff, onRelation := Fr }.onRelation = { onFunction := Gf, onRelation := Gr }.onRelation
⊢ { onFunction := Ff, onRelation := Fr } = { onFunction := Gf, onRelation := Gr }
[PROOFSTEP]
simp only [mk.injEq]
[GOAL]
case mk.mk
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
ϕ : L →ᴸ L'
L'' : Language
Ff : ⦃n : ℕ⦄ → Functions L n → Functions L' n
Fr : ⦃n : ℕ⦄ → Relations L n → Relations L' n
Gf : ⦃n : ℕ⦄ → Functions L n → Functions L' n
Gr : ⦃n : ℕ⦄ → Relations L n → Relations L' n
h_fun : { onFunction := Ff, onRelation := Fr }.onFunction = { onFunction := Gf, onRelation := Gr }.onFunction
h_rel : { onFunction := Ff, onRelation := Fr }.onRelation = { onFunction := Gf, onRelation := Gr }.onRelation
⊢ Ff = Gf ∧ Fr = Gr
[PROOFSTEP]
exact And.intro h_fun h_rel
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
ϕ : L →ᴸ L'
L'' : Language
F : L →ᴸ L'
⊢ LHom.id L' ∘ᴸ F = F
[PROOFSTEP]
cases F
[GOAL]
case mk
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
ϕ : L →ᴸ L'
L'' : Language
onFunction✝ : ⦃n : ℕ⦄ → Functions L n → Functions L' n
onRelation✝ : ⦃n : ℕ⦄ → Relations L n → Relations L' n
⊢ LHom.id L' ∘ᴸ { onFunction := onFunction✝, onRelation := onRelation✝ } =
{ onFunction := onFunction✝, onRelation := onRelation✝ }
[PROOFSTEP]
rfl
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
ϕ : L →ᴸ L'
L'' : Language
F : L →ᴸ L'
⊢ F ∘ᴸ LHom.id L = F
[PROOFSTEP]
cases F
[GOAL]
case mk
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
ϕ : L →ᴸ L'
L'' : Language
onFunction✝ : ⦃n : ℕ⦄ → Functions L n → Functions L' n
onRelation✝ : ⦃n : ℕ⦄ → Relations L n → Relations L' n
⊢ { onFunction := onFunction✝, onRelation := onRelation✝ } ∘ᴸ LHom.id L =
{ onFunction := onFunction✝, onRelation := onRelation✝ }
[PROOFSTEP]
rfl
[GOAL]
L : Language
L' : Language
M✝ : Type w
inst✝⁵ : Structure L M✝
ϕ : L →ᴸ L'
L''✝ : Language
L'' : Language
ψ : L'' →ᴸ L'
M : Type u_1
inst✝⁴ : Structure L M
inst✝³ : Structure L' M
inst✝² : Structure L'' M
inst✝¹ : IsExpansionOn ϕ M
inst✝ : IsExpansionOn ψ M
n✝ : ℕ
f : Functions (Language.sum L L'') n✝
x✝ : Fin n✝ → M
⊢ ∀ (val : Functions L n✝), funMap (onFunction (LHom.sumElim ϕ ψ) (Sum.inl val)) x✝ = funMap (Sum.inl val) x✝
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M✝ : Type w
inst✝⁵ : Structure L M✝
ϕ : L →ᴸ L'
L''✝ : Language
L'' : Language
ψ : L'' →ᴸ L'
M : Type u_1
inst✝⁴ : Structure L M
inst✝³ : Structure L' M
inst✝² : Structure L'' M
inst✝¹ : IsExpansionOn ϕ M
inst✝ : IsExpansionOn ψ M
n✝ : ℕ
f : Functions (Language.sum L L'') n✝
x✝ : Fin n✝ → M
⊢ ∀ (val : Functions L'' n✝), funMap (onFunction (LHom.sumElim ϕ ψ) (Sum.inr val)) x✝ = funMap (Sum.inr val) x✝
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M✝ : Type w
inst✝⁵ : Structure L M✝
ϕ : L →ᴸ L'
L''✝ : Language
L'' : Language
ψ : L'' →ᴸ L'
M : Type u_1
inst✝⁴ : Structure L M
inst✝³ : Structure L' M
inst✝² : Structure L'' M
inst✝¹ : IsExpansionOn ϕ M
inst✝ : IsExpansionOn ψ M
n✝ : ℕ
R : Relations (Language.sum L L'') n✝
x✝ : Fin n✝ → M
⊢ ∀ (val : Relations L n✝), RelMap (onRelation (LHom.sumElim ϕ ψ) (Sum.inl val)) x✝ = RelMap (Sum.inl val) x✝
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M✝ : Type w
inst✝⁵ : Structure L M✝
ϕ : L →ᴸ L'
L''✝ : Language
L'' : Language
ψ : L'' →ᴸ L'
M : Type u_1
inst✝⁴ : Structure L M
inst✝³ : Structure L' M
inst✝² : Structure L'' M
inst✝¹ : IsExpansionOn ϕ M
inst✝ : IsExpansionOn ψ M
n✝ : ℕ
R : Relations (Language.sum L L'') n✝
x✝ : Fin n✝ → M
⊢ ∀ (val : Relations L'' n✝), RelMap (onRelation (LHom.sumElim ϕ ψ) (Sum.inr val)) x✝ = RelMap (Sum.inr val) x✝
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M✝ : Type w
inst✝⁶ : Structure L M✝
ϕ : L →ᴸ L'
L'' : Language
L₁ : Language
L₂ : Language
ψ : L₁ →ᴸ L₂
M : Type u_1
inst✝⁵ : Structure L M
inst✝⁴ : Structure L' M
inst✝³ : Structure L₁ M
inst✝² : Structure L₂ M
inst✝¹ : IsExpansionOn ϕ M
inst✝ : IsExpansionOn ψ M
n✝ : ℕ
f : Functions (Language.sum L L₁) n✝
x✝ : Fin n✝ → M
⊢ ∀ (val : Functions L n✝), funMap (onFunction (sumMap ϕ ψ) (Sum.inl val)) x✝ = funMap (Sum.inl val) x✝
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M✝ : Type w
inst✝⁶ : Structure L M✝
ϕ : L →ᴸ L'
L'' : Language
L₁ : Language
L₂ : Language
ψ : L₁ →ᴸ L₂
M : Type u_1
inst✝⁵ : Structure L M
inst✝⁴ : Structure L' M
inst✝³ : Structure L₁ M
inst✝² : Structure L₂ M
inst✝¹ : IsExpansionOn ϕ M
inst✝ : IsExpansionOn ψ M
n✝ : ℕ
f : Functions (Language.sum L L₁) n✝
x✝ : Fin n✝ → M
⊢ ∀ (val : Functions L₁ n✝), funMap (onFunction (sumMap ϕ ψ) (Sum.inr val)) x✝ = funMap (Sum.inr val) x✝
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M✝ : Type w
inst✝⁶ : Structure L M✝
ϕ : L →ᴸ L'
L'' : Language
L₁ : Language
L₂ : Language
ψ : L₁ →ᴸ L₂
M : Type u_1
inst✝⁵ : Structure L M
inst✝⁴ : Structure L' M
inst✝³ : Structure L₁ M
inst✝² : Structure L₂ M
inst✝¹ : IsExpansionOn ϕ M
inst✝ : IsExpansionOn ψ M
n✝ : ℕ
R : Relations (Language.sum L L₁) n✝
x✝ : Fin n✝ → M
⊢ ∀ (val : Relations L n✝), RelMap (onRelation (sumMap ϕ ψ) (Sum.inl val)) x✝ = RelMap (Sum.inl val) x✝
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M✝ : Type w
inst✝⁶ : Structure L M✝
ϕ : L →ᴸ L'
L'' : Language
L₁ : Language
L₂ : Language
ψ : L₁ →ᴸ L₂
M : Type u_1
inst✝⁵ : Structure L M
inst✝⁴ : Structure L' M
inst✝³ : Structure L₁ M
inst✝² : Structure L₂ M
inst✝¹ : IsExpansionOn ϕ M
inst✝ : IsExpansionOn ψ M
n✝ : ℕ
R : Relations (Language.sum L L₁) n✝
x✝ : Fin n✝ → M
⊢ ∀ (val : Relations L₁ n✝), RelMap (onRelation (sumMap ϕ ψ) (Sum.inr val)) x✝ = RelMap (Sum.inr val) x✝
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M✝ : Type w
inst✝⁴ : Structure L M✝
ϕ✝ : L →ᴸ L'
L'' : Language
ϕ : L →ᴸ L'
inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f)
inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r)
h : LHom.Injective ϕ
M : Type u_1
inst✝¹ : Inhabited M
inst✝ : Structure L M
⊢ IsExpansionOn ϕ M
[PROOFSTEP]
letI := ϕ.defaultExpansion M
[GOAL]
L : Language
L' : Language
M✝ : Type w
inst✝⁴ : Structure L M✝
ϕ✝ : L →ᴸ L'
L'' : Language
ϕ : L →ᴸ L'
inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f)
inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r)
h : LHom.Injective ϕ
M : Type u_1
inst✝¹ : Inhabited M
inst✝ : Structure L M
this : Structure L' M := defaultExpansion ϕ M
⊢ IsExpansionOn ϕ M
[PROOFSTEP]
refine' ⟨fun {n} f xs => _, fun {n} r xs => _⟩
[GOAL]
case refine'_1
L : Language
L' : Language
M✝ : Type w
inst✝⁴ : Structure L M✝
ϕ✝ : L →ᴸ L'
L'' : Language
ϕ : L →ᴸ L'
inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f)
inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r)
h : LHom.Injective ϕ
M : Type u_1
inst✝¹ : Inhabited M
inst✝ : Structure L M
this : Structure L' M := defaultExpansion ϕ M
n : ℕ
f : Functions L n
xs : Fin n → M
⊢ funMap (LHom.onFunction ϕ f) xs = funMap f xs
[PROOFSTEP]
have hf : ϕ.onFunction f ∈ Set.range fun f : L.Functions n => ϕ.onFunction f := ⟨f, rfl⟩
[GOAL]
case refine'_1
L : Language
L' : Language
M✝ : Type w
inst✝⁴ : Structure L M✝
ϕ✝ : L →ᴸ L'
L'' : Language
ϕ : L →ᴸ L'
inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f)
inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r)
h : LHom.Injective ϕ
M : Type u_1
inst✝¹ : Inhabited M
inst✝ : Structure L M
this : Structure L' M := defaultExpansion ϕ M
n : ℕ
f : Functions L n
xs : Fin n → M
hf : LHom.onFunction ϕ f ∈ Set.range fun f => LHom.onFunction ϕ f
⊢ funMap (LHom.onFunction ϕ f) xs = funMap f xs
[PROOFSTEP]
refine' (dif_pos hf).trans _
[GOAL]
case refine'_1
L : Language
L' : Language
M✝ : Type w
inst✝⁴ : Structure L M✝
ϕ✝ : L →ᴸ L'
L'' : Language
ϕ : L →ᴸ L'
inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f)
inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r)
h : LHom.Injective ϕ
M : Type u_1
inst✝¹ : Inhabited M
inst✝ : Structure L M
this : Structure L' M := defaultExpansion ϕ M
n : ℕ
f : Functions L n
xs : Fin n → M
hf : LHom.onFunction ϕ f ∈ Set.range fun f => LHom.onFunction ϕ f
⊢ funMap (Exists.choose hf) xs = funMap f xs
[PROOFSTEP]
rw [h.onFunction hf.choose_spec]
[GOAL]
case refine'_2
L : Language
L' : Language
M✝ : Type w
inst✝⁴ : Structure L M✝
ϕ✝ : L →ᴸ L'
L'' : Language
ϕ : L →ᴸ L'
inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f)
inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r)
h : LHom.Injective ϕ
M : Type u_1
inst✝¹ : Inhabited M
inst✝ : Structure L M
this : Structure L' M := defaultExpansion ϕ M
n : ℕ
r : Relations L n
xs : Fin n → M
⊢ RelMap (LHom.onRelation ϕ r) xs = RelMap r xs
[PROOFSTEP]
have hr : ϕ.onRelation r ∈ Set.range fun r : L.Relations n => ϕ.onRelation r := ⟨r, rfl⟩
[GOAL]
case refine'_2
L : Language
L' : Language
M✝ : Type w
inst✝⁴ : Structure L M✝
ϕ✝ : L →ᴸ L'
L'' : Language
ϕ : L →ᴸ L'
inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f)
inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r)
h : LHom.Injective ϕ
M : Type u_1
inst✝¹ : Inhabited M
inst✝ : Structure L M
this : Structure L' M := defaultExpansion ϕ M
n : ℕ
r : Relations L n
xs : Fin n → M
hr : LHom.onRelation ϕ r ∈ Set.range fun r => LHom.onRelation ϕ r
⊢ RelMap (LHom.onRelation ϕ r) xs = RelMap r xs
[PROOFSTEP]
refine' (dif_pos hr).trans _
[GOAL]
case refine'_2
L : Language
L' : Language
M✝ : Type w
inst✝⁴ : Structure L M✝
ϕ✝ : L →ᴸ L'
L'' : Language
ϕ : L →ᴸ L'
inst✝³ : (n : ℕ) → (f : Functions L' n) → Decidable (f ∈ Set.range fun f => LHom.onFunction ϕ f)
inst✝² : (n : ℕ) → (r : Relations L' n) → Decidable (r ∈ Set.range fun r => LHom.onRelation ϕ r)
h : LHom.Injective ϕ
M : Type u_1
inst✝¹ : Inhabited M
inst✝ : Structure L M
this : Structure L' M := defaultExpansion ϕ M
n : ℕ
r : Relations L n
xs : Fin n → M
hr : LHom.onRelation ϕ r ∈ Set.range fun r => LHom.onRelation ϕ r
⊢ RelMap (Exists.choose hr) xs = RelMap r xs
[PROOFSTEP]
rw [h.onRelation hr.choose_spec]
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
L'' : Language
e'✝ : L' ≃ᴸ L''
e✝ e : L ≃ᴸ L'
e' : L' ≃ᴸ L''
⊢ LHom.comp (LHom.comp e.invLHom e'.invLHom) (LHom.comp e'.toLHom e.toLHom) = LHom.id L
[PROOFSTEP]
rw [LHom.comp_assoc, ← LHom.comp_assoc e'.invLHom, e'.left_inv, LHom.id_comp, e.left_inv]
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
L'' : Language
e'✝ : L' ≃ᴸ L''
e✝ e : L ≃ᴸ L'
e' : L' ≃ᴸ L''
⊢ LHom.comp (LHom.comp e'.toLHom e.toLHom) (LHom.comp e.invLHom e'.invLHom) = LHom.id L''
[PROOFSTEP]
rw [LHom.comp_assoc, ← LHom.comp_assoc e.toLHom, e.right_inv, LHom.id_comp, e'.right_inv]
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
α : Type u'
⊢ card (constantsOn α) = #α
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
α : Type u'
β : Type v'
f : α → β
fα : α → M
fβ : β → M
h : fβ ∘ f = fα
⊢ LHom.IsExpansionOn (LHom.constantsOnMap f) M
[PROOFSTEP]
letI := constantsOn.structure fα
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
α : Type u'
β : Type v'
f : α → β
fα : α → M
fβ : β → M
h : fβ ∘ f = fα
this : Structure (constantsOn α) M := constantsOn.structure fα
⊢ LHom.IsExpansionOn (LHom.constantsOnMap f) M
[PROOFSTEP]
letI := constantsOn.structure fβ
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
α : Type u'
β : Type v'
f : α → β
fα : α → M
fβ : β → M
h : fβ ∘ f = fα
this✝ : Structure (constantsOn α) M := constantsOn.structure fα
this : Structure (constantsOn β) M := constantsOn.structure fβ
⊢ LHom.IsExpansionOn (LHom.constantsOnMap f) M
[PROOFSTEP]
exact ⟨fun {n} => Nat.casesOn n (fun F _x => (congr_fun h F : _)) fun n F => isEmptyElim F, fun R => isEmptyElim R⟩
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
α : Type w'
⊢ card (L[[α]]) = lift (card L) + lift #α
[PROOFSTEP]
rw [withConstants, card_sum, card_constantsOn]
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
α : Type w'
ie : IsEmpty α
⊢ LHom.comp (LHom.sumElim (LHom.id L) (LHom.ofIsEmpty (constantsOn α) L)) (lhomWithConstants L α) = LHom.id L
[PROOFSTEP]
rw [lhomWithConstants, LHom.sumElim_comp_inl]
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
α : Type w'
ie : IsEmpty α
⊢ LHom.comp (lhomWithConstants L α) (LHom.sumElim (LHom.id L) (LHom.ofIsEmpty (constantsOn α) L)) = LHom.id (L[[α]])
[PROOFSTEP]
simp only [LHom.comp_sumElim, lhomWithConstants, LHom.comp_id]
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
α : Type w'
ie : IsEmpty α
⊢ LHom.sumElim LHom.sumInl (LHom.comp LHom.sumInl (LHom.ofIsEmpty (constantsOn α) L)) = LHom.id (L[[α]])
[PROOFSTEP]
exact _root_.trans (congr rfl (Subsingleton.elim _ _)) LHom.sumElim_inl_inr
[GOAL]
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
α : Type w'
β : Type u_1
f : α → β
⊢ comp (lhomWithConstantsMap L f) LHom.sumInl = lhomWithConstants L β
[PROOFSTEP]
ext
[GOAL]
case h_fun.h.h
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
α : Type w'
β : Type u_1
f : α → β
x✝¹ : ℕ
x✝ : Functions L x✝¹
⊢ onFunction (comp (lhomWithConstantsMap L f) LHom.sumInl) x✝ = onFunction (lhomWithConstants L β) x✝
[PROOFSTEP]
rfl
[GOAL]
case h_rel.h.h
L : Language
L' : Language
M : Type w
inst✝ : Structure L M
α : Type w'
β : Type u_1
f : α → β
x✝¹ : ℕ
x✝ : Relations L x✝¹
⊢ onRelation (comp (lhomWithConstantsMap L f) LHom.sumInl) x✝ = onRelation (lhomWithConstants L β) x✝
[PROOFSTEP]
rfl
[GOAL]
L : Language
L' : Language
M : Type w
inst✝¹ : Structure L M
α : Type u_1
inst✝ : Structure (constantsOn α) M
a : α
x : Fin 0 → M
⊢ funMap (Sum.inr a) x = ↑(Language.con L a)
[PROOFSTEP]
rw [Unique.eq_default x]
[GOAL]
L : Language
L' : Language
M : Type w
inst✝¹ : Structure L M
α : Type u_1
inst✝ : Structure (constantsOn α) M
a : α
x : Fin 0 → M
⊢ funMap (Sum.inr a) default = ↑(Language.con L a)
[PROOFSTEP]
exact (LHom.sumInr : constantsOn α →ᴸ L.sum _).map_onFunction _ _
| {"mathlib_filename": "Mathlib.ModelTheory.LanguageMap", "llama_tokens": 7482} |
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Monoid G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
g : G
r : k
⊢ ↑(asAlgebraHom ρ) (Finsupp.single g r) = r • ↑ρ g
[PROOFSTEP]
simp only [asAlgebraHom_def, MonoidAlgebra.lift_single]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Monoid G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
g : G
⊢ ↑(asAlgebraHom ρ) (Finsupp.single g 1) = ↑ρ g
[PROOFSTEP]
simp
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Monoid G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
g : G
⊢ ↑(asAlgebraHom ρ) (↑(of k G) g) = ↑ρ g
[PROOFSTEP]
simp only [MonoidAlgebra.of_apply, asAlgebraHom_single, one_smul]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Monoid G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
r : k
x : V
⊢ ↑(AddEquiv.symm (asModuleEquiv ρ)) (r • x) =
↑(algebraMap k (MonoidAlgebra k G)) r • ↑(AddEquiv.symm (asModuleEquiv ρ)) x
[PROOFSTEP]
apply_fun ρ.asModuleEquiv
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Monoid G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
r : k
x : V
⊢ ↑(asModuleEquiv ρ) (↑(AddEquiv.symm (asModuleEquiv ρ)) (r • x)) =
↑(asModuleEquiv ρ) (↑(algebraMap k (MonoidAlgebra k G)) r • ↑(AddEquiv.symm (asModuleEquiv ρ)) x)
[PROOFSTEP]
simp
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Monoid G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
g : G
x : V
⊢ ↑(AddEquiv.symm (asModuleEquiv ρ)) (↑(↑ρ g) x) = ↑(of k G) g • ↑(AddEquiv.symm (asModuleEquiv ρ)) x
[PROOFSTEP]
apply_fun ρ.asModuleEquiv
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Monoid G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
g : G
x : V
⊢ ↑(asModuleEquiv ρ) (↑(AddEquiv.symm (asModuleEquiv ρ)) (↑(↑ρ g) x)) =
↑(asModuleEquiv ρ) (↑(of k G) g • ↑(AddEquiv.symm (asModuleEquiv ρ)) x)
[PROOFSTEP]
simp
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
M : Type u_4
inst✝¹ : AddCommMonoid M
inst✝ : Module (MonoidAlgebra k G) M
r : MonoidAlgebra k G
m : RestrictScalars k (MonoidAlgebra k G) M
⊢ ↑(↑(asAlgebraHom (ofModule M)) r) m =
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))
(r • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)
[PROOFSTEP]
apply MonoidAlgebra.induction_on r
[GOAL]
case hM
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
M : Type u_4
inst✝¹ : AddCommMonoid M
inst✝ : Module (MonoidAlgebra k G) M
r : MonoidAlgebra k G
m : RestrictScalars k (MonoidAlgebra k G) M
⊢ ∀ (g : G),
↑(↑(asAlgebraHom (ofModule M)) (↑(of k G) g)) m =
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))
(↑(of k G) g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)
[PROOFSTEP]
intro g
[GOAL]
case hM
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
M : Type u_4
inst✝¹ : AddCommMonoid M
inst✝ : Module (MonoidAlgebra k G) M
r : MonoidAlgebra k G
m : RestrictScalars k (MonoidAlgebra k G) M
g : G
⊢ ↑(↑(asAlgebraHom (ofModule M)) (↑(of k G) g)) m =
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))
(↑(of k G) g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)
[PROOFSTEP]
simp only [one_smul, MonoidAlgebra.lift_symm_apply, MonoidAlgebra.of_apply, Representation.asAlgebraHom_single,
Representation.ofModule, AddEquiv.apply_eq_iff_eq, RestrictScalars.lsmul_apply_apply]
[GOAL]
case hadd
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
M : Type u_4
inst✝¹ : AddCommMonoid M
inst✝ : Module (MonoidAlgebra k G) M
r : MonoidAlgebra k G
m : RestrictScalars k (MonoidAlgebra k G) M
⊢ ∀ (f g : MonoidAlgebra k G),
↑(↑(asAlgebraHom (ofModule M)) f) m =
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))
(f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) →
↑(↑(asAlgebraHom (ofModule M)) g) m =
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))
(g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) →
↑(↑(asAlgebraHom (ofModule M)) (f + g)) m =
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))
((f + g) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)
[PROOFSTEP]
intro f g fw gw
[GOAL]
case hadd
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
M : Type u_4
inst✝¹ : AddCommMonoid M
inst✝ : Module (MonoidAlgebra k G) M
r : MonoidAlgebra k G
m : RestrictScalars k (MonoidAlgebra k G) M
f g : MonoidAlgebra k G
fw :
↑(↑(asAlgebraHom (ofModule M)) f) m =
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))
(f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)
gw :
↑(↑(asAlgebraHom (ofModule M)) g) m =
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))
(g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)
⊢ ↑(↑(asAlgebraHom (ofModule M)) (f + g)) m =
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))
((f + g) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)
[PROOFSTEP]
simp only [fw, gw, map_add, add_smul, LinearMap.add_apply]
[GOAL]
case hsmul
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
M : Type u_4
inst✝¹ : AddCommMonoid M
inst✝ : Module (MonoidAlgebra k G) M
r : MonoidAlgebra k G
m : RestrictScalars k (MonoidAlgebra k G) M
⊢ ∀ (r : k) (f : MonoidAlgebra k G),
↑(↑(asAlgebraHom (ofModule M)) f) m =
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))
(f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) →
↑(↑(asAlgebraHom (ofModule M)) (r • f)) m =
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))
((r • f) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)
[PROOFSTEP]
intro r f w
[GOAL]
case hsmul
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
M : Type u_4
inst✝¹ : AddCommMonoid M
inst✝ : Module (MonoidAlgebra k G) M
r✝ : MonoidAlgebra k G
m : RestrictScalars k (MonoidAlgebra k G) M
r : k
f : MonoidAlgebra k G
w :
↑(↑(asAlgebraHom (ofModule M)) f) m =
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))
(f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)
⊢ ↑(↑(asAlgebraHom (ofModule M)) (r • f)) m =
↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))
((r • f) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)
[PROOFSTEP]
simp only [w, AlgHom.map_smul, LinearMap.smul_apply, RestrictScalars.addEquiv_symm_map_smul_smul]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
M : Type u_4
inst✝¹ : AddCommMonoid M
inst✝ : Module (MonoidAlgebra k G) M
g : G
x : RestrictScalars k (MonoidAlgebra k G) (asModule ρ)
⊢ ↑(↑(ofModule (asModule ρ)) g) x =
↑(AddEquiv.symm
(RestrictScalars.addEquiv k (MonoidAlgebra k G)
((fun x => asModule ρ)
(↑(↑ρ g) (↑(asModuleEquiv ρ) (↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) x))))))
(↑(AddEquiv.symm (asModuleEquiv ρ))
(↑(↑ρ g) (↑(asModuleEquiv ρ) (↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) x))))
[PROOFSTEP]
apply_fun RestrictScalars.addEquiv _ _ ρ.asModule using (RestrictScalars.addEquiv _ _ ρ.asModule).injective
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
M : Type u_4
inst✝¹ : AddCommMonoid M
inst✝ : Module (MonoidAlgebra k G) M
g : G
x : RestrictScalars k (MonoidAlgebra k G) (asModule ρ)
⊢ ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) (↑(↑(ofModule (asModule ρ)) g) x) =
↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ))
(↑(AddEquiv.symm
(RestrictScalars.addEquiv k (MonoidAlgebra k G)
((fun x => asModule ρ)
(↑(↑ρ g) (↑(asModuleEquiv ρ) (↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) x))))))
(↑(AddEquiv.symm (asModuleEquiv ρ))
(↑(↑ρ g) (↑(asModuleEquiv ρ) (↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) x)))))
[PROOFSTEP]
dsimp [ofModule, RestrictScalars.lsmul_apply_apply]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
M : Type u_4
inst✝¹ : AddCommMonoid M
inst✝ : Module (MonoidAlgebra k G) M
g : G
x : RestrictScalars k (MonoidAlgebra k G) (asModule ρ)
⊢ ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ))
(↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)))
(MonoidAlgebra.single g 1 • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) x)) =
↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ))
(↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)))
(↑(AddEquiv.symm (asModuleEquiv ρ))
(↑(↑ρ g) (↑(asModuleEquiv ρ) (↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) (asModule ρ)) x)))))
[PROOFSTEP]
simp
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
M : Type u_4
inst✝¹ : AddCommMonoid M
inst✝ : Module (MonoidAlgebra k G) M
r : MonoidAlgebra k G
m : asModule (ofModule M)
⊢ ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) (↑(asModuleEquiv (ofModule M)) (r • m)) =
r • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) (↑(asModuleEquiv (ofModule M)) m)
[PROOFSTEP]
dsimp
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
M : Type u_4
inst✝¹ : AddCommMonoid M
inst✝ : Module (MonoidAlgebra k G) M
r : MonoidAlgebra k G
m : asModule (ofModule M)
⊢ ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M)
(↑(↑(asAlgebraHom (ofModule M)) r) (↑(asModuleEquiv (ofModule M)) m)) =
r • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) (↑(asModuleEquiv (ofModule M)) m)
[PROOFSTEP]
simp only [AddEquiv.apply_symm_apply, ofModule_asAlgebraHom_apply_apply]
[GOAL]
k : Type u_1
inst✝² : CommSemiring k
G : Type u_2
inst✝¹ : Monoid G
H : Type u_3
inst✝ : MulAction G H
⊢ (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1
[PROOFSTEP]
ext x y
[GOAL]
case h.h.h
k : Type u_1
inst✝² : CommSemiring k
G : Type u_2
inst✝¹ : Monoid G
H : Type u_3
inst✝ : MulAction G H
x y : H
⊢ ↑(↑(comp ((fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1) (Finsupp.lsingle x)) 1) y =
↑(↑(comp 1 (Finsupp.lsingle x)) 1) y
[PROOFSTEP]
dsimp
[GOAL]
case h.h.h
k : Type u_1
inst✝² : CommSemiring k
G : Type u_2
inst✝¹ : Monoid G
H : Type u_3
inst✝ : MulAction G H
x y : H
⊢ ↑(Finsupp.mapDomain (fun x => 1 • x) (Finsupp.single x 1)) y = ↑(Finsupp.single x 1) y
[PROOFSTEP]
simp
[GOAL]
k : Type u_1
inst✝² : CommSemiring k
G : Type u_2
inst✝¹ : Monoid G
H : Type u_3
inst✝ : MulAction G H
x y : G
⊢ OneHom.toFun
{ toFun := fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g),
map_one' := (_ : (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1) }
(x * y) =
OneHom.toFun
{ toFun := fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g),
map_one' := (_ : (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1) }
x *
OneHom.toFun
{ toFun := fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g),
map_one' := (_ : (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1) }
y
[PROOFSTEP]
ext z w
[GOAL]
case h.h.h
k : Type u_1
inst✝² : CommSemiring k
G : Type u_2
inst✝¹ : Monoid G
H : Type u_3
inst✝ : MulAction G H
x y : G
z w : H
⊢ ↑(↑(comp
(OneHom.toFun
{ toFun := fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g),
map_one' := (_ : (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1) }
(x * y))
(Finsupp.lsingle z))
1)
w =
↑(↑(comp
(OneHom.toFun
{ toFun := fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g),
map_one' := (_ : (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1) }
x *
OneHom.toFun
{ toFun := fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g),
map_one' := (_ : (fun g => Finsupp.lmapDomain k k ((fun x x_1 => x • x_1) g)) 1 = 1) }
y)
(Finsupp.lsingle z))
1)
w
[PROOFSTEP]
simp [mul_smul]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁴ : CommSemiring k
inst✝³ : Group G
inst✝² : AddCommMonoid V
inst✝¹ : Module k V
ρ : Representation k G V
H : Type u_4
inst✝ : MulAction G H
g : G
f : H →₀ k
h : H
⊢ ↑(↑(↑(ofMulAction k G H) g) f) h = ↑f (g⁻¹ • h)
[PROOFSTEP]
conv_lhs => rw [← smul_inv_smul g h]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁴ : CommSemiring k
inst✝³ : Group G
inst✝² : AddCommMonoid V
inst✝¹ : Module k V
ρ : Representation k G V
H : Type u_4
inst✝ : MulAction G H
g : G
f : H →₀ k
h : H
| ↑(↑(↑(ofMulAction k G H) g) f) h
[PROOFSTEP]
rw [← smul_inv_smul g h]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁴ : CommSemiring k
inst✝³ : Group G
inst✝² : AddCommMonoid V
inst✝¹ : Module k V
ρ : Representation k G V
H : Type u_4
inst✝ : MulAction G H
g : G
f : H →₀ k
h : H
| ↑(↑(↑(ofMulAction k G H) g) f) h
[PROOFSTEP]
rw [← smul_inv_smul g h]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁴ : CommSemiring k
inst✝³ : Group G
inst✝² : AddCommMonoid V
inst✝¹ : Module k V
ρ : Representation k G V
H : Type u_4
inst✝ : MulAction G H
g : G
f : H →₀ k
h : H
| ↑(↑(↑(ofMulAction k G H) g) f) h
[PROOFSTEP]
rw [← smul_inv_smul g h]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁴ : CommSemiring k
inst✝³ : Group G
inst✝² : AddCommMonoid V
inst✝¹ : Module k V
ρ : Representation k G V
H : Type u_4
inst✝ : MulAction G H
g : G
f : H →₀ k
h : H
⊢ ↑(↑(↑(ofMulAction k G H) g) f) (g • g⁻¹ • h) = ↑f (g⁻¹ • h)
[PROOFSTEP]
let h' := g⁻¹ • h
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁴ : CommSemiring k
inst✝³ : Group G
inst✝² : AddCommMonoid V
inst✝¹ : Module k V
ρ : Representation k G V
H : Type u_4
inst✝ : MulAction G H
g : G
f : H →₀ k
h : H
h' : H := g⁻¹ • h
⊢ ↑(↑(↑(ofMulAction k G H) g) f) (g • g⁻¹ • h) = ↑f (g⁻¹ • h)
[PROOFSTEP]
change ofMulAction k G H g f (g • h') = f h'
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁴ : CommSemiring k
inst✝³ : Group G
inst✝² : AddCommMonoid V
inst✝¹ : Module k V
ρ : Representation k G V
H : Type u_4
inst✝ : MulAction G H
g : G
f : H →₀ k
h : H
h' : H := g⁻¹ • h
⊢ ↑(↑(↑(ofMulAction k G H) g) f) (g • h') = ↑f h'
[PROOFSTEP]
have hg : Function.Injective ((· • ·) g : H → H) := by
intro h₁ h₂
simp
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁴ : CommSemiring k
inst✝³ : Group G
inst✝² : AddCommMonoid V
inst✝¹ : Module k V
ρ : Representation k G V
H : Type u_4
inst✝ : MulAction G H
g : G
f : H →₀ k
h : H
h' : H := g⁻¹ • h
⊢ Function.Injective ((fun x x_1 => x • x_1) g)
[PROOFSTEP]
intro h₁ h₂
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁴ : CommSemiring k
inst✝³ : Group G
inst✝² : AddCommMonoid V
inst✝¹ : Module k V
ρ : Representation k G V
H : Type u_4
inst✝ : MulAction G H
g : G
f : H →₀ k
h : H
h' : H := g⁻¹ • h
h₁ h₂ : H
⊢ (fun x x_1 => x • x_1) g h₁ = (fun x x_1 => x • x_1) g h₂ → h₁ = h₂
[PROOFSTEP]
simp
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁴ : CommSemiring k
inst✝³ : Group G
inst✝² : AddCommMonoid V
inst✝¹ : Module k V
ρ : Representation k G V
H : Type u_4
inst✝ : MulAction G H
g : G
f : H →₀ k
h : H
h' : H := g⁻¹ • h
hg : Function.Injective ((fun x x_1 => x • x_1) g)
⊢ ↑(↑(↑(ofMulAction k G H) g) f) (g • h') = ↑f h'
[PROOFSTEP]
simp only [ofMulAction_def, Finsupp.lmapDomain_apply, Finsupp.mapDomain_apply, hg]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
x : MonoidAlgebra k G
y : asModule (ofMulAction k G G)
g : G
⊢ (fun z => z • y = z * y) (↑(of k G) g)
[PROOFSTEP]
show asAlgebraHom (ofMulAction k G G) _ _ = _
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
x : MonoidAlgebra k G
y : asModule (ofMulAction k G G)
g : G
⊢ ↑(↑(asAlgebraHom (ofMulAction k G G)) (↑(of k G) g)) y = ↑(of k G) g * y
[PROOFSTEP]
ext
[GOAL]
case h
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
x : MonoidAlgebra k G
y : asModule (ofMulAction k G G)
g a✝ : G
⊢ ↑(↑(↑(asAlgebraHom (ofMulAction k G G)) (↑(of k G) g)) y) a✝ = ↑(↑(of k G) g * y) a✝
[PROOFSTEP]
simp only [MonoidAlgebra.of_apply, asAlgebraHom_single, one_smul, ofMulAction_apply, smul_eq_mul]
-- Porting note : single_mul_apply not firing in simp
[GOAL]
case h
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
x : MonoidAlgebra k G
y : asModule (ofMulAction k G G)
g a✝ : G
⊢ ↑y (g⁻¹ * a✝) = ↑(MonoidAlgebra.single g 1 * y) a✝
[PROOFSTEP]
rw [MonoidAlgebra.single_mul_apply, one_mul]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
x✝ : MonoidAlgebra k G
y✝ : asModule (ofMulAction k G G)
x y : MonoidAlgebra k G
hx : (fun z => z • y✝ = z * y✝) x
hy : (fun z => z • y✝ = z * y✝) y
⊢ (fun z => z • y✝ = z * y✝) (x + y)
[PROOFSTEP]
simp only [hx, hy, add_mul, add_smul]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
x✝ : MonoidAlgebra k G
y : asModule (ofMulAction k G G)
r : k
x : MonoidAlgebra k G
hx : (fun z => z • y = z * y) x
⊢ (fun z => z • y = z * y) (r • x)
[PROOFSTEP]
show
asAlgebraHom (ofMulAction k G G) _ _ =
_
-- Porting note: was simpa [← hx]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
x✝ : MonoidAlgebra k G
y : asModule (ofMulAction k G G)
r : k
x : MonoidAlgebra k G
hx : (fun z => z • y = z * y) x
⊢ ↑(↑(asAlgebraHom (ofMulAction k G G)) (r • x)) y = r • x * y
[PROOFSTEP]
simp only [map_smul, smul_apply, Algebra.smul_mul_assoc]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
x✝ : MonoidAlgebra k G
y : asModule (ofMulAction k G G)
r : k
x : MonoidAlgebra k G
hx : (fun z => z • y = z * y) x
⊢ r • ↑(↑(asAlgebraHom (ofMulAction k G G)) x) y = r • (x * y)
[PROOFSTEP]
rw [← hx]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
x✝ : MonoidAlgebra k G
y : asModule (ofMulAction k G G)
r : k
x : MonoidAlgebra k G
hx : (fun z => z • y = z * y) x
⊢ r • ↑(↑(asAlgebraHom (ofMulAction k G G)) x) y = r • x • y
[PROOFSTEP]
rfl
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
g : G
⊢ ↑(↑(asGroupHom ρ) g) = ↑ρ g
[PROOFSTEP]
simp only [asGroupHom, MonoidHom.coe_toHomUnits]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
⊢ (fun g => map (↑ρV g) (↑ρW g)) 1 = 1
[PROOFSTEP]
simp only [_root_.map_one, TensorProduct.map_one]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
g h : G
⊢ OneHom.toFun { toFun := fun g => map (↑ρV g) (↑ρW g), map_one' := (_ : map (↑ρV 1) (↑ρW 1) = 1) } (g * h) =
OneHom.toFun { toFun := fun g => map (↑ρV g) (↑ρW g), map_one' := (_ : map (↑ρV 1) (↑ρW 1) = 1) } g *
OneHom.toFun { toFun := fun g => map (↑ρV g) (↑ρW g), map_one' := (_ : map (↑ρV 1) (↑ρW 1) = 1) } h
[PROOFSTEP]
simp only [_root_.map_mul, TensorProduct.map_mul]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
r : MonoidAlgebra k G
x : V
y : W
⊢ let x' := x;
let z := x ⊗ₜ[k] y;
r • z = (r • x') ⊗ₜ[k] y
[PROOFSTEP]
show asAlgebraHom (ρV ⊗ 1) _ _ = asAlgebraHom ρV _ _ ⊗ₜ _
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
r : MonoidAlgebra k G
x : V
y : W
⊢ ↑(↑(asAlgebraHom (ρV ⊗ 1)) r) (x ⊗ₜ[k] y) = ↑(↑(asAlgebraHom ρV) r) x ⊗ₜ[k] y
[PROOFSTEP]
simp only [asAlgebraHom_def, MonoidAlgebra.lift_apply, tprod_apply, MonoidHom.one_apply, LinearMap.finsupp_sum_apply,
LinearMap.smul_apply, TensorProduct.map_tmul, LinearMap.one_apply]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
r : MonoidAlgebra k G
x : V
y : W
⊢ (Finsupp.sum r fun i d => d • ↑(↑ρV i) x ⊗ₜ[k] y) = (Finsupp.sum r fun i d => d • ↑(↑ρV i) x) ⊗ₜ[k] y
[PROOFSTEP]
simp only [Finsupp.sum, TensorProduct.sum_tmul]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
r : MonoidAlgebra k G
x : V
y : W
⊢ (Finset.sum r.support fun x_1 => ↑r x_1 • ↑(↑ρV x_1) x ⊗ₜ[k] y) =
Finset.sum r.support fun a => (↑r a • ↑(↑ρV a) x) ⊗ₜ[k] y
[PROOFSTEP]
rfl
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
r : MonoidAlgebra k G
x : V
y : W
⊢ let y' := y;
let z := x ⊗ₜ[k] y;
r • z = x ⊗ₜ[k] (r • y')
[PROOFSTEP]
show asAlgebraHom (1 ⊗ ρW) _ _ = _ ⊗ₜ asAlgebraHom ρW _ _
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
r : MonoidAlgebra k G
x : V
y : W
⊢ ↑(↑(asAlgebraHom (1 ⊗ ρW)) r) (x ⊗ₜ[k] y) = x ⊗ₜ[k] ↑(↑(asAlgebraHom ρW) r) y
[PROOFSTEP]
simp only [asAlgebraHom_def, MonoidAlgebra.lift_apply, tprod_apply, MonoidHom.one_apply, LinearMap.finsupp_sum_apply,
LinearMap.smul_apply, TensorProduct.map_tmul, LinearMap.one_apply]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
r : MonoidAlgebra k G
x : V
y : W
⊢ (Finsupp.sum r fun i d => d • x ⊗ₜ[k] ↑(↑ρW i) y) = x ⊗ₜ[k] Finsupp.sum r fun i d => d • ↑(↑ρW i) y
[PROOFSTEP]
simp only [Finsupp.sum, TensorProduct.tmul_sum, TensorProduct.tmul_smul]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
g : G
f₁ f₂ : V →ₗ[k] W
⊢ (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂
[PROOFSTEP]
simp_rw [add_comp, comp_add]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
g : G
r : k
f : V →ₗ[k] W
⊢ AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ + (fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
f
[PROOFSTEP]
simp_rw [RingHom.id_apply, smul_comp, comp_smul]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
x : V →ₗ[k] W
⊢ ↑((fun g =>
{
toAddHom :=
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) },
map_smul' :=
(_ :
∀ (r : k) (f : V →ₗ[k] W),
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
f) })
1)
x =
↑1 x
[PROOFSTEP]
dsimp
-- Porting note: now needed
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
x : V →ₗ[k] W
⊢ comp (↑ρW 1) (comp x (↑ρV 1⁻¹)) = x
[PROOFSTEP]
simp_rw [inv_one, map_one, one_eq_id, comp_id, id_comp]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
g h : G
x : V →ₗ[k] W
⊢ ↑(OneHom.toFun
{
toFun := fun g =>
{
toAddHom :=
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) },
map_smul' :=
(_ :
∀ (r : k) (f : V →ₗ[k] W),
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
f) },
map_one' :=
(_ :
(fun g =>
{
toAddHom :=
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) },
map_smul' :=
(_ :
∀ (r : k) (f : V →ₗ[k] W),
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
f) })
1 =
1) }
(g * h))
x =
↑(OneHom.toFun
{
toFun := fun g =>
{
toAddHom :=
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) },
map_smul' :=
(_ :
∀ (r : k) (f : V →ₗ[k] W),
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
f) },
map_one' :=
(_ :
(fun g =>
{
toAddHom :=
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) },
map_smul' :=
(_ :
∀ (r : k) (f : V →ₗ[k] W),
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
f) })
1 =
1) }
g *
OneHom.toFun
{
toFun := fun g =>
{
toAddHom :=
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) },
map_smul' :=
(_ :
∀ (r : k) (f : V →ₗ[k] W),
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
f) },
map_one' :=
(_ :
(fun g =>
{
toAddHom :=
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) },
map_smul' :=
(_ :
∀ (r : k) (f : V →ₗ[k] W),
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹)),
map_add' :=
(_ :
∀ (f₁ f₂ : V →ₗ[k] W),
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) (f₁ + f₂) =
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₁ +
(fun f => comp (↑ρW g) (comp f (↑ρV g⁻¹))) f₂) }
f) })
1 =
1) }
h)
x
[PROOFSTEP]
dsimp
-- Porting note: now needed
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
g h : G
x : V →ₗ[k] W
⊢ comp (↑ρW (g * h)) (comp x (↑ρV (g * h)⁻¹)) = comp (↑ρW g) (comp (comp (↑ρW h) (comp x (↑ρV h⁻¹))) (↑ρV g⁻¹))
[PROOFSTEP]
simp_rw [mul_inv_rev, map_mul, mul_eq_comp, comp_assoc]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
g : G
f₁ f₂ : Module.Dual k V
⊢ (fun f => comp f (↑ρV g⁻¹)) (f₁ + f₂) = (fun f => comp f (↑ρV g⁻¹)) f₁ + (fun f => comp f (↑ρV g⁻¹)) f₂
[PROOFSTEP]
simp only [add_comp]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
g : G
r : k
f : Module.Dual k V
⊢ AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f
[PROOFSTEP]
ext
[GOAL]
case h
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
g : G
r : k
f : Module.Dual k V
x✝ : V
⊢ ↑(AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f))
x✝ =
↑(↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f)
x✝
[PROOFSTEP]
simp only [coe_comp, Function.comp_apply, smul_apply, RingHom.id_apply]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
⊢ (fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) })
1 =
1
[PROOFSTEP]
ext
[GOAL]
case h.h
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
x✝¹ : Module.Dual k V
x✝ : V
⊢ ↑(↑((fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) })
1)
x✝¹)
x✝ =
↑(↑1 x✝¹) x✝
[PROOFSTEP]
dsimp
-- Porting note: now needed
[GOAL]
case h.h
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
x✝¹ : Module.Dual k V
x✝ : V
⊢ ↑x✝¹ (↑(↑ρV 1⁻¹) x✝) = ↑x✝¹ x✝
[PROOFSTEP]
simp only [coe_comp, Function.comp_apply, map_one, inv_one, coe_mk, one_apply]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
g h : G
⊢ OneHom.toFun
{
toFun := fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) },
map_one' :=
(_ :
(fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) })
1 =
1) }
(g * h) =
OneHom.toFun
{
toFun := fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) },
map_one' :=
(_ :
(fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) =
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) })
1 =
1) }
g *
OneHom.toFun
{
toFun := fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) },
map_one' :=
(_ :
(fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) =
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) })
1 =
1) }
h
[PROOFSTEP]
ext
[GOAL]
case h.h
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
g h : G
x✝¹ : Module.Dual k V
x✝ : V
⊢ ↑(↑(OneHom.toFun
{
toFun := fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) },
map_one' :=
(_ :
(fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) =
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) =
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) })
1 =
1) }
(g * h))
x✝¹)
x✝ =
↑(↑(OneHom.toFun
{
toFun := fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) =
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) },
map_one' :=
(_ :
(fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) =
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) =
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) =
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) })
1 =
1) }
g *
OneHom.toFun
{
toFun := fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) = comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) =
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) },
map_one' :=
(_ :
(fun g =>
{
toAddHom :=
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) =
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) },
map_smul' :=
(_ :
∀ (r : k) (f : Module.Dual k V),
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) =
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
(r • f) =
↑(RingHom.id k) r •
AddHom.toFun
{ toFun := fun f => comp f (↑ρV g⁻¹),
map_add' :=
(_ :
∀ (f₁ f₂ : Module.Dual k V),
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹) =
comp f₁ (↑ρV g⁻¹) + comp f₂ (↑ρV g⁻¹)) }
f) })
1 =
1) }
h)
x✝¹)
x✝
[PROOFSTEP]
dsimp
-- Porting note: now needed
[GOAL]
case h.h
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
g h : G
x✝¹ : Module.Dual k V
x✝ : V
⊢ ↑x✝¹ (↑(↑ρV (g * h)⁻¹) x✝) = ↑x✝¹ (↑(↑ρV h⁻¹) (↑(↑ρV g⁻¹) x✝))
[PROOFSTEP]
simp only [coe_comp, Function.comp_apply, mul_inv_rev, map_mul, coe_mk, mul_apply]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
g : G
⊢ comp (dualTensorHom k V W) (TensorProduct.map (↑(dual ρV) g) (↑ρW g)) = comp (↑(linHom ρV ρW) g) (dualTensorHom k V W)
[PROOFSTEP]
ext
[GOAL]
case a.h.h.h
k : Type u_1
G : Type u_2
V : Type u_3
W : Type u_4
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : AddCommMonoid W
inst✝ : Module k W
ρV : Representation k G V
ρW : Representation k G W
g : G
x✝² : Module.Dual k V
x✝¹ : W
x✝ : V
⊢ ↑(↑(↑(TensorProduct.AlgebraTensorModule.curry (comp (dualTensorHom k V W) (TensorProduct.map (↑(dual ρV) g) (↑ρW g))))
x✝²)
x✝¹)
x✝ =
↑(↑(↑(TensorProduct.AlgebraTensorModule.curry (comp (↑(linHom ρV ρW) g) (dualTensorHom k V W))) x✝²) x✝¹) x✝
[PROOFSTEP]
simp [Module.Dual.transpose_apply]
| {"mathlib_filename": "Mathlib.RepresentationTheory.Basic", "llama_tokens": 26063} |
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
f : Functions L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
⊢ funMap f x ≈ funMap f y
[PROOFSTEP]
refine' mem_of_superset (iInter_mem.2 xy) fun a ha => _
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
f : Functions L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
a : α
ha : a ∈ ⋂ (i : Fin n), {x_1 | (fun a => x i a = y i a) x_1}
⊢ a ∈ {x_1 | (fun a => funMap f x a = funMap f y a) x_1}
[PROOFSTEP]
simp only [Set.mem_iInter, Set.mem_setOf_eq] at ha
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
f : Functions L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
a : α
ha : ∀ (i : Fin n), x i a = y i a
⊢ a ∈ {x_1 | (fun a => funMap f x a = funMap f y a) x_1}
[PROOFSTEP]
simp only [Set.mem_setOf_eq, ha]
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
r : Relations L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
⊢ RelMap r x = RelMap r y
[PROOFSTEP]
rw [← iff_eq_eq]
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
r : Relations L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
⊢ RelMap r x ↔ RelMap r y
[PROOFSTEP]
refine' ⟨fun hx => _, fun hy => _⟩
[GOAL]
case refine'_1
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
r : Relations L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
hx : RelMap r x
⊢ RelMap r y
[PROOFSTEP]
refine' mem_of_superset (inter_mem hx (iInter_mem.2 xy)) _
[GOAL]
case refine'_1
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
r : Relations L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
hx : RelMap r x
⊢ {x_1 | (fun a => RelMap r fun i => x i a) x_1} ∩ ⋂ (i : Fin n), {x_1 | (fun a => x i a = y i a) x_1} ⊆
{x | (fun a => RelMap r fun i => y i a) x}
[PROOFSTEP]
rintro a ⟨ha1, ha2⟩
[GOAL]
case refine'_1.intro
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
r : Relations L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
hx : RelMap r x
a : α
ha1 : a ∈ {x_1 | (fun a => RelMap r fun i => x i a) x_1}
ha2 : a ∈ ⋂ (i : Fin n), {x_1 | (fun a => x i a = y i a) x_1}
⊢ a ∈ {x | (fun a => RelMap r fun i => y i a) x}
[PROOFSTEP]
simp only [Set.mem_iInter, Set.mem_setOf_eq] at *
[GOAL]
case refine'_1.intro
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
r : Relations L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
hx : ∀ᶠ (a : α) in ↑u, RelMap r fun i => x i a
a : α
ha1 : RelMap r fun i => x i a
ha2 : ∀ (i : Fin n), x i a = y i a
⊢ RelMap r fun i => y i a
[PROOFSTEP]
rw [← funext ha2]
[GOAL]
case refine'_1.intro
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
r : Relations L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
hx : ∀ᶠ (a : α) in ↑u, RelMap r fun i => x i a
a : α
ha1 : RelMap r fun i => x i a
ha2 : ∀ (i : Fin n), x i a = y i a
⊢ RelMap r fun x_1 => x x_1 a
[PROOFSTEP]
exact ha1
[GOAL]
case refine'_2
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
r : Relations L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
hy : RelMap r y
⊢ RelMap r x
[PROOFSTEP]
refine' mem_of_superset (inter_mem hy (iInter_mem.2 xy)) _
[GOAL]
case refine'_2
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
r : Relations L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
hy : RelMap r y
⊢ {x | (fun a => RelMap r fun i => y i a) x} ∩ ⋂ (i : Fin n), {x_1 | (fun a => x i a = y i a) x_1} ⊆
{x_1 | (fun a => RelMap r fun i => x i a) x_1}
[PROOFSTEP]
rintro a ⟨ha1, ha2⟩
[GOAL]
case refine'_2.intro
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
r : Relations L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
hy : RelMap r y
a : α
ha1 : a ∈ {x | (fun a => RelMap r fun i => y i a) x}
ha2 : a ∈ ⋂ (i : Fin n), {x_1 | (fun a => x i a = y i a) x_1}
⊢ a ∈ {x_1 | (fun a => RelMap r fun i => x i a) x_1}
[PROOFSTEP]
simp only [Set.mem_iInter, Set.mem_setOf_eq] at *
[GOAL]
case refine'_2.intro
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
r : Relations L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
hy : ∀ᶠ (a : α) in ↑u, RelMap r fun i => y i a
a : α
ha1 : RelMap r fun i => y i a
ha2 : ∀ (i : Fin n), x i a = y i a
⊢ RelMap r fun i => x i a
[PROOFSTEP]
rw [funext ha2]
[GOAL]
case refine'_2.intro
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
src✝ : Setoid ((a : α) → M a) := productSetoid (↑u) M
n : ℕ
r : Relations L n
x y : Fin n → (a : α) → M a
xy : x ≈ y
hy : ∀ᶠ (a : α) in ↑u, RelMap r fun i => y i a
a : α
ha1 : RelMap r fun i => y i a
ha2 : ∀ (i : Fin n), x i a = y i a
⊢ RelMap r fun x => y x a
[PROOFSTEP]
exact ha1
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
n : ℕ
f : Functions L n
x : Fin n → (a : α) → M a
⊢ (funMap f fun i => Quotient.mk' (x i)) = Quotient.mk' fun a => funMap f fun i => x i a
[PROOFSTEP]
apply funMap_quotient_mk'
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
β : Type u_3
x : β → (a : α) → M a
t : Term L β
⊢ Term.realize (fun i => Quotient.mk' (x i)) t = Quotient.mk' fun a => Term.realize (fun i => x i a) t
[PROOFSTEP]
convert
@Term.realize_quotient_mk' L _ ((u : Filter α).productSetoid M) (Ultraproduct.setoidPrestructure M u) _ t x using 2
[GOAL]
case h.e'_3.h.e'_3
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
β : Type u_3
x : β → (a : α) → M a
t : Term L β
⊢ (fun a => Term.realize (fun i => x i a) t) = Term.realize x t
[PROOFSTEP]
ext a
[GOAL]
case h.e'_3.h.e'_3.h
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
β : Type u_3
x : β → (a : α) → M a
t : Term L β
a : α
⊢ Term.realize (fun i => x i a) t = Term.realize x t a
[PROOFSTEP]
induction t
[GOAL]
case h.e'_3.h.e'_3.h.var
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
β : Type u_3
x : β → (a : α) → M a
a : α
_a✝ : β
⊢ Term.realize (fun i => x i a) (var _a✝) = Term.realize x (var _a✝) a
case h.e'_3.h.e'_3.h.func
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
β : Type u_3
x : β → (a : α) → M a
a : α
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L β
_ts_ih✝ : ∀ (a_1 : Fin l✝), Term.realize (fun i => x i a) (_ts✝ a_1) = Term.realize x (_ts✝ a_1) a
⊢ Term.realize (fun i => x i a) (func _f✝ _ts✝) = Term.realize x (func _f✝ _ts✝) a
[PROOFSTEP]
case var => rfl
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
β : Type u_3
x : β → (a : α) → M a
a : α
_a✝ : β
⊢ Term.realize (fun i => x i a) (var _a✝) = Term.realize x (var _a✝) a
[PROOFSTEP]
case var => rfl
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
β : Type u_3
x : β → (a : α) → M a
a : α
_a✝ : β
⊢ Term.realize (fun i => x i a) (var _a✝) = Term.realize x (var _a✝) a
[PROOFSTEP]
rfl
[GOAL]
case h.e'_3.h.e'_3.h.func
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
β : Type u_3
x : β → (a : α) → M a
a : α
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L β
_ts_ih✝ : ∀ (a_1 : Fin l✝), Term.realize (fun i => x i a) (_ts✝ a_1) = Term.realize x (_ts✝ a_1) a
⊢ Term.realize (fun i => x i a) (func _f✝ _ts✝) = Term.realize x (func _f✝ _ts✝) a
[PROOFSTEP]
case func _ _ _ t_ih =>
simp only [Term.realize, t_ih]
rfl
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
β : Type u_3
x : β → (a : α) → M a
a : α
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L β
t_ih : ∀ (a_1 : Fin l✝), Term.realize (fun i => x i a) (_ts✝ a_1) = Term.realize x (_ts✝ a_1) a
⊢ Term.realize (fun i => x i a) (func _f✝ _ts✝) = Term.realize x (func _f✝ _ts✝) a
[PROOFSTEP]
case func _ _ _ t_ih =>
simp only [Term.realize, t_ih]
rfl
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
β : Type u_3
x : β → (a : α) → M a
a : α
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L β
t_ih : ∀ (a_1 : Fin l✝), Term.realize (fun i => x i a) (_ts✝ a_1) = Term.realize x (_ts✝ a_1) a
⊢ Term.realize (fun i => x i a) (func _f✝ _ts✝) = Term.realize x (func _f✝ _ts✝) a
[PROOFSTEP]
simp only [Term.realize, t_ih]
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝ : (a : α) → Structure L (M a)
β : Type u_3
x : β → (a : α) → M a
a : α
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L β
t_ih : ∀ (a_1 : Fin l✝), Term.realize (fun i => x i a) (_ts✝ a_1) = Term.realize x (_ts✝ a_1) a
⊢ (funMap _f✝ fun i => Term.realize x (_ts✝ i) a) = funMap _f✝ (fun i => Term.realize x (_ts✝ i)) a
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
φ : BoundedFormula L β n
x : β → (a : α) → M a
v : Fin n → (a : α) → M a
⊢ (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
[PROOFSTEP]
letI := (u : Filter α).productSetoid M
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
φ : BoundedFormula L β n
x : β → (a : α) → M a
v : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
⊢ (BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
[PROOFSTEP]
induction' φ with _ _ _ _ _ _ _ _ m _ _ ih ih' k φ ih
[GOAL]
case falsum
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ : ℕ
v : Fin n✝ → (a : α) → M a
⊢ (BoundedFormula.Realize BoundedFormula.falsum (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize BoundedFormula.falsum (fun i => x i a) fun i => v i a
[PROOFSTEP]
simp only [BoundedFormula.Realize, eventually_const]
[GOAL]
case equal
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ : ℕ
t₁✝ t₂✝ : Term L (β ⊕ Fin n✝)
v : Fin n✝ → (a : α) → M a
⊢ (BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) (fun i => x i a) fun i => v i a
[PROOFSTEP]
have h2 : ∀ a : α, (Sum.elim (fun i : β => x i a) fun i => v i a) = fun i => Sum.elim x v i a := fun a =>
funext fun i => Sum.casesOn i (fun i => rfl) fun i => rfl
[GOAL]
case equal
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ : ℕ
t₁✝ t₂✝ : Term L (β ⊕ Fin n✝)
v : Fin n✝ → (a : α) → M a
h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a
⊢ (BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) (fun i => x i a) fun i => v i a
[PROOFSTEP]
simp only [BoundedFormula.Realize, h2, term_realize_cast]
[GOAL]
case equal
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ : ℕ
t₁✝ t₂✝ : Term L (β ⊕ Fin n✝)
v : Fin n✝ → (a : α) → M a
h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a
⊢ Term.realize (Sum.elim (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) t₁✝ =
Term.realize (Sum.elim (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) t₂✝ ↔
∀ᶠ (a : α) in ↑u, Term.realize (fun i => Sum.elim x v i a) t₁✝ = Term.realize (fun i => Sum.elim x v i a) t₂✝
[PROOFSTEP]
erw [(Sum.comp_elim ((↑) : (∀ a, M a) → (u : Filter α).Product M) x v).symm, term_realize_cast, term_realize_cast]
[GOAL]
case equal
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ : ℕ
t₁✝ t₂✝ : Term L (β ⊕ Fin n✝)
v : Fin n✝ → (a : α) → M a
h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a
⊢ ((Quotient.mk' fun a => Term.realize (fun i => Sum.elim x v i a) t₁✝) =
Quotient.mk' fun a => Term.realize (fun i => Sum.elim x v i a) t₂✝) ↔
∀ᶠ (a : α) in ↑u, Term.realize (fun i => Sum.elim x v i a) t₁✝ = Term.realize (fun i => Sum.elim x v i a) t₂✝
[PROOFSTEP]
exact Quotient.eq''
[GOAL]
case rel
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝)
v : Fin n✝ → (a : α) → M a
⊢ (BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) (fun i => x i a) fun i => v i a
[PROOFSTEP]
have h2 : ∀ a : α, (Sum.elim (fun i : β => x i a) fun i => v i a) = fun i => Sum.elim x v i a := fun a =>
funext fun i => Sum.casesOn i (fun i => rfl) fun i => rfl
[GOAL]
case rel
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝)
v : Fin n✝ → (a : α) → M a
h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a
⊢ (BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) (fun i => x i a) fun i => v i a
[PROOFSTEP]
simp only [BoundedFormula.Realize, h2]
[GOAL]
case rel
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝)
v : Fin n✝ → (a : α) → M a
h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a
⊢ (RelMap R✝ fun i => Term.realize (Sum.elim (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) (ts✝ i)) ↔
∀ᶠ (a : α) in ↑u, RelMap R✝ fun i => Term.realize (fun i => Sum.elim x v i a) (ts✝ i)
[PROOFSTEP]
erw [(Sum.comp_elim ((↑) : (∀ a, M a) → (u : Filter α).Product M) x v).symm]
[GOAL]
case rel
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝)
v : Fin n✝ → (a : α) → M a
h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a
⊢ (RelMap R✝ fun i => Term.realize (Quotient.mk' ∘ Sum.elim x v) (ts✝ i)) ↔
∀ᶠ (a : α) in ↑u, RelMap R✝ fun i => Term.realize (fun i => Sum.elim x v i a) (ts✝ i)
[PROOFSTEP]
conv_lhs => enter [2, i]; erw [term_realize_cast]
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝)
v : Fin n✝ → (a : α) → M a
h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a
| RelMap R✝ fun i => Term.realize (Quotient.mk' ∘ Sum.elim x v) (ts✝ i)
[PROOFSTEP]
enter [2, i]; erw [term_realize_cast]
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝)
v : Fin n✝ → (a : α) → M a
h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a
| RelMap R✝ fun i => Term.realize (Quotient.mk' ∘ Sum.elim x v) (ts✝ i)
[PROOFSTEP]
enter [2, i]; erw [term_realize_cast]
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝)
v : Fin n✝ → (a : α) → M a
h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a
| RelMap R✝ fun i => Term.realize (Quotient.mk' ∘ Sum.elim x v) (ts✝ i)
[PROOFSTEP]
enter [2, i]
[GOAL]
case h
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝)
v : Fin n✝ → (a : α) → M a
h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a
i : Fin l✝
| Term.realize (Quotient.mk' ∘ Sum.elim x v) (ts✝ i)
[PROOFSTEP]
erw [term_realize_cast]
[GOAL]
case rel
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (β ⊕ Fin n✝)
v : Fin n✝ → (a : α) → M a
h2 : ∀ (a : α), (Sum.elim (fun i => x i a) fun i => v i a) = fun i => Sum.elim x v i a
⊢ (RelMap R✝ fun i => Quotient.mk' fun a => Term.realize (fun i => Sum.elim x v i a) (ts✝ i)) ↔
∀ᶠ (a : α) in ↑u, RelMap R✝ fun i => Term.realize (fun i => Sum.elim x v i a) (ts✝ i)
[PROOFSTEP]
apply relMap_quotient_mk'
[GOAL]
case imp
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
m : ℕ
f₁✝ f₂✝ : BoundedFormula L β m
ih :
∀ (v : Fin m → (a : α) → M a),
(BoundedFormula.Realize f₁✝ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize f₁✝ (fun i => x i a) fun i => v i a
ih' :
∀ (v : Fin m → (a : α) → M a),
(BoundedFormula.Realize f₂✝ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize f₂✝ (fun i => x i a) fun i => v i a
v : Fin m → (a : α) → M a
⊢ (BoundedFormula.Realize (f₁✝ ⟹ f₂✝) (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize (f₁✝ ⟹ f₂✝) (fun i => x i a) fun i => v i a
[PROOFSTEP]
simp only [BoundedFormula.Realize, ih v, ih' v]
[GOAL]
case imp
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
m : ℕ
f₁✝ f₂✝ : BoundedFormula L β m
ih :
∀ (v : Fin m → (a : α) → M a),
(BoundedFormula.Realize f₁✝ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize f₁✝ (fun i => x i a) fun i => v i a
ih' :
∀ (v : Fin m → (a : α) → M a),
(BoundedFormula.Realize f₂✝ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize f₂✝ (fun i => x i a) fun i => v i a
v : Fin m → (a : α) → M a
⊢ ((∀ᶠ (a : α) in ↑u, BoundedFormula.Realize f₁✝ (fun i => x i a) fun i => v i a) →
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize f₂✝ (fun i => x i a) fun i => v i a) ↔
∀ᶠ (a : α) in ↑u,
(BoundedFormula.Realize f₁✝ (fun i => x i a) fun i => v i a) →
BoundedFormula.Realize f₂✝ (fun i => x i a) fun i => v i a
[PROOFSTEP]
rw [Ultrafilter.eventually_imp]
[GOAL]
case all
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
⊢ (BoundedFormula.Realize (∀'φ) (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize (∀'φ) (fun i => x i a) fun i => v i a
[PROOFSTEP]
simp only [BoundedFormula.Realize]
[GOAL]
case all
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
⊢ (∀ (x_1 : Quotient (productSetoid ↑u fun a => M a)),
BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) (Fin.snoc (fun i => Quotient.mk' (v i)) x_1)) ↔
∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1)
[PROOFSTEP]
apply
Iff.trans (b :=
∀ m : ∀ a : α, M a,
φ.Realize (fun i : β => (x i : (u : Filter α).Product M))
(Fin.snoc (((↑) : (∀ a, M a) → (u : Filter α).Product M) ∘ v) (m : (u : Filter α).Product M)))
[GOAL]
case all.h₁
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
⊢ (∀ (x_1 : Quotient (productSetoid ↑u fun a => M a)),
BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) (Fin.snoc (fun i => Quotient.mk' (v i)) x_1)) ↔
∀ (m : (a : α) → M a),
BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) (Fin.snoc (Quotient.mk' ∘ v) (Quotient.mk' m))
[PROOFSTEP]
exact forall_quotient_iff
[GOAL]
case all.h₂
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
⊢ (∀ (m : (a : α) → M a),
BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) (Fin.snoc (Quotient.mk' ∘ v) (Quotient.mk' m))) ↔
∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1)
[PROOFSTEP]
have h' :
∀ (m : ∀ a, M a) (a : α),
(fun i : Fin (k + 1) => (Fin.snoc v m : _ → ∀ a, M a) i a) = Fin.snoc (fun i : Fin k => v i a) (m a) :=
by
refine' fun m a => funext (Fin.reverseInduction _ fun i _ => _)
· simp only [Fin.snoc_last]
· simp only [Fin.snoc_castSucc]
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
⊢ ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a)
[PROOFSTEP]
refine' fun m a => funext (Fin.reverseInduction _ fun i _ => _)
[GOAL]
case refine'_1
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
m : (a : α) → M a
a : α
⊢ Fin.snoc v m (Fin.last k) a = Fin.snoc (fun i => v i a) (m a) (Fin.last k)
[PROOFSTEP]
simp only [Fin.snoc_last]
[GOAL]
case refine'_2
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
m : (a : α) → M a
a : α
i : Fin k
x✝ : Fin.snoc v m (Fin.succ i) a = Fin.snoc (fun i => v i a) (m a) (Fin.succ i)
⊢ Fin.snoc v m (Fin.castSucc i) a = Fin.snoc (fun i => v i a) (m a) (Fin.castSucc i)
[PROOFSTEP]
simp only [Fin.snoc_castSucc]
[GOAL]
case all.h₂
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a)
⊢ (∀ (m : (a : α) → M a),
BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) (Fin.snoc (Quotient.mk' ∘ v) (Quotient.mk' m))) ↔
∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1)
[PROOFSTEP]
simp only [← Fin.comp_snoc]
[GOAL]
case all.h₂
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a)
⊢ (∀ (m : (a : α) → M a), BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) (Quotient.mk' ∘ Fin.snoc v m)) ↔
∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1)
[PROOFSTEP]
simp only [Function.comp, ih, h']
[GOAL]
case all.h₂
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a)
⊢ (∀ (m : (a : α) → M a),
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) (m a))) ↔
∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1)
[PROOFSTEP]
refine' ⟨fun h => _, fun h m => _⟩
[GOAL]
case all.h₂.refine'_1
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a)
h : ∀ (m : (a : α) → M a), ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) (m a))
⊢ ∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1)
[PROOFSTEP]
contrapose! h
[GOAL]
case all.h₂.refine'_1
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a)
h : ¬∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1)
⊢ ∃ m, ¬∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) (m a))
[PROOFSTEP]
simp_rw [← Ultrafilter.eventually_not, not_forall] at h
[GOAL]
case all.h₂.refine'_1
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a)
h : ∀ᶠ (x_1 : α) in ↑u, ∃ x_2, ¬BoundedFormula.Realize φ (fun i => x i x_1) (Fin.snoc (fun i => v i x_1) x_2)
⊢ ∃ m, ¬∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) (m a))
[PROOFSTEP]
refine' ⟨fun a : α => Classical.epsilon fun m : M a => ¬φ.Realize (fun i => x i a) (Fin.snoc (fun i => v i a) m), _⟩
[GOAL]
case all.h₂.refine'_1
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a)
h : ∀ᶠ (x_1 : α) in ↑u, ∃ x_2, ¬BoundedFormula.Realize φ (fun i => x i x_1) (Fin.snoc (fun i => v i x_1) x_2)
⊢ ¬∀ᶠ (a : α) in ↑u,
BoundedFormula.Realize φ (fun i => x i a)
(Fin.snoc (fun i => v i a)
((fun a =>
Classical.epsilon fun m => ¬BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) m))
a))
[PROOFSTEP]
rw [← Ultrafilter.eventually_not]
[GOAL]
case all.h₂.refine'_1
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a)
h : ∀ᶠ (x_1 : α) in ↑u, ∃ x_2, ¬BoundedFormula.Realize φ (fun i => x i x_1) (Fin.snoc (fun i => v i x_1) x_2)
⊢ ∀ᶠ (x_1 : α) in ↑u,
¬BoundedFormula.Realize φ (fun i => x i x_1)
(Fin.snoc (fun i => v i x_1)
((fun a =>
Classical.epsilon fun m => ¬BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) m))
x_1))
[PROOFSTEP]
exact Filter.mem_of_superset h fun a ha => Classical.epsilon_spec ha
[GOAL]
case all.h₂.refine'_2
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a)
h : ∀ᶠ (a : α) in ↑u, ∀ (x_1 : M a), BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) x_1)
m : (a : α) → M a
⊢ ∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) (Fin.snoc (fun i => v i a) (m a))
[PROOFSTEP]
rw [Filter.eventually_iff] at *
[GOAL]
case all.h₂.refine'_2
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
n : ℕ
x : β → (a : α) → M a
v✝ : Fin n → (a : α) → M a
this : Setoid ((a : α) → M a) := productSetoid (↑u) M
k : ℕ
φ : BoundedFormula L β (k + 1)
ih :
∀ (v : Fin (k + 1) → (a : α) → M a),
(BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' (v i)) ↔
∀ᶠ (a : α) in ↑u, BoundedFormula.Realize φ (fun i => x i a) fun i => v i a
v : Fin k → (a : α) → M a
h' : ∀ (m : (a : α) → M a) (a : α), (fun i => Fin.snoc v m i a) = Fin.snoc (fun i => v i a) (m a)
h : {x_1 | ∀ (x_2 : M x_1), BoundedFormula.Realize φ (fun i => x i x_1) (Fin.snoc (fun i => v i x_1) x_2)} ∈ ↑u
m : (a : α) → M a
⊢ {x_1 | BoundedFormula.Realize φ (fun i => x i x_1) (Fin.snoc (fun i => v i x_1) (m x_1))} ∈ ↑u
[PROOFSTEP]
exact Filter.mem_of_superset h fun a ha => ha (m a)
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
φ : Formula L β
x : β → (a : α) → M a
⊢ (Formula.Realize φ fun i => Quotient.mk' (x i)) ↔ ∀ᶠ (a : α) in ↑u, Formula.Realize φ fun i => x i a
[PROOFSTEP]
simp_rw [Formula.Realize, ← boundedFormula_realize_cast φ x, iff_eq_eq]
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
β : Type u_3
φ : Formula L β
x : β → (a : α) → M a
⊢ BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) default =
BoundedFormula.Realize φ (fun i => Quotient.mk' (x i)) fun i => Quotient.mk' fun a => default i
[PROOFSTEP]
exact congr rfl (Subsingleton.elim _ _)
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
φ : Sentence L
⊢ Product (↑u) M ⊨ φ ↔ ∀ᶠ (a : α) in ↑u, M a ⊨ φ
[PROOFSTEP]
simp_rw [Sentence.Realize]
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
φ : Sentence L
⊢ Formula.Realize φ default ↔ ∀ᶠ (a : α) in ↑u, Formula.Realize φ default
[PROOFSTEP]
erw [← realize_formula_cast φ, iff_eq_eq]
[GOAL]
α : Type u_1
M : α → Type u_2
u : Ultrafilter α
L : Language
inst✝¹ : (a : α) → Structure L (M a)
inst✝ : ∀ (a : α), Nonempty (M a)
φ : Sentence L
⊢ Formula.Realize φ default = Formula.Realize φ fun i => Quotient.mk' fun a => default i
[PROOFSTEP]
exact congr rfl (Subsingleton.elim _ _)
| {"mathlib_filename": "Mathlib.ModelTheory.Ultraproducts", "llama_tokens": 20540} |
[GOAL]
L : Language
T : Theory L
α : Type w
p q : CompleteType T α
h : (fun p => ↑p) p = (fun p => ↑p) q
⊢ p = q
[PROOFSTEP]
cases p
[GOAL]
case mk
L : Language
T : Theory L
α : Type w
q : CompleteType T α
toTheory✝ : Theory (L[[α]])
subset'✝ : LHom.onTheory (lhomWithConstants L α) T ⊆ toTheory✝
isMaximal'✝ : IsMaximal toTheory✝
h : (fun p => ↑p) { toTheory := toTheory✝, subset' := subset'✝, isMaximal' := isMaximal'✝ } = (fun p => ↑p) q
⊢ { toTheory := toTheory✝, subset' := subset'✝, isMaximal' := isMaximal'✝ } = q
[PROOFSTEP]
cases q
[GOAL]
case mk.mk
L : Language
T : Theory L
α : Type w
toTheory✝¹ : Theory (L[[α]])
subset'✝¹ : LHom.onTheory (lhomWithConstants L α) T ⊆ toTheory✝¹
isMaximal'✝¹ : IsMaximal toTheory✝¹
toTheory✝ : Theory (L[[α]])
subset'✝ : LHom.onTheory (lhomWithConstants L α) T ⊆ toTheory✝
isMaximal'✝ : IsMaximal toTheory✝
h :
(fun p => ↑p) { toTheory := toTheory✝¹, subset' := subset'✝¹, isMaximal' := isMaximal'✝¹ } =
(fun p => ↑p) { toTheory := toTheory✝, subset' := subset'✝, isMaximal' := isMaximal'✝ }
⊢ { toTheory := toTheory✝¹, subset' := subset'✝¹, isMaximal' := isMaximal'✝¹ } =
{ toTheory := toTheory✝, subset' := subset'✝, isMaximal' := isMaximal'✝ }
[PROOFSTEP]
congr
[GOAL]
L : Language
T : Theory L
α : Type w
p : CompleteType T α
φ : Sentence (L[[α]])
hf : Formula.not φ ∈ p
ht : φ ∈ p
⊢ False
[PROOFSTEP]
have h : ¬IsSatisfiable ({ φ, φ.not } : L[[α]].Theory) :=
by
rintro ⟨@⟨_, _, h, _⟩⟩
simp only [model_iff, mem_insert_iff, mem_singleton_iff, forall_eq_or_imp, forall_eq] at h
exact h.2 h.1
[GOAL]
L : Language
T : Theory L
α : Type w
p : CompleteType T α
φ : Sentence (L[[α]])
hf : Formula.not φ ∈ p
ht : φ ∈ p
⊢ ¬IsSatisfiable {φ, Formula.not φ}
[PROOFSTEP]
rintro ⟨@⟨_, _, h, _⟩⟩
[GOAL]
case intro.mk
L : Language
T : Theory L
α : Type w
p : CompleteType T α
φ : Sentence (L[[α]])
hf : Formula.not φ ∈ p
ht : φ ∈ p
Carrier✝ : Type (max (max u w) v)
struc✝ : Structure (L[[α]]) Carrier✝
h : Carrier✝ ⊨ {φ, Formula.not φ}
nonempty'✝ : Nonempty Carrier✝
⊢ False
[PROOFSTEP]
simp only [model_iff, mem_insert_iff, mem_singleton_iff, forall_eq_or_imp, forall_eq] at h
[GOAL]
case intro.mk
L : Language
T : Theory L
α : Type w
p : CompleteType T α
φ : Sentence (L[[α]])
hf : Formula.not φ ∈ p
ht : φ ∈ p
Carrier✝ : Type (max (max u w) v)
struc✝ : Structure (L[[α]]) Carrier✝
nonempty'✝ : Nonempty Carrier✝
h : Carrier✝ ⊨ φ ∧ Carrier✝ ⊨ Formula.not φ
⊢ False
[PROOFSTEP]
exact h.2 h.1
[GOAL]
L : Language
T : Theory L
α : Type w
p : CompleteType T α
φ : Sentence (L[[α]])
hf : Formula.not φ ∈ p
ht : φ ∈ p
h : ¬IsSatisfiable {φ, Formula.not φ}
⊢ False
[PROOFSTEP]
refine' h (p.isMaximal.1.mono _)
[GOAL]
L : Language
T : Theory L
α : Type w
p : CompleteType T α
φ : Sentence (L[[α]])
hf : Formula.not φ ∈ p
ht : φ ∈ p
h : ¬IsSatisfiable {φ, Formula.not φ}
⊢ {φ, Formula.not φ} ⊆ ↑p
[PROOFSTEP]
rw [insert_subset_iff, singleton_subset_iff]
[GOAL]
L : Language
T : Theory L
α : Type w
p : CompleteType T α
φ : Sentence (L[[α]])
hf : Formula.not φ ∈ p
ht : φ ∈ p
h : ¬IsSatisfiable {φ, Formula.not φ}
⊢ φ ∈ ↑p ∧ Formula.not φ ∈ ↑p
[PROOFSTEP]
exact ⟨ht, hf⟩
[GOAL]
L : Language
T : Theory L
α : Type w
S : Theory (L[[α]])
⊢ {p | S ⊆ ↑p} = ∅ ↔ ¬IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ S)
[PROOFSTEP]
rw [iff_not_comm, ← not_nonempty_iff_eq_empty, Classical.not_not, Set.Nonempty]
[GOAL]
L : Language
T : Theory L
α : Type w
S : Theory (L[[α]])
⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ S) ↔ ∃ x, x ∈ {p | S ⊆ ↑p}
[PROOFSTEP]
refine'
⟨fun h =>
⟨⟨L[[α]].completeTheory h.some, (subset_union_left _ S).trans completeTheory.subset,
completeTheory.isMaximal (L[[α]]) h.some⟩,
(subset_union_right ((L.lhomWithConstants α).onTheory T) _).trans completeTheory.subset⟩,
_⟩
[GOAL]
L : Language
T : Theory L
α : Type w
S : Theory (L[[α]])
⊢ (∃ x, x ∈ {p | S ⊆ ↑p}) → IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ S)
[PROOFSTEP]
rintro ⟨p, hp⟩
[GOAL]
case intro
L : Language
T : Theory L
α : Type w
S : Theory (L[[α]])
p : CompleteType T α
hp : p ∈ {p | S ⊆ ↑p}
⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ S)
[PROOFSTEP]
exact p.isMaximal.1.mono (union_subset p.subset hp)
[GOAL]
L : Language
T : Theory L
α : Type w
φ : Sentence (L[[α]])
⊢ {p | φ ∈ p} = Set.univ ↔ LHom.onTheory (lhomWithConstants L α) T ⊨ᵇ φ
[PROOFSTEP]
rw [models_iff_not_satisfiable, ← compl_empty_iff, compl_setOf_mem, ← setOf_subset_eq_empty_iff]
[GOAL]
L : Language
T : Theory L
α : Type w
φ : Sentence (L[[α]])
⊢ {p | Formula.not φ ∈ p} = ∅ ↔ {p | {Formula.not φ} ⊆ ↑p} = ∅
[PROOFSTEP]
simp
[GOAL]
L : Language
T : Theory L
α : Type w
S : Theory (L[[α]])
⊢ {p | S ⊆ ↑p} = Set.univ ↔ ∀ (φ : Sentence (L[[α]])), φ ∈ S → LHom.onTheory (lhomWithConstants L α) T ⊨ᵇ φ
[PROOFSTEP]
have h : {p : T.CompleteType α | S ⊆ ↑p} = ⋂₀ ((fun φ => {p | φ ∈ p}) '' S) :=
by
ext
simp [subset_def]
[GOAL]
L : Language
T : Theory L
α : Type w
S : Theory (L[[α]])
⊢ {p | S ⊆ ↑p} = ⋂₀ ((fun φ => {p | φ ∈ p}) '' S)
[PROOFSTEP]
ext
[GOAL]
case h
L : Language
T : Theory L
α : Type w
S : Theory (L[[α]])
x✝ : CompleteType T α
⊢ x✝ ∈ {p | S ⊆ ↑p} ↔ x✝ ∈ ⋂₀ ((fun φ => {p | φ ∈ p}) '' S)
[PROOFSTEP]
simp [subset_def]
[GOAL]
L : Language
T : Theory L
α : Type w
S : Theory (L[[α]])
h : {p | S ⊆ ↑p} = ⋂₀ ((fun φ => {p | φ ∈ p}) '' S)
⊢ {p | S ⊆ ↑p} = Set.univ ↔ ∀ (φ : Sentence (L[[α]])), φ ∈ S → LHom.onTheory (lhomWithConstants L α) T ⊨ᵇ φ
[PROOFSTEP]
simp_rw [h, sInter_eq_univ, ← setOf_mem_eq_univ_iff]
[GOAL]
L : Language
T : Theory L
α : Type w
S : Theory (L[[α]])
h : {p | S ⊆ ↑p} = ⋂₀ ((fun φ => {p | φ ∈ p}) '' S)
⊢ (∀ (s : Set (CompleteType T α)), s ∈ (fun φ => {p | φ ∈ p}) '' S → s = Set.univ) ↔
∀ (φ : Sentence (L[[α]])), φ ∈ S → {p | φ ∈ p} = Set.univ
[PROOFSTEP]
refine' ⟨fun h φ φS => h _ ⟨_, φS, rfl⟩, _⟩
[GOAL]
L : Language
T : Theory L
α : Type w
S : Theory (L[[α]])
h : {p | S ⊆ ↑p} = ⋂₀ ((fun φ => {p | φ ∈ p}) '' S)
⊢ (∀ (φ : Sentence (L[[α]])), φ ∈ S → {p | φ ∈ p} = Set.univ) →
∀ (s : Set (CompleteType T α)), s ∈ (fun φ => {p | φ ∈ p}) '' S → s = Set.univ
[PROOFSTEP]
rintro h _ ⟨φ, h1, rfl⟩
[GOAL]
case intro.intro
L : Language
T : Theory L
α : Type w
S : Theory (L[[α]])
h✝ : {p | S ⊆ ↑p} = ⋂₀ ((fun φ => {p | φ ∈ p}) '' S)
h : ∀ (φ : Sentence (L[[α]])), φ ∈ S → {p | φ ∈ p} = Set.univ
φ : Sentence (L[[α]])
h1 : φ ∈ S
⊢ (fun φ => {p | φ ∈ p}) φ = Set.univ
[PROOFSTEP]
exact h _ h1
[GOAL]
L : Language
T : Theory L
α : Type w
⊢ Nonempty (CompleteType T α) ↔ IsSatisfiable T
[PROOFSTEP]
rw [← isSatisfiable_onTheory_iff (lhomWithConstants_injective L α)]
[GOAL]
L : Language
T : Theory L
α : Type w
⊢ Nonempty (CompleteType T α) ↔ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T)
[PROOFSTEP]
rw [nonempty_iff_univ_nonempty, nonempty_iff_ne_empty, Ne.def, not_iff_comm, ←
union_empty ((L.lhomWithConstants α).onTheory T), ← setOf_subset_eq_empty_iff]
[GOAL]
L : Language
T : Theory L
α : Type w
⊢ {p | ∅ ⊆ ↑p} = ∅ ↔ Set.univ = ∅
[PROOFSTEP]
simp
[GOAL]
L : Language
T : Theory L
α : Type w
ι : Type u_1
S : ι → Theory (L[[α]])
⊢ ⋂ (i : ι), {p | S i ⊆ ↑p} = {p | ⋃ (i : ι), S i ⊆ ↑p}
[PROOFSTEP]
ext
[GOAL]
case h
L : Language
T : Theory L
α : Type w
ι : Type u_1
S : ι → Theory (L[[α]])
x✝ : CompleteType T α
⊢ x✝ ∈ ⋂ (i : ι), {p | S i ⊆ ↑p} ↔ x✝ ∈ {p | ⋃ (i : ι), S i ⊆ ↑p}
[PROOFSTEP]
simp only [mem_iInter, mem_setOf_eq, iUnion_subset_iff]
[GOAL]
L : Language
T : Theory L
α : Type w
p : CompleteType T α
t : Finset (Sentence (L[[α]]))
⊢ List.foldr (fun x x_1 => x ⊓ x_1) ⊤ (Finset.toList t) ∈ p ↔ ↑t ⊆ ↑p
[PROOFSTEP]
simp_rw [subset_def, ← SetLike.mem_coe, p.isMaximal.mem_iff_models, models_sentence_iff, Sentence.Realize,
Formula.Realize, BoundedFormula.realize_foldr_inf, Finset.mem_toList]
[GOAL]
L : Language
T : Theory L
α : Type w
p : CompleteType T α
t : Finset (Sentence (L[[α]]))
⊢ (∀ (M : ModelType ↑p) (φ : BoundedFormula (L[[α]]) Empty 0), φ ∈ t → BoundedFormula.Realize φ default default) ↔
∀ (x : Sentence (L[[α]])), x ∈ ↑t → ∀ (M : ModelType ↑p), BoundedFormula.Realize x default default
[PROOFSTEP]
exact ⟨fun h φ hφ M => h _ _ hφ, fun h M φ hφ => h _ hφ _⟩
[GOAL]
L : Language
T : Theory L
α : Type w
M : Type w'
inst✝² : Structure L M
inst✝¹ : Nonempty M
inst✝ : M ⊨ T
v : α → M
φ : Formula L α
⊢ ↑Formula.equivSentence φ ∈ typeOf T v ↔ Formula.Realize φ v
[PROOFSTEP]
simp
[GOAL]
L : Language
T : Theory L
α : Type w
M : Type w'
inst✝² : Structure L M
inst✝¹ : Nonempty M
inst✝ : M ⊨ T
p : CompleteType T α
⊢ ∃ M, p ∈ realizedTypes T (↑M) α
[PROOFSTEP]
obtain ⟨M⟩ := p.isMaximal.1
[GOAL]
case intro
L : Language
T : Theory L
α : Type w
M✝ : Type w'
inst✝² : Structure L M✝
inst✝¹ : Nonempty M✝
inst✝ : M✝ ⊨ T
p : CompleteType T α
M : ModelType ↑p
⊢ ∃ M, p ∈ realizedTypes T (↑M) α
[PROOFSTEP]
refine' ⟨(M.subtheoryModel p.subset).reduct (L.lhomWithConstants α), fun a => (L.con a : M), _⟩
[GOAL]
case intro
L : Language
T : Theory L
α : Type w
M✝ : Type w'
inst✝² : Structure L M✝
inst✝¹ : Nonempty M✝
inst✝ : M✝ ⊨ T
p : CompleteType T α
M : ModelType ↑p
⊢ (typeOf T fun a => ↑(Language.con L a)) = p
[PROOFSTEP]
refine' SetLike.ext fun φ => _
[GOAL]
case intro
L : Language
T : Theory L
α : Type w
M✝ : Type w'
inst✝² : Structure L M✝
inst✝¹ : Nonempty M✝
inst✝ : M✝ ⊨ T
p : CompleteType T α
M : ModelType ↑p
φ : Sentence (L[[α]])
⊢ (φ ∈ typeOf T fun a => ↑(Language.con L a)) ↔ φ ∈ p
[PROOFSTEP]
simp only [CompleteType.mem_typeOf]
[GOAL]
case intro
L : Language
T : Theory L
α : Type w
M✝ : Type w'
inst✝² : Structure L M✝
inst✝¹ : Nonempty M✝
inst✝ : M✝ ⊨ T
p : CompleteType T α
M : ModelType ↑p
φ : Sentence (L[[α]])
⊢ (Formula.Realize (↑Formula.equivSentence.symm φ) fun a => ↑(Language.con L a)) ↔ φ ∈ p
[PROOFSTEP]
refine'
(@Formula.realize_equivSentence_symm_con _ ((M.subtheoryModel p.subset).reduct (L.lhomWithConstants α)) _ _ M.struc _
φ).trans
(_root_.trans (_root_.trans _ (p.isMaximal.isComplete.realize_sentence_iff φ M))
(p.isMaximal.mem_iff_models φ).symm)
[GOAL]
case intro
L : Language
T : Theory L
α : Type w
M✝ : Type w'
inst✝² : Structure L M✝
inst✝¹ : Nonempty M✝
inst✝ : M✝ ⊨ T
p : CompleteType T α
M : ModelType ↑p
φ : Sentence (L[[α]])
⊢ ↑(ModelType.reduct (lhomWithConstants L α)
(ModelType.subtheoryModel M (_ : LHom.onTheory (lhomWithConstants L α) T ⊆ ↑p))) ⊨
φ ↔
↑M ⊨ φ
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.ModelTheory.Types", "llama_tokens": 5087} |
{"mathlib_filename": "Mathlib.ModelTheory.Bundled", "llama_tokens": 0} |
|
[GOAL]
L : Language
ι : Type v
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
G' : ℕ → Type w
inst✝ : (i : ℕ) → Structure L (G' i)
f' : (n : ℕ) → G' n ↪[L] G' (n + 1)
m n : ℕ
h : m ≤ n
⊢ ↑(natLERec f' m n h) = fun a => Nat.leRecOn h (fun k => ↑(f' k)) a
[PROOFSTEP]
obtain ⟨k, rfl⟩ := Nat.exists_eq_add_of_le h
[GOAL]
case intro
L : Language
ι : Type v
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
G' : ℕ → Type w
inst✝ : (i : ℕ) → Structure L (G' i)
f' : (n : ℕ) → G' n ↪[L] G' (n + 1)
m k : ℕ
h : m ≤ m + k
⊢ ↑(natLERec f' m (m + k) h) = fun a => Nat.leRecOn h (fun k => ↑(f' k)) a
[PROOFSTEP]
ext x
[GOAL]
case intro.h
L : Language
ι : Type v
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
G' : ℕ → Type w
inst✝ : (i : ℕ) → Structure L (G' i)
f' : (n : ℕ) → G' n ↪[L] G' (n + 1)
m k : ℕ
h : m ≤ m + k
x : G' m
⊢ ↑(natLERec f' m (m + k) h) x = Nat.leRecOn h (fun k => ↑(f' k)) x
[PROOFSTEP]
induction' k with k ih
[GOAL]
case intro.h.zero
L : Language
ι : Type v
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
G' : ℕ → Type w
inst✝ : (i : ℕ) → Structure L (G' i)
f' : (n : ℕ) → G' n ↪[L] G' (n + 1)
m k : ℕ
h✝ : m ≤ m + k
x : G' m
h : m ≤ m + Nat.zero
⊢ ↑(natLERec f' m (m + Nat.zero) h) x = Nat.leRecOn h (fun k => ↑(f' k)) x
[PROOFSTEP]
rw [natLERec, Nat.leRecOn_self, Embedding.refl_apply, Nat.leRecOn_self]
[GOAL]
case intro.h.succ
L : Language
ι : Type v
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
G' : ℕ → Type w
inst✝ : (i : ℕ) → Structure L (G' i)
f' : (n : ℕ) → G' n ↪[L] G' (n + 1)
m k✝ : ℕ
h✝ : m ≤ m + k✝
x : G' m
k : ℕ
ih : ∀ (h : m ≤ m + k), ↑(natLERec f' m (m + k) h) x = Nat.leRecOn h (fun k => ↑(f' k)) x
h : m ≤ m + Nat.succ k
⊢ ↑(natLERec f' m (m + Nat.succ k) h) x = Nat.leRecOn h (fun k => ↑(f' k)) x
[PROOFSTEP]
rw [Nat.leRecOn_succ le_self_add, natLERec, Nat.leRecOn_succ le_self_add, ← natLERec, Embedding.comp_apply, ih]
[GOAL]
L : Language
ι : Type v
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
G' : ℕ → Type w
inst✝ : (i : ℕ) → Structure L (G' i)
f' : (n : ℕ) → G' n ↪[L] G' (n + 1)
i✝ j✝ k✝ : ℕ
hij : i✝ ≤ j✝
hjk : j✝ ≤ k✝
⊢ ∀ (x : G' i✝), ↑(natLERec f' j✝ k✝ hjk) (↑(natLERec f' i✝ j✝ hij) x) = ↑(natLERec f' i✝ k✝ (_ : i✝ ≤ k✝)) x
[PROOFSTEP]
simp [Nat.leRecOn_trans hij hjk]
[GOAL]
L : Language
ι : Type v
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
α : Type u_1
i : ι
x : α → G i
⊢ unify f (fun a => Structure.Sigma.mk f i (x a)) i
(_ : ∀ (j : ι), j ∈ range (Sigma.fst ∘ fun a => Structure.Sigma.mk f i (x a)) → j ≤ i) =
x
[PROOFSTEP]
ext a
[GOAL]
case h
L : Language
ι : Type v
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
α : Type u_1
i : ι
x : α → G i
a : α
⊢ unify f (fun a => Structure.Sigma.mk f i (x a)) i
(_ : ∀ (j : ι), j ∈ range (Sigma.fst ∘ fun a => Structure.Sigma.mk f i (x a)) → j ≤ i) a =
x a
[PROOFSTEP]
rw [unify]
[GOAL]
case h
L : Language
ι : Type v
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
α : Type u_1
i : ι
x : α → G i
a : α
⊢ ↑(f (Structure.Sigma.mk f i (x a)).fst i (_ : (Structure.Sigma.mk f i (x a)).fst ≤ i))
(Structure.Sigma.mk f i (x a)).snd =
x a
[PROOFSTEP]
apply DirectedSystem.map_self
[GOAL]
L : Language
ι : Type v
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
α : Type u_1
x : α → Σˣ f
i j : ι
ij : i ≤ j
h : i ∈ upperBounds (range (Sigma.fst ∘ x))
⊢ ↑(f i j ij) ∘ unify f x i h = unify f x j (_ : ∀ (k : ι), k ∈ range (Sigma.fst ∘ x) → k ≤ j)
[PROOFSTEP]
ext a
[GOAL]
case h
L : Language
ι : Type v
inst✝² : Preorder ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
α : Type u_1
x : α → Σˣ f
i j : ι
ij : i ≤ j
h : i ∈ upperBounds (range (Sigma.fst ∘ x))
a : α
⊢ (↑(f i j ij) ∘ unify f x i h) a = unify f x j (_ : ∀ (k : ι), k ∈ range (Sigma.fst ∘ x) → k ≤ j) a
[PROOFSTEP]
simp [unify, DirectedSystem.map_map]
[GOAL]
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝⁴ x✝³ x✝² : Σˣ f
i : ι
x : (fun i => G i) i
j : ι
y : (fun i => G i) j
x✝¹ :
match { fst := i, snd := x } with
| { fst := i, snd := x } =>
match { fst := j, snd := y } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
k : ι
z : (fun i => G i) k
x✝ :
match { fst := j, snd := y } with
| { fst := i, snd := x } =>
match { fst := k, snd := z } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
ij : ι
hiij : i ≤ ij
hjij : j ≤ ij
hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y
jk : ι
hjjk : j ≤ jk
hkjk : k ≤ jk
hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z
⊢ match { fst := i, snd := x } with
| { fst := i, snd := x } =>
match { fst := k, snd := z } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
[PROOFSTEP]
obtain ⟨ijk, hijijk, hjkijk⟩ := directed_of (· ≤ ·) ij jk
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝⁴ x✝³ x✝² : Σˣ f
i : ι
x : (fun i => G i) i
j : ι
y : (fun i => G i) j
x✝¹ :
match { fst := i, snd := x } with
| { fst := i, snd := x } =>
match { fst := j, snd := y } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
k : ι
z : (fun i => G i) k
x✝ :
match { fst := j, snd := y } with
| { fst := i, snd := x } =>
match { fst := k, snd := z } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
ij : ι
hiij : i ≤ ij
hjij : j ≤ ij
hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y
jk : ι
hjjk : j ≤ jk
hkjk : k ≤ jk
hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z
ijk : ι
hijijk : ij ≤ ijk
hjkijk : jk ≤ ijk
⊢ match { fst := i, snd := x } with
| { fst := i, snd := x } =>
match { fst := k, snd := z } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
[PROOFSTEP]
refine' ⟨ijk, le_trans hiij hijijk, le_trans hkjk hjkijk, _⟩
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝⁴ x✝³ x✝² : Σˣ f
i : ι
x : (fun i => G i) i
j : ι
y : (fun i => G i) j
x✝¹ :
match { fst := i, snd := x } with
| { fst := i, snd := x } =>
match { fst := j, snd := y } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
k : ι
z : (fun i => G i) k
x✝ :
match { fst := j, snd := y } with
| { fst := i, snd := x } =>
match { fst := k, snd := z } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
ij : ι
hiij : i ≤ ij
hjij : j ≤ ij
hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y
jk : ι
hjjk : j ≤ jk
hkjk : k ≤ jk
hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z
ijk : ι
hijijk : ij ≤ ijk
hjkijk : jk ≤ ijk
⊢ ↑(f i ijk (_ : i ≤ ijk)) x = ↑(f k ijk (_ : k ≤ ijk)) z
[PROOFSTEP]
rw [← DirectedSystem.map_map, hij, DirectedSystem.map_map]
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝⁴ x✝³ x✝² : Σˣ f
i : ι
x : (fun i => G i) i
j : ι
y : (fun i => G i) j
x✝¹ :
match { fst := i, snd := x } with
| { fst := i, snd := x } =>
match { fst := j, snd := y } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
k : ι
z : (fun i => G i) k
x✝ :
match { fst := j, snd := y } with
| { fst := i, snd := x } =>
match { fst := k, snd := z } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
ij : ι
hiij : i ≤ ij
hjij : j ≤ ij
hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y
jk : ι
hjjk : j ≤ jk
hkjk : k ≤ jk
hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z
ijk : ι
hijijk : ij ≤ ijk
hjkijk : jk ≤ ijk
⊢ ↑(f j ijk (_ : j ≤ ijk)) y = ↑(f k ijk (_ : k ≤ ijk)) z
case intro.intro.hjk
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝⁴ x✝³ x✝² : Σˣ f
i : ι
x : (fun i => G i) i
j : ι
y : (fun i => G i) j
x✝¹ :
match { fst := i, snd := x } with
| { fst := i, snd := x } =>
match { fst := j, snd := y } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
k : ι
z : (fun i => G i) k
x✝ :
match { fst := j, snd := y } with
| { fst := i, snd := x } =>
match { fst := k, snd := z } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
ij : ι
hiij : i ≤ ij
hjij : j ≤ ij
hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y
jk : ι
hjjk : j ≤ jk
hkjk : k ≤ jk
hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z
ijk : ι
hijijk : ij ≤ ijk
hjkijk : jk ≤ ijk
⊢ ij ≤ ijk
case intro.intro.hjk
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝⁴ x✝³ x✝² : Σˣ f
i : ι
x : (fun i => G i) i
j : ι
y : (fun i => G i) j
x✝¹ :
match { fst := i, snd := x } with
| { fst := i, snd := x } =>
match { fst := j, snd := y } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
k : ι
z : (fun i => G i) k
x✝ :
match { fst := j, snd := y } with
| { fst := i, snd := x } =>
match { fst := k, snd := z } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
ij : ι
hiij : i ≤ ij
hjij : j ≤ ij
hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y
jk : ι
hjjk : j ≤ jk
hkjk : k ≤ jk
hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z
ijk : ι
hijijk : ij ≤ ijk
hjkijk : jk ≤ ijk
⊢ ij ≤ ijk
case intro.intro.hjk
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝⁴ x✝³ x✝² : Σˣ f
i : ι
x : (fun i => G i) i
j : ι
y : (fun i => G i) j
x✝¹ :
match { fst := i, snd := x } with
| { fst := i, snd := x } =>
match { fst := j, snd := y } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
k : ι
z : (fun i => G i) k
x✝ :
match { fst := j, snd := y } with
| { fst := i, snd := x } =>
match { fst := k, snd := z } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
ij : ι
hiij : i ≤ ij
hjij : j ≤ ij
hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y
jk : ι
hjjk : j ≤ jk
hkjk : k ≤ jk
hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z
ijk : ι
hijijk : ij ≤ ijk
hjkijk : jk ≤ ijk
⊢ ij ≤ ijk
[PROOFSTEP]
symm
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝⁴ x✝³ x✝² : Σˣ f
i : ι
x : (fun i => G i) i
j : ι
y : (fun i => G i) j
x✝¹ :
match { fst := i, snd := x } with
| { fst := i, snd := x } =>
match { fst := j, snd := y } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
k : ι
z : (fun i => G i) k
x✝ :
match { fst := j, snd := y } with
| { fst := i, snd := x } =>
match { fst := k, snd := z } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
ij : ι
hiij : i ≤ ij
hjij : j ≤ ij
hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y
jk : ι
hjjk : j ≤ jk
hkjk : k ≤ jk
hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z
ijk : ι
hijijk : ij ≤ ijk
hjkijk : jk ≤ ijk
⊢ ↑(f k ijk (_ : k ≤ ijk)) z = ↑(f j ijk (_ : j ≤ ijk)) y
[PROOFSTEP]
rw [← DirectedSystem.map_map, ← hjk, DirectedSystem.map_map]
[GOAL]
case intro.intro.hjk
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝⁴ x✝³ x✝² : Σˣ f
i : ι
x : (fun i => G i) i
j : ι
y : (fun i => G i) j
x✝¹ :
match { fst := i, snd := x } with
| { fst := i, snd := x } =>
match { fst := j, snd := y } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
k : ι
z : (fun i => G i) k
x✝ :
match { fst := j, snd := y } with
| { fst := i, snd := x } =>
match { fst := k, snd := z } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
ij : ι
hiij : i ≤ ij
hjij : j ≤ ij
hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y
jk : ι
hjjk : j ≤ jk
hkjk : k ≤ jk
hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z
ijk : ι
hijijk : ij ≤ ijk
hjkijk : jk ≤ ijk
⊢ jk ≤ ijk
[PROOFSTEP]
assumption
[GOAL]
case intro.intro.hjk
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
x✝⁴ x✝³ x✝² : Σˣ f
i : ι
x : (fun i => G i) i
j : ι
y : (fun i => G i) j
x✝¹ :
match { fst := i, snd := x } with
| { fst := i, snd := x } =>
match { fst := j, snd := y } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
k : ι
z : (fun i => G i) k
x✝ :
match { fst := j, snd := y } with
| { fst := i, snd := x } =>
match { fst := k, snd := z } with
| { fst := j, snd := y } => ∃ k ik jk, ↑(f i k ik) x = ↑(f j k jk) y
ij : ι
hiij : i ≤ ij
hjij : j ≤ ij
hij : ↑(f i ij hiij) x = ↑(f j ij hjij) y
jk : ι
hjjk : j ≤ jk
hkjk : k ≤ jk
hjk : ↑(f j jk hjjk) y = ↑(f k jk hkjk) z
ijk : ι
hijijk : ij ≤ ijk
hjkijk : jk ≤ ijk
⊢ ij ≤ ijk
[PROOFSTEP]
assumption
[GOAL]
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
x y : Σˣ f
i : ι
hx : x.fst ≤ i
hy : y.fst ≤ i
⊢ x ≈ y ↔ ↑(f x.fst i hx) x.snd = ↑(f y.fst i hy) y.snd
[PROOFSTEP]
cases x
[GOAL]
case mk
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
y : Σˣ f
i : ι
hy : y.fst ≤ i
fst✝ : ι
snd✝ : (fun i => G i) fst✝
hx : { fst := fst✝, snd := snd✝ }.fst ≤ i
⊢ { fst := fst✝, snd := snd✝ } ≈ y ↔
↑(f { fst := fst✝, snd := snd✝ }.fst i hx) { fst := fst✝, snd := snd✝ }.snd = ↑(f y.fst i hy) y.snd
[PROOFSTEP]
cases y
[GOAL]
case mk.mk
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
i fst✝¹ : ι
snd✝¹ : (fun i => G i) fst✝¹
hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i
fst✝ : ι
snd✝ : (fun i => G i) fst✝
hy : { fst := fst✝, snd := snd✝ }.fst ≤ i
⊢ { fst := fst✝¹, snd := snd✝¹ } ≈ { fst := fst✝, snd := snd✝ } ↔
↑(f { fst := fst✝¹, snd := snd✝¹ }.fst i hx) { fst := fst✝¹, snd := snd✝¹ }.snd =
↑(f { fst := fst✝, snd := snd✝ }.fst i hy) { fst := fst✝, snd := snd✝ }.snd
[PROOFSTEP]
refine' ⟨fun xy => _, fun xy => ⟨i, hx, hy, xy⟩⟩
[GOAL]
case mk.mk
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
i fst✝¹ : ι
snd✝¹ : (fun i => G i) fst✝¹
hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i
fst✝ : ι
snd✝ : (fun i => G i) fst✝
hy : { fst := fst✝, snd := snd✝ }.fst ≤ i
xy : { fst := fst✝¹, snd := snd✝¹ } ≈ { fst := fst✝, snd := snd✝ }
⊢ ↑(f { fst := fst✝¹, snd := snd✝¹ }.fst i hx) { fst := fst✝¹, snd := snd✝¹ }.snd =
↑(f { fst := fst✝, snd := snd✝ }.fst i hy) { fst := fst✝, snd := snd✝ }.snd
[PROOFSTEP]
obtain ⟨j, _, _, h⟩ := xy
[GOAL]
case mk.mk.intro.intro.intro
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
i fst✝¹ : ι
snd✝¹ : (fun i => G i) fst✝¹
hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i
fst✝ : ι
snd✝ : (fun i => G i) fst✝
hy : { fst := fst✝, snd := snd✝ }.fst ≤ i
j : ι
w✝¹ : fst✝¹ ≤ j
w✝ : fst✝ ≤ j
h : ↑(f fst✝¹ j w✝¹) snd✝¹ = ↑(f fst✝ j w✝) snd✝
⊢ ↑(f { fst := fst✝¹, snd := snd✝¹ }.fst i hx) { fst := fst✝¹, snd := snd✝¹ }.snd =
↑(f { fst := fst✝, snd := snd✝ }.fst i hy) { fst := fst✝, snd := snd✝ }.snd
[PROOFSTEP]
obtain ⟨k, ik, jk⟩ := directed_of (· ≤ ·) i j
[GOAL]
case mk.mk.intro.intro.intro.intro.intro
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
i fst✝¹ : ι
snd✝¹ : (fun i => G i) fst✝¹
hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i
fst✝ : ι
snd✝ : (fun i => G i) fst✝
hy : { fst := fst✝, snd := snd✝ }.fst ≤ i
j : ι
w✝¹ : fst✝¹ ≤ j
w✝ : fst✝ ≤ j
h : ↑(f fst✝¹ j w✝¹) snd✝¹ = ↑(f fst✝ j w✝) snd✝
k : ι
ik : i ≤ k
jk : j ≤ k
⊢ ↑(f { fst := fst✝¹, snd := snd✝¹ }.fst i hx) { fst := fst✝¹, snd := snd✝¹ }.snd =
↑(f { fst := fst✝, snd := snd✝ }.fst i hy) { fst := fst✝, snd := snd✝ }.snd
[PROOFSTEP]
have h := congr_arg (f j k jk) h
[GOAL]
case mk.mk.intro.intro.intro.intro.intro
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
i fst✝¹ : ι
snd✝¹ : (fun i => G i) fst✝¹
hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i
fst✝ : ι
snd✝ : (fun i => G i) fst✝
hy : { fst := fst✝, snd := snd✝ }.fst ≤ i
j : ι
w✝¹ : fst✝¹ ≤ j
w✝ : fst✝ ≤ j
h✝ : ↑(f fst✝¹ j w✝¹) snd✝¹ = ↑(f fst✝ j w✝) snd✝
k : ι
ik : i ≤ k
jk : j ≤ k
h : ↑(f j k jk) (↑(f fst✝¹ j w✝¹) snd✝¹) = ↑(f j k jk) (↑(f fst✝ j w✝) snd✝)
⊢ ↑(f { fst := fst✝¹, snd := snd✝¹ }.fst i hx) { fst := fst✝¹, snd := snd✝¹ }.snd =
↑(f { fst := fst✝, snd := snd✝ }.fst i hy) { fst := fst✝, snd := snd✝ }.snd
[PROOFSTEP]
apply (f i k ik).injective
[GOAL]
case mk.mk.intro.intro.intro.intro.intro.a
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
i fst✝¹ : ι
snd✝¹ : (fun i => G i) fst✝¹
hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i
fst✝ : ι
snd✝ : (fun i => G i) fst✝
hy : { fst := fst✝, snd := snd✝ }.fst ≤ i
j : ι
w✝¹ : fst✝¹ ≤ j
w✝ : fst✝ ≤ j
h✝ : ↑(f fst✝¹ j w✝¹) snd✝¹ = ↑(f fst✝ j w✝) snd✝
k : ι
ik : i ≤ k
jk : j ≤ k
h : ↑(f j k jk) (↑(f fst✝¹ j w✝¹) snd✝¹) = ↑(f j k jk) (↑(f fst✝ j w✝) snd✝)
⊢ ↑(f i k ik) (↑(f { fst := fst✝¹, snd := snd✝¹ }.fst i hx) { fst := fst✝¹, snd := snd✝¹ }.snd) =
↑(f i k ik) (↑(f { fst := fst✝, snd := snd✝ }.fst i hy) { fst := fst✝, snd := snd✝ }.snd)
[PROOFSTEP]
rw [DirectedSystem.map_map, DirectedSystem.map_map] at *
[GOAL]
case mk.mk.intro.intro.intro.intro.intro.a
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
i fst✝¹ : ι
snd✝¹ : (fun i => G i) fst✝¹
hx : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ i
fst✝ : ι
snd✝ : (fun i => G i) fst✝
hy : { fst := fst✝, snd := snd✝ }.fst ≤ i
j : ι
w✝¹ : fst✝¹ ≤ j
w✝ : fst✝ ≤ j
h✝ : ↑(f fst✝¹ j w✝¹) snd✝¹ = ↑(f fst✝ j w✝) snd✝
k : ι
ik : i ≤ k
jk : j ≤ k
h : ↑(f fst✝¹ k (_ : fst✝¹ ≤ k)) snd✝¹ = ↑(f fst✝ k (_ : fst✝ ≤ k)) snd✝
⊢ ↑(f { fst := fst✝¹, snd := snd✝¹ }.fst k (_ : { fst := fst✝¹, snd := snd✝¹ }.fst ≤ k))
{ fst := fst✝¹, snd := snd✝¹ }.snd =
↑(f { fst := fst✝, snd := snd✝ }.fst k (_ : { fst := fst✝, snd := snd✝ }.fst ≤ k)) { fst := fst✝, snd := snd✝ }.snd
[PROOFSTEP]
exact h
[GOAL]
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
n : ℕ
F : Functions L n
x : Fin n → Σˣ f
i j : ι
hi : i ∈ upperBounds (range (Sigma.fst ∘ x))
hj : j ∈ upperBounds (range (Sigma.fst ∘ x))
⊢ Structure.Sigma.mk f i (funMap F (unify f x i hi)) ≈ Structure.Sigma.mk f j (funMap F (unify f x j hj))
[PROOFSTEP]
obtain ⟨k, ik, jk⟩ := directed_of (· ≤ ·) i j
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
n : ℕ
F : Functions L n
x : Fin n → Σˣ f
i j : ι
hi : i ∈ upperBounds (range (Sigma.fst ∘ x))
hj : j ∈ upperBounds (range (Sigma.fst ∘ x))
k : ι
ik : i ≤ k
jk : j ≤ k
⊢ Structure.Sigma.mk f i (funMap F (unify f x i hi)) ≈ Structure.Sigma.mk f j (funMap F (unify f x j hj))
[PROOFSTEP]
refine' ⟨k, ik, jk, _⟩
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
n : ℕ
F : Functions L n
x : Fin n → Σˣ f
i j : ι
hi : i ∈ upperBounds (range (Sigma.fst ∘ x))
hj : j ∈ upperBounds (range (Sigma.fst ∘ x))
k : ι
ik : i ≤ k
jk : j ≤ k
⊢ ↑(f i k ik) (funMap F (unify f x i hi)) = ↑(f j k jk) (funMap F (unify f x j hj))
[PROOFSTEP]
rw [(f i k ik).map_fun, (f j k jk).map_fun, comp_unify, comp_unify]
[GOAL]
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
n : ℕ
R : Relations L n
x : Fin n → Σˣ f
i j : ι
hi : i ∈ upperBounds (range (Sigma.fst ∘ x))
hj : j ∈ upperBounds (range (Sigma.fst ∘ x))
⊢ RelMap R (unify f x i hi) = RelMap R (unify f x j hj)
[PROOFSTEP]
obtain ⟨k, ik, jk⟩ := directed_of (· ≤ ·) i j
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝³ : Preorder ι
G : ι → Type w
inst✝² : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝¹ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
n : ℕ
R : Relations L n
x : Fin n → Σˣ f
i j : ι
hi : i ∈ upperBounds (range (Sigma.fst ∘ x))
hj : j ∈ upperBounds (range (Sigma.fst ∘ x))
k : ι
ik : i ≤ k
jk : j ≤ k
⊢ RelMap R (unify f x i hi) = RelMap R (unify f x j hj)
[PROOFSTEP]
rw [← (f i k ik).map_rel, comp_unify, ← (f j k jk).map_rel, comp_unify]
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x y : α → Σˣ f
xy : x ≈ y
⊢ ∃ i hx hy, unify f x i hx = unify f y i hy
[PROOFSTEP]
obtain ⟨i, hi⟩ := Fintype.bddAbove_range (Sum.elim (fun a => (x a).1) fun a => (y a).1)
[GOAL]
case intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x y : α → Σˣ f
xy : x ≈ y
i : ι
hi : i ∈ upperBounds (range (Sum.elim (fun a => (x a).fst) fun a => (y a).fst))
⊢ ∃ i hx hy, unify f x i hx = unify f y i hy
[PROOFSTEP]
rw [Sum.elim_range, upperBounds_union] at hi
[GOAL]
case intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x y : α → Σˣ f
xy : x ≈ y
i : ι
hi : i ∈ upperBounds (range fun a => (x a).fst) ∩ upperBounds (range fun a => (y a).fst)
⊢ ∃ i hx hy, unify f x i hx = unify f y i hy
[PROOFSTEP]
simp_rw [← Function.comp_apply (f := Sigma.fst)] at hi
[GOAL]
case intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x y : α → Σˣ f
xy : x ≈ y
i : ι
hi : i ∈ upperBounds (range fun a => (Sigma.fst ∘ x) a) ∩ upperBounds (range fun a => (Sigma.fst ∘ y) a)
⊢ ∃ i hx hy, unify f x i hx = unify f y i hy
[PROOFSTEP]
exact ⟨i, hi.1, hi.2, funext fun a => (equiv_iff G f _ _).1 (xy a)⟩
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
F : Functions L n
x y : Fin n → Σˣ f
xy : x ≈ y
⊢ funMap F x ≈ funMap F y
[PROOFSTEP]
obtain ⟨i, hx, hy, h⟩ := exists_unify_eq G f xy
[GOAL]
case intro.intro.intro
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
F : Functions L n
x y : Fin n → Σˣ f
xy : x ≈ y
i : ι
hx : i ∈ upperBounds (range (Sigma.fst ∘ x))
hy : i ∈ upperBounds (range (Sigma.fst ∘ y))
h : unify f x i hx = unify f y i hy
⊢ funMap F x ≈ funMap F y
[PROOFSTEP]
refine' Setoid.trans (funMap_equiv_unify G f F x i hx) (Setoid.trans _ (Setoid.symm (funMap_equiv_unify G f F y i hy)))
[GOAL]
case intro.intro.intro
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
F : Functions L n
x y : Fin n → Σˣ f
xy : x ≈ y
i : ι
hx : i ∈ upperBounds (range (Sigma.fst ∘ x))
hy : i ∈ upperBounds (range (Sigma.fst ∘ y))
h : unify f x i hx = unify f y i hy
⊢ Structure.Sigma.mk f i (funMap F (unify f x i hx)) ≈ Structure.Sigma.mk f i (funMap F (unify f y i hy))
[PROOFSTEP]
rw [h]
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
R : Relations L n
x y : Fin n → Σˣ f
xy : x ≈ y
⊢ RelMap R x = RelMap R y
[PROOFSTEP]
obtain ⟨i, hx, hy, h⟩ := exists_unify_eq G f xy
[GOAL]
case intro.intro.intro
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
R : Relations L n
x y : Fin n → Σˣ f
xy : x ≈ y
i : ι
hx : i ∈ upperBounds (range (Sigma.fst ∘ x))
hy : i ∈ upperBounds (range (Sigma.fst ∘ y))
h : unify f x i hx = unify f y i hy
⊢ RelMap R x = RelMap R y
[PROOFSTEP]
refine' _root_.trans (relMap_equiv_unify G f R x i hx) (_root_.trans _ (symm (relMap_equiv_unify G f R y i hy)))
[GOAL]
case intro.intro.intro
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
R : Relations L n
x y : Fin n → Σˣ f
xy : x ≈ y
i : ι
hx : i ∈ upperBounds (range (Sigma.fst ∘ x))
hy : i ∈ upperBounds (range (Sigma.fst ∘ y))
h : unify f x i hx = unify f y i hy
⊢ RelMap R (unify f x i hx) = RelMap R (unify f y i hy)
[PROOFSTEP]
rw [h]
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
F : Functions L n
i : ι
x : Fin n → G i
⊢ (funMap F fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (x a))) =
Quotient.mk (setoid G f) (Structure.Sigma.mk f i (funMap F x))
[PROOFSTEP]
simp [Function.comp_apply, funMap_quotient_mk', Quotient.eq']
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
F : Functions L n
i : ι
x : Fin n → G i
⊢ (funMap F fun i_1 => Structure.Sigma.mk f i (x i_1)) ≈ Structure.Sigma.mk f i (funMap F x)
[PROOFSTEP]
obtain ⟨k, ik, jk⟩ := directed_of (· ≤ ·) i (Classical.choose (Fintype.bddAbove_range fun _ : Fin n => i))
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
F : Functions L n
i : ι
x : Fin n → G i
k : ι
ik : i ≤ k
jk : Classical.choose (_ : BddAbove (range fun x => i)) ≤ k
⊢ (funMap F fun i_1 => Structure.Sigma.mk f i (x i_1)) ≈ Structure.Sigma.mk f i (funMap F x)
[PROOFSTEP]
refine' ⟨k, jk, ik, _⟩
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
F : Functions L n
i : ι
x : Fin n → G i
k : ι
ik : i ≤ k
jk : Classical.choose (_ : BddAbove (range fun x => i)) ≤ k
⊢ ↑(f (Classical.choose (_ : BddAbove (range fun a => (Structure.Sigma.mk f i (x a)).fst))) k jk)
(funMap F
(unify f (fun i_1 => Structure.Sigma.mk f i (x i_1))
(Classical.choose (_ : BddAbove (range fun a => (Structure.Sigma.mk f i (x a)).fst)))
(_ :
Classical.choose (_ : BddAbove (range fun a => (Structure.Sigma.mk f i (x a)).fst)) ∈
upperBounds (range fun a => (Structure.Sigma.mk f i (x a)).fst)))) =
↑(f i k ik) (funMap F x)
[PROOFSTEP]
simp only [Embedding.map_fun, comp_unify]
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
F : Functions L n
i : ι
x : Fin n → G i
k : ι
ik : i ≤ k
jk : Classical.choose (_ : BddAbove (range fun x => i)) ≤ k
⊢ funMap F
(unify f (fun i_1 => Structure.Sigma.mk f i (x i_1)) k
(_ : ∀ (k_1 : ι), k_1 ∈ range (Sigma.fst ∘ fun i_1 => Structure.Sigma.mk f i (x i_1)) → k_1 ≤ k)) =
funMap F (↑(f i k ik) ∘ x)
[PROOFSTEP]
rfl
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
R : Relations L n
i : ι
x : Fin n → G i
⊢ (RelMap R fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (x a))) = RelMap R x
[PROOFSTEP]
rw [relMap_quotient_mk']
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
R : Relations L n
i : ι
x : Fin n → G i
⊢ (RelMap R fun a => Structure.Sigma.mk f i (x a)) = RelMap R x
[PROOFSTEP]
obtain ⟨k, _, _⟩ := directed_of (· ≤ ·) i (Classical.choose (Fintype.bddAbove_range fun _ : Fin n => i))
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
R : Relations L n
i : ι
x : Fin n → G i
k : ι
left✝ : i ≤ k
right✝ : Classical.choose (_ : BddAbove (range fun x => i)) ≤ k
⊢ (RelMap R fun a => Structure.Sigma.mk f i (x a)) = RelMap R x
[PROOFSTEP]
rw [relMap_equiv_unify G f R (fun a => .mk f i (x a)) i]
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
R : Relations L n
i : ι
x : Fin n → G i
k : ι
left✝ : i ≤ k
right✝ : Classical.choose (_ : BddAbove (range fun x => i)) ≤ k
⊢ RelMap R (unify f (fun a => Structure.Sigma.mk f i (x a)) i ?intro.intro) = RelMap R x
case intro.intro
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
n : ℕ
R : Relations L n
i : ι
x : Fin n → G i
k : ι
left✝ : i ≤ k
right✝ : Classical.choose (_ : BddAbove (range fun x => i)) ≤ k
⊢ i ∈ upperBounds (range (Sigma.fst ∘ fun a => Structure.Sigma.mk f i (x a)))
[PROOFSTEP]
rw [unify_sigma_mk_self]
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x : α → DirectLimit G f
⊢ ∃ i y, x = fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a))
[PROOFSTEP]
obtain ⟨i, hi⟩ := Fintype.bddAbove_range fun a => (x a).out.1
[GOAL]
case intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x : α → DirectLimit G f
i : ι
hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst)
⊢ ∃ i y, x = fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a))
[PROOFSTEP]
refine' ⟨i, unify f (Quotient.out ∘ x) i hi, _⟩
[GOAL]
case intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x : α → DirectLimit G f
i : ι
hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst)
⊢ x = fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (unify f (Quotient.out ∘ x) i hi a))
[PROOFSTEP]
ext a
[GOAL]
case intro.h
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x : α → DirectLimit G f
i : ι
hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst)
a : α
⊢ x a = Quotient.mk (setoid G f) (Structure.Sigma.mk f i (unify f (Quotient.out ∘ x) i hi a))
[PROOFSTEP]
rw [Quotient.eq_mk_iff_out, unify]
[GOAL]
case intro.h
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x : α → DirectLimit G f
i : ι
hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst)
a : α
⊢ Quotient.out (x a) ≈
Structure.Sigma.mk f i
(↑(f ((Quotient.out ∘ x) a).fst i (_ : ((Quotient.out ∘ x) a).fst ≤ i)) ((Quotient.out ∘ x) a).snd)
[PROOFSTEP]
generalize_proofs r
[GOAL]
case intro.h
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x : α → DirectLimit G f
i : ι
hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst)
a : α
r : ((Quotient.out ∘ x) a).fst ≤ i
⊢ Quotient.out (x a) ≈ Structure.Sigma.mk f i (↑(f ((Quotient.out ∘ x) a).fst i r) ((Quotient.out ∘ x) a).snd)
[PROOFSTEP]
change _ ≈ .mk f i (f (Quotient.out (x a)).fst i r (Quotient.out (x a)).snd)
[GOAL]
case intro.h
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x : α → DirectLimit G f
i : ι
hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst)
a : α
r : ((Quotient.out ∘ x) a).fst ≤ i
⊢ Quotient.out (x a) ≈ Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd)
[PROOFSTEP]
have : (.mk f i (f (Quotient.out (x a)).fst i r (Quotient.out (x a)).snd) : Σˣ f).fst ≤ i := le_rfl
[GOAL]
case intro.h
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x : α → DirectLimit G f
i : ι
hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst)
a : α
r : ((Quotient.out ∘ x) a).fst ≤ i
this : (Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd)).fst ≤ i
⊢ Quotient.out (x a) ≈ Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd)
[PROOFSTEP]
rw [equiv_iff G f (i := i) (hi _) this]
[GOAL]
case intro.h
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x : α → DirectLimit G f
i : ι
hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst)
a : α
r : ((Quotient.out ∘ x) a).fst ≤ i
this : (Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd)).fst ≤ i
⊢ ↑(f (Quotient.out (x a)).fst i (_ : (Quotient.out (x a)).fst ≤ i)) (Quotient.out (x a)).snd =
↑(f (Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd)).fst i this)
(Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd)).snd
[PROOFSTEP]
simp only [DirectedSystem.map_self]
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
α : Type u_1
inst✝ : Fintype α
x : α → DirectLimit G f
i : ι
hi : i ∈ upperBounds (range fun a => (Quotient.out (x a)).fst)
a : α
r : ((Quotient.out ∘ x) a).fst ≤ i
this : (Structure.Sigma.mk f i (↑(f (Quotient.out (x a)).fst i r) (Quotient.out (x a)).snd)).fst ≤ i
⊢ (Quotient.out (x a)).fst ∈ range fun a => (Quotient.out (x a)).fst
[PROOFSTEP]
exact ⟨a, rfl⟩
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
i : ι
x y : G i
h :
(fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) x =
(fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) y
⊢ x = y
[PROOFSTEP]
rw [Quotient.eq] at h
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
i : ι
x y : G i
h : Structure.Sigma.mk f i x ≈ Structure.Sigma.mk f i y
⊢ x = y
[PROOFSTEP]
obtain ⟨j, h1, _, h3⟩ := h
[GOAL]
case intro.intro.intro
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
i : ι
x y : G i
j : ι
h1 w✝ : i ≤ j
h3 : ↑(f i j h1) x = ↑(f i j w✝) y
⊢ x = y
[PROOFSTEP]
exact (f i j h1).injective h3
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
i : ι
n✝ : ℕ
F : Functions L n✝
x : Fin n✝ → G i
⊢ Function.Embedding.toFun
{ toFun := fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a),
inj' :=
(_ :
∀ (x y : G i),
(fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) x =
(fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) y →
x = y) }
(funMap F x) =
funMap F
({ toFun := fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a),
inj' :=
(_ :
∀ (x y : G i),
(fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) x =
(fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) y →
x = y) }.toFun ∘
x)
[PROOFSTEP]
simp
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
i : ι
n✝ : ℕ
F : Functions L n✝
x : Fin n✝ → G i
⊢ Quotient.mk (setoid G f) (Structure.Sigma.mk f i (funMap F x)) =
funMap F ((fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) ∘ x)
[PROOFSTEP]
rw [← funMap_quotient_mk'_sigma_mk']
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
i : ι
n✝ : ℕ
F : Functions L n✝
x : Fin n✝ → G i
⊢ (funMap F fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (x a))) =
funMap F ((fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) ∘ x)
[PROOFSTEP]
rfl
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
i : ι
⊢ ∀ {n : ℕ} (r : Relations L n) (x : Fin n → G i),
RelMap r
({ toFun := fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a),
inj' :=
(_ :
∀ (x y : G i),
(fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) x =
(fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) y →
x = y) }.toFun ∘
x) ↔
RelMap r x
[PROOFSTEP]
intro n R x
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
i : ι
n : ℕ
R : Relations L n
x : Fin n → G i
⊢ RelMap R
({ toFun := fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a),
inj' :=
(_ :
∀ (x y : G i),
(fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) x =
(fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i a)) y →
x = y) }.toFun ∘
x) ↔
RelMap R x
[PROOFSTEP]
change RelMap R (fun a => (⟦.mk f i (x a)⟧ : DirectLimit G f)) ↔ _
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
i : ι
n : ℕ
R : Relations L n
x : Fin n → G i
⊢ (RelMap R fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (x a))) ↔ RelMap R x
[PROOFSTEP]
simp only [relMap_quotient_mk'_sigma_mk']
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
i j : ι
hij : i ≤ j
x : G i
⊢ ↑(of L ι G f j) (↑(f i j hij) x) = ↑(of L ι G f i) x
[PROOFSTEP]
rw [of_apply, of_apply, Quotient.eq]
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
i j : ι
hij : i ≤ j
x : G i
⊢ Structure.Sigma.mk f j (↑(f i j hij) x) ≈ Structure.Sigma.mk f i x
[PROOFSTEP]
refine' Setoid.symm ⟨j, hij, refl j, _⟩
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
i j : ι
hij : i ≤ j
x : G i
⊢ ↑(f i j hij) x = ↑(f j j (_ : j ≤ j)) (↑(f i j hij) x)
[PROOFSTEP]
simp only [DirectedSystem.map_self]
[GOAL]
L : Language
ι : Type v
inst✝⁴ : Preorder ι
G : ι → Type w
inst✝³ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝² : IsDirected ι fun x x_1 => x ≤ x_1
inst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)
inst✝ : Nonempty ι
z : DirectLimit G f
⊢ ↑(of L ι G f (Quotient.out z).fst) (Quotient.out z).snd = z
[PROOFSTEP]
simp
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
x y : Σˣ f
xy : x ≈ y
⊢ (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y
[PROOFSTEP]
simp
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
x y : Σˣ f
xy : x ≈ y
⊢ ↑(g x.fst) x.snd = ↑(g y.fst) y.snd
[PROOFSTEP]
obtain ⟨i, hx, hy⟩ := directed_of (· ≤ ·) x.1 y.1
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
x y : Σˣ f
xy : x ≈ y
i : ι
hx : x.fst ≤ i
hy : y.fst ≤ i
⊢ ↑(g x.fst) x.snd = ↑(g y.fst) y.snd
[PROOFSTEP]
rw [← Hg x.1 i hx, ← Hg y.1 i hy]
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
x y : Σˣ f
xy : x ≈ y
i : ι
hx : x.fst ≤ i
hy : y.fst ≤ i
⊢ ↑(g i) (↑(f x.fst i hx) x.snd) = ↑(g i) (↑(f y.fst i hy) y.snd)
[PROOFSTEP]
exact congr_arg _ ((equiv_iff ..).1 xy)
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
x y : DirectLimit G f
xy :
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x =
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y
⊢ x = y
[PROOFSTEP]
rw [← Quotient.out_eq x, ← Quotient.out_eq y, Quotient.lift_mk, Quotient.lift_mk] at xy
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
x y : DirectLimit G f
xy : ↑(g (Quotient.out x).fst) (Quotient.out x).snd = ↑(g (Quotient.out y).fst) (Quotient.out y).snd
⊢ x = y
[PROOFSTEP]
obtain ⟨i, hx, hy⟩ := directed_of (· ≤ ·) x.out.1 y.out.1
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
x y : DirectLimit G f
xy : ↑(g (Quotient.out x).fst) (Quotient.out x).snd = ↑(g (Quotient.out y).fst) (Quotient.out y).snd
i : ι
hx : (Quotient.out x).fst ≤ i
hy : (Quotient.out y).fst ≤ i
⊢ x = y
[PROOFSTEP]
rw [← Hg x.out.1 i hx, ← Hg y.out.1 i hy] at xy
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
x y : DirectLimit G f
i : ι
hx : (Quotient.out x).fst ≤ i
hy : (Quotient.out y).fst ≤ i
xy :
↑(g i) (↑(f (Quotient.out x).fst i hx) (Quotient.out x).snd) =
↑(g i) (↑(f (Quotient.out y).fst i hy) (Quotient.out y).snd)
⊢ x = y
[PROOFSTEP]
rw [← Quotient.out_eq x, ← Quotient.out_eq y, Quotient.eq, equiv_iff G f hx hy]
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
x y : DirectLimit G f
i : ι
hx : (Quotient.out x).fst ≤ i
hy : (Quotient.out y).fst ≤ i
xy :
↑(g i) (↑(f (Quotient.out x).fst i hx) (Quotient.out x).snd) =
↑(g i) (↑(f (Quotient.out y).fst i hy) (Quotient.out y).snd)
⊢ ↑(f (Quotient.out x).fst i hx) (Quotient.out x).snd = ↑(f (Quotient.out y).fst i hy) (Quotient.out y).snd
[PROOFSTEP]
exact (g i).injective xy
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
n✝ : ℕ
F : Functions L n✝
x : Fin n✝ → DirectLimit G f
⊢ Function.Embedding.toFun
{
toFun :=
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y),
inj' :=
(_ :
∀ (x y : DirectLimit G f),
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x =
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y →
x = y) }
(funMap F x) =
funMap F
({
toFun :=
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y),
inj' :=
(_ :
∀ (x y : DirectLimit G f),
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x =
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y →
x = y) }.toFun ∘
x)
[PROOFSTEP]
obtain ⟨i, y, rfl⟩ := exists_quotient_mk'_sigma_mk'_eq G f x
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
n✝ : ℕ
F : Functions L n✝
i : ι
y : Fin n✝ → G i
⊢ Function.Embedding.toFun
{
toFun :=
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y),
inj' :=
(_ :
∀ (x y : DirectLimit G f),
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x =
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y →
x = y) }
(funMap F fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a))) =
funMap F
({
toFun :=
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y),
inj' :=
(_ :
∀ (x y : DirectLimit G f),
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x =
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y →
x = y) }.toFun ∘
fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a)))
[PROOFSTEP]
change _ = funMap F (Quotient.lift _ _ ∘ Quotient.mk _ ∘ Structure.Sigma.mk f i ∘ y)
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
n✝ : ℕ
F : Functions L n✝
i : ι
y : Fin n✝ → G i
⊢ Function.Embedding.toFun
{
toFun :=
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y),
inj' :=
(_ :
∀ (x y : DirectLimit G f),
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x =
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y →
x = y) }
(funMap F fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a))) =
funMap F
(Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) ∘
Quotient.mk (setoid G f) ∘ Structure.Sigma.mk f i ∘ y)
[PROOFSTEP]
rw [funMap_quotient_mk'_sigma_mk', ← Function.comp.assoc, Quotient.lift_comp_mk]
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
n✝ : ℕ
F : Functions L n✝
i : ι
y : Fin n✝ → G i
⊢ Function.Embedding.toFun
{
toFun :=
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y),
inj' :=
(_ :
∀ (x y : DirectLimit G f),
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x =
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y →
x = y) }
(Quotient.mk (setoid G f) (Structure.Sigma.mk f i (funMap F fun a => y a))) =
funMap F ((fun x => ↑(g x.fst) x.snd) ∘ Structure.Sigma.mk f i ∘ y)
[PROOFSTEP]
simp only [Quotient.lift_mk, Embedding.map_fun]
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
n✝ : ℕ
F : Functions L n✝
i : ι
y : Fin n✝ → G i
⊢ funMap F (↑(g i) ∘ fun a => y a) = funMap F ((fun x => ↑(g x.fst) x.snd) ∘ Structure.Sigma.mk f i ∘ y)
[PROOFSTEP]
rfl
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
n✝ : ℕ
R : Relations L n✝
x : Fin n✝ → DirectLimit G f
⊢ RelMap R
({
toFun :=
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y),
inj' :=
(_ :
∀ (x y : DirectLimit G f),
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x =
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y →
x = y) }.toFun ∘
x) ↔
RelMap R x
[PROOFSTEP]
obtain ⟨i, y, rfl⟩ := exists_quotient_mk'_sigma_mk'_eq G f x
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
n✝ : ℕ
R : Relations L n✝
i : ι
y : Fin n✝ → G i
⊢ RelMap R
({
toFun :=
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y),
inj' :=
(_ :
∀ (x y : DirectLimit G f),
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) x =
Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) y →
x = y) }.toFun ∘
fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a))) ↔
RelMap R fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a))
[PROOFSTEP]
change RelMap R (Quotient.lift _ _ ∘ Quotient.mk _ ∘ Structure.Sigma.mk f i ∘ y) ↔ _
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
n✝ : ℕ
R : Relations L n✝
i : ι
y : Fin n✝ → G i
⊢ RelMap R
(Quotient.lift (fun x => ↑(g x.fst) x.snd)
(_ : ∀ (x y : Σˣ f), x ≈ y → (fun x => ↑(g x.fst) x.snd) x = (fun x => ↑(g x.fst) x.snd) y) ∘
Quotient.mk (setoid G f) ∘ Structure.Sigma.mk f i ∘ y) ↔
RelMap R fun a => Quotient.mk (setoid G f) (Structure.Sigma.mk f i (y a))
[PROOFSTEP]
rw [relMap_quotient_mk'_sigma_mk' G f, ← (g i).map_rel R y, ← Function.comp.assoc, Quotient.lift_comp_mk]
[GOAL]
case intro.intro
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
n✝ : ℕ
R : Relations L n✝
i : ι
y : Fin n✝ → G i
⊢ RelMap R ((fun x => ↑(g x.fst) x.snd) ∘ Structure.Sigma.mk f i ∘ y) ↔ RelMap R (↑(g i) ∘ y)
[PROOFSTEP]
rfl
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
i : ι
x : G i
⊢ ↑(lift L ι G f g Hg) (Quotient.mk (setoid G f) (Structure.Sigma.mk f i x)) = ↑(g i) x
[PROOFSTEP]
change (lift L ι G f g Hg).toFun ⟦.mk f i x⟧ = _
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
i : ι
x : G i
⊢ Function.Embedding.toFun (lift L ι G f g Hg).toEmbedding (Quotient.mk (setoid G f) (Structure.Sigma.mk f i x)) =
↑(g i) x
[PROOFSTEP]
simp only [lift, Quotient.lift_mk]
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
i : ι
x : G i
⊢ ↑(lift L ι G f g Hg) (↑(of L ι G f i) x) = ↑(g i) x
[PROOFSTEP]
simp
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
F : DirectLimit G f ↪[L] P
x✝ : DirectLimit G f
i j : ι
hij : i ≤ j
x : G i
⊢ ↑((fun i => Embedding.comp F (of L ι G f i)) j) (↑(f i j hij) x) = ↑((fun i => Embedding.comp F (of L ι G f i)) i) x
[PROOFSTEP]
rw [F.comp_apply, F.comp_apply, of_f]
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
F : DirectLimit G f ↪[L] P
x✝ : DirectLimit G f
i : ι
x : G i
⊢ ↑F (↑(of L ι G f i) x) =
↑(lift L ι G f (fun i => Embedding.comp F (of L ι G f i))
(_ :
∀ (i j : ι) (hij : i ≤ j) (x : G i),
↑((fun i => Embedding.comp F (of L ι G f i)) j) (↑(f i j hij) x) =
↑((fun i => Embedding.comp F (of L ι G f i)) i) x))
(↑(of L ι G f i) x)
[PROOFSTEP]
rw [lift_of]
[GOAL]
L : Language
ι : Type v
inst✝⁵ : Preorder ι
G : ι → Type w
inst✝⁴ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : DirectedSystem G fun i j h => ↑(f i j h)
inst✝¹ : Nonempty ι
P : Type u₁
inst✝ : Structure L P
g : (i : ι) → G i ↪[L] P
Hg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x
F : DirectLimit G f ↪[L] P
x✝ : DirectLimit G f
i : ι
x : G i
⊢ ↑F (↑(of L ι G f i) x) = ↑(Embedding.comp F (of L ι G f i)) x
[PROOFSTEP]
rfl
[GOAL]
L : Language
ι✝ : Type v
inst✝¹¹ : Preorder ι✝
G✝ : ι✝ → Type w
inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i)
f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j
inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1
inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h)
inst✝⁷ : Nonempty ι✝
P : Type u₁
inst✝⁶ : Structure L P
g : (i : ι✝) → G✝ i ↪[L] P
Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x
ι : Type u_1
inst✝⁵ : Encodable ι
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
h : ∀ (i : ι), CG L (G i)
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
⊢ CG L (DirectLimit G f)
[PROOFSTEP]
refine' ⟨⟨⋃ i, DirectLimit.of L ι G f i '' Classical.choose (h i).out, _, _⟩⟩
[GOAL]
case refine'_1
L : Language
ι✝ : Type v
inst✝¹¹ : Preorder ι✝
G✝ : ι✝ → Type w
inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i)
f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j
inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1
inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h)
inst✝⁷ : Nonempty ι✝
P : Type u₁
inst✝⁶ : Structure L P
g : (i : ι✝) → G✝ i ↪[L] P
Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x
ι : Type u_1
inst✝⁵ : Encodable ι
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
h : ∀ (i : ι), CG L (G i)
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
⊢ Set.Countable (⋃ (i : ι), ↑(of L ι G f i) '' Classical.choose (_ : Substructure.CG ⊤))
[PROOFSTEP]
exact Set.countable_iUnion fun i => Set.Countable.image (Classical.choose_spec (h i).out).1 _
[GOAL]
case refine'_2
L : Language
ι✝ : Type v
inst✝¹¹ : Preorder ι✝
G✝ : ι✝ → Type w
inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i)
f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j
inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1
inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h)
inst✝⁷ : Nonempty ι✝
P : Type u₁
inst✝⁶ : Structure L P
g : (i : ι✝) → G✝ i ↪[L] P
Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x
ι : Type u_1
inst✝⁵ : Encodable ι
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
h : ∀ (i : ι), CG L (G i)
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
⊢ LowerAdjoint.toFun (Substructure.closure L) (⋃ (i : ι), ↑(of L ι G f i) '' Classical.choose (_ : Substructure.CG ⊤)) =
⊤
[PROOFSTEP]
rw [eq_top_iff, Substructure.closure_unionᵢ]
[GOAL]
case refine'_2
L : Language
ι✝ : Type v
inst✝¹¹ : Preorder ι✝
G✝ : ι✝ → Type w
inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i)
f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j
inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1
inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h)
inst✝⁷ : Nonempty ι✝
P : Type u₁
inst✝⁶ : Structure L P
g : (i : ι✝) → G✝ i ↪[L] P
Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x
ι : Type u_1
inst✝⁵ : Encodable ι
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
h : ∀ (i : ι), CG L (G i)
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
⊢ ⊤ ≤
⨆ (i : ι), LowerAdjoint.toFun (Substructure.closure L) (↑(of L ι G f i) '' Classical.choose (_ : Substructure.CG ⊤))
[PROOFSTEP]
simp_rw [← Embedding.coe_toHom, Substructure.closure_image]
[GOAL]
case refine'_2
L : Language
ι✝ : Type v
inst✝¹¹ : Preorder ι✝
G✝ : ι✝ → Type w
inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i)
f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j
inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1
inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h)
inst✝⁷ : Nonempty ι✝
P : Type u₁
inst✝⁶ : Structure L P
g : (i : ι✝) → G✝ i ↪[L] P
Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x
ι : Type u_1
inst✝⁵ : Encodable ι
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
h : ∀ (i : ι), CG L (G i)
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
⊢ ⊤ ≤
⨆ (i : ι),
Substructure.map (Embedding.toHom (of L ι G f i))
(LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤)))
[PROOFSTEP]
rw [le_iSup_iff]
[GOAL]
case refine'_2
L : Language
ι✝ : Type v
inst✝¹¹ : Preorder ι✝
G✝ : ι✝ → Type w
inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i)
f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j
inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1
inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h)
inst✝⁷ : Nonempty ι✝
P : Type u₁
inst✝⁶ : Structure L P
g : (i : ι✝) → G✝ i ↪[L] P
Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x
ι : Type u_1
inst✝⁵ : Encodable ι
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
h : ∀ (i : ι), CG L (G i)
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
⊢ ∀ (b : Substructure L (DirectLimit G f)),
(∀ (i : ι),
Substructure.map (Embedding.toHom (of L ι G f i))
(LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) ≤
b) →
⊤ ≤ b
[PROOFSTEP]
intro S hS x _
[GOAL]
case refine'_2
L : Language
ι✝ : Type v
inst✝¹¹ : Preorder ι✝
G✝ : ι✝ → Type w
inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i)
f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j
inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1
inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h)
inst✝⁷ : Nonempty ι✝
P : Type u₁
inst✝⁶ : Structure L P
g : (i : ι✝) → G✝ i ↪[L] P
Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x
ι : Type u_1
inst✝⁵ : Encodable ι
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
h : ∀ (i : ι), CG L (G i)
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
S : Substructure L (DirectLimit G f)
hS :
∀ (i : ι),
Substructure.map (Embedding.toHom (of L ι G f i))
(LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) ≤
S
x : DirectLimit G f
a✝ : x ∈ ⊤
⊢ x ∈ S
[PROOFSTEP]
let out := Quotient.out (s := DirectLimit.setoid G f)
[GOAL]
case refine'_2
L : Language
ι✝ : Type v
inst✝¹¹ : Preorder ι✝
G✝ : ι✝ → Type w
inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i)
f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j
inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1
inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h)
inst✝⁷ : Nonempty ι✝
P : Type u₁
inst✝⁶ : Structure L P
g : (i : ι✝) → G✝ i ↪[L] P
Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x
ι : Type u_1
inst✝⁵ : Encodable ι
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
h : ∀ (i : ι), CG L (G i)
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
S : Substructure L (DirectLimit G f)
hS :
∀ (i : ι),
Substructure.map (Embedding.toHom (of L ι G f i))
(LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) ≤
S
x : DirectLimit G f
a✝ : x ∈ ⊤
out : Quotient (setoid G f) → Σˣ f := Quotient.out
⊢ x ∈ S
[PROOFSTEP]
refine' hS (out x).1 ⟨(out x).2, _, _⟩
[GOAL]
case refine'_2.refine'_1
L : Language
ι✝ : Type v
inst✝¹¹ : Preorder ι✝
G✝ : ι✝ → Type w
inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i)
f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j
inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1
inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h)
inst✝⁷ : Nonempty ι✝
P : Type u₁
inst✝⁶ : Structure L P
g : (i : ι✝) → G✝ i ↪[L] P
Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x
ι : Type u_1
inst✝⁵ : Encodable ι
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
h : ∀ (i : ι), CG L (G i)
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
S : Substructure L (DirectLimit G f)
hS :
∀ (i : ι),
Substructure.map (Embedding.toHom (of L ι G f i))
(LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) ≤
S
x : DirectLimit G f
a✝ : x ∈ ⊤
out : Quotient (setoid G f) → Σˣ f := Quotient.out
⊢ (out x).snd ∈ ↑(LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤)))
[PROOFSTEP]
rw [(Classical.choose_spec (h (out x).1).out).2]
[GOAL]
case refine'_2.refine'_1
L : Language
ι✝ : Type v
inst✝¹¹ : Preorder ι✝
G✝ : ι✝ → Type w
inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i)
f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j
inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1
inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h)
inst✝⁷ : Nonempty ι✝
P : Type u₁
inst✝⁶ : Structure L P
g : (i : ι✝) → G✝ i ↪[L] P
Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x
ι : Type u_1
inst✝⁵ : Encodable ι
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
h : ∀ (i : ι), CG L (G i)
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
S : Substructure L (DirectLimit G f)
hS :
∀ (i : ι),
Substructure.map (Embedding.toHom (of L ι G f i))
(LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) ≤
S
x : DirectLimit G f
a✝ : x ∈ ⊤
out : Quotient (setoid G f) → Σˣ f := Quotient.out
⊢ (out x).snd ∈ ↑⊤
[PROOFSTEP]
trivial
[GOAL]
case refine'_2.refine'_2
L : Language
ι✝ : Type v
inst✝¹¹ : Preorder ι✝
G✝ : ι✝ → Type w
inst✝¹⁰ : (i : ι✝) → Structure L (G✝ i)
f✝ : (i j : ι✝) → i ≤ j → G✝ i ↪[L] G✝ j
inst✝⁹ : IsDirected ι✝ fun x x_1 => x ≤ x_1
inst✝⁸ : DirectedSystem G✝ fun i j h => ↑(f✝ i j h)
inst✝⁷ : Nonempty ι✝
P : Type u₁
inst✝⁶ : Structure L P
g : (i : ι✝) → G✝ i ↪[L] P
Hg : ∀ (i j : ι✝) (hij : i ≤ j) (x : G✝ i), ↑(g j) (↑(f✝ i j hij) x) = ↑(g i) x
ι : Type u_1
inst✝⁵ : Encodable ι
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type w
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
h : ∀ (i : ι), CG L (G i)
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
S : Substructure L (DirectLimit G f)
hS :
∀ (i : ι),
Substructure.map (Embedding.toHom (of L ι G f i))
(LowerAdjoint.toFun (Substructure.closure L) (Classical.choose (_ : Substructure.CG ⊤))) ≤
S
x : DirectLimit G f
a✝ : x ∈ ⊤
out : Quotient (setoid G f) → Σˣ f := Quotient.out
⊢ ↑(Embedding.toHom (of L ι G f (out x).fst)) (out x).snd = x
[PROOFSTEP]
simp only [Embedding.coe_toHom, DirectLimit.of_apply, Sigma.eta, Quotient.out_eq]
| {"mathlib_filename": "Mathlib.ModelTheory.DirectLimit", "llama_tokens": 43299} |
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
h : Countable M
⊢ Set.Countable (Quotient.mk' '' age L M)
[PROOFSTEP]
classical
refine'
(congr_arg _ (Set.ext <| forall_quotient_iff.2 fun N => _)).mp
(countable_range fun s : Finset M => ⟦⟨closure L (s : Set M), inferInstance⟩⟧)
constructor
· rintro ⟨s, hs⟩
use Bundled.of (closure L (s : Set M))
exact ⟨⟨(fg_iff_structure_fg _).1 (fg_closure s.finite_toSet), ⟨Substructure.subtype _⟩⟩, hs⟩
· simp only [mem_range, Quotient.eq]
rintro ⟨P, ⟨⟨s, hs⟩, ⟨PM⟩⟩, hP2⟩
have : P ≈ N := by apply Quotient.eq'.mp; rw [hP2];
rfl
-- Porting note: added
refine' ⟨s.image PM, Setoid.trans (b := P) _ this⟩
rw [← Embedding.coe_toHom, Finset.coe_image, closure_image PM.toHom, hs, ← Hom.range_eq_map]
exact ⟨PM.equivRange.symm⟩
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
h : Countable M
⊢ Set.Countable (Quotient.mk' '' age L M)
[PROOFSTEP]
refine'
(congr_arg _ (Set.ext <| forall_quotient_iff.2 fun N => _)).mp
(countable_range fun s : Finset M => ⟦⟨closure L (s : Set M), inferInstance⟩⟧)
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : Countable M
N : Bundled (Structure L)
⊢ (Quotient.mk equivSetoid N ∈
range fun s => Quotient.mk equivSetoid (Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑s })) ↔
Quotient.mk equivSetoid N ∈ Quotient.mk' '' age L M
[PROOFSTEP]
constructor
[GOAL]
case mp
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : Countable M
N : Bundled (Structure L)
⊢ (Quotient.mk equivSetoid N ∈
range fun s => Quotient.mk equivSetoid (Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑s })) →
Quotient.mk equivSetoid N ∈ Quotient.mk' '' age L M
[PROOFSTEP]
rintro ⟨s, hs⟩
[GOAL]
case mp.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : Countable M
N : Bundled (Structure L)
s : Finset M
hs :
(fun s => Quotient.mk equivSetoid (Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑s })) s =
Quotient.mk equivSetoid N
⊢ Quotient.mk equivSetoid N ∈ Quotient.mk' '' age L M
[PROOFSTEP]
use Bundled.of (closure L (s : Set M))
[GOAL]
case h
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : Countable M
N : Bundled (Structure L)
s : Finset M
hs :
(fun s => Quotient.mk equivSetoid (Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑s })) s =
Quotient.mk equivSetoid N
⊢ Bundled.of { x // x ∈ LowerAdjoint.toFun (closure L) ↑s } ∈ age L M ∧
Quotient.mk' (Bundled.of { x // x ∈ LowerAdjoint.toFun (closure L) ↑s }) = Quotient.mk equivSetoid N
[PROOFSTEP]
exact ⟨⟨(fg_iff_structure_fg _).1 (fg_closure s.finite_toSet), ⟨Substructure.subtype _⟩⟩, hs⟩
[GOAL]
case mpr
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : Countable M
N : Bundled (Structure L)
⊢ Quotient.mk equivSetoid N ∈ Quotient.mk' '' age L M →
Quotient.mk equivSetoid N ∈
range fun s => Quotient.mk equivSetoid (Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑s })
[PROOFSTEP]
simp only [mem_range, Quotient.eq]
[GOAL]
case mpr
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : Countable M
N : Bundled (Structure L)
⊢ Quotient.mk equivSetoid N ∈ Quotient.mk' '' age L M →
∃ y, Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑y } ≈ N
[PROOFSTEP]
rintro ⟨P, ⟨⟨s, hs⟩, ⟨PM⟩⟩, hP2⟩
[GOAL]
case mpr.intro.intro.intro.mk.intro.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : Countable M
N P : Bundled (Structure L)
hP2 : Quotient.mk' P = Quotient.mk equivSetoid N
s : Finset ↑P
hs : LowerAdjoint.toFun (closure L) ↑s = ⊤
PM : ↑P ↪[L] M
⊢ ∃ y, Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑y } ≈ N
[PROOFSTEP]
have : P ≈ N := by apply Quotient.eq'.mp; rw [hP2];
rfl
-- Porting note: added
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : Countable M
N P : Bundled (Structure L)
hP2 : Quotient.mk' P = Quotient.mk equivSetoid N
s : Finset ↑P
hs : LowerAdjoint.toFun (closure L) ↑s = ⊤
PM : ↑P ↪[L] M
⊢ P ≈ N
[PROOFSTEP]
apply Quotient.eq'.mp
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : Countable M
N P : Bundled (Structure L)
hP2 : Quotient.mk' P = Quotient.mk equivSetoid N
s : Finset ↑P
hs : LowerAdjoint.toFun (closure L) ↑s = ⊤
PM : ↑P ↪[L] M
⊢ Quotient.mk' P = Quotient.mk' N
[PROOFSTEP]
rw [hP2]
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : Countable M
N P : Bundled (Structure L)
hP2 : Quotient.mk' P = Quotient.mk equivSetoid N
s : Finset ↑P
hs : LowerAdjoint.toFun (closure L) ↑s = ⊤
PM : ↑P ↪[L] M
⊢ Quotient.mk equivSetoid N = Quotient.mk' N
[PROOFSTEP]
rfl
-- Porting note: added
[GOAL]
case mpr.intro.intro.intro.mk.intro.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : Countable M
N P : Bundled (Structure L)
hP2 : Quotient.mk' P = Quotient.mk equivSetoid N
s : Finset ↑P
hs : LowerAdjoint.toFun (closure L) ↑s = ⊤
PM : ↑P ↪[L] M
this : P ≈ N
⊢ ∃ y, Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑y } ≈ N
[PROOFSTEP]
refine' ⟨s.image PM, Setoid.trans (b := P) _ this⟩
[GOAL]
case mpr.intro.intro.intro.mk.intro.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : Countable M
N P : Bundled (Structure L)
hP2 : Quotient.mk' P = Quotient.mk equivSetoid N
s : Finset ↑P
hs : LowerAdjoint.toFun (closure L) ↑s = ⊤
PM : ↑P ↪[L] M
this : P ≈ N
⊢ Bundled.mk { x // x ∈ LowerAdjoint.toFun (closure L) ↑(Finset.image (↑PM) s) } ≈ P
[PROOFSTEP]
rw [← Embedding.coe_toHom, Finset.coe_image, closure_image PM.toHom, hs, ← Hom.range_eq_map]
[GOAL]
case mpr.intro.intro.intro.mk.intro.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : Countable M
N P : Bundled (Structure L)
hP2 : Quotient.mk' P = Quotient.mk equivSetoid N
s : Finset ↑P
hs : LowerAdjoint.toFun (closure L) ↑s = ⊤
PM : ↑P ↪[L] M
this : P ≈ N
⊢ Bundled.mk { x // x ∈ Hom.range (Embedding.toHom PM) } ≈ P
[PROOFSTEP]
exact ⟨PM.equivRange.symm⟩
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝⁶ : Structure L M
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
⊢ age L (DirectLimit G f) = ⋃ (i : ι), age L (G i)
[PROOFSTEP]
classical
ext M
simp only [mem_iUnion]
constructor
· rintro ⟨Mfg, ⟨e⟩⟩
obtain ⟨s, hs⟩ := Mfg.range e.toHom
let out := @Quotient.out _ (DirectLimit.setoid G f)
obtain ⟨i, hi⟩ := Finset.exists_le (s.image (Sigma.fst ∘ out))
have e' := (DirectLimit.of L ι G f i).equivRange.symm.toEmbedding
refine' ⟨i, Mfg, ⟨e'.comp ((Substructure.inclusion _).comp e.equivRange.toEmbedding)⟩⟩
rw [← hs, closure_le]
intro x hx
refine' ⟨f (out x).1 i (hi (out x).1 (Finset.mem_image_of_mem _ hx)) (out x).2, _⟩
rw [Embedding.coe_toHom, DirectLimit.of_apply, @Quotient.mk_eq_iff_out _ (_),
DirectLimit.equiv_iff G f _ (hi (out x).1 (Finset.mem_image_of_mem _ hx)), DirectedSystem.map_self]
rfl
· rintro ⟨i, Mfg, ⟨e⟩⟩
exact ⟨Mfg, ⟨Embedding.comp (DirectLimit.of L ι G f i) e⟩⟩
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝⁶ : Structure L M
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
⊢ age L (DirectLimit G f) = ⋃ (i : ι), age L (G i)
[PROOFSTEP]
ext M
[GOAL]
case h
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
⊢ M ∈ age L (DirectLimit G f) ↔ M ∈ ⋃ (i : ι), age L (G i)
[PROOFSTEP]
simp only [mem_iUnion]
[GOAL]
case h
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
⊢ M ∈ age L (DirectLimit G f) ↔ ∃ i, M ∈ age L (G i)
[PROOFSTEP]
constructor
[GOAL]
case h.mp
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
⊢ M ∈ age L (DirectLimit G f) → ∃ i, M ∈ age L (G i)
[PROOFSTEP]
rintro ⟨Mfg, ⟨e⟩⟩
[GOAL]
case h.mp.intro.intro
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
Mfg : Structure.FG L ↑M
e : ↑M ↪[L] DirectLimit G f
⊢ ∃ i, M ∈ age L (G i)
[PROOFSTEP]
obtain ⟨s, hs⟩ := Mfg.range e.toHom
[GOAL]
case h.mp.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
Mfg : Structure.FG L ↑M
e : ↑M ↪[L] DirectLimit G f
s : Finset (DirectLimit G f)
hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e)
⊢ ∃ i, M ∈ age L (G i)
[PROOFSTEP]
let out := @Quotient.out _ (DirectLimit.setoid G f)
[GOAL]
case h.mp.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
Mfg : Structure.FG L ↑M
e : ↑M ↪[L] DirectLimit G f
s : Finset (DirectLimit G f)
hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e)
out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out
⊢ ∃ i, M ∈ age L (G i)
[PROOFSTEP]
obtain ⟨i, hi⟩ := Finset.exists_le (s.image (Sigma.fst ∘ out))
[GOAL]
case h.mp.intro.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
Mfg : Structure.FG L ↑M
e : ↑M ↪[L] DirectLimit G f
s : Finset (DirectLimit G f)
hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e)
out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i
⊢ ∃ i, M ∈ age L (G i)
[PROOFSTEP]
have e' := (DirectLimit.of L ι G f i).equivRange.symm.toEmbedding
[GOAL]
case h.mp.intro.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
Mfg : Structure.FG L ↑M
e : ↑M ↪[L] DirectLimit G f
s : Finset (DirectLimit G f)
hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e)
out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i
e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i
⊢ ∃ i, M ∈ age L (G i)
[PROOFSTEP]
refine' ⟨i, Mfg, ⟨e'.comp ((Substructure.inclusion _).comp e.equivRange.toEmbedding)⟩⟩
[GOAL]
case h.mp.intro.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
Mfg : Structure.FG L ↑M
e : ↑M ↪[L] DirectLimit G f
s : Finset (DirectLimit G f)
hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e)
out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i
e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i
⊢ Hom.range (Embedding.toHom e) ≤ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i))
[PROOFSTEP]
rw [← hs, closure_le]
[GOAL]
case h.mp.intro.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
Mfg : Structure.FG L ↑M
e : ↑M ↪[L] DirectLimit G f
s : Finset (DirectLimit G f)
hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e)
out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i
e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i
⊢ ↑s ⊆ ↑(Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)))
[PROOFSTEP]
intro x hx
[GOAL]
case h.mp.intro.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
Mfg : Structure.FG L ↑M
e : ↑M ↪[L] DirectLimit G f
s : Finset (DirectLimit G f)
hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e)
out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i
e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i
x : DirectLimit G f
hx : x ∈ ↑s
⊢ x ∈ ↑(Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)))
[PROOFSTEP]
refine' ⟨f (out x).1 i (hi (out x).1 (Finset.mem_image_of_mem _ hx)) (out x).2, _⟩
[GOAL]
case h.mp.intro.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
Mfg : Structure.FG L ↑M
e : ↑M ↪[L] DirectLimit G f
s : Finset (DirectLimit G f)
hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e)
out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i
e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i
x : DirectLimit G f
hx : x ∈ ↑s
⊢ ↑(Embedding.toHom (DirectLimit.of L ι G f i)) (↑(f (out x).fst i (_ : (out x).fst ≤ i)) (out x).snd) = x
[PROOFSTEP]
rw [Embedding.coe_toHom, DirectLimit.of_apply, @Quotient.mk_eq_iff_out _ (_),
DirectLimit.equiv_iff G f _ (hi (out x).1 (Finset.mem_image_of_mem _ hx)), DirectedSystem.map_self]
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
Mfg : Structure.FG L ↑M
e : ↑M ↪[L] DirectLimit G f
s : Finset (DirectLimit G f)
hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e)
out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i
e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i
x : DirectLimit G f
hx : x ∈ ↑s
⊢ (Structure.Sigma.mk f i (↑(f (out x).fst i (_ : (out x).fst ≤ i)) (out x).snd)).fst ≤ i
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
Mfg : Structure.FG L ↑M
e : ↑M ↪[L] DirectLimit G f
s : Finset (DirectLimit G f)
hs : LowerAdjoint.toFun (closure L) ↑s = Hom.range (Embedding.toHom e)
out : Quotient (DirectLimit.setoid G f) → Structure.Sigma f := Quotient.out
i : ι
hi : ∀ (i_1 : ι), i_1 ∈ Finset.image (Sigma.fst ∘ out) s → i_1 ≤ i
e' : { x // x ∈ Hom.range (Embedding.toHom (DirectLimit.of L ι G f i)) } ↪[L] G i
x : DirectLimit G f
hx : x ∈ ↑s
⊢ (Structure.Sigma.mk f i (↑(f (out x).fst i (_ : (out x).fst ≤ i)) (out x).snd)).fst ≤ i
[PROOFSTEP]
rfl
[GOAL]
case h.mpr
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
⊢ (∃ i, M ∈ age L (G i)) → M ∈ age L (DirectLimit G f)
[PROOFSTEP]
rintro ⟨i, Mfg, ⟨e⟩⟩
[GOAL]
case h.mpr.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M✝ : Type w
inst✝⁶ : Structure L M✝
N : Type w
inst✝⁵ : Structure L N
ι : Type w
inst✝⁴ : Preorder ι
inst✝³ : IsDirected ι fun x x_1 => x ≤ x_1
inst✝² : Nonempty ι
G : ι → Type (max w w')
inst✝¹ : (i : ι) → Structure L (G i)
f : (i j : ι) → i ≤ j → G i ↪[L] G j
inst✝ : DirectedSystem G fun i j h => ↑(f i j h)
M : Bundled (Structure L)
i : ι
Mfg : Structure.FG L ↑M
e : ↑M ↪[L] G i
⊢ M ∈ age L (DirectLimit G f)
[PROOFSTEP]
exact ⟨Mfg, ⟨Embedding.comp (DirectLimit.of L ι G f i) e⟩⟩
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K
[PROOFSTEP]
obtain ⟨F, hF⟩ := hc.exists_eq_range (hn.image _)
[GOAL]
case intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : Quotient.mk' '' K = range F
⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K
[PROOFSTEP]
simp only [Set.ext_iff, forall_quotient_iff, mem_image, mem_range, Quotient.eq'] at hF
[GOAL]
case intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF :
∀ (a : Bundled (Structure L)),
(∃ x, x ∈ K ∧ Quotient.mk' x = Quotient.mk equivSetoid a) ↔ ∃ y, F y = Quotient.mk equivSetoid a
⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K
[PROOFSTEP]
simp_rw [Quotient.eq_mk_iff_out] at hF
[GOAL]
case intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K
[PROOFSTEP]
have hF' : ∀ n : ℕ, (F n).out ∈ K := by
intro n
obtain ⟨P, hP1, hP2⟩ :=
(hF (F n).out).2
⟨n, Setoid.refl _⟩
-- Porting note: fix hP2 because `Quotient.out (Quotient.mk' x) ≈ a` was not simplified
-- to `x ≈ a` in hF
replace hP2 := Setoid.trans (Setoid.symm (Quotient.mk_out P)) hP2
exact (h _ _ hP2).1 hP1
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
⊢ ∀ (n : ℕ), Quotient.out (F n) ∈ K
[PROOFSTEP]
intro n
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
n : ℕ
⊢ Quotient.out (F n) ∈ K
[PROOFSTEP]
obtain ⟨P, hP1, hP2⟩ :=
(hF (F n).out).2
⟨n, Setoid.refl _⟩
-- Porting note: fix hP2 because `Quotient.out (Quotient.mk' x) ≈ a` was not simplified
-- to `x ≈ a` in hF
[GOAL]
case intro.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
n : ℕ
P : Bundled (Structure L)
hP1 : P ∈ K
hP2 : Quotient.out (Quotient.mk' P) ≈ Quotient.out (F n)
⊢ Quotient.out (F n) ∈ K
[PROOFSTEP]
replace hP2 := Setoid.trans (Setoid.symm (Quotient.mk_out P)) hP2
[GOAL]
case intro.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
n : ℕ
P : Bundled (Structure L)
hP1 : P ∈ K
hP2 : P ≈ Quotient.out (F n)
⊢ Quotient.out (F n) ∈ K
[PROOFSTEP]
exact (h _ _ hP2).1 hP1
[GOAL]
case intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K
[PROOFSTEP]
choose P hPK hP hFP using fun (N : K) (n : ℕ) => jep N N.2 (F (n + 1)).out (hF' _)
[GOAL]
case intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K
[PROOFSTEP]
let G : ℕ → K :=
@Nat.rec (fun _ => K) ⟨(F 0).out, hF' 0⟩ fun n N =>
⟨P N n, hPK N n⟩
-- Poting note: was
-- let f : ∀ i j, i ≤ j → G i ↪[L] G j := DirectedSystem.natLeRec fun n => (hP _ n).some
[GOAL]
case intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K
[PROOFSTEP]
let f : ∀ (i j : ℕ), i ≤ j → (G i).val ↪[L] (G j).val :=
by
refine DirectedSystem.natLERec (G' := fun i => (G i).val) (L := L) ?_
dsimp only
exact (fun n => (hP _ n).some)
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
⊢ (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j)
[PROOFSTEP]
refine DirectedSystem.natLERec (G' := fun i => (G i).val) (L := L) ?_
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
⊢ (n : ℕ) → (fun i => ↑↑(G i)) n ↪[L] (fun i => ↑↑(G i)) (n + 1)
[PROOFSTEP]
dsimp only
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
⊢ (n : ℕ) →
↑↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n) ↪[L]
↑↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) (n + 1))
[PROOFSTEP]
exact (fun n => (hP _ n).some)
[GOAL]
case intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K
[PROOFSTEP]
have : DirectedSystem (fun n ↦ (G n).val) fun i j h ↦ ↑(f i j h) := by dsimp; infer_instance
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
⊢ DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h)
[PROOFSTEP]
dsimp
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
⊢ DirectedSystem
(fun n =>
↑↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
fun i j h =>
↑(DirectedSystem.natLERec
(fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
i j h)
[PROOFSTEP]
infer_instance
[GOAL]
case intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
this : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h)
⊢ ∃ M, Structure.CG L ↑M ∧ age L ↑M = K
[PROOFSTEP]
refine ⟨Bundled.of (@DirectLimit L _ _ (fun n ↦ (G n).val) _ f _ _), ?_, ?_⟩
[GOAL]
case intro.refine_1
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
this : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h)
⊢ Structure.CG L ↑(Bundled.of (DirectLimit (fun n => ↑↑(G n)) f))
[PROOFSTEP]
exact DirectLimit.cg _ (fun n => (fg _ (G n).2).cg)
[GOAL]
case intro.refine_2
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
this : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h)
⊢ age L ↑(Bundled.of (DirectLimit (fun n => ↑↑(G n)) f)) = K
[PROOFSTEP]
refine
(age_directLimit (fun n ↦ (G n).val) f).trans
(subset_antisymm (iUnion_subset fun n N hN => hp (G n).val (G n).2 hN) fun N KN => ?_)
[GOAL]
case intro.refine_2
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
this : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h)
N : Bundled (Structure L)
KN : N ∈ K
⊢ N ∈ ⋃ (i : ℕ), age L ↑↑(G i)
[PROOFSTEP]
have : Quotient.out (Quotient.mk' N) ≈ N := Quotient.eq_mk_iff_out.mp rfl
[GOAL]
case intro.refine_2
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h)
N : Bundled (Structure L)
KN : N ∈ K
this : Quotient.out (Quotient.mk' N) ≈ N
⊢ N ∈ ⋃ (i : ℕ), age L ↑↑(G i)
[PROOFSTEP]
obtain ⟨n, ⟨e⟩⟩ := (hF N).1 ⟨N, KN, this⟩
[GOAL]
case intro.refine_2.intro.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h)
N : Bundled (Structure L)
KN : N ∈ K
this : Quotient.out (Quotient.mk' N) ≈ N
n : ℕ
e : ↑(Quotient.out (F n)) ≃[L] ↑N
⊢ N ∈ ⋃ (i : ℕ), age L ↑↑(G i)
[PROOFSTEP]
refine mem_iUnion_of_mem n ⟨fg _ KN, ⟨Embedding.comp ?_ e.symm.toEmbedding⟩⟩
[GOAL]
case intro.refine_2.intro.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h)
N : Bundled (Structure L)
KN : N ∈ K
this : Quotient.out (Quotient.mk' N) ≈ N
n : ℕ
e : ↑(Quotient.out (F n)) ≃[L] ↑N
⊢ ↑(Quotient.out (F n)) ↪[L] ↑↑(G n)
[PROOFSTEP]
cases' n with n
[GOAL]
case intro.refine_2.intro.intro.zero
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h)
N : Bundled (Structure L)
KN : N ∈ K
this : Quotient.out (Quotient.mk' N) ≈ N
e : ↑(Quotient.out (F Nat.zero)) ≃[L] ↑N
⊢ ↑(Quotient.out (F Nat.zero)) ↪[L] ↑↑(G Nat.zero)
[PROOFSTEP]
dsimp
[GOAL]
case intro.refine_2.intro.intro.zero
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h)
N : Bundled (Structure L)
KN : N ∈ K
this : Quotient.out (Quotient.mk' N) ≈ N
e : ↑(Quotient.out (F Nat.zero)) ≃[L] ↑N
⊢ ↑(Quotient.out (F 0)) ↪[L] ↑(Quotient.out (F 0))
[PROOFSTEP]
exact Embedding.refl _ _
[GOAL]
case intro.refine_2.intro.intro.succ
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h)
N : Bundled (Structure L)
KN : N ∈ K
this : Quotient.out (Quotient.mk' N) ≈ N
n : ℕ
e : ↑(Quotient.out (F (Nat.succ n))) ≃[L] ↑N
⊢ ↑(Quotient.out (F (Nat.succ n))) ↪[L] ↑↑(G (Nat.succ n))
[PROOFSTEP]
dsimp
[GOAL]
case intro.refine_2.intro.intro.succ
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
hn : Set.Nonempty K
h : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
hc : Set.Countable (Quotient.mk' '' K)
fg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
F : ℕ → Quotient equivSetoid
hF : ∀ (a : Bundled (Structure L)), (∃ x, x ∈ K ∧ Quotient.out (Quotient.mk' x) ≈ a) ↔ ∃ y, Quotient.out (F y) ≈ a
hF' : ∀ (n : ℕ), Quotient.out (F n) ∈ K
P : ↑K → ℕ → Bundled (Structure L)
hPK : ∀ (N : ↑K) (n : ℕ), P N n ∈ K
hP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (↑N) (P N n)
hFP : ∀ (N : ↑K) (n : ℕ), (fun M N => Nonempty (↑M ↪[L] ↑N)) (Quotient.out (F (n + 1))) (P N n)
G : ℕ → ↑K :=
Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) } fun n N =>
{ val := P N n, property := (_ : P N n ∈ K) }
f : (i j : ℕ) → i ≤ j → ↑↑(G i) ↪[L] ↑↑(G j) :=
DirectedSystem.natLERec
(id fun n =>
Nonempty.some
(_ :
(fun M N => Nonempty (↑M ↪[L] ↑N))
(↑(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n))
(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)))
this✝ : DirectedSystem (fun n => ↑↑(G n)) fun i j h => ↑(f i j h)
N : Bundled (Structure L)
KN : N ∈ K
this : Quotient.out (Quotient.mk' N) ≈ N
n : ℕ
e : ↑(Quotient.out (F (Nat.succ n))) ≃[L] ↑N
⊢ ↑(Quotient.out (F (Nat.succ n))) ↪[L]
↑(P
(Nat.rec { val := Quotient.out (F 0), property := (_ : Quotient.out (F 0) ∈ K) }
(fun n N => { val := P N n, property := (_ : P N n ∈ K) }) n)
n)
[PROOFSTEP]
exact (hFP _ n).some
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝² : Structure L M
N : Type w
inst✝¹ : Structure L N
inst✝ : Countable ((l : ℕ) × Functions L l)
⊢ (∃ M, Countable ↑M ∧ age L ↑M = K) ↔
Set.Nonempty K ∧
(∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)) ∧
Set.Countable (Quotient.mk' '' K) ∧
(∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M) ∧ Hereditary K ∧ JointEmbedding K
[PROOFSTEP]
constructor
[GOAL]
case mp
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝² : Structure L M
N : Type w
inst✝¹ : Structure L N
inst✝ : Countable ((l : ℕ) × Functions L l)
⊢ (∃ M, Countable ↑M ∧ age L ↑M = K) →
Set.Nonempty K ∧
(∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)) ∧
Set.Countable (Quotient.mk' '' K) ∧
(∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M) ∧ Hereditary K ∧ JointEmbedding K
[PROOFSTEP]
rintro ⟨M, h1, h2, rfl⟩
[GOAL]
case mp.intro.intro.refl
L : Language
M✝ : Type w
inst✝² : Structure L M✝
N : Type w
inst✝¹ : Structure L N
inst✝ : Countable ((l : ℕ) × Functions L l)
M : Bundled (Structure L)
h1 : Countable ↑M
⊢ Set.Nonempty (age L ↑M) ∧
(∀ (M_1 N : Bundled (Structure L)), Nonempty (↑M_1 ≃[L] ↑N) → (M_1 ∈ age L ↑M ↔ N ∈ age L ↑M)) ∧
Set.Countable (Quotient.mk' '' age L ↑M) ∧
(∀ (M_1 : Bundled (Structure L)), M_1 ∈ age L ↑M → Structure.FG L ↑M_1) ∧
Hereditary (age L ↑M) ∧ JointEmbedding (age L ↑M)
[PROOFSTEP]
refine'
⟨age.nonempty M, age.is_equiv_invariant L M, age.countable_quotient M, fun N hN => hN.1, age.hereditary M,
age.jointEmbedding M⟩
[GOAL]
case mpr
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝² : Structure L M
N : Type w
inst✝¹ : Structure L N
inst✝ : Countable ((l : ℕ) × Functions L l)
⊢ Set.Nonempty K ∧
(∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)) ∧
Set.Countable (Quotient.mk' '' K) ∧
(∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M) ∧ Hereditary K ∧ JointEmbedding K →
∃ M, Countable ↑M ∧ age L ↑M = K
[PROOFSTEP]
rintro ⟨Kn, eqinv, cq, hfg, hp, jep⟩
[GOAL]
case mpr.intro.intro.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝² : Structure L M
N : Type w
inst✝¹ : Structure L N
inst✝ : Countable ((l : ℕ) × Functions L l)
Kn : Set.Nonempty K
eqinv : ∀ (M N : Bundled (Structure L)), Nonempty (↑M ≃[L] ↑N) → (M ∈ K ↔ N ∈ K)
cq : Set.Countable (Quotient.mk' '' K)
hfg : ∀ (M : Bundled (Structure L)), M ∈ K → Structure.FG L ↑M
hp : Hereditary K
jep : JointEmbedding K
⊢ ∃ M, Countable ↑M ∧ age L ↑M = K
[PROOFSTEP]
obtain ⟨M, hM, rfl⟩ := exists_cg_is_age_of Kn eqinv cq hfg hp jep
[GOAL]
case mpr.intro.intro.intro.intro.intro.intro.intro
L : Language
M✝ : Type w
inst✝² : Structure L M✝
N : Type w
inst✝¹ : Structure L N
inst✝ : Countable ((l : ℕ) × Functions L l)
M : Bundled (Structure L)
hM : Structure.CG L ↑M
Kn : Set.Nonempty (age L ↑M)
eqinv : ∀ (M_1 N : Bundled (Structure L)), Nonempty (↑M_1 ≃[L] ↑N) → (M_1 ∈ age L ↑M ↔ N ∈ age L ↑M)
cq : Set.Countable (Quotient.mk' '' age L ↑M)
hfg : ∀ (M_1 : Bundled (Structure L)), M_1 ∈ age L ↑M → Structure.FG L ↑M_1
hp : Hereditary (age L ↑M)
jep : JointEmbedding (age L ↑M)
⊢ ∃ M_1, Countable ↑M_1 ∧ age L ↑M_1 = age L ↑M
[PROOFSTEP]
exact ⟨M, Structure.cg_iff_countable.1 hM, rfl⟩
[GOAL]
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N : Type w
inst✝ : Structure L N
h : IsUltrahomogeneous L M
⊢ Amalgamation (age L M)
[PROOFSTEP]
rintro N P Q NP NQ ⟨Nfg, ⟨-⟩⟩ ⟨Pfg, ⟨PM⟩⟩ ⟨Qfg, ⟨QM⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : IsUltrahomogeneous L M
N P Q : Bundled (Structure L)
NP : ↑N ↪[L] ↑P
NQ : ↑N ↪[L] ↑Q
Nfg : Structure.FG L ↑N
Pfg : Structure.FG L ↑P
PM : ↑P ↪[L] M
Qfg : Structure.FG L ↑Q
QM : ↑Q ↪[L] M
⊢ ∃ Q_1 NQ_1 PQ, Q_1 ∈ age L M ∧ Embedding.comp NQ_1 NP = Embedding.comp PQ NQ
[PROOFSTEP]
obtain ⟨g, hg⟩ := h (PM.comp NP).toHom.range (Nfg.range _) ((QM.comp NQ).comp (PM.comp NP).equivRange.symm.toEmbedding)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : IsUltrahomogeneous L M
N P Q : Bundled (Structure L)
NP : ↑N ↪[L] ↑P
NQ : ↑N ↪[L] ↑Q
Nfg : Structure.FG L ↑N
Pfg : Structure.FG L ↑P
PM : ↑P ↪[L] M
Qfg : Structure.FG L ↑Q
QM : ↑Q ↪[L] M
g : M ≃[L] M
hg :
Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) =
Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP))))
⊢ ∃ Q_1 NQ_1 PQ, Q_1 ∈ age L M ∧ Embedding.comp NQ_1 NP = Embedding.comp PQ NQ
[PROOFSTEP]
let s := (g.toHom.comp PM.toHom).range ⊔ QM.toHom.range
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : IsUltrahomogeneous L M
N P Q : Bundled (Structure L)
NP : ↑N ↪[L] ↑P
NQ : ↑N ↪[L] ↑Q
Nfg : Structure.FG L ↑N
Pfg : Structure.FG L ↑P
PM : ↑P ↪[L] M
Qfg : Structure.FG L ↑Q
QM : ↑Q ↪[L] M
g : M ≃[L] M
hg :
Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) =
Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP))))
s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)
⊢ ∃ Q_1 NQ_1 PQ, Q_1 ∈ age L M ∧ Embedding.comp NQ_1 NP = Embedding.comp PQ NQ
[PROOFSTEP]
refine'
⟨Bundled.of s, Embedding.comp (Substructure.inclusion le_sup_left) (g.toEmbedding.comp PM).equivRange.toEmbedding,
Embedding.comp (Substructure.inclusion le_sup_right) QM.equivRange.toEmbedding,
⟨(fg_iff_structure_fg _).1 (FG.sup (Pfg.range _) (Qfg.range _)), ⟨Substructure.subtype _⟩⟩, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : IsUltrahomogeneous L M
N P Q : Bundled (Structure L)
NP : ↑N ↪[L] ↑P
NQ : ↑N ↪[L] ↑Q
Nfg : Structure.FG L ↑N
Pfg : Structure.FG L ↑P
PM : ↑P ↪[L] M
Qfg : Structure.FG L ↑Q
QM : ↑Q ↪[L] M
g : M ≃[L] M
hg :
Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) =
Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP))))
s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)
⊢ Embedding.comp
(Embedding.comp
(Substructure.inclusion
(_ :
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)))
(Equiv.toEmbedding (Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM))))
NP =
Embedding.comp
(Embedding.comp
(Substructure.inclusion
(_ :
Hom.range (Embedding.toHom QM) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)))
(Equiv.toEmbedding (Embedding.equivRange QM)))
NQ
[PROOFSTEP]
ext n
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.h
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : IsUltrahomogeneous L M
N P Q : Bundled (Structure L)
NP : ↑N ↪[L] ↑P
NQ : ↑N ↪[L] ↑Q
Nfg : Structure.FG L ↑N
Pfg : Structure.FG L ↑P
PM : ↑P ↪[L] M
Qfg : Structure.FG L ↑Q
QM : ↑Q ↪[L] M
g : M ≃[L] M
hg :
Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) =
Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP))))
s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)
n : ↑N
⊢ ↑(Embedding.comp
(Embedding.comp
(Substructure.inclusion
(_ :
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)))
(Equiv.toEmbedding (Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM))))
NP)
n =
↑(Embedding.comp
(Embedding.comp
(Substructure.inclusion
(_ :
Hom.range (Embedding.toHom QM) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)))
(Equiv.toEmbedding (Embedding.equivRange QM)))
NQ)
n
[PROOFSTEP]
apply Subtype.ext
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.h.a
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : IsUltrahomogeneous L M
N P Q : Bundled (Structure L)
NP : ↑N ↪[L] ↑P
NQ : ↑N ↪[L] ↑Q
Nfg : Structure.FG L ↑N
Pfg : Structure.FG L ↑P
PM : ↑P ↪[L] M
Qfg : Structure.FG L ↑Q
QM : ↑Q ↪[L] M
g : M ≃[L] M
hg :
Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) =
Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP))))
s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)
n : ↑N
⊢ ↑(↑(Embedding.comp
(Embedding.comp
(Substructure.inclusion
(_ :
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)))
(Equiv.toEmbedding (Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM))))
NP)
n) =
↑(↑(Embedding.comp
(Embedding.comp
(Substructure.inclusion
(_ :
Hom.range (Embedding.toHom QM) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)))
(Equiv.toEmbedding (Embedding.equivRange QM)))
NQ)
n)
[PROOFSTEP]
have hgn := (Embedding.ext_iff.1 hg) ((PM.comp NP).equivRange n)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.h.a
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : IsUltrahomogeneous L M
N P Q : Bundled (Structure L)
NP : ↑N ↪[L] ↑P
NQ : ↑N ↪[L] ↑Q
Nfg : Structure.FG L ↑N
Pfg : Structure.FG L ↑P
PM : ↑P ↪[L] M
Qfg : Structure.FG L ↑Q
QM : ↑Q ↪[L] M
g : M ≃[L] M
hg :
Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) =
Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP))))
s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)
n : ↑N
hgn :
↑(Embedding.comp (Embedding.comp QM NQ)
(Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))))
(↑(Embedding.equivRange (Embedding.comp PM NP)) n) =
↑(Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP)))))
(↑(Embedding.equivRange (Embedding.comp PM NP)) n)
⊢ ↑(↑(Embedding.comp
(Embedding.comp
(Substructure.inclusion
(_ :
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)))
(Equiv.toEmbedding (Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM))))
NP)
n) =
↑(↑(Embedding.comp
(Embedding.comp
(Substructure.inclusion
(_ :
Hom.range (Embedding.toHom QM) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)))
(Equiv.toEmbedding (Embedding.equivRange QM)))
NQ)
n)
[PROOFSTEP]
simp only [Embedding.comp_apply, Equiv.coe_toEmbedding, Equiv.symm_apply_apply, Substructure.coeSubtype,
Embedding.equivRange_apply] at hgn
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.h.a
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : IsUltrahomogeneous L M
N P Q : Bundled (Structure L)
NP : ↑N ↪[L] ↑P
NQ : ↑N ↪[L] ↑Q
Nfg : Structure.FG L ↑N
Pfg : Structure.FG L ↑P
PM : ↑P ↪[L] M
Qfg : Structure.FG L ↑Q
QM : ↑Q ↪[L] M
g : M ≃[L] M
hg :
Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) =
Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP))))
s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)
n : ↑N
hgn : ↑QM (↑NQ n) = ↑g (↑PM (↑NP n))
⊢ ↑(↑(Embedding.comp
(Embedding.comp
(Substructure.inclusion
(_ :
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)))
(Equiv.toEmbedding (Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM))))
NP)
n) =
↑(↑(Embedding.comp
(Embedding.comp
(Substructure.inclusion
(_ :
Hom.range (Embedding.toHom QM) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)))
(Equiv.toEmbedding (Embedding.equivRange QM)))
NQ)
n)
[PROOFSTEP]
simp only [Embedding.comp_apply, Equiv.coe_toEmbedding]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.h.a
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : IsUltrahomogeneous L M
N P Q : Bundled (Structure L)
NP : ↑N ↪[L] ↑P
NQ : ↑N ↪[L] ↑Q
Nfg : Structure.FG L ↑N
Pfg : Structure.FG L ↑P
PM : ↑P ↪[L] M
Qfg : Structure.FG L ↑Q
QM : ↑Q ↪[L] M
g : M ≃[L] M
hg :
Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) =
Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP))))
s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)
n : ↑N
hgn : ↑QM (↑NQ n) = ↑g (↑PM (↑NP n))
⊢ ↑(↑(Substructure.inclusion
(_ :
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)))
(↑(Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM)) (↑NP n))) =
↑(↑(Substructure.inclusion
(_ :
Hom.range (Embedding.toHom QM) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)))
(↑(Embedding.equivRange QM) (↑NQ n)))
[PROOFSTEP]
erw [Substructure.coe_inclusion, Substructure.coe_inclusion]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.h.a
L : Language
K : Set (Bundled (Structure L))
M : Type w
inst✝¹ : Structure L M
N✝ : Type w
inst✝ : Structure L N✝
h : IsUltrahomogeneous L M
N P Q : Bundled (Structure L)
NP : ↑N ↪[L] ↑P
NQ : ↑N ↪[L] ↑Q
Nfg : Structure.FG L ↑N
Pfg : Structure.FG L ↑P
PM : ↑P ↪[L] M
Qfg : Structure.FG L ↑Q
QM : ↑Q ↪[L] M
g : M ≃[L] M
hg :
Embedding.comp (Embedding.comp QM NQ) (Equiv.toEmbedding (Equiv.symm (Embedding.equivRange (Embedding.comp PM NP)))) =
Embedding.comp (Equiv.toEmbedding g) (subtype (Hom.range (Embedding.toHom (Embedding.comp PM NP))))
s : Substructure L M := Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM)
n : ↑N
hgn : ↑QM (↑NQ n) = ↑g (↑PM (↑NP n))
⊢ ↑(Set.inclusion
(_ :
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))
(↑(Embedding.equivRange (Embedding.comp (Equiv.toEmbedding g) PM)) (↑NP n))) =
↑(Set.inclusion
(_ :
Hom.range (Embedding.toHom QM) ≤
Hom.range (Hom.comp (Equiv.toHom g) (Embedding.toHom PM)) ⊔ Hom.range (Embedding.toHom QM))
(↑(Embedding.equivRange QM) (↑NQ n)))
[PROOFSTEP]
simp only [Embedding.comp_apply, Equiv.coe_toEmbedding, Set.coe_inclusion, Embedding.equivRange_apply, hgn]
| {"mathlib_filename": "Mathlib.ModelTheory.Fraisse", "llama_tokens": 35705} |
[GOAL]
P : AffineTargetMorphismProperty
X Y : Scheme
f : X ⟶ Y
i : IsAffine Y
⊢ toProperty P f ↔ P f
[PROOFSTEP]
delta AffineTargetMorphismProperty.toProperty
[GOAL]
P : AffineTargetMorphismProperty
X Y : Scheme
f : X ⟶ Y
i : IsAffine Y
⊢ (∃ h, P f) ↔ P f
[PROOFSTEP]
simp [*]
[GOAL]
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
inst✝¹ : IsIso f
inst✝ : IsAffine Z
⊢ P (f ≫ g) ↔ P g
[PROOFSTEP]
rw [← P.toProperty_apply, ← P.toProperty_apply, hP.cancel_left_isIso]
[GOAL]
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
X Y Z : Scheme
f : X ⟶ Y
g : Y ⟶ Z
inst✝² : IsIso g
inst✝¹ : IsAffine Z
inst✝ : IsAffine Y
⊢ P (f ≫ g) ↔ P f
[PROOFSTEP]
rw [← P.toProperty_apply, ← P.toProperty_apply, hP.cancel_right_isIso]
[GOAL]
P : AffineTargetMorphismProperty
h₁ : ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], P f → P (e.hom ≫ f)
h₂ : ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], P f → P (f ≫ e.hom)
⊢ MorphismProperty.RespectsIso (toProperty P)
[PROOFSTEP]
constructor
[GOAL]
case left
P : AffineTargetMorphismProperty
h₁ : ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], P f → P (e.hom ≫ f)
h₂ : ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], P f → P (f ≫ e.hom)
⊢ ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z), toProperty P f → toProperty P (e.hom ≫ f)
[PROOFSTEP]
rintro X Y Z e f ⟨a, h⟩
[GOAL]
case left.intro
P : AffineTargetMorphismProperty
h₁ : ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], P f → P (e.hom ≫ f)
h₂ : ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], P f → P (f ≫ e.hom)
X Y Z : Scheme
e : X ≅ Y
f : Y ⟶ Z
a : IsAffine Z
h : P f
⊢ toProperty P (e.hom ≫ f)
[PROOFSTEP]
exact ⟨a, h₁ e f h⟩
[GOAL]
case right
P : AffineTargetMorphismProperty
h₁ : ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], P f → P (e.hom ≫ f)
h₂ : ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], P f → P (f ≫ e.hom)
⊢ ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y), toProperty P f → toProperty P (f ≫ e.hom)
[PROOFSTEP]
rintro X Y Z e f ⟨a, h⟩
[GOAL]
case right.intro
P : AffineTargetMorphismProperty
h₁ : ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z], P f → P (e.hom ≫ f)
h₂ : ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y], P f → P (f ≫ e.hom)
X Y Z : Scheme
e : Y ≅ Z
f : X ⟶ Y
a : IsAffine Y
h : P f
⊢ toProperty P (f ≫ e.hom)
[PROOFSTEP]
exact ⟨isAffineOfIso e.inv, h₂ e f h⟩
[GOAL]
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
⊢ MorphismProperty.RespectsIso (targetAffineLocally P)
[PROOFSTEP]
constructor
[GOAL]
case left
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
⊢ ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z), targetAffineLocally P f → targetAffineLocally P (e.hom ≫ f)
[PROOFSTEP]
introv H U
[GOAL]
case left
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
X Y Z : Scheme
e : X ≅ Y
f : Y ⟶ Z
H : targetAffineLocally P f
U : ↑(Scheme.affineOpens Z)
⊢ P ((e.hom ≫ f) ∣_ ↑U)
[PROOFSTEP]
haveI : IsAffine _ := U.prop
[GOAL]
case left
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
X Y Z : Scheme
e : X ≅ Y
f : Y ⟶ Z
H : targetAffineLocally P f
U : ↑(Scheme.affineOpens Z)
this : IsAffine (Scheme.restrict Z (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
⊢ P ((e.hom ≫ f) ∣_ ↑U)
[PROOFSTEP]
rw [morphismRestrict_comp, affine_cancel_left_isIso hP]
[GOAL]
case left
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
X Y Z : Scheme
e : X ≅ Y
f : Y ⟶ Z
H : targetAffineLocally P f
U : ↑(Scheme.affineOpens Z)
this : IsAffine (Scheme.restrict Z (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
⊢ P (f ∣_ ↑U)
[PROOFSTEP]
exact H U
[GOAL]
case right
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
⊢ ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y), targetAffineLocally P f → targetAffineLocally P (f ≫ e.hom)
[PROOFSTEP]
introv H
[GOAL]
case right
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
X Y Z : Scheme
e : Y ≅ Z
f : X ⟶ Y
H : targetAffineLocally P f
⊢ targetAffineLocally P (f ≫ e.hom)
[PROOFSTEP]
rintro ⟨U, hU : IsAffineOpen U⟩
[GOAL]
case right.mk
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
X Y Z : Scheme
e : Y ≅ Z
f : X ⟶ Y
H : targetAffineLocally P f
U : Opens ↑↑Z.toPresheafedSpace
hU : IsAffineOpen U
⊢ P ((f ≫ e.hom) ∣_ ↑{ val := U, property := hU })
[PROOFSTEP]
dsimp
[GOAL]
case right.mk
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
X Y Z : Scheme
e : Y ≅ Z
f : X ⟶ Y
H : targetAffineLocally P f
U : Opens ↑↑Z.toPresheafedSpace
hU : IsAffineOpen U
⊢ P ((f ≫ e.hom) ∣_ U)
[PROOFSTEP]
haveI : IsAffine _ := hU
[GOAL]
case right.mk
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
X Y Z : Scheme
e : Y ≅ Z
f : X ⟶ Y
H : targetAffineLocally P f
U : Opens ↑↑Z.toPresheafedSpace
hU : IsAffineOpen U
this : IsAffine (Scheme.restrict Z (_ : OpenEmbedding ↑(Opens.inclusion U)))
⊢ P ((f ≫ e.hom) ∣_ U)
[PROOFSTEP]
haveI : IsAffine _ := hU.map_isIso e.hom
[GOAL]
case right.mk
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
X Y Z : Scheme
e : Y ≅ Z
f : X ⟶ Y
H : targetAffineLocally P f
U : Opens ↑↑Z.toPresheafedSpace
hU : IsAffineOpen U
this✝ : IsAffine (Scheme.restrict Z (_ : OpenEmbedding ↑(Opens.inclusion U)))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map e.hom.val.base).obj U))))
⊢ P ((f ≫ e.hom) ∣_ U)
[PROOFSTEP]
rw [morphismRestrict_comp, affine_cancel_right_isIso hP]
[GOAL]
case right.mk
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (AffineTargetMorphismProperty.toProperty P)
X Y Z : Scheme
e : Y ≅ Z
f : X ⟶ Y
H : targetAffineLocally P f
U : Opens ↑↑Z.toPresheafedSpace
hU : IsAffineOpen U
this✝ : IsAffine (Scheme.restrict Z (_ : OpenEmbedding ↑(Opens.inclusion U)))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map e.hom.val.base).obj U))))
⊢ P (f ∣_ (Opens.map e.hom.val.base).obj U)
[PROOFSTEP]
exact H ⟨(Opens.map e.hom.val.base).obj U, hU.map_isIso e.hom⟩
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
⊢ targetAffineLocally P f
[PROOFSTEP]
classical
let S i :=
(⟨⟨Set.range (𝒰.map i).1.base, (𝒰.IsOpen i).base_open.open_range⟩, rangeIsAffineOpenOfOpenImmersion (𝒰.map i)⟩ :
Y.affineOpens)
intro U
apply of_affine_open_cover (P := _) U (Set.range S)
· intro U r h
haveI : IsAffine _ := U.2
have := hP.2 (f ∣_ U.1)
replace this := this (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op r) h
haveI i1 : IsAffine (Y.restrict (Scheme.affineBasicOpen Y r).1.openEmbedding) := (Scheme.affineBasicOpen Y r).2
haveI i2 :
IsAffine
((Y.restrict U.1.openEmbedding).restrict
((Y.restrict U.1.openEmbedding).basicOpen <|
(Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op r)).openEmbedding) :=
IsAffineOpen.basicOpenIsAffine (X := Y.restrict U.1.openEmbedding) (topIsAffineOpen _) _
rw [← P.toProperty_apply] at this ⊢
exact (hP.1.arrow_mk_iso_iff (morphismRestrictRestrictBasicOpen f _ r)).mp this
· intro U s hs H
haveI : IsAffine _ := U.2
apply hP.3 (f ∣_ U.1) (s.image (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op))
· apply_fun Ideal.comap (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top.symm).op) at hs
rw [Ideal.comap_top] at hs
rw [← hs]
simp only [eqToHom_op, eqToHom_map, Finset.coe_image]
have :
∀ {R S : CommRingCat} (e : S = R) (s : Set S),
Ideal.span (eqToHom e '' s) = Ideal.comap (eqToHom e.symm) (Ideal.span s) :=
by
intro _ _ e _
subst e
simp only [eqToHom_refl, id_apply, Set.image_id']
-- Porting note : Lean didn't see `𝟙 _` is just ring hom id
exact (Ideal.comap_id _).symm
apply this
· rintro ⟨r, hr⟩
obtain ⟨r, hr', rfl⟩ := Finset.mem_image.mp hr
specialize
H
⟨r, hr'⟩
-- Porting note : the following 2 instances was not necessary
haveI i1 : IsAffine (Y.restrict (Scheme.affineBasicOpen Y r).1.openEmbedding) := (Scheme.affineBasicOpen Y r).2
haveI i2 :
IsAffine
((Y.restrict U.1.openEmbedding).restrict
((Y.restrict U.1.openEmbedding).basicOpen <|
(Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op r)).openEmbedding) :=
IsAffineOpen.basicOpenIsAffine (X := Y.restrict U.1.openEmbedding) (topIsAffineOpen _) _
rw [← P.toProperty_apply] at H ⊢
exact (hP.1.arrow_mk_iso_iff (morphismRestrictRestrictBasicOpen f _ r)).mpr H
· rw [Set.eq_univ_iff_forall]
simp only [Set.mem_iUnion]
intro x
exact ⟨⟨_, ⟨𝒰.f x, rfl⟩⟩, 𝒰.Covers x⟩
· rintro ⟨_, i, rfl⟩
specialize h𝒰 i
haveI i1 : IsAffine (Y.restrict (S i).1.openEmbedding) := (S i).2
rw [← P.toProperty_apply] at h𝒰 ⊢
exact (hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)).mpr h𝒰
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
⊢ targetAffineLocally P f
[PROOFSTEP]
let S i :=
(⟨⟨Set.range (𝒰.map i).1.base, (𝒰.IsOpen i).base_open.open_range⟩, rangeIsAffineOpenOfOpenImmersion (𝒰.map i)⟩ :
Y.affineOpens)
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
⊢ targetAffineLocally P f
[PROOFSTEP]
intro U
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U : ↑(Scheme.affineOpens Y)
⊢ P (f ∣_ ↑U)
[PROOFSTEP]
apply of_affine_open_cover (P := _) U (Set.range S)
[GOAL]
case hP₁
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U : ↑(Scheme.affineOpens Y)
⊢ ∀ (U : ↑(Scheme.affineOpens Y)) (f_1 : ↑(Y.presheaf.obj (op ↑U))),
P (f ∣_ ↑U) → P (f ∣_ ↑(Scheme.affineBasicOpen Y f_1))
[PROOFSTEP]
intro U r h
[GOAL]
case hP₁
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
r : ↑(Y.presheaf.obj (op ↑U))
h : P (f ∣_ ↑U)
⊢ P (f ∣_ ↑(Scheme.affineBasicOpen Y r))
[PROOFSTEP]
haveI : IsAffine _ := U.2
[GOAL]
case hP₁
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
r : ↑(Y.presheaf.obj (op ↑U))
h : P (f ∣_ ↑U)
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
⊢ P (f ∣_ ↑(Scheme.affineBasicOpen Y r))
[PROOFSTEP]
have := hP.2 (f ∣_ U.1)
[GOAL]
case hP₁
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
r : ↑(Y.presheaf.obj (op ↑U))
h : P (f ∣_ ↑U)
this✝ : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
this :
∀
(r :
↑((Scheme.restrict Y
(_ :
OpenEmbedding
↑(Opens.inclusion ↑U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj
(op ⊤))),
P (f ∣_ ↑U) → P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) r)
⊢ P (f ∣_ ↑(Scheme.affineBasicOpen Y r))
[PROOFSTEP]
replace this := this (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op r) h
[GOAL]
case hP₁
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
r : ↑(Y.presheaf.obj (op ↑U))
h : P (f ∣_ ↑U)
this✝ : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
this :
P
(f ∣_ ↑U ∣_
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r))
⊢ P (f ∣_ ↑(Scheme.affineBasicOpen Y r))
[PROOFSTEP]
haveI i1 : IsAffine (Y.restrict (Scheme.affineBasicOpen Y r).1.openEmbedding) := (Scheme.affineBasicOpen Y r).2
[GOAL]
case hP₁
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
r : ↑(Y.presheaf.obj (op ↑U))
h : P (f ∣_ ↑U)
this✝ : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
this :
P
(f ∣_ ↑U ∣_
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r))
i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(Scheme.affineBasicOpen Y r))))
⊢ P (f ∣_ ↑(Scheme.affineBasicOpen Y r))
[PROOFSTEP]
haveI i2 :
IsAffine
((Y.restrict U.1.openEmbedding).restrict
((Y.restrict U.1.openEmbedding).basicOpen <|
(Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op r)).openEmbedding) :=
IsAffineOpen.basicOpenIsAffine (X := Y.restrict U.1.openEmbedding) (topIsAffineOpen _) _
[GOAL]
case hP₁
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
r : ↑(Y.presheaf.obj (op ↑U))
h : P (f ∣_ ↑U)
this✝ : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
this :
P
(f ∣_ ↑U ∣_
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r))
i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(Scheme.affineBasicOpen Y r))))
i2 :
IsAffine
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(_ :
OpenEmbedding
↑(Opens.inclusion
(Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(↑(Y.presheaf.map
(eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)
r)))))
⊢ P (f ∣_ ↑(Scheme.affineBasicOpen Y r))
[PROOFSTEP]
rw [← P.toProperty_apply] at this ⊢
[GOAL]
case hP₁
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
r : ↑(Y.presheaf.obj (op ↑U))
h : P (f ∣_ ↑U)
this✝ : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
this :
AffineTargetMorphismProperty.toProperty P
(f ∣_ ↑U ∣_
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r))
i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(Scheme.affineBasicOpen Y r))))
i2 :
IsAffine
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(_ :
OpenEmbedding
↑(Opens.inclusion
(Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(↑(Y.presheaf.map
(eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)
r)))))
⊢ AffineTargetMorphismProperty.toProperty P (f ∣_ ↑(Scheme.affineBasicOpen Y r))
[PROOFSTEP]
exact (hP.1.arrow_mk_iso_iff (morphismRestrictRestrictBasicOpen f _ r)).mp this
[GOAL]
case hP₂
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U : ↑(Scheme.affineOpens Y)
⊢ ∀ (U : ↑(Scheme.affineOpens Y)) (s : Finset ↑(Y.presheaf.obj (op ↑U))),
Ideal.span ↑s = ⊤ → (∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))) → P (f ∣_ ↑U)
[PROOFSTEP]
intro U s hs H
[GOAL]
case hP₂
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
hs : Ideal.span ↑s = ⊤
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
⊢ P (f ∣_ ↑U)
[PROOFSTEP]
haveI : IsAffine _ := U.2
[GOAL]
case hP₂
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
hs : Ideal.span ↑s = ⊤
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
⊢ P (f ∣_ ↑U)
[PROOFSTEP]
apply hP.3 (f ∣_ U.1) (s.image (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op))
[GOAL]
case hP₂.x
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
hs : Ideal.span ↑s = ⊤
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
⊢ Ideal.span
↑(Finset.image
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op))
s) =
⊤
[PROOFSTEP]
apply_fun Ideal.comap (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top.symm).op) at hs
[GOAL]
case hP₂.x
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
hs :
Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op)
(Ideal.span ↑s) =
Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op)
⊤
⊢ Ideal.span
↑(Finset.image
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op))
s) =
⊤
[PROOFSTEP]
rw [Ideal.comap_top] at hs
[GOAL]
case hP₂.x
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
hs :
Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op)
(Ideal.span ↑s) =
⊤
⊢ Ideal.span
↑(Finset.image
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op))
s) =
⊤
[PROOFSTEP]
rw [← hs]
[GOAL]
case hP₂.x
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
hs :
Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op)
(Ideal.span ↑s) =
⊤
⊢ Ideal.span
↑(Finset.image
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op))
s) =
Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op)
(Ideal.span ↑s)
[PROOFSTEP]
simp only [eqToHom_op, eqToHom_map, Finset.coe_image]
[GOAL]
case hP₂.x
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
hs :
Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op)
(Ideal.span ↑s) =
⊤
⊢ Ideal.span
(↑(eqToHom
(_ :
Y.presheaf.obj (op ↑U) =
Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)))) ''
↑s) =
Ideal.comap
(eqToHom
(_ :
Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)) =
Y.presheaf.obj (op ↑U)))
(Ideal.span ↑s)
[PROOFSTEP]
have :
∀ {R S : CommRingCat} (e : S = R) (s : Set S),
Ideal.span (eqToHom e '' s) = Ideal.comap (eqToHom e.symm) (Ideal.span s) :=
by
intro _ _ e _
subst e
simp only [eqToHom_refl, id_apply, Set.image_id']
-- Porting note : Lean didn't see `𝟙 _` is just ring hom id
exact (Ideal.comap_id _).symm
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
hs :
Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op)
(Ideal.span ↑s) =
⊤
⊢ ∀ {R S : CommRingCat} (e : S = R) (s : Set ↑S),
Ideal.span (↑(eqToHom e) '' s) = Ideal.comap (eqToHom (_ : R = S)) (Ideal.span s)
[PROOFSTEP]
intro _ _ e _
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
hs :
Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op)
(Ideal.span ↑s) =
⊤
R✝ S✝ : CommRingCat
e : S✝ = R✝
s✝ : Set ↑S✝
⊢ Ideal.span (↑(eqToHom e) '' s✝) = Ideal.comap (eqToHom (_ : R✝ = S✝)) (Ideal.span s✝)
[PROOFSTEP]
subst e
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
hs :
Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op)
(Ideal.span ↑s) =
⊤
S✝ : CommRingCat
s✝ : Set ↑S✝
⊢ Ideal.span (↑(eqToHom (_ : S✝ = S✝)) '' s✝) = Ideal.comap (eqToHom (_ : S✝ = S✝)) (Ideal.span s✝)
[PROOFSTEP]
simp only [eqToHom_refl, id_apply, Set.image_id']
-- Porting note : Lean didn't see `𝟙 _` is just ring hom id
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
hs :
Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op)
(Ideal.span ↑s) =
⊤
S✝ : CommRingCat
s✝ : Set ↑S✝
⊢ Ideal.span s✝ = Ideal.comap (𝟙 S✝) (Ideal.span s✝)
[PROOFSTEP]
exact (Ideal.comap_id _).symm
[GOAL]
case hP₂.x
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this✝ : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
hs :
Ideal.comap (Y.presheaf.map (eqToHom (_ : ↑U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)).op)
(Ideal.span ↑s) =
⊤
this :
∀ {R S : CommRingCat} (e : S = R) (s : Set ↑S),
Ideal.span (↑(eqToHom e) '' s) = Ideal.comap (eqToHom (_ : R = S)) (Ideal.span s)
⊢ Ideal.span
(↑(eqToHom
(_ :
Y.presheaf.obj (op ↑U) =
Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)))) ''
↑s) =
Ideal.comap
(eqToHom
(_ :
Y.presheaf.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤)) =
Y.presheaf.obj (op ↑U)))
(Ideal.span ↑s)
[PROOFSTEP]
apply this
[GOAL]
case hP₂.a
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
hs : Ideal.span ↑s = ⊤
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
⊢ ∀
(r :
{ x //
x ∈
Finset.image
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op))
s }),
P (f ∣_ ↑U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ↑r)
[PROOFSTEP]
rintro ⟨r, hr⟩
[GOAL]
case hP₂.a.mk
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
hs : Ideal.span ↑s = ⊤
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
r :
↑((Scheme.restrict Y
(_ :
OpenEmbedding
↑(Opens.inclusion ↑U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.obj
(op ⊤))
hr :
r ∈
Finset.image
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s
⊢ P
(f ∣_ ↑U ∣_
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ↑{ val := r, property := hr })
[PROOFSTEP]
obtain ⟨r, hr', rfl⟩ := Finset.mem_image.mp hr
[GOAL]
case hP₂.a.mk.intro.intro
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
hs : Ideal.span ↑s = ⊤
H : ∀ (f_1 : { x // x ∈ s }), P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑f_1))
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
r : (forget CommRingCat).obj (Y.presheaf.obj (op ↑U))
hr' : r ∈ s
hr :
↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r ∈
Finset.image
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s
⊢ P
(f ∣_ ↑U ∣_
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
↑{
val :=
↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)
r,
property := hr })
[PROOFSTEP]
specialize
H
⟨r, hr'⟩
-- Porting note : the following 2 instances was not necessary
[GOAL]
case hP₂.a.mk.intro.intro
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
hs : Ideal.span ↑s = ⊤
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
r : (forget CommRingCat).obj (Y.presheaf.obj (op ↑U))
hr' : r ∈ s
hr :
↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r ∈
Finset.image
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s
H : P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑{ val := r, property := hr' }))
⊢ P
(f ∣_ ↑U ∣_
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
↑{
val :=
↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)
r,
property := hr })
[PROOFSTEP]
haveI i1 : IsAffine (Y.restrict (Scheme.affineBasicOpen Y r).1.openEmbedding) := (Scheme.affineBasicOpen Y r).2
[GOAL]
case hP₂.a.mk.intro.intro
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
hs : Ideal.span ↑s = ⊤
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
r : (forget CommRingCat).obj (Y.presheaf.obj (op ↑U))
hr' : r ∈ s
hr :
↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r ∈
Finset.image
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s
H : P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑{ val := r, property := hr' }))
i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(Scheme.affineBasicOpen Y r))))
⊢ P
(f ∣_ ↑U ∣_
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
↑{
val :=
↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)
r,
property := hr })
[PROOFSTEP]
haveI i2 :
IsAffine
((Y.restrict U.1.openEmbedding).restrict
((Y.restrict U.1.openEmbedding).basicOpen <|
(Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op r)).openEmbedding) :=
IsAffineOpen.basicOpenIsAffine (X := Y.restrict U.1.openEmbedding) (topIsAffineOpen _) _
[GOAL]
case hP₂.a.mk.intro.intro
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
hs : Ideal.span ↑s = ⊤
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
r : (forget CommRingCat).obj (Y.presheaf.obj (op ↑U))
hr' : r ∈ s
hr :
↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r ∈
Finset.image
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s
H : P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑{ val := r, property := hr' }))
i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(Scheme.affineBasicOpen Y r))))
i2 :
IsAffine
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(_ :
OpenEmbedding
↑(Opens.inclusion
(Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(↑(Y.presheaf.map
(eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)
r)))))
⊢ P
(f ∣_ ↑U ∣_
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
↑{
val :=
↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)
r,
property := hr })
[PROOFSTEP]
rw [← P.toProperty_apply] at H ⊢
[GOAL]
case hP₂.a.mk.intro.intro
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U✝ U : ↑(Scheme.affineOpens Y)
s : Finset ↑(Y.presheaf.obj (op ↑U))
hs : Ideal.span ↑s = ⊤
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
r : (forget CommRingCat).obj (Y.presheaf.obj (op ↑U))
hr' : r ∈ s
hr :
↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op) r ∈
Finset.image
(↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)) s
H : AffineTargetMorphismProperty.toProperty P (f ∣_ ↑(Scheme.affineBasicOpen Y ↑{ val := r, property := hr' }))
i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(Scheme.affineBasicOpen Y r))))
i2 :
IsAffine
(Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(_ :
OpenEmbedding
↑(Opens.inclusion
(Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
(↑(Y.presheaf.map
(eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)
r)))))
⊢ AffineTargetMorphismProperty.toProperty P
(f ∣_ ↑U ∣_
Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑U)))
↑{
val :=
↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ↑U))).obj ⊤ = ↑U)).op)
r,
property := hr })
[PROOFSTEP]
exact (hP.1.arrow_mk_iso_iff (morphismRestrictRestrictBasicOpen f _ r)).mpr H
[GOAL]
case hS
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U : ↑(Scheme.affineOpens Y)
⊢ ⋃ (i : ↑(Set.range S)), ↑↑↑i = Set.univ
[PROOFSTEP]
rw [Set.eq_univ_iff_forall]
[GOAL]
case hS
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U : ↑(Scheme.affineOpens Y)
⊢ ∀ (x : ↑↑Y.toPresheafedSpace), x ∈ ⋃ (i : ↑(Set.range S)), ↑↑↑i
[PROOFSTEP]
simp only [Set.mem_iUnion]
[GOAL]
case hS
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U : ↑(Scheme.affineOpens Y)
⊢ ∀ (x : ↑↑Y.toPresheafedSpace), ∃ i, x ∈ ↑↑↑i
[PROOFSTEP]
intro x
[GOAL]
case hS
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U : ↑(Scheme.affineOpens Y)
x : ↑↑Y.toPresheafedSpace
⊢ ∃ i, x ∈ ↑↑↑i
[PROOFSTEP]
exact ⟨⟨_, ⟨𝒰.f x, rfl⟩⟩, 𝒰.Covers x⟩
[GOAL]
case hS'
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U : ↑(Scheme.affineOpens Y)
⊢ ∀ (U : ↑(Set.range S)), P (f ∣_ ↑↑U)
[PROOFSTEP]
rintro ⟨_, i, rfl⟩
[GOAL]
case hS'.mk.intro
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
h𝒰 : ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 f).J), P pullback.snd
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U : ↑(Scheme.affineOpens Y)
i : 𝒰.J
⊢ P (f ∣_ ↑↑{ val := S i, property := (_ : ∃ y, S y = S i) })
[PROOFSTEP]
specialize h𝒰 i
[GOAL]
case hS'.mk.intro
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U : ↑(Scheme.affineOpens Y)
i : 𝒰.J
h𝒰 : P pullback.snd
⊢ P (f ∣_ ↑↑{ val := S i, property := (_ : ∃ y, S y = S i) })
[PROOFSTEP]
haveI i1 : IsAffine (Y.restrict (S i).1.openEmbedding) := (S i).2
[GOAL]
case hS'.mk.intro
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U : ↑(Scheme.affineOpens Y)
i : 𝒰.J
h𝒰 : P pullback.snd
i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(S i))))
⊢ P (f ∣_ ↑↑{ val := S i, property := (_ : ∃ y, S y = S i) })
[PROOFSTEP]
rw [← P.toProperty_apply] at h𝒰 ⊢
[GOAL]
case hS'.mk.intro
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
S : 𝒰.J → { x // x ∈ Scheme.affineOpens Y } :=
fun i =>
{
val :=
{ carrier := Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base,
is_open' := (_ : IsOpen (Set.range ↑(Scheme.OpenCover.map 𝒰 i).val.base)) },
property := (_ : IsAffineOpen (Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))) }
U : ↑(Scheme.affineOpens Y)
i : 𝒰.J
h𝒰 : AffineTargetMorphismProperty.toProperty P pullback.snd
i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion ↑(S i))))
⊢ AffineTargetMorphismProperty.toProperty P (f ∣_ ↑↑{ val := S i, property := (_ : ∃ y, S y = S i) })
[PROOFSTEP]
exact (hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)).mpr h𝒰
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
⊢ TFAE
[targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd,
∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 1 → 4
[GOAL]
case tfae_1_to_4
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
⊢ targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
[PROOFSTEP]
intro H U g h₁ h₂
[GOAL]
case tfae_1_to_4
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
H : targetAffineLocally P f
U : Scheme
g : U ⟶ Y
h₁ : IsAffine U
h₂ : IsOpenImmersion g
⊢ P pullback.snd
[PROOFSTEP]
set U' : Opens _ := ⟨_, h₂.base_open.open_range⟩
[GOAL]
case tfae_1_to_4
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
H : targetAffineLocally P f
U : Scheme
g : U ⟶ Y
h₁ : IsAffine U
h₂ : IsOpenImmersion g
U' : Opens ((forget TopCat).obj ↑Y.toPresheafedSpace) :=
{ carrier := Set.range ↑g.val.base, is_open' := (_ : IsOpen (Set.range ↑g.val.base)) }
⊢ P pullback.snd
[PROOFSTEP]
replace H := H ⟨U', rangeIsAffineOpenOfOpenImmersion g⟩
[GOAL]
case tfae_1_to_4
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
U : Scheme
g : U ⟶ Y
h₁ : IsAffine U
h₂ : IsOpenImmersion g
U' : Opens ((forget TopCat).obj ↑Y.toPresheafedSpace) :=
{ carrier := Set.range ↑g.val.base, is_open' := (_ : IsOpen (Set.range ↑g.val.base)) }
H : P (f ∣_ ↑{ val := U', property := (_ : IsAffineOpen (Scheme.Hom.opensRange g)) })
⊢ P pullback.snd
[PROOFSTEP]
haveI i1 : IsAffine (Y.restrict U'.openEmbedding) := rangeIsAffineOpenOfOpenImmersion g
[GOAL]
case tfae_1_to_4
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
U : Scheme
g : U ⟶ Y
h₁ : IsAffine U
h₂ : IsOpenImmersion g
U' : Opens ((forget TopCat).obj ↑Y.toPresheafedSpace) :=
{ carrier := Set.range ↑g.val.base, is_open' := (_ : IsOpen (Set.range ↑g.val.base)) }
H : P (f ∣_ ↑{ val := U', property := (_ : IsAffineOpen (Scheme.Hom.opensRange g)) })
i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U')))
⊢ P pullback.snd
[PROOFSTEP]
rw [← P.toProperty_apply] at H ⊢
[GOAL]
case tfae_1_to_4
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
U : Scheme
g : U ⟶ Y
h₁ : IsAffine U
h₂ : IsOpenImmersion g
U' : Opens ((forget TopCat).obj ↑Y.toPresheafedSpace) :=
{ carrier := Set.range ↑g.val.base, is_open' := (_ : IsOpen (Set.range ↑g.val.base)) }
H : toProperty P (f ∣_ ↑{ val := U', property := (_ : IsAffineOpen (Scheme.Hom.opensRange g)) })
i1 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U')))
⊢ toProperty P pullback.snd
[PROOFSTEP]
rwa [← hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)]
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
⊢ TFAE
[targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd,
∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 4 → 3
[GOAL]
case tfae_4_to_3
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
⊢ (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
intro H 𝒰 h𝒰 i
[GOAL]
case tfae_4_to_3
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
H : ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
i : 𝒰.J
⊢ P pullback.snd
[PROOFSTEP]
apply H
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
⊢ TFAE
[targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd,
∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 3 → 2
[GOAL]
case tfae_3_to_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
⊢ (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
exact fun H => ⟨Y.affineCover, inferInstance, H Y.affineCover⟩
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
⊢ TFAE
[targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd,
∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 2 → 1
[GOAL]
case tfae_2_to_1
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
⊢ (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
[PROOFSTEP]
rintro ⟨𝒰, h𝒰, H⟩
[GOAL]
case tfae_2_to_1.intro.intro
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
H : ∀ (i : 𝒰.J), P pullback.snd
⊢ targetAffineLocally P f
[PROOFSTEP]
exact targetAffineLocallyOfOpenCover hP f 𝒰 H
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
⊢ TFAE
[targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd,
∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 5 → 2
[GOAL]
case tfae_5_to_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
⊢ (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
rintro ⟨ι, U, hU, hU', H⟩
[GOAL]
case tfae_5_to_2.intro.intro.intro.intro
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
H : ∀ (i : ι), P (f ∣_ U i)
⊢ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
refine' ⟨Y.openCoverOfSuprEqTop U hU, hU', _⟩
[GOAL]
case tfae_5_to_2.intro.intro.intro.intro
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
H : ∀ (i : ι), P (f ∣_ U i)
⊢ ∀ (i : (Scheme.openCoverOfSuprEqTop Y U hU).J), P pullback.snd
[PROOFSTEP]
intro i
[GOAL]
case tfae_5_to_2.intro.intro.intro.intro
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
⊢ P pullback.snd
[PROOFSTEP]
specialize H i
[GOAL]
case tfae_5_to_2.intro.intro.intro.intro
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : P (f ∣_ U i)
⊢ P pullback.snd
[PROOFSTEP]
haveI i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) := hU' i
[GOAL]
case tfae_5_to_2.intro.intro.intro.intro
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
⊢ P pullback.snd
[PROOFSTEP]
haveI i3 : IsAffine (Y.restrict (U i).openEmbedding) := hU' i
[GOAL]
case tfae_5_to_2.intro.intro.intro.intro
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
⊢ P pullback.snd
[PROOFSTEP]
rw [← P.toProperty_apply, ← hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)]
[GOAL]
case tfae_5_to_2.intro.intro.intro.intro
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
⊢ toProperty P (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))
[PROOFSTEP]
rw [← P.toProperty_apply] at H
[GOAL]
case tfae_5_to_2.intro.intro.intro.intro
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
⊢ toProperty P (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))
[PROOFSTEP]
convert H
[GOAL]
case h.e'_2.h.e'_1.h.e'_6.h.e'_6
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
case h.e'_2.h.e'_3.e'_2.h.e'_6
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
e_1✝ :
(Opens.toTopCat ↑X.toPresheafedSpace).obj
((Opens.map f.val.base).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))) =
(Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (U i))
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
case h.e'_3.h.e'_1.h.e'_6
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
case h.e'_3.h.e'_3.e'_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
e_1✝ :
(Opens.toTopCat ↑Y.toPresheafedSpace).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) =
(Opens.toTopCat ↑Y.toPresheafedSpace).obj (U i)
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
case h.e'_4.e'_4
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
e_2✝ :
Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))))) =
Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (U i))))
e_3✝ :
Scheme.restrict Y
(_ :
OpenEmbedding
↑(Opens.inclusion (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)))) =
Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
[PROOFSTEP]
all_goals ext1; exact Subtype.range_coe
[GOAL]
case h.e'_2.h.e'_1.h.e'_6.h.e'_6
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
[PROOFSTEP]
ext1
[GOAL]
case h.e'_2.h.e'_1.h.e'_6.h.e'_6.h
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i)
[PROOFSTEP]
exact Subtype.range_coe
[GOAL]
case h.e'_2.h.e'_3.e'_2.h.e'_6
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
e_1✝ :
(Opens.toTopCat ↑X.toPresheafedSpace).obj
((Opens.map f.val.base).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))) =
(Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (U i))
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
[PROOFSTEP]
ext1
[GOAL]
case h.e'_2.h.e'_3.e'_2.h.e'_6.h
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
e_1✝ :
(Opens.toTopCat ↑X.toPresheafedSpace).obj
((Opens.map f.val.base).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))) =
(Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (U i))
⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i)
[PROOFSTEP]
exact Subtype.range_coe
[GOAL]
case h.e'_3.h.e'_1.h.e'_6
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
[PROOFSTEP]
ext1
[GOAL]
case h.e'_3.h.e'_1.h.e'_6.h
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i)
[PROOFSTEP]
exact Subtype.range_coe
[GOAL]
case h.e'_3.h.e'_3.e'_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
e_1✝ :
(Opens.toTopCat ↑Y.toPresheafedSpace).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) =
(Opens.toTopCat ↑Y.toPresheafedSpace).obj (U i)
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
[PROOFSTEP]
ext1
[GOAL]
case h.e'_3.h.e'_3.e'_2.h
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
e_1✝ :
(Opens.toTopCat ↑Y.toPresheafedSpace).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) =
(Opens.toTopCat ↑Y.toPresheafedSpace).obj (U i)
⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i)
[PROOFSTEP]
exact Subtype.range_coe
[GOAL]
case h.e'_4.e'_4
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
e_2✝ :
Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))))) =
Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (U i))))
e_3✝ :
Scheme.restrict Y
(_ :
OpenEmbedding
↑(Opens.inclusion (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)))) =
Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
[PROOFSTEP]
ext1
[GOAL]
case h.e'_4.e'_4.h
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
hU' : ∀ (i : ι), IsAffineOpen (U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
H : toProperty P (f ∣_ U i)
i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i)
i3 : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i))))
e_2✝ :
Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))))) =
Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (U i))))
e_3✝ :
Scheme.restrict Y
(_ :
OpenEmbedding
↑(Opens.inclusion (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)))) =
Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))
⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i)
[PROOFSTEP]
exact Subtype.range_coe
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
⊢ TFAE
[targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd,
∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 1 → 5
[GOAL]
case tfae_1_to_5
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
⊢ targetAffineLocally P f → ∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)
[PROOFSTEP]
intro H
[GOAL]
case tfae_1_to_5
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
H : targetAffineLocally P f
⊢ ∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)
[PROOFSTEP]
refine
⟨Y.carrier, fun x => (Scheme.Hom.opensRange <| Y.affineCover.map x), ?_, fun i => rangeIsAffineOpenOfOpenImmersion _,
?_⟩
[GOAL]
case tfae_1_to_5.refine_1
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
H : targetAffineLocally P f
⊢ ⨆ (x : ↑↑Y.toPresheafedSpace), Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.affineCover Y) x) = ⊤
[PROOFSTEP]
rw [eq_top_iff]
[GOAL]
case tfae_1_to_5.refine_1
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
H : targetAffineLocally P f
⊢ ⊤ ≤ ⨆ (x : ↑↑Y.toPresheafedSpace), Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.affineCover Y) x)
[PROOFSTEP]
intro x _
[GOAL]
case tfae_1_to_5.refine_1
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
H : targetAffineLocally P f
x : ↑↑Y.toPresheafedSpace
a✝ : x ∈ ↑⊤
⊢ x ∈ ↑(⨆ (x : ↑↑Y.toPresheafedSpace), Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.affineCover Y) x))
[PROOFSTEP]
erw [Opens.mem_iSup]
[GOAL]
case tfae_1_to_5.refine_1
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
H : targetAffineLocally P f
x : ↑↑Y.toPresheafedSpace
a✝ : x ∈ ↑⊤
⊢ ∃ i, x ∈ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.affineCover Y) i)
[PROOFSTEP]
exact ⟨x, Y.affineCover.Covers x⟩
[GOAL]
case tfae_1_to_5.refine_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
H : targetAffineLocally P f
⊢ ∀ (i : ↑↑Y.toPresheafedSpace),
P (f ∣_ (fun x => Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.affineCover Y) x)) i)
[PROOFSTEP]
intro i
[GOAL]
case tfae_1_to_5.refine_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
H : targetAffineLocally P f
i : ↑↑Y.toPresheafedSpace
⊢ P (f ∣_ (fun x => Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.affineCover Y) x)) i)
[PROOFSTEP]
exact H ⟨_, rangeIsAffineOpenOfOpenImmersion _⟩
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
targetAffineLocally P f → ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_2_to_1 : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f
tfae_5_to_2 : (∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
tfae_1_to_5 : targetAffineLocally P f → ∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)
⊢ TFAE
[targetAffineLocally P f, ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd,
∃ ι U x hU', ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_finish
[GOAL]
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
⊢ IsLocal P
[PROOFSTEP]
refine' ⟨hP, _, _⟩
[GOAL]
case refine'_1
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
⊢ ∀ {X Y : Scheme} [inst : IsAffine Y] (f : X ⟶ Y) (r : ↑(Y.presheaf.obj (op ⊤))), P f → P (f ∣_ Scheme.basicOpen Y r)
[PROOFSTEP]
introv h
[GOAL]
case refine'_1
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
h : P f
⊢ P (f ∣_ Scheme.basicOpen Y r)
[PROOFSTEP]
haveI : IsAffine _ := (topIsAffineOpen Y).basicOpenIsAffine r
[GOAL]
case refine'_1
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
h : P f
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r))))
⊢ P (f ∣_ Scheme.basicOpen Y r)
[PROOFSTEP]
delta morphismRestrict
[GOAL]
case refine'_1
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
h : P f
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r))))
⊢ P ((pullbackRestrictIsoRestrict f (Scheme.basicOpen Y r)).inv ≫ pullback.snd)
[PROOFSTEP]
rw [affine_cancel_left_isIso hP]
[GOAL]
case refine'_1
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
h : P f
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r))))
⊢ P pullback.snd
[PROOFSTEP]
refine' @H _ _ f ⟨Scheme.openCoverOfIsIso (𝟙 Y), _, _⟩ _ (Y.ofRestrict _) _ _
[GOAL]
case refine'_1.refine'_1
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
h : P f
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r))))
⊢ ∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i)
[PROOFSTEP]
intro i
[GOAL]
case refine'_1.refine'_1
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
h : P f
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r))))
i : (Scheme.openCoverOfIsIso (𝟙 Y)).J
⊢ IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i)
[PROOFSTEP]
dsimp
[GOAL]
case refine'_1.refine'_1
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
h : P f
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r))))
i : (Scheme.openCoverOfIsIso (𝟙 Y)).J
⊢ IsAffine Y
[PROOFSTEP]
infer_instance
[GOAL]
case refine'_1.refine'_2
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
h : P f
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r))))
⊢ ∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), P pullback.snd
[PROOFSTEP]
intro i
[GOAL]
case refine'_1.refine'_2
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
h : P f
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r))))
i : (Scheme.openCoverOfIsIso (𝟙 Y)).J
⊢ P pullback.snd
[PROOFSTEP]
dsimp
[GOAL]
case refine'_1.refine'_2
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
r : ↑(Y.presheaf.obj (op ⊤))
h : P f
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y r))))
i : (Scheme.openCoverOfIsIso (𝟙 Y)).J
⊢ P pullback.snd
[PROOFSTEP]
rwa [← Category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_isIso hP]
[GOAL]
case refine'_2
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
⊢ ∀ {X Y : Scheme} [inst : IsAffine Y] (f : X ⟶ Y) (s : Finset ↑(Y.presheaf.obj (op ⊤))),
Ideal.span ↑s = ⊤ → (∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r)) → P f
[PROOFSTEP]
introv hs hs'
[GOAL]
case refine'_2
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
s : Finset ↑(Y.presheaf.obj (op ⊤))
hs : Ideal.span ↑s = ⊤
hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r)
⊢ P f
[PROOFSTEP]
replace hs := ((topIsAffineOpen Y).basicOpen_union_eq_self_iff _).mpr hs
[GOAL]
case refine'_2
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
s : Finset ↑(Y.presheaf.obj (op ⊤))
hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r)
hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤
⊢ P f
[PROOFSTEP]
have := H f ⟨Y.openCoverOfSuprEqTop _ hs, ?_, ?_⟩ (𝟙 _)
[GOAL]
case refine'_2.refine_3
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
s : Finset ↑(Y.presheaf.obj (op ⊤))
hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r)
hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤
this : P pullback.snd
⊢ P f
case refine'_2.refine_1
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
s : Finset ↑(Y.presheaf.obj (op ⊤))
hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r)
hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤
⊢ ∀ (i : (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs).J),
IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs) i)
case refine'_2.refine_2
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
s : Finset ↑(Y.presheaf.obj (op ⊤))
hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r)
hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤
⊢ ∀ (i : (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs).J), P pullback.snd
[PROOFSTEP]
rwa [← Category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_isIso hP] at this
[GOAL]
case refine'_2.refine_1
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
s : Finset ↑(Y.presheaf.obj (op ⊤))
hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r)
hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤
⊢ ∀ (i : (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs).J),
IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs) i)
[PROOFSTEP]
intro i
[GOAL]
case refine'_2.refine_1
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
s : Finset ↑(Y.presheaf.obj (op ⊤))
hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r)
hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤
i : (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs).J
⊢ IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs) i)
[PROOFSTEP]
exact (topIsAffineOpen Y).basicOpenIsAffine _
[GOAL]
case refine'_2.refine_2
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
s : Finset ↑(Y.presheaf.obj (op ⊤))
hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r)
hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤
⊢ ∀ (i : (Scheme.openCoverOfSuprEqTop Y (fun i => Scheme.basicOpen Y ↑i) hs).J), P pullback.snd
[PROOFSTEP]
rintro (i : s)
[GOAL]
case refine'_2.refine_2
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
s : Finset ↑(Y.presheaf.obj (op ⊤))
hs' : ∀ (r : { x // x ∈ s }), P (f ∣_ Scheme.basicOpen Y ↑r)
hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤
i : { x // x ∈ s }
⊢ P pullback.snd
[PROOFSTEP]
specialize hs' i
[GOAL]
case refine'_2.refine_2
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
s : Finset ↑(Y.presheaf.obj (op ⊤))
hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤
i : { x // x ∈ s }
hs' : P (f ∣_ Scheme.basicOpen Y ↑i)
⊢ P pullback.snd
[PROOFSTEP]
haveI : IsAffine _ := (topIsAffineOpen Y).basicOpenIsAffine i.1
[GOAL]
case refine'_2.refine_2
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
s : Finset ↑(Y.presheaf.obj (op ⊤))
hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤
i : { x // x ∈ s }
hs' : P (f ∣_ Scheme.basicOpen Y ↑i)
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y ↑i))))
⊢ P pullback.snd
[PROOFSTEP]
delta morphismRestrict at hs'
[GOAL]
case refine'_2.refine_2
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
H :
∀ {X Y : Scheme} (f : X ⟶ Y),
(∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
X Y : Scheme
inst✝ : IsAffine Y
f : X ⟶ Y
s : Finset ↑(Y.presheaf.obj (op ⊤))
hs : ⨆ (f : ↑↑s), Scheme.basicOpen Y ↑f = ⊤
i : { x // x ∈ s }
hs' : P ((pullbackRestrictIsoRestrict f (Scheme.basicOpen Y ↑i)).inv ≫ pullback.snd)
this : IsAffine (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (Scheme.basicOpen Y ↑i))))
⊢ P pullback.snd
[PROOFSTEP]
rwa [affine_cancel_left_isIso hP] at hs'
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
⊢ targetAffineLocally P f ↔ ∀ (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
refine'
⟨fun H =>
let h := ((hP.affine_openCover_TFAE f).out 0 2).mp H;
_,
fun H =>
let h := ((hP.affine_openCover_TFAE f).out 1 0).mp;
_⟩
[GOAL]
case refine'_1
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
H : targetAffineLocally P f
h : ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), P pullback.snd :=
Iff.mp (List.TFAE.out (affine_openCover_TFAE hP f) 0 2) H
⊢ ∀ (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
exact fun i => h 𝒰 i
[GOAL]
case refine'_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
H : ∀ (i : 𝒰.J), P pullback.snd
h : (∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd) → targetAffineLocally P f :=
(List.TFAE.out (affine_openCover_TFAE hP f) 1 0).mp
⊢ targetAffineLocally P f
[PROOFSTEP]
exact h ⟨𝒰, inferInstance, H⟩
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
inst✝ : IsAffine Y
⊢ targetAffineLocally P f ↔ P f
[PROOFSTEP]
haveI : ∀ i, IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i) := fun i => by dsimp; infer_instance
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
inst✝ : IsAffine Y
i : (Scheme.openCoverOfIsIso (𝟙 Y)).J
⊢ IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i)
[PROOFSTEP]
dsimp
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
inst✝ : IsAffine Y
i : (Scheme.openCoverOfIsIso (𝟙 Y)).J
⊢ IsAffine Y
[PROOFSTEP]
infer_instance
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
inst✝ : IsAffine Y
this : ∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i)
⊢ targetAffineLocally P f ↔ P f
[PROOFSTEP]
rw [hP.affine_openCover_iff f (Scheme.openCoverOfIsIso (𝟙 Y))]
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
inst✝ : IsAffine Y
this : ∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i)
⊢ (∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), P pullback.snd) ↔ P f
[PROOFSTEP]
trans P (pullback.snd : pullback f (𝟙 _) ⟶ _)
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
inst✝ : IsAffine Y
this : ∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i)
⊢ (∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), P pullback.snd) ↔ P pullback.snd
[PROOFSTEP]
exact ⟨fun H => H PUnit.unit, fun H _ => H⟩
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
inst✝ : IsAffine Y
this : ∀ (i : (Scheme.openCoverOfIsIso (𝟙 Y)).J), IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfIsIso (𝟙 Y)) i)
⊢ P pullback.snd ↔ P f
[PROOFSTEP]
rw [← Category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_isIso hP.1]
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
⊢ PropertyIsLocalAtTarget (targetAffineLocally P)
[PROOFSTEP]
constructor
[GOAL]
case RespectsIso
P : AffineTargetMorphismProperty
hP : IsLocal P
⊢ MorphismProperty.RespectsIso (targetAffineLocally P)
[PROOFSTEP]
exact targetAffineLocally_respectsIso hP.1
[GOAL]
case restrict
P : AffineTargetMorphismProperty
hP : IsLocal P
⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) (U : Opens ↑↑Y.toPresheafedSpace),
targetAffineLocally P f → targetAffineLocally P (f ∣_ U)
[PROOFSTEP]
intro X Y f U H V
[GOAL]
case restrict
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
H : targetAffineLocally P f
V : ↑(Scheme.affineOpens (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
⊢ P (f ∣_ U ∣_ ↑V)
[PROOFSTEP]
rw [← P.toProperty_apply (i := V.2), hP.1.arrow_mk_iso_iff (morphismRestrictRestrict f _ _)]
[GOAL]
case restrict
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
H : targetAffineLocally P f
V : ↑(Scheme.affineOpens (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
⊢ toProperty P (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ↑V)
[PROOFSTEP]
convert H ⟨_, IsAffineOpen.imageIsOpenImmersion V.2 (Y.ofRestrict _)⟩
[GOAL]
case a
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
U : Opens ↑↑Y.toPresheafedSpace
H : targetAffineLocally P f
V : ↑(Scheme.affineOpens (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))))
⊢ toProperty P (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ↑V) ↔
P
(f ∣_
↑{ val := (Scheme.Hom.opensFunctor (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).obj ↑V,
property :=
(_ :
IsAffineOpen
((Scheme.Hom.opensFunctor (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).obj ↑V)) })
[PROOFSTEP]
rw [← P.toProperty_apply (i := IsAffineOpen.imageIsOpenImmersion V.2 (Y.ofRestrict _))]
[GOAL]
case of_openCover
P : AffineTargetMorphismProperty
hP : IsLocal P
⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y),
(∀ (i : 𝒰.J), targetAffineLocally P pullback.snd) → targetAffineLocally P f
[PROOFSTEP]
rintro X Y f 𝒰 h𝒰
[GOAL]
case of_openCover
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
⊢ targetAffineLocally P f
[PROOFSTEP]
have h01 := (hP.affine_openCover_TFAE f).out 0 1
[GOAL]
case of_openCover
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
⊢ targetAffineLocally P f
[PROOFSTEP]
rw [h01]
[GOAL]
case of_openCover
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
⊢ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
refine' ⟨𝒰.bind fun _ => Scheme.affineCover _, _, _⟩
[GOAL]
case of_openCover.refine'_1
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
⊢ ∀ (i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J),
IsAffine (Scheme.OpenCover.obj (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)) i)
[PROOFSTEP]
intro i
[GOAL]
case of_openCover.refine'_1
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
⊢ IsAffine (Scheme.OpenCover.obj (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)) i)
[PROOFSTEP]
dsimp [Scheme.OpenCover.bind]
[GOAL]
case of_openCover.refine'_1
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
⊢ IsAffine (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
[PROOFSTEP]
infer_instance
[GOAL]
case of_openCover.refine'_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
⊢ ∀ (i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J), P pullback.snd
[PROOFSTEP]
intro i
[GOAL]
case of_openCover.refine'_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
⊢ P pullback.snd
[PROOFSTEP]
specialize
h𝒰
i.1
-- Porting note : rewrite `[(hP.affine_openCover_TFAE pullback.snd).out 0 1` directly
-- complains about metavariables
[GOAL]
case of_openCover.refine'_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
h𝒰 : targetAffineLocally P pullback.snd
⊢ P pullback.snd
[PROOFSTEP]
have h02 := (hP.affine_openCover_TFAE (pullback.snd : pullback f (𝒰.map i.fst) ⟶ _)).out 0 2
[GOAL]
case of_openCover.refine'_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
h𝒰 : targetAffineLocally P pullback.snd
h02 :
targetAffineLocally P pullback.snd ↔
∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst))
[inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd
⊢ P pullback.snd
[PROOFSTEP]
rw [h02] at h𝒰
[GOAL]
case of_openCover.refine'_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
h𝒰 :
∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst))
[inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd
h02 :
targetAffineLocally P pullback.snd ↔
∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst))
[inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd
⊢ P pullback.snd
[PROOFSTEP]
specialize h𝒰 (Scheme.affineCover _) i.2
[GOAL]
case of_openCover.refine'_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
h02 :
targetAffineLocally P pullback.snd ↔
∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst))
[inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd
h𝒰 : P pullback.snd
⊢ P pullback.snd
[PROOFSTEP]
let e :
pullback f ((𝒰.obj i.fst).affineCover.map i.snd ≫ 𝒰.map i.fst) ⟶
pullback (pullback.snd : pullback f (𝒰.map i.fst) ⟶ _) ((𝒰.obj i.fst).affineCover.map i.snd) :=
by
refine' (pullbackSymmetry _ _).hom ≫ _
refine' (pullbackRightPullbackFstIso _ _ _).inv ≫ _
refine' (pullbackSymmetry _ _).hom ≫ _
refine' pullback.map _ _ _ _ (pullbackSymmetry _ _).hom (𝟙 _) (𝟙 _) _ _ <;>
simp only [Category.comp_id, Category.id_comp, pullbackSymmetry_hom_comp_snd]
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
h02 :
targetAffineLocally P pullback.snd ↔
∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst))
[inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd
h𝒰 : P pullback.snd
⊢ pullback f
(Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst) ⟶
pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
[PROOFSTEP]
refine' (pullbackSymmetry _ _).hom ≫ _
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
h02 :
targetAffineLocally P pullback.snd ↔
∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst))
[inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd
h𝒰 : P pullback.snd
⊢ pullback
(Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst)
f ⟶
pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
[PROOFSTEP]
refine' (pullbackRightPullbackFstIso _ _ _).inv ≫ _
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
h02 :
targetAffineLocally P pullback.snd ↔
∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst))
[inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd
h𝒰 : P pullback.snd
⊢ pullback (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) pullback.fst ⟶
pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
[PROOFSTEP]
refine' (pullbackSymmetry _ _).hom ≫ _
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
h02 :
targetAffineLocally P pullback.snd ↔
∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst))
[inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd
h𝒰 : P pullback.snd
⊢ pullback pullback.fst (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) ⟶
pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
[PROOFSTEP]
refine' pullback.map _ _ _ _ (pullbackSymmetry _ _).hom (𝟙 _) (𝟙 _) _ _
[GOAL]
case refine'_1
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
h02 :
targetAffineLocally P pullback.snd ↔
∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst))
[inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd
h𝒰 : P pullback.snd
⊢ pullback.fst ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) =
(pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom ≫ pullback.snd
[PROOFSTEP]
simp only [Category.comp_id, Category.id_comp, pullbackSymmetry_hom_comp_snd]
[GOAL]
case refine'_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
h02 :
targetAffineLocally P pullback.snd ↔
∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst))
[inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd
h𝒰 : P pullback.snd
⊢ Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) =
𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) ≫
Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd
[PROOFSTEP]
simp only [Category.comp_id, Category.id_comp, pullbackSymmetry_hom_comp_snd]
[GOAL]
case of_openCover.refine'_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
h02 :
targetAffineLocally P pullback.snd ↔
∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst))
[inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd
h𝒰 : P pullback.snd
e : pullback f
(Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst) ⟶
pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) :=
(pullbackSymmetry f
(Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫
Scheme.OpenCover.map 𝒰 i.fst)).hom ≫
(pullbackRightPullbackFstIso (Scheme.OpenCover.map 𝒰 i.fst) f
(Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)).inv ≫
(pullbackSymmetry (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
pullback.fst).hom ≫
pullback.map pullback.fst (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
(pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom
(𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd))
(𝟙 (Scheme.OpenCover.obj 𝒰 i.fst))
(_ :
pullback.fst ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) =
(pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom ≫ pullback.snd)
(_ :
Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫
𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) =
𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) ≫
Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
⊢ P pullback.snd
[PROOFSTEP]
rw [← affine_cancel_left_isIso hP.1 e] at h𝒰
[GOAL]
case of_openCover.refine'_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
h02 :
targetAffineLocally P pullback.snd ↔
∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst))
[inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd
e : pullback f
(Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst) ⟶
pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) :=
(pullbackSymmetry f
(Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫
Scheme.OpenCover.map 𝒰 i.fst)).hom ≫
(pullbackRightPullbackFstIso (Scheme.OpenCover.map 𝒰 i.fst) f
(Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)).inv ≫
(pullbackSymmetry (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
pullback.fst).hom ≫
pullback.map pullback.fst (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
(pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom
(𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd))
(𝟙 (Scheme.OpenCover.obj 𝒰 i.fst))
(_ :
pullback.fst ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) =
(pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom ≫ pullback.snd)
(_ :
Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫
𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) =
𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) ≫
Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
h𝒰 : P (e ≫ pullback.snd)
⊢ P pullback.snd
[PROOFSTEP]
convert h𝒰 using 1
[GOAL]
case h.e'_3.h
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h01 : targetAffineLocally P f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)).J
h02 :
targetAffineLocally P pullback.snd ↔
∀ (𝒰_1 : Scheme.OpenCover (Scheme.OpenCover.obj 𝒰 i.fst))
[inst : ∀ (i_1 : 𝒰_1.J), IsAffine (Scheme.OpenCover.obj 𝒰_1 i_1)] (i_1 : 𝒰_1.J), P pullback.snd
e : pullback f
(Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst) ⟶
pullback pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) :=
(pullbackSymmetry f
(Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫
Scheme.OpenCover.map 𝒰 i.fst)).hom ≫
(pullbackRightPullbackFstIso (Scheme.OpenCover.map 𝒰 i.fst) f
(Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)).inv ≫
(pullbackSymmetry (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
pullback.fst).hom ≫
pullback.map pullback.fst (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
pullback.snd (Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
(pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom
(𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd))
(𝟙 (Scheme.OpenCover.obj 𝒰 i.fst))
(_ :
pullback.fst ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) =
(pullbackSymmetry (Scheme.OpenCover.map 𝒰 i.fst) f).hom ≫ pullback.snd)
(_ :
Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫
𝟙 (Scheme.OpenCover.obj 𝒰 i.fst) =
𝟙 (Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd) ≫
Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd)
h𝒰 : P (e ≫ pullback.snd)
e_1✝ :
pullback f (Scheme.OpenCover.map (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)) i) =
pullback f
(Scheme.OpenCover.map (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd ≫ Scheme.OpenCover.map 𝒰 i.fst)
e_2✝ :
Scheme.OpenCover.obj (Scheme.OpenCover.bind 𝒰 fun x => Scheme.affineCover (Scheme.OpenCover.obj 𝒰 x)) i =
Scheme.OpenCover.obj (Scheme.affineCover (Scheme.OpenCover.obj 𝒰 i.fst)) i.snd
⊢ pullback.snd = e ≫ pullback.snd
[PROOFSTEP]
simp
[GOAL]
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
⊢ TFAE
[P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd,
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U),
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 2 → 1
[GOAL]
case tfae_2_to_1
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
⊢ (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
[PROOFSTEP]
rintro ⟨𝒰, H⟩
[GOAL]
case tfae_2_to_1.intro
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), P pullback.snd
⊢ P f
[PROOFSTEP]
exact hP.3 f 𝒰 H
[GOAL]
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
⊢ TFAE
[P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd,
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U),
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 1 → 4
[GOAL]
case tfae_1_to_4
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
⊢ P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
[PROOFSTEP]
intro H U
[GOAL]
case tfae_1_to_4
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
H : P f
U : Opens ↑↑Y.toPresheafedSpace
⊢ P (f ∣_ U)
[PROOFSTEP]
exact hP.2 f U H
[GOAL]
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
⊢ TFAE
[P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd,
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U),
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 4 → 3
[GOAL]
case tfae_4_to_3
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
intro H 𝒰 i
[GOAL]
case tfae_4_to_3
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
𝒰 : Scheme.OpenCover Y
i : 𝒰.J
⊢ P pullback.snd
[PROOFSTEP]
rw [← hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)]
[GOAL]
case tfae_4_to_3
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
𝒰 : Scheme.OpenCover Y
i : 𝒰.J
⊢ P (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))
[PROOFSTEP]
exact H <| Scheme.Hom.opensRange (𝒰.map i)
[GOAL]
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
⊢ TFAE
[P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd,
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U),
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 3 → 2
[GOAL]
case tfae_3_to_2
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
⊢ (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
exact fun H => ⟨Y.affineCover, H Y.affineCover⟩
[GOAL]
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
⊢ TFAE
[P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd,
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U),
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 4 → 5
[GOAL]
case tfae_4_to_5
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
[PROOFSTEP]
intro H U g hg
[GOAL]
case tfae_4_to_5
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
U : Scheme
g : U ⟶ Y
hg : IsOpenImmersion g
⊢ P pullback.snd
[PROOFSTEP]
rw [← hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)]
[GOAL]
case tfae_4_to_5
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
U : Scheme
g : U ⟶ Y
hg : IsOpenImmersion g
⊢ P (f ∣_ Scheme.Hom.opensRange g)
[PROOFSTEP]
apply H
[GOAL]
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
⊢ TFAE
[P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd,
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U),
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 5 → 4
[GOAL]
case tfae_5_to_4
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
⊢ (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
[PROOFSTEP]
intro H U
[GOAL]
case tfae_5_to_4
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
H : ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
U : Opens ↑↑Y.toPresheafedSpace
⊢ P (f ∣_ U)
[PROOFSTEP]
erw [hP.1.cancel_left_isIso]
[GOAL]
case tfae_5_to_4
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
H : ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
U : Opens ↑↑Y.toPresheafedSpace
⊢ P pullback.snd
[PROOFSTEP]
apply H
[GOAL]
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
⊢ TFAE
[P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd,
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U),
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 4 → 6
[GOAL]
case tfae_4_to_6
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
⊢ (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
[PROOFSTEP]
intro H
[GOAL]
case tfae_4_to_6
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
H : ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
⊢ ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
[PROOFSTEP]
exact ⟨PUnit, fun _ => ⊤, ciSup_const, fun _ => H _⟩
[GOAL]
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
⊢ TFAE
[P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd,
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U),
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_have 6 → 2
[GOAL]
case tfae_6_to_2
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
⊢ (∃ ι U x, ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
rintro ⟨ι, U, hU, H⟩
[GOAL]
case tfae_6_to_2.intro.intro.intro
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
⊢ ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
refine' ⟨Y.openCoverOfSuprEqTop U hU, _⟩
[GOAL]
case tfae_6_to_2.intro.intro.intro
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
⊢ ∀ (i : (Scheme.openCoverOfSuprEqTop Y U hU).J), P pullback.snd
[PROOFSTEP]
intro i
[GOAL]
case tfae_6_to_2.intro.intro.intro
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
⊢ P pullback.snd
[PROOFSTEP]
rw [← hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)]
[GOAL]
case tfae_6_to_2.intro.intro.intro
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
⊢ P (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))
[PROOFSTEP]
convert H i
[GOAL]
case h.e'_1.h.e'_1.h.e'_6.h.e'_6
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
case h.e'_1.h.e'_3.e'_2.h.e'_6
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
e_1✝ :
(Opens.toTopCat ↑X.toPresheafedSpace).obj
((Opens.map f.val.base).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))) =
(Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (U i))
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
case h.e'_2.h.e'_1.h.e'_6
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
case h.e'_2.h.e'_3.e'_2
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
e_1✝ :
(Opens.toTopCat ↑Y.toPresheafedSpace).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) =
(Opens.toTopCat ↑Y.toPresheafedSpace).obj (U i)
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
case h.e'_3.e'_4
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
e_1✝ :
Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))))) =
Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (U i))))
e_2✝ :
Scheme.restrict Y
(_ :
OpenEmbedding
↑(Opens.inclusion (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)))) =
Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
[PROOFSTEP]
all_goals ext1; exact Subtype.range_coe
[GOAL]
case h.e'_1.h.e'_1.h.e'_6.h.e'_6
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
[PROOFSTEP]
ext1
[GOAL]
case h.e'_1.h.e'_1.h.e'_6.h.e'_6.h
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i)
[PROOFSTEP]
exact Subtype.range_coe
[GOAL]
case h.e'_1.h.e'_3.e'_2.h.e'_6
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
e_1✝ :
(Opens.toTopCat ↑X.toPresheafedSpace).obj
((Opens.map f.val.base).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))) =
(Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (U i))
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
[PROOFSTEP]
ext1
[GOAL]
case h.e'_1.h.e'_3.e'_2.h.e'_6.h
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
e_1✝ :
(Opens.toTopCat ↑X.toPresheafedSpace).obj
((Opens.map f.val.base).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))) =
(Opens.toTopCat ↑X.toPresheafedSpace).obj ((Opens.map f.val.base).obj (U i))
⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i)
[PROOFSTEP]
exact Subtype.range_coe
[GOAL]
case h.e'_2.h.e'_1.h.e'_6
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
[PROOFSTEP]
ext1
[GOAL]
case h.e'_2.h.e'_1.h.e'_6.h
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i)
[PROOFSTEP]
exact Subtype.range_coe
[GOAL]
case h.e'_2.h.e'_3.e'_2
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
e_1✝ :
(Opens.toTopCat ↑Y.toPresheafedSpace).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) =
(Opens.toTopCat ↑Y.toPresheafedSpace).obj (U i)
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
[PROOFSTEP]
ext1
[GOAL]
case h.e'_2.h.e'_3.e'_2.h
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
e_1✝ :
(Opens.toTopCat ↑Y.toPresheafedSpace).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) =
(Opens.toTopCat ↑Y.toPresheafedSpace).obj (U i)
⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i)
[PROOFSTEP]
exact Subtype.range_coe
[GOAL]
case h.e'_3.e'_4
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
e_1✝ :
Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))))) =
Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (U i))))
e_2✝ :
Scheme.restrict Y
(_ :
OpenEmbedding
↑(Opens.inclusion (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)))) =
Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))
⊢ Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i) = U i
[PROOFSTEP]
ext1
[GOAL]
case h.e'_3.e'_4.h
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
ι : Type u
U : ι → Opens ↑↑Y.toPresheafedSpace
hU : iSup U = ⊤
H : ∀ (i : ι), P (f ∣_ U i)
i : (Scheme.openCoverOfSuprEqTop Y U hU).J
e_1✝ :
Scheme.restrict X
(_ :
OpenEmbedding
↑(Opens.inclusion
((Opens.map f.val.base).obj
(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i))))) =
Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj (U i))))
e_2✝ :
Scheme.restrict Y
(_ :
OpenEmbedding
↑(Opens.inclusion (Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)))) =
Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion (U i)))
⊢ ↑(Scheme.Hom.opensRange (Scheme.OpenCover.map (Scheme.openCoverOfSuprEqTop Y U hU) i)) = ↑(U i)
[PROOFSTEP]
exact Subtype.range_coe
[GOAL]
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
tfae_2_to_1 : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f
tfae_1_to_4 : P f → ∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_3 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd
tfae_3_to_2 : (∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
tfae_4_to_5 :
(∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd
tfae_5_to_4 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd) →
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)
tfae_4_to_6 : (∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U)) → ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)
tfae_6_to_2 : (∃ ι U x, ∀ (i : ι), P (f ∣_ U i)) → ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd
⊢ TFAE
[P f, ∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd,
∀ (U : Opens ↑↑Y.toPresheafedSpace), P (f ∣_ U),
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsOpenImmersion g], P pullback.snd, ∃ ι U x, ∀ (i : ι), P (f ∣_ U i)]
[PROOFSTEP]
tfae_finish
[GOAL]
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
⊢ P f ↔ ∀ (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
refine
⟨fun H =>
let h := ((hP.openCover_TFAE f).out 0 2).mp H;
fun i => ?_,
fun H =>
let h := ((hP.openCover_TFAE f).out 1 0).mp;
?_⟩
[GOAL]
case refine_1
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : P f
h : ∀ (𝒰 : Scheme.OpenCover Y) (i : 𝒰.J), P pullback.snd := Iff.mp (List.TFAE.out (openCover_TFAE hP f) 0 2) H
i : 𝒰.J
⊢ P pullback.snd
[PROOFSTEP]
exact h 𝒰 i
[GOAL]
case refine_2
P : MorphismProperty Scheme
hP : PropertyIsLocalAtTarget P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
H : ∀ (i : 𝒰.J), P pullback.snd
h : (∃ 𝒰, ∀ (i : 𝒰.J), P pullback.snd) → P f := (List.TFAE.out (openCover_TFAE hP f) 1 0).mp
⊢ P f
[PROOFSTEP]
exact h ⟨𝒰, H⟩
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
inst✝ : IsAffine S
H : P g
⊢ targetAffineLocally P pullback.fst
[PROOFSTEP]
have h01 := (hP.affine_openCover_TFAE (pullback.fst : pullback f g ⟶ X)).out 0 1
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
inst✝ : IsAffine S
H : P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
⊢ targetAffineLocally P pullback.fst
[PROOFSTEP]
rw [h01]
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
inst✝ : IsAffine S
H : P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
⊢ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
use X.affineCover, inferInstance
[GOAL]
case h
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
inst✝ : IsAffine S
H : P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
⊢ ∀ (i : (Scheme.affineCover X).J), P pullback.snd
[PROOFSTEP]
intro i
[GOAL]
case h
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
inst✝ : IsAffine S
H : P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.affineCover X).J
⊢ P pullback.snd
[PROOFSTEP]
let e := pullbackSymmetry _ _ ≪≫ pullbackRightPullbackFstIso f g (X.affineCover.map i)
[GOAL]
case h
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
inst✝ : IsAffine S
H : P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.affineCover X).J
e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≅
pullback (Scheme.OpenCover.map (Scheme.affineCover X) i ≫ f) g :=
pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≪≫
pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.affineCover X) i)
⊢ P pullback.snd
[PROOFSTEP]
have : e.hom ≫ pullback.fst = pullback.snd := by simp
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
inst✝ : IsAffine S
H : P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.affineCover X).J
e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≅
pullback (Scheme.OpenCover.map (Scheme.affineCover X) i ≫ f) g :=
pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≪≫
pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.affineCover X) i)
⊢ e.hom ≫ pullback.fst = pullback.snd
[PROOFSTEP]
simp
[GOAL]
case h
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
inst✝ : IsAffine S
H : P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.affineCover X).J
e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≅
pullback (Scheme.OpenCover.map (Scheme.affineCover X) i ≫ f) g :=
pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≪≫
pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.affineCover X) i)
this : e.hom ≫ pullback.fst = pullback.snd
⊢ P pullback.snd
[PROOFSTEP]
rw [← this, affine_cancel_left_isIso hP.1]
[GOAL]
case h
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
inst✝ : IsAffine S
H : P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.affineCover X).J
e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≅
pullback (Scheme.OpenCover.map (Scheme.affineCover X) i ≫ f) g :=
pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≪≫
pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.affineCover X) i)
this : e.hom ≫ pullback.fst = pullback.snd
⊢ P pullback.fst
[PROOFSTEP]
apply hP'
[GOAL]
case h.a
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
inst✝ : IsAffine S
H : P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), P pullback.snd
i : (Scheme.affineCover X).J
e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≅
pullback (Scheme.OpenCover.map (Scheme.affineCover X) i ≫ f) g :=
pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.affineCover X) i) ≪≫
pullbackRightPullbackFstIso f g (Scheme.OpenCover.map (Scheme.affineCover X) i)
this : e.hom ≫ pullback.fst = pullback.snd
⊢ P g
[PROOFSTEP]
assumption
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : targetAffineLocally P g
⊢ targetAffineLocally P pullback.fst
[PROOFSTEP]
have h01 := (hP.targetAffineLocallyIsLocal.openCover_TFAE (pullback.fst : pullback f g ⟶ X)).out 0 1
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : targetAffineLocally P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
⊢ targetAffineLocally P pullback.fst
[PROOFSTEP]
rw [h01]
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : targetAffineLocally P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
⊢ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
[PROOFSTEP]
use S.affineCover.pullbackCover f
[GOAL]
case h
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : targetAffineLocally P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
⊢ ∀ (i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J), targetAffineLocally P pullback.snd
[PROOFSTEP]
intro i
[GOAL]
case h
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : targetAffineLocally P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J
⊢ targetAffineLocally P pullback.snd
[PROOFSTEP]
have h03 := (hP.affine_openCover_TFAE g).out 0 3
[GOAL]
case h
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : targetAffineLocally P g
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J
h03 :
targetAffineLocally P g ↔
∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
⊢ targetAffineLocally P pullback.snd
[PROOFSTEP]
rw [h03] at H
[GOAL]
case h
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J
h03 :
targetAffineLocally P g ↔
∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
⊢ targetAffineLocally P pullback.snd
[PROOFSTEP]
let e : pullback (pullback.fst : pullback f g ⟶ _) ((S.affineCover.pullbackCover f).map i) ≅ _ :=
by
refine'
pullbackSymmetry _ _ ≪≫
pullbackRightPullbackFstIso f g _ ≪≫
_ ≪≫
(pullbackRightPullbackFstIso (S.affineCover.map i) g
(pullback.snd : pullback f (S.affineCover.map i) ⟶ _)).symm
exact asIso (pullback.map _ _ _ _ (𝟙 _) (𝟙 _) (𝟙 _) (by simpa using pullback.condition) (by simp))
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J
h03 :
targetAffineLocally P g ↔
∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
⊢ pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅ ?m.95921
[PROOFSTEP]
refine'
pullbackSymmetry _ _ ≪≫
pullbackRightPullbackFstIso f g _ ≪≫
_ ≪≫
(pullbackRightPullbackFstIso (S.affineCover.map i) g (pullback.snd : pullback f (S.affineCover.map i) ⟶ _)).symm
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J
h03 :
targetAffineLocally P g ↔
∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
⊢ pullback (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g ≅
pullback (pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g
[PROOFSTEP]
exact asIso (pullback.map _ _ _ _ (𝟙 _) (𝟙 _) (𝟙 _) (by simpa using pullback.condition) (by simp))
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J
h03 :
targetAffineLocally P g ↔
∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
⊢ (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S =
𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫
pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i
[PROOFSTEP]
simpa using pullback.condition
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J
h03 :
targetAffineLocally P g ↔
∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
⊢ g ≫ 𝟙 S = 𝟙 Y ≫ g
[PROOFSTEP]
simp
[GOAL]
case h
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J
h03 :
targetAffineLocally P g ↔
∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅
pullback pullback.snd pullback.fst :=
pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫
pullbackRightPullbackFstIso f g
(Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫
asIso
(pullback.map (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g
(pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g
(𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i)) (𝟙 Y) (𝟙 S)
(_ :
(Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S =
𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫
pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i)
(_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) ≪≫
(pullbackRightPullbackFstIso (Scheme.OpenCover.map (Scheme.affineCover S) i) g pullback.snd).symm
⊢ targetAffineLocally P pullback.snd
[PROOFSTEP]
have : e.hom ≫ pullback.fst = pullback.snd := by simp
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J
h03 :
targetAffineLocally P g ↔
∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅
pullback pullback.snd pullback.fst :=
pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫
pullbackRightPullbackFstIso f g
(Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫
asIso
(pullback.map (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g
(pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g
(𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i)) (𝟙 Y) (𝟙 S)
(_ :
(Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S =
𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫
pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i)
(_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) ≪≫
(pullbackRightPullbackFstIso (Scheme.OpenCover.map (Scheme.affineCover S) i) g pullback.snd).symm
⊢ e.hom ≫ pullback.fst = pullback.snd
[PROOFSTEP]
simp
[GOAL]
case h
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J
h03 :
targetAffineLocally P g ↔
∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅
pullback pullback.snd pullback.fst :=
pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫
pullbackRightPullbackFstIso f g
(Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫
asIso
(pullback.map (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g
(pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g
(𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i)) (𝟙 Y) (𝟙 S)
(_ :
(Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S =
𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫
pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i)
(_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) ≪≫
(pullbackRightPullbackFstIso (Scheme.OpenCover.map (Scheme.affineCover S) i) g pullback.snd).symm
this : e.hom ≫ pullback.fst = pullback.snd
⊢ targetAffineLocally P pullback.snd
[PROOFSTEP]
rw [← this, (targetAffineLocally_respectsIso hP.1).cancel_left_isIso]
[GOAL]
case h
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J
h03 :
targetAffineLocally P g ↔
∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅
pullback pullback.snd pullback.fst :=
pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫
pullbackRightPullbackFstIso f g
(Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫
asIso
(pullback.map (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g
(pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g
(𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i)) (𝟙 Y) (𝟙 S)
(_ :
(Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S =
𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫
pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i)
(_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) ≪≫
(pullbackRightPullbackFstIso (Scheme.OpenCover.map (Scheme.affineCover S) i) g pullback.snd).symm
this : e.hom ≫ pullback.fst = pullback.snd
⊢ targetAffineLocally P pullback.fst
[PROOFSTEP]
apply hP.targetAffineLocallyPullbackFstOfRightOfStableUnderBaseChange hP'
[GOAL]
case h.H
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J
h03 :
targetAffineLocally P g ↔
∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅
pullback pullback.snd pullback.fst :=
pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫
pullbackRightPullbackFstIso f g
(Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫
asIso
(pullback.map (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g
(pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g
(𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i)) (𝟙 Y) (𝟙 S)
(_ :
(Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S =
𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫
pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i)
(_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) ≪≫
(pullbackRightPullbackFstIso (Scheme.OpenCover.map (Scheme.affineCover S) i) g pullback.snd).symm
this : e.hom ≫ pullback.fst = pullback.snd
⊢ P pullback.fst
[PROOFSTEP]
rw [← pullbackSymmetry_hom_comp_snd, affine_cancel_left_isIso hP.1]
[GOAL]
case h.H
P : AffineTargetMorphismProperty
hP : IsLocal P
hP' : StableUnderBaseChange P
X Y S : Scheme
f : X ⟶ S
g : Y ⟶ S
H : ∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
h01 : targetAffineLocally P pullback.fst ↔ ∃ 𝒰, ∀ (i : 𝒰.J), targetAffineLocally P pullback.snd
i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f).J
h03 :
targetAffineLocally P g ↔
∀ {U : Scheme} (g_1 : U ⟶ S) [inst : IsAffine U] [inst_1 : IsOpenImmersion g_1], P pullback.snd
e : pullback pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≅
pullback pullback.snd pullback.fst :=
pullbackSymmetry pullback.fst (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫
pullbackRightPullbackFstIso f g
(Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≪≫
asIso
(pullback.map (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) g
(pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i) g
(𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i)) (𝟙 Y) (𝟙 S)
(_ :
(Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i ≫ f) ≫ 𝟙 S =
𝟙 (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover S) f) i) ≫
pullback.snd ≫ Scheme.OpenCover.map (Scheme.affineCover S) i)
(_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) ≪≫
(pullbackRightPullbackFstIso (Scheme.OpenCover.map (Scheme.affineCover S) i) g pullback.snd).symm
this : e.hom ≫ pullback.fst = pullback.snd
⊢ P pullback.snd
[PROOFSTEP]
apply H
[GOAL]
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
⊢ MorphismProperty.RespectsIso (toProperty (diagonal P))
[PROOFSTEP]
delta AffineTargetMorphismProperty.diagonal
[GOAL]
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
⊢ MorphismProperty.RespectsIso
(toProperty fun {X x} f x_1 =>
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f))
[PROOFSTEP]
apply AffineTargetMorphismProperty.respectsIso_mk
[GOAL]
case h₁
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
⊢ ∀ {X Y Z : Scheme} (e : X ≅ Y) (f : Y ⟶ Z) [inst : IsAffine Z],
(∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ Y) (f₂ : U₂ ⟶ Y) [inst_1 : IsAffine U₁] [inst_2 : IsAffine U₂]
[inst_3 : IsOpenImmersion f₁] [inst_4 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f)) →
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst_1 : IsAffine U₁] [inst_2 : IsAffine U₂]
[inst_3 : IsOpenImmersion f₁] [inst_4 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ (e.hom ≫ f))
[PROOFSTEP]
introv H _ _
[GOAL]
case h₁
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
X Y Z : Scheme
e : X ≅ Y
f : Y ⟶ Z
inst✝⁴ : IsAffine Z
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ Y) (f₂ : U₂ ⟶ Y) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f)
U₁ U₂ : Scheme
f₁ : U₁ ⟶ X
f₂ : U₂ ⟶ X
inst✝³ : IsAffine U₁
inst✝² : IsAffine U₂
inst✝¹ : IsOpenImmersion f₁
inst✝ : IsOpenImmersion f₂
⊢ P (pullback.mapDesc f₁ f₂ (e.hom ≫ f))
[PROOFSTEP]
rw [pullback.mapDesc_comp, affine_cancel_left_isIso hP, affine_cancel_right_isIso hP]
-- Porting note : add the following two instances
[GOAL]
case h₁
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
X Y Z : Scheme
e : X ≅ Y
f : Y ⟶ Z
inst✝⁴ : IsAffine Z
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ Y) (f₂ : U₂ ⟶ Y) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f)
U₁ U₂ : Scheme
f₁ : U₁ ⟶ X
f₂ : U₂ ⟶ X
inst✝³ : IsAffine U₁
inst✝² : IsAffine U₂
inst✝¹ : IsOpenImmersion f₁
inst✝ : IsOpenImmersion f₂
⊢ P (pullback.mapDesc (f₁ ≫ e.hom) (f₂ ≫ e.hom) f)
[PROOFSTEP]
have i1 : IsOpenImmersion (f₁ ≫ e.hom) := PresheafedSpace.IsOpenImmersion.comp _ _
[GOAL]
case h₁
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
X Y Z : Scheme
e : X ≅ Y
f : Y ⟶ Z
inst✝⁴ : IsAffine Z
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ Y) (f₂ : U₂ ⟶ Y) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f)
U₁ U₂ : Scheme
f₁ : U₁ ⟶ X
f₂ : U₂ ⟶ X
inst✝³ : IsAffine U₁
inst✝² : IsAffine U₂
inst✝¹ : IsOpenImmersion f₁
inst✝ : IsOpenImmersion f₂
i1 : IsOpenImmersion (f₁ ≫ e.hom)
⊢ P (pullback.mapDesc (f₁ ≫ e.hom) (f₂ ≫ e.hom) f)
[PROOFSTEP]
have i2 : IsOpenImmersion (f₂ ≫ e.hom) := PresheafedSpace.IsOpenImmersion.comp _ _
[GOAL]
case h₁
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
X Y Z : Scheme
e : X ≅ Y
f : Y ⟶ Z
inst✝⁴ : IsAffine Z
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ Y) (f₂ : U₂ ⟶ Y) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f)
U₁ U₂ : Scheme
f₁ : U₁ ⟶ X
f₂ : U₂ ⟶ X
inst✝³ : IsAffine U₁
inst✝² : IsAffine U₂
inst✝¹ : IsOpenImmersion f₁
inst✝ : IsOpenImmersion f₂
i1 : IsOpenImmersion (f₁ ≫ e.hom)
i2 : IsOpenImmersion (f₂ ≫ e.hom)
⊢ P (pullback.mapDesc (f₁ ≫ e.hom) (f₂ ≫ e.hom) f)
[PROOFSTEP]
apply H
[GOAL]
case h₂
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
⊢ ∀ {X Y Z : Scheme} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y],
(∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f)) →
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ (f ≫ e.hom))
[PROOFSTEP]
introv H _ _
-- Porting note : add the following two instances
[GOAL]
case h₂
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
X Y Z : Scheme
e : Y ≅ Z
f : X ⟶ Y
h : IsAffine Y
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f)
U₁ U₂ : Scheme
f₁ : U₁ ⟶ X
f₂ : U₂ ⟶ X
inst✝³ : IsAffine U₁
inst✝² : IsAffine U₂
inst✝¹ : IsOpenImmersion f₁
inst✝ : IsOpenImmersion f₂
⊢ P (pullback.mapDesc f₁ f₂ (f ≫ e.hom))
[PROOFSTEP]
have _ : IsAffine Z := isAffineOfIso e.inv
[GOAL]
case h₂
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
X Y Z : Scheme
e : Y ≅ Z
f : X ⟶ Y
h : IsAffine Y
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f)
U₁ U₂ : Scheme
f₁ : U₁ ⟶ X
f₂ : U₂ ⟶ X
inst✝³ : IsAffine U₁
inst✝² : IsAffine U₂
inst✝¹ : IsOpenImmersion f₁
inst✝ : IsOpenImmersion f₂
x✝ : IsAffine Z
⊢ P (pullback.mapDesc f₁ f₂ (f ≫ e.hom))
[PROOFSTEP]
rw [pullback.mapDesc_comp, affine_cancel_right_isIso hP]
[GOAL]
case h₂
P : AffineTargetMorphismProperty
hP : MorphismProperty.RespectsIso (toProperty P)
X Y Z : Scheme
e : Y ≅ Z
f : X ⟶ Y
h : IsAffine Y
H :
∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂]
[inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ f)
U₁ U₂ : Scheme
f₁ : U₁ ⟶ X
f₂ : U₂ ⟶ X
inst✝³ : IsAffine U₁
inst✝² : IsAffine U₂
inst✝¹ : IsOpenImmersion f₁
inst✝ : IsOpenImmersion f₂
x✝ : IsAffine Z
⊢ P (pullback.mapDesc f₁ f₂ f)
[PROOFSTEP]
apply H
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
⊢ MorphismProperty.diagonal (targetAffineLocally P) f
[PROOFSTEP]
let 𝒱 :=
(Scheme.Pullback.openCoverOfBase 𝒰 f f).bind fun i =>
Scheme.Pullback.openCoverOfLeftRight.{u} (𝒰' i) (𝒰' i) pullback.snd pullback.snd
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
⊢ MorphismProperty.diagonal (targetAffineLocally P) f
[PROOFSTEP]
have i1 : ∀ i, IsAffine (𝒱.obj i) := fun i => by dsimp; infer_instance
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i : 𝒱.J
⊢ IsAffine (Scheme.OpenCover.obj 𝒱 i)
[PROOFSTEP]
dsimp
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i : 𝒱.J
⊢ IsAffine
(pullback (Scheme.OpenCover.map (𝒰' i.fst) i.snd.fst ≫ pullback.snd)
(Scheme.OpenCover.map (𝒰' i.fst) i.snd.snd ≫ pullback.snd))
[PROOFSTEP]
infer_instance
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
⊢ MorphismProperty.diagonal (targetAffineLocally P) f
[PROOFSTEP]
refine' (hP.affine_openCover_iff _ _).mpr _
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
⊢ ∀ (i : 𝒱.J), P pullback.snd
[PROOFSTEP]
rintro ⟨i, j, k⟩
[GOAL]
case mk.mk
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
⊢ P pullback.snd
[PROOFSTEP]
dsimp
[GOAL]
case mk.mk
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
⊢ P pullback.snd
[PROOFSTEP]
convert (affine_cancel_left_isIso hP.1 (pullbackDiagonalMapIso _ _ ((𝒰' i).map j) ((𝒰' i).map k)).inv pullback.snd).mp _
[GOAL]
case h.e'_1.h.e'_7
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
⊢ pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) =
pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f)
case h.e'_3.e'_7
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
e_1✝ :
pullback (pullback.diagonal f)
(pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) =
pullback (pullback.diagonal f)
(pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f))
⊢ pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) =
pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f)
case mk.mk
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
⊢ P
((pullbackDiagonalMapIso f (Scheme.OpenCover.map 𝒰 i) (Scheme.OpenCover.map (𝒰' i) j)
(Scheme.OpenCover.map (𝒰' i) k)).inv ≫
pullback.snd)
[PROOFSTEP]
pick_goal 3
[GOAL]
case mk.mk
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
⊢ P
((pullbackDiagonalMapIso f (Scheme.OpenCover.map 𝒰 i) (Scheme.OpenCover.map (𝒰' i) j)
(Scheme.OpenCover.map (𝒰' i) k)).inv ≫
pullback.snd)
[PROOFSTEP]
convert h𝒰' i j k
[GOAL]
case h.e'_3
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
⊢ (pullbackDiagonalMapIso f (Scheme.OpenCover.map 𝒰 i) (Scheme.OpenCover.map (𝒰' i) j)
(Scheme.OpenCover.map (𝒰' i) k)).inv ≫
pullback.snd =
pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h.e'_3.h₀
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
⊢ ((pullbackDiagonalMapIso f (Scheme.OpenCover.map 𝒰 i) (Scheme.OpenCover.map (𝒰' i) j)
(Scheme.OpenCover.map (𝒰' i) k)).inv ≫
pullback.snd) ≫
pullback.fst =
pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd ≫ pullback.fst
[PROOFSTEP]
simp
[GOAL]
case h.e'_3.h₁
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
⊢ ((pullbackDiagonalMapIso f (Scheme.OpenCover.map 𝒰 i) (Scheme.OpenCover.map (𝒰' i) j)
(Scheme.OpenCover.map (𝒰' i) k)).inv ≫
pullback.snd) ≫
pullback.snd =
pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd ≫ pullback.snd
[PROOFSTEP]
simp
[GOAL]
case h.e'_1.h.e'_7
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
⊢ pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) =
pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f)
case h.e'_3.e'_7
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
e_1✝ :
pullback (pullback.diagonal f)
(pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) =
pullback (pullback.diagonal f)
(pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f))
⊢ pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) =
pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f)
[PROOFSTEP]
all_goals
apply pullback.hom_ext <;>
simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc]
[GOAL]
case h.e'_1.h.e'_7
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
⊢ pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) =
pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f)
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h.e'_1.h.e'_7.h₀
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
⊢ (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) ≫
pullback.fst =
pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) ≫
pullback.fst
[PROOFSTEP]
simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc]
[GOAL]
case h.e'_1.h.e'_7.h₁
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
⊢ (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) ≫
pullback.snd =
pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) ≫
pullback.snd
[PROOFSTEP]
simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc]
[GOAL]
case h.e'_3.e'_7
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
e_1✝ :
pullback (pullback.diagonal f)
(pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) =
pullback (pullback.diagonal f)
(pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f))
⊢ pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f) =
pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f)
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h.e'_3.e'_7.h₀
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
e_1✝ :
pullback (pullback.diagonal f)
(pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) =
pullback (pullback.diagonal f)
(pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f))
⊢ (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) ≫
pullback.fst =
pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) ≫
pullback.fst
[PROOFSTEP]
simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc]
[GOAL]
case h.e'_3.e'_7.h₁
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
inst✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
inst✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
h𝒰' :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒱 : Scheme.OpenCover (pullback f f) :=
Scheme.OpenCover.bind (Scheme.Pullback.openCoverOfBase 𝒰 f f) fun i =>
Scheme.Pullback.openCoverOfLeftRight (𝒰' i) (𝒰' i) pullback.snd pullback.snd
i1 : ∀ (i : 𝒱.J), IsAffine (Scheme.OpenCover.obj 𝒱 i)
i : (Scheme.Pullback.openCoverOfBase 𝒰 f f).J
j k : (𝒰' i).J
e_1✝ :
pullback (pullback.diagonal f)
(pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) =
pullback (pullback.diagonal f)
(pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f))
⊢ (pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd)
pullback.snd pullback.snd (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)
(𝟙 (Scheme.OpenCover.obj 𝒰 i))
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).fst ≫ pullback.snd)
(_ :
(Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫ 𝟙 (Scheme.OpenCover.obj 𝒰 i) =
Scheme.OpenCover.map (𝒰' i) (j, k).snd ≫ pullback.snd) ≫
pullback.map pullback.snd pullback.snd f f pullback.fst pullback.fst (Scheme.OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ Scheme.OpenCover.map 𝒰 i = pullback.fst ≫ f)) ≫
pullback.snd =
pullback.map (Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) f f
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) (Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst)
(Scheme.OpenCover.map 𝒰 i)
(_ :
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) j ≫ pullback.fst) ≫ f)
(_ :
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i =
(Scheme.OpenCover.map (𝒰' i) k ≫ pullback.fst) ≫ f) ≫
pullback.snd
[PROOFSTEP]
simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc]
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U : Scheme
f : X ⟶ Y
g : U ⟶ Y
inst✝¹ : IsAffine U
inst✝ : IsOpenImmersion g
H : MorphismProperty.diagonal (targetAffineLocally P) f
⊢ diagonal P pullback.snd
[PROOFSTEP]
rintro U V f₁ f₂ hU hV hf₁ hf₂
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
H : MorphismProperty.diagonal (targetAffineLocally P) f
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
⊢ P (pullback.mapDesc f₁ f₂ pullback.snd)
[PROOFSTEP]
replace H := ((hP.affine_openCover_TFAE (pullback.diagonal f)).out 0 3).mp H
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
⊢ P (pullback.mapDesc f₁ f₂ pullback.snd)
[PROOFSTEP]
let g₁ :=
pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g
(by rw [Category.assoc, Category.assoc, pullback.condition])
(by rw [Category.assoc, Category.assoc, pullback.condition])
-- Porting note : added this instance
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
⊢ (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f
[PROOFSTEP]
rw [Category.assoc, Category.assoc, pullback.condition]
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
⊢ (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f
[PROOFSTEP]
rw [Category.assoc, Category.assoc, pullback.condition]
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f :=
pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g
(_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f)
⊢ P (pullback.mapDesc f₁ f₂ pullback.snd)
[PROOFSTEP]
haveI hg₁ : IsOpenImmersion g₁ :=
by
apply (config := { allowSynthFailures := true }) Scheme.pullback_map_isOpenImmersion
· exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₁) _
· exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₂) _
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f :=
pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g
(_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f)
⊢ IsOpenImmersion g₁
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) Scheme.pullback_map_isOpenImmersion
[GOAL]
case inst
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f :=
pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g
(_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f)
⊢ IsOpenImmersion (f₁ ≫ pullback.fst)
[PROOFSTEP]
exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₁) _
[GOAL]
case inst
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f :=
pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g
(_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f)
⊢ IsOpenImmersion (f₂ ≫ pullback.fst)
[PROOFSTEP]
exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₂) _
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
H : ∀ {U : Scheme} (g : U ⟶ pullback.diagonalObj f) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], P pullback.snd
g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f :=
pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g
(_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f)
hg₁ : IsOpenImmersion g₁
⊢ P (pullback.mapDesc f₁ f₂ pullback.snd)
[PROOFSTEP]
specialize H g₁
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f :=
pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g
(_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f)
hg₁ : IsOpenImmersion g₁
H : P pullback.snd
⊢ P (pullback.mapDesc f₁ f₂ pullback.snd)
[PROOFSTEP]
rw [← affine_cancel_left_isIso hP.1 (pullbackDiagonalMapIso f _ f₁ f₂).hom]
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f :=
pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g
(_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f)
hg₁ : IsOpenImmersion g₁
H : P pullback.snd
⊢ P ((pullbackDiagonalMapIso f g f₁ f₂).hom ≫ pullback.mapDesc f₁ f₂ pullback.snd)
[PROOFSTEP]
convert H
[GOAL]
case h.e'_3
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f :=
pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g
(_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f)
hg₁ : IsOpenImmersion g₁
H : P pullback.snd
⊢ (pullbackDiagonalMapIso f g f₁ f₂).hom ≫ pullback.mapDesc f₁ f₂ pullback.snd = pullback.snd
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h.e'_3.h₀
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f :=
pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g
(_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f)
hg₁ : IsOpenImmersion g₁
H : P pullback.snd
⊢ ((pullbackDiagonalMapIso f g f₁ f₂).hom ≫ pullback.mapDesc f₁ f₂ pullback.snd) ≫ pullback.fst =
pullback.snd ≫ pullback.fst
[PROOFSTEP]
simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc,
Category.comp_id, pullbackDiagonalMapIso_hom_fst, pullbackDiagonalMapIso_hom_snd]
[GOAL]
case h.e'_3.h₁
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y U✝ : Scheme
f : X ⟶ Y
g : U✝ ⟶ Y
inst✝¹ : IsAffine U✝
inst✝ : IsOpenImmersion g
U V : Scheme
f₁ : U ⟶ pullback f g
f₂ : V ⟶ pullback f g
hU : IsAffine U
hV : IsAffine V
hf₁ : IsOpenImmersion f₁
hf₂ : IsOpenImmersion f₂
g₁ : pullback (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) ⟶ pullback f f :=
pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g
(_ : (f₁ ≫ pullback.snd) ≫ g = (f₁ ≫ pullback.fst) ≫ f) (_ : (f₂ ≫ pullback.snd) ≫ g = (f₂ ≫ pullback.fst) ≫ f)
hg₁ : IsOpenImmersion g₁
H : P pullback.snd
⊢ ((pullbackDiagonalMapIso f g f₁ f₂).hom ≫ pullback.mapDesc f₁ f₂ pullback.snd) ≫ pullback.snd =
pullback.snd ≫ pullback.snd
[PROOFSTEP]
simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc, pullback.lift_snd_assoc,
Category.comp_id, pullbackDiagonalMapIso_hom_fst, pullbackDiagonalMapIso_hom_snd]
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
⊢ TFAE
[MorphismProperty.diagonal (targetAffineLocally P) f, ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd,
∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)]
[PROOFSTEP]
tfae_have 1 → 4
[GOAL]
case tfae_1_to_4
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
⊢ MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
[PROOFSTEP]
introv H hU hg _ _
[GOAL]
case tfae_1_to_4
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
H : MorphismProperty.diagonal (targetAffineLocally P) f
U : Scheme
g : U ⟶ Y
inst✝⁴ : IsAffine U
hU : IsOpenImmersion g
hg U₂ : Scheme
f₁ : hg ⟶ pullback f g
f₂ : U₂ ⟶ pullback f g
inst✝³ : IsAffine hg
inst✝² : IsAffine U₂
inst✝¹ : IsOpenImmersion f₁
inst✝ : IsOpenImmersion f₂
⊢ P (pullback.mapDesc f₁ f₂ pullback.snd)
[PROOFSTEP]
apply P.diagonalOfTargetAffineLocally
[GOAL]
case tfae_1_to_4.hP
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
H : MorphismProperty.diagonal (targetAffineLocally P) f
U : Scheme
g : U ⟶ Y
inst✝⁴ : IsAffine U
hU : IsOpenImmersion g
hg U₂ : Scheme
f₁ : hg ⟶ pullback f g
f₂ : U₂ ⟶ pullback f g
inst✝³ : IsAffine hg
inst✝² : IsAffine U₂
inst✝¹ : IsOpenImmersion f₁
inst✝ : IsOpenImmersion f₂
⊢ IsLocal P
[PROOFSTEP]
assumption
[GOAL]
case tfae_1_to_4.H
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
H : MorphismProperty.diagonal (targetAffineLocally P) f
U : Scheme
g : U ⟶ Y
inst✝⁴ : IsAffine U
hU : IsOpenImmersion g
hg U₂ : Scheme
f₁ : hg ⟶ pullback f g
f₂ : U₂ ⟶ pullback f g
inst✝³ : IsAffine hg
inst✝² : IsAffine U₂
inst✝¹ : IsOpenImmersion f₁
inst✝ : IsOpenImmersion f₂
⊢ MorphismProperty.diagonal (targetAffineLocally P) f
[PROOFSTEP]
assumption
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
⊢ TFAE
[MorphismProperty.diagonal (targetAffineLocally P) f, ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd,
∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)]
[PROOFSTEP]
tfae_have 4 → 3
[GOAL]
case tfae_4_to_3
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
⊢ (∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd
[PROOFSTEP]
introv H h𝒰
[GOAL]
case tfae_4_to_3
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
H : ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
𝒰 : Scheme.OpenCover Y
inst✝² : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
i : 𝒰.J
h𝒰 U₂ : Scheme
f₁ : h𝒰 ⟶ pullback f (Scheme.OpenCover.map 𝒰 i)
f₂ : U₂ ⟶ pullback f (Scheme.OpenCover.map 𝒰 i)
inst✝¹ : IsAffine h𝒰
inst✝ : IsAffine U₂
⊢ ∀ [inst : IsOpenImmersion f₁] [inst : IsOpenImmersion f₂], P (pullback.mapDesc f₁ f₂ pullback.snd)
[PROOFSTEP]
apply H
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd
⊢ TFAE
[MorphismProperty.diagonal (targetAffineLocally P) f, ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd,
∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)]
[PROOFSTEP]
tfae_have 3 → 2
[GOAL]
case tfae_3_to_2
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd
⊢ (∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd
[PROOFSTEP]
exact fun H => ⟨Y.affineCover, inferInstance, H Y.affineCover⟩
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd
⊢ TFAE
[MorphismProperty.diagonal (targetAffineLocally P) f, ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd,
∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)]
[PROOFSTEP]
tfae_have 2 → 5
[GOAL]
case tfae_2_to_5
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd
⊢ (∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd) →
∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
[PROOFSTEP]
rintro ⟨𝒰, h𝒰, H⟩
[GOAL]
case tfae_2_to_5.intro.intro
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
H : ∀ (i : 𝒰.J), diagonal P pullback.snd
⊢ ∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
[PROOFSTEP]
refine' ⟨𝒰, inferInstance, fun _ => Scheme.affineCover _, inferInstance, _⟩
[GOAL]
case tfae_2_to_5.intro.intro
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
H : ∀ (i : 𝒰.J), diagonal P pullback.snd
⊢ ∀ (i : 𝒰.J) (j k : ((fun x => Scheme.affineCover (pullback f (Scheme.OpenCover.map 𝒰 x))) i).J),
P
(pullback.mapDesc
(Scheme.OpenCover.map ((fun x => Scheme.affineCover (pullback f (Scheme.OpenCover.map 𝒰 x))) i) j)
(Scheme.OpenCover.map ((fun x => Scheme.affineCover (pullback f (Scheme.OpenCover.map 𝒰 x))) i) k) pullback.snd)
[PROOFSTEP]
intro i j k
[GOAL]
case tfae_2_to_5.intro.intro
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd
𝒰 : Scheme.OpenCover Y
h𝒰 : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
H : ∀ (i : 𝒰.J), diagonal P pullback.snd
i : 𝒰.J
j k : ((fun x => Scheme.affineCover (pullback f (Scheme.OpenCover.map 𝒰 x))) i).J
⊢ P
(pullback.mapDesc (Scheme.OpenCover.map ((fun x => Scheme.affineCover (pullback f (Scheme.OpenCover.map 𝒰 x))) i) j)
(Scheme.OpenCover.map ((fun x => Scheme.affineCover (pullback f (Scheme.OpenCover.map 𝒰 x))) i) k) pullback.snd)
[PROOFSTEP]
apply H
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd
tfae_2_to_5 :
(∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd) →
∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
⊢ TFAE
[MorphismProperty.diagonal (targetAffineLocally P) f, ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd,
∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)]
[PROOFSTEP]
tfae_have 5 → 1
[GOAL]
case tfae_5_to_1
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd
tfae_2_to_5 :
(∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd) →
∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
⊢ (∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)) →
MorphismProperty.diagonal (targetAffineLocally P) f
[PROOFSTEP]
rintro ⟨𝒰, _, 𝒰', _, H⟩
[GOAL]
case tfae_5_to_1.intro.intro.intro.intro
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd
tfae_2_to_5 :
(∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd) →
∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
𝒰 : Scheme.OpenCover Y
w✝¹ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)
𝒰' : (i : 𝒰.J) → Scheme.OpenCover (pullback f (Scheme.OpenCover.map 𝒰 i))
w✝ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine (Scheme.OpenCover.obj (𝒰' i) j)
H :
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
⊢ MorphismProperty.diagonal (targetAffineLocally P) f
[PROOFSTEP]
exact diagonalTargetAffineLocallyOfOpenCover P hP f 𝒰 𝒰' H
[GOAL]
P : AffineTargetMorphismProperty
hP : IsLocal P
X Y : Scheme
f : X ⟶ Y
tfae_1_to_4 :
MorphismProperty.diagonal (targetAffineLocally P) f →
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd
tfae_4_to_3 :
(∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd) →
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd
tfae_3_to_2 :
(∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd) →
∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd
tfae_2_to_5 :
(∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd) →
∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)
tfae_5_to_1 :
(∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)) →
MorphismProperty.diagonal (targetAffineLocally P) f
⊢ TFAE
[MorphismProperty.diagonal (targetAffineLocally P) f, ∃ 𝒰 x, ∀ (i : 𝒰.J), diagonal P pullback.snd,
∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J),
diagonal P pullback.snd,
∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], diagonal P pullback.snd,
∃ 𝒰 x 𝒰' x_1,
∀ (i : 𝒰.J) (j k : (𝒰' i).J),
P (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)]
[PROOFSTEP]
tfae_finish
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
⊢ MorphismProperty.diagonal (targetAffineLocally P) = targetAffineLocally (AffineTargetMorphismProperty.diagonal P)
[PROOFSTEP]
refine funext fun _ => funext fun _ => funext fun f => propext ?_
[GOAL]
P : AffineTargetMorphismProperty
hP : AffineTargetMorphismProperty.IsLocal P
x✝¹ x✝ : Scheme
f : x✝¹ ⟶ x✝
⊢ MorphismProperty.diagonal (targetAffineLocally P) f ↔ targetAffineLocally (AffineTargetMorphismProperty.diagonal P) f
[PROOFSTEP]
exact ((hP.diagonal_affine_openCover_TFAE f).out 0 1).trans ((hP.diagonal.affine_openCover_TFAE f).out 1 0)
[GOAL]
P : MorphismProperty Scheme
hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f
⊢ PropertyIsLocalAtTarget (MorphismProperty.universally P)
[PROOFSTEP]
refine'
⟨P.universally_respectsIso, fun {X Y} f U =>
P.universally_stableUnderBaseChange (isPullback_morphismRestrict f U).flip, _⟩
[GOAL]
P : MorphismProperty Scheme
hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f
⊢ ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y),
(∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd) → MorphismProperty.universally P f
[PROOFSTEP]
intro X Y f 𝒰 h X' Y' i₁ i₂ f' H
[GOAL]
P : MorphismProperty Scheme
hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd
X' Y' : Scheme
i₁ : X' ⟶ X
i₂ : Y' ⟶ Y
f' : X' ⟶ Y'
H : IsPullback f' i₁ i₂ f
⊢ P f'
[PROOFSTEP]
apply hP _ (𝒰.pullbackCover i₂)
[GOAL]
P : MorphismProperty Scheme
hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd
X' Y' : Scheme
i₁ : X' ⟶ X
i₂ : Y' ⟶ Y
f' : X' ⟶ Y'
H : IsPullback f' i₁ i₂ f
⊢ ∀ (i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J), P pullback.snd
[PROOFSTEP]
intro i
[GOAL]
P : MorphismProperty Scheme
hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd
X' Y' : Scheme
i₁ : X' ⟶ X
i₂ : Y' ⟶ Y
f' : X' ⟶ Y'
H : IsPullback f' i₁ i₂ f
i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J
⊢ P pullback.snd
[PROOFSTEP]
dsimp
[GOAL]
P : MorphismProperty Scheme
hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd
X' Y' : Scheme
i₁ : X' ⟶ X
i₂ : Y' ⟶ Y
f' : X' ⟶ Y'
H : IsPullback f' i₁ i₂ f
i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J
⊢ P pullback.snd
[PROOFSTEP]
apply h i (pullback.lift (pullback.fst ≫ i₁) (pullback.snd ≫ pullback.snd) _) pullback.snd
[GOAL]
case x
P : MorphismProperty Scheme
hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd
X' Y' : Scheme
i₁ : X' ⟶ X
i₂ : Y' ⟶ Y
f' : X' ⟶ Y'
H : IsPullback f' i₁ i₂ f
i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J
⊢ IsPullback pullback.snd (pullback.lift (pullback.fst ≫ i₁) (pullback.snd ≫ pullback.snd) ?m.186333) pullback.snd
pullback.snd
P : MorphismProperty Scheme
hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd
X' Y' : Scheme
i₁ : X' ⟶ X
i₂ : Y' ⟶ Y
f' : X' ⟶ Y'
H : IsPullback f' i₁ i₂ f
i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J
⊢ (pullback.fst ≫ i₁) ≫ f = (pullback.snd ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i
[PROOFSTEP]
swap
[GOAL]
P : MorphismProperty Scheme
hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd
X' Y' : Scheme
i₁ : X' ⟶ X
i₂ : Y' ⟶ Y
f' : X' ⟶ Y'
H : IsPullback f' i₁ i₂ f
i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J
⊢ (pullback.fst ≫ i₁) ≫ f = (pullback.snd ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i
[PROOFSTEP]
rw [Category.assoc, Category.assoc, ← pullback.condition, ← pullback.condition_assoc, H.w]
[GOAL]
case x
P : MorphismProperty Scheme
hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd
X' Y' : Scheme
i₁ : X' ⟶ X
i₂ : Y' ⟶ Y
f' : X' ⟶ Y'
H : IsPullback f' i₁ i₂ f
i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J
⊢ IsPullback pullback.snd
(pullback.lift (pullback.fst ≫ i₁) (pullback.snd ≫ pullback.snd)
(_ : (pullback.fst ≫ i₁) ≫ f = (pullback.snd ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i))
pullback.snd pullback.snd
[PROOFSTEP]
refine' (IsPullback.of_right _ (pullback.lift_snd _ _ _) (IsPullback.of_hasPullback _ _)).flip
[GOAL]
case x
P : MorphismProperty Scheme
hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd
X' Y' : Scheme
i₁ : X' ⟶ X
i₂ : Y' ⟶ Y
f' : X' ⟶ Y'
H : IsPullback f' i₁ i₂ f
i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J
⊢ IsPullback
(pullback.lift (pullback.fst ≫ i₁) (pullback.snd ≫ pullback.snd)
(_ : (pullback.fst ≫ i₁) ≫ f = (pullback.snd ≫ pullback.snd) ≫ Scheme.OpenCover.map 𝒰 i) ≫
pullback.fst)
pullback.snd f (pullback.snd ≫ Scheme.OpenCover.map 𝒰 i)
[PROOFSTEP]
rw [pullback.lift_fst, ← pullback.condition]
[GOAL]
case x
P : MorphismProperty Scheme
hP : ∀ {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover Y), (∀ (i : 𝒰.J), P pullback.snd) → P f
X Y : Scheme
f : X ⟶ Y
𝒰 : Scheme.OpenCover Y
h : ∀ (i : 𝒰.J), MorphismProperty.universally P pullback.snd
X' Y' : Scheme
i₁ : X' ⟶ X
i₂ : Y' ⟶ Y
f' : X' ⟶ Y'
H : IsPullback f' i₁ i₂ f
i : (Scheme.OpenCover.pullbackCover 𝒰 i₂).J
⊢ IsPullback (pullback.fst ≫ i₁) pullback.snd f (pullback.fst ≫ i₂)
[PROOFSTEP]
exact (IsPullback.of_hasPullback _ _).paste_horiz H.flip
[GOAL]
P : MorphismProperty Scheme
hP₁ : MorphismProperty.RespectsIso P
hP₂ :
∀ {X Y : Scheme} (f : X ⟶ Y) {ι : Type u} (U : ι → Opens ↑↑Y.toPresheafedSpace),
iSup U = ⊤ → (∀ (i : ι), P (f ∣_ U i)) → P f
X✝ Y✝ : Scheme
f : X✝ ⟶ Y✝
𝒰 : Scheme.OpenCover Y✝
h𝒰 : ∀ (i : 𝒰.J), P pullback.snd
⊢ P f
[PROOFSTEP]
apply hP₂ f (fun i : 𝒰.J => Scheme.Hom.opensRange (𝒰.map i)) 𝒰.iSup_opensRange
[GOAL]
P : MorphismProperty Scheme
hP₁ : MorphismProperty.RespectsIso P
hP₂ :
∀ {X Y : Scheme} (f : X ⟶ Y) {ι : Type u} (U : ι → Opens ↑↑Y.toPresheafedSpace),
iSup U = ⊤ → (∀ (i : ι), P (f ∣_ U i)) → P f
X✝ Y✝ : Scheme
f : X✝ ⟶ Y✝
𝒰 : Scheme.OpenCover Y✝
h𝒰 : ∀ (i : 𝒰.J), P pullback.snd
⊢ ∀ (i : 𝒰.J), P (f ∣_ Scheme.Hom.opensRange (Scheme.OpenCover.map 𝒰 i))
[PROOFSTEP]
simp_rw [hP₁.arrow_mk_iso_iff (morphismRestrictOpensRange f _)]
[GOAL]
P : MorphismProperty Scheme
hP₁ : MorphismProperty.RespectsIso P
hP₂ :
∀ {X Y : Scheme} (f : X ⟶ Y) {ι : Type u} (U : ι → Opens ↑↑Y.toPresheafedSpace),
iSup U = ⊤ → (∀ (i : ι), P (f ∣_ U i)) → P f
X✝ Y✝ : Scheme
f : X✝ ⟶ Y✝
𝒰 : Scheme.OpenCover Y✝
h𝒰 : ∀ (i : 𝒰.J), P pullback.snd
⊢ ∀ (i : 𝒰.J), P pullback.snd
[PROOFSTEP]
exact h𝒰
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.Morphisms.Basic", "llama_tokens": 147088} |
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
t : Term L α
⊢ relabel id t = t
[PROOFSTEP]
induction' t with _ _ _ _ ih
[GOAL]
case var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
_a✝ : α
⊢ relabel id (var _a✝) = var _a✝
[PROOFSTEP]
rfl
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L α
ih : ∀ (a : Fin l✝), relabel id (_ts✝ a) = _ts✝ a
⊢ relabel id (func _f✝ _ts✝) = func _f✝ _ts✝
[PROOFSTEP]
simp [ih]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
f : α → β
g : β → γ
t : Term L α
⊢ relabel g (relabel f t) = relabel (g ∘ f) t
[PROOFSTEP]
induction' t with _ _ _ _ ih
[GOAL]
case var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
f : α → β
g : β → γ
_a✝ : α
⊢ relabel g (relabel f (var _a✝)) = relabel (g ∘ f) (var _a✝)
[PROOFSTEP]
rfl
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
f : α → β
g : β → γ
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L α
ih : ∀ (a : Fin l✝), relabel g (relabel f (_ts✝ a)) = relabel (g ∘ f) (_ts✝ a)
⊢ relabel g (relabel f (func _f✝ _ts✝)) = relabel (g ∘ f) (func _f✝ _ts✝)
[PROOFSTEP]
simp [ih]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
g : α ≃ β
t : Term L α
⊢ relabel (↑g.symm) (relabel (↑g) t) = t
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
g : α ≃ β
t : Term L β
⊢ relabel (↑g) (relabel (↑g.symm) t) = t
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
⊢ Function.LeftInverse varsToConstants constantsToVars
[PROOFSTEP]
intro t
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
t : Term (L[[γ]]) α
⊢ varsToConstants (constantsToVars t) = t
[PROOFSTEP]
induction' t with _ n f _ ih
[GOAL]
case var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
_a✝ : α
⊢ varsToConstants (constantsToVars (var _a✝)) = var _a✝
[PROOFSTEP]
rfl
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
f : Functions (L[[γ]]) n
_ts✝ : Fin n → Term (L[[γ]]) α
ih : ∀ (a : Fin n), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a
⊢ varsToConstants (constantsToVars (func f _ts✝)) = func f _ts✝
[PROOFSTEP]
cases n
[GOAL]
case func.zero
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
f : Functions (L[[γ]]) Nat.zero
_ts✝ : Fin Nat.zero → Term (L[[γ]]) α
ih : ∀ (a : Fin Nat.zero), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a
⊢ varsToConstants (constantsToVars (func f _ts✝)) = func f _ts✝
[PROOFSTEP]
cases f
[GOAL]
case func.zero.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
_ts✝ : Fin Nat.zero → Term (L[[γ]]) α
ih : ∀ (a : Fin Nat.zero), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a
val✝ : Functions L Nat.zero
⊢ varsToConstants (constantsToVars (func (Sum.inl val✝) _ts✝)) = func (Sum.inl val✝) _ts✝
[PROOFSTEP]
simp [constantsToVars, varsToConstants, ih]
[GOAL]
case func.zero.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
_ts✝ : Fin Nat.zero → Term (L[[γ]]) α
ih : ∀ (a : Fin Nat.zero), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a
val✝ : Functions (constantsOn γ) Nat.zero
⊢ varsToConstants (constantsToVars (func (Sum.inr val✝) _ts✝)) = func (Sum.inr val✝) _ts✝
[PROOFSTEP]
simp [constantsToVars, varsToConstants, Constants.term]
[GOAL]
case func.succ
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝ : ℕ
f : Functions (L[[γ]]) (Nat.succ n✝)
_ts✝ : Fin (Nat.succ n✝) → Term (L[[γ]]) α
ih : ∀ (a : Fin (Nat.succ n✝)), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a
⊢ varsToConstants (constantsToVars (func f _ts✝)) = func f _ts✝
[PROOFSTEP]
cases' f with f f
[GOAL]
case func.succ.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝ : ℕ
_ts✝ : Fin (Nat.succ n✝) → Term (L[[γ]]) α
ih : ∀ (a : Fin (Nat.succ n✝)), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a
f : Functions L (Nat.succ n✝)
⊢ varsToConstants (constantsToVars (func (Sum.inl f) _ts✝)) = func (Sum.inl f) _ts✝
[PROOFSTEP]
simp [constantsToVars, varsToConstants, ih]
[GOAL]
case func.succ.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝ : ℕ
_ts✝ : Fin (Nat.succ n✝) → Term (L[[γ]]) α
ih : ∀ (a : Fin (Nat.succ n✝)), varsToConstants (constantsToVars (_ts✝ a)) = _ts✝ a
f : Functions (constantsOn γ) (Nat.succ n✝)
⊢ varsToConstants (constantsToVars (func (Sum.inr f) _ts✝)) = func (Sum.inr f) _ts✝
[PROOFSTEP]
exact isEmptyElim f
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
⊢ Function.RightInverse varsToConstants constantsToVars
[PROOFSTEP]
intro t
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
t : Term L (γ ⊕ α)
⊢ constantsToVars (varsToConstants t) = t
[PROOFSTEP]
induction' t with x n f _ ih
[GOAL]
case var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
x : γ ⊕ α
⊢ constantsToVars (varsToConstants (var x)) = var x
[PROOFSTEP]
cases x
[GOAL]
case var.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
val✝ : γ
⊢ constantsToVars (varsToConstants (var (Sum.inl val✝))) = var (Sum.inl val✝)
[PROOFSTEP]
rfl
[GOAL]
case var.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
val✝ : α
⊢ constantsToVars (varsToConstants (var (Sum.inr val✝))) = var (Sum.inr val✝)
[PROOFSTEP]
rfl
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
f : Functions L n
_ts✝ : Fin n → Term L (γ ⊕ α)
ih : ∀ (a : Fin n), constantsToVars (varsToConstants (_ts✝ a)) = _ts✝ a
⊢ constantsToVars (varsToConstants (func f _ts✝)) = func f _ts✝
[PROOFSTEP]
cases n
[GOAL]
case func.zero
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
f : Functions L Nat.zero
_ts✝ : Fin Nat.zero → Term L (γ ⊕ α)
ih : ∀ (a : Fin Nat.zero), constantsToVars (varsToConstants (_ts✝ a)) = _ts✝ a
⊢ constantsToVars (varsToConstants (func f _ts✝)) = func f _ts✝
[PROOFSTEP]
simp [varsToConstants, constantsToVars, ih]
[GOAL]
case func.succ
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝ : ℕ
f : Functions L (Nat.succ n✝)
_ts✝ : Fin (Nat.succ n✝) → Term L (γ ⊕ α)
ih : ∀ (a : Fin (Nat.succ n✝)), constantsToVars (varsToConstants (_ts✝ a)) = _ts✝ a
⊢ constantsToVars (varsToConstants (func f _ts✝)) = func f _ts✝
[PROOFSTEP]
simp [varsToConstants, constantsToVars, ih]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
⊢ onTerm (LHom.id L) = id
[PROOFSTEP]
ext t
[GOAL]
case h
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
t : Term L α
⊢ onTerm (LHom.id L) t = id t
[PROOFSTEP]
induction' t with _ _ _ _ ih
[GOAL]
case h.var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
_a✝ : α
⊢ onTerm (LHom.id L) (var _a✝) = id (var _a✝)
[PROOFSTEP]
rfl
[GOAL]
case h.func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L α
ih : ∀ (a : Fin l✝), onTerm (LHom.id L) (_ts✝ a) = id (_ts✝ a)
⊢ onTerm (LHom.id L) (func _f✝ _ts✝) = id (func _f✝ _ts✝)
[PROOFSTEP]
simp_rw [onTerm, ih]
[GOAL]
case h.func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L α
ih : ∀ (a : Fin l✝), onTerm (LHom.id L) (_ts✝ a) = id (_ts✝ a)
⊢ (func (onFunction (LHom.id L) _f✝) fun i => id (_ts✝ i)) = id (func _f✝ _ts✝)
[PROOFSTEP]
rfl
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
L'' : Language
φ : L' →ᴸ L''
ψ : L →ᴸ L'
⊢ onTerm (comp φ ψ) = onTerm φ ∘ onTerm ψ
[PROOFSTEP]
ext t
[GOAL]
case h
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
L'' : Language
φ : L' →ᴸ L''
ψ : L →ᴸ L'
t : Term L α
⊢ onTerm (comp φ ψ) t = (onTerm φ ∘ onTerm ψ) t
[PROOFSTEP]
induction' t with _ _ _ _ ih
[GOAL]
case h.var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
L'' : Language
φ : L' →ᴸ L''
ψ : L →ᴸ L'
_a✝ : α
⊢ onTerm (comp φ ψ) (var _a✝) = (onTerm φ ∘ onTerm ψ) (var _a✝)
[PROOFSTEP]
rfl
[GOAL]
case h.func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
L'' : Language
φ : L' →ᴸ L''
ψ : L →ᴸ L'
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L α
ih : ∀ (a : Fin l✝), onTerm (comp φ ψ) (_ts✝ a) = (onTerm φ ∘ onTerm ψ) (_ts✝ a)
⊢ onTerm (comp φ ψ) (func _f✝ _ts✝) = (onTerm φ ∘ onTerm ψ) (func _f✝ _ts✝)
[PROOFSTEP]
simp_rw [onTerm, ih]
[GOAL]
case h.func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
L'' : Language
φ : L' →ᴸ L''
ψ : L →ᴸ L'
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L α
ih : ∀ (a : Fin l✝), onTerm (comp φ ψ) (_ts✝ a) = (onTerm φ ∘ onTerm ψ) (_ts✝ a)
⊢ (func (onFunction (comp φ ψ) _f✝) fun i => (onTerm φ ∘ onTerm ψ) (_ts✝ i)) = (onTerm φ ∘ onTerm ψ) (func _f✝ _ts✝)
[PROOFSTEP]
rfl
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
φ : L ≃ᴸ L'
⊢ Function.LeftInverse (LHom.onTerm φ.invLHom) (LHom.onTerm φ.toLHom)
[PROOFSTEP]
rw [Function.leftInverse_iff_comp, ← LHom.comp_onTerm, φ.left_inv, LHom.id_onTerm]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
φ : L ≃ᴸ L'
⊢ Function.RightInverse (LHom.onTerm φ.invLHom) (LHom.onTerm φ.toLHom)
[PROOFSTEP]
rw [Function.rightInverse_iff_comp, ← LHom.comp_onTerm, φ.right_inv, LHom.id_onTerm]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝ n : ℕ
h : n ≤ n
φ : BoundedFormula L α n
⊢ castLE h φ = φ
[PROOFSTEP]
induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ n : ℕ
h✝ : n ≤ n
n✝ : ℕ
h : n✝ ≤ n✝
⊢ castLE h falsum = falsum
[PROOFSTEP]
rfl
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ n : ℕ
h✝ : n ≤ n
n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
h : n✝ ≤ n✝
⊢ castLE h (equal t₁✝ t₂✝) = equal t₁✝ t₂✝
[PROOFSTEP]
simp [Fin.castLE_of_eq]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ n : ℕ
h✝ : n ≤ n
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
h : n✝ ≤ n✝
⊢ castLE h (rel R✝ ts✝) = rel R✝ ts✝
[PROOFSTEP]
simp [Fin.castLE_of_eq]
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ n : ℕ
h✝ : n ≤ n
n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 : ∀ (h : n✝ ≤ n✝), castLE h f₁✝ = f₁✝
ih2 : ∀ (h : n✝ ≤ n✝), castLE h f₂✝ = f₂✝
h : n✝ ≤ n✝
⊢ castLE h (imp f₁✝ f₂✝) = imp f₁✝ f₂✝
[PROOFSTEP]
simp [Fin.castLE_of_eq, ih1, ih2]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ n : ℕ
h✝ : n ≤ n
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (h : n✝ + 1 ≤ n✝ + 1), castLE h f✝ = f✝
h : n✝ ≤ n✝
⊢ castLE h (all f✝) = all f✝
[PROOFSTEP]
simp [Fin.castLE_of_eq, ih3]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝ k m n : ℕ
km : k ≤ m
mn : m ≤ n
φ : BoundedFormula L α k
⊢ castLE mn (castLE km φ) = castLE (_ : k ≤ n) φ
[PROOFSTEP]
revert m n
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n k : ℕ
φ : BoundedFormula L α k
⊢ ∀ {m n : ℕ} (km : k ≤ m) (mn : m ≤ n), castLE mn (castLE km φ) = castLE (_ : k ≤ n) φ
[PROOFSTEP]
induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n k n✝ : ℕ
⊢ ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km falsum) = castLE (_ : n✝ ≤ n) falsum
[PROOFSTEP]
intro m n km mn
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n k n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
⊢ ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km (equal t₁✝ t₂✝)) = castLE (_ : n✝ ≤ n) (equal t₁✝ t₂✝)
[PROOFSTEP]
intro m n km mn
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n k n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
⊢ ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km (rel R✝ ts✝)) = castLE (_ : n✝ ≤ n) (rel R✝ ts✝)
[PROOFSTEP]
intro m n km mn
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n k n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 : ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km f₁✝) = castLE (_ : n✝ ≤ n) f₁✝
ih2 : ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km f₂✝) = castLE (_ : n✝ ≤ n) f₂✝
⊢ ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km (imp f₁✝ f₂✝)) = castLE (_ : n✝ ≤ n) (imp f₁✝ f₂✝)
[PROOFSTEP]
intro m n km mn
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n k n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ {m n : ℕ} (km : n✝ + 1 ≤ m) (mn : m ≤ n), castLE mn (castLE km f✝) = castLE (_ : n✝ + 1 ≤ n) f✝
⊢ ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km (all f✝)) = castLE (_ : n✝ ≤ n) (all f✝)
[PROOFSTEP]
intro m n km mn
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ k n✝ m n : ℕ
km : n✝ ≤ m
mn : m ≤ n
⊢ castLE mn (castLE km falsum) = castLE (_ : n✝ ≤ n) falsum
[PROOFSTEP]
rfl
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ k n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
m n : ℕ
km : n✝ ≤ m
mn : m ≤ n
⊢ castLE mn (castLE km (equal t₁✝ t₂✝)) = castLE (_ : n✝ ≤ n) (equal t₁✝ t₂✝)
[PROOFSTEP]
simp
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ k n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
m n : ℕ
km : n✝ ≤ m
mn : m ≤ n
⊢ castLE mn (castLE km (rel R✝ ts✝)) = castLE (_ : n✝ ≤ n) (rel R✝ ts✝)
[PROOFSTEP]
simp only [castLE, eq_self_iff_true, heq_iff_eq, true_and_iff]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ k n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
m n : ℕ
km : n✝ ≤ m
mn : m ≤ n
⊢ rel R✝ (Term.relabel (Sum.map id (Fin.castLE mn)) ∘ Term.relabel (Sum.map id (Fin.castLE km)) ∘ ts✝) =
rel R✝ (Term.relabel (Sum.map id (Fin.castLE (_ : n✝ ≤ n))) ∘ ts✝)
[PROOFSTEP]
rw [← Function.comp.assoc, Term.relabel_comp_relabel]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ k n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
m n : ℕ
km : n✝ ≤ m
mn : m ≤ n
⊢ rel R✝ (Term.relabel (Sum.map id (Fin.castLE mn) ∘ Sum.map id (Fin.castLE km)) ∘ ts✝) =
rel R✝ (Term.relabel (Sum.map id (Fin.castLE (_ : n✝ ≤ n))) ∘ ts✝)
[PROOFSTEP]
simp
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ k n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 : ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km f₁✝) = castLE (_ : n✝ ≤ n) f₁✝
ih2 : ∀ {m n : ℕ} (km : n✝ ≤ m) (mn : m ≤ n), castLE mn (castLE km f₂✝) = castLE (_ : n✝ ≤ n) f₂✝
m n : ℕ
km : n✝ ≤ m
mn : m ≤ n
⊢ castLE mn (castLE km (imp f₁✝ f₂✝)) = castLE (_ : n✝ ≤ n) (imp f₁✝ f₂✝)
[PROOFSTEP]
simp [ih1, ih2]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ k n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ {m n : ℕ} (km : n✝ + 1 ≤ m) (mn : m ≤ n), castLE mn (castLE km f✝) = castLE (_ : n✝ + 1 ≤ n) f✝
m n : ℕ
km : n✝ ≤ m
mn : m ≤ n
⊢ castLE mn (castLE km (all f✝)) = castLE (_ : n✝ ≤ n) (all f✝)
[PROOFSTEP]
simp only [castLE, ih3]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝ n n' m : ℕ
φ : BoundedFormula L α n
x✝ : ℕ
⊢ x✝ + 1 + n' ≤ x✝ + n' + 1
[PROOFSTEP]
rw [add_assoc, add_comm 1, add_assoc]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝ : ℕ
L'' : Language
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n → Relations L' n
ft' : (n : ℕ) → Term L' (β ⊕ Fin n) → Term L'' (γ ⊕ Fin n)
fr' : (n : ℕ) → Relations L' n → Relations L'' n
n : ℕ
φ : BoundedFormula L α n
⊢ mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) φ) =
mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) φ
[PROOFSTEP]
induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ : ℕ
L'' : Language
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n → Relations L' n
ft' : (n : ℕ) → Term L' (β ⊕ Fin n) → Term L'' (γ ⊕ Fin n)
fr' : (n : ℕ) → Relations L' n → Relations L'' n
n n✝ : ℕ
⊢ mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) falsum) =
mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) falsum
[PROOFSTEP]
rfl
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ : ℕ
L'' : Language
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n → Relations L' n
ft' : (n : ℕ) → Term L' (β ⊕ Fin n) → Term L'' (γ ⊕ Fin n)
fr' : (n : ℕ) → Relations L' n → Relations L'' n
n n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
⊢ mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) (equal t₁✝ t₂✝)) =
mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) (equal t₁✝ t₂✝)
[PROOFSTEP]
simp [mapTermRel]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ : ℕ
L'' : Language
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n → Relations L' n
ft' : (n : ℕ) → Term L' (β ⊕ Fin n) → Term L'' (γ ⊕ Fin n)
fr' : (n : ℕ) → Relations L' n → Relations L'' n
n n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
⊢ mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) (rel R✝ ts✝)) =
mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) (rel R✝ ts✝)
[PROOFSTEP]
simp [mapTermRel]
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ : ℕ
L'' : Language
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n → Relations L' n
ft' : (n : ℕ) → Term L' (β ⊕ Fin n) → Term L'' (γ ⊕ Fin n)
fr' : (n : ℕ) → Relations L' n → Relations L'' n
n n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 :
mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) f₁✝) =
mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) f₁✝
ih2 :
mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) f₂✝) =
mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) f₂✝
⊢ mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) (imp f₁✝ f₂✝)) =
mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) (imp f₁✝ f₂✝)
[PROOFSTEP]
simp [mapTermRel, ih1, ih2]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ : ℕ
L'' : Language
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n → Relations L' n
ft' : (n : ℕ) → Term L' (β ⊕ Fin n) → Term L'' (γ ⊕ Fin n)
fr' : (n : ℕ) → Relations L' n → Relations L'' n
n n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 :
mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) f✝) =
mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) f✝
⊢ mapTermRel ft' fr' (fun x => id) (mapTermRel ft fr (fun x => id) (all f✝)) =
mapTermRel (fun x => ft' x ∘ ft x) (fun x => fr' x ∘ fr x) (fun x => id) (all f✝)
[PROOFSTEP]
simp [mapTermRel, ih3]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝ n : ℕ
φ : BoundedFormula L α n
⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) φ = φ
[PROOFSTEP]
induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ n n✝ : ℕ
⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) falsum = falsum
[PROOFSTEP]
rfl
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ n n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (equal t₁✝ t₂✝) = equal t₁✝ t₂✝
[PROOFSTEP]
simp [mapTermRel]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ n n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (rel R✝ ts✝) = rel R✝ ts✝
[PROOFSTEP]
simp [mapTermRel]
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ n n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 : mapTermRel (fun x => id) (fun x => id) (fun x => id) f₁✝ = f₁✝
ih2 : mapTermRel (fun x => id) (fun x => id) (fun x => id) f₂✝ = f₂✝
⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (imp f₁✝ f₂✝) = imp f₁✝ f₂✝
[PROOFSTEP]
simp [mapTermRel, ih1, ih2]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝¹ n n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : mapTermRel (fun x => id) (fun x => id) (fun x => id) f✝ = f✝
⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (all f✝) = all f✝
[PROOFSTEP]
simp [mapTermRel, ih3]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝ : ℕ
ft : (n : ℕ) → Term L (α ⊕ Fin n) ≃ Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n ≃ Relations L' n
n : ℕ
φ : BoundedFormula L α n
⊢ mapTermRel (fun n => ↑(ft n).symm) (fun n => ↑(fr n).symm) (fun x => id)
(mapTermRel (fun n => ↑(ft n)) (fun n => ↑(fr n)) (fun x => id) φ) =
φ
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n✝ : ℕ
ft : (n : ℕ) → Term L (α ⊕ Fin n) ≃ Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n ≃ Relations L' n
n : ℕ
φ : BoundedFormula L' β n
⊢ mapTermRel (fun n => ↑(ft n)) (fun n => ↑(fr n)) (fun x => id)
(mapTermRel (fun n => ↑(ft n).symm) (fun n => ↑(fr n).symm) (fun x => id) φ) =
φ
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n m : ℕ
g : α → β ⊕ Fin n
v : β → M
xs : Fin (n + m) → M
⊢ Sum.elim v xs ∘ relabelAux g m = Sum.elim (Sum.elim v (xs ∘ castAdd m) ∘ g) (xs ∘ natAdd n)
[PROOFSTEP]
ext x
[GOAL]
case h
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n m : ℕ
g : α → β ⊕ Fin n
v : β → M
xs : Fin (n + m) → M
x : α ⊕ Fin m
⊢ (Sum.elim v xs ∘ relabelAux g m) x = Sum.elim (Sum.elim v (xs ∘ castAdd m) ∘ g) (xs ∘ natAdd n) x
[PROOFSTEP]
cases' x with x x
[GOAL]
case h.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n m : ℕ
g : α → β ⊕ Fin n
v : β → M
xs : Fin (n + m) → M
x : α
⊢ (Sum.elim v xs ∘ relabelAux g m) (Sum.inl x) = Sum.elim (Sum.elim v (xs ∘ castAdd m) ∘ g) (xs ∘ natAdd n) (Sum.inl x)
[PROOFSTEP]
simp only [BoundedFormula.relabelAux, Function.comp_apply, Sum.map_inl, Sum.elim_inl]
[GOAL]
case h.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n m : ℕ
g : α → β ⊕ Fin n
v : β → M
xs : Fin (n + m) → M
x : α
⊢ Sum.elim v xs (Sum.map id (↑finSumFinEquiv) (↑(Equiv.sumAssoc β (Fin n) (Fin m)) (Sum.inl (g x)))) =
Sum.elim v (xs ∘ castAdd m) (g x)
[PROOFSTEP]
cases' g x with l r
[GOAL]
case h.inl.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n m : ℕ
g : α → β ⊕ Fin n
v : β → M
xs : Fin (n + m) → M
x : α
l : β
⊢ Sum.elim v xs (Sum.map id (↑finSumFinEquiv) (↑(Equiv.sumAssoc β (Fin n) (Fin m)) (Sum.inl (Sum.inl l)))) =
Sum.elim v (xs ∘ castAdd m) (Sum.inl l)
[PROOFSTEP]
simp
[GOAL]
case h.inl.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n m : ℕ
g : α → β ⊕ Fin n
v : β → M
xs : Fin (n + m) → M
x : α
r : Fin n
⊢ Sum.elim v xs (Sum.map id (↑finSumFinEquiv) (↑(Equiv.sumAssoc β (Fin n) (Fin m)) (Sum.inl (Sum.inr r)))) =
Sum.elim v (xs ∘ castAdd m) (Sum.inr r)
[PROOFSTEP]
simp
[GOAL]
case h.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n m : ℕ
g : α → β ⊕ Fin n
v : β → M
xs : Fin (n + m) → M
x : Fin m
⊢ (Sum.elim v xs ∘ relabelAux g m) (Sum.inr x) = Sum.elim (Sum.elim v (xs ∘ castAdd m) ∘ g) (xs ∘ natAdd n) (Sum.inr x)
[PROOFSTEP]
simp [BoundedFormula.relabelAux]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n k : ℕ
⊢ relabelAux Sum.inl k = Sum.map id (natAdd n)
[PROOFSTEP]
ext x
[GOAL]
case h
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n k : ℕ
x : α ⊕ Fin k
⊢ relabelAux Sum.inl k x = Sum.map id (natAdd n) x
[PROOFSTEP]
cases x
[GOAL]
case h.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n k : ℕ
val✝ : α
⊢ relabelAux Sum.inl k (Sum.inl val✝) = Sum.map id (natAdd n) (Sum.inl val✝)
[PROOFSTEP]
simp [relabelAux]
[GOAL]
case h.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n k : ℕ
val✝ : Fin k
⊢ relabelAux Sum.inl k (Sum.inr val✝) = Sum.map id (natAdd n) (Sum.inr val✝)
[PROOFSTEP]
simp [relabelAux]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
g : α → β ⊕ Fin n
k : ℕ
φ : BoundedFormula L α k
⊢ relabel g (BoundedFormula.not φ) = BoundedFormula.not (relabel g φ)
[PROOFSTEP]
simp [BoundedFormula.not]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
g : α → β ⊕ Fin n
k : ℕ
φ : BoundedFormula L α (k + 1)
⊢ relabel g (all φ) = all (relabel g φ)
[PROOFSTEP]
rw [relabel, mapTermRel, relabel]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
g : α → β ⊕ Fin n
k : ℕ
φ : BoundedFormula L α (k + 1)
⊢ all
(castLE (_ : n + k + 1 ≥ n + (k + 1))
(mapTermRel (fun x t => Term.relabel (relabelAux g x) t) (fun x => id)
(fun x => castLE (_ : n + x + 1 ≥ n + (x + 1))) φ)) =
all
(mapTermRel (fun x t => Term.relabel (relabelAux g x) t) (fun x => id)
(fun x => castLE (_ : n + x + 1 ≥ n + (x + 1))) φ)
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
g : α → β ⊕ Fin n
k : ℕ
φ : BoundedFormula L α (k + 1)
⊢ relabel g (BoundedFormula.ex φ) = BoundedFormula.ex (relabel g φ)
[PROOFSTEP]
simp [BoundedFormula.ex]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
φ : BoundedFormula L α n
⊢ relabel Sum.inl φ = castLE (_ : 0 + n ≥ n) φ
[PROOFSTEP]
simp only [relabel, relabelAux_sum_inl]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
φ : BoundedFormula L α n
⊢ mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id)
(fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) φ =
castLE (_ : 0 + n ≥ n) φ
[PROOFSTEP]
induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n n✝ : ℕ
⊢ mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id)
(fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) falsum =
castLE (_ : 0 + n✝ ≥ n✝) falsum
[PROOFSTEP]
rfl
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
⊢ mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id)
(fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) (equal t₁✝ t₂✝) =
castLE (_ : 0 + n✝ ≥ n✝) (equal t₁✝ t₂✝)
[PROOFSTEP]
simp [Fin.natAdd_zero, castLE_of_eq, mapTermRel]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
⊢ mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id)
(fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) (rel R✝ ts✝) =
castLE (_ : 0 + n✝ ≥ n✝) (rel R✝ ts✝)
[PROOFSTEP]
simp [Fin.natAdd_zero, castLE_of_eq, mapTermRel]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
⊢ (fun i => Term.relabel (Sum.map id (Fin.cast (_ : n✝ = 0 + n✝))) (ts✝ i)) =
Term.relabel (Sum.map id (Fin.cast (_ : n✝ = 0 + n✝))) ∘ ts✝
[PROOFSTEP]
rfl
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 :
mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id)
(fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) f₁✝ =
castLE (_ : 0 + n✝ ≥ n✝) f₁✝
ih2 :
mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id)
(fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) f₂✝ =
castLE (_ : 0 + n✝ ≥ n✝) f₂✝
⊢ mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id)
(fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) (imp f₁✝ f₂✝) =
castLE (_ : 0 + n✝ ≥ n✝) (imp f₁✝ f₂✝)
[PROOFSTEP]
simp [mapTermRel, ih1, ih2]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 :
mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id)
(fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) f✝ =
castLE (_ : 0 + (n✝ + 1) ≥ n✝ + 1) f✝
⊢ mapTermRel (fun x t => Term.relabel (Sum.map id (natAdd 0)) t) (fun x => id)
(fun x => castLE (_ : 0 + x + 1 ≥ 0 + (x + 1))) (all f✝) =
castLE (_ : 0 + n✝ ≥ n✝) (all f✝)
[PROOFSTEP]
simp [mapTermRel, ih3, castLE]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ : BoundedFormula L α (n + 1)
con : IsAtomic (all φ)
⊢ False
[PROOFSTEP]
cases con
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ : BoundedFormula L α (n + 1)
con : IsAtomic (BoundedFormula.ex φ)
⊢ False
[PROOFSTEP]
cases con
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ : BoundedFormula L α (n + 1)
con : IsQF (all φ)
⊢ False
[PROOFSTEP]
cases' con with _ con
[GOAL]
case of_isAtomic
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ : BoundedFormula L α (n + 1)
con : IsAtomic (all φ)
⊢ False
[PROOFSTEP]
exact φ.not_all_isAtomic con
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ : BoundedFormula L α (n + 1)
con : IsQF (BoundedFormula.ex φ)
⊢ False
[PROOFSTEP]
cases' con with _ con _ _ con
[GOAL]
case of_isAtomic
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ : BoundedFormula L α (n + 1)
con : IsAtomic (BoundedFormula.ex φ)
⊢ False
[PROOFSTEP]
exact φ.not_ex_isAtomic con
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ : BoundedFormula L α (n + 1)
con : IsQF (all (BoundedFormula.not φ))
h₂✝ : IsQF ⊥
⊢ False
[PROOFSTEP]
exact not_all_isQF _ con
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝¹ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
m : ℕ
φ : BoundedFormula L α m
h✝ : IsPrenex φ
f : α → β ⊕ Fin n
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
x✝ : IsPrenex φ✝
h : IsPrenex (BoundedFormula.relabel f φ✝)
⊢ IsPrenex (BoundedFormula.relabel f (BoundedFormula.all φ✝))
[PROOFSTEP]
simp [h.all]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝¹ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
m : ℕ
φ : BoundedFormula L α m
h✝ : IsPrenex φ
f : α → β ⊕ Fin n
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
x✝ : IsPrenex φ✝
h : IsPrenex (BoundedFormula.relabel f φ✝)
⊢ IsPrenex (BoundedFormula.relabel f (BoundedFormula.ex φ✝))
[PROOFSTEP]
simp [h.ex]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ ψ : BoundedFormula L α n
hφ : IsQF φ
hψ : IsPrenex ψ
⊢ IsPrenex (toPrenexImpRight φ ψ)
[PROOFSTEP]
induction' hψ with _ _ hψ _ _ _ ih1 _ _ _ ih2
[GOAL]
case of_isQF
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
n✝ : ℕ
φ✝ : BoundedFormula L α n✝
hψ : IsQF φ✝
φ : BoundedFormula L α n✝
hφ : IsQF φ
⊢ IsPrenex (toPrenexImpRight φ φ✝)
[PROOFSTEP]
rw [hψ.toPrenexImpRight]
[GOAL]
case of_isQF
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
n✝ : ℕ
φ✝ : BoundedFormula L α n✝
hψ : IsQF φ✝
φ : BoundedFormula L α n✝
hφ : IsQF φ
⊢ IsPrenex (imp φ φ✝)
[PROOFSTEP]
exact (hφ.imp hψ).isPrenex
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
h✝ : IsPrenex φ✝
ih1 : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → IsPrenex (toPrenexImpRight φ φ✝)
φ : BoundedFormula L α n✝
hφ : IsQF φ
⊢ IsPrenex (toPrenexImpRight φ (all φ✝))
[PROOFSTEP]
exact (ih1 hφ.liftAt).all
[GOAL]
case ex
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
h✝ : IsPrenex φ✝
ih2 : ∀ {φ : BoundedFormula L α (n✝ + 1)}, IsQF φ → IsPrenex (toPrenexImpRight φ φ✝)
φ : BoundedFormula L α n✝
hφ : IsQF φ
⊢ IsPrenex (toPrenexImpRight φ (BoundedFormula.ex φ✝))
[PROOFSTEP]
exact (ih2 hφ.liftAt).ex
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ ψ : BoundedFormula L α n
hφ : IsPrenex φ
hψ : IsPrenex ψ
⊢ IsPrenex (toPrenexImp φ ψ)
[PROOFSTEP]
induction' hφ with _ _ hφ _ _ _ ih1 _ _ _ ih2
[GOAL]
case of_isQF
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝¹ ψ✝¹ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ ψ✝ : BoundedFormula L α n
hψ✝ : IsPrenex ψ✝
n✝ : ℕ
φ✝ : BoundedFormula L α n✝
hφ : IsQF φ✝
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ IsPrenex (toPrenexImp φ✝ ψ)
[PROOFSTEP]
rw [hφ.toPrenexImp]
[GOAL]
case of_isQF
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝¹ ψ✝¹ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ ψ✝ : BoundedFormula L α n
hψ✝ : IsPrenex ψ✝
n✝ : ℕ
φ✝ : BoundedFormula L α n✝
hφ : IsQF φ✝
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ IsPrenex (toPrenexImpRight φ✝ ψ)
[PROOFSTEP]
exact isPrenex_toPrenexImpRight hφ hψ
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝¹ ψ✝¹ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ ψ✝ : BoundedFormula L α n
hψ✝ : IsPrenex ψ✝
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
h✝ : IsPrenex φ✝
ih1 : ∀ {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → IsPrenex (toPrenexImp φ✝ ψ)
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ IsPrenex (toPrenexImp (all φ✝) ψ)
[PROOFSTEP]
exact (ih1 hψ.liftAt).ex
[GOAL]
case ex
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n l : ℕ
φ✝¹ ψ✝¹ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
φ ψ✝ : BoundedFormula L α n
hψ✝ : IsPrenex ψ✝
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
h✝ : IsPrenex φ✝
ih2 : ∀ {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → IsPrenex (toPrenexImp φ✝ ψ)
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ IsPrenex (toPrenexImp (BoundedFormula.ex φ✝) ψ)
[PROOFSTEP]
exact (ih2 hψ.liftAt).all
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
⊢ onBoundedFormula (LHom.id L) = id
[PROOFSTEP]
ext f
[GOAL]
case h
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
f : BoundedFormula L α n
⊢ onBoundedFormula (LHom.id L) f = id f
[PROOFSTEP]
induction' f with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3
[GOAL]
case h.falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n n✝ : ℕ
⊢ onBoundedFormula (LHom.id L) falsum = id falsum
[PROOFSTEP]
rfl
[GOAL]
case h.equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
⊢ onBoundedFormula (LHom.id L) (equal t₁✝ t₂✝) = id (equal t₁✝ t₂✝)
[PROOFSTEP]
rw [onBoundedFormula, LHom.id_onTerm, id.def, id.def, id.def, Term.bdEqual]
[GOAL]
case h.rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
⊢ onBoundedFormula (LHom.id L) (rel R✝ ts✝) = id (rel R✝ ts✝)
[PROOFSTEP]
rw [onBoundedFormula, LHom.id_onTerm]
[GOAL]
case h.rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
⊢ Relations.boundedFormula (onRelation (LHom.id L) R✝) (id ∘ ts✝) = id (rel R✝ ts✝)
[PROOFSTEP]
rfl
[GOAL]
case h.imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 : onBoundedFormula (LHom.id L) f₁✝ = id f₁✝
ih2 : onBoundedFormula (LHom.id L) f₂✝ = id f₂✝
⊢ onBoundedFormula (LHom.id L) (imp f₁✝ f₂✝) = id (imp f₁✝ f₂✝)
[PROOFSTEP]
rw [onBoundedFormula, ih1, ih2, id.def, id.def, id.def]
[GOAL]
case h.all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : onBoundedFormula (LHom.id L) f✝ = id f✝
⊢ onBoundedFormula (LHom.id L) (all f✝) = id (all f✝)
[PROOFSTEP]
rw [onBoundedFormula, ih3, id.def, id.def]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
L'' : Language
φ : L' →ᴸ L''
ψ : L →ᴸ L'
⊢ onBoundedFormula (comp φ ψ) = onBoundedFormula φ ∘ onBoundedFormula ψ
[PROOFSTEP]
ext f
[GOAL]
case h
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
L'' : Language
φ : L' →ᴸ L''
ψ : L →ᴸ L'
f : BoundedFormula L α n
⊢ onBoundedFormula (comp φ ψ) f = (onBoundedFormula φ ∘ onBoundedFormula ψ) f
[PROOFSTEP]
induction' f with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3
[GOAL]
case h.falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
L'' : Language
φ : L' →ᴸ L''
ψ : L →ᴸ L'
n✝ : ℕ
⊢ onBoundedFormula (comp φ ψ) falsum = (onBoundedFormula φ ∘ onBoundedFormula ψ) falsum
[PROOFSTEP]
rfl
[GOAL]
case h.equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
L'' : Language
φ : L' →ᴸ L''
ψ : L →ᴸ L'
n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
⊢ onBoundedFormula (comp φ ψ) (equal t₁✝ t₂✝) = (onBoundedFormula φ ∘ onBoundedFormula ψ) (equal t₁✝ t₂✝)
[PROOFSTEP]
simp only [onBoundedFormula, comp_onTerm, Function.comp_apply]
[GOAL]
case h.rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
L'' : Language
φ : L' →ᴸ L''
ψ : L →ᴸ L'
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
⊢ onBoundedFormula (comp φ ψ) (rel R✝ ts✝) = (onBoundedFormula φ ∘ onBoundedFormula ψ) (rel R✝ ts✝)
[PROOFSTEP]
simp only [onBoundedFormula, comp_onRelation, comp_onTerm, Function.comp_apply]
[GOAL]
case h.rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
L'' : Language
φ : L' →ᴸ L''
ψ : L →ᴸ L'
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
⊢ Relations.boundedFormula (onRelation φ (onRelation ψ R✝)) ((onTerm φ ∘ onTerm ψ) ∘ ts✝) =
Relations.boundedFormula (onRelation φ (onRelation ψ R✝)) (onTerm φ ∘ onTerm ψ ∘ ts✝)
[PROOFSTEP]
rfl
[GOAL]
case h.imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
L'' : Language
φ : L' →ᴸ L''
ψ : L →ᴸ L'
n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 : onBoundedFormula (comp φ ψ) f₁✝ = (onBoundedFormula φ ∘ onBoundedFormula ψ) f₁✝
ih2 : onBoundedFormula (comp φ ψ) f₂✝ = (onBoundedFormula φ ∘ onBoundedFormula ψ) f₂✝
⊢ onBoundedFormula (comp φ ψ) (imp f₁✝ f₂✝) = (onBoundedFormula φ ∘ onBoundedFormula ψ) (imp f₁✝ f₂✝)
[PROOFSTEP]
simp only [onBoundedFormula, Function.comp_apply, ih1, ih2, eq_self_iff_true, and_self_iff]
[GOAL]
case h.all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
L'' : Language
φ : L' →ᴸ L''
ψ : L →ᴸ L'
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : onBoundedFormula (comp φ ψ) f✝ = (onBoundedFormula φ ∘ onBoundedFormula ψ) f✝
⊢ onBoundedFormula (comp φ ψ) (all f✝) = (onBoundedFormula φ ∘ onBoundedFormula ψ) (all f✝)
[PROOFSTEP]
simp only [ih3, onBoundedFormula, Function.comp_apply]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
φ : L ≃ᴸ L'
⊢ Function.LeftInverse (LHom.onBoundedFormula φ.invLHom) (LHom.onBoundedFormula φ.toLHom)
[PROOFSTEP]
rw [Function.leftInverse_iff_comp, ← LHom.comp_onBoundedFormula, φ.left_inv, LHom.id_onBoundedFormula]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
φ : L ≃ᴸ L'
⊢ Function.RightInverse (LHom.onBoundedFormula φ.invLHom) (LHom.onBoundedFormula φ.toLHom)
[PROOFSTEP]
rw [Function.rightInverse_iff_comp, ← LHom.comp_onBoundedFormula, φ.right_inv, LHom.id_onBoundedFormula]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
s : Set α
⊢ distinctConstantsTheory L s =
⋃ (t : Finset ↑s), distinctConstantsTheory L ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) t)
[PROOFSTEP]
classical
simp only [distinctConstantsTheory]
rw [← image_iUnion, ← iUnion_inter]
refine' congr rfl (congr (congr rfl _) rfl)
ext ⟨i, j⟩
simp only [prod_mk_mem_set_prod_eq, Finset.coe_map, Function.Embedding.coe_subtype, mem_iUnion, mem_image,
Finset.mem_coe, Subtype.exists, Subtype.coe_mk, exists_and_right, exists_eq_right]
refine' ⟨fun h => ⟨{⟨i, h.1⟩, ⟨j, h.2⟩}, ⟨h.1, _⟩, ⟨h.2, _⟩⟩, _⟩
· simp
· simp
· rintro ⟨t, ⟨is, _⟩, ⟨js, _⟩⟩
exact ⟨is, js⟩
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
s : Set α
⊢ distinctConstantsTheory L s =
⋃ (t : Finset ↑s), distinctConstantsTheory L ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) t)
[PROOFSTEP]
simp only [distinctConstantsTheory]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
s : Set α
⊢ (fun ab =>
Formula.not (Term.equal (Constants.term (Language.con L ab.fst)) (Constants.term (Language.con L ab.snd)))) ''
(s ×ˢ s ∩ (diagonal α)ᶜ) =
⋃ (t : Finset ↑s),
(fun ab =>
Formula.not (Term.equal (Constants.term (Language.con L ab.fst)) (Constants.term (Language.con L ab.snd)))) ''
(↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) t) ×ˢ
↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) t) ∩
(diagonal α)ᶜ)
[PROOFSTEP]
rw [← image_iUnion, ← iUnion_inter]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
s : Set α
⊢ (fun ab =>
Formula.not (Term.equal (Constants.term (Language.con L ab.fst)) (Constants.term (Language.con L ab.snd)))) ''
(s ×ˢ s ∩ (diagonal α)ᶜ) =
(fun ab =>
Formula.not (Term.equal (Constants.term (Language.con L ab.fst)) (Constants.term (Language.con L ab.snd)))) ''
((⋃ (i : Finset ↑s),
↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i) ×ˢ
↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i)) ∩
(diagonal α)ᶜ)
[PROOFSTEP]
refine' congr rfl (congr (congr rfl _) rfl)
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
s : Set α
⊢ s ×ˢ s =
⋃ (i : Finset ↑s),
↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i) ×ˢ
↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i)
[PROOFSTEP]
ext ⟨i, j⟩
[GOAL]
case h.mk
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
s : Set α
i j : α
⊢ (i, j) ∈ s ×ˢ s ↔
(i, j) ∈
⋃ (i : Finset ↑s),
↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i) ×ˢ
↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i)
[PROOFSTEP]
simp only [prod_mk_mem_set_prod_eq, Finset.coe_map, Function.Embedding.coe_subtype, mem_iUnion, mem_image,
Finset.mem_coe, Subtype.exists, Subtype.coe_mk, exists_and_right, exists_eq_right]
[GOAL]
case h.mk
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
s : Set α
i j : α
⊢ i ∈ s ∧ j ∈ s ↔
∃ i_1, (∃ x, { val := i, property := (_ : i ∈ s) } ∈ i_1) ∧ ∃ x, { val := j, property := (_ : j ∈ s) } ∈ i_1
[PROOFSTEP]
refine' ⟨fun h => ⟨{⟨i, h.1⟩, ⟨j, h.2⟩}, ⟨h.1, _⟩, ⟨h.2, _⟩⟩, _⟩
[GOAL]
case h.mk.refine'_1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
s : Set α
i j : α
h : i ∈ s ∧ j ∈ s
⊢ { val := i, property := (_ : i ∈ s) } ∈ {{ val := i, property := (_ : i ∈ s) }, { val := j, property := (_ : j ∈ s) }}
[PROOFSTEP]
simp
[GOAL]
case h.mk.refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
s : Set α
i j : α
h : i ∈ s ∧ j ∈ s
⊢ { val := j, property := (_ : j ∈ s) } ∈ {{ val := i, property := (_ : i ∈ s) }, { val := j, property := (_ : j ∈ s) }}
[PROOFSTEP]
simp
[GOAL]
case h.mk.refine'_3
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
s : Set α
i j : α
⊢ (∃ i_1, (∃ x, { val := i, property := (_ : i ∈ s) } ∈ i_1) ∧ ∃ x, { val := j, property := (_ : j ∈ s) } ∈ i_1) →
i ∈ s ∧ j ∈ s
[PROOFSTEP]
rintro ⟨t, ⟨is, _⟩, ⟨js, _⟩⟩
[GOAL]
case h.mk.refine'_3.intro.intro.intro.intro
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
γ : Type u_3
n : ℕ
s : Set α
i j : α
t : Finset ↑s
is : i ∈ s
h✝¹ : { val := i, property := (_ : i ∈ s) } ∈ t
js : j ∈ s
h✝ : { val := j, property := (_ : j ∈ s) } ∈ t
⊢ i ∈ s ∧ j ∈ s
[PROOFSTEP]
exact ⟨is, js⟩
| {"mathlib_filename": "Mathlib.ModelTheory.Syntax", "llama_tokens": 31219} |
[GOAL]
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
L' : Language
inst✝¹ : Structure L' M
h : Definable A L s
φ : L →ᴸ L'
inst✝ : LHom.IsExpansionOn φ M
⊢ Definable A L' s
[PROOFSTEP]
obtain ⟨ψ, rfl⟩ := h
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
L' : Language
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : LHom.IsExpansionOn φ M
ψ : Formula (L[[↑A]]) α
⊢ Definable A L' (setOf (Formula.Realize ψ))
[PROOFSTEP]
refine' ⟨(φ.addConstants A).onFormula ψ, _⟩
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
L' : Language
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : LHom.IsExpansionOn φ M
ψ : Formula (L[[↑A]]) α
⊢ setOf (Formula.Realize ψ) = setOf (Formula.Realize (LHom.onFormula (LHom.addConstants (↑A) φ) ψ))
[PROOFSTEP]
ext x
[GOAL]
case intro.h
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
L' : Language
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : LHom.IsExpansionOn φ M
ψ : Formula (L[[↑A]]) α
x : α → M
⊢ x ∈ setOf (Formula.Realize ψ) ↔ x ∈ setOf (Formula.Realize (LHom.onFormula (LHom.addConstants (↑A) φ) ψ))
[PROOFSTEP]
simp only [mem_setOf_eq, LHom.realize_onFormula]
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
⊢ Definable ∅ L s ↔ ∃ φ, s = setOf (Formula.Realize φ)
[PROOFSTEP]
rw [Definable, Equiv.exists_congr_left (LEquiv.addEmptyConstants L (∅ : Set M)).onFormula]
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
⊢ (∃ φ, s = setOf (Formula.Realize φ)) ↔
∃ b, s = setOf (Formula.Realize (↑(LEquiv.onFormula (LEquiv.addEmptyConstants L ↑∅)).symm b))
[PROOFSTEP]
simp [-constantsOn]
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
hAs : Definable A L s
hAB : A ⊆ B
⊢ Definable B L s
[PROOFSTEP]
rw [definable_iff_empty_definable_with_params] at *
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
hAs : Definable ∅ (L[[↑A]]) s
hAB : A ⊆ B
⊢ Definable ∅ (L[[↑B]]) s
[PROOFSTEP]
exact hAs.map_expansion (L.lhomWithConstantsMap (Set.inclusion hAB))
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
⊢ ∅ = setOf (Formula.Realize ⊥)
[PROOFSTEP]
ext
[GOAL]
case h
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
x✝ : α → M
⊢ x✝ ∈ ∅ ↔ x✝ ∈ setOf (Formula.Realize ⊥)
[PROOFSTEP]
simp
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
⊢ univ = setOf (Formula.Realize ⊤)
[PROOFSTEP]
ext
[GOAL]
case h
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
x✝ : α → M
⊢ x✝ ∈ univ ↔ x✝ ∈ setOf (Formula.Realize ⊤)
[PROOFSTEP]
simp
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s f g : Set (α → M)
hf : Definable A L f
hg : Definable A L g
⊢ Definable A L (f ∩ g)
[PROOFSTEP]
rcases hf with ⟨φ, rfl⟩
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s g : Set (α → M)
hg : Definable A L g
φ : Formula (L[[↑A]]) α
⊢ Definable A L (setOf (Formula.Realize φ) ∩ g)
[PROOFSTEP]
rcases hg with ⟨θ, rfl⟩
[GOAL]
case intro.intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
φ θ : Formula (L[[↑A]]) α
⊢ Definable A L (setOf (Formula.Realize φ) ∩ setOf (Formula.Realize θ))
[PROOFSTEP]
refine' ⟨φ ⊓ θ, _⟩
[GOAL]
case intro.intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
φ θ : Formula (L[[↑A]]) α
⊢ setOf (Formula.Realize φ) ∩ setOf (Formula.Realize θ) = setOf (Formula.Realize (φ ⊓ θ))
[PROOFSTEP]
ext
[GOAL]
case intro.intro.h
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
φ θ : Formula (L[[↑A]]) α
x✝ : α → M
⊢ x✝ ∈ setOf (Formula.Realize φ) ∩ setOf (Formula.Realize θ) ↔ x✝ ∈ setOf (Formula.Realize (φ ⊓ θ))
[PROOFSTEP]
simp
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s f g : Set (α → M)
hf : Definable A L f
hg : Definable A L g
⊢ Definable A L (f ∪ g)
[PROOFSTEP]
rcases hf with ⟨φ, hφ⟩
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s f g : Set (α → M)
hg : Definable A L g
φ : Formula (L[[↑A]]) α
hφ : f = setOf (Formula.Realize φ)
⊢ Definable A L (f ∪ g)
[PROOFSTEP]
rcases hg with ⟨θ, hθ⟩
[GOAL]
case intro.intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s f g : Set (α → M)
φ : Formula (L[[↑A]]) α
hφ : f = setOf (Formula.Realize φ)
θ : Formula (L[[↑A]]) α
hθ : g = setOf (Formula.Realize θ)
⊢ Definable A L (f ∪ g)
[PROOFSTEP]
refine' ⟨φ ⊔ θ, _⟩
[GOAL]
case intro.intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s f g : Set (α → M)
φ : Formula (L[[↑A]]) α
hφ : f = setOf (Formula.Realize φ)
θ : Formula (L[[↑A]]) α
hθ : g = setOf (Formula.Realize θ)
⊢ f ∪ g = setOf (Formula.Realize (φ ⊔ θ))
[PROOFSTEP]
ext
[GOAL]
case intro.intro.h
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s f g : Set (α → M)
φ : Formula (L[[↑A]]) α
hφ : f = setOf (Formula.Realize φ)
θ : Formula (L[[↑A]]) α
hθ : g = setOf (Formula.Realize θ)
x✝ : α → M
⊢ x✝ ∈ f ∪ g ↔ x✝ ∈ setOf (Formula.Realize (φ ⊔ θ))
[PROOFSTEP]
rw [hφ, hθ, mem_setOf_eq, Formula.realize_sup, mem_union, mem_setOf_eq, mem_setOf_eq]
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
ι : Type u_2
f : ι → Set (α → M)
hf : ∀ (i : ι), Definable A L (f i)
s : Finset ι
⊢ Definable A L (Finset.inf s f)
[PROOFSTEP]
classical
refine' Finset.induction definable_univ (fun i s _ h => _) s
rw [Finset.inf_insert]
exact (hf i).inter h
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
ι : Type u_2
f : ι → Set (α → M)
hf : ∀ (i : ι), Definable A L (f i)
s : Finset ι
⊢ Definable A L (Finset.inf s f)
[PROOFSTEP]
refine' Finset.induction definable_univ (fun i s _ h => _) s
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝¹ : Set (α → M)
ι : Type u_2
f : ι → Set (α → M)
hf : ∀ (i : ι), Definable A L (f i)
s✝ : Finset ι
i : ι
s : Finset ι
x✝ : ¬i ∈ s
h : Definable A L (Finset.inf s f)
⊢ Definable A L (Finset.inf (insert i s) f)
[PROOFSTEP]
rw [Finset.inf_insert]
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝¹ : Set (α → M)
ι : Type u_2
f : ι → Set (α → M)
hf : ∀ (i : ι), Definable A L (f i)
s✝ : Finset ι
i : ι
s : Finset ι
x✝ : ¬i ∈ s
h : Definable A L (Finset.inf s f)
⊢ Definable A L (f i ⊓ Finset.inf s f)
[PROOFSTEP]
exact (hf i).inter h
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
ι : Type u_2
f : ι → Set (α → M)
hf : ∀ (i : ι), Definable A L (f i)
s : Finset ι
⊢ Definable A L (Finset.sup s f)
[PROOFSTEP]
classical
refine' Finset.induction definable_empty (fun i s _ h => _) s
rw [Finset.sup_insert]
exact (hf i).union h
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
ι : Type u_2
f : ι → Set (α → M)
hf : ∀ (i : ι), Definable A L (f i)
s : Finset ι
⊢ Definable A L (Finset.sup s f)
[PROOFSTEP]
refine' Finset.induction definable_empty (fun i s _ h => _) s
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝¹ : Set (α → M)
ι : Type u_2
f : ι → Set (α → M)
hf : ∀ (i : ι), Definable A L (f i)
s✝ : Finset ι
i : ι
s : Finset ι
x✝ : ¬i ∈ s
h : Definable A L (Finset.sup s f)
⊢ Definable A L (Finset.sup (insert i s) f)
[PROOFSTEP]
rw [Finset.sup_insert]
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝¹ : Set (α → M)
ι : Type u_2
f : ι → Set (α → M)
hf : ∀ (i : ι), Definable A L (f i)
s✝ : Finset ι
i : ι
s : Finset ι
x✝ : ¬i ∈ s
h : Definable A L (Finset.sup s f)
⊢ Definable A L (f i ⊔ Finset.sup s f)
[PROOFSTEP]
exact (hf i).union h
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
ι : Type u_2
f : ι → Set (α → M)
hf : ∀ (i : ι), Definable A L (f i)
s : Finset ι
⊢ Definable A L (⋂ (i : ι) (_ : i ∈ s), f i)
[PROOFSTEP]
rw [← Finset.inf_set_eq_iInter]
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
ι : Type u_2
f : ι → Set (α → M)
hf : ∀ (i : ι), Definable A L (f i)
s : Finset ι
⊢ Definable A L (Finset.inf s fun i => f i)
[PROOFSTEP]
exact definable_finset_inf hf s
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
ι : Type u_2
f : ι → Set (α → M)
hf : ∀ (i : ι), Definable A L (f i)
s : Finset ι
⊢ Definable A L (⋃ (i : ι) (_ : i ∈ s), f i)
[PROOFSTEP]
rw [← Finset.sup_set_eq_biUnion]
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
ι : Type u_2
f : ι → Set (α → M)
hf : ∀ (i : ι), Definable A L (f i)
s : Finset ι
⊢ Definable A L (Finset.sup s fun i => f i)
[PROOFSTEP]
exact definable_finset_sup hf s
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ s : Set (α → M)
hf : Definable A L s
⊢ Definable A L sᶜ
[PROOFSTEP]
rcases hf with ⟨φ, hφ⟩
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ s : Set (α → M)
φ : Formula (L[[↑A]]) α
hφ : s = setOf (Formula.Realize φ)
⊢ Definable A L sᶜ
[PROOFSTEP]
refine' ⟨φ.not, _⟩
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ s : Set (α → M)
φ : Formula (L[[↑A]]) α
hφ : s = setOf (Formula.Realize φ)
⊢ sᶜ = setOf (Formula.Realize (Formula.not φ))
[PROOFSTEP]
ext v
[GOAL]
case intro.h
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ s : Set (α → M)
φ : Formula (L[[↑A]]) α
hφ : s = setOf (Formula.Realize φ)
v : α → M
⊢ v ∈ sᶜ ↔ v ∈ setOf (Formula.Realize (Formula.not φ))
[PROOFSTEP]
rw [hφ, compl_setOf, mem_setOf, mem_setOf, Formula.realize_not]
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
f : α → β
s : Set (α → M)
h : Definable A L s
⊢ Definable A L ((fun g => g ∘ f) ⁻¹' s)
[PROOFSTEP]
obtain ⟨φ, rfl⟩ := h
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
f : α → β
φ : Formula (L[[↑A]]) α
⊢ Definable A L ((fun g => g ∘ f) ⁻¹' setOf (Formula.Realize φ))
[PROOFSTEP]
refine' ⟨φ.relabel f, _⟩
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
f : α → β
φ : Formula (L[[↑A]]) α
⊢ (fun g => g ∘ f) ⁻¹' setOf (Formula.Realize φ) = setOf (Formula.Realize (Formula.relabel f φ))
[PROOFSTEP]
ext
[GOAL]
case intro.h
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
f : α → β
φ : Formula (L[[↑A]]) α
x✝ : β → M
⊢ x✝ ∈ (fun g => g ∘ f) ⁻¹' setOf (Formula.Realize φ) ↔ x✝ ∈ setOf (Formula.Realize (Formula.relabel f φ))
[PROOFSTEP]
simp only [Set.preimage_setOf_eq, mem_setOf_eq, Formula.realize_relabel]
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ≃ β
⊢ Definable A L ((fun g => g ∘ ↑f) '' s)
[PROOFSTEP]
refine' (congr rfl _).mp (h.preimage_comp f.symm)
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ≃ β
⊢ (fun g => g ∘ ↑f.symm) ⁻¹' s = (fun g => g ∘ ↑f) '' s
[PROOFSTEP]
rw [image_eq_preimage_of_inverse]
[GOAL]
case h₁
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ≃ β
⊢ Function.LeftInverse (fun g => g ∘ ↑f.symm) fun g => g ∘ ↑f
[PROOFSTEP]
intro i
[GOAL]
case h₁
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ≃ β
i : β → M
⊢ (fun g => g ∘ ↑f.symm) ((fun g => g ∘ ↑f) i) = i
[PROOFSTEP]
ext b
[GOAL]
case h₁.h
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ≃ β
i : β → M
b : β
⊢ (fun g => g ∘ ↑f.symm) ((fun g => g ∘ ↑f) i) b = i b
[PROOFSTEP]
simp only [Function.comp_apply, Equiv.apply_symm_apply]
[GOAL]
case h₂
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ≃ β
⊢ Function.RightInverse (fun g => g ∘ ↑f.symm) fun g => g ∘ ↑f
[PROOFSTEP]
intro i
[GOAL]
case h₂
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ≃ β
i : α → M
⊢ (fun g => g ∘ ↑f) ((fun g => g ∘ ↑f.symm) i) = i
[PROOFSTEP]
ext a
[GOAL]
case h₂.h
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ≃ β
i : α → M
a : α
⊢ (fun g => g ∘ ↑f) ((fun g => g ∘ ↑f.symm) i) a = i a
[PROOFSTEP]
simp
[GOAL]
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
m : ℕ
s : Set (α ⊕ Fin m → M)
h : Definable A L s
⊢ Definable A L ((fun g => g ∘ Sum.inl) '' s)
[PROOFSTEP]
obtain ⟨φ, rfl⟩ := h
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
m : ℕ
φ : Formula (L[[↑A]]) (α ⊕ Fin m)
⊢ Definable A L ((fun g => g ∘ Sum.inl) '' setOf (Formula.Realize φ))
[PROOFSTEP]
refine' ⟨(BoundedFormula.relabel id φ).exs, _⟩
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
m : ℕ
φ : Formula (L[[↑A]]) (α ⊕ Fin m)
⊢ (fun g => g ∘ Sum.inl) '' setOf (Formula.Realize φ) =
setOf (Formula.Realize (BoundedFormula.exs (BoundedFormula.relabel id φ)))
[PROOFSTEP]
ext x
[GOAL]
case intro.h
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
m : ℕ
φ : Formula (L[[↑A]]) (α ⊕ Fin m)
x : α → M
⊢ x ∈ (fun g => g ∘ Sum.inl) '' setOf (Formula.Realize φ) ↔
x ∈ setOf (Formula.Realize (BoundedFormula.exs (BoundedFormula.relabel id φ)))
[PROOFSTEP]
simp only [Set.mem_image, mem_setOf_eq, BoundedFormula.realize_exs, BoundedFormula.realize_relabel,
Function.comp.right_id, Fin.castAdd_zero, Fin.castIso_refl]
[GOAL]
case intro.h
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
m : ℕ
φ : Formula (L[[↑A]]) (α ⊕ Fin m)
x : α → M
⊢ (∃ x_1, Formula.Realize φ x_1 ∧ x_1 ∘ Sum.inl = x) ↔
∃ xs, BoundedFormula.Realize φ (Sum.elim x (xs ∘ Fin.cast (_ : m = m))) (xs ∘ Fin.natAdd m)
[PROOFSTEP]
constructor
[GOAL]
case intro.h.mp
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
m : ℕ
φ : Formula (L[[↑A]]) (α ⊕ Fin m)
x : α → M
⊢ (∃ x_1, Formula.Realize φ x_1 ∧ x_1 ∘ Sum.inl = x) →
∃ xs, BoundedFormula.Realize φ (Sum.elim x (xs ∘ Fin.cast (_ : m = m))) (xs ∘ Fin.natAdd m)
[PROOFSTEP]
rintro ⟨y, hy, rfl⟩
[GOAL]
case intro.h.mp.intro.intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
m : ℕ
φ : Formula (L[[↑A]]) (α ⊕ Fin m)
y : α ⊕ Fin m → M
hy : Formula.Realize φ y
⊢ ∃ xs, BoundedFormula.Realize φ (Sum.elim (y ∘ Sum.inl) (xs ∘ Fin.cast (_ : m = m))) (xs ∘ Fin.natAdd m)
[PROOFSTEP]
exact ⟨y ∘ Sum.inr, (congr (congr rfl (Sum.elim_comp_inl_inr y).symm) (funext finZeroElim)).mp hy⟩
[GOAL]
case intro.h.mpr
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
m : ℕ
φ : Formula (L[[↑A]]) (α ⊕ Fin m)
x : α → M
⊢ (∃ xs, BoundedFormula.Realize φ (Sum.elim x (xs ∘ Fin.cast (_ : m = m))) (xs ∘ Fin.natAdd m)) →
∃ x_1, Formula.Realize φ x_1 ∧ x_1 ∘ Sum.inl = x
[PROOFSTEP]
rintro ⟨y, hy⟩
[GOAL]
case intro.h.mpr.intro
M : Type w
A : Set M
L : Language
inst✝ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s : Set (α → M)
m : ℕ
φ : Formula (L[[↑A]]) (α ⊕ Fin m)
x : α → M
y : Fin (m + 0) → M
hy : BoundedFormula.Realize φ (Sum.elim x (y ∘ Fin.cast (_ : m = m))) (y ∘ Fin.natAdd m)
⊢ ∃ x_1, Formula.Realize φ x_1 ∧ x_1 ∘ Sum.inl = x
[PROOFSTEP]
exact ⟨Sum.elim x y, (congr rfl (funext finZeroElim)).mp hy, Sum.elim_comp_inl _ _⟩
[GOAL]
M : Type w
A : Set M
L : Language
inst✝¹ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ↪ β
inst✝ : Finite β
⊢ Definable A L ((fun g => g ∘ ↑f) '' s)
[PROOFSTEP]
classical
cases nonempty_fintype β
refine'
(congr rfl (ext fun x => _)).mp
(((h.image_comp_equiv (Equiv.Set.sumCompl (range f))).image_comp_equiv
(Equiv.sumCongr (Equiv.ofInjective f f.injective)
(Fintype.equivFin (↥(range f)ᶜ)).symm)).image_comp_sum_inl_fin
_)
simp only [mem_preimage, mem_image, exists_exists_and_eq_and]
refine' exists_congr fun y => and_congr_right fun _ => Eq.congr_left (funext fun a => _)
simp
[GOAL]
M : Type w
A : Set M
L : Language
inst✝¹ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ↪ β
inst✝ : Finite β
⊢ Definable A L ((fun g => g ∘ ↑f) '' s)
[PROOFSTEP]
cases nonempty_fintype β
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝¹ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ↪ β
inst✝ : Finite β
val✝ : Fintype β
⊢ Definable A L ((fun g => g ∘ ↑f) '' s)
[PROOFSTEP]
refine'
(congr rfl (ext fun x => _)).mp
(((h.image_comp_equiv (Equiv.Set.sumCompl (range f))).image_comp_equiv
(Equiv.sumCongr (Equiv.ofInjective f f.injective)
(Fintype.equivFin (↥(range f)ᶜ)).symm)).image_comp_sum_inl_fin
_)
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝¹ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ↪ β
inst✝ : Finite β
val✝ : Fintype β
x : α → M
⊢ x ∈
(fun g => g ∘ Sum.inl) ''
((fun g =>
g ∘
↑(Equiv.sumCongr (Equiv.ofInjective ↑f (_ : Function.Injective ↑f))
(Fintype.equivFin ↑(range ↑f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range ↑f))) '' s)) ↔
x ∈ (fun g => g ∘ ↑f) '' s
[PROOFSTEP]
simp only [mem_preimage, mem_image, exists_exists_and_eq_and]
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝¹ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ↪ β
inst✝ : Finite β
val✝ : Fintype β
x : α → M
⊢ (∃ a,
a ∈ s ∧
((a ∘ ↑(Equiv.Set.sumCompl (range ↑f))) ∘
↑(Equiv.sumCongr (Equiv.ofInjective ↑f (_ : Function.Injective ↑f))
(Fintype.equivFin ↑(range ↑f)ᶜ).symm)) ∘
Sum.inl =
x) ↔
∃ x_1, x_1 ∈ s ∧ x_1 ∘ ↑f = x
[PROOFSTEP]
refine' exists_congr fun y => and_congr_right fun _ => Eq.congr_left (funext fun a => _)
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝¹ : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α ↪ β
inst✝ : Finite β
val✝ : Fintype β
x : α → M
y : β → M
x✝ : y ∈ s
a : α
⊢ (((y ∘ ↑(Equiv.Set.sumCompl (range ↑f))) ∘
↑(Equiv.sumCongr (Equiv.ofInjective ↑f (_ : Function.Injective ↑f)) (Fintype.equivFin ↑(range ↑f)ᶜ).symm)) ∘
Sum.inl)
a =
(y ∘ ↑f) a
[PROOFSTEP]
simp
[GOAL]
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
⊢ Definable A L ((fun g => g ∘ f) '' s)
[PROOFSTEP]
classical
cases nonempty_fintype α
cases nonempty_fintype β
have h :=
(((h.image_comp_equiv (Equiv.Set.sumCompl (range f))).image_comp_equiv
(Equiv.sumCongr (_root_.Equiv.refl _) (Fintype.equivFin _).symm)).image_comp_sum_inl_fin
_).preimage_comp
(rangeSplitting f)
have h' : A.Definable L {x : α → M | ∀ a, x a = x (rangeSplitting f (rangeFactorization f a))} :=
by
have h' : ∀ a, A.Definable L {x : α → M | x a = x (rangeSplitting f (rangeFactorization f a))} :=
by
refine' fun a => ⟨(var a).equal (var (rangeSplitting f (rangeFactorization f a))), ext _⟩
simp
refine' (congr rfl (ext _)).mp (definable_finset_biInter h' Finset.univ)
simp
refine' (congr rfl (ext fun x => _)).mp (h.inter h')
simp only [Equiv.coe_trans, mem_inter_iff, mem_preimage, mem_image, exists_exists_and_eq_and, mem_setOf_eq]
constructor
· rintro ⟨⟨y, ys, hy⟩, hx⟩
refine' ⟨y, ys, _⟩
ext a
rw [hx a, ← Function.comp_apply (f := x), ← hy]
simp
· rintro ⟨y, ys, rfl⟩
refine' ⟨⟨y, ys, _⟩, fun a => _⟩
· ext
simp [Set.apply_rangeSplitting f]
· rw [Function.comp_apply, Function.comp_apply, apply_rangeSplitting f, rangeFactorization_coe]
[GOAL]
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
⊢ Definable A L ((fun g => g ∘ f) '' s)
[PROOFSTEP]
cases nonempty_fintype α
[GOAL]
case intro
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝ : Fintype α
⊢ Definable A L ((fun g => g ∘ f) '' s)
[PROOFSTEP]
cases nonempty_fintype β
[GOAL]
case intro.intro
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
⊢ Definable A L ((fun g => g ∘ f) '' s)
[PROOFSTEP]
have h :=
(((h.image_comp_equiv (Equiv.Set.sumCompl (range f))).image_comp_equiv
(Equiv.sumCongr (_root_.Equiv.refl _) (Fintype.equivFin _).symm)).image_comp_sum_inl_fin
_).preimage_comp
(rangeSplitting f)
[GOAL]
case intro.intro
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
⊢ Definable A L ((fun g => g ∘ f) '' s)
[PROOFSTEP]
have h' : A.Definable L {x : α → M | ∀ a, x a = x (rangeSplitting f (rangeFactorization f a))} :=
by
have h' : ∀ a, A.Definable L {x : α → M | x a = x (rangeSplitting f (rangeFactorization f a))} :=
by
refine' fun a => ⟨(var a).equal (var (rangeSplitting f (rangeFactorization f a))), ext _⟩
simp
refine' (congr rfl (ext _)).mp (definable_finset_biInter h' Finset.univ)
simp
[GOAL]
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
⊢ Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
[PROOFSTEP]
have h' : ∀ a, A.Definable L {x : α → M | x a = x (rangeSplitting f (rangeFactorization f a))} :=
by
refine' fun a => ⟨(var a).equal (var (rangeSplitting f (rangeFactorization f a))), ext _⟩
simp
[GOAL]
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
⊢ ∀ (a : α), Definable A L {x | x a = x (rangeSplitting f (rangeFactorization f a))}
[PROOFSTEP]
refine' fun a => ⟨(var a).equal (var (rangeSplitting f (rangeFactorization f a))), ext _⟩
[GOAL]
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
a : α
⊢ ∀ (x : α → M),
x ∈ {x | x a = x (rangeSplitting f (rangeFactorization f a))} ↔
x ∈ setOf (Formula.Realize (Term.equal (var a) (var (rangeSplitting f (rangeFactorization f a)))))
[PROOFSTEP]
simp
[GOAL]
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : ∀ (a : α), Definable A L {x | x a = x (rangeSplitting f (rangeFactorization f a))}
⊢ Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
[PROOFSTEP]
refine' (congr rfl (ext _)).mp (definable_finset_biInter h' Finset.univ)
[GOAL]
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : ∀ (a : α), Definable A L {x | x a = x (rangeSplitting f (rangeFactorization f a))}
⊢ ∀ (x : α → M),
x ∈ ⋂ (i : α) (_ : i ∈ Finset.univ), {x | x i = x (rangeSplitting f (rangeFactorization f i))} ↔
x ∈ {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
[PROOFSTEP]
simp
[GOAL]
case intro.intro
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
⊢ Definable A L ((fun g => g ∘ f) '' s)
[PROOFSTEP]
refine' (congr rfl (ext fun x => _)).mp (h.inter h')
[GOAL]
case intro.intro
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
x : α → M
⊢ x ∈
(fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))) ∩
{x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))} ↔
x ∈ (fun g => g ∘ f) '' s
[PROOFSTEP]
simp only [Equiv.coe_trans, mem_inter_iff, mem_preimage, mem_image, exists_exists_and_eq_and, mem_setOf_eq]
[GOAL]
case intro.intro
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
x : α → M
⊢ ((∃ a,
a ∈ s ∧
((a ∘ ↑(Equiv.Set.sumCompl (range f))) ∘
↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘
Sum.inl =
x ∘ rangeSplitting f) ∧
∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))) ↔
∃ x_1, x_1 ∈ s ∧ x_1 ∘ f = x
[PROOFSTEP]
constructor
[GOAL]
case intro.intro.mp
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
x : α → M
⊢ ((∃ a,
a ∈ s ∧
((a ∘ ↑(Equiv.Set.sumCompl (range f))) ∘
↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘
Sum.inl =
x ∘ rangeSplitting f) ∧
∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))) →
∃ x_1, x_1 ∈ s ∧ x_1 ∘ f = x
[PROOFSTEP]
rintro ⟨⟨y, ys, hy⟩, hx⟩
[GOAL]
case intro.intro.mp.intro.intro.intro
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
x : α → M
hx : ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))
y : β → M
ys : y ∈ s
hy :
((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘
↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘
Sum.inl =
x ∘ rangeSplitting f
⊢ ∃ x_1, x_1 ∈ s ∧ x_1 ∘ f = x
[PROOFSTEP]
refine' ⟨y, ys, _⟩
[GOAL]
case intro.intro.mp.intro.intro.intro
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
x : α → M
hx : ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))
y : β → M
ys : y ∈ s
hy :
((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘
↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘
Sum.inl =
x ∘ rangeSplitting f
⊢ y ∘ f = x
[PROOFSTEP]
ext a
[GOAL]
case intro.intro.mp.intro.intro.intro.h
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
x : α → M
hx : ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))
y : β → M
ys : y ∈ s
hy :
((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘
↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘
Sum.inl =
x ∘ rangeSplitting f
a : α
⊢ (y ∘ f) a = x a
[PROOFSTEP]
rw [hx a, ← Function.comp_apply (f := x), ← hy]
[GOAL]
case intro.intro.mp.intro.intro.intro.h
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
x : α → M
hx : ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))
y : β → M
ys : y ∈ s
hy :
((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘
↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘
Sum.inl =
x ∘ rangeSplitting f
a : α
⊢ (y ∘ f) a =
(((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘
↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘
Sum.inl)
(rangeFactorization f a)
[PROOFSTEP]
simp
[GOAL]
case intro.intro.mpr
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
x : α → M
⊢ (∃ x_1, x_1 ∈ s ∧ x_1 ∘ f = x) →
(∃ a,
a ∈ s ∧
((a ∘ ↑(Equiv.Set.sumCompl (range f))) ∘
↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘
Sum.inl =
x ∘ rangeSplitting f) ∧
∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))
[PROOFSTEP]
rintro ⟨y, ys, rfl⟩
[GOAL]
case intro.intro.mpr.intro.intro
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
y : β → M
ys : y ∈ s
⊢ (∃ a,
a ∈ s ∧
((a ∘ ↑(Equiv.Set.sumCompl (range f))) ∘
↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘
Sum.inl =
(y ∘ f) ∘ rangeSplitting f) ∧
∀ (a : α), (y ∘ f) a = (y ∘ f) (rangeSplitting f (rangeFactorization f a))
[PROOFSTEP]
refine' ⟨⟨y, ys, _⟩, fun a => _⟩
[GOAL]
case intro.intro.mpr.intro.intro.refine'_1
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
y : β → M
ys : y ∈ s
⊢ ((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘
↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘
Sum.inl =
(y ∘ f) ∘ rangeSplitting f
[PROOFSTEP]
ext
[GOAL]
case intro.intro.mpr.intro.intro.refine'_1.h
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
y : β → M
ys : y ∈ s
x✝ : ↑(range f)
⊢ (((y ∘ ↑(Equiv.Set.sumCompl (range f))) ∘
↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ∘
Sum.inl)
x✝ =
((y ∘ f) ∘ rangeSplitting f) x✝
[PROOFSTEP]
simp [Set.apply_rangeSplitting f]
[GOAL]
case intro.intro.mpr.intro.intro.refine'_2
M : Type w
A : Set M
L : Language
inst✝² : Structure L M
α : Type u₁
β : Type u_1
B : Set M
s✝ : Set (α → M)
s : Set (β → M)
h✝ : Definable A L s
f : α → β
inst✝¹ : Finite α
inst✝ : Finite β
val✝¹ : Fintype α
val✝ : Fintype β
h :
Definable A L
((fun g => g ∘ rangeSplitting f) ⁻¹'
((fun g => g ∘ Sum.inl) ''
((fun g => g ∘ ↑(Equiv.sumCongr (Equiv.refl ↑(range f)) (Fintype.equivFin ↑(range f)ᶜ).symm)) ''
((fun g => g ∘ ↑(Equiv.Set.sumCompl (range f))) '' s))))
h' : Definable A L {x | ∀ (a : α), x a = x (rangeSplitting f (rangeFactorization f a))}
y : β → M
ys : y ∈ s
a : α
⊢ (y ∘ f) a = (y ∘ f) (rangeSplitting f (rangeFactorization f a))
[PROOFSTEP]
rw [Function.comp_apply, Function.comp_apply, apply_rangeSplitting f, rangeFactorization_coe]
| {"mathlib_filename": "Mathlib.ModelTheory.Definability", "llama_tokens": 19726} |
[GOAL]
L : Language
α : Type w
V : Type w'
n : ℕ
inst✝ : Structure Language.graph V
⊢ V ⊨ Theory.simpleGraph ↔ (Irreflexive fun x y => RelMap adj ![x, y]) ∧ Symmetric fun x y => RelMap adj ![x, y]
[PROOFSTEP]
simp [Theory.simpleGraph]
[GOAL]
L : Language
α : Type w
V : Type w'
n : ℕ
G : SimpleGraph V
⊢ V ⊨ Theory.simpleGraph
[PROOFSTEP]
simp only [@Theory.simpleGraph_model_iff _ G.structure, relMap_apply₂]
[GOAL]
L : Language
α : Type w
V : Type w'
n : ℕ
G : SimpleGraph V
⊢ (Irreflexive fun x y => SimpleGraph.Adj G x y) ∧ Symmetric fun x y => SimpleGraph.Adj G x y
[PROOFSTEP]
exact ⟨G.loopless, G.symm⟩
[GOAL]
L : Language
α : Type w
V : Type w'
n : ℕ
G : SimpleGraph V
⊢ FirstOrder.Language.simpleGraphOfStructure V = G
[PROOFSTEP]
ext
[GOAL]
case Adj.h.h.a
L : Language
α : Type w
V : Type w'
n : ℕ
G : SimpleGraph V
x✝¹ x✝ : V
⊢ SimpleGraph.Adj (FirstOrder.Language.simpleGraphOfStructure V) x✝¹ x✝ ↔ SimpleGraph.Adj G x✝¹ x✝
[PROOFSTEP]
rfl
[GOAL]
L : Language
α : Type w
V : Type w'
n : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
⊢ SimpleGraph.structure (simpleGraphOfStructure V) = S
[PROOFSTEP]
ext
[GOAL]
case funMap.h.h.h
L : Language
α : Type w
V : Type w'
n : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
x✝² : ℕ
x✝¹ : Functions Language.graph x✝²
x✝ : Fin x✝² → V
⊢ funMap x✝¹ x✝ = funMap x✝¹ x✝
case RelMap.h.h.h.a
L : Language
α : Type w
V : Type w'
n : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
x✝² : ℕ
x✝¹ : Relations Language.graph x✝²
x✝ : Fin x✝² → V
⊢ RelMap x✝¹ x✝ ↔ RelMap x✝¹ x✝
[PROOFSTEP]
case funMap n f xs => exact (IsRelational.empty_functions n).elim f
[GOAL]
L : Language
α : Type w
V : Type w'
n✝ : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
n : ℕ
f : Functions Language.graph n
xs : Fin n → V
⊢ funMap f xs = funMap f xs
[PROOFSTEP]
case funMap n f xs => exact (IsRelational.empty_functions n).elim f
[GOAL]
L : Language
α : Type w
V : Type w'
n✝ : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
n : ℕ
f : Functions Language.graph n
xs : Fin n → V
⊢ funMap f xs = funMap f xs
[PROOFSTEP]
exact (IsRelational.empty_functions n).elim f
[GOAL]
case RelMap.h.h.h.a
L : Language
α : Type w
V : Type w'
n : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
x✝² : ℕ
x✝¹ : Relations Language.graph x✝²
x✝ : Fin x✝² → V
⊢ RelMap x✝¹ x✝ ↔ RelMap x✝¹ x✝
[PROOFSTEP]
case RelMap n r xs =>
rw [iff_eq_eq]
cases' n with n
· exact r.elim
· cases' n with n
· exact r.elim
· cases' n with n
· cases r
change RelMap adj ![xs 0, xs 1] = _
refine' congr rfl (funext _)
simp [Fin.forall_fin_two]
· exact r.elim
[GOAL]
L : Language
α : Type w
V : Type w'
n✝ : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
n : ℕ
r : Relations Language.graph n
xs : Fin n → V
⊢ RelMap r xs ↔ RelMap r xs
[PROOFSTEP]
case RelMap n r xs =>
rw [iff_eq_eq]
cases' n with n
· exact r.elim
· cases' n with n
· exact r.elim
· cases' n with n
· cases r
change RelMap adj ![xs 0, xs 1] = _
refine' congr rfl (funext _)
simp [Fin.forall_fin_two]
· exact r.elim
[GOAL]
L : Language
α : Type w
V : Type w'
n✝ : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
n : ℕ
r : Relations Language.graph n
xs : Fin n → V
⊢ RelMap r xs ↔ RelMap r xs
[PROOFSTEP]
rw [iff_eq_eq]
[GOAL]
L : Language
α : Type w
V : Type w'
n✝ : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
n : ℕ
r : Relations Language.graph n
xs : Fin n → V
⊢ RelMap r xs = RelMap r xs
[PROOFSTEP]
cases' n with n
[GOAL]
case zero
L : Language
α : Type w
V : Type w'
n : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
r : Relations Language.graph Nat.zero
xs : Fin Nat.zero → V
⊢ RelMap r xs = RelMap r xs
[PROOFSTEP]
exact r.elim
[GOAL]
case succ
L : Language
α : Type w
V : Type w'
n✝ : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
n : ℕ
r : Relations Language.graph (Nat.succ n)
xs : Fin (Nat.succ n) → V
⊢ RelMap r xs = RelMap r xs
[PROOFSTEP]
cases' n with n
[GOAL]
case succ.zero
L : Language
α : Type w
V : Type w'
n : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
r : Relations Language.graph (Nat.succ Nat.zero)
xs : Fin (Nat.succ Nat.zero) → V
⊢ RelMap r xs = RelMap r xs
[PROOFSTEP]
exact r.elim
[GOAL]
case succ.succ
L : Language
α : Type w
V : Type w'
n✝ : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
n : ℕ
r : Relations Language.graph (Nat.succ (Nat.succ n))
xs : Fin (Nat.succ (Nat.succ n)) → V
⊢ RelMap r xs = RelMap r xs
[PROOFSTEP]
cases' n with n
[GOAL]
case succ.succ.zero
L : Language
α : Type w
V : Type w'
n : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
r : Relations Language.graph (Nat.succ (Nat.succ Nat.zero))
xs : Fin (Nat.succ (Nat.succ Nat.zero)) → V
⊢ RelMap r xs = RelMap r xs
[PROOFSTEP]
cases r
[GOAL]
case succ.succ.zero.unit
L : Language
α : Type w
V : Type w'
n : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
xs : Fin (Nat.succ (Nat.succ Nat.zero)) → V
⊢ RelMap PUnit.unit xs = RelMap PUnit.unit xs
[PROOFSTEP]
change RelMap adj ![xs 0, xs 1] = _
[GOAL]
case succ.succ.zero.unit
L : Language
α : Type w
V : Type w'
n : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
xs : Fin (Nat.succ (Nat.succ Nat.zero)) → V
⊢ RelMap adj ![xs 0, xs 1] = RelMap PUnit.unit xs
[PROOFSTEP]
refine' congr rfl (funext _)
[GOAL]
case succ.succ.zero.unit
L : Language
α : Type w
V : Type w'
n : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
xs : Fin (Nat.succ (Nat.succ Nat.zero)) → V
⊢ ∀ (x : Fin (Nat.succ 1)), Matrix.vecCons (xs 0) ![xs 1] x = xs x
[PROOFSTEP]
simp [Fin.forall_fin_two]
[GOAL]
case succ.succ.succ
L : Language
α : Type w
V : Type w'
n✝ : ℕ
S : Structure Language.graph V
inst✝ : V ⊨ Theory.simpleGraph
n : ℕ
r : Relations Language.graph (Nat.succ (Nat.succ (Nat.succ n)))
xs : Fin (Nat.succ (Nat.succ (Nat.succ n))) → V
⊢ RelMap r xs = RelMap r xs
[PROOFSTEP]
exact r.elim
| {"mathlib_filename": "Mathlib.ModelTheory.Graph", "llama_tokens": 2753} |
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : LE M
⊢ OrderedStructure Language.order M
[PROOFSTEP]
rw [orderedStructure_iff, orderLHom_order]
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : LE M
⊢ LHom.IsExpansionOn (LHom.id Language.order) M
[PROOFSTEP]
exact LHom.id_isExpansionOn M
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : Preorder M
⊢ M ⊨ preorderTheory Language.order
[PROOFSTEP]
simp only [preorderTheory, Theory.model_iff, Set.mem_insert_iff, Set.mem_singleton_iff, forall_eq_or_imp,
Relations.realize_reflexive, relMap_apply₂, forall_eq, Relations.realize_transitive]
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : Preorder M
⊢ (Reflexive fun x y => x ≤ y) ∧ Transitive fun x y => x ≤ y
[PROOFSTEP]
exact ⟨le_refl, fun _ _ _ => le_trans⟩
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : PartialOrder M
⊢ M ⊨ partialOrderTheory Language.order
[PROOFSTEP]
simp only [partialOrderTheory, Theory.model_iff, Set.mem_insert_iff, Set.mem_singleton_iff, forall_eq_or_imp,
Relations.realize_reflexive, relMap_apply₂, Relations.realize_antisymmetric, forall_eq, Relations.realize_transitive]
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : PartialOrder M
⊢ (Reflexive fun x y => x ≤ y) ∧ (AntiSymmetric fun x y => x ≤ y) ∧ Transitive fun x y => x ≤ y
[PROOFSTEP]
exact ⟨le_refl, fun _ _ => le_antisymm, fun _ _ _ => le_trans⟩
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : LinearOrder M
⊢ M ⊨ linearOrderTheory Language.order
[PROOFSTEP]
simp only [linearOrderTheory, Theory.model_iff, Set.mem_insert_iff, Set.mem_singleton_iff, forall_eq_or_imp,
Relations.realize_reflexive, relMap_apply₂, Relations.realize_antisymmetric, Relations.realize_transitive, forall_eq,
Relations.realize_total]
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : LinearOrder M
⊢ (Reflexive fun x y => x ≤ y) ∧
(AntiSymmetric fun x y => x ≤ y) ∧ (Transitive fun x y => x ≤ y) ∧ Total fun x y => x ≤ y
[PROOFSTEP]
exact ⟨le_refl, fun _ _ => le_antisymm, fun _ _ _ => le_trans, le_total⟩
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝³ : IsOrdered L
inst✝² : Structure L M
inst✝¹ : LE M
inst✝ : OrderedStructure L M
a b : M
⊢ RelMap leSymb ![a, b] ↔ a ≤ b
[PROOFSTEP]
rw [← orderLHom_leSymb, LHom.map_onRelation]
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝³ : IsOrdered L
inst✝² : Structure L M
inst✝¹ : LE M
inst✝ : OrderedStructure L M
a b : M
⊢ RelMap leSymb ![a, b] ↔ a ≤ b
[PROOFSTEP]
rfl
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝³ : IsOrdered L
inst✝² : Structure L M
inst✝¹ : LE M
inst✝ : OrderedStructure L M
t₁ t₂ : Term L (α ⊕ Fin n)
v : α → M
xs : Fin n → M
⊢ BoundedFormula.Realize (le t₁ t₂) v xs ↔ realize (Sum.elim v xs) t₁ ≤ realize (Sum.elim v xs) t₂
[PROOFSTEP]
simp [Term.le]
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝³ : IsOrdered L
inst✝² : Structure L M
inst✝¹ : Preorder M
inst✝ : OrderedStructure L M
t₁ t₂ : Term L (α ⊕ Fin n)
v : α → M
xs : Fin n → M
⊢ BoundedFormula.Realize (lt t₁ t₂) v xs ↔ realize (Sum.elim v xs) t₁ < realize (Sum.elim v xs) t₂
[PROOFSTEP]
simp [Term.lt, lt_iff_le_not_le]
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : LE M
⊢ M ⊨ noTopOrderSentence Language.order ↔ NoTopOrder M
[PROOFSTEP]
simp only [noTopOrderSentence, Sentence.Realize, Formula.Realize, BoundedFormula.realize_all, BoundedFormula.realize_ex,
BoundedFormula.realize_not, Term.realize, Term.realize_le, Sum.elim_inr]
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : LE M
⊢ (∀ (a : M), ∃ a_1, ¬Fin.snoc (Fin.snoc default a) a_1 1 ≤ Fin.snoc (Fin.snoc default a) a_1 0) ↔ NoTopOrder M
[PROOFSTEP]
refine' ⟨fun h => ⟨fun a => h a⟩, _⟩
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : LE M
⊢ NoTopOrder M → ∀ (a : M), ∃ a_1, ¬Fin.snoc (Fin.snoc default a) a_1 1 ≤ Fin.snoc (Fin.snoc default a) a_1 0
[PROOFSTEP]
intro h a
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : LE M
h : NoTopOrder M
a : M
⊢ ∃ a_1, ¬Fin.snoc (Fin.snoc default a) a_1 1 ≤ Fin.snoc (Fin.snoc default a) a_1 0
[PROOFSTEP]
exact exists_not_le a
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : LE M
⊢ M ⊨ noBotOrderSentence Language.order ↔ NoBotOrder M
[PROOFSTEP]
simp only [noBotOrderSentence, Sentence.Realize, Formula.Realize, BoundedFormula.realize_all, BoundedFormula.realize_ex,
BoundedFormula.realize_not, Term.realize, Term.realize_le, Sum.elim_inr]
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : LE M
⊢ (∀ (a : M), ∃ a_1, ¬Fin.snoc (Fin.snoc default a) a_1 0 ≤ Fin.snoc (Fin.snoc default a) a_1 1) ↔ NoBotOrder M
[PROOFSTEP]
refine' ⟨fun h => ⟨fun a => h a⟩, _⟩
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : LE M
⊢ NoBotOrder M → ∀ (a : M), ∃ a_1, ¬Fin.snoc (Fin.snoc default a) a_1 0 ≤ Fin.snoc (Fin.snoc default a) a_1 1
[PROOFSTEP]
intro h a
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : LE M
h : NoBotOrder M
a : M
⊢ ∃ a_1, ¬Fin.snoc (Fin.snoc default a) a_1 0 ≤ Fin.snoc (Fin.snoc default a) a_1 1
[PROOFSTEP]
exact exists_not_ge a
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : Preorder M
⊢ M ⊨ denselyOrderedSentence Language.order ↔ DenselyOrdered M
[PROOFSTEP]
simp only [denselyOrderedSentence, Sentence.Realize, Formula.Realize, BoundedFormula.realize_imp,
BoundedFormula.realize_all, Term.realize, Term.realize_lt, Sum.elim_inr, BoundedFormula.realize_ex,
BoundedFormula.realize_inf]
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : Preorder M
⊢ (∀ (a a_1 : M),
Fin.snoc (Fin.snoc default a) a_1 0 < Fin.snoc (Fin.snoc default a) a_1 1 →
∃ a_3,
Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 0 < Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 2 ∧
Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 2 < Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 1) ↔
DenselyOrdered M
[PROOFSTEP]
refine' ⟨fun h => ⟨fun a b ab => h a b ab⟩, _⟩
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : Preorder M
⊢ DenselyOrdered M →
∀ (a a_1 : M),
Fin.snoc (Fin.snoc default a) a_1 0 < Fin.snoc (Fin.snoc default a) a_1 1 →
∃ a_3,
Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 0 < Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 2 ∧
Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 2 < Fin.snoc (Fin.snoc (Fin.snoc default a) a_1) a_3 1
[PROOFSTEP]
intro h a b ab
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝ : Preorder M
h : DenselyOrdered M
a b : M
ab : Fin.snoc (Fin.snoc default a) b 0 < Fin.snoc (Fin.snoc default a) b 1
⊢ ∃ a_1,
Fin.snoc (Fin.snoc (Fin.snoc default a) b) a_1 0 < Fin.snoc (Fin.snoc (Fin.snoc default a) b) a_1 2 ∧
Fin.snoc (Fin.snoc (Fin.snoc default a) b) a_1 2 < Fin.snoc (Fin.snoc (Fin.snoc default a) b) a_1 1
[PROOFSTEP]
exact exists_between ab
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝³ : LinearOrder M
inst✝² : DenselyOrdered M
inst✝¹ : NoTopOrder M
inst✝ : NoBotOrder M
⊢ M ⊨ dlo Language.order
[PROOFSTEP]
simp only [dlo, Set.union_insert, Set.union_singleton, Theory.model_iff, Set.mem_insert_iff, forall_eq_or_imp,
realize_noTopOrder, realize_noBotOrder, realize_denselyOrdered, true_and_iff]
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝³ : LinearOrder M
inst✝² : DenselyOrdered M
inst✝¹ : NoTopOrder M
inst✝ : NoBotOrder M
⊢ ∀ (a : Sentence Language.order), a ∈ linearOrderTheory Language.order → M ⊨ a
[PROOFSTEP]
rw [← Theory.model_iff]
[GOAL]
L : Language
α : Type w
M : Type w'
n : ℕ
inst✝³ : LinearOrder M
inst✝² : DenselyOrdered M
inst✝¹ : NoTopOrder M
inst✝ : NoBotOrder M
⊢ M ⊨ linearOrderTheory Language.order
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.ModelTheory.Order", "llama_tokens": 3560} |
[GOAL]
k : Type u_1
G : Type u_2
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
g : G
⊢ Finsupp.single g 1 * average k G = average k G
[PROOFSTEP]
simp only [mul_one, Finset.mul_sum, Algebra.mul_smul_comm, average, MonoidAlgebra.of_apply, Finset.sum_congr,
MonoidAlgebra.single_mul_single]
[GOAL]
k : Type u_1
G : Type u_2
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
g : G
⊢ ⅟↑(Fintype.card G) • ∑ x : G, single (g * x) 1 = ⅟↑(Fintype.card G) • ∑ x : G, single x 1
[PROOFSTEP]
set f : G → MonoidAlgebra k G := fun x => Finsupp.single x 1
[GOAL]
k : Type u_1
G : Type u_2
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
g : G
f : G → MonoidAlgebra k G := fun x => Finsupp.single x 1
⊢ ⅟↑(Fintype.card G) • ∑ x : G, single (g * x) 1 = ⅟↑(Fintype.card G) • Finset.sum Finset.univ f
[PROOFSTEP]
show ⅟(Fintype.card G : k) • ∑ x : G, f (g * x) = ⅟(Fintype.card G : k) • ∑ x : G, f x
[GOAL]
k : Type u_1
G : Type u_2
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
g : G
f : G → MonoidAlgebra k G := fun x => Finsupp.single x 1
⊢ ⅟↑(Fintype.card G) • ∑ x : G, f (g * x) = ⅟↑(Fintype.card G) • ∑ x : G, f x
[PROOFSTEP]
rw [Function.Bijective.sum_comp (Group.mulLeft_bijective g) _]
[GOAL]
k : Type u_1
G : Type u_2
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
g : G
⊢ average k G * Finsupp.single g 1 = average k G
[PROOFSTEP]
simp only [mul_one, Finset.sum_mul, Algebra.smul_mul_assoc, average, MonoidAlgebra.of_apply, Finset.sum_congr,
MonoidAlgebra.single_mul_single]
[GOAL]
k : Type u_1
G : Type u_2
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
g : G
⊢ ⅟↑(Fintype.card G) • ∑ x : G, single (x * g) 1 = ⅟↑(Fintype.card G) • ∑ x : G, single x 1
[PROOFSTEP]
set f : G → MonoidAlgebra k G := fun x => Finsupp.single x 1
[GOAL]
k : Type u_1
G : Type u_2
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
g : G
f : G → MonoidAlgebra k G := fun x => Finsupp.single x 1
⊢ ⅟↑(Fintype.card G) • ∑ x : G, single (x * g) 1 = ⅟↑(Fintype.card G) • Finset.sum Finset.univ f
[PROOFSTEP]
show ⅟(Fintype.card G : k) • ∑ x : G, f (x * g) = ⅟(Fintype.card G : k) • ∑ x : G, f x
[GOAL]
k : Type u_1
G : Type u_2
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
g : G
f : G → MonoidAlgebra k G := fun x => Finsupp.single x 1
⊢ ⅟↑(Fintype.card G) • ∑ x : G, f (x * g) = ⅟↑(Fintype.card G) • ∑ x : G, f x
[PROOFSTEP]
rw [Function.Bijective.sum_comp (Group.mulRight_bijective g) _]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
a✝ b✝ : V
hv : a✝ ∈ {v | ∀ (g : G), ↑(↑ρ g) v = v}
hw : b✝ ∈ {v | ∀ (g : G), ↑(↑ρ g) v = v}
g : G
⊢ ↑(↑ρ g) (a✝ + b✝) = a✝ + b✝
[PROOFSTEP]
simp only [hv g, hw g, map_add]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
g : G
⊢ ↑(↑ρ g) 0 = 0
[PROOFSTEP]
simp only [map_zero]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
r : k
v : V
hv :
v ∈
{
toAddSubsemigroup :=
{ carrier := {v | ∀ (g : G), ↑(↑ρ g) v = v},
add_mem' :=
(_ :
∀ {a b : V},
a ∈ {v | ∀ (g : G), ↑(↑ρ g) v = v} →
b ∈ {v | ∀ (g : G), ↑(↑ρ g) v = v} → ∀ (g : G), ↑(↑ρ g) (a + b) = a + b) },
zero_mem' := (_ : ∀ (g : G), ↑(↑ρ g) 0 = 0) }.toAddSubsemigroup.carrier
g : G
⊢ ↑(↑ρ g) (r • v) = r • v
[PROOFSTEP]
simp only [hv g, LinearMap.map_smulₛₗ, RingHom.id_apply]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
v : V
⊢ v ∈ invariants ρ ↔ ∀ (g : G), ↑(↑ρ g) v = v
[PROOFSTEP]
rfl
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
⊢ (invariants ρ).toAddSubmonoid.toAddSubsemigroup.carrier = ⋂ (g : G), Function.fixedPoints ↑(↑ρ g)
[PROOFSTEP]
ext
[GOAL]
case h
k : Type u_1
G : Type u_2
V : Type u_3
inst✝³ : CommSemiring k
inst✝² : Group G
inst✝¹ : AddCommMonoid V
inst✝ : Module k V
ρ : Representation k G V
x✝ : V
⊢ x✝ ∈ (invariants ρ).toAddSubmonoid.toAddSubsemigroup.carrier ↔ x✝ ∈ ⋂ (g : G), Function.fixedPoints ↑(↑ρ g)
[PROOFSTEP]
simp [Function.IsFixedPt]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
v : V
g : G
⊢ ↑(↑ρ g) (↑(averageMap ρ) v) = ↑(averageMap ρ) v
[PROOFSTEP]
rw [averageMap, ← asAlgebraHom_single_one, ← LinearMap.mul_apply, ← map_mul (asAlgebraHom ρ), mul_average_left]
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
v : V
hv : v ∈ invariants ρ
⊢ ↑(averageMap ρ) v = v
[PROOFSTEP]
rw [mem_invariants] at hv
[GOAL]
k : Type u_1
G : Type u_2
V : Type u_3
inst✝⁵ : CommSemiring k
inst✝⁴ : Group G
inst✝³ : AddCommMonoid V
inst✝² : Module k V
ρ : Representation k G V
inst✝¹ : Fintype G
inst✝ : Invertible ↑(Fintype.card G)
v : V
hv : ∀ (g : G), ↑(↑ρ g) v = v
⊢ ↑(averageMap ρ) v = v
[PROOFSTEP]
simp [average, map_sum, hv, Finset.card_univ, nsmul_eq_smul_cast k _ v, smul_smul]
[GOAL]
k : Type u
inst✝ : CommRing k
G : GroupCat
X Y : Rep k ↑G
f : ↑X.V →ₗ[k] ↑Y.V
g : ↑G
⊢ ↑(↑(linHom (Rep.ρ X) (Rep.ρ Y)) g) f = f ↔ LinearMap.comp f (↑(Rep.ρ X) g) = LinearMap.comp (↑(Rep.ρ Y) g) f
[PROOFSTEP]
dsimp
[GOAL]
k : Type u
inst✝ : CommRing k
G : GroupCat
X Y : Rep k ↑G
f : ↑X.V →ₗ[k] ↑Y.V
g : ↑G
⊢ LinearMap.comp (↑(Rep.ρ Y) g) (LinearMap.comp f (↑(Rep.ρ X) g⁻¹)) = f ↔
LinearMap.comp f (↑(Rep.ρ X) g) = LinearMap.comp (↑(Rep.ρ Y) g) f
[PROOFSTEP]
erw [← ρAut_apply_inv]
[GOAL]
k : Type u
inst✝ : CommRing k
G : GroupCat
X Y : Rep k ↑G
f : ↑X.V →ₗ[k] ↑Y.V
g : ↑G
⊢ LinearMap.comp (↑(Rep.ρ Y) g) (LinearMap.comp f (↑(ρAut X) g).inv) = f ↔
LinearMap.comp f (↑(Rep.ρ X) g) = LinearMap.comp (↑(Rep.ρ Y) g) f
[PROOFSTEP]
rw [← LinearMap.comp_assoc, ← ModuleCat.comp_def, ← ModuleCat.comp_def, Iso.inv_comp_eq, ρAut_apply_hom]
[GOAL]
k : Type u
inst✝ : CommRing k
G : GroupCat
X Y : Rep k ↑G
f : ↑X.V →ₗ[k] ↑Y.V
g : ↑G
⊢ f ≫ ↑(Rep.ρ Y) g = ↑X.ρ g ≫ f ↔ LinearMap.comp f (↑(Rep.ρ X) g) = f ≫ ↑(Rep.ρ Y) g
[PROOFSTEP]
exact comm
[GOAL]
k : Type u
inst✝ : CommRing k
G : GroupCat
X Y : Rep k ↑G
x✝ : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }
⊢ (fun f => { val := f.hom, property := (_ : ∀ (g : ↑G), ↑(↑(linHom (Rep.ρ X) (Rep.ρ Y)) g) f.hom = f.hom) })
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_1) = (fun f => Hom.mk ↑f) (x + x_1)) },
map_smul' :=
(_ :
∀ (x : k) (x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
AddHom.toFun
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) }
(x • x_1) =
AddHom.toFun
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) }
(x • x_1)) }.toAddHom
x✝) =
x✝
[PROOFSTEP]
apply Subtype.ext
[GOAL]
case a
k : Type u
inst✝ : CommRing k
G : GroupCat
X Y : Rep k ↑G
x✝ : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }
⊢ ↑((fun f => { val := f.hom, property := (_ : ∀ (g : ↑G), ↑(↑(linHom (Rep.ρ X) (Rep.ρ Y)) g) f.hom = f.hom) })
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_1) = (fun f => Hom.mk ↑f) (x + x_1)) },
map_smul' :=
(_ :
∀ (x : k) (x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
AddHom.toFun
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) }
(x • x_1) =
AddHom.toFun
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) }
(x • x_1)) }.toAddHom
x✝)) =
↑x✝
[PROOFSTEP]
ext
[GOAL]
case a.h
k : Type u
inst✝ : CommRing k
G : GroupCat
X Y : Rep k ↑G
x✝¹ : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }
x✝ : CoeSort.coe X
⊢ ↑↑((fun f => { val := f.hom, property := (_ : ∀ (g : ↑G), ↑(↑(linHom (Rep.ρ X) (Rep.ρ Y)) g) f.hom = f.hom) })
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_1) = (fun f => Hom.mk ↑f) (x + x_1)) },
map_smul' :=
(_ :
∀ (x : k) (x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
AddHom.toFun
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) }
(x • x_1) =
AddHom.toFun
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) }
(x • x_1)) }.toAddHom
x✝¹))
x✝ =
↑↑x✝¹ x✝
[PROOFSTEP]
rfl
-- Porting note: Added `apply Subtype.ext`
[GOAL]
k : Type u
inst✝ : CommRing k
G : GroupCat
X Y : Rep k ↑G
x✝ : X ⟶ Y
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_1) = (fun f => Hom.mk ↑f) (x + x_1)) },
map_smul' :=
(_ :
∀ (x : k) (x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
AddHom.toFun
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) }
(x • x_1) =
AddHom.toFun
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) }
(x • x_1)) }.toAddHom
((fun f => { val := f.hom, property := (_ : ∀ (g : ↑G), ↑(↑(linHom (Rep.ρ X) (Rep.ρ Y)) g) f.hom = f.hom) }) x✝) =
x✝
[PROOFSTEP]
ext
[GOAL]
case h.h
k : Type u
inst✝ : CommRing k
G : GroupCat
X Y : Rep k ↑G
x✝¹ : X ⟶ Y
x✝ : ↑X.V
⊢ ↑(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_1) = (fun f => Hom.mk ↑f) (x + x_1)) },
map_smul' :=
(_ :
∀ (x : k) (x_1 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
AddHom.toFun
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) }
(x • x_1) =
AddHom.toFun
{ toFun := fun f => Hom.mk ↑f,
map_add' :=
(_ :
∀ (x x_2 : { x // x ∈ invariants (linHom (Rep.ρ X) (Rep.ρ Y)) }),
(fun f => Hom.mk ↑f) (x + x_2) = (fun f => Hom.mk ↑f) (x + x_2)) }
(x • x_1)) }.toAddHom
((fun f => { val := f.hom, property := (_ : ∀ (g : ↑G), ↑(↑(linHom (Rep.ρ X) (Rep.ρ Y)) g) f.hom = f.hom) })
x✝¹)).hom
x✝ =
↑x✝¹.hom x✝
[PROOFSTEP]
rfl
[GOAL]
k : Type u
inst✝ : Field k
G : GroupCat
X Y : FdRep k ↑G
⊢ { x // x ∈ invariants (linHom (FdRep.ρ X) (FdRep.ρ Y)) } ≃ₗ[k] X ⟶ Y
[PROOFSTEP]
rw [← FdRep.forget₂_ρ, ← FdRep.forget₂_ρ]
-- Porting note: The original version used `linHom.invariantsEquivRepHom _ _ ≪≫ₗ`
[GOAL]
k : Type u
inst✝ : Field k
G : GroupCat
X Y : FdRep k ↑G
⊢ { x //
x ∈
invariants
(linHom (Rep.ρ ((forget₂ (FdRep k ↑G) (Rep k ↑G)).obj X))
(Rep.ρ ((forget₂ (FdRep k ↑G) (Rep k ↑G)).obj Y))) } ≃ₗ[k]
X ⟶ Y
[PROOFSTEP]
exact
linHom.invariantsEquivRepHom ((forget₂ (FdRep k G) (Rep k G)).obj X) ((forget₂ (FdRep k G) (Rep k G)).obj Y) ≪≫ₗ
FdRep.forget₂HomLinearEquiv X Y
| {"mathlib_filename": "Mathlib.RepresentationTheory.Invariants", "llama_tokens": 6841} |
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
⊢ IsChain r univ ↔ IsTrichotomous α r
[PROOFSTEP]
refine' ⟨fun h => ⟨fun a b => _⟩, fun h => @isChain_of_trichotomous _ _ h univ⟩
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a✝ b✝ x y : α
h : IsChain r univ
a b : α
⊢ r a b ∨ a = b ∨ r b a
[PROOFSTEP]
rw [or_left_comm, or_iff_not_imp_left]
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a✝ b✝ x y : α
h : IsChain r univ
a b : α
⊢ ¬a = b → r a b ∨ r b a
[PROOFSTEP]
exact h trivial trivial
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
inst✝¹ : LinearOrder α
inst✝ : Preorder β
f : α → β
hf : Monotone f
⊢ IsChain (fun x x_1 => x ≤ x_1) (range f)
[PROOFSTEP]
rw [← image_univ]
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
inst✝¹ : LinearOrder α
inst✝ : Preorder β
f : α → β
hf : Monotone f
⊢ IsChain (fun x x_1 => x ≤ x_1) (f '' univ)
[PROOFSTEP]
exact (isChain_of_trichotomous _).image (· ≤ ·) _ _ hf
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c✝ c₁ c₂ c₃ s t : Set α
a✝ b✝ x y : α
inst✝ : IsRefl α r
f : β → α
c : Set β
h : IsChain (f ⁻¹'o r) c
x✝¹ x✝ : { a // a ∈ c }
a : β
ha : a ∈ c
b : β
hb : b ∈ c
hab : a = b
⊢ ∃ z,
r ((fun x => f ↑x) { val := a, property := ha }) ((fun x => f ↑x) z) ∧
r ((fun x => f ↑x) { val := b, property := hb }) ((fun x => f ↑x) z)
[PROOFSTEP]
simp only [hab, exists_prop, and_self_iff, Subtype.exists]
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c✝ c₁ c₂ c₃ s t : Set α
a✝ b✝ x y : α
inst✝ : IsRefl α r
f : β → α
c : Set β
h : IsChain (f ⁻¹'o r) c
x✝¹ x✝ : { a // a ∈ c }
a : β
ha : a ∈ c
b : β
hb : b ∈ c
hab : a = b
⊢ ∃ a, a ∈ c ∧ r (f b) (f a)
[PROOFSTEP]
exact ⟨b, hb, refl _⟩
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c✝ c₁ c₂ c₃ s t : Set α
a✝ b✝ x y : α
inst✝¹ : IsRefl α r
hchain : IsChain r s
inst✝ : IsTrans α r
a b c : α
mem1 : a ∈ s
mem2 : b ∈ s
mem3 : c ∈ s
⊢ ∃ z x, r a z ∧ r b z ∧ r c z
[PROOFSTEP]
rcases directedOn_iff_directed.mpr (IsChain.directed hchain) a mem1 b mem2 with ⟨z, mem4, H1, H2⟩
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
r : α → α → Prop
c✝ c₁ c₂ c₃ s t : Set α
a✝ b✝ x y : α
inst✝¹ : IsRefl α r
hchain : IsChain r s
inst✝ : IsTrans α r
a b c : α
mem1 : a ∈ s
mem2 : b ∈ s
mem3 : c ∈ s
z : α
mem4 : z ∈ s
H1 : r a z
H2 : r b z
⊢ ∃ z x, r a z ∧ r b z ∧ r c z
[PROOFSTEP]
rcases directedOn_iff_directed.mpr (IsChain.directed hchain) z mem4 c mem3 with ⟨z', mem5, H3, H4⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
r : α → α → Prop
c✝ c₁ c₂ c₃ s t : Set α
a✝ b✝ x y : α
inst✝¹ : IsRefl α r
hchain : IsChain r s
inst✝ : IsTrans α r
a b c : α
mem1 : a ∈ s
mem2 : b ∈ s
mem3 : c ∈ s
z : α
mem4 : z ∈ s
H1 : r a z
H2 : r b z
z' : α
mem5 : z' ∈ s
H3 : r z z'
H4 : r c z'
⊢ ∃ z x, r a z ∧ r b z ∧ r c z
[PROOFSTEP]
exact ⟨z', mem5, _root_.trans H1 H3, _root_.trans H2 H3, H4⟩
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
h : ∃ t, IsChain r s ∧ SuperChain r s t
⊢ SuperChain r s (SuccChain r s)
[PROOFSTEP]
have : IsChain r s ∧ SuperChain r s (choose h) := @choose_spec _ (fun t => IsChain r s ∧ SuperChain r s t) _
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
h : ∃ t, IsChain r s ∧ SuperChain r s t
this : IsChain r s ∧ SuperChain r s (choose h)
⊢ SuperChain r s (SuccChain r s)
[PROOFSTEP]
simpa [SuccChain, dif_pos, exists_and_left.mp h] using this.2
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
hs : IsChain r s
h : ¬∃ t, IsChain r s ∧ SuperChain r s t
⊢ IsChain r (SuccChain r s)
[PROOFSTEP]
rw [exists_and_left] at h
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
hs : IsChain r s
h : ¬(IsChain r s ∧ ∃ x, SuperChain r s x)
⊢ IsChain r (SuccChain r s)
[PROOFSTEP]
simpa [SuccChain, dif_neg, h] using hs
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
hs₁ : IsChain r s
hs₂ : ¬IsMaxChain r s
⊢ SuperChain r s (SuccChain r s)
[PROOFSTEP]
simp only [IsMaxChain, not_and, not_forall, exists_prop, exists_and_left] at hs₂
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
hs₁ : IsChain r s
hs₂ : IsChain r s → ∃ x, IsChain r x ∧ s ⊆ x ∧ ¬s = x
⊢ SuperChain r s (SuccChain r s)
[PROOFSTEP]
obtain ⟨t, ht, hst⟩ := hs₂ hs₁
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t✝ : Set α
a b x y : α
hs₁ : IsChain r s
hs₂ : IsChain r s → ∃ x, IsChain r x ∧ s ⊆ x ∧ ¬s = x
t : Set α
ht : IsChain r t
hst : s ⊆ t ∧ ¬s = t
⊢ SuperChain r s (SuccChain r s)
[PROOFSTEP]
exact succChain_spec ⟨t, hs₁, ht, ssubset_iff_subset_ne.2 hst⟩
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
h : ¬∃ t, IsChain r s ∧ SuperChain r s t
⊢ s ⊆ SuccChain r s
[PROOFSTEP]
rw [exists_and_left] at h
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
h : ¬(IsChain r s ∧ ∃ x, SuperChain r s x)
⊢ s ⊆ SuccChain r s
[PROOFSTEP]
simp [SuccChain, dif_neg, h, Subset.rfl]
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
⊢ ChainClosure r ∅
[PROOFSTEP]
have : ChainClosure r (⋃₀ ∅) := ChainClosure.union fun a h => False.rec h
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
this : ChainClosure r (⋃₀ ∅)
⊢ ChainClosure r ∅
[PROOFSTEP]
simpa using this
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
hc₁ : ChainClosure r c₁
h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂
⊢ SuccChain r c₂ ⊆ c₁ ∨ c₁ ⊆ c₂
[PROOFSTEP]
induction hc₁
[GOAL]
case succ
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂
s✝ : Set α
a✝ : ChainClosure r s✝
a_ih✝ : SuccChain r c₂ ⊆ s✝ ∨ s✝ ⊆ c₂
⊢ SuccChain r c₂ ⊆ SuccChain r s✝ ∨ SuccChain r s✝ ⊆ c₂
case union
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂
s✝ : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a
a_ih✝ : ∀ (a : Set α), a ∈ s✝ → SuccChain r c₂ ⊆ a ∨ a ⊆ c₂
⊢ SuccChain r c₂ ⊆ ⋃₀ s✝ ∨ ⋃₀ s✝ ⊆ c₂
[PROOFSTEP]
case succ c₃ hc₃ ih =>
cases' ih with ih ih
· exact Or.inl (ih.trans subset_succChain)
· exact (h hc₃ ih).imp_left fun (h : c₂ = c₃) => h ▸ Subset.rfl
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃✝ s t : Set α
a b x y : α
h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂
c₃ : Set α
hc₃ : ChainClosure r c₃
ih : SuccChain r c₂ ⊆ c₃ ∨ c₃ ⊆ c₂
⊢ SuccChain r c₂ ⊆ SuccChain r c₃ ∨ SuccChain r c₃ ⊆ c₂
[PROOFSTEP]
case succ c₃ hc₃ ih =>
cases' ih with ih ih
· exact Or.inl (ih.trans subset_succChain)
· exact (h hc₃ ih).imp_left fun (h : c₂ = c₃) => h ▸ Subset.rfl
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃✝ s t : Set α
a b x y : α
h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂
c₃ : Set α
hc₃ : ChainClosure r c₃
ih : SuccChain r c₂ ⊆ c₃ ∨ c₃ ⊆ c₂
⊢ SuccChain r c₂ ⊆ SuccChain r c₃ ∨ SuccChain r c₃ ⊆ c₂
[PROOFSTEP]
cases' ih with ih ih
[GOAL]
case inl
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃✝ s t : Set α
a b x y : α
h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂
c₃ : Set α
hc₃ : ChainClosure r c₃
ih : SuccChain r c₂ ⊆ c₃
⊢ SuccChain r c₂ ⊆ SuccChain r c₃ ∨ SuccChain r c₃ ⊆ c₂
[PROOFSTEP]
exact Or.inl (ih.trans subset_succChain)
[GOAL]
case inr
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃✝ s t : Set α
a b x y : α
h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂
c₃ : Set α
hc₃ : ChainClosure r c₃
ih : c₃ ⊆ c₂
⊢ SuccChain r c₂ ⊆ SuccChain r c₃ ∨ SuccChain r c₃ ⊆ c₂
[PROOFSTEP]
exact (h hc₃ ih).imp_left fun (h : c₂ = c₃) => h ▸ Subset.rfl
[GOAL]
case union
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂
s✝ : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a
a_ih✝ : ∀ (a : Set α), a ∈ s✝ → SuccChain r c₂ ⊆ a ∨ a ⊆ c₂
⊢ SuccChain r c₂ ⊆ ⋃₀ s✝ ∨ ⋃₀ s✝ ⊆ c₂
[PROOFSTEP]
case union s _ ih =>
refine' or_iff_not_imp_left.2 fun hn => sUnion_subset fun a ha => _
exact (ih a ha).resolve_left fun h => hn <| h.trans <| subset_sUnion_of_mem ha
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s✝ t : Set α
a b x y : α
h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → SuccChain r c₂ ⊆ a ∨ a ⊆ c₂
⊢ SuccChain r c₂ ⊆ ⋃₀ s ∨ ⋃₀ s ⊆ c₂
[PROOFSTEP]
case union s _ ih =>
refine' or_iff_not_imp_left.2 fun hn => sUnion_subset fun a ha => _
exact (ih a ha).resolve_left fun h => hn <| h.trans <| subset_sUnion_of_mem ha
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s✝ t : Set α
a b x y : α
h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → SuccChain r c₂ ⊆ a ∨ a ⊆ c₂
⊢ SuccChain r c₂ ⊆ ⋃₀ s ∨ ⋃₀ s ⊆ c₂
[PROOFSTEP]
refine' or_iff_not_imp_left.2 fun hn => sUnion_subset fun a ha => _
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s✝ t : Set α
a✝¹ b x y : α
h : ∀ ⦃c₃ : Set α⦄, ChainClosure r c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ SuccChain r c₃ ⊆ c₂
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → SuccChain r c₂ ⊆ a ∨ a ⊆ c₂
hn : ¬SuccChain r c₂ ⊆ ⋃₀ s
a : Set α
ha : a ∈ s
⊢ a ⊆ c₂
[PROOFSTEP]
exact (ih a ha).resolve_left fun h => hn <| h.trans <| subset_sUnion_of_mem ha
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
hc₁ : ChainClosure r c₁
hc₂ : ChainClosure r c₂
h : c₁ ⊆ c₂
⊢ c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂
[PROOFSTEP]
induction hc₂ generalizing c₁ hc₁
[GOAL]
case succ
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂ c₃ s t : Set α
a b x y : α
s✝ : Set α
a✝ : ChainClosure r s✝
a_ih✝ : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ s✝ → s✝ = c₁ ∨ SuccChain r c₁ ⊆ s✝
c₁ : Set α
hc₁ : ChainClosure r c₁
h : c₁ ⊆ SuccChain r s✝
⊢ SuccChain r s✝ = c₁ ∨ SuccChain r c₁ ⊆ SuccChain r s✝
case union
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂ c₃ s t : Set α
a b x y : α
s✝ : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a
a_ih✝ : ∀ (a : Set α), a ∈ s✝ → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a
c₁ : Set α
hc₁ : ChainClosure r c₁
h : c₁ ⊆ ⋃₀ s✝
⊢ ⋃₀ s✝ = c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s✝
[PROOFSTEP]
case succ c₂ _
ih =>
refine' ((chainClosure_succ_total_aux hc₁) fun c₁ => ih).imp h.antisymm' fun h₁ => _
obtain rfl | h₂ := ih hc₁ h₁
· exact Subset.rfl
· exact h₂.trans subset_succChain
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂✝ c₃ s t : Set α
a b x y : α
c₂ : Set α
a✝ : ChainClosure r c₂
ih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂
c₁ : Set α
hc₁ : ChainClosure r c₁
h : c₁ ⊆ SuccChain r c₂
⊢ SuccChain r c₂ = c₁ ∨ SuccChain r c₁ ⊆ SuccChain r c₂
[PROOFSTEP]
case succ c₂ _
ih =>
refine' ((chainClosure_succ_total_aux hc₁) fun c₁ => ih).imp h.antisymm' fun h₁ => _
obtain rfl | h₂ := ih hc₁ h₁
· exact Subset.rfl
· exact h₂.trans subset_succChain
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂✝ c₃ s t : Set α
a b x y : α
c₂ : Set α
a✝ : ChainClosure r c₂
ih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂
c₁ : Set α
hc₁ : ChainClosure r c₁
h : c₁ ⊆ SuccChain r c₂
⊢ SuccChain r c₂ = c₁ ∨ SuccChain r c₁ ⊆ SuccChain r c₂
[PROOFSTEP]
refine' ((chainClosure_succ_total_aux hc₁) fun c₁ => ih).imp h.antisymm' fun h₁ => _
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂✝ c₃ s t : Set α
a b x y : α
c₂ : Set α
a✝ : ChainClosure r c₂
ih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂
c₁ : Set α
hc₁ : ChainClosure r c₁
h : c₁ ⊆ SuccChain r c₂
h₁ : c₁ ⊆ c₂
⊢ SuccChain r c₁ ⊆ SuccChain r c₂
[PROOFSTEP]
obtain rfl | h₂ := ih hc₁ h₁
[GOAL]
case inl
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂✝ c₃ s t : Set α
a b x y : α
c₂ : Set α
a✝ : ChainClosure r c₂
ih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂
hc₁ : ChainClosure r c₂
h : c₂ ⊆ SuccChain r c₂
h₁ : c₂ ⊆ c₂
⊢ SuccChain r c₂ ⊆ SuccChain r c₂
[PROOFSTEP]
exact Subset.rfl
[GOAL]
case inr
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂✝ c₃ s t : Set α
a b x y : α
c₂ : Set α
a✝ : ChainClosure r c₂
ih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂
c₁ : Set α
hc₁ : ChainClosure r c₁
h : c₁ ⊆ SuccChain r c₂
h₁ : c₁ ⊆ c₂
h₂ : SuccChain r c₁ ⊆ c₂
⊢ SuccChain r c₁ ⊆ SuccChain r c₂
[PROOFSTEP]
exact h₂.trans subset_succChain
[GOAL]
case union
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂ c₃ s t : Set α
a b x y : α
s✝ : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a
a_ih✝ : ∀ (a : Set α), a ∈ s✝ → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a
c₁ : Set α
hc₁ : ChainClosure r c₁
h : c₁ ⊆ ⋃₀ s✝
⊢ ⋃₀ s✝ = c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s✝
[PROOFSTEP]
case union s _ ih =>
apply Or.imp_left h.antisymm'
apply by_contradiction
simp only [sUnion_subset_iff, not_or, not_forall, exists_prop, and_imp, forall_exists_index]
intro c₃ hc₃ h₁ h₂
obtain h | h := chainClosure_succ_total_aux hc₁ fun c₄ => ih _ hc₃
· exact h₁ (subset_succChain.trans h)
obtain h' | h' := ih c₃ hc₃ hc₁ h
· exact h₁ h'.subset
· exact h₂ (h'.trans <| subset_sUnion_of_mem hc₃)
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂ c₃ s✝ t : Set α
a b x y : α
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a
c₁ : Set α
hc₁ : ChainClosure r c₁
h : c₁ ⊆ ⋃₀ s
⊢ ⋃₀ s = c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s
[PROOFSTEP]
case union s _ ih =>
apply Or.imp_left h.antisymm'
apply by_contradiction
simp only [sUnion_subset_iff, not_or, not_forall, exists_prop, and_imp, forall_exists_index]
intro c₃ hc₃ h₁ h₂
obtain h | h := chainClosure_succ_total_aux hc₁ fun c₄ => ih _ hc₃
· exact h₁ (subset_succChain.trans h)
obtain h' | h' := ih c₃ hc₃ hc₁ h
· exact h₁ h'.subset
· exact h₂ (h'.trans <| subset_sUnion_of_mem hc₃)
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂ c₃ s✝ t : Set α
a b x y : α
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a
c₁ : Set α
hc₁ : ChainClosure r c₁
h : c₁ ⊆ ⋃₀ s
⊢ ⋃₀ s = c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s
[PROOFSTEP]
apply Or.imp_left h.antisymm'
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂ c₃ s✝ t : Set α
a b x y : α
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a
c₁ : Set α
hc₁ : ChainClosure r c₁
h : c₁ ⊆ ⋃₀ s
⊢ ⋃₀ s ⊆ c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s
[PROOFSTEP]
apply by_contradiction
[GOAL]
case a
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂ c₃ s✝ t : Set α
a b x y : α
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a
c₁ : Set α
hc₁ : ChainClosure r c₁
h : c₁ ⊆ ⋃₀ s
⊢ ¬(⋃₀ s ⊆ c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s) → False
[PROOFSTEP]
simp only [sUnion_subset_iff, not_or, not_forall, exists_prop, and_imp, forall_exists_index]
[GOAL]
case a
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂ c₃ s✝ t : Set α
a b x y : α
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a
c₁ : Set α
hc₁ : ChainClosure r c₁
h : c₁ ⊆ ⋃₀ s
⊢ ∀ (x : Set α), x ∈ s → ¬x ⊆ c₁ → ¬SuccChain r c₁ ⊆ ⋃₀ s → False
[PROOFSTEP]
intro c₃ hc₃ h₁ h₂
[GOAL]
case a
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂ c₃✝ s✝ t : Set α
a b x y : α
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a
c₁ : Set α
hc₁ : ChainClosure r c₁
h : c₁ ⊆ ⋃₀ s
c₃ : Set α
hc₃ : c₃ ∈ s
h₁ : ¬c₃ ⊆ c₁
h₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s
⊢ False
[PROOFSTEP]
obtain h | h := chainClosure_succ_total_aux hc₁ fun c₄ => ih _ hc₃
[GOAL]
case a.inl
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂ c₃✝ s✝ t : Set α
a b x y : α
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a
c₁ : Set α
hc₁ : ChainClosure r c₁
h✝ : c₁ ⊆ ⋃₀ s
c₃ : Set α
hc₃ : c₃ ∈ s
h₁ : ¬c₃ ⊆ c₁
h₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s
h : SuccChain r c₃ ⊆ c₁
⊢ False
[PROOFSTEP]
exact h₁ (subset_succChain.trans h)
[GOAL]
case a.inr
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂ c₃✝ s✝ t : Set α
a b x y : α
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a
c₁ : Set α
hc₁ : ChainClosure r c₁
h✝ : c₁ ⊆ ⋃₀ s
c₃ : Set α
hc₃ : c₃ ∈ s
h₁ : ¬c₃ ⊆ c₁
h₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s
h : c₁ ⊆ c₃
⊢ False
[PROOFSTEP]
obtain h' | h' := ih c₃ hc₃ hc₁ h
[GOAL]
case a.inr.inl
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂ c₃✝ s✝ t : Set α
a b x y : α
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a
c₁ : Set α
hc₁ : ChainClosure r c₁
h✝ : c₁ ⊆ ⋃₀ s
c₃ : Set α
hc₃ : c₃ ∈ s
h₁ : ¬c₃ ⊆ c₁
h₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s
h : c₁ ⊆ c₃
h' : c₃ = c₁
⊢ False
[PROOFSTEP]
exact h₁ h'.subset
[GOAL]
case a.inr.inr
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₂ c₃✝ s✝ t : Set α
a b x y : α
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a
c₁ : Set α
hc₁ : ChainClosure r c₁
h✝ : c₁ ⊆ ⋃₀ s
c₃ : Set α
hc₃ : c₃ ∈ s
h₁ : ¬c₃ ⊆ c₁
h₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s
h : c₁ ⊆ c₃
h' : SuccChain r c₁ ⊆ c₃
⊢ False
[PROOFSTEP]
exact h₂ (h'.trans <| subset_sUnion_of_mem hc₃)
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
hc₁ : ChainClosure r c₁
hc₂ : ChainClosure r c₂
hc : SuccChain r c₂ = c₂
⊢ c₁ ⊆ c₂
[PROOFSTEP]
induction hc₁
[GOAL]
case succ
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
hc₂ : ChainClosure r c₂
hc : SuccChain r c₂ = c₂
s✝ : Set α
a✝ : ChainClosure r s✝
a_ih✝ : s✝ ⊆ c₂
⊢ SuccChain r s✝ ⊆ c₂
case union
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
hc₂ : ChainClosure r c₂
hc : SuccChain r c₂ = c₂
s✝ : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a
a_ih✝ : ∀ (a : Set α), a ∈ s✝ → a ⊆ c₂
⊢ ⋃₀ s✝ ⊆ c₂
[PROOFSTEP]
case succ s₁ hc₁ h => exact (chainClosure_succ_total hc₁ hc₂ h).elim (fun h => h ▸ hc.subset) id
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
hc₂ : ChainClosure r c₂
hc : SuccChain r c₂ = c₂
s₁ : Set α
hc₁ : ChainClosure r s₁
h : s₁ ⊆ c₂
⊢ SuccChain r s₁ ⊆ c₂
[PROOFSTEP]
case succ s₁ hc₁ h => exact (chainClosure_succ_total hc₁ hc₂ h).elim (fun h => h ▸ hc.subset) id
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
hc₂ : ChainClosure r c₂
hc : SuccChain r c₂ = c₂
s₁ : Set α
hc₁ : ChainClosure r s₁
h : s₁ ⊆ c₂
⊢ SuccChain r s₁ ⊆ c₂
[PROOFSTEP]
exact (chainClosure_succ_total hc₁ hc₂ h).elim (fun h => h ▸ hc.subset) id
[GOAL]
case union
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
hc₂ : ChainClosure r c₂
hc : SuccChain r c₂ = c₂
s✝ : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a
a_ih✝ : ∀ (a : Set α), a ∈ s✝ → a ⊆ c₂
⊢ ⋃₀ s✝ ⊆ c₂
[PROOFSTEP]
case union s _ ih => exact sUnion_subset ih
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s✝ t : Set α
a b x y : α
hc₂ : ChainClosure r c₂
hc : SuccChain r c₂ = c₂
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → a ⊆ c₂
⊢ ⋃₀ s ⊆ c₂
[PROOFSTEP]
case union s _ ih => exact sUnion_subset ih
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s✝ t : Set α
a b x y : α
hc₂ : ChainClosure r c₂
hc : SuccChain r c₂ = c₂
s : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a
ih : ∀ (a : Set α), a ∈ s → a ⊆ c₂
⊢ ⋃₀ s ⊆ c₂
[PROOFSTEP]
exact sUnion_subset ih
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
hc : ChainClosure r c
⊢ IsChain r c
[PROOFSTEP]
induction hc
[GOAL]
case succ
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
s✝ : Set α
a✝ : ChainClosure r s✝
a_ih✝ : IsChain r s✝
⊢ IsChain r (SuccChain r s✝)
case union
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
s✝ : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a
a_ih✝ : ∀ (a : Set α), a ∈ s✝ → IsChain r a
⊢ IsChain r (⋃₀ s✝)
[PROOFSTEP]
case succ c _ h => exact h.succ
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c✝ c₁ c₂ c₃ s t : Set α
a b x y : α
c : Set α
a✝ : ChainClosure r c
h : IsChain r c
⊢ IsChain r (SuccChain r c)
[PROOFSTEP]
case succ c _ h => exact h.succ
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c✝ c₁ c₂ c₃ s t : Set α
a b x y : α
c : Set α
a✝ : ChainClosure r c
h : IsChain r c
⊢ IsChain r (SuccChain r c)
[PROOFSTEP]
exact h.succ
[GOAL]
case union
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s t : Set α
a b x y : α
s✝ : Set (Set α)
a✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a
a_ih✝ : ∀ (a : Set α), a ∈ s✝ → IsChain r a
⊢ IsChain r (⋃₀ s✝)
[PROOFSTEP]
case union s hs h =>
exact fun c₁ ⟨t₁, ht₁, (hc₁ : c₁ ∈ t₁)⟩ c₂ ⟨t₂, ht₂, (hc₂ : c₂ ∈ t₂)⟩ hneq =>
((hs _ ht₁).total <| hs _ ht₂).elim (fun ht => h t₂ ht₂ (ht hc₁) hc₂ hneq) fun ht => h t₁ ht₁ hc₁ (ht hc₂) hneq
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s✝ t : Set α
a b x y : α
s : Set (Set α)
hs : ∀ (a : Set α), a ∈ s → ChainClosure r a
h : ∀ (a : Set α), a ∈ s → IsChain r a
⊢ IsChain r (⋃₀ s)
[PROOFSTEP]
case union s hs h =>
exact fun c₁ ⟨t₁, ht₁, (hc₁ : c₁ ∈ t₁)⟩ c₂ ⟨t₂, ht₂, (hc₂ : c₂ ∈ t₂)⟩ hneq =>
((hs _ ht₁).total <| hs _ ht₂).elim (fun ht => h t₂ ht₂ (ht hc₁) hc₂ hneq) fun ht => h t₁ ht₁ hc₁ (ht hc₂) hneq
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c c₁ c₂ c₃ s✝ t : Set α
a b x y : α
s : Set (Set α)
hs : ∀ (a : Set α), a ∈ s → ChainClosure r a
h : ∀ (a : Set α), a ∈ s → IsChain r a
⊢ IsChain r (⋃₀ s)
[PROOFSTEP]
exact fun c₁ ⟨t₁, ht₁, (hc₁ : c₁ ∈ t₁)⟩ c₂ ⟨t₂, ht₂, (hc₂ : c₂ ∈ t₂)⟩ hneq =>
((hs _ ht₁).total <| hs _ ht₂).elim (fun ht => h t₂ ht₂ (ht hc₁) hc₂ hneq) fun ht => h t₁ ht₁ hc₁ (ht hc₂) hneq
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : LE α
s✝ t✝ : Flag α
a : α
s t : Flag α
h : s.carrier = t.carrier
⊢ s = t
[PROOFSTEP]
cases s
[GOAL]
case mk
α : Type u_1
β : Type u_2
inst✝ : LE α
s t✝ : Flag α
a : α
t : Flag α
carrier✝ : Set α
Chain'✝ : IsChain (fun x x_1 => x ≤ x_1) carrier✝
max_chain'✝ : ∀ ⦃s : Set α⦄, IsChain (fun x x_1 => x ≤ x_1) s → carrier✝ ⊆ s → carrier✝ = s
h : { carrier := carrier✝, Chain' := Chain'✝, max_chain' := max_chain'✝ }.carrier = t.carrier
⊢ { carrier := carrier✝, Chain' := Chain'✝, max_chain' := max_chain'✝ } = t
[PROOFSTEP]
cases t
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝ : LE α
s t : Flag α
a : α
carrier✝¹ : Set α
Chain'✝¹ : IsChain (fun x x_1 => x ≤ x_1) carrier✝¹
max_chain'✝¹ : ∀ ⦃s : Set α⦄, IsChain (fun x x_1 => x ≤ x_1) s → carrier✝¹ ⊆ s → carrier✝¹ = s
carrier✝ : Set α
Chain'✝ : IsChain (fun x x_1 => x ≤ x_1) carrier✝
max_chain'✝ : ∀ ⦃s : Set α⦄, IsChain (fun x x_1 => x ≤ x_1) s → carrier✝ ⊆ s → carrier✝ = s
h :
{ carrier := carrier✝¹, Chain' := Chain'✝¹, max_chain' := max_chain'✝¹ }.carrier =
{ carrier := carrier✝, Chain' := Chain'✝, max_chain' := max_chain'✝ }.carrier
⊢ { carrier := carrier✝¹, Chain' := Chain'✝¹, max_chain' := max_chain'✝¹ } =
{ carrier := carrier✝, Chain' := Chain'✝, max_chain' := max_chain'✝ }
[PROOFSTEP]
congr
| {"mathlib_filename": "Mathlib.Order.Chain", "llama_tokens": 13383} |
[GOAL]
a₀ a₁ a₂ : Type u
i : ℕ
⊢ lift #(Sequence₂ a₀ a₁ a₂ i) = #(Sequence₂ (ULift a₀) (ULift a₁) (ULift a₂) i)
[PROOFSTEP]
rcases i with (_ | _ | _ | i)
[GOAL]
case zero
a₀ a₁ a₂ : Type u
⊢ lift #(Sequence₂ a₀ a₁ a₂ Nat.zero) = #(Sequence₂ (ULift a₀) (ULift a₁) (ULift a₂) Nat.zero)
[PROOFSTEP]
simp only [Sequence₂, mk_uLift, mk_fintype, Fintype.card_of_isEmpty, Nat.cast_zero, lift_zero]
[GOAL]
case succ.zero
a₀ a₁ a₂ : Type u
⊢ lift #(Sequence₂ a₀ a₁ a₂ (Nat.succ Nat.zero)) = #(Sequence₂ (ULift a₀) (ULift a₁) (ULift a₂) (Nat.succ Nat.zero))
[PROOFSTEP]
simp only [Sequence₂, mk_uLift, mk_fintype, Fintype.card_of_isEmpty, Nat.cast_zero, lift_zero]
[GOAL]
case succ.succ.zero
a₀ a₁ a₂ : Type u
⊢ lift #(Sequence₂ a₀ a₁ a₂ (Nat.succ (Nat.succ Nat.zero))) =
#(Sequence₂ (ULift a₀) (ULift a₁) (ULift a₂) (Nat.succ (Nat.succ Nat.zero)))
[PROOFSTEP]
simp only [Sequence₂, mk_uLift, mk_fintype, Fintype.card_of_isEmpty, Nat.cast_zero, lift_zero]
[GOAL]
case succ.succ.succ
a₀ a₁ a₂ : Type u
i : ℕ
⊢ lift #(Sequence₂ a₀ a₁ a₂ (Nat.succ (Nat.succ (Nat.succ i)))) =
#(Sequence₂ (ULift a₀) (ULift a₁) (ULift a₂) (Nat.succ (Nat.succ (Nat.succ i))))
[PROOFSTEP]
simp only [Sequence₂, mk_uLift, mk_fintype, Fintype.card_of_isEmpty, Nat.cast_zero, lift_zero]
[GOAL]
a₀ a₁ a₂ : Type u
⊢ (sum fun i => #(Sequence₂ a₀ a₁ a₂ i)) = #a₀ + #a₁ + #a₂
[PROOFSTEP]
rw [sum_nat_eq_add_sum_succ, sum_nat_eq_add_sum_succ, sum_nat_eq_add_sum_succ]
[GOAL]
a₀ a₁ a₂ : Type u
⊢ #(Sequence₂ a₀ a₁ a₂ 0) +
(#(Sequence₂ a₀ a₁ a₂ (0 + 1)) +
(#(Sequence₂ a₀ a₁ a₂ (0 + 1 + 1)) + sum fun i => #(Sequence₂ a₀ a₁ a₂ (i + 1 + 1 + 1)))) =
#a₀ + #a₁ + #a₂
[PROOFSTEP]
simp [add_assoc, Sequence₂]
[GOAL]
L : Language
L' : Language
⊢ card L = (sum fun l => lift #(Functions L l)) + sum fun l => lift #(Relations L l)
[PROOFSTEP]
simp [card, Symbols]
[GOAL]
L : Language
L' : Language
⊢ card Language.empty = 0
[PROOFSTEP]
simp [card_eq_card_functions_add_card_relations]
[GOAL]
L : Language
L' : Language
⊢ IsEmpty (Symbols Language.empty)
[PROOFSTEP]
simp only [Language.Symbols, isEmpty_sum, isEmpty_sigma]
[GOAL]
L : Language
L' : Language
⊢ (∀ (a : ℕ), IsEmpty (Functions Language.empty a)) ∧ ∀ (a : ℕ), IsEmpty (Relations Language.empty a)
[PROOFSTEP]
exact ⟨fun _ => inferInstance, fun _ => inferInstance⟩
[GOAL]
L : Language
L' : Language
i : ℕ
⊢ #(Functions (Language.sum L L') i) = lift #(Functions L i) + lift #(Functions L' i)
[PROOFSTEP]
simp [Language.sum]
[GOAL]
L : Language
L' : Language
i : ℕ
⊢ #(Relations (Language.sum L L') i) = lift #(Relations L i) + lift #(Relations L' i)
[PROOFSTEP]
simp [Language.sum]
[GOAL]
L : Language
L' : Language
⊢ card (Language.sum L L') = lift (card L) + lift (card L')
[PROOFSTEP]
simp only [card_eq_card_functions_add_card_relations, card_functions_sum, card_relations_sum, sum_add_distrib',
lift_add, lift_sum, lift_lift]
[GOAL]
L : Language
L' : Language
⊢ ((sum fun i => lift #(Functions L i)) + sum fun i => lift #(Functions L' i)) +
((sum fun i => lift #(Relations L i)) + sum fun i => lift #(Relations L' i)) =
((sum fun i => lift #(Functions L i)) + sum fun i => lift #(Relations L i)) +
((sum fun i => lift #(Functions L' i)) + sum fun i => lift #(Relations L' i))
[PROOFSTEP]
simp only [add_assoc, add_comm (Cardinal.sum fun i => (#(L'.Functions i)).lift)]
[GOAL]
L : Language
L' : Language
c f₁ f₂ : Type u
r₁ r₂ : Type v
⊢ card (Language.mk₂ c f₁ f₂ r₁ r₂) = lift #c + lift #f₁ + lift #f₂ + lift #r₁ + lift #r₂
[PROOFSTEP]
simp [card_eq_card_functions_add_card_relations, add_assoc]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
f g : M →[L] N
h : f.toFun = g.toFun
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
g : M →[L] N
toFun✝ : M → N
map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), toFun✝ (funMap f x) = funMap f (toFun✝ ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r x → RelMap r (toFun✝ ∘ x)
h : (mk toFun✝).toFun = g.toFun
⊢ mk toFun✝ = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
toFun✝¹ : M → N
map_fun'✝¹ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), toFun✝¹ (funMap f x) = funMap f (toFun✝¹ ∘ x)
map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r x → RelMap r (toFun✝¹ ∘ x)
toFun✝ : M → N
map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), toFun✝ (funMap f x) = funMap f (toFun✝ ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r x → RelMap r (toFun✝ ∘ x)
h : (mk toFun✝¹).toFun = (mk toFun✝).toFun
⊢ mk toFun✝¹ = mk toFun✝
[PROOFSTEP]
cases h
[GOAL]
case mk.mk.refl
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
toFun✝ : M → N
map_fun'✝¹ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), toFun✝ (funMap f x) = funMap f (toFun✝ ∘ x)
map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r x → RelMap r (toFun✝ ∘ x)
map_fun'✝ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), toFun✝ (funMap f x) = funMap f (toFun✝ ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r x → RelMap r (toFun✝ ∘ x)
⊢ mk toFun✝ = mk toFun✝
[PROOFSTEP]
rfl
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N →[L] P
hmn : M →[L] N
n✝ : ℕ
x✝¹ : Functions L n✝
x✝ : Fin n✝ → M
⊢ (↑hnp ∘ ↑hmn) (funMap x✝¹ x✝) = funMap x✝¹ ((↑hnp ∘ ↑hmn) ∘ x✝)
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N →[L] P
hmn : M →[L] N
n✝ : ℕ
x✝¹ : Functions L n✝
x✝ : Fin n✝ → M
⊢ funMap x✝¹ (↑hnp ∘ ↑hmn ∘ x✝) = funMap x✝¹ ((↑hnp ∘ ↑hmn) ∘ x✝)
[PROOFSTEP]
rfl
-- Porting note: should be done by autoparam?
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
f g : M ↪[L] N
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
g : M ↪[L] N
toEmbedding✝ : M ↪ N
map_fun'✝ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x
h : (fun f => f.toFun) (mk toEmbedding✝) = (fun f => f.toFun) g
⊢ mk toEmbedding✝ = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
toEmbedding✝¹ : M ↪ N
map_fun'✝¹ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝¹ (funMap f x) = funMap f (toEmbedding✝¹.toFun ∘ x)
map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝¹.toFun ∘ x) ↔ RelMap r x
toEmbedding✝ : M ↪ N
map_fun'✝ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x
h : (fun f => f.toFun) (mk toEmbedding✝¹) = (fun f => f.toFun) (mk toEmbedding✝)
⊢ mk toEmbedding✝¹ = mk toEmbedding✝
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toEmbedding
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
toEmbedding✝¹ : M ↪ N
map_fun'✝¹ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝¹ (funMap f x) = funMap f (toEmbedding✝¹.toFun ∘ x)
map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝¹.toFun ∘ x) ↔ RelMap r x
toEmbedding✝ : M ↪ N
map_fun'✝ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x
h : (fun f => f.toFun) (mk toEmbedding✝¹) = (fun f => f.toFun) (mk toEmbedding✝)
⊢ toEmbedding✝¹ = toEmbedding✝
[PROOFSTEP]
ext x
[GOAL]
case mk.mk.e_toEmbedding.h
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
toEmbedding✝¹ : M ↪ N
map_fun'✝¹ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝¹ (funMap f x) = funMap f (toEmbedding✝¹.toFun ∘ x)
map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝¹.toFun ∘ x) ↔ RelMap r x
toEmbedding✝ : M ↪ N
map_fun'✝ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x
h : (fun f => f.toFun) (mk toEmbedding✝¹) = (fun f => f.toFun) (mk toEmbedding✝)
x : M
⊢ ↑toEmbedding✝¹ x = ↑toEmbedding✝ x
[PROOFSTEP]
exact Function.funext_iff.1 h x
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
f g : M ↪[L] N
h : ↑f = ↑g
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
g : M ↪[L] N
toEmbedding✝ : M ↪ N
map_fun'✝ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x
h : ↑(mk toEmbedding✝) = ↑g
⊢ mk toEmbedding✝ = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
toEmbedding✝¹ : M ↪ N
map_fun'✝¹ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝¹ (funMap f x) = funMap f (toEmbedding✝¹.toFun ∘ x)
map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝¹.toFun ∘ x) ↔ RelMap r x
toEmbedding✝ : M ↪ N
map_fun'✝ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x
h : ↑(mk toEmbedding✝¹) = ↑(mk toEmbedding✝)
⊢ mk toEmbedding✝¹ = mk toEmbedding✝
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toEmbedding
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
toEmbedding✝¹ : M ↪ N
map_fun'✝¹ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝¹ (funMap f x) = funMap f (toEmbedding✝¹.toFun ∘ x)
map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝¹.toFun ∘ x) ↔ RelMap r x
toEmbedding✝ : M ↪ N
map_fun'✝ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x
h : ↑(mk toEmbedding✝¹) = ↑(mk toEmbedding✝)
⊢ toEmbedding✝¹ = toEmbedding✝
[PROOFSTEP]
ext x
[GOAL]
case mk.mk.e_toEmbedding.h
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
toEmbedding✝¹ : M ↪ N
map_fun'✝¹ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝¹ (funMap f x) = funMap f (toEmbedding✝¹.toFun ∘ x)
map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝¹.toFun ∘ x) ↔ RelMap r x
toEmbedding✝ : M ↪ N
map_fun'✝ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun toEmbedding✝ (funMap f x) = funMap f (toEmbedding✝.toFun ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEmbedding✝.toFun ∘ x) ↔ RelMap r x
h : ↑(mk toEmbedding✝¹) = ↑(mk toEmbedding✝)
x : M
⊢ ↑toEmbedding✝¹ x = ↑toEmbedding✝ x
[PROOFSTEP]
exact Function.funext_iff.1 h x
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝⁴ : Structure L M
inst✝³ : Structure L N
P : Type u_1
inst✝² : Structure L P
Q : Type u_2
inst✝¹ : Structure L Q
inst✝ : IsAlgebraic L
f : M →[L] N
hf : Function.Injective ↑f
⊢ toHom (ofInjective hf) = f
[PROOFSTEP]
ext
[GOAL]
case h
L : Language
L' : Language
M : Type w
N : Type w'
inst✝⁴ : Structure L M
inst✝³ : Structure L N
P : Type u_1
inst✝² : Structure L P
Q : Type u_2
inst✝¹ : Structure L Q
inst✝ : IsAlgebraic L
f : M →[L] N
hf : Function.Injective ↑f
x✝ : M
⊢ ↑(toHom (ofInjective hf)) x✝ = ↑f x✝
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N ↪[L] P
hmn : M ↪[L] N
⊢ ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Function.Embedding.toFun { toFun := ↑hnp ∘ ↑hmn, inj' := (_ : Function.Injective (↑hnp ∘ ↑hmn)) } (funMap f x) =
funMap f ({ toFun := ↑hnp ∘ ↑hmn, inj' := (_ : Function.Injective (↑hnp ∘ ↑hmn)) }.toFun ∘ x)
[PROOFSTEP]
intros
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N ↪[L] P
hmn : M ↪[L] N
n✝ : ℕ
f✝ : Functions L n✝
x✝ : Fin n✝ → M
⊢ Function.Embedding.toFun { toFun := ↑hnp ∘ ↑hmn, inj' := (_ : Function.Injective (↑hnp ∘ ↑hmn)) } (funMap f✝ x✝) =
funMap f✝ ({ toFun := ↑hnp ∘ ↑hmn, inj' := (_ : Function.Injective (↑hnp ∘ ↑hmn)) }.toFun ∘ x✝)
[PROOFSTEP]
simp only [Function.comp_apply, map_fun]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N ↪[L] P
hmn : M ↪[L] N
n✝ : ℕ
f✝ : Functions L n✝
x✝ : Fin n✝ → M
⊢ funMap f✝ (↑hnp ∘ ↑hmn ∘ x✝) = funMap f✝ ((↑hnp ∘ ↑hmn) ∘ x✝)
[PROOFSTEP]
trivial
-- Porting note: should be done by autoparam?
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N ↪[L] P
hmn : M ↪[L] N
⊢ ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M),
RelMap r ({ toFun := ↑hnp ∘ ↑hmn, inj' := (_ : Function.Injective (↑hnp ∘ ↑hmn)) }.toFun ∘ x) ↔ RelMap r x
[PROOFSTEP]
intros
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N ↪[L] P
hmn : M ↪[L] N
n✝ : ℕ
r✝ : Relations L n✝
x✝ : Fin n✝ → M
⊢ RelMap r✝ ({ toFun := ↑hnp ∘ ↑hmn, inj' := (_ : Function.Injective (↑hnp ∘ ↑hmn)) }.toFun ∘ x✝) ↔ RelMap r✝ x✝
[PROOFSTEP]
rw [Function.comp.assoc, map_rel, map_rel]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N ↪[L] P
hmn : M ↪[L] N
⊢ toHom (comp hnp hmn) = Hom.comp (toHom hnp) (toHom hmn)
[PROOFSTEP]
ext
[GOAL]
case h
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N ↪[L] P
hmn : M ↪[L] N
x✝ : M
⊢ ↑(toHom (comp hnp hmn)) x✝ = ↑(Hom.comp (toHom hnp) (toHom hmn)) x✝
[PROOFSTEP]
simp only [coe_toHom, comp_apply, Hom.comp_apply]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
f g : M ≃[L] N
h₁ : (fun f => f.toFun) f = (fun f => f.toFun) g
h₂ : (fun f => f.invFun) f = (fun f => f.invFun) g
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
g : M ≃[L] N
toEquiv✝ : M ≃ N
map_fun'✝ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝ (funMap f x) = funMap f (toEquiv✝.toFun ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝.toFun ∘ x) ↔ RelMap r x
h₁ : (fun f => f.toFun) (mk toEquiv✝) = (fun f => f.toFun) g
h₂ : (fun f => f.invFun) (mk toEquiv✝) = (fun f => f.invFun) g
⊢ mk toEquiv✝ = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
toEquiv✝¹ : M ≃ N
map_fun'✝¹ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝¹ (funMap f x) = funMap f (toEquiv✝¹.toFun ∘ x)
map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝¹.toFun ∘ x) ↔ RelMap r x
toEquiv✝ : M ≃ N
map_fun'✝ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝ (funMap f x) = funMap f (toEquiv✝.toFun ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝.toFun ∘ x) ↔ RelMap r x
h₁ : (fun f => f.toFun) (mk toEquiv✝¹) = (fun f => f.toFun) (mk toEquiv✝)
h₂ : (fun f => f.invFun) (mk toEquiv✝¹) = (fun f => f.invFun) (mk toEquiv✝)
⊢ mk toEquiv✝¹ = mk toEquiv✝
[PROOFSTEP]
simp only [mk.injEq]
[GOAL]
case mk.mk
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
toEquiv✝¹ : M ≃ N
map_fun'✝¹ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝¹ (funMap f x) = funMap f (toEquiv✝¹.toFun ∘ x)
map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝¹.toFun ∘ x) ↔ RelMap r x
toEquiv✝ : M ≃ N
map_fun'✝ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝ (funMap f x) = funMap f (toEquiv✝.toFun ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝.toFun ∘ x) ↔ RelMap r x
h₁ : (fun f => f.toFun) (mk toEquiv✝¹) = (fun f => f.toFun) (mk toEquiv✝)
h₂ : (fun f => f.invFun) (mk toEquiv✝¹) = (fun f => f.invFun) (mk toEquiv✝)
⊢ toEquiv✝¹ = toEquiv✝
[PROOFSTEP]
ext x
[GOAL]
case mk.mk.H
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
toEquiv✝¹ : M ≃ N
map_fun'✝¹ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝¹ (funMap f x) = funMap f (toEquiv✝¹.toFun ∘ x)
map_rel'✝¹ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝¹.toFun ∘ x) ↔ RelMap r x
toEquiv✝ : M ≃ N
map_fun'✝ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), Equiv.toFun toEquiv✝ (funMap f x) = funMap f (toEquiv✝.toFun ∘ x)
map_rel'✝ : ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M), RelMap r (toEquiv✝.toFun ∘ x) ↔ RelMap r x
h₁ : (fun f => f.toFun) (mk toEquiv✝¹) = (fun f => f.toFun) (mk toEquiv✝)
h₂ : (fun f => f.invFun) (mk toEquiv✝¹) = (fun f => f.invFun) (mk toEquiv✝)
x : M
⊢ ↑toEquiv✝¹ x = ↑toEquiv✝ x
[PROOFSTEP]
exact Function.funext_iff.1 h₁ x
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
f : M ≃[L] N
src✝ : N ≃ M := f.symm
n : ℕ
f' : Functions L n
x : Fin n → N
⊢ Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(funMap f' x) =
funMap f'
({ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.toFun ∘
x)
[PROOFSTEP]
simp only [Equiv.toFun_as_coe]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
f : M ≃[L] N
src✝ : N ≃ M := f.symm
n : ℕ
f' : Functions L n
x : Fin n → N
⊢ ↑f.symm (funMap f' x) = funMap f' (↑f.symm ∘ x)
[PROOFSTEP]
rw [Equiv.symm_apply_eq]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
f : M ≃[L] N
src✝ : N ≃ M := f.symm
n : ℕ
f' : Functions L n
x : Fin n → N
⊢ funMap f' x = ↑f.toEquiv (funMap f' (↑f.symm ∘ x))
[PROOFSTEP]
refine' Eq.trans _ (f.map_fun' f' (f.toEquiv.symm ∘ x)).symm
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
f : M ≃[L] N
src✝ : N ≃ M := f.symm
n : ℕ
f' : Functions L n
x : Fin n → N
⊢ funMap f' x = funMap f' (f.toFun ∘ ↑f.symm ∘ x)
[PROOFSTEP]
rw [← Function.comp.assoc, Equiv.toFun_as_coe, Equiv.self_comp_symm, Function.comp.left_id]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
f : M ≃[L] N
src✝ : N ≃ M := f.symm
n : ℕ
r : Relations L n
x : Fin n → N
⊢ RelMap r
({ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.toFun ∘
x) ↔
RelMap r x
[PROOFSTEP]
simp only [Equiv.toFun_as_coe]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
f : M ≃[L] N
src✝ : N ≃ M := f.symm
n : ℕ
r : Relations L n
x : Fin n → N
⊢ RelMap r (↑f.symm ∘ x) ↔ RelMap r x
[PROOFSTEP]
refine' (f.map_rel' r (f.toEquiv.symm ∘ x)).symm.trans _
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
f : M ≃[L] N
src✝ : N ≃ M := f.symm
n : ℕ
r : Relations L n
x : Fin n → N
⊢ RelMap r (f.toFun ∘ ↑f.symm ∘ x) ↔ RelMap r x
[PROOFSTEP]
rw [← Function.comp.assoc, Equiv.toFun_as_coe, Equiv.self_comp_symm, Function.comp.left_id]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
x : M
⊢ ↑(refl L M) x = x
[PROOFSTEP]
simp [refl]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
x : M
⊢ ↑(mk (_root_.Equiv.refl M)) x = x
[PROOFSTEP]
rfl
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N ≃[L] P
hmn : M ≃[L] N
src✝ : M ≃ P := hmn.trans hnp.toEquiv
⊢ ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
Equiv.toFun
{ toFun := ↑hnp ∘ ↑hmn, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(funMap f x) =
funMap f
({ toFun := ↑hnp ∘ ↑hmn, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.toFun ∘
x)
[PROOFSTEP]
intros
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N ≃[L] P
hmn : M ≃[L] N
src✝ : M ≃ P := hmn.trans hnp.toEquiv
n✝ : ℕ
f✝ : Functions L n✝
x✝ : Fin n✝ → M
⊢ Equiv.toFun
{ toFun := ↑hnp ∘ ↑hmn, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(funMap f✝ x✝) =
funMap f✝
({ toFun := ↑hnp ∘ ↑hmn, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.toFun ∘
x✝)
[PROOFSTEP]
simp only [Function.comp_apply, map_fun]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N ≃[L] P
hmn : M ≃[L] N
src✝ : M ≃ P := hmn.trans hnp.toEquiv
n✝ : ℕ
f✝ : Functions L n✝
x✝ : Fin n✝ → M
⊢ funMap f✝ (↑hnp ∘ ↑hmn ∘ x✝) = funMap f✝ ((↑hnp ∘ ↑hmn) ∘ x✝)
[PROOFSTEP]
trivial
-- Porting note: should be done by autoparam?
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N ≃[L] P
hmn : M ≃[L] N
src✝ : M ≃ P := hmn.trans hnp.toEquiv
⊢ ∀ {n : ℕ} (r : Relations L n) (x : Fin n → M),
RelMap r
({ toFun := ↑hnp ∘ ↑hmn, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.toFun ∘
x) ↔
RelMap r x
[PROOFSTEP]
intros
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
hnp : N ≃[L] P
hmn : M ≃[L] N
src✝ : M ≃ P := hmn.trans hnp.toEquiv
n✝ : ℕ
r✝ : Relations L n✝
x✝ : Fin n✝ → M
⊢ RelMap r✝
({ toFun := ↑hnp ∘ ↑hmn, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.toFun ∘
x✝) ↔
RelMap r✝ x✝
[PROOFSTEP]
rw [Function.comp.assoc, map_rel, map_rel]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
a : Structure Language.empty M
⊢ a = default
[PROOFSTEP]
ext _ f
[GOAL]
case funMap.h.h.h
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
a : Structure Language.empty M
x✝¹ : ℕ
f : Functions Language.empty x✝¹
x✝ : Fin x✝¹ → M
⊢ funMap f x✝ = funMap f x✝
[PROOFSTEP]
exact Empty.elim f
[GOAL]
case RelMap.h.h.h.a
L : Language
L' : Language
M : Type w
N : Type w'
inst✝³ : Structure L M
inst✝² : Structure L N
P : Type u_1
inst✝¹ : Structure L P
Q : Type u_2
inst✝ : Structure L Q
a : Structure Language.empty M
x✝¹ : ℕ
f : Relations Language.empty x✝¹
x✝ : Fin x✝¹ → M
⊢ RelMap f x✝ ↔ RelMap f x✝
[PROOFSTEP]
exact Empty.elim f
[GOAL]
L : Language
M : Type u_1
N : Type u_2
inst✝ : Structure L M
e : M ≃ N
⊢ M ≃[L] N
[PROOFSTEP]
letI : L.Structure N := inducedStructure e
[GOAL]
L : Language
M : Type u_1
N : Type u_2
inst✝ : Structure L M
e : M ≃ N
this : Structure L N := inducedStructure e
⊢ M ≃[L] N
[PROOFSTEP]
exact
{ e with
map_fun' := @fun n f x => by simp [← Function.comp.assoc e.symm e x]
map_rel' := @fun n r x => by simp [← Function.comp.assoc e.symm e x] }
[GOAL]
L : Language
M : Type u_1
N : Type u_2
inst✝ : Structure L M
e : M ≃ N
this : Structure L N := inducedStructure e
n : ℕ
f : Functions L n
x : Fin n → M
⊢ toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
(funMap f x) =
funMap f
({ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }.toFun ∘
x)
[PROOFSTEP]
simp [← Function.comp.assoc e.symm e x]
[GOAL]
L : Language
M : Type u_1
N : Type u_2
inst✝ : Structure L M
e : M ≃ N
this : Structure L N := inducedStructure e
n : ℕ
r : Relations L n
x : Fin n → M
⊢ RelMap r
({ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }.toFun ∘
x) ↔
RelMap r x
[PROOFSTEP]
simp [← Function.comp.assoc e.symm e x]
[GOAL]
L : Language
M : Type u_1
N : Type u_2
inst✝ : Structure L M
e : M ≃ N
⊢ (a : N) → (fun x => M) a
[PROOFSTEP]
letI : L.Structure N := inducedStructure e
[GOAL]
L : Language
M : Type u_1
N : Type u_2
inst✝ : Structure L M
e : M ≃ N
this : Structure L N := inducedStructure e
⊢ (a : N) → (fun x => M) a
[PROOFSTEP]
exact FunLike.coe (@inducedStructureEquiv L M N _ e).symm
| {"mathlib_filename": "Mathlib.ModelTheory.Basic", "llama_tokens": 14990} |
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
⊢ Linear k (FdRep k G)
[PROOFSTEP]
infer_instance
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
V : FdRep k G
⊢ AddCommGroup (CoeSort.coe V)
[PROOFSTEP]
change AddCommGroup ((forget₂ (FdRep k G) (FGModuleCat k)).obj V).obj
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
V : FdRep k G
⊢ AddCommGroup ↑((forget₂ (FdRep k G) (FGModuleCat k)).obj V).obj
[PROOFSTEP]
infer_instance
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
V : FdRep k G
⊢ Module k (CoeSort.coe V)
[PROOFSTEP]
change Module k ((forget₂ (FdRep k G) (FGModuleCat k)).obj V).obj
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
V : FdRep k G
⊢ Module k ↑((forget₂ (FdRep k G) (FGModuleCat k)).obj V).obj
[PROOFSTEP]
infer_instance
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
V : FdRep k G
⊢ FiniteDimensional k (CoeSort.coe V)
[PROOFSTEP]
change FiniteDimensional k ((forget₂ (FdRep k G) (FGModuleCat k)).obj V)
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
V : FdRep k G
⊢ FiniteDimensional k ↑((forget₂ (FdRep k G) (FGModuleCat k)).obj V)
[PROOFSTEP]
infer_instance
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
V W : FdRep k G
i : V ≅ W
g : G
⊢ ↑(ρ W) g = ↑(LinearEquiv.conj (isoToLinearEquiv i)) (↑(ρ V) g)
[PROOFSTEP]
erw [FdRep.isoToLinearEquiv, ← FGModuleCat.Iso.conj_eq_conj, Iso.conj_apply]
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
V W : FdRep k G
i : V ≅ W
g : G
⊢ ↑(ρ W) g =
((Action.forget (FGModuleCat k) (MonCat.of G)).mapIso i).inv ≫
↑(ρ V) g ≫ ((Action.forget (FGModuleCat k) (MonCat.of G)).mapIso i).hom
[PROOFSTEP]
rw [Iso.eq_inv_comp ((Action.forget (FGModuleCat k) (MonCat.of G)).mapIso i)]
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
V W : FdRep k G
i : V ≅ W
g : G
⊢ ((Action.forget (FGModuleCat k) (MonCat.of G)).mapIso i).hom ≫ ↑(ρ W) g =
↑(ρ V) g ≫ ((Action.forget (FGModuleCat k) (MonCat.of G)).mapIso i).hom
[PROOFSTEP]
exact (i.hom.comm g).symm
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
V : FdRep k G
⊢ Rep.ρ ((forget₂ (FdRep k G) (Rep k G)).obj V) = ρ V
[PROOFSTEP]
ext g v
[GOAL]
case h.h
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
V : FdRep k G
g : G
v : CoeSort.coe ((forget₂ (FdRep k G) (Rep k G)).obj V)
⊢ ↑(↑(Rep.ρ ((forget₂ (FdRep k G) (Rep k G)).obj V)) g) v = ↑(↑(ρ V) g) v
[PROOFSTEP]
rfl
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
⊢ MonoidalCategory (FdRep k G)
[PROOFSTEP]
infer_instance
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
⊢ MonoidalPreadditive (FdRep k G)
[PROOFSTEP]
infer_instance
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
⊢ MonoidalLinear k (FdRep k G)
[PROOFSTEP]
infer_instance
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
⊢ HasKernels (FdRep k G)
[PROOFSTEP]
infer_instance
-- Verify that Schur's lemma applies out of the box.
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
X Y : FdRep k G
x✝ : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y
⊢ (fun f => Action.Hom.mk ((forget₂ (FGModuleCat k) (ModuleCat k)).map f.hom))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => Action.Hom.mk f.hom,
map_add' :=
(_ :
∀ (x x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
(fun f => Action.Hom.mk f.hom) (x + x_1) = (fun f => Action.Hom.mk f.hom) (x + x_1)) },
map_smul' :=
(_ :
∀ (x : k) (x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
AddHom.toFun
{ toFun := fun f => Action.Hom.mk f.hom,
map_add' :=
(_ :
∀ (x x_2 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
(fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) }
(x • x_1) =
AddHom.toFun
{ toFun := fun f => Action.Hom.mk f.hom,
map_add' :=
(_ :
∀ (x x_2 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
(fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) }
(x • x_1)) }.toAddHom
x✝) =
x✝
[PROOFSTEP]
ext
[GOAL]
case h.h
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
X Y : FdRep k G
x✝¹ : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y
x✝ : ↑((forget₂ (FdRep k G) (Rep k G)).obj X).V
⊢ ↑((fun f => Action.Hom.mk ((forget₂ (FGModuleCat k) (ModuleCat k)).map f.hom))
(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => Action.Hom.mk f.hom,
map_add' :=
(_ :
∀ (x x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
(fun f => Action.Hom.mk f.hom) (x + x_1) = (fun f => Action.Hom.mk f.hom) (x + x_1)) },
map_smul' :=
(_ :
∀ (x : k) (x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
AddHom.toFun
{ toFun := fun f => Action.Hom.mk f.hom,
map_add' :=
(_ :
∀
(x x_2 :
(forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
(fun f => Action.Hom.mk f.hom) (x + x_2) =
(fun f => Action.Hom.mk f.hom) (x + x_2)) }
(x • x_1) =
AddHom.toFun
{ toFun := fun f => Action.Hom.mk f.hom,
map_add' :=
(_ :
∀
(x x_2 :
(forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
(fun f => Action.Hom.mk f.hom) (x + x_2) =
(fun f => Action.Hom.mk f.hom) (x + x_2)) }
(x • x_1)) }.toAddHom
x✝¹)).hom
x✝ =
↑x✝¹.hom x✝
[PROOFSTEP]
rfl
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
X Y : FdRep k G
x✝ : X ⟶ Y
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun f => Action.Hom.mk f.hom,
map_add' :=
(_ :
∀ (x x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
(fun f => Action.Hom.mk f.hom) (x + x_1) = (fun f => Action.Hom.mk f.hom) (x + x_1)) },
map_smul' :=
(_ :
∀ (x : k) (x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
AddHom.toFun
{ toFun := fun f => Action.Hom.mk f.hom,
map_add' :=
(_ :
∀ (x x_2 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
(fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) }
(x • x_1) =
AddHom.toFun
{ toFun := fun f => Action.Hom.mk f.hom,
map_add' :=
(_ :
∀ (x x_2 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
(fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) }
(x • x_1)) }.toAddHom
((fun f => Action.Hom.mk ((forget₂ (FGModuleCat k) (ModuleCat k)).map f.hom)) x✝) =
x✝
[PROOFSTEP]
ext
[GOAL]
case h.w
k G : Type u
inst✝¹ : Field k
inst✝ : Monoid G
X Y : FdRep k G
x✝¹ : X ⟶ Y
x✝ : (forget (FGModuleCat k)).obj X.V
⊢ ↑(AddHom.toFun
{
toAddHom :=
{ toFun := fun f => Action.Hom.mk f.hom,
map_add' :=
(_ :
∀ (x x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
(fun f => Action.Hom.mk f.hom) (x + x_1) = (fun f => Action.Hom.mk f.hom) (x + x_1)) },
map_smul' :=
(_ :
∀ (x : k) (x_1 : (forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
AddHom.toFun
{ toFun := fun f => Action.Hom.mk f.hom,
map_add' :=
(_ :
∀
(x x_2 :
(forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
(fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) }
(x • x_1) =
AddHom.toFun
{ toFun := fun f => Action.Hom.mk f.hom,
map_add' :=
(_ :
∀
(x x_2 :
(forget₂ (FdRep k G) (Rep k G)).obj X ⟶ (forget₂ (FdRep k G) (Rep k G)).obj Y),
(fun f => Action.Hom.mk f.hom) (x + x_2) = (fun f => Action.Hom.mk f.hom) (x + x_2)) }
(x • x_1)) }.toAddHom
((fun f => Action.Hom.mk ((forget₂ (FGModuleCat k) (ModuleCat k)).map f.hom)) x✝¹)).hom
x✝ =
↑x✝¹.hom x✝
[PROOFSTEP]
rfl
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Group G
⊢ RightRigidCategory (FdRep k G)
[PROOFSTEP]
change RightRigidCategory (Action (FGModuleCat k) (GroupCat.of G))
[GOAL]
k G : Type u
inst✝¹ : Field k
inst✝ : Group G
⊢ RightRigidCategory (Action (FGModuleCat k) ((forget₂ GroupCat MonCat).obj (GroupCat.of G)))
[PROOFSTEP]
infer_instance
[GOAL]
k G V : Type u
inst✝⁴ : Field k
inst✝³ : Group G
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : FiniteDimensional k V
ρV : Representation k G V
W : FdRep k G
⊢ of (dual ρV) ⊗ W ≅ of (linHom ρV (ρ W))
[PROOFSTEP]
refine Action.mkIso (dualTensorIsoLinHomAux ρV W) ?_
[GOAL]
k G V : Type u
inst✝⁴ : Field k
inst✝³ : Group G
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : FiniteDimensional k V
ρV : Representation k G V
W : FdRep k G
⊢ ∀ (g : ↑(MonCat.of G)),
↑(of (dual ρV) ⊗ W).ρ g ≫ (dualTensorIsoLinHomAux ρV W).hom =
(dualTensorIsoLinHomAux ρV W).hom ≫ ↑(of (linHom ρV (ρ W))).ρ g
[PROOFSTEP]
convert dualTensorHom_comm ρV W.ρ
| {"mathlib_filename": "Mathlib.RepresentationTheory.FdRep", "llama_tokens": 4528} |
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
⊢ ∀ {U V : Opens ↑(ProjectiveSpectrum.top 𝒜)} (i : U ⟶ V) (f : (x : { x // x ∈ V }) → at ↑x),
(fun {U} f => IsFraction f) f →
(fun {U} f => IsFraction f) fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)
[PROOFSTEP]
rintro V U i f ⟨j, r, s, w⟩
[GOAL]
case intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
V U : Opens ↑(ProjectiveSpectrum.top 𝒜)
i : V ⟶ U
f : (x : { x // x ∈ U }) → at ↑x
j : ℕ
r s : { x // x ∈ 𝒜 j }
w : ∀ (x : { x // x ∈ U }), ∃ s_nin, f x = Quotient.mk'' { deg := j, num := r, den := s, den_mem := s_nin }
⊢ IsFraction fun x => f ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U) }) x)
[PROOFSTEP]
exact ⟨j, r, s, fun y => w (i y)⟩
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
rcases ha x with ⟨Va, ma, ia, ja, ⟨ra, ra_mem⟩, ⟨sa, sa_mem⟩, wa⟩
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
rcases hb x with ⟨Vb, mb, ib, jb, ⟨rb, rb_mem⟩, ⟨sb, sb_mem⟩, wb⟩
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x =>
(a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
refine'
⟨Va ⊓ Vb, ⟨ma, mb⟩, Opens.infLELeft _ _ ≫ ia, ja + jb,
⟨sb * ra + sa * rb,
add_mem (add_comm jb ja ▸ mul_mem_graded sb_mem ra_mem : sb * ra ∈ 𝒜 (ja + jb)) (mul_mem_graded sa_mem rb_mem)⟩,
⟨sa * sb, mul_mem_graded sa_mem sb_mem⟩, fun y => ⟨fun h => _, _⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
h : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
cases' (y : ProjectiveSpectrum.top 𝒜).isPrime.mem_or_mem h with h h
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inl
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal
h : sa ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
obtain ⟨nin, -⟩ := wa ⟨y, (Opens.infLELeft Va Vb y).2⟩
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inl.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal
h : sa ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
nin :
¬↑{ val := sa, property := sa_mem } ∈
(↑{ val := ↑y,
property := (_ : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) ∈ Va) }).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
exact nin h
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal
h : sb ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
obtain ⟨nin, -⟩ := wb ⟨y, (Opens.infLERight Va Vb y).2⟩
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inr.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal
h : sb ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
nin :
¬↑{ val := sb, property := sb_mem } ∈
(↑{ val := ↑y,
property := (_ : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) ∈ Vb) }).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
exact nin h
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
⊢ (fun x => (a + b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y =
Quotient.mk''
{ deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }
[PROOFSTEP]
simp only [add_mul, map_add, Pi.add_apply, RingHom.map_mul, ext_iff_val, add_val]
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
⊢ val (a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) + val (b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) =
val
(Quotient.mk''
{ deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) })
[PROOFSTEP]
obtain ⟨nin1, hy1⟩ := wa (Opens.infLELeft Va Vb y)
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
nin1 :
¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal
hy1 :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }
⊢ val (a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) + val (b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) =
val
(Quotient.mk''
{ deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) })
[PROOFSTEP]
obtain ⟨nin2, hy2⟩ := wb (Opens.infLERight Va Vb y)
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
nin1 :
¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal
hy1 :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }
nin2 :
¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal
hy2 :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 }
⊢ val (a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) + val (b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) =
val
(Quotient.mk''
{ deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) })
[PROOFSTEP]
dsimp only at hy1 hy2
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
nin1 :
¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal
hy1 :
a { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Va) } ∈ ↑U.unop) } =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }
nin2 :
¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal
hy2 :
b { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Vb) } ∈ ↑U.unop) } =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 }
⊢ val (a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) + val (b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) =
val
(Quotient.mk''
{ deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) })
[PROOFSTEP]
erw [hy1, hy2]
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
nin1 :
¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal
hy1 :
a { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Va) } ∈ ↑U.unop) } =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }
nin2 :
¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal
hy2 :
b { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Vb) } ∈ ↑U.unop) } =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 }
⊢ val
(Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := nin1 }) +
val
(Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := nin2 }) =
val
(Quotient.mk''
{ deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) })
[PROOFSTEP]
simp only [val_mk'', add_mk, add_comm (sa * rb)]
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
nin1 :
¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal
hy1 :
a { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Va) } ∈ ↑U.unop) } =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }
nin2 :
¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal
hy2 :
b { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑Vb) } ∈ ↑U.unop) } =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 }
⊢ Localization.mk (sb * ra + sa * rb)
({ val := sa,
property :=
(_ :
↑{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := nin1 }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) } *
{ val := sb,
property :=
(_ :
↑{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := nin2 }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) }) =
Localization.mk (sb * ra + sa * rb)
{ val := sa * sb,
property :=
(_ :
↑{ deg := ja + jb, num := { val := sb * ra + sa * rb, property := (_ : sb * ra + sa * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ :
↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal →
False) }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
x : { x // x ∈ U.unop }
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x =>
(-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
rcases ha x with ⟨V, m, i, j, ⟨r, r_mem⟩, ⟨s, s_mem⟩, w⟩
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
x : { x // x ∈ U.unop }
V : Opens ↑(ProjectiveSpectrum.top 𝒜)
m : ↑x ∈ V
i : V ⟶ U.unop
j : ℕ
r : A
r_mem : r ∈ 𝒜 j
s : A
s_mem : s ∈ 𝒜 j
w :
∀ (x : { x // x ∈ V }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := j, num := { val := r, property := r_mem }, den := { val := s, property := s_mem }, den_mem := s_nin }
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x =>
(-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
choose nin hy using w
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
x : { x // x ∈ U.unop }
V : Opens ↑(ProjectiveSpectrum.top 𝒜)
m : ↑x ∈ V
i : V ⟶ U.unop
j : ℕ
r : A
r_mem : r ∈ 𝒜 j
s : A
s_mem : s ∈ 𝒜 j
nin : ∀ (x : { x // x ∈ V }), ¬↑{ val := s, property := s_mem } ∈ (↑x).asHomogeneousIdeal
hy :
∀ (x : { x // x ∈ V }),
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := j, num := { val := r, property := r_mem }, den := { val := s, property := s_mem },
den_mem := (_ : ¬↑{ val := s, property := s_mem } ∈ (↑x).asHomogeneousIdeal) }
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x =>
(-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
refine' ⟨V, m, i, j, ⟨-r, Submodule.neg_mem _ r_mem⟩, ⟨s, s_mem⟩, fun y => ⟨nin y, _⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
x : { x // x ∈ U.unop }
V : Opens ↑(ProjectiveSpectrum.top 𝒜)
m : ↑x ∈ V
i : V ⟶ U.unop
j : ℕ
r : A
r_mem : r ∈ 𝒜 j
s : A
s_mem : s ∈ 𝒜 j
nin : ∀ (x : { x // x ∈ V }), ¬↑{ val := s, property := s_mem } ∈ (↑x).asHomogeneousIdeal
hy :
∀ (x : { x // x ∈ V }),
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := j, num := { val := r, property := r_mem }, den := { val := s, property := s_mem },
den_mem := (_ : ¬↑{ val := s, property := s_mem } ∈ (↑x).asHomogeneousIdeal) }
y : { x // x ∈ V }
⊢ (fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y =
Quotient.mk''
{ deg := j, num := { val := -r, property := (_ : -r ∈ 𝒜 j) }, den := { val := s, property := s_mem },
den_mem := (_ : ¬↑{ val := s, property := s_mem } ∈ (↑y).asHomogeneousIdeal) }
[PROOFSTEP]
simp only [ext_iff_val, val_mk''] at hy
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
x : { x // x ∈ U.unop }
V : Opens ↑(ProjectiveSpectrum.top 𝒜)
m : ↑x ∈ V
i : V ⟶ U.unop
j : ℕ
r : A
r_mem : r ∈ 𝒜 j
s : A
s_mem : s ∈ 𝒜 j
nin : ∀ (x : { x // x ∈ V }), ¬↑{ val := s, property := s_mem } ∈ (↑x).asHomogeneousIdeal
y : { x // x ∈ V }
hy :
∀ (x : { x // x ∈ V }),
val (a { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) =
Localization.mk r
{ val := s,
property :=
(_ :
↑{ deg := j, num := { val := r, property := r_mem }, den := { val := s, property := s_mem },
den_mem := (_ : ¬↑{ val := s, property := s_mem } ∈ (↑x).asHomogeneousIdeal) }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑x).asHomogeneousIdeal)) }
⊢ (fun x => (-a) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y =
Quotient.mk''
{ deg := j, num := { val := -r, property := (_ : -r ∈ 𝒜 j) }, den := { val := s, property := s_mem },
den_mem := (_ : ¬↑{ val := s, property := s_mem } ∈ (↑y).asHomogeneousIdeal) }
[PROOFSTEP]
simp only [Pi.neg_apply, ext_iff_val, neg_val, hy, val_mk'', neg_mk]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
rcases ha x with ⟨Va, ma, ia, ja, ⟨ra, ra_mem⟩, ⟨sa, sa_mem⟩, wa⟩
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
rcases hb x with ⟨Vb, mb, ib, jb, ⟨rb, rb_mem⟩, ⟨sb, sb_mem⟩, wb⟩
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
⊢ ∃ V x i,
PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x =>
(a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)
[PROOFSTEP]
refine'
⟨Va ⊓ Vb, ⟨ma, mb⟩, Opens.infLELeft _ _ ≫ ia, ja + jb, ⟨ra * rb, SetLike.mul_mem_graded ra_mem rb_mem⟩,
⟨sa * sb, SetLike.mul_mem_graded sa_mem sb_mem⟩, fun y => ⟨fun h => _, _⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
h : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
cases' (y : ProjectiveSpectrum.top 𝒜).isPrime.mem_or_mem h with h h
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inl
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal
h : sa ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
choose nin _ using wa ⟨y, (Opens.infLELeft Va Vb y).2⟩
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inl
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal
h : sa ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
nin :
¬↑{ val := sa, property := sa_mem } ∈
(↑{ val := ↑y,
property := (_ : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) ∈ Va) }).asHomogeneousIdeal
x✝ :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
{ val := ↑y, property := (_ : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) ∈ Va) } =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin }
⊢ False
[PROOFSTEP]
exact nin h
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal
h : sb ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
⊢ False
[PROOFSTEP]
choose nin _ using wb ⟨y, (Opens.infLERight Va Vb y).2⟩
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_1.inr
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
h✝ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal
h : sb ∈ HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal
nin :
¬↑{ val := sb, property := sb_mem } ∈
(↑{ val := ↑y,
property := (_ : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) ∈ Vb) }).asHomogeneousIdeal
x✝ :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
{ val := ↑y, property := (_ : ↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) ∈ Vb) } =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin }
⊢ False
[PROOFSTEP]
exact nin h
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
⊢ (fun x => (a * b) ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) y =
Quotient.mk''
{ deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }
[PROOFSTEP]
simp only [Pi.mul_apply, RingHom.map_mul]
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } =
Quotient.mk''
{ deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }
[PROOFSTEP]
choose nin1 hy1 using wa (Opens.infLELeft Va Vb y)
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
nin1 :
¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal
hy1 :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }
⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } =
Quotient.mk''
{ deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }
[PROOFSTEP]
choose nin2 hy2 using wb (Opens.infLERight Va Vb y)
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
nin1 :
¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal
hy1 :
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y) =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem }, den_mem := nin1 }
nin2 :
¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal
hy2 :
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y) =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem }, den_mem := nin2 }
⊢ a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } =
Quotient.mk''
{ deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) }
[PROOFSTEP]
rw [ext_iff_val] at hy1 hy2 ⊢
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
nin1 :
¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal
hy1 :
val
((fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)) =
val
(Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := nin1 })
nin2 :
¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal
hy2 :
val
((fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)) =
val
(Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := nin2 })
⊢ val (a { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) } * b { val := ↑y, property := (_ : ↑y ∈ ↑U.unop) }) =
val
(Quotient.mk''
{ deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) })
[PROOFSTEP]
erw [mul_val, hy1, hy2]
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
nin1 :
¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal
hy1 :
val
((fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)) =
val
(Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := nin1 })
nin2 :
¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal
hy2 :
val
((fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)) =
val
(Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := nin2 })
⊢ val
(Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := nin1 }) *
val
(Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := nin2 }) =
val
(Quotient.mk''
{ deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ : ↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal → False) })
[PROOFSTEP]
simp only [val_mk'', mk_mul]
[GOAL]
case intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.refine'_2
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
U : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ
a b : (x : { x // x ∈ U.unop }) → at ↑x
ha : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate a
hb : PrelocalPredicate.pred (isLocallyFraction 𝒜).toPrelocalPredicate b
x : { x // x ∈ U.unop }
Va : Opens ↑(ProjectiveSpectrum.top 𝒜)
ma : ↑x ∈ Va
ia : Va ⟶ U.unop
ja : ℕ
ra : A
ra_mem : ra ∈ 𝒜 ja
sa : A
sa_mem : sa ∈ 𝒜 ja
wa :
∀ (x : { x // x ∈ Va }),
∃ s_nin,
(fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := s_nin }
Vb : Opens ↑(ProjectiveSpectrum.top 𝒜)
mb : ↑x ∈ Vb
ib : Vb ⟶ U.unop
jb : ℕ
rb : A
rb_mem : rb ∈ 𝒜 jb
sb : A
sb_mem : sb ∈ 𝒜 jb
wb :
∀ (x : { x // x ∈ Vb }),
∃ s_nin,
(fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x)) x =
Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := s_nin }
y : { x // x ∈ Va ⊓ Vb }
nin1 :
¬↑{ val := sa, property := sa_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)).asHomogeneousIdeal
hy1 :
val
((fun x => a ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Va) }) y)) =
val
(Quotient.mk''
{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := nin1 })
nin2 :
¬↑{ val := sb, property := sb_mem } ∈ (↑((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)).asHomogeneousIdeal
hy2 :
val
((fun x => b ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑U.unop) }) x))
((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑Vb) }) y)) =
val
(Quotient.mk''
{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := nin2 })
⊢ Localization.mk (ra * rb)
({ val := sa,
property :=
(_ :
↑{ deg := ja, num := { val := ra, property := ra_mem }, den := { val := sa, property := sa_mem },
den_mem := nin1 }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) } *
{ val := sb,
property :=
(_ :
↑{ deg := jb, num := { val := rb, property := rb_mem }, den := { val := sb, property := sb_mem },
den_mem := nin2 }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) }) =
Localization.mk (ra * rb)
{ val := sa * sb,
property :=
(_ :
↑{ deg := ja + jb, num := { val := ra * rb, property := (_ : ra * rb ∈ 𝒜 (ja + jb)) },
den := { val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) },
den_mem :=
(_ :
↑{ val := sa * sb, property := (_ : sa * sb ∈ 𝒜 (ja + jb)) } ∈ (↑y).asHomogeneousIdeal →
False) }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) }
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
⊢ ∀ {X Y : (Opens ↑(ProjectiveSpectrum.top 𝒜))ᵒᵖ} (f : X ⟶ Y),
(structurePresheafInCommRing 𝒜 ⋙ forget CommRingCat).map f ≫
((fun U => Iso.refl ((structurePresheafInCommRing 𝒜 ⋙ forget CommRingCat).obj U)) Y).hom =
((fun U => Iso.refl ((structurePresheafInCommRing 𝒜 ⋙ forget CommRingCat).obj U)) X).hom ≫
(structureSheafInType 𝒜).val.map f
[PROOFSTEP]
aesop_cat
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
f : at x
⊢ x ∈ ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f)
[PROOFSTEP]
rw [ProjectiveSpectrum.mem_basicOpen]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
f : at x
⊢ ¬HomogeneousLocalization.den f ∈ x.asHomogeneousIdeal
[PROOFSTEP]
exact f.den_mem
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
z1 z2 : ↑(Presheaf.stalk (Sheaf.presheaf (Proj.structureSheaf 𝒜)) x)
eq1 : ↑(stalkToFiberRingHom 𝒜 x) z1 = ↑(stalkToFiberRingHom 𝒜 x) z2
⊢ z1 = z2
[PROOFSTEP]
obtain ⟨u1, memu1, s1, rfl⟩ := (Proj.structureSheaf 𝒜).presheaf.germ_exist x z1
[GOAL]
case intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
z2 : ↑(Presheaf.stalk (Sheaf.presheaf (Proj.structureSheaf 𝒜)) x)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
eq1 :
↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) =
↑(stalkToFiberRingHom 𝒜 x) z2
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 = z2
[PROOFSTEP]
obtain ⟨u2, memu2, s2, rfl⟩ := (Proj.structureSheaf 𝒜).presheaf.germ_exist x z2
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 :
↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) =
↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2)
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 =
↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2
[PROOFSTEP]
obtain ⟨v1, memv1, i1, ⟨j1, ⟨a1, a1_mem⟩, ⟨b1, b1_mem⟩, hs1⟩⟩ := s1.2 ⟨x, memu1⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 :
↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) =
↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2)
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 =
↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2
[PROOFSTEP]
obtain ⟨v2, memv2, i2, ⟨j2, ⟨a2, a2_mem⟩, ⟨b2, b2_mem⟩, hs2⟩⟩ := s2.2 ⟨x, memu2⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 :
↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) =
↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2)
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 =
↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2
[PROOFSTEP]
obtain ⟨b1_nin_x, eq2⟩ := hs1 ⟨x, memv1⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 :
↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) =
↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2)
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) { val := x, property := memv1 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 =
↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2
[PROOFSTEP]
obtain ⟨b2_nin_x, eq3⟩ := hs2 ⟨x, memv2⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 :
↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) =
↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2)
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) { val := x, property := memv1 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
eq3 :
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) { val := x, property := memv2 } =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 =
↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2
[PROOFSTEP]
dsimp only at eq1 eq2 eq3
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 :
↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1) =
↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2)
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s1 { val := x, property := (_ : ↑{ val := x, property := memv1 } ∈ ↑(op u1).unop) } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
eq3 :
↑s2 { val := x, property := (_ : ↑{ val := x, property := memv2 } ∈ ↑(op u2).unop) } =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 =
↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2
[PROOFSTEP]
erw [stalkToFiberRingHom_germ 𝒜 u1 ⟨x, memu1⟩ s1, stalkToFiberRingHom_germ 𝒜 u2 ⟨x, memu2⟩ s2] at eq1
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s1 { val := x, property := (_ : ↑{ val := x, property := memv1 } ∈ ↑(op u1).unop) } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
eq3 :
↑s2 { val := x, property := (_ : ↑{ val := x, property := memv2 } ∈ ↑(op u2).unop) } =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 =
↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2
[PROOFSTEP]
erw [eq1] at eq2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
eq3 :
↑s2 { val := x, property := (_ : ↑{ val := x, property := memv2 } ∈ ↑(op u2).unop) } =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 =
↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2
[PROOFSTEP]
erw [eq2, Quotient.eq''] at eq3
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
eq3 :
Setoid.r
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 =
↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2
[PROOFSTEP]
change Localization.mk _ _ = Localization.mk _ _ at eq3
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
eq3 :
Localization.mk
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num
{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } =
Localization.mk
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num
{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 =
↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2
[PROOFSTEP]
rw [Localization.mk_eq_mk', IsLocalization.eq] at eq3
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
eq3 :
∃ c,
↑c *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑c *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 =
↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2
[PROOFSTEP]
obtain ⟨⟨c, hc⟩, eq3⟩ := eq3
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 =
↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2
[PROOFSTEP]
have eq3' :
∀ (y : ProjectiveSpectrum.top 𝒜)
(hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c),
(Localization.mk a1
⟨b1,
show b1 ∉ y.asHomogeneousIdeal by
rw [← ProjectiveSpectrum.mem_basicOpen]
exact leOfHom (Opens.infLELeft _ _ ≫ Opens.infLELeft _ _) hy⟩ :
Localization.AtPrime y.1.toIdeal) =
Localization.mk a2
⟨b2, by
change b2 ∉ y.asHomogeneousIdeal
rw [← ProjectiveSpectrum.mem_basicOpen]
exact leOfHom (Opens.infLELeft _ _ ≫ Opens.infLERight _ _) hy⟩ :=
by
intro y hy
rw [Localization.mk_eq_mk', IsLocalization.eq]
exact
⟨⟨c,
show c ∉ y.asHomogeneousIdeal by
rw [← ProjectiveSpectrum.mem_basicOpen]
exact leOfHom (Opens.infLERight _ _) hy⟩,
eq3⟩
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
y : ↑(ProjectiveSpectrum.top 𝒜)
hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c
⊢ ¬b1 ∈ y.asHomogeneousIdeal
[PROOFSTEP]
rw [← ProjectiveSpectrum.mem_basicOpen]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
y : ↑(ProjectiveSpectrum.top 𝒜)
hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c
⊢ y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1
[PROOFSTEP]
exact leOfHom (Opens.infLELeft _ _ ≫ Opens.infLELeft _ _) hy
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
y : ↑(ProjectiveSpectrum.top 𝒜)
hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c
⊢ b2 ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal y.asHomogeneousIdeal)
[PROOFSTEP]
change b2 ∉ y.asHomogeneousIdeal
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
y : ↑(ProjectiveSpectrum.top 𝒜)
hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c
⊢ ¬b2 ∈ y.asHomogeneousIdeal
[PROOFSTEP]
rw [← ProjectiveSpectrum.mem_basicOpen]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
y : ↑(ProjectiveSpectrum.top 𝒜)
hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c
⊢ y ∈ ProjectiveSpectrum.basicOpen 𝒜 b2
[PROOFSTEP]
exact leOfHom (Opens.infLELeft _ _ ≫ Opens.infLERight _ _) hy
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
⊢ ∀ (y : ↑(ProjectiveSpectrum.top 𝒜))
(hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c),
Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } =
Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) }
[PROOFSTEP]
intro y hy
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
y : ↑(ProjectiveSpectrum.top 𝒜)
hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c
⊢ Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } =
Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) }
[PROOFSTEP]
rw [Localization.mk_eq_mk', IsLocalization.eq]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
y : ↑(ProjectiveSpectrum.top 𝒜)
hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c
⊢ ∃ c_1,
↑c_1 * (↑{ val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) } * a1) =
↑c_1 * (↑{ val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } * a2)
[PROOFSTEP]
exact
⟨⟨c,
show c ∉ y.asHomogeneousIdeal by
rw [← ProjectiveSpectrum.mem_basicOpen]
exact leOfHom (Opens.infLERight _ _) hy⟩,
eq3⟩
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
y : ↑(ProjectiveSpectrum.top 𝒜)
hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c
⊢ ¬c ∈ y.asHomogeneousIdeal
[PROOFSTEP]
rw [← ProjectiveSpectrum.mem_basicOpen]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
y : ↑(ProjectiveSpectrum.top 𝒜)
hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c
⊢ y ∈ ProjectiveSpectrum.basicOpen 𝒜 c
[PROOFSTEP]
exact leOfHom (Opens.infLERight _ _) hy
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
eq3' :
∀ (y : ↑(ProjectiveSpectrum.top 𝒜))
(hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c),
Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } =
Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) }
⊢ ↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu1 }) s1 =
↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜)) { val := x, property := memu2 }) s2
[PROOFSTEP]
refine'
Presheaf.germ_ext (Proj.structureSheaf 𝒜).1
(ProjectiveSpectrum.basicOpen _ b1 ⊓ ProjectiveSpectrum.basicOpen _ b2 ⊓ ProjectiveSpectrum.basicOpen _ c ⊓ v1 ⊓ v2)
⟨⟨⟨⟨b1_nin_x, b2_nin_x⟩, hc⟩, memv1⟩, memv2⟩ (Opens.infLELeft _ _ ≫ Opens.infLERight _ _ ≫ i1)
(Opens.infLERight _ _ ≫ i2) _
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
eq3' :
∀ (y : ↑(ProjectiveSpectrum.top 𝒜))
(hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c),
Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } =
Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) }
⊢ ↑((Proj.structureSheaf 𝒜).val.map
(infLELeft
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓
ProjectiveSpectrum.basicOpen 𝒜 c ⊓
v1)
v2 ≫
infLERight
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓
ProjectiveSpectrum.basicOpen 𝒜 c)
v1 ≫
i1).op)
s1 =
↑((Proj.structureSheaf 𝒜).val.map
(infLERight
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓
ProjectiveSpectrum.basicOpen 𝒜 c ⊓
v1)
v2 ≫
i2).op)
s2
[PROOFSTEP]
rw [Subtype.ext_iff_val]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
eq3' :
∀ (y : ↑(ProjectiveSpectrum.top 𝒜))
(hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c),
Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } =
Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) }
⊢ ↑(↑((Proj.structureSheaf 𝒜).val.map
(infLELeft
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓
ProjectiveSpectrum.basicOpen 𝒜 c ⊓
v1)
v2 ≫
infLERight
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓
ProjectiveSpectrum.basicOpen 𝒜 c)
v1 ≫
i1).op)
s1) =
↑(↑((Proj.structureSheaf 𝒜).val.map
(infLERight
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓
ProjectiveSpectrum.basicOpen 𝒜 c ⊓
v1)
v2 ≫
i2).op)
s2)
[PROOFSTEP]
ext1 y
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
eq3' :
∀ (y : ↑(ProjectiveSpectrum.top 𝒜))
(hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c),
Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } =
Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) }
y :
{ x //
x ∈
(op
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓
v1 ⊓
v2)).unop }
⊢ ↑(↑((Proj.structureSheaf 𝒜).val.map
(infLELeft
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓
ProjectiveSpectrum.basicOpen 𝒜 c ⊓
v1)
v2 ≫
infLERight
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓
ProjectiveSpectrum.basicOpen 𝒜 c)
v1 ≫
i1).op)
s1)
y =
↑(↑((Proj.structureSheaf 𝒜).val.map
(infLERight
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓
ProjectiveSpectrum.basicOpen 𝒜 c ⊓
v1)
v2 ≫
i2).op)
s2)
y
[PROOFSTEP]
simp only [res_apply]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
eq3' :
∀ (y : ↑(ProjectiveSpectrum.top 𝒜))
(hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c),
Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } =
Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) }
y :
{ x //
x ∈
(op
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓
v1 ⊓
v2)).unop }
⊢ ↑s1 { val := ↑y, property := (_ : ↑y ∈ ↑(op u1).unop) } = ↑s2 { val := ↑y, property := (_ : ↑y ∈ ↑(op u2).unop) }
[PROOFSTEP]
obtain ⟨b1_nin_y, eq6⟩ := hs1 ⟨_, leOfHom (Opens.infLELeft _ _ ≫ Opens.infLERight _ _) y.2⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
eq3' :
∀ (y : ↑(ProjectiveSpectrum.top 𝒜))
(hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c),
Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } =
Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) }
y :
{ x //
x ∈
(op
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓
v1 ⊓
v2)).unop }
b1_nin_y : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) }).asHomogeneousIdeal
eq6 :
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x))
{ val := ↑y, property := (_ : ↑y ∈ ↑v1) } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_y }
⊢ ↑s1 { val := ↑y, property := (_ : ↑y ∈ ↑(op u1).unop) } = ↑s2 { val := ↑y, property := (_ : ↑y ∈ ↑(op u2).unop) }
[PROOFSTEP]
obtain ⟨b2_nin_y, eq7⟩ := hs2 ⟨_, leOfHom (Opens.infLERight _ _) y.2⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
eq3' :
∀ (y : ↑(ProjectiveSpectrum.top 𝒜))
(hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c),
Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } =
Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) }
y :
{ x //
x ∈
(op
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓
v1 ⊓
v2)).unop }
b1_nin_y : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) }).asHomogeneousIdeal
eq6 :
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x))
{ val := ↑y, property := (_ : ↑y ∈ ↑v1) } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_y }
b2_nin_y : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) }).asHomogeneousIdeal
eq7 :
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x))
{ val := ↑y, property := (_ : ↑y ∈ ↑v2) } =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_y }
⊢ ↑s1 { val := ↑y, property := (_ : ↑y ∈ ↑(op u1).unop) } = ↑s2 { val := ↑y, property := (_ : ↑y ∈ ↑(op u2).unop) }
[PROOFSTEP]
simp only at eq6 eq7
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
eq3' :
∀ (y : ↑(ProjectiveSpectrum.top 𝒜))
(hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c),
Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } =
Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) }
y :
{ x //
x ∈
(op
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓
v1 ⊓
v2)).unop }
b1_nin_y : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) }).asHomogeneousIdeal
eq6 :
↑s1 { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) } ∈ ↑(op u1).unop) } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_y }
b2_nin_y : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) }).asHomogeneousIdeal
eq7 :
↑s2 { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) } ∈ ↑(op u2).unop) } =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_y }
⊢ ↑s1 { val := ↑y, property := (_ : ↑y ∈ ↑(op u1).unop) } = ↑s2 { val := ↑y, property := (_ : ↑y ∈ ↑(op u2).unop) }
[PROOFSTEP]
erw [eq6, eq7, Quotient.eq'']
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
eq3' :
∀ (y : ↑(ProjectiveSpectrum.top 𝒜))
(hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c),
Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } =
Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) }
y :
{ x //
x ∈
(op
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓
v1 ⊓
v2)).unop }
b1_nin_y : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) }).asHomogeneousIdeal
eq6 :
↑s1 { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) } ∈ ↑(op u1).unop) } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_y }
b2_nin_y : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) }).asHomogeneousIdeal
eq7 :
↑s2 { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) } ∈ ↑(op u2).unop) } =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_y }
⊢ Setoid.r
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_y }
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_y }
[PROOFSTEP]
change Localization.mk _ _ = Localization.mk _ _
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.intro.intro.mk.intro.mk.intro.intro.intro.mk.h.intro.intro
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
u1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu1 : x ∈ u1
s1 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u1))
u2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memu2 : x ∈ u2
s2 : (forget CommRingCat).obj ((Sheaf.presheaf (Proj.structureSheaf 𝒜)).obj (op u2))
eq1 : ↑s1 { val := x, property := memu1 } = ↑s2 { val := x, property := memu2 }
v1 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv1 : ↑{ val := x, property := memu1 } ∈ v1
i1 : v1 ⟶ (op u1).unop
j1 : ℕ
a1 : A
a1_mem : a1 ∈ 𝒜 j1
b1 : A
b1_mem : b1 ∈ 𝒜 j1
hs1 :
∀ (x : { x // x ∈ v1 }),
∃ s_nin,
(fun x => ↑s1 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u1).unop) }) x)) x =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := s_nin }
v2 : Opens ↑(ProjectiveSpectrum.top 𝒜)
memv2 : ↑{ val := x, property := memu2 } ∈ v2
i2 : v2 ⟶ (op u2).unop
j2 : ℕ
a2 : A
a2_mem : a2 ∈ 𝒜 j2
b2 : A
b2_mem : b2 ∈ 𝒜 j2
hs2 :
∀ (x : { x // x ∈ v2 }),
∃ s_nin,
(fun x => ↑s2 ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(op u2).unop) }) x)) x =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := s_nin }
b1_nin_x : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := x, property := memv1 }).asHomogeneousIdeal
eq2 :
↑s2 { val := x, property := memu2 } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }
b2_nin_x : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := x, property := memv2 }).asHomogeneousIdeal
c : A
hc : c ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)
eq3 :
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.num) =
↑{ val := c, property := hc } *
(↑{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_x }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) } *
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_x }.num)
eq3' :
∀ (y : ↑(ProjectiveSpectrum.top 𝒜))
(hy : y ∈ ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c),
Localization.mk a1 { val := b1, property := (_ : ¬b1 ∈ y.asHomogeneousIdeal) } =
Localization.mk a2 { val := b2, property := (_ : ¬b2 ∈ y.asHomogeneousIdeal) }
y :
{ x //
x ∈
(op
(ProjectiveSpectrum.basicOpen 𝒜 b1 ⊓ ProjectiveSpectrum.basicOpen 𝒜 b2 ⊓ ProjectiveSpectrum.basicOpen 𝒜 c ⊓
v1 ⊓
v2)).unop }
b1_nin_y : ¬↑{ val := b1, property := b1_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) }).asHomogeneousIdeal
eq6 :
↑s1 { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑v1) } ∈ ↑(op u1).unop) } =
Quotient.mk''
{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_y }
b2_nin_y : ¬↑{ val := b2, property := b2_mem } ∈ (↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) }).asHomogeneousIdeal
eq7 :
↑s2 { val := ↑y, property := (_ : ↑{ val := ↑y, property := (_ : ↑y ∈ ↑v2) } ∈ ↑(op u2).unop) } =
Quotient.mk''
{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_y }
⊢ Localization.mk
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_y }.num
{
val :=
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_y }.den,
property :=
(_ :
↑{ deg := j1, num := { val := a1, property := a1_mem }, den := { val := b1, property := b1_mem },
den_mem := b1_nin_y }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) } =
Localization.mk
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_y }.num
{
val :=
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_y }.den,
property :=
(_ :
↑{ deg := j2, num := { val := a2, property := a2_mem }, den := { val := b2, property := b2_mem },
den_mem := b2_nin_y }.den ∈
Ideal.primeCompl (HomogeneousIdeal.toIdeal (↑y).asHomogeneousIdeal)) }
[PROOFSTEP]
exact
eq3' _
⟨⟨leOfHom (Opens.infLELeft _ _ ≫ Opens.infLELeft _ _ ≫ Opens.infLELeft _ _ ≫ Opens.infLELeft _ _) y.2,
leOfHom (Opens.infLELeft _ _ ≫ Opens.infLELeft _ _ ≫ Opens.infLELeft _ _ ≫ Opens.infLERight _ _) y.2⟩,
leOfHom (Opens.infLELeft _ _ ≫ Opens.infLELeft _ _ ≫ Opens.infLERight _ _) y.2⟩
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
f : ↑(CommRingCat.of (at x))
⊢ ↑(stalkToFiberRingHom 𝒜 x) (homogeneousLocalizationToStalk 𝒜 x f) = f
[PROOFSTEP]
rw [homogeneousLocalizationToStalk]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
f : ↑(CommRingCat.of (at x))
⊢ ↑(stalkToFiberRingHom 𝒜 x)
(↑(Presheaf.germ (Sheaf.presheaf (Proj.structureSheaf 𝒜))
{ val := x, property := (_ : x ∈ ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f)) })
(sectionInBasicOpen 𝒜 x f)) =
f
[PROOFSTEP]
erw [stalkToFiberRingHom_germ 𝒜 (ProjectiveSpectrum.basicOpen 𝒜 f.den) ⟨x, _⟩ (sectionInBasicOpen _ x f)]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
f : ↑(CommRingCat.of (at x))
⊢ ↑(sectionInBasicOpen 𝒜 x f)
{ val := x, property := (_ : x ∈ ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f)) } =
f
[PROOFSTEP]
rw [sectionInBasicOpen, HomogeneousLocalization.ext_iff_val, f.eq_num_div_den]
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommRing R
inst✝² : CommRing A
inst✝¹ : Algebra R A
𝒜 : ℕ → Submodule R A
inst✝ : GradedAlgebra 𝒜
x : ↑(ProjectiveSpectrum.top 𝒜)
f : ↑(CommRingCat.of (at x))
⊢ HomogeneousLocalization.val
(↑{
val := fun y =>
Quotient.mk''
{ deg := HomogeneousLocalization.deg f,
num :=
{ val := HomogeneousLocalization.num f,
property := (_ : HomogeneousLocalization.num f ∈ 𝒜 (HomogeneousLocalization.deg f)) },
den :=
{ val := HomogeneousLocalization.den f,
property := (_ : HomogeneousLocalization.den f ∈ 𝒜 (HomogeneousLocalization.deg f)) },
den_mem := (_ : ↑y ∈ (op (ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f))).unop) },
property :=
(_ :
∀ (y : { x_1 // x_1 ∈ (op (ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f))).unop }),
∃ V x_1 i,
PrelocalPredicate.pred (isFractionPrelocal 𝒜) fun x_2 =>
(fun y =>
Quotient.mk''
{ deg := HomogeneousLocalization.deg f,
num :=
{ val := HomogeneousLocalization.num f,
property := (_ : HomogeneousLocalization.num f ∈ 𝒜 (HomogeneousLocalization.deg f)) },
den :=
{ val := HomogeneousLocalization.den f,
property := (_ : HomogeneousLocalization.den f ∈ 𝒜 (HomogeneousLocalization.deg f)) },
den_mem :=
(_ : ↑y ∈ (op (ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f))).unop) })
((fun x_3 =>
{ val := ↑x_3,
property :=
(_ :
↑x_3 ∈ ↑(op (ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f))).unop) })
x_2)) }
{ val := x, property := (_ : x ∈ ProjectiveSpectrum.basicOpen 𝒜 (HomogeneousLocalization.den f)) }) =
Localization.mk (HomogeneousLocalization.num f)
{ val := HomogeneousLocalization.den f,
property :=
(_ : HomogeneousLocalization.den f ∈ Ideal.primeCompl (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) }
[PROOFSTEP]
simp only [unop_op, HomogeneousLocalization.val_mk'', mk_eq_monoidOf_mk']
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf", "llama_tokens": 85234} |
[GOAL]
α : Type u_1
β : Type u_2
rα✝ : α → α → Prop
rβ✝ : β → β → Prop
rα : α → α → Prop
rβ : β → β → Prop
x y : α × β
⊢ GameAdd rα rβ x y ↔ rα x.fst y.fst ∧ x.snd = y.snd ∨ rβ x.snd y.snd ∧ x.fst = y.fst
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
rα✝ : α → α → Prop
rβ✝ : β → β → Prop
rα : α → α → Prop
rβ : β → β → Prop
x y : α × β
⊢ GameAdd rα rβ x y → rα x.fst y.fst ∧ x.snd = y.snd ∨ rβ x.snd y.snd ∧ x.fst = y.fst
[PROOFSTEP]
rintro (@⟨a₁, a₂, b, h⟩ | @⟨a, b₁, b₂, h⟩)
[GOAL]
case mp.fst
α : Type u_1
β : Type u_2
rα✝ : α → α → Prop
rβ✝ : β → β → Prop
rα : α → α → Prop
rβ : β → β → Prop
a₁ a₂ : α
b : β
h : rα a₁ a₂
⊢ rα (a₁, b).fst (a₂, b).fst ∧ (a₁, b).snd = (a₂, b).snd ∨ rβ (a₁, b).snd (a₂, b).snd ∧ (a₁, b).fst = (a₂, b).fst
case mp.snd
α : Type u_1
β : Type u_2
rα✝ : α → α → Prop
rβ✝ : β → β → Prop
rα : α → α → Prop
rβ : β → β → Prop
a : α
b₁ b₂ : β
h : rβ b₁ b₂
⊢ rα (a, b₁).fst (a, b₂).fst ∧ (a, b₁).snd = (a, b₂).snd ∨ rβ (a, b₁).snd (a, b₂).snd ∧ (a, b₁).fst = (a, b₂).fst
[PROOFSTEP]
exacts [Or.inl ⟨h, rfl⟩, Or.inr ⟨h, rfl⟩]
[GOAL]
case mpr
α : Type u_1
β : Type u_2
rα✝ : α → α → Prop
rβ✝ : β → β → Prop
rα : α → α → Prop
rβ : β → β → Prop
x y : α × β
⊢ rα x.fst y.fst ∧ x.snd = y.snd ∨ rβ x.snd y.snd ∧ x.fst = y.fst → GameAdd rα rβ x y
[PROOFSTEP]
revert x y
[GOAL]
case mpr
α : Type u_1
β : Type u_2
rα✝ : α → α → Prop
rβ✝ : β → β → Prop
rα : α → α → Prop
rβ : β → β → Prop
⊢ ∀ {x y : α × β}, rα x.fst y.fst ∧ x.snd = y.snd ∨ rβ x.snd y.snd ∧ x.fst = y.fst → GameAdd rα rβ x y
[PROOFSTEP]
rintro ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ (⟨h, rfl : b₁ = b₂⟩ | ⟨h, rfl : a₁ = a₂⟩)
[GOAL]
case mpr.mk.mk.inl.intro
α : Type u_1
β : Type u_2
rα✝ : α → α → Prop
rβ✝ : β → β → Prop
rα : α → α → Prop
rβ : β → β → Prop
a₁ : α
b₁ : β
a₂ : α
h : rα (a₁, b₁).fst (a₂, b₁).fst
⊢ GameAdd rα rβ (a₁, b₁) (a₂, b₁)
case mpr.mk.mk.inr.intro
α : Type u_1
β : Type u_2
rα✝ : α → α → Prop
rβ✝ : β → β → Prop
rα : α → α → Prop
rβ : β → β → Prop
a₁ : α
b₁ b₂ : β
h : rβ (a₁, b₁).snd (a₁, b₂).snd
⊢ GameAdd rα rβ (a₁, b₁) (a₁, b₂)
[PROOFSTEP]
exacts [GameAdd.fst h, GameAdd.snd h]
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
x✝¹ x✝ : α × β
a₁ : α
b₁ : β
a₂ : α
b₂ : β
⊢ GameAdd rβ rα (swap (a₁, b₁)) (swap (a₂, b₂)) ↔ GameAdd rα rβ (a₁, b₁) (a₂, b₂)
[PROOFSTEP]
rw [Prod.swap, Prod.swap, gameAdd_mk_iff, gameAdd_mk_iff, or_comm]
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
x✝¹ x✝ : α × β
h : RProd rα rβ x✝¹ x✝
⊢ ∀ {a₁ : α} {b₁ : β} {a₂ : α} {b₂ : β}, rα a₁ a₂ → rβ b₁ b₂ → Relation.TransGen (GameAdd rα rβ) (a₁, b₁) (a₂, b₂)
[PROOFSTEP]
intro _ _ _ _ hα hβ
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
x✝¹ x✝ : α × β
h : RProd rα rβ x✝¹ x✝
a₁✝ : α
b₁✝ : β
a₂✝ : α
b₂✝ : β
hα : rα a₁✝ a₂✝
hβ : rβ b₁✝ b₂✝
⊢ Relation.TransGen (GameAdd rα rβ) (a₁✝, b₁✝) (a₂✝, b₂✝)
[PROOFSTEP]
exact Relation.TransGen.tail (Relation.TransGen.single $ GameAdd.fst hα) (GameAdd.snd hβ)
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a : α
b : β
ha : Acc rα a
hb : Acc rβ b
⊢ Acc (Prod.GameAdd rα rβ) (a, b)
[PROOFSTEP]
induction' ha with a _ iha generalizing b
[GOAL]
case intro
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ : α
b✝ : β
hb✝ : Acc rβ b✝
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : β}, Acc rβ b → Acc (Prod.GameAdd rα rβ) (y, b)
b : β
hb : Acc rβ b
⊢ Acc (Prod.GameAdd rα rβ) (a, b)
[PROOFSTEP]
induction' hb with b hb ihb
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ : α
b✝¹ : β
hb✝ : Acc rβ b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : β}, Acc rβ b → Acc (Prod.GameAdd rα rβ) (y, b)
b✝ b : β
hb : ∀ (y : β), rβ y b → Acc rβ y
ihb : ∀ (y : β), rβ y b → Acc (Prod.GameAdd rα rβ) (a, y)
⊢ Acc (Prod.GameAdd rα rβ) (a, b)
[PROOFSTEP]
refine' Acc.intro _ fun h => _
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ : α
b✝¹ : β
hb✝ : Acc rβ b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : β}, Acc rβ b → Acc (Prod.GameAdd rα rβ) (y, b)
b✝ b : β
hb : ∀ (y : β), rβ y b → Acc rβ y
ihb : ∀ (y : β), rβ y b → Acc (Prod.GameAdd rα rβ) (a, y)
h : α × β
⊢ Prod.GameAdd rα rβ h (a, b) → Acc (Prod.GameAdd rα rβ) h
[PROOFSTEP]
rintro (⟨ra⟩ | ⟨rb⟩)
[GOAL]
case intro.intro.fst
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ : α
b✝¹ : β
hb✝ : Acc rβ b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : β}, Acc rβ b → Acc (Prod.GameAdd rα rβ) (y, b)
b✝ b : β
hb : ∀ (y : β), rβ y b → Acc rβ y
ihb : ∀ (y : β), rβ y b → Acc (Prod.GameAdd rα rβ) (a, y)
a₁✝ : α
ra : rα a₁✝ a
⊢ Acc (Prod.GameAdd rα rβ) (a₁✝, b)
case intro.intro.snd
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ : α
b✝¹ : β
hb✝ : Acc rβ b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : β}, Acc rβ b → Acc (Prod.GameAdd rα rβ) (y, b)
b✝ b : β
hb : ∀ (y : β), rβ y b → Acc rβ y
ihb : ∀ (y : β), rβ y b → Acc (Prod.GameAdd rα rβ) (a, y)
b₁✝ : β
rb : rβ b₁✝ b
⊢ Acc (Prod.GameAdd rα rβ) (a, b₁✝)
[PROOFSTEP]
exacts [iha _ ra (Acc.intro b hb), ihb _ rb]
[GOAL]
α : Type u_1
β : Type u_2
rα✝ : α → α → Prop
rβ : β → β → Prop
rα : α → α → Prop
a₁ b₁ a₂ b₂ : α
⊢ (fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁ a₂ b₂ ∧
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂ b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ b₂ a₂
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
β : Type u_2
rα✝ : α → α → Prop
rβ : β → β → Prop
rα : α → α → Prop
a₁ b₁ a₂ b₂ : α
⊢ (Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) =
(Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂)) ∧
(Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) =
(Prod.GameAdd rα rα (a₁, b₁) (b₂, a₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (b₂, a₂))
[PROOFSTEP]
rw [Prod.gameAdd_swap_swap_mk _ _ b₁ b₂ a₁ a₂, Prod.gameAdd_swap_swap_mk _ _ a₁ b₂ b₁ a₂]
[GOAL]
α : Type u_1
β : Type u_2
rα✝ : α → α → Prop
rβ : β → β → Prop
rα : α → α → Prop
a₁ b₁ a₂ b₂ : α
⊢ (Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) =
(Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂)) ∧
(Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) =
(Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂))
[PROOFSTEP]
simp [or_comm]
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
⊢ ∀ {x y : α × α},
GameAdd rα (Quotient.mk (Rel.setoid α) x) (Quotient.mk (Rel.setoid α) y) ↔
Prod.GameAdd rα rα x y ∨ Prod.GameAdd rα rα (Prod.swap x) y
[PROOFSTEP]
rintro ⟨_, _⟩ ⟨_, _⟩
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
fst✝¹ snd✝¹ fst✝ snd✝ : α
⊢ GameAdd rα (Quotient.mk (Rel.setoid α) (fst✝¹, snd✝¹)) (Quotient.mk (Rel.setoid α) (fst✝, snd✝)) ↔
Prod.GameAdd rα rα (fst✝¹, snd✝¹) (fst✝, snd✝) ∨ Prod.GameAdd rα rα (Prod.swap (fst✝¹, snd✝¹)) (fst✝, snd✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a₁ a₂ b : α
h : rα a₁ a₂
⊢ GameAdd rα (Quotient.mk (Rel.setoid α) (a₁, b)) (Quotient.mk (Rel.setoid α) (b, a₂))
[PROOFSTEP]
rw [Sym2.eq_swap]
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a₁ a₂ b : α
h : rα a₁ a₂
⊢ GameAdd rα (Quotient.mk (Rel.setoid α) (b, a₁)) (Quotient.mk (Rel.setoid α) (b, a₂))
[PROOFSTEP]
exact GameAdd.snd h
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a₁ a₂ b : α
h : rα a₁ a₂
⊢ GameAdd rα (Quotient.mk (Rel.setoid α) (b, a₁)) (Quotient.mk (Rel.setoid α) (a₂, b))
[PROOFSTEP]
rw [Sym2.eq_swap]
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a₁ a₂ b : α
h : rα a₁ a₂
⊢ GameAdd rα (Quotient.mk (Rel.setoid α) (a₁, b)) (Quotient.mk (Rel.setoid α) (a₂, b))
[PROOFSTEP]
exact GameAdd.fst h
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a b : α
ha : Acc rα a
hb : Acc rα b
⊢ Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, b))
[PROOFSTEP]
induction' ha with a _ iha generalizing b
[GOAL]
case intro
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ b✝ : α
hb✝ : Acc rα b✝
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b))
b : α
hb : Acc rα b
⊢ Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, b))
[PROOFSTEP]
induction' hb with b hb ihb
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ b✝¹ : α
hb✝ : Acc rα b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b))
b✝ b : α
hb : ∀ (y : α), rα y b → Acc rα y
ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y))
⊢ Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, b))
[PROOFSTEP]
refine' Acc.intro _ fun s => _
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ b✝¹ : α
hb✝ : Acc rα b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b))
b✝ b : α
hb : ∀ (y : α), rα y b → Acc rα y
ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y))
s : Sym2 α
⊢ Sym2.GameAdd rα s (Quotient.mk (Sym2.Rel.setoid α) (a, b)) → Acc (Sym2.GameAdd rα) s
[PROOFSTEP]
induction' s using Sym2.inductionOn with c d
[GOAL]
case intro.intro.hf
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ b✝¹ : α
hb✝ : Acc rα b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b))
b✝ b : α
hb : ∀ (y : α), rα y b → Acc rα y
ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y))
c d : α
⊢ Sym2.GameAdd rα (Quotient.mk (Sym2.Rel.setoid α) (c, d)) (Quotient.mk (Sym2.Rel.setoid α) (a, b)) →
Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (c, d))
[PROOFSTEP]
rw [Sym2.GameAdd]
[GOAL]
case intro.intro.hf
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ b✝¹ : α
hb✝ : Acc rα b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b))
b✝ b : α
hb : ∀ (y : α), rα y b → Acc rα y
ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y))
c d : α
⊢ ↑Sym2.lift₂
{ val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂),
property :=
(_ :
∀ (a₁ b₁ a₂ b₂ : α),
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂
b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁
a₂ b₂ ∧
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
a₂ b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
b₂ a₂) }
(Quotient.mk (Sym2.Rel.setoid α) (c, d)) (Quotient.mk (Sym2.Rel.setoid α) (a, b)) →
Acc
(↑Sym2.lift₂
{ val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂),
property :=
(_ :
∀ (a₁ b₁ a₂ b₂ : α),
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
a₂ b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁
a₁ a₂ b₂ ∧
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
a₂ b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁
b₁ b₂ a₂) })
(Quotient.mk (Sym2.Rel.setoid α) (c, d))
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.hf
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ b✝¹ : α
hb✝ : Acc rα b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b))
b✝ b : α
hb : ∀ (y : α), rα y b → Acc rα y
ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y))
c d : α
⊢ Prod.GameAdd rα rα (c, d) (a, b) ∨ Prod.GameAdd rα rα (d, c) (a, b) →
Acc
(↑Sym2.lift₂
{ val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂),
property :=
(_ :
∀ (a₁ b₁ a₂ b₂ : α),
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
a₂ b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁
a₁ a₂ b₂ ∧
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
a₂ b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁
b₁ b₂ a₂) })
(Quotient.mk (Sym2.Rel.setoid α) (c, d))
[PROOFSTEP]
rintro ((rc | rd) | (rd | rc))
[GOAL]
case intro.intro.hf.inl.fst
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ b✝¹ : α
hb✝ : Acc rα b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b))
b✝ b : α
hb : ∀ (y : α), rα y b → Acc rα y
ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y))
c : α
rc : rα c a
⊢ Acc
(↑Sym2.lift₂
{ val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂),
property :=
(_ :
∀ (a₁ b₁ a₂ b₂ : α),
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂
b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁
a₂ b₂ ∧
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
a₂ b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
b₂ a₂) })
(Quotient.mk (Sym2.Rel.setoid α) (c, b))
[PROOFSTEP]
exact iha c rc ⟨b, hb⟩
[GOAL]
case intro.intro.hf.inl.snd
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ b✝¹ : α
hb✝ : Acc rα b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b))
b✝ b : α
hb : ∀ (y : α), rα y b → Acc rα y
ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y))
d : α
rd : rα d b
⊢ Acc
(↑Sym2.lift₂
{ val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂),
property :=
(_ :
∀ (a₁ b₁ a₂ b₂ : α),
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂
b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁
a₂ b₂ ∧
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
a₂ b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
b₂ a₂) })
(Quotient.mk (Sym2.Rel.setoid α) (a, d))
[PROOFSTEP]
exact ihb d rd
[GOAL]
case intro.intro.hf.inr.fst
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ b✝¹ : α
hb✝ : Acc rα b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b))
b✝ b : α
hb : ∀ (y : α), rα y b → Acc rα y
ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y))
d : α
rd : rα d a
⊢ Acc
(↑Sym2.lift₂
{ val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂),
property :=
(_ :
∀ (a₁ b₁ a₂ b₂ : α),
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂
b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁
a₂ b₂ ∧
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
a₂ b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
b₂ a₂) })
(Quotient.mk (Sym2.Rel.setoid α) (b, d))
[PROOFSTEP]
rw [Sym2.eq_swap]
[GOAL]
case intro.intro.hf.inr.fst
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ b✝¹ : α
hb✝ : Acc rα b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b))
b✝ b : α
hb : ∀ (y : α), rα y b → Acc rα y
ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y))
d : α
rd : rα d a
⊢ Acc
(↑Sym2.lift₂
{ val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂),
property :=
(_ :
∀ (a₁ b₁ a₂ b₂ : α),
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂
b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁
a₂ b₂ ∧
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
a₂ b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
b₂ a₂) })
(Quotient.mk (Sym2.Rel.setoid α) (d, b))
[PROOFSTEP]
exact iha d rd ⟨b, hb⟩
[GOAL]
case intro.intro.hf.inr.snd
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ b✝¹ : α
hb✝ : Acc rα b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b))
b✝ b : α
hb : ∀ (y : α), rα y b → Acc rα y
ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y))
c : α
rc : rα c b
⊢ Acc
(↑Sym2.lift₂
{ val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂),
property :=
(_ :
∀ (a₁ b₁ a₂ b₂ : α),
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂
b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁
a₂ b₂ ∧
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
a₂ b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
b₂ a₂) })
(Quotient.mk (Sym2.Rel.setoid α) (c, a))
[PROOFSTEP]
rw [Sym2.eq_swap]
[GOAL]
case intro.intro.hf.inr.snd
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
a✝ b✝¹ : α
hb✝ : Acc rα b✝¹
a : α
h✝ : ∀ (y : α), rα y a → Acc rα y
iha : ∀ (y : α), rα y a → ∀ {b : α}, Acc rα b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (y, b))
b✝ b : α
hb : ∀ (y : α), rα y b → Acc rα y
ihb : ∀ (y : α), rα y b → Acc (Sym2.GameAdd rα) (Quotient.mk (Sym2.Rel.setoid α) (a, y))
c : α
rc : rα c b
⊢ Acc
(↑Sym2.lift₂
{ val := fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂),
property :=
(_ :
∀ (a₁ b₁ a₂ b₂ : α),
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁ a₂
b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) b₁ a₁
a₂ b₂ ∧
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
a₂ b₂ =
(fun a₁ b₁ a₂ b₂ => Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂)) a₁ b₁
b₂ a₂) })
(Quotient.mk (Sym2.Rel.setoid α) (a, c))
[PROOFSTEP]
exact ihb c rc
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
C : α → α → Sort u_3
hr : WellFounded rα
IH :
(a₁ b₁ : α) →
((a₂ b₂ : α) → GameAdd rα (Quotient.mk (Rel.setoid α) (a₂, b₂)) (Quotient.mk (Rel.setoid α) (a₁, b₁)) → C a₂ b₂) →
C a₁ b₁
a b : α
⊢ C a b
[PROOFSTEP]
have := hr.sym2_gameAdd
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
C : α → α → Sort u_3
hr : WellFounded rα
IH :
(a₁ b₁ : α) →
((a₂ b₂ : α) → GameAdd rα (Quotient.mk (Rel.setoid α) (a₂, b₂)) (Quotient.mk (Rel.setoid α) (a₁, b₁)) → C a₂ b₂) →
C a₁ b₁
a b : α
this : WellFounded (GameAdd rα)
⊢ C a b
[PROOFSTEP]
dsimp only [GameAdd, lift₂, FunLike.coe, EquivLike.coe] at this
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
C : α → α → Sort u_3
hr : WellFounded rα
IH :
(a₁ b₁ : α) →
((a₂ b₂ : α) → GameAdd rα (Quotient.mk (Rel.setoid α) (a₂, b₂)) (Quotient.mk (Rel.setoid α) (a₁, b₁)) → C a₂ b₂) →
C a₁ b₁
a b : α
this :
WellFounded
(Quotient.lift₂
(fun a b => Prod.GameAdd rα rα (a.fst, a.snd) (b.fst, b.snd) ∨ Prod.GameAdd rα rα (a.snd, a.fst) (b.fst, b.snd))
(_ :
∀ (a₁ b₁ a₂ b₂ : α × α),
a₁ ≈ a₂ →
b₁ ≈ b₂ →
(fun a b =>
↑{
val := fun a₁ b₁ a₂ b₂ =>
Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂),
property :=
(_ :
∀ (a₁ b₁ a₂ b₂ : α),
(fun a₁ b₁ a₂ b₂ =>
Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂))
a₁ b₁ a₂ b₂ =
(fun a₁ b₁ a₂ b₂ =>
Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂))
b₁ a₁ a₂ b₂ ∧
(fun a₁ b₁ a₂ b₂ =>
Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂))
a₁ b₁ a₂ b₂ =
(fun a₁ b₁ a₂ b₂ =>
Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂))
a₁ b₁ b₂ a₂) }
a.fst a.snd b.fst b.snd)
a₁ b₁ =
(fun a b =>
↑{
val := fun a₁ b₁ a₂ b₂ =>
Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂),
property :=
(_ :
∀ (a₁ b₁ a₂ b₂ : α),
(fun a₁ b₁ a₂ b₂ =>
Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂))
a₁ b₁ a₂ b₂ =
(fun a₁ b₁ a₂ b₂ =>
Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂))
b₁ a₁ a₂ b₂ ∧
(fun a₁ b₁ a₂ b₂ =>
Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂))
a₁ b₁ a₂ b₂ =
(fun a₁ b₁ a₂ b₂ =>
Prod.GameAdd rα rα (a₁, b₁) (a₂, b₂) ∨ Prod.GameAdd rα rα (b₁, a₁) (a₂, b₂))
a₁ b₁ b₂ a₂) }
a.fst a.snd b.fst b.snd)
a₂ b₂))
⊢ C a b
[PROOFSTEP]
exact
@WellFounded.fix (α × α) (fun x => C x.1 x.2) _ this.of_quotient_lift₂
(fun ⟨x₁, x₂⟩ IH' => IH x₁ x₂ fun a' b' => IH' ⟨a', b'⟩) (a, b)
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
C : α → α → Sort u_3
hr : WellFounded rα
IH :
(a₁ b₁ : α) →
((a₂ b₂ : α) → GameAdd rα (Quotient.mk (Rel.setoid α) (a₂, b₂)) (Quotient.mk (Rel.setoid α) (a₁, b₁)) → C a₂ b₂) →
C a₁ b₁
a b : α
⊢ fix hr IH a b = IH a b fun a' b' x => fix hr IH a' b'
[PROOFSTEP]
dsimp [GameAdd.fix]
[GOAL]
α : Type u_1
β : Type u_2
rα : α → α → Prop
rβ : β → β → Prop
C : α → α → Sort u_3
hr : WellFounded rα
IH :
(a₁ b₁ : α) →
((a₂ b₂ : α) → GameAdd rα (Quotient.mk (Rel.setoid α) (a₂, b₂)) (Quotient.mk (Rel.setoid α) (a₁, b₁)) → C a₂ b₂) →
C a₁ b₁
a b : α
⊢ WellFounded.fix
(_ :
WellFounded fun a b =>
Prod.GameAdd rα rα (a.fst, a.snd) (b.fst, b.snd) ∨ Prod.GameAdd rα rα (a.snd, a.fst) (b.fst, b.snd))
(fun x IH' => IH x.fst x.snd fun a' b' => IH' (a', b')) (a, b) =
IH a b fun a' b' x =>
WellFounded.fix
(_ :
WellFounded fun a b =>
Prod.GameAdd rα rα (a.fst, a.snd) (b.fst, b.snd) ∨ Prod.GameAdd rα rα (a.snd, a.fst) (b.fst, b.snd))
(fun x IH' => IH x.fst x.snd fun a' b' => IH' (a', b')) (a', b')
[PROOFSTEP]
exact WellFounded.fix_eq _ _ _
| {"mathlib_filename": "Mathlib.Order.GameAdd", "llama_tokens": 14466} |
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a✝ b✝ c d a b : α
⊢ min a b = a ∧ a ≤ b ∨ min a b = b ∧ b < a
[PROOFSTEP]
by_cases h : a ≤ b
[GOAL]
case pos
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a✝ b✝ c d a b : α
h : a ≤ b
⊢ min a b = a ∧ a ≤ b ∨ min a b = b ∧ b < a
[PROOFSTEP]
left
[GOAL]
case pos.h
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a✝ b✝ c d a b : α
h : a ≤ b
⊢ min a b = a ∧ a ≤ b
[PROOFSTEP]
exact ⟨min_eq_left h, h⟩
[GOAL]
case neg
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a✝ b✝ c d a b : α
h : ¬a ≤ b
⊢ min a b = a ∧ a ≤ b ∨ min a b = b ∧ b < a
[PROOFSTEP]
right
[GOAL]
case neg.h
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a✝ b✝ c d a b : α
h : ¬a ≤ b
⊢ min a b = b ∧ b < a
[PROOFSTEP]
exact ⟨min_eq_right (le_of_lt (not_le.mp h)), not_le.mp h⟩
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
⊢ min a b = c ↔ a = c ∧ a ≤ b ∨ b = c ∧ b ≤ a
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
⊢ min a b = c → a = c ∧ a ≤ b ∨ b = c ∧ b ≤ a
[PROOFSTEP]
intro h
[GOAL]
case mp
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
h : min a b = c
⊢ a = c ∧ a ≤ b ∨ b = c ∧ b ≤ a
[PROOFSTEP]
refine' Or.imp (fun h' => _) (fun h' => _) (le_total a b)
[GOAL]
case mp.refine'_1
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
h : min a b = c
h' : a ≤ b
⊢ a = c ∧ a ≤ b
[PROOFSTEP]
exact ⟨by simpa [h'] using h, h'⟩
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
h : min a b = c
h' : a ≤ b
⊢ a = c
[PROOFSTEP]
simpa [h'] using h
[GOAL]
case mp.refine'_2
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
h : min a b = c
h' : b ≤ a
⊢ b = c ∧ b ≤ a
[PROOFSTEP]
exact ⟨by simpa [h'] using h, h'⟩
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
h : min a b = c
h' : b ≤ a
⊢ b = c
[PROOFSTEP]
simpa [h'] using h
[GOAL]
case mpr
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
⊢ a = c ∧ a ≤ b ∨ b = c ∧ b ≤ a → min a b = c
[PROOFSTEP]
rintro (⟨rfl, h⟩ | ⟨rfl, h⟩)
[GOAL]
case mpr.inl.intro
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b d : α
h : a ≤ b
⊢ min a b = a
[PROOFSTEP]
simp [h]
[GOAL]
case mpr.inr.intro
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b d : α
h : b ≤ a
⊢ min a b = b
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
⊢ min a c < min b c ↔ a < b ∧ a < c
[PROOFSTEP]
simp_rw [lt_min_iff, min_lt_iff, or_iff_left (lt_irrefl _)]
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
⊢ (a < b ∨ c < b) ∧ a < c ↔ a < b ∧ a < c
[PROOFSTEP]
exact and_congr_left fun h => or_iff_left_of_imp h.trans
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
⊢ min a b < min a c ↔ b < c ∧ b < a
[PROOFSTEP]
simp_rw [min_comm a, min_lt_min_left_iff]
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
⊢ ∀ (a : α), max a a = a
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
⊢ ∀ (a : α), min a a = a
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
hf : MonotoneOn f s
ha : a ∈ s
hb : b ∈ s
⊢ f (max a b) = max (f a) (f b)
[PROOFSTEP]
cases' le_total a b with h h
[GOAL]
case inl
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
hf : MonotoneOn f s
ha : a ∈ s
hb : b ∈ s
h : a ≤ b
⊢ f (max a b) = max (f a) (f b)
[PROOFSTEP]
simp only [max_eq_right, max_eq_left, hf ha hb, hf hb ha, h]
[GOAL]
case inr
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
hf : MonotoneOn f s
ha : a ∈ s
hb : b ∈ s
h : b ≤ a
⊢ f (max a b) = max (f a) (f b)
[PROOFSTEP]
simp only [max_eq_right, max_eq_left, hf ha hb, hf hb ha, h]
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
hf : Monotone f
⊢ f (max a b) = max (f a) (f b)
[PROOFSTEP]
cases' le_total a b with h h
[GOAL]
case inl
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
hf : Monotone f
h : a ≤ b
⊢ f (max a b) = max (f a) (f b)
[PROOFSTEP]
simp [h, hf h]
[GOAL]
case inr
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
hf : Monotone f
h : b ≤ a
⊢ f (max a b) = max (f a) (f b)
[PROOFSTEP]
simp [h, hf h]
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
hf : Antitone f
⊢ f (max a b) = min (f a) (f b)
[PROOFSTEP]
cases' le_total a b with h h
[GOAL]
case inl
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
hf : Antitone f
h : a ≤ b
⊢ f (max a b) = min (f a) (f b)
[PROOFSTEP]
simp [h, hf h]
[GOAL]
case inr
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a b c d : α
hf : Antitone f
h : b ≤ a
⊢ f (max a b) = min (f a) (f b)
[PROOFSTEP]
simp [h, hf h]
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a✝ b✝ c d a b : α
⊢ min a b = a ∨ min a b = b
[PROOFSTEP]
cases le_total a b
[GOAL]
case inl
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a✝ b✝ c d a b : α
h✝ : a ≤ b
⊢ min a b = a ∨ min a b = b
[PROOFSTEP]
simp [*]
[GOAL]
case inr
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : α → β
s : Set α
a✝ b✝ c d a b : α
h✝ : b ≤ a
⊢ min a b = a ∨ min a b = b
[PROOFSTEP]
simp [*]
| {"mathlib_filename": "Mathlib.Order.MinMax", "llama_tokens": 3352} |
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f g : M ↪ₑ[L] N
h : (fun f => ↑f) f = (fun f => ↑f) g
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
g : M ↪ₑ[L] N
toFun✝ : M → N
map_formula'✝ : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝ ∘ x) ↔ Formula.Realize φ x
h : (fun f => ↑f) (mk toFun✝) = (fun f => ↑f) g
⊢ mk toFun✝ = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
toFun✝¹ : M → N
map_formula'✝¹ :
∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝¹ ∘ x) ↔ Formula.Realize φ x
toFun✝ : M → N
map_formula'✝ : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝ ∘ x) ↔ Formula.Realize φ x
h : (fun f => ↑f) (mk toFun✝¹) = (fun f => ↑f) (mk toFun✝)
⊢ mk toFun✝¹ = mk toFun✝
[PROOFSTEP]
simp only [ElementaryEmbedding.mk.injEq]
[GOAL]
case mk.mk
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
toFun✝¹ : M → N
map_formula'✝¹ :
∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝¹ ∘ x) ↔ Formula.Realize φ x
toFun✝ : M → N
map_formula'✝ : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝ ∘ x) ↔ Formula.Realize φ x
h : (fun f => ↑f) (mk toFun✝¹) = (fun f => ↑f) (mk toFun✝)
⊢ toFun✝¹ = toFun✝
[PROOFSTEP]
ext x
[GOAL]
case mk.mk.h
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
toFun✝¹ : M → N
map_formula'✝¹ :
∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝¹ ∘ x) ↔ Formula.Realize φ x
toFun✝ : M → N
map_formula'✝ : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝ ∘ x) ↔ Formula.Realize φ x
h : (fun f => ↑f) (mk toFun✝¹) = (fun f => ↑f) (mk toFun✝)
x : M
⊢ toFun✝¹ x = toFun✝ x
[PROOFSTEP]
exact Function.funext_iff.1 h x
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪ₑ[L] N
α : Type u_5
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
⊢ BoundedFormula.Realize φ (↑f ∘ v) (↑f ∘ xs) ↔ BoundedFormula.Realize φ v xs
[PROOFSTEP]
classical
rw [← BoundedFormula.realize_restrictFreeVar Set.Subset.rfl, Set.inclusion_eq_id, iff_eq_eq]
have h :=
f.map_formula' ((φ.restrictFreeVar id).toFormula.relabel (Fintype.equivFin _))
(Sum.elim (v ∘ (↑)) xs ∘ (Fintype.equivFin _).symm)
simp only [Formula.realize_relabel, BoundedFormula.realize_toFormula, iff_eq_eq] at h
rw [← Function.comp.assoc _ _ (Fintype.equivFin _).symm,
Function.comp.assoc _ (Fintype.equivFin _).symm (Fintype.equivFin _), Equiv.symm_comp_self, Function.comp.right_id,
Function.comp.assoc, Sum.elim_comp_inl, Function.comp.assoc _ _ Sum.inr, Sum.elim_comp_inr, ← Function.comp.assoc] at
h
refine' h.trans _
erw [Function.comp.assoc _ _ (Fintype.equivFin _), Equiv.symm_comp_self, Function.comp.right_id, Sum.elim_comp_inl,
Sum.elim_comp_inr (v ∘ Subtype.val) xs, ←
Set.inclusion_eq_id (s := (BoundedFormula.freeVarFinset φ : Set α)) Set.Subset.rfl,
BoundedFormula.realize_restrictFreeVar Set.Subset.rfl]
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪ₑ[L] N
α : Type u_5
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
⊢ BoundedFormula.Realize φ (↑f ∘ v) (↑f ∘ xs) ↔ BoundedFormula.Realize φ v xs
[PROOFSTEP]
rw [← BoundedFormula.realize_restrictFreeVar Set.Subset.rfl, Set.inclusion_eq_id, iff_eq_eq]
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪ₑ[L] N
α : Type u_5
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
⊢ BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) ((↑f ∘ v) ∘ Subtype.val) (↑f ∘ xs) =
BoundedFormula.Realize φ v xs
[PROOFSTEP]
have h :=
f.map_formula' ((φ.restrictFreeVar id).toFormula.relabel (Fintype.equivFin _))
(Sum.elim (v ∘ (↑)) xs ∘ (Fintype.equivFin _).symm)
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪ₑ[L] N
α : Type u_5
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
h :
Formula.Realize
(Formula.relabel (↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)))
(BoundedFormula.toFormula (BoundedFormula.restrictFreeVar φ id)))
(↑f ∘
Sum.elim (v ∘ Subtype.val) xs ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ↔
Formula.Realize
(Formula.relabel (↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)))
(BoundedFormula.toFormula (BoundedFormula.restrictFreeVar φ id)))
(Sum.elim (v ∘ Subtype.val) xs ∘ ↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm)
⊢ BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) ((↑f ∘ v) ∘ Subtype.val) (↑f ∘ xs) =
BoundedFormula.Realize φ v xs
[PROOFSTEP]
simp only [Formula.realize_relabel, BoundedFormula.realize_toFormula, iff_eq_eq] at h
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪ₑ[L] N
α : Type u_5
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
h :
BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id)
(((↑f ∘
Sum.elim (v ∘ Subtype.val) xs ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘
Sum.inl)
(((↑f ∘
Sum.elim (v ∘ Subtype.val) xs ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘
Sum.inr) =
BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id)
(((Sum.elim (v ∘ Subtype.val) xs ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘
Sum.inl)
(((Sum.elim (v ∘ Subtype.val) xs ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘
Sum.inr)
⊢ BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) ((↑f ∘ v) ∘ Subtype.val) (↑f ∘ xs) =
BoundedFormula.Realize φ v xs
[PROOFSTEP]
rw [← Function.comp.assoc _ _ (Fintype.equivFin _).symm,
Function.comp.assoc _ (Fintype.equivFin _).symm (Fintype.equivFin _), Equiv.symm_comp_self, Function.comp.right_id,
Function.comp.assoc, Sum.elim_comp_inl, Function.comp.assoc _ _ Sum.inr, Sum.elim_comp_inr, ← Function.comp.assoc] at
h
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪ₑ[L] N
α : Type u_5
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
h :
BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) ((↑f ∘ v) ∘ Subtype.val) (↑f ∘ xs) =
BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id)
(((Sum.elim (v ∘ Subtype.val) xs ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘
Sum.inl)
(((Sum.elim (v ∘ Subtype.val) xs ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘
Sum.inr)
⊢ BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) ((↑f ∘ v) ∘ Subtype.val) (↑f ∘ xs) =
BoundedFormula.Realize φ v xs
[PROOFSTEP]
refine' h.trans _
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪ₑ[L] N
α : Type u_5
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
h :
BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id) ((↑f ∘ v) ∘ Subtype.val) (↑f ∘ xs) =
BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id)
(((Sum.elim (v ∘ Subtype.val) xs ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘
Sum.inl)
(((Sum.elim (v ∘ Subtype.val) xs ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘
Sum.inr)
⊢ BoundedFormula.Realize (BoundedFormula.restrictFreeVar φ id)
(((Sum.elim (v ∘ Subtype.val) xs ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘
Sum.inl)
(((Sum.elim (v ∘ Subtype.val) xs ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n)).symm) ∘
↑(Fintype.equivFin ({ x // x ∈ BoundedFormula.freeVarFinset φ } ⊕ Fin n))) ∘
Sum.inr) =
BoundedFormula.Realize φ v xs
[PROOFSTEP]
erw [Function.comp.assoc _ _ (Fintype.equivFin _), Equiv.symm_comp_self, Function.comp.right_id, Sum.elim_comp_inl,
Sum.elim_comp_inr (v ∘ Subtype.val) xs, ←
Set.inclusion_eq_id (s := (BoundedFormula.freeVarFinset φ : Set α)) Set.Subset.rfl,
BoundedFormula.realize_restrictFreeVar Set.Subset.rfl]
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪ₑ[L] N
α : Type u_5
φ : Formula L α
x : α → M
⊢ Formula.Realize φ (↑f ∘ x) ↔ Formula.Realize φ x
[PROOFSTEP]
rw [Formula.Realize, Formula.Realize, ← f.map_boundedFormula, Unique.eq_default (f ∘ default)]
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪ₑ[L] N
φ : Sentence L
⊢ M ⊨ φ ↔ N ⊨ φ
[PROOFSTEP]
rw [Sentence.Realize, Sentence.Realize, ← f.map_formula, Unique.eq_default (f ∘ default)]
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪ₑ[L] N
T : Theory L
⊢ M ⊨ T ↔ N ⊨ T
[PROOFSTEP]
simp only [Theory.model_iff, f.map_sentence]
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
φ : M ↪ₑ[L] N
⊢ Function.Injective ↑φ
[PROOFSTEP]
intro x y
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
φ : M ↪ₑ[L] N
x y : M
⊢ ↑φ x = ↑φ y → x = y
[PROOFSTEP]
have h := φ.map_formula ((var 0).equal (var 1) : L.Formula (Fin 2)) fun i => if i = 0 then x else y
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
φ : M ↪ₑ[L] N
x y : M
h :
Formula.Realize (Term.equal (var 0) (var 1)) (↑φ ∘ fun i => if i = 0 then x else y) ↔
Formula.Realize (Term.equal (var 0) (var 1)) fun i => if i = 0 then x else y
⊢ ↑φ x = ↑φ y → x = y
[PROOFSTEP]
rw [Formula.realize_equal, Formula.realize_equal] at h
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
φ : M ↪ₑ[L] N
x y : M
h :
Term.realize (↑φ ∘ fun i => if i = 0 then x else y) (var 0) =
Term.realize (↑φ ∘ fun i => if i = 0 then x else y) (var 1) ↔
Term.realize (fun i => if i = 0 then x else y) (var 0) = Term.realize (fun i => if i = 0 then x else y) (var 1)
⊢ ↑φ x = ↑φ y → x = y
[PROOFSTEP]
simp only [Nat.one_ne_zero, Term.realize, Fin.one_eq_zero_iff, if_true, eq_self_iff_true, Function.comp_apply,
if_false] at h
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
φ : M ↪ₑ[L] N
x y : M
h : ↑φ x = ↑φ y ↔ x = y
⊢ ↑φ x = ↑φ y → x = y
[PROOFSTEP]
exact h.1
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
φ : M ↪ₑ[L] N
n : ℕ
f : Functions L n
x : Fin n → M
⊢ ↑φ (funMap f x) = funMap f (↑φ ∘ x)
[PROOFSTEP]
have h := φ.map_formula (Formula.graph f) (Fin.cons (funMap f x) x)
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
φ : M ↪ₑ[L] N
n : ℕ
f : Functions L n
x : Fin n → M
h :
Formula.Realize (Formula.graph f) (↑φ ∘ Fin.cons (funMap f x) x) ↔
Formula.Realize (Formula.graph f) (Fin.cons (funMap f x) x)
⊢ ↑φ (funMap f x) = funMap f (↑φ ∘ x)
[PROOFSTEP]
rw [Formula.realize_graph, Fin.comp_cons, Formula.realize_graph] at h
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
φ : M ↪ₑ[L] N
n : ℕ
f : Functions L n
x : Fin n → M
h : funMap f (↑φ ∘ x) = ↑φ (funMap f x) ↔ funMap f x = funMap f x
⊢ ↑φ (funMap f x) = funMap f (↑φ ∘ x)
[PROOFSTEP]
rw [eq_comm, h]
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f✝ : M ↪ₑ[L] N
x✝ : ℕ
f : Functions L x✝
x : Fin x✝ → M
⊢ Function.Embedding.toFun { toFun := ↑f✝, inj' := (_ : Function.Injective ↑f✝) } (funMap f x) =
funMap f ({ toFun := ↑f✝, inj' := (_ : Function.Injective ↑f✝) }.toFun ∘ x)
[PROOFSTEP]
aesop
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪ₑ[L] N
x✝ : ℕ
R : Relations L x✝
x : Fin x✝ → M
⊢ RelMap R ({ toFun := ↑f, inj' := (_ : Function.Injective ↑f) }.toFun ∘ x) ↔ RelMap R x
[PROOFSTEP]
aesop
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f✝ : M ↪ₑ[L] N
x✝ : ℕ
f : Functions L x✝
x : Fin x✝ → M
⊢ ↑f✝ (funMap f x) = funMap f (↑f✝ ∘ x)
[PROOFSTEP]
aesop
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪ₑ[L] N
x✝ : ℕ
R : Relations L x✝
x : Fin x✝ → M
⊢ RelMap R x → RelMap R (↑f ∘ x)
[PROOFSTEP]
aesop
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
hnp : N ↪ₑ[L] P
hmn : M ↪ₑ[L] N
n : ℕ
φ : Formula L (Fin n)
x : Fin n → M
⊢ Formula.Realize φ ((↑hnp ∘ ↑hmn) ∘ x) ↔ Formula.Realize φ x
[PROOFSTEP]
cases' hnp with _ hhnp
[GOAL]
case mk
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
hmn : M ↪ₑ[L] N
n : ℕ
φ : Formula L (Fin n)
x : Fin n → M
toFun✝ : N → P
hhnp : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → N), Formula.Realize φ (toFun✝ ∘ x) ↔ Formula.Realize φ x
⊢ Formula.Realize φ ((↑(mk toFun✝) ∘ ↑hmn) ∘ x) ↔ Formula.Realize φ x
[PROOFSTEP]
cases' hmn with _ hhmn
[GOAL]
case mk.mk
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
n : ℕ
φ : Formula L (Fin n)
x : Fin n → M
toFun✝¹ : N → P
hhnp : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → N), Formula.Realize φ (toFun✝¹ ∘ x) ↔ Formula.Realize φ x
toFun✝ : M → N
hhmn : ∀ ⦃n : ℕ⦄ (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (toFun✝ ∘ x) ↔ Formula.Realize φ x
⊢ Formula.Realize φ ((↑(mk toFun✝¹) ∘ ↑(mk toFun✝)) ∘ x) ↔ Formula.Realize φ x
[PROOFSTEP]
erw [hhnp, hhmn]
[GOAL]
L : Language
M : Type u_1
N✝ : Type u_2
P : Type u_3
Q : Type u_4
inst✝⁷ : Structure L M
inst✝⁶ : Structure L N✝
inst✝⁵ : Structure L P
inst✝⁴ : Structure L Q
N : Type u_5
inst✝³ : Structure L N
inst✝² : Structure (L[[M]]) N
inst✝¹ : LHom.IsExpansionOn (lhomWithConstants L M) N
inst✝ : N ⊨ elementaryDiagram L M
n : ℕ
φ : Formula L (Fin n)
x : Fin n → M
⊢ Formula.Realize φ ((constantMap ∘ Sum.inr) ∘ x) ↔ Formula.Realize φ x
[PROOFSTEP]
refine'
_root_.trans _
((realize_iff_of_model_completeTheory M N
(((L.lhomWithConstants M).onBoundedFormula φ).subst (Constants.term ∘ Sum.inr ∘ x)).alls).trans
_)
[GOAL]
case refine'_1
L : Language
M : Type u_1
N✝ : Type u_2
P : Type u_3
Q : Type u_4
inst✝⁷ : Structure L M
inst✝⁶ : Structure L N✝
inst✝⁵ : Structure L P
inst✝⁴ : Structure L Q
N : Type u_5
inst✝³ : Structure L N
inst✝² : Structure (L[[M]]) N
inst✝¹ : LHom.IsExpansionOn (lhomWithConstants L M) N
inst✝ : N ⊨ elementaryDiagram L M
n : ℕ
φ : Formula L (Fin n)
x : Fin n → M
⊢ Formula.Realize φ ((constantMap ∘ Sum.inr) ∘ x) ↔
N ⊨
BoundedFormula.alls
(BoundedFormula.subst (LHom.onBoundedFormula (lhomWithConstants L M) φ) (Constants.term ∘ Sum.inr ∘ x))
[PROOFSTEP]
simp_rw [Sentence.Realize, BoundedFormula.realize_alls, BoundedFormula.realize_subst, LHom.realize_onBoundedFormula,
Formula.Realize, Unique.forall_iff, Function.comp, Term.realize_constants]
[GOAL]
case refine'_2
L : Language
M : Type u_1
N✝ : Type u_2
P : Type u_3
Q : Type u_4
inst✝⁷ : Structure L M
inst✝⁶ : Structure L N✝
inst✝⁵ : Structure L P
inst✝⁴ : Structure L Q
N : Type u_5
inst✝³ : Structure L N
inst✝² : Structure (L[[M]]) N
inst✝¹ : LHom.IsExpansionOn (lhomWithConstants L M) N
inst✝ : N ⊨ elementaryDiagram L M
n : ℕ
φ : Formula L (Fin n)
x : Fin n → M
⊢ M ⊨
BoundedFormula.alls
(BoundedFormula.subst (LHom.onBoundedFormula (lhomWithConstants L M) φ) (Constants.term ∘ Sum.inr ∘ x)) ↔
Formula.Realize φ x
[PROOFSTEP]
simp_rw [Sentence.Realize, BoundedFormula.realize_alls, BoundedFormula.realize_subst, LHom.realize_onBoundedFormula,
Formula.Realize, Unique.forall_iff]
[GOAL]
case refine'_2
L : Language
M : Type u_1
N✝ : Type u_2
P : Type u_3
Q : Type u_4
inst✝⁷ : Structure L M
inst✝⁶ : Structure L N✝
inst✝⁵ : Structure L P
inst✝⁴ : Structure L Q
N : Type u_5
inst✝³ : Structure L N
inst✝² : Structure (L[[M]]) N
inst✝¹ : LHom.IsExpansionOn (lhomWithConstants L M) N
inst✝ : N ⊨ elementaryDiagram L M
n : ℕ
φ : Formula L (Fin n)
x : Fin n → M
⊢ BoundedFormula.Realize φ (fun a => Term.realize default ((Constants.term ∘ Sum.inr ∘ x) a)) default ↔
BoundedFormula.Realize φ x default
[PROOFSTEP]
rfl
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
⊢ ∀ {n : ℕ} (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (↑f ∘ x) ↔ Formula.Realize φ x
[PROOFSTEP]
suffices h :
∀ (n : ℕ) (φ : L.BoundedFormula Empty n) (xs : Fin n → M), φ.Realize (f ∘ default) (f ∘ xs) ↔ φ.Realize default xs
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
h :
∀ (n : ℕ) (φ : BoundedFormula L Empty n) (xs : Fin n → M),
BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
⊢ ∀ {n : ℕ} (φ : Formula L (Fin n)) (x : Fin n → M), Formula.Realize φ (↑f ∘ x) ↔ Formula.Realize φ x
[PROOFSTEP]
intro n φ x
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
h :
∀ (n : ℕ) (φ : BoundedFormula L Empty n) (xs : Fin n → M),
BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
n : ℕ
φ : Formula L (Fin n)
x : Fin n → M
⊢ Formula.Realize φ (↑f ∘ x) ↔ Formula.Realize φ x
[PROOFSTEP]
refine' φ.realize_relabel_sum_inr.symm.trans (_root_.trans (h n _ _) φ.realize_relabel_sum_inr)
[GOAL]
case h
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
⊢ ∀ (n : ℕ) (φ : BoundedFormula L Empty n) (xs : Fin n → M),
BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
[PROOFSTEP]
refine' fun n φ => φ.recOn _ _ _ _ _
[GOAL]
case h.refine'_1
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n : ℕ
φ : BoundedFormula L Empty n
⊢ ∀ {n : ℕ} (xs : Fin n → M),
BoundedFormula.Realize BoundedFormula.falsum (↑f ∘ default) (↑f ∘ xs) ↔
BoundedFormula.Realize BoundedFormula.falsum default xs
[PROOFSTEP]
exact fun {_} _ => Iff.rfl
[GOAL]
case h.refine'_2
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n : ℕ
φ : BoundedFormula L Empty n
⊢ ∀ {n : ℕ} (t₁ t₂ : Term L (Empty ⊕ Fin n)) (xs : Fin n → M),
BoundedFormula.Realize (BoundedFormula.equal t₁ t₂) (↑f ∘ default) (↑f ∘ xs) ↔
BoundedFormula.Realize (BoundedFormula.equal t₁ t₂) default xs
[PROOFSTEP]
intros
[GOAL]
case h.refine'_2
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n : ℕ
φ : BoundedFormula L Empty n
n✝ : ℕ
t₁✝ t₂✝ : Term L (Empty ⊕ Fin n✝)
xs✝ : Fin n✝ → M
⊢ BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) (↑f ∘ default) (↑f ∘ xs✝) ↔
BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) default xs✝
[PROOFSTEP]
simp [BoundedFormula.Realize, ← Sum.comp_elim, Embedding.realize_term]
[GOAL]
case h.refine'_3
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n : ℕ
φ : BoundedFormula L Empty n
⊢ ∀ {n l : ℕ} (R : Relations L l) (ts : Fin l → Term L (Empty ⊕ Fin n)) (xs : Fin n → M),
BoundedFormula.Realize (BoundedFormula.rel R ts) (↑f ∘ default) (↑f ∘ xs) ↔
BoundedFormula.Realize (BoundedFormula.rel R ts) default xs
[PROOFSTEP]
intros
[GOAL]
case h.refine'_3
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n : ℕ
φ : BoundedFormula L Empty n
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (Empty ⊕ Fin n✝)
xs✝ : Fin n✝ → M
⊢ BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) (↑f ∘ default) (↑f ∘ xs✝) ↔
BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) default xs✝
[PROOFSTEP]
simp [BoundedFormula.Realize, ← Sum.comp_elim, Embedding.realize_term]
[GOAL]
case h.refine'_3
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n : ℕ
φ : BoundedFormula L Empty n
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (Empty ⊕ Fin n✝)
xs✝ : Fin n✝ → M
⊢ (RelMap R✝ fun i => ↑f (Term.realize (Sum.elim default xs✝) (ts✝ i))) ↔
RelMap R✝ fun i => Term.realize (Sum.elim default xs✝) (ts✝ i)
[PROOFSTEP]
erw [map_rel f]
[GOAL]
case h.refine'_4
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n : ℕ
φ : BoundedFormula L Empty n
⊢ ∀ {n : ℕ} (f₁ f₂ : BoundedFormula L Empty n),
(∀ (xs : Fin n → M), BoundedFormula.Realize f₁ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize f₁ default xs) →
(∀ (xs : Fin n → M), BoundedFormula.Realize f₂ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize f₂ default xs) →
∀ (xs : Fin n → M),
BoundedFormula.Realize (f₁ ⟹ f₂) (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize (f₁ ⟹ f₂) default xs
[PROOFSTEP]
intro _ _ _ ih1 ih2 _
[GOAL]
case h.refine'_4
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n : ℕ
φ : BoundedFormula L Empty n
n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L Empty n✝
ih1 : ∀ (xs : Fin n✝ → M), BoundedFormula.Realize f₁✝ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize f₁✝ default xs
ih2 : ∀ (xs : Fin n✝ → M), BoundedFormula.Realize f₂✝ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize f₂✝ default xs
xs✝ : Fin n✝ → M
⊢ BoundedFormula.Realize (f₁✝ ⟹ f₂✝) (↑f ∘ default) (↑f ∘ xs✝) ↔ BoundedFormula.Realize (f₁✝ ⟹ f₂✝) default xs✝
[PROOFSTEP]
simp [ih1, ih2]
[GOAL]
case h.refine'_5
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n : ℕ
φ : BoundedFormula L Empty n
⊢ ∀ {n : ℕ} (f_1 : BoundedFormula L Empty (n + 1)),
(∀ (xs : Fin (n + 1) → M),
BoundedFormula.Realize f_1 (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize f_1 default xs) →
∀ (xs : Fin n → M),
BoundedFormula.Realize (∀'f_1) (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize (∀'f_1) default xs
[PROOFSTEP]
intro n φ ih xs
[GOAL]
case h.refine'_5
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n✝ : ℕ
φ✝ : BoundedFormula L Empty n✝
n : ℕ
φ : BoundedFormula L Empty (n + 1)
ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
xs : Fin n → M
⊢ BoundedFormula.Realize (∀'φ) (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize (∀'φ) default xs
[PROOFSTEP]
simp only [BoundedFormula.realize_all]
[GOAL]
case h.refine'_5
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n✝ : ℕ
φ✝ : BoundedFormula L Empty n✝
n : ℕ
φ : BoundedFormula L Empty (n + 1)
ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
xs : Fin n → M
⊢ (∀ (a : N), BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a)) ↔
∀ (a : M), BoundedFormula.Realize φ default (Fin.snoc xs a)
[PROOFSTEP]
refine' ⟨fun h a => _, _⟩
[GOAL]
case h.refine'_5.refine'_1
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n✝ : ℕ
φ✝ : BoundedFormula L Empty n✝
n : ℕ
φ : BoundedFormula L Empty (n + 1)
ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
xs : Fin n → M
h : ∀ (a : N), BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a)
a : M
⊢ BoundedFormula.Realize φ default (Fin.snoc xs a)
[PROOFSTEP]
rw [← ih, Fin.comp_snoc]
[GOAL]
case h.refine'_5.refine'_1
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n✝ : ℕ
φ✝ : BoundedFormula L Empty n✝
n : ℕ
φ : BoundedFormula L Empty (n + 1)
ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
xs : Fin n → M
h : ∀ (a : N), BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a)
a : M
⊢ BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) (↑f a))
[PROOFSTEP]
exact h (f a)
[GOAL]
case h.refine'_5.refine'_2
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n✝ : ℕ
φ✝ : BoundedFormula L Empty n✝
n : ℕ
φ : BoundedFormula L Empty (n + 1)
ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
xs : Fin n → M
⊢ (∀ (a : M), BoundedFormula.Realize φ default (Fin.snoc xs a)) →
∀ (a : N), BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a)
[PROOFSTEP]
contrapose!
[GOAL]
case h.refine'_5.refine'_2
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n✝ : ℕ
φ✝ : BoundedFormula L Empty n✝
n : ℕ
φ : BoundedFormula L Empty (n + 1)
ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
xs : Fin n → M
⊢ (∃ a, ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a)) →
∃ a, ¬BoundedFormula.Realize φ default (Fin.snoc xs a)
[PROOFSTEP]
rintro ⟨a, ha⟩
[GOAL]
case h.refine'_5.refine'_2.intro
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n✝ : ℕ
φ✝ : BoundedFormula L Empty n✝
n : ℕ
φ : BoundedFormula L Empty (n + 1)
ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
xs : Fin n → M
a : N
ha : ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a)
⊢ ∃ a, ¬BoundedFormula.Realize φ default (Fin.snoc xs a)
[PROOFSTEP]
obtain ⟨b, hb⟩ :=
htv n φ.not xs a
(by
rw [BoundedFormula.realize_not, ← Unique.eq_default (f ∘ default)]
exact ha)
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n✝ : ℕ
φ✝ : BoundedFormula L Empty n✝
n : ℕ
φ : BoundedFormula L Empty (n + 1)
ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
xs : Fin n → M
a : N
ha : ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a)
⊢ BoundedFormula.Realize (∼φ) default (Fin.snoc (↑f ∘ xs) a)
[PROOFSTEP]
rw [BoundedFormula.realize_not, ← Unique.eq_default (f ∘ default)]
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n✝ : ℕ
φ✝ : BoundedFormula L Empty n✝
n : ℕ
φ : BoundedFormula L Empty (n + 1)
ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
xs : Fin n → M
a : N
ha : ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a)
⊢ ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a)
[PROOFSTEP]
exact ha
[GOAL]
case h.refine'_5.refine'_2.intro.intro
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n✝ : ℕ
φ✝ : BoundedFormula L Empty n✝
n : ℕ
φ : BoundedFormula L Empty (n + 1)
ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
xs : Fin n → M
a : N
ha : ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a)
b : M
hb : BoundedFormula.Realize (∼φ) default (Fin.snoc (↑f ∘ xs) (↑f b))
⊢ ∃ a, ¬BoundedFormula.Realize φ default (Fin.snoc xs a)
[PROOFSTEP]
refine' ⟨b, fun h => hb (Eq.mp _ ((ih _).2 h))⟩
[GOAL]
case h.refine'_5.refine'_2.intro.intro
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ↪[L] N
htv :
∀ (n : ℕ) (φ : BoundedFormula L Empty (n + 1)) (x : Fin n → M) (a : N),
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) a) →
∃ b, BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ x) (↑f b))
n✝ : ℕ
φ✝ : BoundedFormula L Empty n✝
n : ℕ
φ : BoundedFormula L Empty (n + 1)
ih : ∀ (xs : Fin (n + 1) → M), BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ xs) ↔ BoundedFormula.Realize φ default xs
xs : Fin n → M
a : N
ha : ¬BoundedFormula.Realize φ (↑f ∘ default) (Fin.snoc (↑f ∘ xs) a)
b : M
hb : BoundedFormula.Realize (∼φ) default (Fin.snoc (↑f ∘ xs) (↑f b))
h : BoundedFormula.Realize φ default (Fin.snoc xs b)
⊢ BoundedFormula.Realize φ (↑f ∘ default) (↑f ∘ Fin.snoc xs b) =
BoundedFormula.Realize φ default (Fin.snoc (↑f ∘ xs) (↑f b))
[PROOFSTEP]
rw [Unique.eq_default (f ∘ default), Fin.comp_snoc]
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
f : M ≃[L] N
n : ℕ
φ : Formula L (Fin n)
x : Fin n → M
⊢ Formula.Realize φ (↑f ∘ x) ↔ Formula.Realize φ x
[PROOFSTEP]
aesop
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
α : Type u_5
n : ℕ
φ : BoundedFormula L α n
v : α → { x // x ∈ ⊤ }
xs : Fin n → { x // x ∈ ⊤ }
⊢ BoundedFormula.Realize φ v xs ↔ BoundedFormula.Realize φ (Subtype.val ∘ v) (Subtype.val ∘ xs)
[PROOFSTEP]
rw [← Substructure.topEquiv.realize_boundedFormula φ]
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
α : Type u_5
n : ℕ
φ : BoundedFormula L α n
v : α → { x // x ∈ ⊤ }
xs : Fin n → { x // x ∈ ⊤ }
⊢ BoundedFormula.Realize φ (↑topEquiv ∘ v) (↑topEquiv ∘ xs) ↔
BoundedFormula.Realize φ (Subtype.val ∘ v) (Subtype.val ∘ xs)
[PROOFSTEP]
simp
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
α : Type u_5
φ : Formula L α
v : α → { x // x ∈ ⊤ }
⊢ Formula.Realize φ v ↔ Formula.Realize φ (Subtype.val ∘ v)
[PROOFSTEP]
rw [← Substructure.topEquiv.realize_formula φ]
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
α : Type u_5
φ : Formula L α
v : α → { x // x ∈ ⊤ }
⊢ Formula.Realize φ (↑topEquiv ∘ v) ↔ Formula.Realize φ (Subtype.val ∘ v)
[PROOFSTEP]
simp
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
x✝² x✝¹ : ElementarySubstructure L M
s : Set M
hs1 : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f s
hs2 : Substructure.IsElementary { carrier := s, fun_mem := hs1 }
t : Set M
ht1 : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f t
isElementary'✝ : Substructure.IsElementary { carrier := t, fun_mem := ht1 }
x✝ :
(fun x => ↑↑x) { toSubstructure := { carrier := s, fun_mem := hs1 }, isElementary' := hs2 } =
(fun x => ↑↑x) { toSubstructure := { carrier := t, fun_mem := ht1 }, isElementary' := isElementary'✝ }
⊢ { toSubstructure := { carrier := s, fun_mem := hs1 }, isElementary' := hs2 } =
{ toSubstructure := { carrier := t, fun_mem := ht1 }, isElementary' := isElementary'✝ }
[PROOFSTEP]
congr
[GOAL]
L : Language
M : Type u_1
N : Type u_2
P : Type u_3
Q : Type u_4
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
inst✝ : Structure L Q
S : ElementarySubstructure L M
T : Theory L
⊢ { x // x ∈ S } ⊨ T ↔ M ⊨ T
[PROOFSTEP]
simp only [Theory.model_iff, realize_sentence]
| {"mathlib_filename": "Mathlib.ModelTheory.ElementaryMaps", "llama_tokens": 20070} |
[GOAL]
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
m n : ℕ
h : m ≤ n
⊢ f m ≤ ↑(partialSups f) n
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
m n : ℕ
h✝ : m ≤ n
h : m ≤ Nat.zero
⊢ f m ≤ ↑(partialSups f) Nat.zero
[PROOFSTEP]
rw [nonpos_iff_eq_zero.mp h, partialSups_zero]
[GOAL]
case succ
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
m n✝ : ℕ
h✝ : m ≤ n✝
n : ℕ
ih : m ≤ n → f m ≤ ↑(partialSups f) n
h : m ≤ Nat.succ n
⊢ f m ≤ ↑(partialSups f) (Nat.succ n)
[PROOFSTEP]
cases' h with h h
[GOAL]
case succ.refl
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
n✝ n : ℕ
h : Nat.succ n ≤ n✝
ih : Nat.succ n ≤ n → f (Nat.succ n) ≤ ↑(partialSups f) n
⊢ f (Nat.succ n) ≤ ↑(partialSups f) (Nat.succ n)
[PROOFSTEP]
exact le_sup_right
[GOAL]
case succ.step
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
m n✝ : ℕ
h✝ : m ≤ n✝
n : ℕ
ih : m ≤ n → f m ≤ ↑(partialSups f) n
h : Nat.le m n
⊢ f m ≤ ↑(partialSups f) (Nat.succ n)
[PROOFSTEP]
exact (ih h).trans le_sup_left
[GOAL]
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
n : ℕ
a : α
w : ∀ (m : ℕ), m ≤ n → f m ≤ a
⊢ ↑(partialSups f) n ≤ a
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
n : ℕ
a : α
w✝ : ∀ (m : ℕ), m ≤ n → f m ≤ a
w : ∀ (m : ℕ), m ≤ Nat.zero → f m ≤ a
⊢ ↑(partialSups f) Nat.zero ≤ a
[PROOFSTEP]
apply w 0 le_rfl
[GOAL]
case succ
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
n✝ : ℕ
a : α
w✝ : ∀ (m : ℕ), m ≤ n✝ → f m ≤ a
n : ℕ
ih : (∀ (m : ℕ), m ≤ n → f m ≤ a) → ↑(partialSups f) n ≤ a
w : ∀ (m : ℕ), m ≤ Nat.succ n → f m ≤ a
⊢ ↑(partialSups f) (Nat.succ n) ≤ a
[PROOFSTEP]
exact sup_le (ih fun m p => w m (Nat.le_succ_of_le p)) (w (n + 1) le_rfl)
[GOAL]
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
⊢ BddAbove (Set.range ↑(partialSups f)) ↔ BddAbove (Set.range f)
[PROOFSTEP]
apply exists_congr fun a => _
[GOAL]
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
⊢ ∀ (a : α), a ∈ upperBounds (Set.range ↑(partialSups f)) ↔ a ∈ upperBounds (Set.range f)
[PROOFSTEP]
intro a
[GOAL]
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
a : α
⊢ a ∈ upperBounds (Set.range ↑(partialSups f)) ↔ a ∈ upperBounds (Set.range f)
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
a : α
⊢ a ∈ upperBounds (Set.range ↑(partialSups f)) → a ∈ upperBounds (Set.range f)
[PROOFSTEP]
rintro h b ⟨i, rfl⟩
[GOAL]
case mp.intro
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
a : α
h : a ∈ upperBounds (Set.range ↑(partialSups f))
i : ℕ
⊢ f i ≤ a
[PROOFSTEP]
exact (le_partialSups _ _).trans (h (Set.mem_range_self i))
[GOAL]
case mpr
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
a : α
⊢ a ∈ upperBounds (Set.range f) → a ∈ upperBounds (Set.range ↑(partialSups f))
[PROOFSTEP]
rintro h b ⟨i, rfl⟩
[GOAL]
case mpr.intro
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
a : α
h : a ∈ upperBounds (Set.range f)
i : ℕ
⊢ ↑(partialSups f) i ≤ a
[PROOFSTEP]
exact partialSups_le _ _ _ fun _ _ => h (Set.mem_range_self _)
[GOAL]
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
hf : Monotone f
⊢ ↑(partialSups f) = f
[PROOFSTEP]
ext n
[GOAL]
case h
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
hf : Monotone f
n : ℕ
⊢ ↑(partialSups f) n = f n
[PROOFSTEP]
induction' n with n ih
[GOAL]
case h.zero
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
hf : Monotone f
⊢ ↑(partialSups f) Nat.zero = f Nat.zero
[PROOFSTEP]
rfl
[GOAL]
case h.succ
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
hf : Monotone f
n : ℕ
ih : ↑(partialSups f) n = f n
⊢ ↑(partialSups f) (Nat.succ n) = f (Nat.succ n)
[PROOFSTEP]
rw [partialSups_succ, ih, sup_eq_right.2 (hf (Nat.le_succ _))]
[GOAL]
α : Type u_1
inst✝ : SemilatticeSup α
⊢ Monotone partialSups
[PROOFSTEP]
rintro f g h n
[GOAL]
α : Type u_1
inst✝ : SemilatticeSup α
f g : ℕ → α
h : f ≤ g
n : ℕ
⊢ OrderHom.toFun (partialSups f) n ≤ OrderHom.toFun (partialSups g) n
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
α : Type u_1
inst✝ : SemilatticeSup α
f g : ℕ → α
h : f ≤ g
⊢ OrderHom.toFun (partialSups f) Nat.zero ≤ OrderHom.toFun (partialSups g) Nat.zero
[PROOFSTEP]
exact h 0
[GOAL]
case succ
α : Type u_1
inst✝ : SemilatticeSup α
f g : ℕ → α
h : f ≤ g
n : ℕ
ih : OrderHom.toFun (partialSups f) n ≤ OrderHom.toFun (partialSups g) n
⊢ OrderHom.toFun (partialSups f) (Nat.succ n) ≤ OrderHom.toFun (partialSups g) (Nat.succ n)
[PROOFSTEP]
exact sup_le_sup ih (h _)
[GOAL]
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
h : ↑(partialSups f) ≤ f
⊢ Monotone f
[PROOFSTEP]
convert (partialSups f).monotone using 1
[GOAL]
case h.e'_5
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
h : ↑(partialSups f) ≤ f
⊢ f = ↑(partialSups f)
[PROOFSTEP]
exact (le_partialSups f).antisymm h
[GOAL]
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
g : ℕ →o α
⊢ partialSups f ≤ g ↔ f ≤ ↑g
[PROOFSTEP]
refine' ⟨(le_partialSups f).trans, fun h => _⟩
[GOAL]
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
g : ℕ →o α
h : f ≤ ↑g
⊢ partialSups f ≤ g
[PROOFSTEP]
convert partialSups_mono h
[GOAL]
case h.e'_4
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
g : ℕ →o α
h : f ≤ ↑g
⊢ g = partialSups ↑g
[PROOFSTEP]
exact OrderHom.ext _ _ g.monotone.partialSups_eq.symm
[GOAL]
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
n : ℕ
⊢ ↑(partialSups f) n = Finset.sup' (Finset.range (n + 1)) (_ : ∃ x, x ∈ Finset.range (n + 1)) f
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
⊢ ↑(partialSups f) Nat.zero = Finset.sup' (Finset.range (Nat.zero + 1)) (_ : ∃ x, x ∈ Finset.range (Nat.zero + 1)) f
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
n : ℕ
ih : ↑(partialSups f) n = Finset.sup' (Finset.range (n + 1)) (_ : ∃ x, x ∈ Finset.range (n + 1)) f
⊢ ↑(partialSups f) (Nat.succ n) =
Finset.sup' (Finset.range (Nat.succ n + 1)) (_ : ∃ x, x ∈ Finset.range (Nat.succ n + 1)) f
[PROOFSTEP]
dsimp [partialSups] at ih ⊢
[GOAL]
case succ
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
n : ℕ
ih :
Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n = Finset.sup' (Finset.range (n + 1)) (_ : ∃ x, x ∈ Finset.range (n + 1)) f
⊢ Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n ⊔ f (n + 1) =
Finset.sup' (Finset.range (Nat.succ n + 1)) (_ : ∃ x, x ∈ Finset.range (Nat.succ n + 1)) f
[PROOFSTEP]
simp_rw [@Finset.range_succ n.succ]
[GOAL]
case succ
α : Type u_1
inst✝ : SemilatticeSup α
f : ℕ → α
n : ℕ
ih :
Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n = Finset.sup' (Finset.range (n + 1)) (_ : ∃ x, x ∈ Finset.range (n + 1)) f
⊢ Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n ⊔ f (n + 1) =
Finset.sup' (insert (Nat.succ n) (Finset.range (Nat.succ n)))
(_ : Finset.Nonempty (insert (Nat.succ n) (Finset.range (Nat.succ n)))) fun x => f x
[PROOFSTEP]
rw [ih, Finset.sup'_insert, sup_comm]
[GOAL]
α : Type u_1
inst✝¹ : SemilatticeSup α
inst✝ : OrderBot α
f : ℕ → α
n : ℕ
⊢ ↑(partialSups f) n = Finset.sup (Finset.range (n + 1)) f
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
α : Type u_1
inst✝¹ : SemilatticeSup α
inst✝ : OrderBot α
f : ℕ → α
⊢ ↑(partialSups f) Nat.zero = Finset.sup (Finset.range (Nat.zero + 1)) f
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u_1
inst✝¹ : SemilatticeSup α
inst✝ : OrderBot α
f : ℕ → α
n : ℕ
ih : ↑(partialSups f) n = Finset.sup (Finset.range (n + 1)) f
⊢ ↑(partialSups f) (Nat.succ n) = Finset.sup (Finset.range (Nat.succ n + 1)) f
[PROOFSTEP]
dsimp [partialSups] at ih ⊢
[GOAL]
case succ
α : Type u_1
inst✝¹ : SemilatticeSup α
inst✝ : OrderBot α
f : ℕ → α
n : ℕ
ih : Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n = Finset.sup (Finset.range (n + 1)) f
⊢ Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n ⊔ f (n + 1) = Finset.sup (Finset.range (Nat.succ n + 1)) f
[PROOFSTEP]
rw [Finset.range_succ, Finset.sup_insert, sup_comm, ih]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
f : ℕ → α
h : Pairwise (Disjoint on f)
m n : ℕ
hmn : m < n
⊢ Disjoint (↑(partialSups f) m) (f n)
[PROOFSTEP]
induction' m with m ih
[GOAL]
case zero
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
f : ℕ → α
h : Pairwise (Disjoint on f)
m n : ℕ
hmn✝ : m < n
hmn : Nat.zero < n
⊢ Disjoint (↑(partialSups f) Nat.zero) (f n)
[PROOFSTEP]
exact h hmn.ne
[GOAL]
case succ
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
f : ℕ → α
h : Pairwise (Disjoint on f)
m✝ n : ℕ
hmn✝ : m✝ < n
m : ℕ
ih : m < n → Disjoint (↑(partialSups f) m) (f n)
hmn : Nat.succ m < n
⊢ Disjoint (↑(partialSups f) (Nat.succ m)) (f n)
[PROOFSTEP]
rw [partialSups_succ, disjoint_sup_left]
[GOAL]
case succ
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
f : ℕ → α
h : Pairwise (Disjoint on f)
m✝ n : ℕ
hmn✝ : m✝ < n
m : ℕ
ih : m < n → Disjoint (↑(partialSups f) m) (f n)
hmn : Nat.succ m < n
⊢ Disjoint (↑(partialSups f) m) (f n) ∧ Disjoint (f (m + 1)) (f n)
[PROOFSTEP]
exact ⟨ih (Nat.lt_of_succ_lt hmn), h hmn.ne⟩
[GOAL]
α : Type u_1
inst✝ : ConditionallyCompleteLattice α
f : ℕ → α
n : ℕ
⊢ ↑(partialSups f) n = ⨆ (i : ↑(Set.Iic n)), f ↑i
[PROOFSTEP]
have : Set.Iio (n + 1) = Set.Iic n := Set.ext fun _ => Nat.lt_succ_iff
[GOAL]
α : Type u_1
inst✝ : ConditionallyCompleteLattice α
f : ℕ → α
n : ℕ
this : Set.Iio (n + 1) = Set.Iic n
⊢ ↑(partialSups f) n = ⨆ (i : ↑(Set.Iic n)), f ↑i
[PROOFSTEP]
rw [partialSups_eq_sup'_range, Finset.sup'_eq_csSup_image, Finset.coe_range, iSup, this]
[GOAL]
α : Type u_1
inst✝ : ConditionallyCompleteLattice α
f : ℕ → α
n : ℕ
this : Set.Iio (n + 1) = Set.Iic n
⊢ sSup (f '' Set.Iic n) = sSup (Set.range fun i => f ↑i)
[PROOFSTEP]
simp only [Set.range, Subtype.exists, Set.mem_Iic, exists_prop, (· '' ·)]
[GOAL]
α : Type u_1
inst✝ : ConditionallyCompleteLattice α
f : ℕ → α
h : BddAbove (Set.range f)
⊢ ⨆ (n : ℕ), ↑(partialSups f) n = ⨆ (n : ℕ), f n
[PROOFSTEP]
refine' (ciSup_le fun n => _).antisymm (ciSup_mono _ <| le_partialSups f)
[GOAL]
case refine'_1
α : Type u_1
inst✝ : ConditionallyCompleteLattice α
f : ℕ → α
h : BddAbove (Set.range f)
n : ℕ
⊢ ↑(partialSups f) n ≤ ⨆ (n : ℕ), f n
[PROOFSTEP]
rw [partialSups_eq_ciSup_Iic]
[GOAL]
case refine'_1
α : Type u_1
inst✝ : ConditionallyCompleteLattice α
f : ℕ → α
h : BddAbove (Set.range f)
n : ℕ
⊢ ⨆ (i : ↑(Set.Iic n)), f ↑i ≤ ⨆ (n : ℕ), f n
[PROOFSTEP]
exact ciSup_le fun i => le_ciSup h _
[GOAL]
case refine'_2
α : Type u_1
inst✝ : ConditionallyCompleteLattice α
f : ℕ → α
h : BddAbove (Set.range f)
⊢ BddAbove (Set.range fun n => ↑(partialSups f) n)
[PROOFSTEP]
rwa [bddAbove_range_partialSups]
[GOAL]
α : Type u_1
inst✝ : CompleteLattice α
f : ℕ → α
n : ℕ
⊢ ↑(partialSups f) n = ⨆ (i : ℕ) (_ : i ≤ n), f i
[PROOFSTEP]
simpa only [iSup_subtype] using partialSups_eq_ciSup_Iic f n
[GOAL]
α : Type u_1
inst✝ : CompleteLattice α
f g : ℕ → α
h : partialSups f ≤ partialSups g
⊢ ⨆ (n : ℕ), f n ≤ ⨆ (n : ℕ), g n
[PROOFSTEP]
rw [← iSup_partialSups_eq f, ← iSup_partialSups_eq g]
[GOAL]
α : Type u_1
inst✝ : CompleteLattice α
f g : ℕ → α
h : partialSups f ≤ partialSups g
⊢ ⨆ (n : ℕ), ↑(partialSups f) n ≤ ⨆ (n : ℕ), ↑(partialSups g) n
[PROOFSTEP]
exact iSup_mono h
[GOAL]
α : Type u_1
inst✝ : CompleteLattice α
f g : ℕ → α
h : partialSups f = partialSups g
⊢ ⨆ (n : ℕ), f n = ⨆ (n : ℕ), g n
[PROOFSTEP]
simp_rw [← iSup_partialSups_eq f, ← iSup_partialSups_eq g, h]
| {"mathlib_filename": "Mathlib.Order.PartialSups", "llama_tokens": 5837} |
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List (Term L α)
⊢ listDecode (List.bind l listEncode) = List.map some l
[PROOFSTEP]
suffices h :
∀ (t : L.Term α) (l : List (Sum α (Σ i, L.Functions i))), listDecode (t.listEncode ++ l) = some t :: listDecode l
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List (Term L α)
h : ∀ (t : Term L α) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode t ++ l) = some t :: listDecode l
⊢ listDecode (List.bind l listEncode) = List.map some l
[PROOFSTEP]
induction' l with t l lih
[GOAL]
case nil
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
h : ∀ (t : Term L α) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode t ++ l) = some t :: listDecode l
⊢ listDecode (List.bind [] listEncode) = List.map some []
[PROOFSTEP]
rfl
[GOAL]
case cons
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
h : ∀ (t : Term L α) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode t ++ l) = some t :: listDecode l
t : Term L α
l : List (Term L α)
lih : listDecode (List.bind l listEncode) = List.map some l
⊢ listDecode (List.bind (t :: l) listEncode) = List.map some (t :: l)
[PROOFSTEP]
rw [cons_bind, h t (l.bind listEncode), lih, List.map]
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List (Term L α)
⊢ ∀ (t : Term L α) (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode t ++ l) = some t :: listDecode l
[PROOFSTEP]
intro t
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List (Term L α)
t : Term L α
⊢ ∀ (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode t ++ l) = some t :: listDecode l
[PROOFSTEP]
induction' t with a n f ts ih
[GOAL]
case h.var
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List (Term L α)
a : α
⊢ ∀ (l : List (α ⊕ (i : ℕ) × Functions L i)), listDecode (listEncode (var a) ++ l) = some (var a) :: listDecode l
[PROOFSTEP]
intro l
[GOAL]
case h.func
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
⊢ ∀ (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (func f ts) ++ l) = some (func f ts) :: listDecode l
[PROOFSTEP]
intro l
[GOAL]
case h.var
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
a : α
l : List (α ⊕ (i : ℕ) × Functions L i)
⊢ listDecode (listEncode (var a) ++ l) = some (var a) :: listDecode l
[PROOFSTEP]
rw [listEncode, singleton_append, listDecode]
[GOAL]
case h.func
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
⊢ listDecode (listEncode (func f ts) ++ l) = some (func f ts) :: listDecode l
[PROOFSTEP]
rw [listEncode, cons_append, listDecode]
[GOAL]
case h.func
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
⊢ (if h :
∀ (i : Fin n),
Option.isSome
(Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) =
true then
some
(func f fun i =>
Option.get (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i))
(_ :
Option.isSome
(Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) =
true)) ::
drop n (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l))
else [none]) =
some (func f ts) :: listDecode l
[PROOFSTEP]
have h :
listDecode (((finRange n).bind fun i : Fin n => (ts i).listEncode) ++ l) =
(finRange n).map (Option.some ∘ ts) ++ listDecode l :=
by
induction' finRange n with i l' l'ih
· rfl
· rw [cons_bind, List.append_assoc, ih, map_cons, l'ih, cons_append, Function.comp]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
⊢ listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
[PROOFSTEP]
induction' finRange n with i l' l'ih
[GOAL]
case nil
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
⊢ listDecode ((List.bind [] fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) [] ++ listDecode l
[PROOFSTEP]
rfl
[GOAL]
case cons
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
i : Fin n
l' : List (Fin n)
l'ih : listDecode ((List.bind l' fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) l' ++ listDecode l
⊢ listDecode ((List.bind (i :: l') fun i => listEncode (ts i)) ++ l) = List.map (some ∘ ts) (i :: l') ++ listDecode l
[PROOFSTEP]
rw [cons_bind, List.append_assoc, ih, map_cons, l'ih, cons_append, Function.comp]
[GOAL]
case h.func
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
⊢ (if h :
∀ (i : Fin n),
Option.isSome
(Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) =
true then
some
(func f fun i =>
Option.get (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i))
(_ :
Option.isSome
(Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) =
true)) ::
drop n (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l))
else [none]) =
some (func f ts) :: listDecode l
[PROOFSTEP]
have h' :
∀ i : Fin n,
(listDecode (((finRange n).bind fun i : Fin n => (ts i).listEncode) ++ l)).get? ↑i = some (some (ts i)) :=
by
intro i
rw [h, get?_append, get?_map]
· simp only [Option.map_eq_some', Function.comp_apply, get?_eq_some]
refine' ⟨i, ⟨lt_of_lt_of_le i.2 (ge_of_eq (length_finRange _)), _⟩, rfl⟩
rw [get_finRange, Fin.eta]
· refine' lt_of_lt_of_le i.2 _
simp
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
⊢ ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i))
[PROOFSTEP]
intro i
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
i : Fin n
⊢ get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i))
[PROOFSTEP]
rw [h, get?_append, get?_map]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
i : Fin n
⊢ Option.map (some ∘ ts) (get? (finRange n) ↑i) = some (some (ts i))
[PROOFSTEP]
simp only [Option.map_eq_some', Function.comp_apply, get?_eq_some]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
i : Fin n
⊢ ∃ a, (∃ h, List.get (finRange n) { val := ↑i, isLt := h } = a) ∧ some (ts a) = some (ts i)
[PROOFSTEP]
refine' ⟨i, ⟨lt_of_lt_of_le i.2 (ge_of_eq (length_finRange _)), _⟩, rfl⟩
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
i : Fin n
⊢ List.get (finRange n) { val := ↑i, isLt := (_ : ↑i < length (finRange n)) } = i
[PROOFSTEP]
rw [get_finRange, Fin.eta]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
i : Fin n
⊢ ↑i < length (List.map (some ∘ ts) (finRange n))
[PROOFSTEP]
refine' lt_of_lt_of_le i.2 _
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
i : Fin n
⊢ n ≤ length (List.map (some ∘ ts) (finRange n))
[PROOFSTEP]
simp
[GOAL]
case h.func
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
h' : ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i))
⊢ (if h :
∀ (i : Fin n),
Option.isSome
(Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) =
true then
some
(func f fun i =>
Option.get (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i))
(_ :
Option.isSome
(Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) =
true)) ::
drop n (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l))
else [none]) =
some (func f ts) :: listDecode l
[PROOFSTEP]
refine' (dif_pos fun i => Option.isSome_iff_exists.2 ⟨ts i, _⟩).trans _
[GOAL]
case h.func.refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
h' : ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i))
i : Fin n
⊢ Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i) = some (ts i)
[PROOFSTEP]
rw [Option.join_eq_some, h']
[GOAL]
case h.func.refine'_2
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
h' : ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i))
⊢ some
(func f fun i =>
Option.get (Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i))
(_ :
Option.isSome
(Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)) =
true)) ::
drop n (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) =
some (func f ts) :: listDecode l
[PROOFSTEP]
refine' congr (congr rfl (congr rfl (congr rfl (funext fun i => Option.get_of_mem _ _)))) _
[GOAL]
case h.func.refine'_2.refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
h' : ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i))
i : Fin n
⊢ ts i ∈ Option.join (get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i)
[PROOFSTEP]
simp [h']
[GOAL]
case h.func.refine'_2.refine'_2
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
h' : ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i))
⊢ drop n (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) = listDecode l
[PROOFSTEP]
rw [h, drop_left']
[GOAL]
case h.func.refine'_2.refine'_2
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List (Term L α)
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih :
∀ (a : Fin n) (l : List (α ⊕ (i : ℕ) × Functions L i)),
listDecode (listEncode (ts a) ++ l) = some (ts a) :: listDecode l
l : List (α ⊕ (i : ℕ) × Functions L i)
h :
listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l) =
List.map (some ∘ ts) (finRange n) ++ listDecode l
h' : ∀ (i : Fin n), get? (listDecode ((List.bind (finRange n) fun i => listEncode (ts i)) ++ l)) ↑i = some (some (ts i))
⊢ length (List.map (some ∘ ts) (finRange n)) = n
[PROOFSTEP]
rw [length_map, length_finRange]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
t : Term L α
⊢ (fun l => Option.join (head? (listDecode l))) (listEncode t) = some t
[PROOFSTEP]
have h := listDecode_encode_list [t]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
t : Term L α
h : listDecode (List.bind [t] listEncode) = List.map some [t]
⊢ (fun l => Option.join (head? (listDecode l))) (listEncode t) = some t
[PROOFSTEP]
rw [bind_singleton] at h
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
t : Term L α
h : listDecode (listEncode t) = List.map some [t]
⊢ (fun l => Option.join (head? (listDecode l))) (listEncode t) = some t
[PROOFSTEP]
simp only [h, Option.join, head?, List.map, Option.some_bind, id.def]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ #((n : ℕ) × Term L (α ⊕ Fin n)) = max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i)
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ #((n : ℕ) × Term L (α ⊕ Fin n)) ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i)
[PROOFSTEP]
rw [mk_sigma]
[GOAL]
case refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ (Cardinal.sum fun i => #(Term L (α ⊕ Fin i))) ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i)
[PROOFSTEP]
refine' (sum_le_iSup_lift _).trans _
[GOAL]
case refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ lift #ℕ * ⨆ (i : ℕ), #(Term L (α ⊕ Fin i)) ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i)
[PROOFSTEP]
rw [mk_nat, lift_aleph0, mul_eq_max_of_aleph0_le_left le_rfl, max_le_iff, ciSup_le_iff' (bddAbove_range _)]
[GOAL]
case refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ ℵ₀ ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i) ∧ ∀ (i : ℕ), #(Term L (α ⊕ Fin i)) ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i)
[PROOFSTEP]
refine' ⟨le_max_left _ _, fun i => card_le.trans _⟩
[GOAL]
case refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
i : ℕ
⊢ max ℵ₀ #((α ⊕ Fin i) ⊕ (i : ℕ) × Functions L i) ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i)
[PROOFSTEP]
refine' max_le (le_max_left _ _) _
[GOAL]
case refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
i : ℕ
⊢ #((α ⊕ Fin i) ⊕ (i : ℕ) × Functions L i) ≤ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i)
[PROOFSTEP]
rw [← add_eq_max le_rfl, mk_sum, mk_sum, mk_sum, add_comm (Cardinal.lift #α), lift_add, add_assoc, lift_lift, lift_lift,
mk_fin, lift_natCast]
[GOAL]
case refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
i : ℕ
⊢ ↑i + (lift #α + lift #((i : ℕ) × Functions L i)) ≤ ℵ₀ + (lift #α + lift #((i : ℕ) × Functions L i))
[PROOFSTEP]
exact add_le_add_right (nat_lt_aleph0 _).le _
[GOAL]
case refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ ⨆ (i : ℕ), #(Term L (α ⊕ Fin i)) ≠ 0
[PROOFSTEP]
rw [← one_le_iff_ne_zero]
[GOAL]
case refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ 1 ≤ ⨆ (i : ℕ), #(Term L (α ⊕ Fin i))
[PROOFSTEP]
refine' _root_.trans _ (le_ciSup (bddAbove_range _) 1)
[GOAL]
case refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ 1 ≤ #(Term L (α ⊕ Fin 1))
[PROOFSTEP]
rw [one_le_iff_ne_zero, mk_ne_zero_iff]
[GOAL]
case refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ Nonempty (Term L (α ⊕ Fin 1))
[PROOFSTEP]
exact ⟨var (Sum.inr 0)⟩
[GOAL]
case refine'_2
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ max ℵ₀ #(α ⊕ (i : ℕ) × Functions L i) ≤ #((n : ℕ) × Term L (α ⊕ Fin n))
[PROOFSTEP]
rw [max_le_iff, ← infinite_iff]
[GOAL]
case refine'_2
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ Infinite ((n : ℕ) × Term L (α ⊕ Fin n)) ∧ #(α ⊕ (i : ℕ) × Functions L i) ≤ #((n : ℕ) × Term L (α ⊕ Fin n))
[PROOFSTEP]
refine' ⟨Infinite.of_injective (fun i => ⟨i + 1, var (Sum.inr i)⟩) fun i j ij => _, _⟩
[GOAL]
case refine'_2.refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
i j : ℕ
ij : (fun i => { fst := i + 1, snd := var (Sum.inr ↑i) }) i = (fun i => { fst := i + 1, snd := var (Sum.inr ↑i) }) j
⊢ i = j
[PROOFSTEP]
cases ij
[GOAL]
case refine'_2.refine'_1.refl
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
i : ℕ
⊢ i = i
[PROOFSTEP]
rfl
[GOAL]
case refine'_2.refine'_2
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ #(α ⊕ (i : ℕ) × Functions L i) ≤ #((n : ℕ) × Term L (α ⊕ Fin n))
[PROOFSTEP]
rw [Cardinal.le_def]
[GOAL]
case refine'_2.refine'_2
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ Nonempty (α ⊕ (i : ℕ) × Functions L i ↪ (n : ℕ) × Term L (α ⊕ Fin n))
[PROOFSTEP]
refine' ⟨⟨Sum.elim (fun i => ⟨0, var (Sum.inl i)⟩) fun F => ⟨1, func F.2 fun _ => var (Sum.inr 0)⟩, _⟩⟩
[GOAL]
case refine'_2.refine'_2
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ Function.Injective
(Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) }) fun F =>
{ fst := 1, snd := func F.snd fun x => var (Sum.inr 0) })
[PROOFSTEP]
rintro (a | a) (b | b) h
[GOAL]
case refine'_2.refine'_2.inl.inl
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
a b : α
h :
Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) })
(fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inl a) =
Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) })
(fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inl b)
⊢ Sum.inl a = Sum.inl b
[PROOFSTEP]
simp only [Sum.elim_inl, Sigma.mk.inj_iff, heq_eq_eq, var.injEq, Sum.inl.injEq, true_and] at h
[GOAL]
case refine'_2.refine'_2.inl.inl
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
a b : α
h : a = b
⊢ Sum.inl a = Sum.inl b
[PROOFSTEP]
rw [h]
[GOAL]
case refine'_2.refine'_2.inl.inr
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
a : α
b : (i : ℕ) × Functions L i
h :
Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) })
(fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inl a) =
Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) })
(fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inr b)
⊢ Sum.inl a = Sum.inr b
[PROOFSTEP]
simp only [Sum.elim_inl, Sum.elim_inr, Sigma.mk.inj_iff, false_and] at h
[GOAL]
case refine'_2.refine'_2.inr.inl
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
a : (i : ℕ) × Functions L i
b : α
h :
Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) })
(fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inr a) =
Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) })
(fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inl b)
⊢ Sum.inr a = Sum.inl b
[PROOFSTEP]
simp only [Sum.elim_inr, Sum.elim_inl, Sigma.mk.inj_iff, false_and] at h
[GOAL]
case refine'_2.refine'_2.inr.inr
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
a b : (i : ℕ) × Functions L i
h :
Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) })
(fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inr a) =
Sum.elim (fun i => { fst := 0, snd := var (Sum.inl i) })
(fun F => { fst := 1, snd := func F.snd fun x => var (Sum.inr 0) }) (Sum.inr b)
⊢ Sum.inr a = Sum.inr b
[PROOFSTEP]
simp only [Sum.elim_inr, Sigma.mk.inj_iff, heq_eq_eq, func.injEq, true_and] at h
[GOAL]
case refine'_2.refine'_2.inr.inr
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
a b : (i : ℕ) × Functions L i
h : a.fst = b.fst ∧ HEq a.snd b.snd ∧ HEq (fun x => var (Sum.inr 0)) fun x => var (Sum.inr 0)
⊢ Sum.inr a = Sum.inr b
[PROOFSTEP]
rw [Sigma.ext_iff.2 ⟨h.1, h.2.1⟩]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Encodable α
inst✝ : Encodable ((i : ℕ) × Functions L i)
t : Term L α
⊢ (fun l => Option.join (head? (listDecode l))) (listEncode t) = some t
[PROOFSTEP]
simp only
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Encodable α
inst✝ : Encodable ((i : ℕ) × Functions L i)
t : Term L α
⊢ Option.join (head? (listDecode (listEncode t))) = some t
[PROOFSTEP]
rw [← bind_singleton listEncode, listDecode_encode_list]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Encodable α
inst✝ : Encodable ((i : ℕ) × Functions L i)
t : Term L α
⊢ Option.join (head? (List.map some [t])) = some t
[PROOFSTEP]
simp only [Option.join, head?, List.map, Option.some_bind, id.def]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
h1 : Countable α
h2 : Countable ((l : ℕ) × Functions L l)
⊢ Countable (Term L α)
[PROOFSTEP]
refine' mk_le_aleph0_iff.1 (card_le.trans (max_le_iff.2 _))
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
h1 : Countable α
h2 : Countable ((l : ℕ) × Functions L l)
⊢ ℵ₀ ≤ ℵ₀ ∧ #(α ⊕ (i : ℕ) × Functions L i) ≤ ℵ₀
[PROOFSTEP]
simp only [le_refl, mk_sum, add_le_aleph0, lift_le_aleph0, true_and_iff]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
h1 : Countable α
h2 : Countable ((l : ℕ) × Functions L l)
⊢ #α ≤ ℵ₀ ∧ #((i : ℕ) × Functions L i) ≤ ℵ₀
[PROOFSTEP]
exact ⟨Cardinal.mk_le_aleph0, Cardinal.mk_le_aleph0⟩
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
m : ℕ
φ : BoundedFormula L α m
n : ℕ
ψ : BoundedFormula L α n
h : m = n
⊢ BoundedFormula L α n = BoundedFormula L α m
[PROOFSTEP]
rw [h]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n₁ : ℕ
t₁ : Term L (α ⊕ Fin n₁)
n₂ : ℕ
t₂ : Term L (α ⊕ Fin n₂)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h : n₁ = n₂
⊢ Term L (α ⊕ Fin n₂) = Term L (α ⊕ Fin n₁)
[PROOFSTEP]
rw [h]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n₁ : ℕ
t₁ : Term L (α ⊕ Fin n₁)
n₂ : ℕ
t₂ : Term L (α ⊕ Fin n₂)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ sizeOf l ≤ max 1 (sizeOf (Sum.inl { fst := n₁, snd := t₁ } :: Sum.inl { fst := n₂, snd := t₂ } :: l))
[PROOFSTEP]
simp only [SizeOf.sizeOf, List._sizeOf_1, ← add_assoc]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n₁ : ℕ
t₁ : Term L (α ⊕ Fin n₁)
n₂ : ℕ
t₂ : Term L (α ⊕ Fin n₂)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ List.rec 1 (fun head tail tail_ih => 1 + Sum._sizeOf_1 head + tail_ih) l ≤
max 1
(1 + Sum._sizeOf_1 (Sum.inl { fst := n₁, snd := t₁ }) + 1 + Sum._sizeOf_1 (Sum.inl { fst := n₂, snd := t₂ }) +
List.rec 1 (fun head tail tail_ih => 1 + Sum._sizeOf_1 head + tail_ih) l)
[PROOFSTEP]
exact le_max_of_le_right le_add_self
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
R : Relations L n
k : ℕ
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h : ∀ (i : Fin n), Option.isSome (Option.join (get? (List.map Sum.getLeft? l) ↑i)) = true
h' :
∀ (i : Fin n),
(Option.get (Option.join (get? (List.map Sum.getLeft? l) ↑i))
(_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? l) ↑i)) = true)).fst =
k
i : Fin n
⊢ Term L
(α ⊕
Fin
(Option.get (Option.join (get? (List.map Sum.getLeft? l) ↑i))
(_ : Option.isSome (Option.join (get? (List.map Sum.getLeft? l) ↑i)) = true)).fst) =
Term L (α ⊕ Fin k)
[PROOFSTEP]
rw [h' i]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ sizeOf ↑(listDecode l).snd < 1 + (1 + 1) + sizeOf l
[PROOFSTEP]
refine' lt_of_le_of_lt (listDecode l).2.2 (max_lt _ (Nat.lt_add_of_pos_left (by decide)))
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ 0 < 1 + (1 + 1)
[PROOFSTEP]
decide
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ 1 < 1 + (1 + 1) + sizeOf l
[PROOFSTEP]
rw [add_assoc, lt_add_iff_pos_right, add_pos_iff]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ 0 < 1 + 1 ∨ 0 < sizeOf l
[PROOFSTEP]
exact Or.inl zero_lt_two
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List ((n : ℕ) × BoundedFormula L α n)
⊢ (listDecode (List.bind l fun φ => listEncode φ.snd)).fst = headI l
[PROOFSTEP]
suffices h :
∀ (φ : Σ n, L.BoundedFormula α n) (l),
(listDecode (listEncode φ.2 ++ l)).1 = φ ∧ (listDecode (listEncode φ.2 ++ l)).2.1 = l
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List ((n : ℕ) × BoundedFormula L α n)
h :
∀ (φ : (n : ℕ) × BoundedFormula L α n) (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode φ.snd ++ l)).fst = φ ∧ ↑(listDecode (listEncode φ.snd ++ l)).snd = l
⊢ (listDecode (List.bind l fun φ => listEncode φ.snd)).fst = headI l
[PROOFSTEP]
induction' l with φ l _
[GOAL]
case nil
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
h :
∀ (φ : (n : ℕ) × BoundedFormula L α n) (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode φ.snd ++ l)).fst = φ ∧ ↑(listDecode (listEncode φ.snd ++ l)).snd = l
⊢ (listDecode (List.bind [] fun φ => listEncode φ.snd)).fst = headI []
[PROOFSTEP]
rw [List.nil_bind]
[GOAL]
case nil
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
h :
∀ (φ : (n : ℕ) × BoundedFormula L α n) (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode φ.snd ++ l)).fst = φ ∧ ↑(listDecode (listEncode φ.snd ++ l)).snd = l
⊢ (listDecode []).fst = headI []
[PROOFSTEP]
simp [listDecode]
[GOAL]
case cons
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
h :
∀ (φ : (n : ℕ) × BoundedFormula L α n) (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode φ.snd ++ l)).fst = φ ∧ ↑(listDecode (listEncode φ.snd ++ l)).snd = l
φ : (n : ℕ) × BoundedFormula L α n
l : List ((n : ℕ) × BoundedFormula L α n)
tail_ih✝ : (listDecode (List.bind l fun φ => listEncode φ.snd)).fst = headI l
⊢ (listDecode (List.bind (φ :: l) fun φ => listEncode φ.snd)).fst = headI (φ :: l)
[PROOFSTEP]
rw [cons_bind, (h φ _).1, headI_cons]
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List ((n : ℕ) × BoundedFormula L α n)
⊢ ∀ (φ : (n : ℕ) × BoundedFormula L α n) (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode φ.snd ++ l)).fst = φ ∧ ↑(listDecode (listEncode φ.snd ++ l)).snd = l
[PROOFSTEP]
rintro ⟨n, φ⟩
[GOAL]
case h.mk
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List ((n : ℕ) × BoundedFormula L α n)
n : ℕ
φ : BoundedFormula L α n
⊢ ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n, snd := φ }.snd ++ l)).fst = { fst := n, snd := φ } ∧
↑(listDecode (listEncode { fst := n, snd := φ }.snd ++ l)).snd = l
[PROOFSTEP]
induction' φ with _ _ _ _ φ_n φ_l φ_R ts _ _ _ ih1 ih2 _ _ ih
[GOAL]
case h.mk.falsum
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
⊢ ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝, snd := falsum }.snd ++ l)).fst = { fst := n✝, snd := falsum } ∧
↑(listDecode (listEncode { fst := n✝, snd := falsum }.snd ++ l)).snd = l
[PROOFSTEP]
intro l
[GOAL]
case h.mk.equal
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
⊢ ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝, snd := equal t₁✝ t₂✝ }.snd ++ l)).fst = { fst := n✝, snd := equal t₁✝ t₂✝ } ∧
↑(listDecode (listEncode { fst := n✝, snd := equal t₁✝ t₂✝ }.snd ++ l)).snd = l
[PROOFSTEP]
intro l
[GOAL]
case h.mk.rel
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
⊢ ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := φ_n, snd := rel φ_R ts }.snd ++ l)).fst = { fst := φ_n, snd := rel φ_R ts } ∧
↑(listDecode (listEncode { fst := φ_n, snd := rel φ_R ts }.snd ++ l)).snd = l
[PROOFSTEP]
intro l
[GOAL]
case h.mk.imp
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝, snd := f₁✝ }.snd ++ l)).fst = { fst := n✝, snd := f₁✝ } ∧
↑(listDecode (listEncode { fst := n✝, snd := f₁✝ }.snd ++ l)).snd = l
ih2 :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝, snd := f₂✝ }.snd ++ l)).fst = { fst := n✝, snd := f₂✝ } ∧
↑(listDecode (listEncode { fst := n✝, snd := f₂✝ }.snd ++ l)).snd = l
⊢ ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝, snd := f₁✝ ⟹ f₂✝ }.snd ++ l)).fst = { fst := n✝, snd := f₁✝ ⟹ f₂✝ } ∧
↑(listDecode (listEncode { fst := n✝, snd := f₁✝ ⟹ f₂✝ }.snd ++ l)).snd = l
[PROOFSTEP]
intro l
[GOAL]
case h.mk.all
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).fst = { fst := n✝ + 1, snd := f✝ } ∧
↑(listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).snd = l
⊢ ∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝, snd := ∀'f✝ }.snd ++ l)).fst = { fst := n✝, snd := ∀'f✝ } ∧
↑(listDecode (listEncode { fst := n✝, snd := ∀'f✝ }.snd ++ l)).snd = l
[PROOFSTEP]
intro l
[GOAL]
case h.mk.falsum
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ (listDecode (listEncode { fst := n✝, snd := falsum }.snd ++ l)).fst = { fst := n✝, snd := falsum } ∧
↑(listDecode (listEncode { fst := n✝, snd := falsum }.snd ++ l)).snd = l
[PROOFSTEP]
rw [listEncode, singleton_append, listDecode]
[GOAL]
case h.mk.falsum
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ ({ fst := { fst := n✝, snd := falsum }.fst, snd := falsum },
{ val := l,
property :=
(_ : sizeOf l ≤ max 1 (sizeOf (Sum.inr (Sum.inr ({ fst := n✝, snd := falsum }.fst + 2)) :: l))) }).fst =
{ fst := n✝, snd := falsum } ∧
↑({ fst := { fst := n✝, snd := falsum }.fst, snd := falsum },
{ val := l,
property :=
(_ : sizeOf l ≤ max 1 (sizeOf (Sum.inr (Sum.inr ({ fst := n✝, snd := falsum }.fst + 2)) :: l))) }).snd =
l
[PROOFSTEP]
simp only [eq_self_iff_true, heq_iff_eq, and_self_iff]
[GOAL]
case h.mk.equal
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ (listDecode (listEncode { fst := n✝, snd := equal t₁✝ t₂✝ }.snd ++ l)).fst = { fst := n✝, snd := equal t₁✝ t₂✝ } ∧
↑(listDecode (listEncode { fst := n✝, snd := equal t₁✝ t₂✝ }.snd ++ l)).snd = l
[PROOFSTEP]
rw [listEncode, cons_append, cons_append, listDecode, dif_pos]
[GOAL]
case h.mk.equal
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ ({ fst := { fst := n✝, snd := equal t₁✝ t₂✝ }.fst,
snd :=
equal t₁✝
(Eq.mp
(_ :
Term L (α ⊕ Fin { fst := n✝, snd := equal t₁✝ t₂✝ }.fst) =
Term L (α ⊕ Fin { fst := n✝, snd := equal t₁✝ t₂✝ }.fst))
t₂✝) },
{ val := [] ++ l,
property :=
(_ :
sizeOf ([] ++ l) ≤
max 1
(sizeOf
(Sum.inl { fst := { fst := n✝, snd := equal t₁✝ t₂✝ }.fst, snd := t₁✝ } ::
Sum.inl { fst := { fst := n✝, snd := equal t₁✝ t₂✝ }.fst, snd := t₂✝ } :: ([] ++ l)))) }).fst =
{ fst := n✝, snd := equal t₁✝ t₂✝ } ∧
↑({ fst := { fst := n✝, snd := equal t₁✝ t₂✝ }.fst,
snd :=
equal t₁✝
(Eq.mp
(_ :
Term L (α ⊕ Fin { fst := n✝, snd := equal t₁✝ t₂✝ }.fst) =
Term L (α ⊕ Fin { fst := n✝, snd := equal t₁✝ t₂✝ }.fst))
t₂✝) },
{ val := [] ++ l,
property :=
(_ :
sizeOf ([] ++ l) ≤
max 1
(sizeOf
(Sum.inl { fst := { fst := n✝, snd := equal t₁✝ t₂✝ }.fst, snd := t₁✝ } ::
Sum.inl { fst := { fst := n✝, snd := equal t₁✝ t₂✝ }.fst, snd := t₂✝ } ::
([] ++ l)))) }).snd =
l
[PROOFSTEP]
simp only [eq_mp_eq_cast, cast_eq, eq_self_iff_true, heq_iff_eq, and_self_iff, nil_append]
[GOAL]
case h.mk.equal.hc
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ { fst := n✝, snd := equal t₁✝ t₂✝ }.fst = { fst := n✝, snd := equal t₁✝ t₂✝ }.fst
[PROOFSTEP]
simp only [eq_self_iff_true, heq_iff_eq, and_self_iff]
[GOAL]
case h.mk.rel
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ (listDecode (listEncode { fst := φ_n, snd := rel φ_R ts }.snd ++ l)).fst = { fst := φ_n, snd := rel φ_R ts } ∧
↑(listDecode (listEncode { fst := φ_n, snd := rel φ_R ts }.snd ++ l)).snd = l
[PROOFSTEP]
rw [listEncode, cons_append, cons_append, singleton_append, cons_append, listDecode]
[GOAL]
case h.mk.rel
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ (if h :
∀ (i : Fin φ_l),
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true then
if h' :
∀ (i : Fin φ_l),
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst =
{ fst := φ_n, snd := rel φ_R ts }.fst then
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst,
snd :=
rel φ_R fun i =>
Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).snd }
else default
else default,
{
val :=
drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l),
property :=
(_ :
sizeOf
(drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)) ≤
max 1
(sizeOf
(Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) ::
Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) ::
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)))) }).fst =
{ fst := φ_n, snd := rel φ_R ts } ∧
↑(if h :
∀ (i : Fin φ_l),
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true then
if h' :
∀ (i : Fin φ_l),
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst =
{ fst := φ_n, snd := rel φ_R ts }.fst then
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst,
snd :=
rel φ_R fun i =>
Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).snd }
else default
else default,
{
val :=
drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l),
property :=
(_ :
sizeOf
(drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)) ≤
max 1
(sizeOf
(Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) ::
Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) ::
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)))) }).snd =
l
[PROOFSTEP]
have h :
∀ i : Fin φ_l,
((List.map Sum.getLeft?
(List.map
(fun i : Fin φ_l =>
Sum.inl (⟨(⟨φ_n, rel φ_R ts⟩ : Σ n, L.BoundedFormula α n).fst, ts i⟩ : Σ n, L.Term (Sum α (Fin n))))
(finRange φ_l) ++
l)).get?
↑i).join =
some ⟨_, ts i⟩ :=
by
intro i
simp only [Option.join, map_append, map_map, Option.bind_eq_some, id.def, exists_eq_right, get?_eq_some,
length_append, length_map, length_finRange]
refine' ⟨lt_of_lt_of_le i.2 le_self_add, _⟩
rw [get_append, get_map]
· simp only [Sum.getLeft?, get_finRange, Fin.eta, Function.comp_apply, eq_self_iff_true, heq_iff_eq, and_self_iff]
· simp only [length_map, length_finRange, is_lt]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ ∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
[PROOFSTEP]
intro i
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
i : Fin φ_l
⊢ Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
[PROOFSTEP]
simp only [Option.join, map_append, map_map, Option.bind_eq_some, id.def, exists_eq_right, get?_eq_some, length_append,
length_map, length_finRange]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
i : Fin φ_l
⊢ ∃ h,
List.get
(List.map (Sum.getLeft? ∘ fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++
List.map Sum.getLeft? l)
{ val := ↑i,
isLt :=
(_ :
↑i <
length
(List.map (Sum.getLeft? ∘ fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++
List.map Sum.getLeft? l)) } =
some { fst := φ_n, snd := ts i }
[PROOFSTEP]
refine' ⟨lt_of_lt_of_le i.2 le_self_add, _⟩
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
i : Fin φ_l
⊢ List.get
(List.map (Sum.getLeft? ∘ fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ List.map Sum.getLeft? l)
{ val := ↑i,
isLt :=
(_ :
↑i <
length
(List.map (Sum.getLeft? ∘ fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++
List.map Sum.getLeft? l)) } =
some { fst := φ_n, snd := ts i }
[PROOFSTEP]
rw [get_append, get_map]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
i : Fin φ_l
⊢ (Sum.getLeft? ∘ fun i => Sum.inl { fst := φ_n, snd := ts i })
(List.get (finRange φ_l)
{ val := ↑{ val := ↑i, isLt := ?h }, isLt := (_ : ↑{ val := ↑i, isLt := ?h } < length (finRange φ_l)) }) =
some { fst := φ_n, snd := ts i }
[PROOFSTEP]
simp only [Sum.getLeft?, get_finRange, Fin.eta, Function.comp_apply, eq_self_iff_true, heq_iff_eq, and_self_iff]
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
i : Fin φ_l
⊢ ↑i < length (List.map (Sum.getLeft? ∘ fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l))
[PROOFSTEP]
simp only [length_map, length_finRange, is_lt]
[GOAL]
case h.mk.rel
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
⊢ (if h :
∀ (i : Fin φ_l),
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true then
if h' :
∀ (i : Fin φ_l),
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst =
{ fst := φ_n, snd := rel φ_R ts }.fst then
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst,
snd :=
rel φ_R fun i =>
Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).snd }
else default
else default,
{
val :=
drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l),
property :=
(_ :
sizeOf
(drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)) ≤
max 1
(sizeOf
(Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) ::
Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) ::
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)))) }).fst =
{ fst := φ_n, snd := rel φ_R ts } ∧
↑(if h :
∀ (i : Fin φ_l),
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true then
if h' :
∀ (i : Fin φ_l),
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst =
{ fst := φ_n, snd := rel φ_R ts }.fst then
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst,
snd :=
rel φ_R fun i =>
Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).snd }
else default
else default,
{
val :=
drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l),
property :=
(_ :
sizeOf
(drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)) ≤
max 1
(sizeOf
(Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) ::
Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) ::
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)))) }).snd =
l
[PROOFSTEP]
rw [dif_pos]
[GOAL]
case h.mk.rel
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
⊢ (if h' :
∀ (i : Fin φ_l),
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst =
{ fst := φ_n, snd := rel φ_R ts }.fst then
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst,
snd :=
rel φ_R fun i =>
Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).snd }
else default,
{
val :=
drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l),
property :=
(_ :
sizeOf
(drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)) ≤
max 1
(sizeOf
(Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) ::
Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) ::
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)))) }).fst =
{ fst := φ_n, snd := rel φ_R ts } ∧
↑(if h' :
∀ (i : Fin φ_l),
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst =
{ fst := φ_n, snd := rel φ_R ts }.fst then
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst,
snd :=
rel φ_R fun i =>
Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).snd }
else default,
{
val :=
drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l),
property :=
(_ :
sizeOf
(drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)) ≤
max 1
(sizeOf
(Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) ::
Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) ::
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)))) }).snd =
l
case h.mk.rel.hc
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
⊢ ∀ (i : Fin φ_l),
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true
[PROOFSTEP]
swap
[GOAL]
case h.mk.rel.hc
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
⊢ ∀ (i : Fin φ_l),
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true
[PROOFSTEP]
exact fun i => Option.isSome_iff_exists.2 ⟨⟨_, ts i⟩, h i⟩
[GOAL]
case h.mk.rel
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
⊢ (if h' :
∀ (i : Fin φ_l),
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst =
{ fst := φ_n, snd := rel φ_R ts }.fst then
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst,
snd :=
rel φ_R fun i =>
Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).snd }
else default,
{
val :=
drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l),
property :=
(_ :
sizeOf
(drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)) ≤
max 1
(sizeOf
(Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) ::
Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) ::
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)))) }).fst =
{ fst := φ_n, snd := rel φ_R ts } ∧
↑(if h' :
∀ (i : Fin φ_l),
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst =
{ fst := φ_n, snd := rel φ_R ts }.fst then
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst,
snd :=
rel φ_R fun i =>
Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).snd }
else default,
{
val :=
drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l),
property :=
(_ :
sizeOf
(drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)) ≤
max 1
(sizeOf
(Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) ::
Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) ::
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)))) }).snd =
l
[PROOFSTEP]
rw [dif_pos]
[GOAL]
case h.mk.rel
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
⊢ ({ fst := { fst := φ_n, snd := rel φ_R ts }.fst,
snd :=
rel φ_R fun i =>
Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).snd },
{
val :=
drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l),
property :=
(_ :
sizeOf
(drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)) ≤
max 1
(sizeOf
(Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) ::
Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) ::
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)))) }).fst =
{ fst := φ_n, snd := rel φ_R ts } ∧
↑({ fst := { fst := φ_n, snd := rel φ_R ts }.fst,
snd :=
rel φ_R fun i =>
Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).snd },
{
val :=
drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l),
property :=
(_ :
sizeOf
(drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)) ≤
max 1
(sizeOf
(Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) ::
Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) ::
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)))) }).snd =
l
case h.mk.rel.hc
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
⊢ ∀ (i : Fin φ_l),
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst =
{ fst := φ_n, snd := rel φ_R ts }.fst
[PROOFSTEP]
swap
[GOAL]
case h.mk.rel.hc
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
⊢ ∀ (i : Fin φ_l),
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst =
{ fst := φ_n, snd := rel φ_R ts }.fst
[PROOFSTEP]
intro i
[GOAL]
case h.mk.rel.hc
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
i : Fin φ_l
⊢ (Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst =
{ fst := φ_n, snd := rel φ_R ts }.fst
[PROOFSTEP]
obtain ⟨h1, h2⟩ := Option.eq_some_iff_get_eq.1 (h i)
[GOAL]
case h.mk.rel.hc.intro
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
i : Fin φ_l
h1 :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i)) =
true
h2 :
Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i))
h1 =
{ fst := φ_n, snd := ts i }
⊢ (Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst =
{ fst := φ_n, snd := rel φ_R ts }.fst
[PROOFSTEP]
rw [h2]
[GOAL]
case h.mk.rel
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
⊢ ({ fst := { fst := φ_n, snd := rel φ_R ts }.fst,
snd :=
rel φ_R fun i =>
Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).snd },
{
val :=
drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l),
property :=
(_ :
sizeOf
(drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)) ≤
max 1
(sizeOf
(Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) ::
Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) ::
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)))) }).fst =
{ fst := φ_n, snd := rel φ_R ts } ∧
↑({ fst := { fst := φ_n, snd := rel φ_R ts }.fst,
snd :=
rel φ_R fun i =>
Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i =>
Sum.inl
{ fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).snd },
{
val :=
drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l),
property :=
(_ :
sizeOf
(drop φ_l
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)) ≤
max 1
(sizeOf
(Sum.inr (Sum.inl { fst := φ_l, snd := φ_R }) ::
Sum.inr (Sum.inr { fst := φ_n, snd := rel φ_R ts }.fst) ::
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l)))) }).snd =
l
[PROOFSTEP]
simp only [Sigma.mk.inj_iff, heq_eq_eq, rel.injEq, true_and]
[GOAL]
case h.mk.rel
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
⊢ (fun i =>
Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get?
(List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l))
↑i)) =
true)).snd) =
ts ∧
drop φ_l (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l) = l
[PROOFSTEP]
refine' ⟨funext fun i => _, _⟩
[GOAL]
case h.mk.rel.refine'_1
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
i : Fin φ_l
⊢ Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l))
↑i)) =
true)).snd =
ts i
[PROOFSTEP]
obtain ⟨h1, h2⟩ := Option.eq_some_iff_get_eq.1 (h i)
[GOAL]
case h.mk.rel.refine'_1.intro
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
i : Fin φ_l
h1 :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i)) =
true
h2 :
Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i))
h1 =
{ fst := φ_n, snd := ts i }
⊢ Eq.mp
(_ :
Term L
(α ⊕
Fin
(Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map
(fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i })
(finRange φ_l) ++
l))
↑i)) =
true)).fst) =
Term L (α ⊕ Fin { fst := φ_n, snd := rel φ_R ts }.fst))
(Option.get
(Option.join
(get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l))
↑i)) =
true)).snd =
ts i
[PROOFSTEP]
rw [eq_mp_eq_cast, cast_eq_iff_heq]
[GOAL]
case h.mk.rel.refine'_1.intro
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
i : Fin φ_l
h1 :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i)) =
true
h2 :
Option.get
(Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i))
h1 =
{ fst := φ_n, snd := ts i }
⊢ HEq
(Option.get
(Option.join
(get? (List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l))
↑i))
(_ :
Option.isSome
(Option.join
(get?
(List.map Sum.getLeft? (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l))
↑i)) =
true)).snd
(ts i)
[PROOFSTEP]
exact (Sigma.ext_iff.1 ((Sigma.eta (Option.get _ h1)).trans h2)).2
[GOAL]
case h.mk.rel.refine'_2
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
⊢ drop φ_l (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l) ++ l) = l
[PROOFSTEP]
rw [List.drop_append_eq_append_drop, length_map, length_finRange, Nat.sub_self, drop, drop_eq_nil_of_le, nil_append]
[GOAL]
case h.mk.rel.refine'_2
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n φ_n φ_l : ℕ
φ_R : Relations L φ_l
ts : Fin φ_l → Term L (α ⊕ Fin φ_n)
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
h :
∀ (i : Fin φ_l),
Option.join
(get?
(List.map Sum.getLeft?
(List.map (fun i => Sum.inl { fst := { fst := φ_n, snd := rel φ_R ts }.fst, snd := ts i }) (finRange φ_l) ++
l))
↑i) =
some { fst := φ_n, snd := ts i }
⊢ length (List.map (fun i => Sum.inl { fst := φ_n, snd := ts i }) (finRange φ_l)) ≤ φ_l
[PROOFSTEP]
rw [length_map, length_finRange]
[GOAL]
case h.mk.imp
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝, snd := f₁✝ }.snd ++ l)).fst = { fst := n✝, snd := f₁✝ } ∧
↑(listDecode (listEncode { fst := n✝, snd := f₁✝ }.snd ++ l)).snd = l
ih2 :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝, snd := f₂✝ }.snd ++ l)).fst = { fst := n✝, snd := f₂✝ } ∧
↑(listDecode (listEncode { fst := n✝, snd := f₂✝ }.snd ++ l)).snd = l
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ (listDecode (listEncode { fst := n✝, snd := f₁✝ ⟹ f₂✝ }.snd ++ l)).fst = { fst := n✝, snd := f₁✝ ⟹ f₂✝ } ∧
↑(listDecode (listEncode { fst := n✝, snd := f₁✝ ⟹ f₂✝ }.snd ++ l)).snd = l
[PROOFSTEP]
rw [listEncode, List.append_assoc, cons_append, listDecode]
[GOAL]
case h.mk.imp
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝, snd := f₁✝ }.snd ++ l)).fst = { fst := n✝, snd := f₁✝ } ∧
↑(listDecode (listEncode { fst := n✝, snd := f₁✝ }.snd ++ l)).snd = l
ih2 :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝, snd := f₂✝ }.snd ++ l)).fst = { fst := n✝, snd := f₂✝ } ∧
↑(listDecode (listEncode { fst := n✝, snd := f₂✝ }.snd ++ l)).snd = l
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ ((fun this =>
(sigmaImp (listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).fst
(listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).fst,
{ val := ↑(listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).snd,
property :=
(_ :
sizeOf ↑(listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).snd ≤
max 1 (sizeOf (Sum.inr (Sum.inr 0) :: (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))))) }))
(_ :
sizeOf ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd <
1 + (1 + 1) + sizeOf (listEncode f₁✝ ++ (listEncode f₂✝ ++ l)))).fst =
{ fst := n✝, snd := f₁✝ ⟹ f₂✝ } ∧
↑((fun this =>
(sigmaImp (listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).fst
(listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).fst,
{ val := ↑(listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).snd,
property :=
(_ :
sizeOf ↑(listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).snd ≤
max 1 (sizeOf (Sum.inr (Sum.inr 0) :: (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))))) }))
(_ :
sizeOf ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd <
1 + (1 + 1) + sizeOf (listEncode f₁✝ ++ (listEncode f₂✝ ++ l)))).snd =
l
[PROOFSTEP]
simp only [] at *
[GOAL]
case h.mk.imp
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode f₁✝ ++ l)).fst = { fst := n✝, snd := f₁✝ } ∧ ↑(listDecode (listEncode f₁✝ ++ l)).snd = l
ih2 :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode f₂✝ ++ l)).fst = { fst := n✝, snd := f₂✝ } ∧ ↑(listDecode (listEncode f₂✝ ++ l)).snd = l
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ sigmaImp (listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).fst
(listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).fst =
{ fst := n✝, snd := f₁✝ ⟹ f₂✝ } ∧
↑(listDecode ↑(listDecode (listEncode f₁✝ ++ (listEncode f₂✝ ++ l))).snd).snd = l
[PROOFSTEP]
rw [(ih1 _).1, (ih1 _).2, (ih2 _).1, (ih2 _).2, sigmaImp]
[GOAL]
case h.mk.imp
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode f₁✝ ++ l)).fst = { fst := n✝, snd := f₁✝ } ∧ ↑(listDecode (listEncode f₁✝ ++ l)).snd = l
ih2 :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode f₂✝ ++ l)).fst = { fst := n✝, snd := f₂✝ } ∧ ↑(listDecode (listEncode f₂✝ ++ l)).snd = l
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ (match { fst := n✝, snd := f₁✝ }, { fst := n✝, snd := f₂✝ } with
| { fst := m, snd := φ }, { fst := n, snd := ψ } =>
if h : m = n then { fst := m, snd := φ ⟹ Eq.mp (_ : BoundedFormula L α n = BoundedFormula L α m) ψ }
else default) =
{ fst := n✝, snd := f₁✝ ⟹ f₂✝ } ∧
l = l
[PROOFSTEP]
simp only [dite_true]
[GOAL]
case h.mk.imp
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode f₁✝ ++ l)).fst = { fst := n✝, snd := f₁✝ } ∧ ↑(listDecode (listEncode f₁✝ ++ l)).snd = l
ih2 :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode f₂✝ ++ l)).fst = { fst := n✝, snd := f₂✝ } ∧ ↑(listDecode (listEncode f₂✝ ++ l)).snd = l
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ { fst := n✝, snd := f₁✝ ⟹ Eq.mp (_ : BoundedFormula L α n✝ = BoundedFormula L α n✝) f₂✝ } =
{ fst := n✝, snd := f₁✝ ⟹ f₂✝ } ∧
True
[PROOFSTEP]
exact ⟨rfl, trivial⟩
[GOAL]
case h.mk.all
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).fst = { fst := n✝ + 1, snd := f✝ } ∧
↑(listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).snd = l
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ (listDecode (listEncode { fst := n✝, snd := ∀'f✝ }.snd ++ l)).fst = { fst := n✝, snd := ∀'f✝ } ∧
↑(listDecode (listEncode { fst := n✝, snd := ∀'f✝ }.snd ++ l)).snd = l
[PROOFSTEP]
rw [listEncode, cons_append, listDecode]
[GOAL]
case h.mk.all
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).fst = { fst := n✝ + 1, snd := f✝ } ∧
↑(listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).snd = l
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ (sigmaAll (listDecode (listEncode f✝ ++ l)).fst,
{ val := ↑(listDecode (listEncode f✝ ++ l)).snd,
property :=
(_ :
sizeOf ↑(listDecode (listEncode f✝ ++ l)).snd ≤
max 1 (sizeOf (Sum.inr (Sum.inr 1) :: (listEncode f✝ ++ l)))) }).fst =
{ fst := n✝, snd := ∀'f✝ } ∧
↑(sigmaAll (listDecode (listEncode f✝ ++ l)).fst,
{ val := ↑(listDecode (listEncode f✝ ++ l)).snd,
property :=
(_ :
sizeOf ↑(listDecode (listEncode f✝ ++ l)).snd ≤
max 1 (sizeOf (Sum.inr (Sum.inr 1) :: (listEncode f✝ ++ l)))) }).snd =
l
[PROOFSTEP]
simp only
[GOAL]
case h.mk.all
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).fst = { fst := n✝ + 1, snd := f✝ } ∧
↑(listDecode (listEncode { fst := n✝ + 1, snd := f✝ }.snd ++ l)).snd = l
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ sigmaAll (listDecode (listEncode f✝ ++ l)).fst = { fst := n✝, snd := ∀'f✝ } ∧
↑(listDecode (listEncode f✝ ++ l)).snd = l
[PROOFSTEP]
simp only [] at *
[GOAL]
case h.mk.all
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode f✝ ++ l)).fst = { fst := n✝ + 1, snd := f✝ } ∧ ↑(listDecode (listEncode f✝ ++ l)).snd = l
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ sigmaAll (listDecode (listEncode f✝ ++ l)).fst = { fst := n✝, snd := ∀'f✝ } ∧
↑(listDecode (listEncode f✝ ++ l)).snd = l
[PROOFSTEP]
rw [(ih _).1, (ih _).2, sigmaAll]
[GOAL]
case h.mk.all
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
l✝ : List ((n : ℕ) × BoundedFormula L α n)
n n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih :
∀ (l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)),
(listDecode (listEncode f✝ ++ l)).fst = { fst := n✝ + 1, snd := f✝ } ∧ ↑(listDecode (listEncode f✝ ++ l)).snd = l
l : List ((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ)
⊢ (match { fst := n✝ + 1, snd := f✝ } with
| { fst := Nat.succ n, snd := φ } => { fst := n, snd := ∀'φ }
| x => default) =
{ fst := n✝, snd := ∀'f✝ } ∧
l = l
[PROOFSTEP]
exact ⟨rfl, rfl⟩
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
φ : (n : ℕ) × BoundedFormula L α n
⊢ (fun l => some (listDecode l).fst) ((fun φ => listEncode φ.snd) φ) = some φ
[PROOFSTEP]
have h := listDecode_encode_list [φ]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
φ : (n : ℕ) × BoundedFormula L α n
h : (listDecode (List.bind [φ] fun φ => listEncode φ.snd)).fst = headI [φ]
⊢ (fun l => some (listDecode l).fst) ((fun φ => listEncode φ.snd) φ) = some φ
[PROOFSTEP]
rw [bind_singleton] at h
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
φ : (n : ℕ) × BoundedFormula L α n
h : (listDecode (listEncode φ.snd)).fst = headI [φ]
⊢ (fun l => some (listDecode l).fst) ((fun φ => listEncode φ.snd) φ) = some φ
[PROOFSTEP]
simp only
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
φ : (n : ℕ) × BoundedFormula L α n
h : (listDecode (listEncode φ.snd)).fst = headI [φ]
⊢ some (listDecode (listEncode φ.snd)).fst = some φ
[PROOFSTEP]
rw [h]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
φ : (n : ℕ) × BoundedFormula L α n
h : (listDecode (listEncode φ.snd)).fst = headI [φ]
⊢ some (headI [φ]) = some φ
[PROOFSTEP]
rfl
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ #((n : ℕ) × BoundedFormula L α n) ≤ max ℵ₀ (lift #α + lift (card L))
[PROOFSTEP]
refine' lift_le.1 (BoundedFormula.encoding.card_le_card_list.trans _)
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ lift #(List BoundedFormula.encoding.Γ) ≤ lift (max ℵ₀ (lift #α + lift (card L)))
[PROOFSTEP]
rw [encoding_Γ, mk_list_eq_max_mk_aleph0, lift_max, lift_aleph0, lift_max, lift_aleph0, max_le_iff]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ lift #((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ≤ max ℵ₀ (lift (lift #α + lift (card L))) ∧
ℵ₀ ≤ max ℵ₀ (lift (lift #α + lift (card L)))
[PROOFSTEP]
refine' ⟨_, le_max_left _ _⟩
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ lift #((k : ℕ) × Term L (α ⊕ Fin k) ⊕ (n : ℕ) × Relations L n ⊕ ℕ) ≤ max ℵ₀ (lift (lift #α + lift (card L)))
[PROOFSTEP]
rw [mk_sum, Term.card_sigma, mk_sum, ← add_eq_max le_rfl, mk_sum, mk_nat]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ lift (lift (ℵ₀ + (lift #α + lift #((i : ℕ) × Functions L i))) + lift (lift #((n : ℕ) × Relations L n) + lift ℵ₀)) ≤
max ℵ₀ (lift (lift #α + lift (card L)))
[PROOFSTEP]
simp only [lift_add, lift_lift, lift_aleph0]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
⊢ ℵ₀ + (lift #α + lift #((i : ℕ) × Functions L i)) + (lift #((n : ℕ) × Relations L n) + ℵ₀) ≤
max ℵ₀ (lift #α + lift (card L))
[PROOFSTEP]
rw [← add_assoc, add_comm, ← add_assoc, ← add_assoc, aleph0_add_aleph0, add_assoc, add_eq_max le_rfl, add_assoc, card,
Symbols, mk_sum, lift_add, lift_lift, lift_lift]
| {"mathlib_filename": "Mathlib.ModelTheory.Encoding", "llama_tokens": 55009} |
[GOAL]
α : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
inst✝² : Preorder α
inst✝¹ : Preorder β✝
inst✝ : Preorder γ✝
β γ : Type ?u.55
f : α →o Part β
g : α →o β → Part γ
⊢ Monotone fun x => ↑f x >>= ↑g x
[PROOFSTEP]
intro x y h a
[GOAL]
α : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
inst✝² : Preorder α
inst✝¹ : Preorder β✝
inst✝ : Preorder γ✝
β γ : Type ?u.55
f : α →o Part β
g : α →o β → Part γ
x y : α
h : x ≤ y
a : γ
⊢ a ∈ (fun x => ↑f x >>= ↑g x) x → a ∈ (fun x => ↑f x >>= ↑g x) y
[PROOFSTEP]
simp only [and_imp, exists_prop, Part.bind_eq_bind, Part.mem_bind_iff, exists_imp]
[GOAL]
α : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
inst✝² : Preorder α
inst✝¹ : Preorder β✝
inst✝ : Preorder γ✝
β γ : Type ?u.55
f : α →o Part β
g : α →o β → Part γ
x y : α
h : x ≤ y
a : γ
⊢ ∀ (x_1 : β), x_1 ∈ ↑f x → a ∈ ↑g x x_1 → ∃ a_3, a_3 ∈ ↑f y ∧ a ∈ ↑g y a_3
[PROOFSTEP]
intro b hb ha
[GOAL]
α : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
inst✝² : Preorder α
inst✝¹ : Preorder β✝
inst✝ : Preorder γ✝
β γ : Type ?u.55
f : α →o Part β
g : α →o β → Part γ
x y : α
h : x ≤ y
a : γ
b : β
hb : b ∈ ↑f x
ha : a ∈ ↑g x b
⊢ ∃ a_1, a_1 ∈ ↑f y ∧ a ∈ ↑g y a_1
[PROOFSTEP]
refine' ⟨b, f.monotone h _ hb, g.monotone h _ _ ha⟩
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
c c' : Chain α
f : α →o β
g : β →o γ
b : β
h : ∃ a, a ∈ c ∧ ↑f a = b
⊢ b ∈ map c f
[PROOFSTEP]
rcases h with ⟨w, h, h'⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type u_1
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
c c' : Chain α
f : α →o β
g : β →o γ
b : β
w : α
h : w ∈ c
h' : ↑f w = b
⊢ b ∈ map c f
[PROOFSTEP]
subst b
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type u_1
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
c c' : Chain α
f : α →o β
g : β →o γ
w : α
h : w ∈ c
⊢ ↑f w ∈ map c f
[PROOFSTEP]
apply mem_map c _ h
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
c c' : Chain α
f : α →o β
g✝ : β →o γ
g : α →o β
h : f ≤ g
i : ℕ
⊢ ∃ j, ↑(map c f) i ≤ ↑(map c g) j
[PROOFSTEP]
simp [mem_map_iff]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
c c' : Chain α
f : α →o β
g✝ : β →o γ
g : α →o β
h : f ≤ g
i : ℕ
⊢ ∃ j, ↑f (↑c i) ≤ ↑g (↑c j)
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
c c' : Chain α
f : α →o β
g✝ : β →o γ
g : α →o β
h : f ≤ g
i : ℕ
⊢ ∃ j, ↑f (↑c i) ≤ ↑g (↑c j)
[PROOFSTEP]
exists i
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
c c' : Chain α
f : α →o β
g✝ : β →o γ
g : α →o β
h : f ≤ g
i : ℕ
⊢ ↑f (↑c i) ≤ ↑g (↑c i)
[PROOFSTEP]
apply h
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : PartialOrder β
f : β →o α
ωSup₀ : Chain β → β
h : ∀ (x y : β), ↑f x ≤ ↑f y → x ≤ y
h' : ∀ (c : Chain β), ↑f (ωSup₀ c) = ωSup (Chain.map c f)
c : Chain β
i : ℕ
⊢ ↑f (↑c i) ≤ ↑f (ωSup₀ c)
[PROOFSTEP]
rw [h']
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : PartialOrder β
f : β →o α
ωSup₀ : Chain β → β
h : ∀ (x y : β), ↑f x ≤ ↑f y → x ≤ y
h' : ∀ (c : Chain β), ↑f (ωSup₀ c) = ωSup (Chain.map c f)
c : Chain β
i : ℕ
⊢ ↑f (↑c i) ≤ ωSup (Chain.map c f)
[PROOFSTEP]
apply le_ωSup (c.map f)
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : PartialOrder β
f : β →o α
ωSup₀ : Chain β → β
h : ∀ (x y : β), ↑f x ≤ ↑f y → x ≤ y
h' : ∀ (c : Chain β), ↑f (ωSup₀ c) = ωSup (Chain.map c f)
c : Chain β
x : β
hx : ∀ (i : ℕ), ↑c i ≤ x
⊢ ↑f (ωSup₀ c) ≤ ↑f x
[PROOFSTEP]
rw [h']
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : PartialOrder β
f : β →o α
ωSup₀ : Chain β → β
h : ∀ (x y : β), ↑f x ≤ ↑f y → x ≤ y
h' : ∀ (c : Chain β), ↑f (ωSup₀ c) = ωSup (Chain.map c f)
c : Chain β
x : β
hx : ∀ (i : ℕ), ↑c i ≤ x
⊢ ωSup (Chain.map c f) ≤ ↑f x
[PROOFSTEP]
apply ωSup_le
[GOAL]
case a
α : Type u
β : Type v
γ : Type u_1
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : PartialOrder β
f : β →o α
ωSup₀ : Chain β → β
h : ∀ (x y : β), ↑f x ≤ ↑f y → x ≤ y
h' : ∀ (c : Chain β), ↑f (ωSup₀ c) = ωSup (Chain.map c f)
c : Chain β
x : β
hx : ∀ (i : ℕ), ↑c i ≤ x
⊢ ∀ (i : ℕ), ↑(Chain.map c f) i ≤ ↑f x
[PROOFSTEP]
intro i
[GOAL]
case a
α : Type u
β : Type v
γ : Type u_1
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : PartialOrder β
f : β →o α
ωSup₀ : Chain β → β
h : ∀ (x y : β), ↑f x ≤ ↑f y → x ≤ y
h' : ∀ (c : Chain β), ↑f (ωSup₀ c) = ωSup (Chain.map c f)
c : Chain β
x : β
hx : ∀ (i : ℕ), ↑c i ≤ x
i : ℕ
⊢ ↑(Chain.map c f) i ≤ ↑f x
[PROOFSTEP]
apply f.monotone (hx i)
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝ : OmegaCompletePartialOrder α
c : Chain α
x : α
h : ∀ (i : ℕ), ↑c i ≤ x ∨ x ≤ ↑c i
this : ¬∀ (i : ℕ), ↑c i ≤ x
⊢ ∃ i, ¬↑c i ≤ x
[PROOFSTEP]
simp only [not_forall] at this ⊢
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝ : OmegaCompletePartialOrder α
c : Chain α
x : α
h : ∀ (i : ℕ), ↑c i ≤ x ∨ x ≤ ↑c i
this : ∃ x_1, ¬↑c x_1 ≤ x
⊢ ∃ i, ¬↑c i ≤ x
[PROOFSTEP]
assumption
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝ : OmegaCompletePartialOrder α
c₀ c₁ : Chain α
h : c₀ ≤ c₁
i : ℕ
⊢ ↑c₀ i ≤ ωSup c₁
[PROOFSTEP]
obtain ⟨_, h⟩ := h i
[GOAL]
case intro
α : Type u
β : Type v
γ : Type u_1
inst✝ : OmegaCompletePartialOrder α
c₀ c₁ : Chain α
h✝ : c₀ ≤ c₁
i w✝ : ℕ
h : ↑c₀ i ≤ ↑c₁ w✝
⊢ ↑c₀ i ≤ ωSup c₁
[PROOFSTEP]
exact le_trans h (le_ωSup _ _)
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝ : OmegaCompletePartialOrder α
c : Chain α
x : α
⊢ ωSup c ≤ x ↔ ∀ (i : ℕ), ↑c i ≤ x
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
β : Type v
γ : Type u_1
inst✝ : OmegaCompletePartialOrder α
c : Chain α
x : α
⊢ ωSup c ≤ x → ∀ (i : ℕ), ↑c i ≤ x
[PROOFSTEP]
intros
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type u_1
inst✝ : OmegaCompletePartialOrder α
c : Chain α
x : α
⊢ (∀ (i : ℕ), ↑c i ≤ x) → ωSup c ≤ x
[PROOFSTEP]
intros
[GOAL]
case mp
α : Type u
β : Type v
γ : Type u_1
inst✝ : OmegaCompletePartialOrder α
c : Chain α
x : α
a✝ : ωSup c ≤ x
i✝ : ℕ
⊢ ↑c i✝ ≤ x
[PROOFSTEP]
trans ωSup c
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝ : OmegaCompletePartialOrder α
c : Chain α
x : α
a✝ : ωSup c ≤ x
i✝ : ℕ
⊢ ↑c i✝ ≤ ωSup c
α : Type u
β : Type v
γ : Type u_1
inst✝ : OmegaCompletePartialOrder α
c : Chain α
x : α
a✝ : ωSup c ≤ x
i✝ : ℕ
⊢ ωSup c ≤ x
[PROOFSTEP]
exact le_ωSup _ _
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝ : OmegaCompletePartialOrder α
c : Chain α
x : α
a✝ : ωSup c ≤ x
i✝ : ℕ
⊢ ωSup c ≤ x
[PROOFSTEP]
assumption
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type u_1
inst✝ : OmegaCompletePartialOrder α
c : Chain α
x : α
a✝ : ∀ (i : ℕ), ↑c i ≤ x
⊢ ωSup c ≤ x
[PROOFSTEP]
exact ωSup_le _ _ ‹_›
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝² : OmegaCompletePartialOrder α
inst✝¹ : OmegaCompletePartialOrder β
inst✝ : OmegaCompletePartialOrder γ
f : α →o β
g : β →o γ
⊢ Continuous OrderHom.id
[PROOFSTEP]
intro c
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝² : OmegaCompletePartialOrder α
inst✝¹ : OmegaCompletePartialOrder β
inst✝ : OmegaCompletePartialOrder γ
f : α →o β
g : β →o γ
c : Chain α
⊢ ↑OrderHom.id (ωSup c) = ωSup (map c OrderHom.id)
[PROOFSTEP]
rw [c.map_id]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝² : OmegaCompletePartialOrder α
inst✝¹ : OmegaCompletePartialOrder β
inst✝ : OmegaCompletePartialOrder γ
f : α →o β
g : β →o γ
c : Chain α
⊢ ↑OrderHom.id (ωSup c) = ωSup c
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝² : OmegaCompletePartialOrder α
inst✝¹ : OmegaCompletePartialOrder β
inst✝ : OmegaCompletePartialOrder γ
f : α →o β
g : β →o γ
hfc : Continuous f
hgc : Continuous g
⊢ Continuous (OrderHom.comp g f)
[PROOFSTEP]
dsimp [Continuous] at *
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝² : OmegaCompletePartialOrder α
inst✝¹ : OmegaCompletePartialOrder β
inst✝ : OmegaCompletePartialOrder γ
f : α →o β
g : β →o γ
hfc : ∀ (c : Chain α), ↑f (ωSup c) = ωSup (map c f)
hgc : ∀ (c : Chain β), ↑g (ωSup c) = ωSup (map c g)
⊢ ∀ (c : Chain α), ↑g (↑f (ωSup c)) = ωSup (map c (OrderHom.comp g f))
[PROOFSTEP]
intro
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝² : OmegaCompletePartialOrder α
inst✝¹ : OmegaCompletePartialOrder β
inst✝ : OmegaCompletePartialOrder γ
f : α →o β
g : β →o γ
hfc : ∀ (c : Chain α), ↑f (ωSup c) = ωSup (map c f)
hgc : ∀ (c : Chain β), ↑g (ωSup c) = ωSup (map c g)
c✝ : Chain α
⊢ ↑g (↑f (ωSup c✝)) = ωSup (map c✝ (OrderHom.comp g f))
[PROOFSTEP]
rw [hfc, hgc, Chain.map_comp]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝² : OmegaCompletePartialOrder α
inst✝¹ : OmegaCompletePartialOrder β
inst✝ : OmegaCompletePartialOrder γ
f : α →o β
g : β →o γ
x : β
c : Chain α
z : β
⊢ ↑(↑(OrderHom.const α) x) (ωSup c) ≤ z ↔ ωSup (map c (↑(OrderHom.const α) x)) ≤ z
[PROOFSTEP]
rw [ωSup_le_iff, Chain.map_coe, OrderHom.const_coe_coe]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
inst✝² : OmegaCompletePartialOrder α
inst✝¹ : OmegaCompletePartialOrder β
inst✝ : OmegaCompletePartialOrder γ
f : α →o β
g : β →o γ
x : β
c : Chain α
z : β
⊢ Function.const α x (ωSup c) ≤ z ↔ ∀ (i : ℕ), (Function.const α x ∘ ↑c) i ≤ z
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a b : α
ha : some a ∈ c
hb : some b ∈ c
⊢ a = b
[PROOFSTEP]
cases' ha with i ha
[GOAL]
case intro
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a b : α
hb : some b ∈ c
i : ℕ
ha : some a = ↑c i
⊢ a = b
[PROOFSTEP]
replace ha := ha.symm
[GOAL]
case intro
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a b : α
hb : some b ∈ c
i : ℕ
ha : ↑c i = some a
⊢ a = b
[PROOFSTEP]
cases' hb with j hb
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a b : α
i : ℕ
ha : ↑c i = some a
j : ℕ
hb : some b = ↑c j
⊢ a = b
[PROOFSTEP]
replace hb := hb.symm
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a b : α
i : ℕ
ha : ↑c i = some a
j : ℕ
hb : ↑c j = some b
⊢ a = b
[PROOFSTEP]
rw [eq_some_iff] at ha hb
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a b : α
i : ℕ
ha : a ∈ ↑c i
j : ℕ
hb : b ∈ ↑c j
⊢ a = b
[PROOFSTEP]
cases' le_total i j with hij hji
[GOAL]
case intro.intro.inl
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a b : α
i : ℕ
ha : a ∈ ↑c i
j : ℕ
hb : b ∈ ↑c j
hij : i ≤ j
⊢ a = b
[PROOFSTEP]
have := c.monotone hij _ ha
[GOAL]
case intro.intro.inl
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a b : α
i : ℕ
ha : a ∈ ↑c i
j : ℕ
hb : b ∈ ↑c j
hij : i ≤ j
this : a ∈ ↑c j
⊢ a = b
[PROOFSTEP]
apply mem_unique this hb
[GOAL]
case intro.intro.inr
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a b : α
i : ℕ
ha : a ∈ ↑c i
j : ℕ
hb : b ∈ ↑c j
hji : j ≤ i
⊢ a = b
[PROOFSTEP]
have := c.monotone hji _ hb
[GOAL]
case intro.intro.inr
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a b : α
i : ℕ
ha : a ∈ ↑c i
j : ℕ
hb : b ∈ ↑c j
hji : j ≤ i
this : b ∈ ↑c i
⊢ a = b
[PROOFSTEP]
apply Eq.symm
[GOAL]
case intro.intro.inr.h
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a b : α
i : ℕ
ha : a ∈ ↑c i
j : ℕ
hb : b ∈ ↑c j
hji : j ≤ i
this : b ∈ ↑c i
⊢ b = a
[PROOFSTEP]
apply mem_unique this ha
[GOAL]
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a : α
h : a ∈ Part.ωSup c
⊢ some a ∈ c
[PROOFSTEP]
simp only [Part.ωSup] at h
[GOAL]
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a : α
h : a ∈ if h : ∃ a, some a ∈ c then some (choose h) else none
⊢ some a ∈ c
[PROOFSTEP]
split_ifs at h with h_1
[GOAL]
case pos
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a : α
h_1 : ∃ a, some a ∈ c
h : a ∈ some (choose h_1)
⊢ some a ∈ c
[PROOFSTEP]
have h' := Classical.choose_spec h_1
[GOAL]
case pos
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a : α
h_1 : ∃ a, some a ∈ c
h : a ∈ some (choose h_1)
h' : some (choose h_1) ∈ c
⊢ some a ∈ c
[PROOFSTEP]
rw [← eq_some_iff] at h
[GOAL]
case pos
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a : α
h_1 : ∃ a, some a ∈ c
h : some (choose h_1) = some a
h' : some (choose h_1) ∈ c
⊢ some a ∈ c
[PROOFSTEP]
rw [← h]
[GOAL]
case pos
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a : α
h_1 : ∃ a, some a ∈ c
h : some (choose h_1) = some a
h' : some (choose h_1) ∈ c
⊢ some (choose h_1) ∈ c
[PROOFSTEP]
exact h'
[GOAL]
case neg
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
a : α
h_1 : ¬∃ a, some a ∈ c
h : a ∈ none
⊢ some a ∈ c
[PROOFSTEP]
rcases h with ⟨⟨⟩⟩
[GOAL]
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
i : ℕ
⊢ ↑c i ≤ Part.ωSup c
[PROOFSTEP]
intro x hx
[GOAL]
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
i : ℕ
x : α
hx : x ∈ ↑c i
⊢ x ∈ Part.ωSup c
[PROOFSTEP]
rw [← eq_some_iff] at hx ⊢
[GOAL]
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
i : ℕ
x : α
hx : ↑c i = some x
⊢ Part.ωSup c = some x
[PROOFSTEP]
rw [ωSup_eq_some, ← hx]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
i : ℕ
x : α
hx : ↑c i = some x
⊢ some x ∈ c
[PROOFSTEP]
rw [← hx]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
i : ℕ
x : α
hx : ↑c i = some x
⊢ ↑c i ∈ c
[PROOFSTEP]
exact ⟨i, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type u_1
⊢ ∀ (c : Chain (Part α)) (x : Part α), (∀ (i : ℕ), ↑c i ≤ x) → Part.ωSup c ≤ x
[PROOFSTEP]
rintro c x hx a ha
[GOAL]
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
x : Part α
hx : ∀ (i : ℕ), ↑c i ≤ x
a : α
ha : a ∈ Part.ωSup c
⊢ a ∈ x
[PROOFSTEP]
replace ha := mem_chain_of_mem_ωSup ha
[GOAL]
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
x : Part α
hx : ∀ (i : ℕ), ↑c i ≤ x
a : α
ha : some a ∈ c
⊢ a ∈ x
[PROOFSTEP]
cases' ha with i ha
[GOAL]
case intro
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
x : Part α
hx : ∀ (i : ℕ), ↑c i ≤ x
a : α
i : ℕ
ha : some a = ↑c i
⊢ a ∈ x
[PROOFSTEP]
apply hx i
[GOAL]
case intro.a
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
x : Part α
hx : ∀ (i : ℕ), ↑c i ≤ x
a : α
i : ℕ
ha : some a = ↑c i
⊢ a ∈ ↑c i
[PROOFSTEP]
rw [← ha]
[GOAL]
case intro.a
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
x : Part α
hx : ∀ (i : ℕ), ↑c i ≤ x
a : α
i : ℕ
ha : some a = ↑c i
⊢ a ∈ some a
[PROOFSTEP]
apply mem_some
[GOAL]
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
⊢ x ∈ ωSup c ↔ some x ∈ c
[PROOFSTEP]
simp [OmegaCompletePartialOrder.ωSup, Part.ωSup]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
⊢ (x ∈ if h : ∃ a, some a ∈ c then some (choose h) else none) ↔ some x ∈ c
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
⊢ (x ∈ if h : ∃ a, some a ∈ c then some (choose h) else none) → some x ∈ c
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
h : ∃ a, some a ∈ c
⊢ x ∈ some (choose h) → some x ∈ c
case neg α : Type u β : Type v γ : Type u_1 x : α c : Chain (Part α) h : ¬∃ a, some a ∈ c ⊢ x ∈ none → some x ∈ c
[PROOFSTEP]
swap
[GOAL]
case neg
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
h : ¬∃ a, some a ∈ c
⊢ x ∈ none → some x ∈ c
case pos
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
h : ∃ a, some a ∈ c
⊢ x ∈ some (choose h) → some x ∈ c
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
case pos
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
h : ∃ a, some a ∈ c
⊢ x ∈ some (choose h) → some x ∈ c
[PROOFSTEP]
intro h'
[GOAL]
case pos
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
h : ∃ a, some a ∈ c
h' : x ∈ some (choose h)
⊢ some x ∈ c
[PROOFSTEP]
have hh := Classical.choose_spec h
[GOAL]
case pos
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
h : ∃ a, some a ∈ c
h' : x ∈ some (choose h)
hh : some (choose h) ∈ c
⊢ some x ∈ c
[PROOFSTEP]
simp only [mem_some_iff] at h'
[GOAL]
case pos
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
h : ∃ a, some a ∈ c
hh : some (choose h) ∈ c
h' : x = choose h
⊢ some x ∈ c
[PROOFSTEP]
subst x
[GOAL]
case pos
α : Type u
β : Type v
γ : Type u_1
c : Chain (Part α)
h : ∃ a, some a ∈ c
hh : some (choose h) ∈ c
⊢ some (choose h) ∈ c
[PROOFSTEP]
exact hh
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
⊢ some x ∈ c → x ∈ if h : ∃ a, some a ∈ c then some (choose h) else none
[PROOFSTEP]
intro h
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
h : some x ∈ c
⊢ x ∈ if h : ∃ a, some a ∈ c then some (choose h) else none
[PROOFSTEP]
have h' : ∃ a : α, some a ∈ c := ⟨_, h⟩
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
h : some x ∈ c
h' : ∃ a, some a ∈ c
⊢ x ∈ if h : ∃ a, some a ∈ c then some (choose h) else none
[PROOFSTEP]
rw [dif_pos h']
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
h : some x ∈ c
h' : ∃ a, some a ∈ c
⊢ x ∈ some (choose h')
[PROOFSTEP]
have hh := Classical.choose_spec h'
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
h : some x ∈ c
h' : ∃ a, some a ∈ c
hh : some (choose h') ∈ c
⊢ x ∈ some (choose h')
[PROOFSTEP]
rw [eq_of_chain hh h]
[GOAL]
case mpr
α : Type u
β : Type v
γ : Type u_1
x : α
c : Chain (Part α)
h : some x ∈ c
h' : ∃ a, some a ∈ c
hh : some (choose h') ∈ c
⊢ x ∈ some x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : α → Type u_2
γ : Type u_3
inst✝ : (a : α) → OmegaCompletePartialOrder (β a)
c : Chain ((a : α) → β a)
f : (a : α) → β a
hf : ∀ (i : ℕ), ↑c i ≤ f
a : α
⊢ ∀ (i : ℕ), ↑(map c (evalOrderHom a)) i ≤ f a
[PROOFSTEP]
rintro i
[GOAL]
α : Type u_1
β : α → Type u_2
γ : Type u_3
inst✝ : (a : α) → OmegaCompletePartialOrder (β a)
c : Chain ((a : α) → β a)
f : (a : α) → β a
hf : ∀ (i : ℕ), ↑c i ≤ f
a : α
i : ℕ
⊢ ↑(map c (evalOrderHom a)) i ≤ f a
[PROOFSTEP]
apply hf
[GOAL]
α : Type u_1
β : α → Type u_2
γ : Type u_3
inst✝¹ : (x : α) → OmegaCompletePartialOrder (β x)
inst✝ : OmegaCompletePartialOrder γ
f : γ → (x : α) → β x
hf : ∀ (x : α), Continuous' fun g => f g x
⊢ Continuous { toFun := f, monotone' := (_ : ∀ (x y : γ), x ≤ y → ∀ (a : α), (fun g => f g a) x ≤ (fun g => f g a) y) }
[PROOFSTEP]
intro c
[GOAL]
α : Type u_1
β : α → Type u_2
γ : Type u_3
inst✝¹ : (x : α) → OmegaCompletePartialOrder (β x)
inst✝ : OmegaCompletePartialOrder γ
f : γ → (x : α) → β x
hf : ∀ (x : α), Continuous' fun g => f g x
c : Chain γ
⊢ ↑{ toFun := f, monotone' := (_ : ∀ (x y : γ), x ≤ y → ∀ (a : α), (fun g => f g a) x ≤ (fun g => f g a) y) } (ωSup c) =
ωSup
(map c { toFun := f, monotone' := (_ : ∀ (x y : γ), x ≤ y → ∀ (a : α), (fun g => f g a) x ≤ (fun g => f g a) y) })
[PROOFSTEP]
ext a
[GOAL]
case h
α : Type u_1
β : α → Type u_2
γ : Type u_3
inst✝¹ : (x : α) → OmegaCompletePartialOrder (β x)
inst✝ : OmegaCompletePartialOrder γ
f : γ → (x : α) → β x
hf : ∀ (x : α), Continuous' fun g => f g x
c : Chain γ
a : α
⊢ ↑{ toFun := f, monotone' := (_ : ∀ (x y : γ), x ≤ y → ∀ (a : α), (fun g => f g a) x ≤ (fun g => f g a) y) } (ωSup c)
a =
ωSup
(map c { toFun := f, monotone' := (_ : ∀ (x y : γ), x ≤ y → ∀ (a : α), (fun g => f g a) x ≤ (fun g => f g a) y) })
a
[PROOFSTEP]
apply (hf a).to_bundled _ c
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : OmegaCompletePartialOrder α
inst✝¹ : OmegaCompletePartialOrder β
inst✝ : OmegaCompletePartialOrder γ
c₀ : Chain α
c₁ : Chain β
⊢ ωSup (Chain.zip c₀ c₁) = (ωSup c₀, ωSup c₁)
[PROOFSTEP]
apply eq_of_forall_ge_iff
[GOAL]
case H
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : OmegaCompletePartialOrder α
inst✝¹ : OmegaCompletePartialOrder β
inst✝ : OmegaCompletePartialOrder γ
c₀ : Chain α
c₁ : Chain β
⊢ ∀ (c : α × β), ωSup (Chain.zip c₀ c₁) ≤ c ↔ (ωSup c₀, ωSup c₁) ≤ c
[PROOFSTEP]
rintro ⟨z₁, z₂⟩
[GOAL]
case H.mk
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : OmegaCompletePartialOrder α
inst✝¹ : OmegaCompletePartialOrder β
inst✝ : OmegaCompletePartialOrder γ
c₀ : Chain α
c₁ : Chain β
z₁ : α
z₂ : β
⊢ ωSup (Chain.zip c₀ c₁) ≤ (z₁, z₂) ↔ (ωSup c₀, ωSup c₁) ≤ (z₁, z₂)
[PROOFSTEP]
simp [ωSup_le_iff, forall_and]
[GOAL]
α : Type u
inst✝ : CompleteLattice α
x✝ : Chain α
i : ℕ
c : ℕ → α
monotone'✝ : Monotone c
⊢ ↑{ toFun := c, monotone' := monotone'✝ } i ≤ (fun c => ⨆ (i : ℕ), ↑c i) { toFun := c, monotone' := monotone'✝ }
[PROOFSTEP]
simp only [OrderHom.coe_mk]
[GOAL]
α : Type u
inst✝ : CompleteLattice α
x✝ : Chain α
i : ℕ
c : ℕ → α
monotone'✝ : Monotone c
⊢ ↑{ toFun := c, monotone' := monotone'✝ } i ≤ ⨆ (i : ℕ), ↑{ toFun := c, monotone' := monotone'✝ } i
[PROOFSTEP]
apply le_iSup_of_le i
[GOAL]
α : Type u
inst✝ : CompleteLattice α
x✝ : Chain α
i : ℕ
c : ℕ → α
monotone'✝ : Monotone c
⊢ ↑{ toFun := c, monotone' := monotone'✝ } i ≤ ↑{ toFun := c, monotone' := monotone'✝ } i
[PROOFSTEP]
rfl
[GOAL]
α : Type u
inst✝ : CompleteLattice α
x✝ : Chain α
s : α
c : ℕ → α
monotone'✝ : Monotone c
hs : ∀ (i : ℕ), ↑{ toFun := c, monotone' := monotone'✝ } i ≤ s
⊢ (fun c => ⨆ (i : ℕ), ↑c i) { toFun := c, monotone' := monotone'✝ } ≤ s
[PROOFSTEP]
simp only [iSup_le_iff, OrderHom.coe_mk] at hs ⊢
[GOAL]
α : Type u
inst✝ : CompleteLattice α
x✝ : Chain α
s : α
c : ℕ → α
monotone'✝ : Monotone c
hs : ∀ (i : ℕ), ↑{ toFun := c, monotone' := monotone'✝ } i ≤ s
⊢ ∀ (i : ℕ), ↑{ toFun := c, monotone' := monotone'✝ } i ≤ s
[PROOFSTEP]
intro i
[GOAL]
α : Type u
inst✝ : CompleteLattice α
x✝ : Chain α
s : α
c : ℕ → α
monotone'✝ : Monotone c
hs : ∀ (i : ℕ), ↑{ toFun := c, monotone' := monotone'✝ } i ≤ s
i : ℕ
⊢ ↑{ toFun := c, monotone' := monotone'✝ } i ≤ s
[PROOFSTEP]
apply hs i
[GOAL]
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
s : Set (α →o β)
hs : ∀ (f : α →o β), f ∈ s → Continuous f
⊢ Continuous (sSup s)
[PROOFSTEP]
intro c
[GOAL]
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
s : Set (α →o β)
hs : ∀ (f : α →o β), f ∈ s → Continuous f
c : Chain α
⊢ ↑(sSup s) (ωSup c) = ωSup (Chain.map c (sSup s))
[PROOFSTEP]
apply eq_of_forall_ge_iff
[GOAL]
case H
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
s : Set (α →o β)
hs : ∀ (f : α →o β), f ∈ s → Continuous f
c : Chain α
⊢ ∀ (c_1 : β), ↑(sSup s) (ωSup c) ≤ c_1 ↔ ωSup (Chain.map c (sSup s)) ≤ c_1
[PROOFSTEP]
intro z
[GOAL]
case H
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
s : Set (α →o β)
hs : ∀ (f : α →o β), f ∈ s → Continuous f
c : Chain α
z : β
⊢ ↑(sSup s) (ωSup c) ≤ z ↔ ωSup (Chain.map c (sSup s)) ≤ z
[PROOFSTEP]
suffices (∀ f ∈ s, ∀ (n), (f : _) (c n) ≤ z) ↔ ∀ (n), ∀ f ∈ s, (f : _) (c n) ≤ z by
simpa (config := { contextual := true }) [ωSup_le_iff, hs _ _ _] using this
[GOAL]
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
s : Set (α →o β)
hs : ∀ (f : α →o β), f ∈ s → Continuous f
c : Chain α
z : β
this : (∀ (f : α →o β), f ∈ s → ∀ (n : ℕ), ↑f (↑c n) ≤ z) ↔ ∀ (n : ℕ) (f : α →o β), f ∈ s → ↑f (↑c n) ≤ z
⊢ ↑(sSup s) (ωSup c) ≤ z ↔ ωSup (Chain.map c (sSup s)) ≤ z
[PROOFSTEP]
simpa (config := { contextual := true }) [ωSup_le_iff, hs _ _ _] using this
[GOAL]
case H
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
s : Set (α →o β)
hs : ∀ (f : α →o β), f ∈ s → Continuous f
c : Chain α
z : β
⊢ (∀ (f : α →o β), f ∈ s → ∀ (n : ℕ), ↑f (↑c n) ≤ z) ↔ ∀ (n : ℕ) (f : α →o β), f ∈ s → ↑f (↑c n) ≤ z
[PROOFSTEP]
exact ⟨fun H n f hf => H f hf n, fun H f hf n => H n f hf⟩
[GOAL]
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
s : Set (α → β)
hc : ∀ (f : α → β), f ∈ s → Continuous' f
⊢ Continuous' (sSup s)
[PROOFSTEP]
lift s to Set (α →o β) using fun f hf => (hc f hf).to_monotone
[GOAL]
case intro
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
s : Set (α →o β)
hc : ∀ (f : α → β), f ∈ (fun x x_1 => x '' x_1) FunLike.coe s → Continuous' f
⊢ Continuous' (sSup ((fun x x_1 => x '' x_1) FunLike.coe s))
[PROOFSTEP]
simp only [Set.ball_image_iff, continuous'_coe] at hc
[GOAL]
case intro
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
s : Set (α →o β)
hc : ∀ (x : α →o β), x ∈ s → Continuous x
⊢ Continuous' (sSup ((fun x x_1 => x '' x_1) FunLike.coe s))
[PROOFSTEP]
rw [sSup_image]
[GOAL]
case intro
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
s : Set (α →o β)
hc : ∀ (x : α →o β), x ∈ s → Continuous x
⊢ Continuous' (⨆ (a : α →o β) (_ : a ∈ s), ↑a)
[PROOFSTEP]
norm_cast
[GOAL]
case intro
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
s : Set (α →o β)
hc : ∀ (x : α →o β), x ∈ s → Continuous x
⊢ Continuous (⨆ (i : α →o β) (_ : i ∈ s), i)
[PROOFSTEP]
exact iSup_continuous fun f => iSup_continuous fun hf => hc f hf
[GOAL]
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
f g : α →o β
hf : Continuous f
hg : Continuous g
⊢ Continuous (f ⊔ g)
[PROOFSTEP]
rw [← sSup_pair]
[GOAL]
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
f g : α →o β
hf : Continuous f
hg : Continuous g
⊢ Continuous (sSup {f, g})
[PROOFSTEP]
apply sSup_continuous
[GOAL]
case hs
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
f g : α →o β
hf : Continuous f
hg : Continuous g
⊢ ∀ (f_1 : α →o β), f_1 ∈ {f, g} → Continuous f_1
[PROOFSTEP]
rintro f (rfl | rfl | _)
[GOAL]
case hs.inl
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
g : α →o β
hg : Continuous g
f : α →o β
hf : Continuous f
⊢ Continuous f
[PROOFSTEP]
assumption
[GOAL]
case hs.inr.refl
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
f g : α →o β
hf : Continuous f
hg : Continuous g
⊢ Continuous g
[PROOFSTEP]
assumption
[GOAL]
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
⊢ Continuous ⊤
[PROOFSTEP]
intro c
[GOAL]
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
c : Chain α
⊢ ↑⊤ (ωSup c) = ωSup (Chain.map c ⊤)
[PROOFSTEP]
apply eq_of_forall_ge_iff
[GOAL]
case H
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
c : Chain α
⊢ ∀ (c_1 : β), ↑⊤ (ωSup c) ≤ c_1 ↔ ωSup (Chain.map c ⊤) ≤ c_1
[PROOFSTEP]
intro z
[GOAL]
case H
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
c : Chain α
z : β
⊢ ↑⊤ (ωSup c) ≤ z ↔ ωSup (Chain.map c ⊤) ≤ z
[PROOFSTEP]
simp only [OrderHom.instTopOrderHom_top, OrderHom.const_coe_coe, Function.const, top_le_iff, ωSup_le_iff, Chain.map_coe,
Function.comp, forall_const]
[GOAL]
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
⊢ Continuous ⊥
[PROOFSTEP]
rw [← sSup_empty]
[GOAL]
α : Type u
β : Type v
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLattice β
⊢ Continuous (sSup ∅)
[PROOFSTEP]
exact sSup_continuous _ fun f hf => hf.elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLinearOrder β
f g : α →o β
hf : Continuous f
hg : Continuous g
⊢ Continuous (f ⊓ g)
[PROOFSTEP]
refine' fun c => eq_of_forall_ge_iff fun z => _
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLinearOrder β
f g : α →o β
hf : Continuous f
hg : Continuous g
c : Chain α
z : β
⊢ ↑(f ⊓ g) (ωSup c) ≤ z ↔ ωSup (Chain.map c (f ⊓ g)) ≤ z
[PROOFSTEP]
simp only [inf_le_iff, hf c, hg c, ωSup_le_iff, ← forall_or_left, ← forall_or_right, Chain.map_coe, OrderHom.coe_inf,
ge_iff_le, Pi.inf_apply, Function.comp]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : OmegaCompletePartialOrder α
inst✝ : CompleteLinearOrder β
f g : α →o β
hf : Continuous f
hg : Continuous g
c : Chain α
z : β
⊢ (∀ (x x_1 : ℕ), ↑f (↑c x_1) ≤ z ∨ ↑g (↑c x) ≤ z) ↔ ∀ (i : ℕ), ↑f (↑c i) ≤ z ∨ ↑g (↑c i) ≤ z
[PROOFSTEP]
exact
⟨λ h _ => h _ _, λ h i j =>
(h (max j i)).imp (le_trans $ f.mono $ c.mono $ le_max_left _ _) (le_trans $ g.mono $ c.mono $ le_max_right _ _)⟩
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
⊢ Function.Injective fun f => f.toFun
[PROOFSTEP]
rintro ⟨⟩ ⟨⟩ h
[GOAL]
case mk.mk
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
toOrderHom✝¹ : α →o β
cont✝¹ : Continuous toOrderHom✝¹
toOrderHom✝ : α →o β
cont✝ : Continuous toOrderHom✝
h :
(fun f => f.toFun) { toOrderHom := toOrderHom✝¹, cont := cont✝¹ } =
(fun f => f.toFun) { toOrderHom := toOrderHom✝, cont := cont✝ }
⊢ { toOrderHom := toOrderHom✝¹, cont := cont✝¹ } = { toOrderHom := toOrderHom✝, cont := cont✝ }
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toOrderHom
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
toOrderHom✝¹ : α →o β
cont✝¹ : Continuous toOrderHom✝¹
toOrderHom✝ : α →o β
cont✝ : Continuous toOrderHom✝
h :
(fun f => f.toFun) { toOrderHom := toOrderHom✝¹, cont := cont✝¹ } =
(fun f => f.toFun) { toOrderHom := toOrderHom✝, cont := cont✝ }
⊢ toOrderHom✝¹ = toOrderHom✝
[PROOFSTEP]
exact FunLike.ext' h
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
⊢ Function.Injective fun f => f.toFun
[PROOFSTEP]
rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ h
[GOAL]
case mk.mk.mk.mk
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
toFun✝¹ : α → β
monotone'✝¹ : Monotone toFun✝¹
cont✝¹ : Continuous { toFun := toFun✝¹, monotone' := monotone'✝¹ }
toFun✝ : α → β
monotone'✝ : Monotone toFun✝
cont✝ : Continuous { toFun := toFun✝, monotone' := monotone'✝ }
h :
(fun f => f.toFun) { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, cont := cont✝¹ } =
(fun f => f.toFun) { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, cont := cont✝ }
⊢ { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, cont := cont✝¹ } =
{ toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, cont := cont✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
p : Prop
hp : Decidable p
f g : α → β
hf : Continuous' f
hg : Continuous' g
⊢ Continuous' fun x => if p then f x else g x
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
p : Prop
hp : Decidable p
f g : α → β
hf : Continuous' f
hg : Continuous' g
h✝ : p
⊢ Continuous' fun x => f x
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
p : Prop
hp : Decidable p
f g : α → β
hf : Continuous' f
hg : Continuous' g
h✝ : ¬p
⊢ Continuous' fun x => g x
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
⊢ ωSup (Chain.map c (OrderHom.bind f g)) = ωSup (Chain.map c f) >>= ωSup (Chain.map c g)
[PROOFSTEP]
apply eq_of_forall_ge_iff
[GOAL]
case H
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
⊢ ∀ (c_1 : Part γ), ωSup (Chain.map c (OrderHom.bind f g)) ≤ c_1 ↔ ωSup (Chain.map c f) >>= ωSup (Chain.map c g) ≤ c_1
[PROOFSTEP]
intro x
[GOAL]
case H
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
⊢ ωSup (Chain.map c (OrderHom.bind f g)) ≤ x ↔ ωSup (Chain.map c f) >>= ωSup (Chain.map c g) ≤ x
[PROOFSTEP]
simp only [ωSup_le_iff, Part.bind_le, Chain.mem_map_iff, and_imp, OrderHom.bind_coe, exists_imp]
[GOAL]
case H
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
⊢ (∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x) ↔
∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x
[PROOFSTEP]
constructor
[GOAL]
case H.mp
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
⊢ (∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x) →
∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x
[PROOFSTEP]
intro h'''
[GOAL]
case H.mpr
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
⊢ (∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x) →
∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
[PROOFSTEP]
intro h'''
[GOAL]
case H.mp
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
⊢ ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x
[PROOFSTEP]
intro b hb
[GOAL]
case H.mp
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
b : β
hb : b ∈ ωSup (Chain.map c f)
⊢ ωSup (Chain.map c g) b ≤ x
[PROOFSTEP]
apply ωSup_le _ _ _
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
b : β
hb : b ∈ ωSup (Chain.map c f)
⊢ ∀ (i : ℕ), ↑(Chain.map (Chain.map c g) (Pi.evalOrderHom b)) i ≤ x
[PROOFSTEP]
rintro i y hy
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
b : β
hb : b ∈ ωSup (Chain.map c f)
i : ℕ
y : γ
hy : y ∈ ↑(Chain.map (Chain.map c g) (Pi.evalOrderHom b)) i
⊢ y ∈ x
[PROOFSTEP]
simp only [Part.mem_ωSup] at hb
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
b : β
i : ℕ
y : γ
hy : y ∈ ↑(Chain.map (Chain.map c g) (Pi.evalOrderHom b)) i
hb : Part.some b ∈ Chain.map c f
⊢ y ∈ x
[PROOFSTEP]
rcases hb with ⟨j, hb⟩
[GOAL]
case intro
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
b : β
i : ℕ
y : γ
hy : y ∈ ↑(Chain.map (Chain.map c g) (Pi.evalOrderHom b)) i
j : ℕ
hb : Part.some b = ↑(Chain.map c f) j
⊢ y ∈ x
[PROOFSTEP]
replace hb := hb.symm
[GOAL]
case intro
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
b : β
i : ℕ
y : γ
hy : y ∈ ↑(Chain.map (Chain.map c g) (Pi.evalOrderHom b)) i
j : ℕ
hb : ↑(Chain.map c f) j = Part.some b
⊢ y ∈ x
[PROOFSTEP]
simp only [Part.eq_some_iff, Chain.map_coe, Function.comp_apply, OrderHom.apply_coe] at hy hb
[GOAL]
case intro
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
b : β
i : ℕ
y : γ
hy : y ∈ ↑(Pi.evalOrderHom b) (↑g (↑c i))
j : ℕ
hb : b ∈ ↑(Chain.map c f) j
⊢ y ∈ x
[PROOFSTEP]
replace hb : b ∈ f (c (max i j)) := f.mono (c.mono (le_max_right i j)) _ hb
[GOAL]
case intro
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
b : β
i : ℕ
y : γ
hy : y ∈ ↑(Pi.evalOrderHom b) (↑g (↑c i))
j : ℕ
hb : b ∈ ↑f (↑c (max i j))
⊢ y ∈ x
[PROOFSTEP]
replace hy : y ∈ g (c (max i j)) b := g.mono (c.mono (le_max_left i j)) _ _ hy
[GOAL]
case intro
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
b : β
i : ℕ
y : γ
j : ℕ
hb : b ∈ ↑f (↑c (max i j))
hy : y ∈ ↑g (↑c (max i j)) b
⊢ y ∈ x
[PROOFSTEP]
apply h''' (max i j)
[GOAL]
case intro.a
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
b : β
i : ℕ
y : γ
j : ℕ
hb : b ∈ ↑f (↑c (max i j))
hy : y ∈ ↑g (↑c (max i j)) b
⊢ y ∈ ↑(Chain.map c (OrderHom.bind f g)) (max i j)
[PROOFSTEP]
simp only [exists_prop, Part.bind_eq_bind, Part.mem_bind_iff, Chain.map_coe, Function.comp_apply, OrderHom.bind_coe]
[GOAL]
case intro.a
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
b : β
i : ℕ
y : γ
j : ℕ
hb : b ∈ ↑f (↑c (max i j))
hy : y ∈ ↑g (↑c (max i j)) b
⊢ ∃ a, a ∈ ↑f (↑c (max i j)) ∧ y ∈ ↑g (↑c (max i j)) a
[PROOFSTEP]
exact ⟨_, hb, hy⟩
[GOAL]
case H.mpr
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x
⊢ ∀ (i : ℕ), ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
[PROOFSTEP]
intro i
[GOAL]
case H.mpr
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x
i : ℕ
⊢ ↑(Chain.map c (OrderHom.bind f g)) i ≤ x
[PROOFSTEP]
intro y hy
[GOAL]
case H.mpr
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x
i : ℕ
y : γ
hy : y ∈ ↑(Chain.map c (OrderHom.bind f g)) i
⊢ y ∈ x
[PROOFSTEP]
simp only [exists_prop, Part.bind_eq_bind, Part.mem_bind_iff, Chain.map_coe, Function.comp_apply, OrderHom.bind_coe] at
hy
[GOAL]
case H.mpr
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x
i : ℕ
y : γ
hy : ∃ a, a ∈ ↑f (↑c i) ∧ y ∈ ↑g (↑c i) a
⊢ y ∈ x
[PROOFSTEP]
rcases hy with ⟨b, hb₀, hb₁⟩
[GOAL]
case H.mpr.intro.intro
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x
i : ℕ
y : γ
b : β
hb₀ : b ∈ ↑f (↑c i)
hb₁ : y ∈ ↑g (↑c i) b
⊢ y ∈ x
[PROOFSTEP]
apply h''' b _
[GOAL]
case H.mpr.intro.intro.a
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x
i : ℕ
y : γ
b : β
hb₀ : b ∈ ↑f (↑c i)
hb₁ : y ∈ ↑g (↑c i) b
⊢ y ∈ ωSup (Chain.map c g) b
[PROOFSTEP]
apply le_ωSup (c.map g) _ _ _ hb₁
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
c : Chain α
f : α →o Part β
g : α →o β → Part γ
x : Part γ
h''' : ∀ (a : β), a ∈ ωSup (Chain.map c f) → ωSup (Chain.map c g) a ≤ x
i : ℕ
y : γ
b : β
hb₀ : b ∈ ↑f (↑c i)
hb₁ : y ∈ ↑g (↑c i) b
⊢ b ∈ ωSup (Chain.map c f)
[PROOFSTEP]
apply le_ωSup (c.map f) i _ hb₀
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : α → Part β
g : α → β → Part γ
hf : Monotone f
hf' : Continuous { toFun := f, monotone' := hf }
hg : Monotone g
hg' : Continuous { toFun := g, monotone' := hg }
⊢ Continuous (OrderHom.bind { toFun := f, monotone' := hf } { toFun := g, monotone' := hg })
[PROOFSTEP]
intro c
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : α → Part β
g : α → β → Part γ
hf : Monotone f
hf' : Continuous { toFun := f, monotone' := hf }
hg : Monotone g
hg' : Continuous { toFun := g, monotone' := hg }
c : Chain α
⊢ ↑(OrderHom.bind { toFun := f, monotone' := hf } { toFun := g, monotone' := hg }) (ωSup c) =
ωSup (Chain.map c (OrderHom.bind { toFun := f, monotone' := hf } { toFun := g, monotone' := hg }))
[PROOFSTEP]
rw [ωSup_bind, ← hf', ← hg']
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : α → Part β
g : α → β → Part γ
hf : Monotone f
hf' : Continuous { toFun := f, monotone' := hf }
hg : Monotone g
hg' : Continuous { toFun := g, monotone' := hg }
c : Chain α
⊢ ↑(OrderHom.bind { toFun := f, monotone' := hf } { toFun := g, monotone' := hg }) (ωSup c) =
↑{ toFun := f, monotone' := hf } (ωSup c) >>= ↑{ toFun := g, monotone' := hg } (ωSup c)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : β → γ
g : α → Part β
hg : Continuous' g
⊢ Continuous' fun x => f <$> g x
[PROOFSTEP]
simp only [map_eq_bind_pure_comp]
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : β → γ
g : α → Part β
hg : Continuous' g
⊢ Continuous' fun x => g x >>= pure ∘ f
[PROOFSTEP]
apply bind_continuous' _ _ hg
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : β → γ
g : α → Part β
hg : Continuous' g
⊢ Continuous' fun x => pure ∘ f
[PROOFSTEP]
apply const_continuous'
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : α → Part (β → γ)
g : α → Part β
hf : Continuous' f
hg : Continuous' g
⊢ Continuous' fun x => Seq.seq (f x) fun x_1 => g x
[PROOFSTEP]
simp only [seq_eq_bind_map]
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : α → Part (β → γ)
g : α → Part β
hf : Continuous' f
hg : Continuous' g
⊢ Continuous' fun x => do
let x_1 ← f x
x_1 <$> g x
[PROOFSTEP]
apply bind_continuous' _ _ hf
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : α → Part (β → γ)
g : α → Part β
hf : Continuous' f
hg : Continuous' g
⊢ Continuous' fun x x_1 => x_1 <$> g x
[PROOFSTEP]
apply Pi.OmegaCompletePartialOrder.flip₂_continuous'
[GOAL]
case hf
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : α → Part (β → γ)
g : α → Part β
hf : Continuous' f
hg : Continuous' g
⊢ ∀ (x : β → γ), Continuous' fun g_1 => x <$> g g_1
[PROOFSTEP]
intro
[GOAL]
case hf
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : α → Part (β → γ)
g : α → Part β
hf : Continuous' f
hg : Continuous' g
x✝ : β → γ
⊢ Continuous' fun g_1 => x✝ <$> g g_1
[PROOFSTEP]
apply map_continuous' _ _ hg
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
f : α → β
g : α →𝒄 β
h : f = ↑g
⊢ Continuous (OrderHom.copy g.toOrderHom f h)
[PROOFSTEP]
rw [OrderHom.copy_eq]
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
f : α → β
g : α →𝒄 β
h : f = ↑g
⊢ Continuous g.toOrderHom
[PROOFSTEP]
exact g.cont
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c₀ : Chain (α →𝒄 β)
c₁ : Chain α
z : β
⊢ (∀ (i j : ℕ), ↑(↑c₀ i) (↑c₁ j) ≤ z) ↔ ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c₀ : Chain (α →𝒄 β)
c₁ : Chain α
z : β
⊢ (∀ (i j : ℕ), ↑(↑c₀ i) (↑c₁ j) ≤ z) → ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z
[PROOFSTEP]
introv h
[GOAL]
case mpr
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c₀ : Chain (α →𝒄 β)
c₁ : Chain α
z : β
⊢ (∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z) → ∀ (i j : ℕ), ↑(↑c₀ i) (↑c₁ j) ≤ z
[PROOFSTEP]
introv h
[GOAL]
case mp
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c₀ : Chain (α →𝒄 β)
c₁ : Chain α
z : β
h : ∀ (i j : ℕ), ↑(↑c₀ i) (↑c₁ j) ≤ z
i : ℕ
⊢ ↑(↑c₀ i) (↑c₁ i) ≤ z
[PROOFSTEP]
apply h
[GOAL]
case mpr
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c₀ : Chain (α →𝒄 β)
c₁ : Chain α
z : β
h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z
i j : ℕ
⊢ ↑(↑c₀ i) (↑c₁ j) ≤ z
[PROOFSTEP]
apply le_trans _ (h (max i j))
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c₀ : Chain (α →𝒄 β)
c₁ : Chain α
z : β
h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z
i j : ℕ
⊢ ↑(↑c₀ i) (↑c₁ j) ≤ ↑(↑c₀ (max i j)) (↑c₁ (max i j))
[PROOFSTEP]
trans c₀ i (c₁ (max i j))
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c₀ : Chain (α →𝒄 β)
c₁ : Chain α
z : β
h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z
i j : ℕ
⊢ ↑(↑c₀ i) (↑c₁ j) ≤ ↑(↑c₀ i) (↑c₁ (max i j))
[PROOFSTEP]
apply (c₀ i).monotone
[GOAL]
case a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c₀ : Chain (α →𝒄 β)
c₁ : Chain α
z : β
h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z
i j : ℕ
⊢ ↑c₁ j ≤ ↑c₁ (max i j)
[PROOFSTEP]
apply c₁.monotone
[GOAL]
case a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c₀ : Chain (α →𝒄 β)
c₁ : Chain α
z : β
h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z
i j : ℕ
⊢ j ≤ max i j
[PROOFSTEP]
apply le_max_right
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c₀ : Chain (α →𝒄 β)
c₁ : Chain α
z : β
h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z
i j : ℕ
⊢ ↑(↑c₀ i) (↑c₁ (max i j)) ≤ ↑(↑c₀ (max i j)) (↑c₁ (max i j))
[PROOFSTEP]
apply c₀.monotone
[GOAL]
case a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c₀ : Chain (α →𝒄 β)
c₁ : Chain α
z : β
h : ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z
i j : ℕ
⊢ i ≤ max i j
[PROOFSTEP]
apply le_max_left
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c₀ : Chain (α →𝒄 β)
c₁ : Chain α
z : β
⊢ (∀ (j i : ℕ), ↑(↑c₀ i) (↑c₁ j) ≤ z) ↔ ∀ (i : ℕ), ↑(↑c₀ i) (↑c₁ i) ≤ z
[PROOFSTEP]
rw [forall_swap, forall_forall_merge]
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain (α →𝒄 β)
c' : Chain α
⊢ ↑(ωSup (Chain.map c toMono)) (ωSup c') = ωSup (Chain.map c' (ωSup (Chain.map c toMono)))
[PROOFSTEP]
apply eq_of_forall_ge_iff
[GOAL]
case H
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain (α →𝒄 β)
c' : Chain α
⊢ ∀ (c_1 : β), ↑(ωSup (Chain.map c toMono)) (ωSup c') ≤ c_1 ↔ ωSup (Chain.map c' (ωSup (Chain.map c toMono))) ≤ c_1
[PROOFSTEP]
intro z
[GOAL]
case H
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain (α →𝒄 β)
c' : Chain α
z : β
⊢ ↑(ωSup (Chain.map c toMono)) (ωSup c') ≤ z ↔ ωSup (Chain.map c' (ωSup (Chain.map c toMono))) ≤ z
[PROOFSTEP]
simp only [ωSup_le_iff, (c _).continuous, Chain.map_coe, OrderHom.apply_coe, toMono_coe,
OrderHom.omegaCompletePartialOrder_ωSup_coe, forall_forall_merge, OrderHomClass.coe_coe, forall_forall_merge',
(· ∘ ·), Function.eval]
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
x y : (α →𝒄 β) × α
h : x ≤ y
⊢ (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y
[PROOFSTEP]
dsimp
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
x y : (α →𝒄 β) × α
h : x ≤ y
⊢ ↑x.fst x.snd ≤ ↑y.fst y.snd
[PROOFSTEP]
trans y.fst x.snd <;> [apply h.1; apply y.1.monotone h.2]
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
x y : (α →𝒄 β) × α
h : x ≤ y
⊢ ↑x.fst x.snd ≤ ↑y.fst y.snd
[PROOFSTEP]
trans y.fst x.snd
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
x y : (α →𝒄 β) × α
h : x ≤ y
⊢ ↑x.fst x.snd ≤ ↑y.fst x.snd
[PROOFSTEP]
apply h.1
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
x y : (α →𝒄 β) × α
h : x ≤ y
⊢ ↑y.fst x.snd ≤ ↑y.fst y.snd
[PROOFSTEP]
apply y.1.monotone h.2
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
⊢ Continuous
{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }
[PROOFSTEP]
intro c
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
⊢ ↑{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }
(ωSup c) =
ωSup
(Chain.map c
{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) })
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
⊢ ↑{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }
(ωSup c) ≤
ωSup
(Chain.map c
{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) })
[PROOFSTEP]
apply ωSup_le
[GOAL]
case a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
⊢ ∀ (i : ℕ),
↑(Chain.map (Chain.map (Chain.map c OrderHom.fst) toMono) (OrderHom.apply (ωSup c).snd)) i ≤
ωSup
(Chain.map c
{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) })
[PROOFSTEP]
intro i
[GOAL]
case a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i : ℕ
⊢ ↑(Chain.map (Chain.map (Chain.map c OrderHom.fst) toMono) (OrderHom.apply (ωSup c).snd)) i ≤
ωSup
(Chain.map c
{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) })
[PROOFSTEP]
dsimp
[GOAL]
case a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i : ℕ
⊢ ↑(↑c i).fst (ωSup (Chain.map c OrderHom.snd)) ≤
ωSup
(Chain.map c
{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → ↑x.fst x.snd ≤ ↑y.fst y.snd) })
[PROOFSTEP]
rw [(c _).fst.continuous]
[GOAL]
case a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i : ℕ
⊢ ωSup (Chain.map (Chain.map c OrderHom.snd) ↑(↑c i).fst) ≤
ωSup
(Chain.map c
{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → ↑x.fst x.snd ≤ ↑y.fst y.snd) })
[PROOFSTEP]
apply ωSup_le
[GOAL]
case a.a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i : ℕ
⊢ ∀ (i_1 : ℕ),
↑(Chain.map (Chain.map c OrderHom.snd) ↑(↑c i).fst) i_1 ≤
ωSup
(Chain.map c
{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → ↑x.fst x.snd ≤ ↑y.fst y.snd) })
[PROOFSTEP]
intro j
[GOAL]
case a.a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i j : ℕ
⊢ ↑(Chain.map (Chain.map c OrderHom.snd) ↑(↑c i).fst) j ≤
ωSup
(Chain.map c
{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → ↑x.fst x.snd ≤ ↑y.fst y.snd) })
[PROOFSTEP]
apply le_ωSup_of_le (max i j)
[GOAL]
case a.a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i j : ℕ
⊢ ↑(Chain.map (Chain.map c OrderHom.snd) ↑(↑c i).fst) j ≤
↑(Chain.map c
{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → ↑x.fst x.snd ≤ ↑y.fst y.snd) })
(max i j)
[PROOFSTEP]
apply apply_mono
[GOAL]
case a.a.a.h₁
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i j : ℕ
⊢ (↑c i).fst ≤ (↑c (max i j)).fst
case a.a.a.h₂
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i j : ℕ
⊢ ↑(Chain.map c OrderHom.snd) j ≤ (↑c (max i j)).snd
[PROOFSTEP]
exact monotone_fst (OrderHom.mono _ (le_max_left _ _))
[GOAL]
case a.a.a.h₂
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i j : ℕ
⊢ ↑(Chain.map c OrderHom.snd) j ≤ (↑c (max i j)).snd
[PROOFSTEP]
exact monotone_snd (OrderHom.mono _ (le_max_right _ _))
[GOAL]
case a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
⊢ ωSup
(Chain.map c
{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }) ≤
↑{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }
(ωSup c)
[PROOFSTEP]
apply ωSup_le
[GOAL]
case a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
⊢ ∀ (i : ℕ),
↑(Chain.map c
{ toFun := fun f => ↑f.fst f.snd,
monotone' :=
(_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) })
i ≤
↑{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }
(ωSup c)
[PROOFSTEP]
intro i
[GOAL]
case a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i : ℕ
⊢ ↑(Chain.map c
{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) })
i ≤
↑{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) }
(ωSup c)
[PROOFSTEP]
apply le_ωSup_of_le i
[GOAL]
case a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i : ℕ
⊢ ↑(Chain.map c
{ toFun := fun f => ↑f.fst f.snd,
monotone' := (_ : ∀ (x y : (α →𝒄 β) × α), x ≤ y → (fun f => ↑f.fst f.snd) x ≤ (fun f => ↑f.fst f.snd) y) })
i ≤
↑(Chain.map (Chain.map (Chain.map c OrderHom.fst) toMono) (OrderHom.apply (ωSup c).snd)) i
[PROOFSTEP]
dsimp
[GOAL]
case a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i : ℕ
⊢ ↑(↑c i).fst (↑c i).snd ≤ ↑(↑c i).fst (ωSup (Chain.map c OrderHom.snd))
[PROOFSTEP]
apply OrderHom.mono _
[GOAL]
case a.a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i : ℕ
⊢ (↑c i).snd ≤ ωSup (Chain.map c OrderHom.snd)
[PROOFSTEP]
apply le_ωSup_of_le i
[GOAL]
case a.a.a
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c : Chain ((α →𝒄 β) × α)
i : ℕ
⊢ (↑c i).snd ≤ ↑(Chain.map c OrderHom.snd) i
[PROOFSTEP]
rfl
[GOAL]
α : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
c₀ : Chain (α →𝒄 β)
c₁ : Chain α
⊢ ↑(ωSup c₀) (ωSup c₁) = ↑Prod.apply (ωSup (Chain.zip c₀ c₁))
[PROOFSTEP]
simp [Prod.apply_apply, Prod.ωSup_zip]
[GOAL]
α✝ : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α✝
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
α : Type u_5
f : α → β →𝒄 γ
⊢ Continuous { toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) }
[PROOFSTEP]
intro _
[GOAL]
α✝ : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α✝
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
α : Type u_5
f : α → β →𝒄 γ
c✝ : Chain β
⊢ ↑{ toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) } (ωSup c✝) =
ωSup
(Chain.map c✝
{ toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) })
[PROOFSTEP]
ext x
[GOAL]
case h
α✝ : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α✝
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
α : Type u_5
f : α → β →𝒄 γ
c✝ : Chain β
x : α
⊢ ↑{ toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) } (ωSup c✝)
x =
ωSup
(Chain.map c✝
{ toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) })
x
[PROOFSTEP]
change f _ _ = _
[GOAL]
case h
α✝ : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α✝
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
α : Type u_5
f : α → β →𝒄 γ
c✝ : Chain β
x : α
⊢ ↑(f x) (ωSup c✝) =
ωSup
(Chain.map c✝
{ toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) })
x
[PROOFSTEP]
rw [(f _).continuous]
[GOAL]
case h
α✝ : Type u
α' : Type u_1
β : Type v
β' : Type u_2
γ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α✝
inst✝⁴ : OmegaCompletePartialOrder β
inst✝³ : OmegaCompletePartialOrder γ
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
α : Type u_5
f : α → β →𝒄 γ
c✝ : Chain β
x : α
⊢ ωSup (Chain.map c✝ ↑(f x)) =
ωSup
(Chain.map c✝
{ toFun := fun x y => ↑(f y) x, monotone' := (_ : ∀ (x y : β), x ≤ y → ∀ (a : α), ↑(f a) x ≤ ↑(f a) y) })
x
[PROOFSTEP]
rfl
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : α →𝒄 Part β
g : α →𝒄 β → Part γ
c : Chain α
⊢ ↑(OrderHom.bind (↑f) g.toOrderHom) (ωSup c) = ωSup (Chain.map c (OrderHom.bind (↑f) g.toOrderHom))
[PROOFSTEP]
rw [ωSup_bind, ← f.continuous, g.toOrderHom_eq_coe, ← g.continuous]
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : α →𝒄 Part β
g : α →𝒄 β → Part γ
c : Chain α
⊢ ↑(OrderHom.bind ↑f ↑g) (ωSup c) = ↑f (ωSup c) >>= ↑g (ωSup c)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : β → γ
g : α →𝒄 Part β
⊢ (fun x => f <$> ↑g x) = ↑(bind g (const (pure ∘ f)))
[PROOFSTEP]
ext1
[GOAL]
case h
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : β → γ
g : α →𝒄 Part β
x✝ : α
⊢ f <$> ↑g x✝ = ↑(bind g (const (pure ∘ f))) x✝
[PROOFSTEP]
simp only [map_eq_bind_pure_comp, bind, coe_mk, OrderHom.bind_coe, coe_apply, coe_toOrderHom, const_apply]
[GOAL]
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : α →𝒄 Part (β → γ)
g : α →𝒄 Part β
⊢ (fun x => Seq.seq (↑f x) fun x_1 => ↑g x) = ↑(bind f (flip (_root_.flip map g)))
[PROOFSTEP]
ext
[GOAL]
case h.H
α : Type u
α' : Type u_1
β✝ : Type v
β' : Type u_2
γ✝ : Type u_3
φ : Type u_4
inst✝⁵ : OmegaCompletePartialOrder α
inst✝⁴ : OmegaCompletePartialOrder β✝
inst✝³ : OmegaCompletePartialOrder γ✝
inst✝² : OmegaCompletePartialOrder φ
inst✝¹ : OmegaCompletePartialOrder α'
inst✝ : OmegaCompletePartialOrder β'
β γ : Type v
f : α →𝒄 Part (β → γ)
g : α →𝒄 Part β
x✝ : α
a✝ : γ
⊢ (a✝ ∈ Seq.seq (↑f x✝) fun x => ↑g x✝) ↔ a✝ ∈ ↑(bind f (flip (_root_.flip map g))) x✝
[PROOFSTEP]
simp only [seq_eq_bind_map, Part.bind_eq_bind, Part.mem_bind_iff, flip_apply, _root_.flip, map_apply, bind_apply]
| {"mathlib_filename": "Mathlib.Order.OmegaCompletePartialOrder", "llama_tokens": 41193} |
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
⊢ v 𝒰 f g i j ⟶ v 𝒰 f g j i
[PROOFSTEP]
haveI : HasPullback (pullback.snd ≫ 𝒰.map i ≫ f) g := hasPullback_assoc_symm (𝒰.map j) (𝒰.map i) (𝒰.map i ≫ f) g
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
⊢ v 𝒰 f g i j ⟶ v 𝒰 f g j i
[PROOFSTEP]
haveI : HasPullback (pullback.snd ≫ 𝒰.map j ≫ f) g := hasPullback_assoc_symm (𝒰.map i) (𝒰.map j) (𝒰.map j ≫ f) g
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
⊢ v 𝒰 f g i j ⟶ v 𝒰 f g j i
[PROOFSTEP]
refine' (pullbackSymmetry _ _).hom ≫ _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
⊢ pullback (OpenCover.map 𝒰 j) (pullback.fst ≫ OpenCover.map 𝒰 i) ⟶ v 𝒰 f g j i
[PROOFSTEP]
refine' (pullbackAssoc _ _ _ _).inv ≫ _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
⊢ pullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g ⟶ v 𝒰 f g j i
[PROOFSTEP]
change pullback _ _ ⟶ pullback _ _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
⊢ pullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g ⟶ pullback (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)
[PROOFSTEP]
refine' _ ≫ (pullbackSymmetry _ _).hom
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
⊢ pullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g ⟶ pullback (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)
[PROOFSTEP]
refine' _ ≫ (pullbackAssoc _ _ _ _).hom
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
⊢ pullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g ⟶ pullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
[PROOFSTEP]
refine' pullback.map _ _ _ _ (pullbackSymmetry _ _).hom (𝟙 _) (𝟙 _) _ _
[GOAL]
case refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
⊢ (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z =
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫ pullback.snd ≫ OpenCover.map 𝒰 j ≫ f
case refine'_2
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
⊢ g ≫ 𝟙 Z = 𝟙 Y ≫ g
[PROOFSTEP]
rw [pullbackSymmetry_hom_comp_snd_assoc, pullback.condition_assoc, Category.comp_id]
[GOAL]
case refine'_2
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
⊢ g ≫ 𝟙 Z = 𝟙 Y ≫ g
[PROOFSTEP]
rw [Category.comp_id, Category.id_comp]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
⊢ t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst = pullback.snd
[PROOFSTEP]
delta t
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫
(pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫
let_fun this :=
(pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z)
(_ :
(pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z =
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫
pullback.snd ≫ OpenCover.map 𝒰 j ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
(pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫
(pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom;
this) ≫
pullback.fst ≫ pullback.fst =
pullback.snd
[PROOFSTEP]
haveI : HasPullback (pullback.snd ≫ 𝒰.map i ≫ f) g := hasPullback_assoc_symm (𝒰.map j) (𝒰.map i) (𝒰.map i ≫ f) g
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫
(pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫
let_fun this :=
(pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z)
(_ :
(pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z =
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫
pullback.snd ≫ OpenCover.map 𝒰 j ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
(pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫
(pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom;
this) ≫
pullback.fst ≫ pullback.fst =
pullback.snd
[PROOFSTEP]
haveI : HasPullback (pullback.snd ≫ 𝒰.map j ≫ f) g := hasPullback_assoc_symm (𝒰.map i) (𝒰.map j) (𝒰.map j ≫ f) g
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫
(pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫
let_fun this :=
(pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z)
(_ :
(pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z =
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫
pullback.snd ≫ OpenCover.map 𝒰 j ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
(pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫
(pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom;
this) ≫
pullback.fst ≫ pullback.fst =
pullback.snd
[PROOFSTEP]
simp only [Category.assoc, id.def, pullbackSymmetry_hom_comp_fst_assoc, pullbackAssoc_hom_snd_fst,
pullback.lift_fst_assoc, pullbackSymmetry_hom_comp_snd, pullbackAssoc_inv_fst_fst, pullbackSymmetry_hom_comp_fst]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
⊢ t 𝒰 f g i j ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.snd
[PROOFSTEP]
delta t
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫
(pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫
let_fun this :=
(pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z)
(_ :
(pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z =
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫
pullback.snd ≫ OpenCover.map 𝒰 j ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
(pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫
(pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom;
this) ≫
pullback.fst ≫ pullback.snd =
pullback.fst ≫ pullback.snd
[PROOFSTEP]
haveI : HasPullback (pullback.snd ≫ 𝒰.map i ≫ f) g := hasPullback_assoc_symm (𝒰.map j) (𝒰.map i) (𝒰.map i ≫ f) g
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫
(pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫
let_fun this :=
(pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z)
(_ :
(pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z =
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫
pullback.snd ≫ OpenCover.map 𝒰 j ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
(pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫
(pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom;
this) ≫
pullback.fst ≫ pullback.snd =
pullback.fst ≫ pullback.snd
[PROOFSTEP]
haveI : HasPullback (pullback.snd ≫ 𝒰.map j ≫ f) g := hasPullback_assoc_symm (𝒰.map i) (𝒰.map j) (𝒰.map j ≫ f) g
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫
(pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫
let_fun this :=
(pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z)
(_ :
(pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z =
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫
pullback.snd ≫ OpenCover.map 𝒰 j ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
(pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫
(pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom;
this) ≫
pullback.fst ≫ pullback.snd =
pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp only [pullbackSymmetry_hom_comp_snd_assoc, Category.comp_id, Category.assoc, id.def,
pullbackSymmetry_hom_comp_fst_assoc, pullbackAssoc_hom_snd_snd, pullback.lift_snd, pullbackAssoc_inv_snd]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
⊢ t 𝒰 f g i j ≫ pullback.snd = pullback.fst ≫ pullback.fst
[PROOFSTEP]
delta t
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫
(pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫
let_fun this :=
(pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z)
(_ :
(pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z =
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫
pullback.snd ≫ OpenCover.map 𝒰 j ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
(pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫
(pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom;
this) ≫
pullback.snd =
pullback.fst ≫ pullback.fst
[PROOFSTEP]
haveI : HasPullback (pullback.snd ≫ 𝒰.map i ≫ f) g := hasPullback_assoc_symm (𝒰.map j) (𝒰.map i) (𝒰.map i ≫ f) g
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫
(pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫
let_fun this :=
(pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z)
(_ :
(pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z =
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫
pullback.snd ≫ OpenCover.map 𝒰 j ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
(pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫
(pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom;
this) ≫
pullback.snd =
pullback.fst ≫ pullback.fst
[PROOFSTEP]
haveI : HasPullback (pullback.snd ≫ 𝒰.map j ≫ f) g := hasPullback_assoc_symm (𝒰.map i) (𝒰.map j) (𝒰.map j ≫ f) g
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : 𝒰.J
this✝ : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g
this : HasPullback (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
⊢ ((pullbackSymmetry (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)).hom ≫
(pullbackAssoc (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 i ≫ f) g).inv ≫
let_fun this :=
(pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) g (pullback.snd ≫ OpenCover.map 𝒰 j ≫ f) g
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom (𝟙 Y) (𝟙 Z)
(_ :
(pullback.snd ≫ OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z =
(pullbackSymmetry (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 i)).hom ≫
pullback.snd ≫ OpenCover.map 𝒰 j ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
(pullbackAssoc (OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j) (OpenCover.map 𝒰 j ≫ f) g).hom) ≫
(pullbackSymmetry (OpenCover.map 𝒰 i) (pullback.fst ≫ OpenCover.map 𝒰 j)).hom;
this) ≫
pullback.snd =
pullback.fst ≫ pullback.fst
[PROOFSTEP]
simp only [pullbackSymmetry_hom_comp_snd_assoc, Category.assoc, id.def, pullbackSymmetry_hom_comp_snd,
pullbackAssoc_hom_fst, pullback.lift_fst_assoc, pullbackSymmetry_hom_comp_fst, pullbackAssoc_inv_fst_snd]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i : 𝒰.J
⊢ t 𝒰 f g i i = 𝟙 (v 𝒰 f g i i)
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i : 𝒰.J
⊢ t 𝒰 f g i i ≫ pullback.fst = 𝟙 (v 𝒰 f g i i) ≫ pullback.fst
[PROOFSTEP]
rw [Category.id_comp]
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i : 𝒰.J
⊢ t 𝒰 f g i i ≫ pullback.snd = 𝟙 (v 𝒰 f g i i) ≫ pullback.snd
[PROOFSTEP]
rw [Category.id_comp]
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i : 𝒰.J
⊢ t 𝒰 f g i i ≫ pullback.fst = pullback.fst
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i : 𝒰.J
⊢ t 𝒰 f g i i ≫ pullback.snd = pullback.snd
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i : 𝒰.J
⊢ (t 𝒰 f g i i ≫ pullback.fst) ≫ pullback.fst = pullback.fst ≫ pullback.fst
[PROOFSTEP]
rw [← cancel_mono (𝒰.map i)]
[GOAL]
case h₀.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i : 𝒰.J
⊢ ((t 𝒰 f g i i ≫ pullback.fst) ≫ pullback.fst) ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ OpenCover.map 𝒰 i
[PROOFSTEP]
simp only [pullback.condition, Category.assoc, t_fst_fst]
[GOAL]
case h₀.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i : 𝒰.J
⊢ (t 𝒰 f g i i ≫ pullback.fst) ≫ pullback.snd = pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp only [Category.assoc, t_fst_snd]
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i : 𝒰.J
⊢ t 𝒰 f g i i ≫ pullback.snd = pullback.snd
[PROOFSTEP]
rw [← cancel_mono (𝒰.map i)]
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i : 𝒰.J
⊢ (t 𝒰 f g i i ≫ pullback.snd) ≫ OpenCover.map 𝒰 i = pullback.snd ≫ OpenCover.map 𝒰 i
[PROOFSTEP]
simp only [pullback.condition, t_snd, Category.assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ pullback (fV 𝒰 f g i j) (fV 𝒰 f g i k) ⟶ pullback (fV 𝒰 f g j k) (fV 𝒰 f g j i)
[PROOFSTEP]
refine' (pullbackRightPullbackFstIso _ _ _).hom ≫ _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ pullback (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) ⟶
pullback (fV 𝒰 f g j k) (fV 𝒰 f g j i)
[PROOFSTEP]
refine' _ ≫ (pullbackSymmetry _ _).hom
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ pullback (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) ⟶
pullback (fV 𝒰 f g j i) (fV 𝒰 f g j k)
[PROOFSTEP]
refine' _ ≫ (pullbackRightPullbackFstIso _ _ _).inv
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ pullback (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) ⟶
pullback (fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k)
[PROOFSTEP]
refine' pullback.map _ _ _ _ (t 𝒰 f g i j) (𝟙 _) (𝟙 _) _ _
[GOAL]
case refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X =
t 𝒰 f g i j ≫ fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j
[PROOFSTEP]
simp only [← pullback.condition, Category.comp_id, t_fst_fst_assoc]
[GOAL]
case refine'_2
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k
[PROOFSTEP]
simp only [Category.comp_id, Category.id_comp]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ pullback.fst ≫ pullback.fst ≫ pullback.fst = pullback.fst ≫ pullback.snd
[PROOFSTEP]
delta t'
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g i j)).hom ≫
(pullback.map (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k)
(fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (t 𝒰 f g i j)
(𝟙 (OpenCover.obj 𝒰 k)) (𝟙 X)
(_ :
(fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X =
t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 j)
(_ : OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k) ≫
(pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i)).inv) ≫
(pullbackSymmetry (fV 𝒰 f g j i) (fV 𝒰 f g j k)).hom) ≫
pullback.fst ≫ pullback.fst ≫ pullback.fst =
pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp only [Category.assoc, pullbackSymmetry_hom_comp_fst_assoc, pullbackRightPullbackFstIso_inv_snd_fst_assoc,
pullback.lift_fst_assoc, t_fst_fst, pullbackRightPullbackFstIso_hom_fst_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ pullback.fst ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.fst ≫ pullback.snd
[PROOFSTEP]
delta t'
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g i j)).hom ≫
(pullback.map (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k)
(fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (t 𝒰 f g i j)
(𝟙 (OpenCover.obj 𝒰 k)) (𝟙 X)
(_ :
(fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X =
t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 j)
(_ : OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k) ≫
(pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i)).inv) ≫
(pullbackSymmetry (fV 𝒰 f g j i) (fV 𝒰 f g j k)).hom) ≫
pullback.fst ≫ pullback.fst ≫ pullback.snd =
pullback.fst ≫ pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp only [Category.assoc, pullbackSymmetry_hom_comp_fst_assoc, pullbackRightPullbackFstIso_inv_snd_fst_assoc,
pullback.lift_fst_assoc, t_fst_snd, pullbackRightPullbackFstIso_hom_fst_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ pullback.fst ≫ pullback.snd = pullback.snd ≫ pullback.snd
[PROOFSTEP]
delta t'
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g i j)).hom ≫
(pullback.map (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k)
(fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (t 𝒰 f g i j)
(𝟙 (OpenCover.obj 𝒰 k)) (𝟙 X)
(_ :
(fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X =
t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 j)
(_ : OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k) ≫
(pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i)).inv) ≫
(pullbackSymmetry (fV 𝒰 f g j i) (fV 𝒰 f g j k)).hom) ≫
pullback.fst ≫ pullback.snd =
pullback.snd ≫ pullback.snd
[PROOFSTEP]
simp only [Category.comp_id, Category.assoc, pullbackSymmetry_hom_comp_fst_assoc,
pullbackRightPullbackFstIso_inv_snd_snd, pullback.lift_snd, pullbackRightPullbackFstIso_hom_snd]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ pullback.snd ≫ pullback.fst ≫ pullback.fst = pullback.fst ≫ pullback.snd
[PROOFSTEP]
delta t'
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g i j)).hom ≫
(pullback.map (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k)
(fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (t 𝒰 f g i j)
(𝟙 (OpenCover.obj 𝒰 k)) (𝟙 X)
(_ :
(fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X =
t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 j)
(_ : OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k) ≫
(pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i)).inv) ≫
(pullbackSymmetry (fV 𝒰 f g j i) (fV 𝒰 f g j k)).hom) ≫
pullback.snd ≫ pullback.fst ≫ pullback.fst =
pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp only [Category.assoc, pullbackSymmetry_hom_comp_snd_assoc, pullbackRightPullbackFstIso_inv_fst_assoc,
pullback.lift_fst_assoc, t_fst_fst, pullbackRightPullbackFstIso_hom_fst_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ pullback.snd ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.fst ≫ pullback.snd
[PROOFSTEP]
delta t'
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g i j)).hom ≫
(pullback.map (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k)
(fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (t 𝒰 f g i j)
(𝟙 (OpenCover.obj 𝒰 k)) (𝟙 X)
(_ :
(fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X =
t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 j)
(_ : OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k) ≫
(pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i)).inv) ≫
(pullbackSymmetry (fV 𝒰 f g j i) (fV 𝒰 f g j k)).hom) ≫
pullback.snd ≫ pullback.fst ≫ pullback.snd =
pullback.fst ≫ pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp only [Category.assoc, pullbackSymmetry_hom_comp_snd_assoc, pullbackRightPullbackFstIso_inv_fst_assoc,
pullback.lift_fst_assoc, t_fst_snd, pullbackRightPullbackFstIso_hom_fst_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.fst ≫ pullback.fst
[PROOFSTEP]
delta t'
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k) (fV 𝒰 f g i j)).hom ≫
(pullback.map (fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 k)
(fV 𝒰 f g j i ≫ pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (t 𝒰 f g i j)
(𝟙 (OpenCover.obj 𝒰 k)) (𝟙 X)
(_ :
(fV 𝒰 f g i j ≫ pullback.fst ≫ OpenCover.map 𝒰 i) ≫ 𝟙 X =
t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 j)
(_ : OpenCover.map 𝒰 k ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 k) ≫ OpenCover.map 𝒰 k) ≫
(pullbackRightPullbackFstIso (pullback.fst ≫ OpenCover.map 𝒰 j) (OpenCover.map 𝒰 k) (fV 𝒰 f g j i)).inv) ≫
(pullbackSymmetry (fV 𝒰 f g j i) (fV 𝒰 f g j k)).hom) ≫
pullback.snd ≫ pullback.snd =
pullback.fst ≫ pullback.fst ≫ pullback.fst
[PROOFSTEP]
simp only [Category.assoc, pullbackSymmetry_hom_comp_snd_assoc, pullbackRightPullbackFstIso_inv_fst_assoc,
pullback.lift_fst_assoc, t_snd, pullbackRightPullbackFstIso_hom_fst_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.fst ≫ pullback.fst ≫ pullback.fst =
pullback.fst ≫ pullback.fst ≫ pullback.fst
[PROOFSTEP]
simp only [t'_fst_fst_fst, t'_fst_snd, t'_snd_snd]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.fst ≫ pullback.fst ≫ pullback.snd =
pullback.fst ≫ pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp only [t'_fst_fst_snd]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp only [t'_fst_snd, t'_snd_snd, t'_fst_fst_fst]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.fst ≫ pullback.fst =
pullback.snd ≫ pullback.fst ≫ pullback.fst
[PROOFSTEP]
rw [← cancel_mono (𝒰.map i)]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.fst ≫ pullback.fst) ≫ OpenCover.map 𝒰 i =
(pullback.snd ≫ pullback.fst ≫ pullback.fst) ≫ OpenCover.map 𝒰 i
[PROOFSTEP]
simp only [pullback.condition_assoc, t'_snd_fst_fst, t'_fst_snd, t'_snd_snd]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.fst ≫ pullback.snd =
pullback.snd ≫ pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp only [pullback.condition_assoc, t'_snd_fst_snd]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.snd = pullback.snd ≫ pullback.snd
[PROOFSTEP]
simp only [t'_snd_snd, t'_fst_fst_fst, t'_fst_snd]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j = 𝟙 (pullback (fV 𝒰 f g i j) (fV 𝒰 f g i k))
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.fst =
𝟙 (pullback (fV 𝒰 f g i j) (fV 𝒰 f g i k)) ≫ pullback.fst
[PROOFSTEP]
rw [Category.id_comp]
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.snd =
𝟙 (pullback (fV 𝒰 f g i j) (fV 𝒰 f g i k)) ≫ pullback.snd
[PROOFSTEP]
rw [Category.id_comp]
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.fst = pullback.fst
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.fst) ≫ pullback.fst = pullback.fst ≫ pullback.fst
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀.h₀.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.fst) ≫ pullback.fst) ≫ pullback.fst =
(pullback.fst ≫ pullback.fst) ≫ pullback.fst
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h₀.h₀.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.fst ≫ pullback.fst ≫ pullback.fst =
pullback.fst ≫ pullback.fst ≫ pullback.fst
[PROOFSTEP]
exact cocycle_fst_fst_fst 𝒰 f g i j k
[GOAL]
case h₀.h₀.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.fst) ≫ pullback.fst) ≫ pullback.snd =
(pullback.fst ≫ pullback.fst) ≫ pullback.snd
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h₀.h₀.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.fst ≫ pullback.fst ≫ pullback.snd =
pullback.fst ≫ pullback.fst ≫ pullback.snd
[PROOFSTEP]
exact cocycle_fst_fst_snd 𝒰 f g i j k
[GOAL]
case h₀.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.fst) ≫ pullback.snd = pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h₀.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.snd
[PROOFSTEP]
exact cocycle_fst_snd 𝒰 f g i j k
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.snd = pullback.snd
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₁.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.snd) ≫ pullback.fst = pullback.snd ≫ pullback.fst
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₁.h₀.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.snd) ≫ pullback.fst) ≫ pullback.fst =
(pullback.snd ≫ pullback.fst) ≫ pullback.fst
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h₁.h₀.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.fst ≫ pullback.fst =
pullback.snd ≫ pullback.fst ≫ pullback.fst
[PROOFSTEP]
exact cocycle_snd_fst_fst 𝒰 f g i j k
[GOAL]
case h₁.h₀.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.snd) ≫ pullback.fst) ≫ pullback.snd =
(pullback.snd ≫ pullback.fst) ≫ pullback.snd
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h₁.h₀.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.fst ≫ pullback.snd =
pullback.snd ≫ pullback.fst ≫ pullback.snd
[PROOFSTEP]
exact cocycle_snd_fst_snd 𝒰 f g i j k
[GOAL]
case h₁.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j) ≫ pullback.snd) ≫ pullback.snd = pullback.snd ≫ pullback.snd
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h₁.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ t' 𝒰 f g i j k ≫ t' 𝒰 f g j k i ≫ t' 𝒰 f g k i j ≫ pullback.snd ≫ pullback.snd = pullback.snd ≫ pullback.snd
[PROOFSTEP]
exact cocycle_snd_snd 𝒰 f g i j k
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd = pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.fst =
(pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.fst
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.snd =
(pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.snd
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.fst) ≫ pullback.fst =
((pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.fst) ≫ pullback.fst
case h₀.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.fst) ≫ pullback.snd =
((pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.fst) ≫ pullback.snd
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.snd =
(pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.snd
[PROOFSTEP]
all_goals simp only [t'_snd_fst_fst, t'_snd_fst_snd, t'_snd_snd, t_fst_fst, t_fst_snd, t_snd, Category.assoc]
[GOAL]
case h₀.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.fst) ≫ pullback.fst =
((pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.fst) ≫ pullback.fst
[PROOFSTEP]
simp only [t'_snd_fst_fst, t'_snd_fst_snd, t'_snd_snd, t_fst_fst, t_fst_snd, t_snd, Category.assoc]
[GOAL]
case h₀.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ (((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.fst) ≫ pullback.snd =
((pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.fst) ≫ pullback.snd
[PROOFSTEP]
simp only [t'_snd_fst_fst, t'_snd_fst_snd, t'_snd_snd, t_fst_fst, t_fst_snd, t_snd, Category.assoc]
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j k : 𝒰.J
⊢ ((fun i j k => t' 𝒰 f g i j k) i j k ≫ pullback.snd) ≫ pullback.snd =
(pullback.fst ≫ (fun i j => t 𝒰 f g i j) i j) ≫ pullback.snd
[PROOFSTEP]
simp only [t'_snd_fst_fst, t'_snd_fst_snd, t'_snd_snd, t_fst_fst, t_fst_snd, t_snd, Category.assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
⊢ GlueData.glued (gluing 𝒰 f g) ⟶ X
[PROOFSTEP]
fapply Multicoequalizer.desc
[GOAL]
case k
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
⊢ (b : (GlueData.diagram (gluing 𝒰 f g).toGlueData).R) →
MultispanIndex.right (GlueData.diagram (gluing 𝒰 f g).toGlueData) b ⟶ X
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
⊢ ∀ (a : (GlueData.diagram (gluing 𝒰 f g).toGlueData).L),
MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫
?k (MultispanIndex.fstFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a) =
MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫
?k (MultispanIndex.sndFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a)
[PROOFSTEP]
exact fun i => pullback.fst ≫ 𝒰.map i
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
⊢ ∀ (a : (GlueData.diagram (gluing 𝒰 f g).toGlueData).L),
MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫
pullback.fst ≫ OpenCover.map 𝒰 (MultispanIndex.fstFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a) =
MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫
pullback.fst ≫ OpenCover.map 𝒰 (MultispanIndex.sndFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a)
[PROOFSTEP]
rintro ⟨i, j⟩
[GOAL]
case h.mk
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : (gluing 𝒰 f g).toGlueData.J
⊢ MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) (i, j) ≫
pullback.fst ≫ OpenCover.map 𝒰 (MultispanIndex.fstFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) (i, j)) =
MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) (i, j) ≫
pullback.fst ≫ OpenCover.map 𝒰 (MultispanIndex.sndFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) (i, j))
[PROOFSTEP]
change pullback.fst ≫ _ ≫ 𝒰.map i = (_ ≫ _) ≫ _ ≫ 𝒰.map j
[GOAL]
case h.mk
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : (gluing 𝒰 f g).toGlueData.J
⊢ pullback.fst ≫ pullback.fst ≫ OpenCover.map 𝒰 i =
(GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i) ≫
pullback.fst ≫ OpenCover.map 𝒰 j
[PROOFSTEP]
erw [pullback.condition]
[GOAL]
case h.mk
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : (gluing 𝒰 f g).toGlueData.J
⊢ pullback.snd ≫ OpenCover.map 𝒰 j =
(GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i) ≫
pullback.fst ≫ OpenCover.map 𝒰 j
[PROOFSTEP]
rw [← Category.assoc]
[GOAL]
case h.mk
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : (gluing 𝒰 f g).toGlueData.J
⊢ pullback.snd ≫ OpenCover.map 𝒰 j =
((GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i) ≫ pullback.fst) ≫
OpenCover.map 𝒰 j
[PROOFSTEP]
congr 1
[GOAL]
case h.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : (gluing 𝒰 f g).toGlueData.J
⊢ pullback.snd = (GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i) ≫ pullback.fst
[PROOFSTEP]
rw [Category.assoc]
[GOAL]
case h.mk.e_a
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : (gluing 𝒰 f g).toGlueData.J
⊢ pullback.snd = GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ pullback.fst
[PROOFSTEP]
exact (t_fst_fst _ _ _ _ _).symm
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
⊢ GlueData.glued (gluing 𝒰 f g) ⟶ Y
[PROOFSTEP]
fapply Multicoequalizer.desc
[GOAL]
case k
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
⊢ (b : (GlueData.diagram (gluing 𝒰 f g).toGlueData).R) →
MultispanIndex.right (GlueData.diagram (gluing 𝒰 f g).toGlueData) b ⟶ Y
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
⊢ ∀ (a : (GlueData.diagram (gluing 𝒰 f g).toGlueData).L),
MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫
?k (MultispanIndex.fstFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a) =
MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫
?k (MultispanIndex.sndFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a)
[PROOFSTEP]
exact fun i => pullback.snd
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
⊢ ∀ (a : (GlueData.diagram (gluing 𝒰 f g).toGlueData).L),
MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ pullback.snd =
MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫ pullback.snd
[PROOFSTEP]
rintro ⟨i, j⟩
[GOAL]
case h.mk
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : (gluing 𝒰 f g).toGlueData.J
⊢ MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) (i, j) ≫ pullback.snd =
MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) (i, j) ≫ pullback.snd
[PROOFSTEP]
change pullback.fst ≫ _ = (_ ≫ _) ≫ _
[GOAL]
case h.mk
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : (gluing 𝒰 f g).toGlueData.J
⊢ pullback.fst ≫ pullback.snd =
(GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i) ≫ pullback.snd
[PROOFSTEP]
rw [Category.assoc]
[GOAL]
case h.mk
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i j : (gluing 𝒰 f g).toGlueData.J
⊢ pullback.fst ≫ pullback.snd =
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ pullback.snd
[PROOFSTEP]
exact (t_fst_snd _ _ _ _ _).symm
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
⊢ p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g
[PROOFSTEP]
apply Multicoequalizer.hom_ext
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
⊢ ∀ (b : (GlueData.diagram (gluing 𝒰 f g).toGlueData).R),
Multicoequalizer.π (GlueData.diagram (gluing 𝒰 f g).toGlueData) b ≫ p1 𝒰 f g ≫ f =
Multicoequalizer.π (GlueData.diagram (gluing 𝒰 f g).toGlueData) b ≫ p2 𝒰 f g ≫ g
[PROOFSTEP]
intro i
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i : (GlueData.diagram (gluing 𝒰 f g).toGlueData).R
⊢ Multicoequalizer.π (GlueData.diagram (gluing 𝒰 f g).toGlueData) i ≫ p1 𝒰 f g ≫ f =
Multicoequalizer.π (GlueData.diagram (gluing 𝒰 f g).toGlueData) i ≫ p2 𝒰 f g ≫ g
[PROOFSTEP]
erw [Multicoequalizer.π_desc_assoc, Multicoequalizer.π_desc_assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
i : (GlueData.diagram (gluing 𝒰 f g).toGlueData).R
⊢ (pullback.fst ≫ OpenCover.map 𝒰 i) ≫ f = pullback.snd ≫ g
[PROOFSTEP]
rw [Category.assoc, pullback.condition]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ pullback (OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) i)
(OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) j) ⟶
GlueData.V (gluing 𝒰 f g).toGlueData (i, j)
[PROOFSTEP]
change pullback pullback.fst pullback.fst ⟶ pullback _ _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ pullback pullback.fst pullback.fst ⟶ pullback (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)
[PROOFSTEP]
refine' (pullbackRightPullbackFstIso _ _ _).hom ≫ _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ pullback (pullback.fst ≫ PullbackCone.fst s) (OpenCover.map 𝒰 j) ⟶
pullback (pullback.fst ≫ OpenCover.map 𝒰 i) (OpenCover.map 𝒰 j)
[PROOFSTEP]
refine' pullback.map _ _ _ _ _ (𝟙 _) (𝟙 _) _ _
[GOAL]
case refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i) ⟶ pullback (OpenCover.map 𝒰 i ≫ f) g
[PROOFSTEP]
exact (pullbackSymmetry _ _).hom ≫ pullback.map _ _ _ _ (𝟙 _) s.snd f (Category.id_comp _).symm s.condition
[GOAL]
case refine'_2
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ (pullback.fst ≫ PullbackCone.fst s) ≫ 𝟙 X =
((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
pullback.fst ≫ OpenCover.map 𝒰 i
[PROOFSTEP]
simpa using pullback.condition
[GOAL]
case refine'_3
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ OpenCover.map 𝒰 j ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j
[PROOFSTEP]
simp only [Category.comp_id, Category.id_comp]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ pullback.fst =
pullback.fst ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)
[PROOFSTEP]
delta gluedLiftPullbackMap
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ (let_fun this :=
(pullbackRightPullbackFstIso (PullbackCone.fst s) (OpenCover.map 𝒰 j) pullback.fst).hom ≫
pullback.map (pullback.fst ≫ PullbackCone.fst s) (OpenCover.map 𝒰 j) (pullback.fst ≫ OpenCover.map 𝒰 i)
(OpenCover.map 𝒰 j)
((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g))
(𝟙 (OpenCover.obj 𝒰 j)) (𝟙 X)
(_ :
(pullback.fst ≫ PullbackCone.fst s) ≫ 𝟙 X =
((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g
(𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f
(_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
pullback.fst ≫ OpenCover.map 𝒰 i)
(_ : OpenCover.map 𝒰 j ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j);
this) ≫
pullback.fst =
pullback.fst ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ pullback.snd = pullback.snd ≫ pullback.snd
[PROOFSTEP]
delta gluedLiftPullbackMap
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ (let_fun this :=
(pullbackRightPullbackFstIso (PullbackCone.fst s) (OpenCover.map 𝒰 j) pullback.fst).hom ≫
pullback.map (pullback.fst ≫ PullbackCone.fst s) (OpenCover.map 𝒰 j) (pullback.fst ≫ OpenCover.map 𝒰 i)
(OpenCover.map 𝒰 j)
((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g))
(𝟙 (OpenCover.obj 𝒰 j)) (𝟙 X)
(_ :
(pullback.fst ≫ PullbackCone.fst s) ≫ 𝟙 X =
((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g
(𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f
(_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
pullback.fst ≫ OpenCover.map 𝒰 i)
(_ : OpenCover.map 𝒰 j ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j);
this) ≫
pullback.snd =
pullback.snd ≫ pullback.snd
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
⊢ s.pt ⟶ GlueData.glued (gluing 𝒰 f g)
[PROOFSTEP]
fapply (𝒰.pullbackCover s.fst).glueMorphisms
[GOAL]
case f
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
⊢ (x : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J) →
OpenCover.obj (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) x ⟶ GlueData.glued (gluing 𝒰 f g)
[PROOFSTEP]
exact fun i =>
(pullbackSymmetry _ _).hom ≫
pullback.map _ _ _ _ (𝟙 _) s.snd f (Category.id_comp _).symm s.condition ≫ (gluing 𝒰 f g).ι i
[GOAL]
case hf
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
⊢ ∀ (x y : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J),
pullback.fst ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 x)).hom ≫
pullback.map (OpenCover.map 𝒰 x) (PullbackCone.fst s) (OpenCover.map 𝒰 x ≫ f) g (𝟙 (OpenCover.obj 𝒰 x))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 x ≫ f = 𝟙 (OpenCover.obj 𝒰 x) ≫ OpenCover.map 𝒰 x ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) x =
pullback.snd ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 y)).hom ≫
pullback.map (OpenCover.map 𝒰 y) (PullbackCone.fst s) (OpenCover.map 𝒰 y ≫ f) g (𝟙 (OpenCover.obj 𝒰 y))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 y ≫ f = 𝟙 (OpenCover.obj 𝒰 y) ≫ OpenCover.map 𝒰 y ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) y
[PROOFSTEP]
intro i j
[GOAL]
case hf
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
⊢ pullback.fst ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i =
pullback.snd ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) j
[PROOFSTEP]
rw [← gluedLiftPullbackMap_fst_assoc]
[GOAL]
case hf
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i =
pullback.snd ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) j
[PROOFSTEP]
have : _ = pullback.fst ≫ _ := (gluing 𝒰 f g).glue_condition i j
[GOAL]
case hf
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i =
pullback.snd ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) j
[PROOFSTEP]
rw [← this, gluing_t, gluing_f]
[GOAL]
case hf
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j ≫ pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.snd ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) j
[PROOFSTEP]
simp_rw [← Category.assoc]
[GOAL]
case hf
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ ((gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j) ≫ pullback.fst) ≫ GlueData.ι (gluing 𝒰 f g) j =
((pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom) ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
GlueData.ι (gluing 𝒰 f g) j
[PROOFSTEP]
congr 1
[GOAL]
case hf.e_a
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ (gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j) ≫ pullback.fst =
(pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom) ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case hf.e_a.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ ((gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j) ≫ pullback.fst) ≫ pullback.fst =
((pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom) ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
pullback.fst
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case hf.e_a.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ ((gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j) ≫ pullback.fst) ≫ pullback.snd =
((pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom) ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
pullback.snd
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case hf.e_a.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j ≫ pullback.fst ≫ pullback.fst =
pullback.snd ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
pullback.fst
[PROOFSTEP]
rw [t_fst_fst, gluedLiftPullbackMap_snd]
[GOAL]
case hf.e_a.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ pullback.snd ≫ pullback.snd =
pullback.snd ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
pullback.fst
[PROOFSTEP]
congr 1
[GOAL]
case hf.e_a.h₀.e_a
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ pullback.snd =
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
pullback.fst
[PROOFSTEP]
rw [← Iso.inv_comp_eq, pullbackSymmetry_inv_comp_snd]
[GOAL]
case hf.e_a.h₀.e_a
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ pullback.fst =
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
pullback.fst
[PROOFSTEP]
erw [pullback.lift_fst]
[GOAL]
case hf.e_a.h₀.e_a
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ pullback.fst = pullback.fst ≫ 𝟙 (OpenCover.obj 𝒰 j)
[PROOFSTEP]
rw [Category.comp_id]
[GOAL]
case hf.e_a.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ gluedLiftPullbackMap 𝒰 f g s i j ≫ t 𝒰 f g i j ≫ pullback.fst ≫ pullback.snd =
pullback.snd ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
pullback.snd
[PROOFSTEP]
rw [t_fst_snd, gluedLiftPullbackMap_fst_assoc]
[GOAL]
case hf.e_a.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ pullback.fst ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
pullback.snd =
pullback.snd ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g (𝟙 (OpenCover.obj 𝒰 j))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
pullback.snd
[PROOFSTEP]
erw [pullback.lift_snd, pullback.lift_snd]
[GOAL]
case hf.e_a.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ pullback.fst ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫ pullback.snd ≫ PullbackCone.snd s =
pullback.snd ≫ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫ pullback.snd ≫ PullbackCone.snd s
[PROOFSTEP]
rw [pullbackSymmetry_hom_comp_snd_assoc, pullbackSymmetry_hom_comp_snd_assoc]
[GOAL]
case hf.e_a.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this :
GlueData.t (gluing 𝒰 f g).toGlueData i j ≫ GlueData.f (gluing 𝒰 f g).toGlueData j i ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.fst ≫ GlueData.ι (gluing 𝒰 f g) i
⊢ pullback.fst ≫ pullback.fst ≫ PullbackCone.snd s = pullback.snd ≫ pullback.fst ≫ PullbackCone.snd s
[PROOFSTEP]
exact pullback.condition_assoc _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
⊢ gluedLift 𝒰 f g s ≫ p1 𝒰 f g = PullbackCone.fst s
[PROOFSTEP]
rw [← cancel_epi (𝒰.pullbackCover s.fst).fromGlued]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
⊢ OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ gluedLift 𝒰 f g s ≫ p1 𝒰 f g =
OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ PullbackCone.fst s
[PROOFSTEP]
apply Multicoequalizer.hom_ext
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
⊢ ∀ (b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R),
Multicoequalizer.π
(GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫
OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ gluedLift 𝒰 f g s ≫ p1 𝒰 f g =
Multicoequalizer.π
(GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫
OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ PullbackCone.fst s
[PROOFSTEP]
intro b
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ Multicoequalizer.π
(GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫
OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ gluedLift 𝒰 f g s ≫ p1 𝒰 f g =
Multicoequalizer.π
(GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫
OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ PullbackCone.fst s
[PROOFSTEP]
erw [Multicoequalizer.π_desc_assoc, Multicoequalizer.π_desc_assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ gluedLift 𝒰 f g s ≫ p1 𝒰 f g =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s
[PROOFSTEP]
delta gluedLift
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫
OpenCover.glueMorphisms (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))
(fun i =>
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i)
(_ :
∀ (i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J),
pullback.fst ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g
(𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f
(_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i =
pullback.snd ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g
(𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f
(_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) j) ≫
p1 𝒰 f g =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s
[PROOFSTEP]
simp_rw [← Category.assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ (OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫
OpenCover.glueMorphisms (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))
(fun i =>
((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
GlueData.ι (gluing 𝒰 f g) i)
(_ :
∀ (x y : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J),
pullback.fst ≫
(fun i =>
((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g
(𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f
(_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
GlueData.ι (gluing 𝒰 f g) i)
x =
pullback.snd ≫
(fun i =>
((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g
(𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f
(_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
GlueData.ι (gluing 𝒰 f g) i)
y)) ≫
p1 𝒰 f g =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s
[PROOFSTEP]
rw [(𝒰.pullbackCover s.fst).ι_glueMorphisms]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ (((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 b)).hom ≫
pullback.map (OpenCover.map 𝒰 b) (PullbackCone.fst s) (OpenCover.map 𝒰 b ≫ f) g (𝟙 (OpenCover.obj 𝒰 b))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 b ≫ f = 𝟙 (OpenCover.obj 𝒰 b) ≫ OpenCover.map 𝒰 b ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
GlueData.ι (gluing 𝒰 f g) b) ≫
p1 𝒰 f g =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s
[PROOFSTEP]
simp_rw [Category.assoc]
-- Porting note : `Category.comp_id` is no longer necessary, don't know where `𝟙 _` has gone
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 b)).hom ≫
pullback.map (OpenCover.map 𝒰 b) (PullbackCone.fst s) (OpenCover.map 𝒰 b ≫ f) g (𝟙 (OpenCover.obj 𝒰 b))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 b ≫ f = 𝟙 (OpenCover.obj 𝒰 b) ≫ OpenCover.map 𝒰 b ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) b ≫ p1 𝒰 f g =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s
[PROOFSTEP]
erw [Multicoequalizer.π_desc, pullback.lift_fst_assoc, pullback.condition]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 b)).hom ≫ pullback.snd ≫ PullbackCone.fst s =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s
[PROOFSTEP]
rw [pullbackSymmetry_hom_comp_snd_assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ pullback.fst ≫ PullbackCone.fst s =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.fst s
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
⊢ gluedLift 𝒰 f g s ≫ p2 𝒰 f g = PullbackCone.snd s
[PROOFSTEP]
rw [← cancel_epi (𝒰.pullbackCover s.fst).fromGlued]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
⊢ OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ gluedLift 𝒰 f g s ≫ p2 𝒰 f g =
OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ PullbackCone.snd s
[PROOFSTEP]
apply Multicoequalizer.hom_ext
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
⊢ ∀ (b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R),
Multicoequalizer.π
(GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫
OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ gluedLift 𝒰 f g s ≫ p2 𝒰 f g =
Multicoequalizer.π
(GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫
OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ PullbackCone.snd s
[PROOFSTEP]
intro b
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ Multicoequalizer.π
(GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫
OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ gluedLift 𝒰 f g s ≫ p2 𝒰 f g =
Multicoequalizer.π
(GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData) b ≫
OpenCover.fromGlued (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) ≫ PullbackCone.snd s
[PROOFSTEP]
erw [Multicoequalizer.π_desc_assoc, Multicoequalizer.π_desc_assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ gluedLift 𝒰 f g s ≫ p2 𝒰 f g =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s
[PROOFSTEP]
delta gluedLift
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫
OpenCover.glueMorphisms (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))
(fun i =>
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i)
(_ :
∀ (i j : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J),
pullback.fst ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g
(𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f
(_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i =
pullback.snd ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 j)).hom ≫
pullback.map (OpenCover.map 𝒰 j) (PullbackCone.fst s) (OpenCover.map 𝒰 j ≫ f) g
(𝟙 (OpenCover.obj 𝒰 j)) (PullbackCone.snd s) f
(_ : OpenCover.map 𝒰 j ≫ f = 𝟙 (OpenCover.obj 𝒰 j) ≫ OpenCover.map 𝒰 j ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) j) ≫
p2 𝒰 f g =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s
[PROOFSTEP]
simp_rw [← Category.assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ (OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫
OpenCover.glueMorphisms (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))
(fun i =>
((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
GlueData.ι (gluing 𝒰 f g) i)
(_ :
∀ (x y : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J),
pullback.fst ≫
(fun i =>
((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g
(𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f
(_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
GlueData.ι (gluing 𝒰 f g) i)
x =
pullback.snd ≫
(fun i =>
((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g
(𝟙 (OpenCover.obj 𝒰 i)) (PullbackCone.snd s) f
(_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
GlueData.ι (gluing 𝒰 f g) i)
y)) ≫
p2 𝒰 f g =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s
[PROOFSTEP]
rw [(𝒰.pullbackCover s.fst).ι_glueMorphisms]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ (((pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 b)).hom ≫
pullback.map (OpenCover.map 𝒰 b) (PullbackCone.fst s) (OpenCover.map 𝒰 b ≫ f) g (𝟙 (OpenCover.obj 𝒰 b))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 b ≫ f = 𝟙 (OpenCover.obj 𝒰 b) ≫ OpenCover.map 𝒰 b ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
GlueData.ι (gluing 𝒰 f g) b) ≫
p2 𝒰 f g =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s
[PROOFSTEP]
simp_rw [Category.assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 b)).hom ≫
pullback.map (OpenCover.map 𝒰 b) (PullbackCone.fst s) (OpenCover.map 𝒰 b ≫ f) g (𝟙 (OpenCover.obj 𝒰 b))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 b ≫ f = 𝟙 (OpenCover.obj 𝒰 b) ≫ OpenCover.map 𝒰 b ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) b ≫ p2 𝒰 f g =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s
[PROOFSTEP]
erw [Multicoequalizer.π_desc, pullback.lift_snd]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ (pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 b)).hom ≫ pullback.snd ≫ PullbackCone.snd s =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s
[PROOFSTEP]
rw [pullbackSymmetry_hom_comp_snd_assoc]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
b : (GlueData.diagram (OpenCover.gluedCover (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s))).toGlueData).R
⊢ pullback.fst ≫ PullbackCone.snd s =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) b ≫ PullbackCone.snd s
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ pullbackFstιToV 𝒰 f g i j ≫ pullback.fst = pullback.snd
[PROOFSTEP]
delta pullbackFstιToV
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ ((pullbackSymmetry pullback.fst (GlueData.ι (gluing 𝒰 f g) j) ≪≫
pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) (GlueData.ι (gluing 𝒰 f g) j)).hom ≫
(pullback.congrHom
(_ :
Multicoequalizer.π (GlueData.diagram (gluing 𝒰 f g).toGlueData) j ≫
Multicoequalizer.desc (GlueData.diagram (gluing 𝒰 f g).toGlueData) X
(fun i => pullback.fst ≫ OpenCover.map 𝒰 i)
(_ :
∀ (a : (GlueData.diagram (gluing 𝒰 f g).toGlueData).L),
MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫
pullback.fst ≫
OpenCover.map 𝒰 (MultispanIndex.fstFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a) =
MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫
pullback.fst ≫
OpenCover.map 𝒰 (MultispanIndex.sndFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a)) =
pullback.fst ≫ OpenCover.map 𝒰 j)
(_ : OpenCover.map 𝒰 i = OpenCover.map 𝒰 i)).hom) ≫
pullback.fst =
pullback.snd
[PROOFSTEP]
simp only [Iso.trans_hom, pullback.congrHom_hom, Category.assoc, pullback.lift_fst, Category.comp_id]
-- Porting note : `pullbackRightPullbackFstIso_hom_fst` is not used in `simp` even though
-- instructed, forcing `pullbackSymmetry_hom_comp_fst` to be manually `rw`ed as well.
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ (pullbackSymmetry pullback.fst (GlueData.ι (gluing 𝒰 f g) j)).hom ≫
(pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) (GlueData.ι (gluing 𝒰 f g) j)).hom ≫ pullback.fst =
pullback.snd
[PROOFSTEP]
erw [pullbackRightPullbackFstIso_hom_fst]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ (pullbackSymmetry pullback.fst (GlueData.ι (gluing 𝒰 f g) j)).hom ≫ pullback.fst = pullback.snd
[PROOFSTEP]
rw [pullbackSymmetry_hom_comp_fst]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ pullbackFstιToV 𝒰 f g i j ≫ pullback.snd = pullback.fst ≫ pullback.snd
[PROOFSTEP]
delta pullbackFstιToV
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ ((pullbackSymmetry pullback.fst (GlueData.ι (gluing 𝒰 f g) j) ≪≫
pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) (GlueData.ι (gluing 𝒰 f g) j)).hom ≫
(pullback.congrHom
(_ :
Multicoequalizer.π (GlueData.diagram (gluing 𝒰 f g).toGlueData) j ≫
Multicoequalizer.desc (GlueData.diagram (gluing 𝒰 f g).toGlueData) X
(fun i => pullback.fst ≫ OpenCover.map 𝒰 i)
(_ :
∀ (a : (GlueData.diagram (gluing 𝒰 f g).toGlueData).L),
MultispanIndex.fst (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫
pullback.fst ≫
OpenCover.map 𝒰 (MultispanIndex.fstFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a) =
MultispanIndex.snd (GlueData.diagram (gluing 𝒰 f g).toGlueData) a ≫
pullback.fst ≫
OpenCover.map 𝒰 (MultispanIndex.sndFrom (GlueData.diagram (gluing 𝒰 f g).toGlueData) a)) =
pullback.fst ≫ OpenCover.map 𝒰 j)
(_ : OpenCover.map 𝒰 i = OpenCover.map 𝒰 i)).hom) ≫
pullback.snd =
pullback.fst ≫ pullback.snd
[PROOFSTEP]
simp only [Iso.trans_hom, pullback.congrHom_hom, Category.assoc, pullback.lift_snd, Category.comp_id]
-- Porting note : `pullbackRightPullbackFstIso_hom_snd` is not used in `simp` even though
-- instructed, forcing `pullbackSymmetry_hom_comp_snd_assoc` to be manually `rw`ed as well.
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ (pullbackSymmetry pullback.fst (GlueData.ι (gluing 𝒰 f g) j)).hom ≫
(pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) (GlueData.ι (gluing 𝒰 f g) j)).hom ≫ pullback.snd =
pullback.fst ≫ pullback.snd
[PROOFSTEP]
erw [pullbackRightPullbackFstIso_hom_snd]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i j : 𝒰.J
⊢ (pullbackSymmetry pullback.fst (GlueData.ι (gluing 𝒰 f g) j)).hom ≫ pullback.snd ≫ pullback.snd =
pullback.fst ≫ pullback.snd
[PROOFSTEP]
rw [pullbackSymmetry_hom_comp_snd_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g
[PROOFSTEP]
rw [← pullback.condition_assoc, Category.assoc, p_comm]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i =
pullback.fst
[PROOFSTEP]
apply ((gluing 𝒰 f g).openCover.pullbackCover pullback.fst).hom_ext
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ ∀ (x : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J),
OpenCover.map (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst) x ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i =
OpenCover.map (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst) x ≫ pullback.fst
[PROOFSTEP]
intro j
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ OpenCover.map (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst) j ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i =
OpenCover.map (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst) j ≫ pullback.fst
[PROOFSTEP]
dsimp only [OpenCover.pullbackCover]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullback.fst ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i =
pullback.fst ≫ pullback.fst
[PROOFSTEP]
trans pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i ≫ (gluing 𝒰 f g).ι _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullback.fst ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i =
pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i ≫ GlueData.ι (gluing 𝒰 f g) j
[PROOFSTEP]
rw [← show _ = fV 𝒰 f g j i ≫ _ from (gluing 𝒰 f g).glue_condition j i]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullback.fst ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i =
pullbackFstιToV 𝒰 f g i j ≫
GlueData.t (gluing 𝒰 f g).toGlueData j i ≫ GlueData.f (gluing 𝒰 f g).toGlueData i j ≫ GlueData.ι (gluing 𝒰 f g) i
[PROOFSTEP]
simp_rw [← Category.assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ (pullback.fst ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) ≫
GlueData.ι (gluing 𝒰 f g) i =
((pullbackFstιToV 𝒰 f g i j ≫ GlueData.t (gluing 𝒰 f g).toGlueData j i) ≫
GlueData.f (gluing 𝒰 f g).toGlueData i j) ≫
GlueData.ι (gluing 𝒰 f g) i
[PROOFSTEP]
congr 1
[GOAL]
case e_a
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullback.fst ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) =
(pullbackFstιToV 𝒰 f g i j ≫ GlueData.t (gluing 𝒰 f g).toGlueData j i) ≫ GlueData.f (gluing 𝒰 f g).toGlueData i j
[PROOFSTEP]
rw [gluing_f, gluing_t]
[GOAL]
case e_a
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullback.fst ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) =
(pullbackFstιToV 𝒰 f g i j ≫ t 𝒰 f g j i) ≫ pullback.fst
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case e_a.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ (pullback.fst ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) ≫
pullback.fst =
((pullbackFstιToV 𝒰 f g i j ≫ t 𝒰 f g j i) ≫ pullback.fst) ≫ pullback.fst
[PROOFSTEP]
simp_rw [Category.assoc]
-- Porting note : in the following two bullet points, `rfl` was not necessary
[GOAL]
case e_a.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ (pullback.fst ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) ≫
pullback.snd =
((pullbackFstιToV 𝒰 f g i j ≫ t 𝒰 f g j i) ≫ pullback.fst) ≫ pullback.snd
[PROOFSTEP]
simp_rw [Category.assoc]
-- Porting note : in the following two bullet points, `rfl` was not necessary
[GOAL]
case e_a.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullback.fst ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫
pullback.fst =
pullbackFstιToV 𝒰 f g i j ≫ t 𝒰 f g j i ≫ pullback.fst ≫ pullback.fst
[PROOFSTEP]
rw [t_fst_fst, pullback.lift_fst, pullbackFstιToV_snd]
[GOAL]
case e_a.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullback.fst ≫ pullback.snd = pullback.fst ≫ pullback.snd
[PROOFSTEP]
rfl
[GOAL]
case e_a.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullback.fst ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫
pullback.snd =
pullbackFstιToV 𝒰 f g i j ≫ t 𝒰 f g j i ≫ pullback.fst ≫ pullback.snd
[PROOFSTEP]
rw [t_fst_snd, pullback.lift_snd, pullbackFstιToV_fst_assoc, pullback.condition_assoc]
[GOAL]
case e_a.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullback.snd ≫ OpenCover.map (GlueData.openCover (gluing 𝒰 f g)) j ≫ p2 𝒰 f g = pullback.snd ≫ pullback.snd
[PROOFSTEP]
erw [Multicoequalizer.π_desc]
[GOAL]
case e_a.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullback.snd ≫ pullback.snd = pullback.snd ≫ pullback.snd
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i ≫ GlueData.ι (gluing 𝒰 f g) j = pullback.fst ≫ pullback.fst
[PROOFSTEP]
rw [pullback.condition, ← Category.assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ (pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i) ≫ GlueData.ι (gluing 𝒰 f g) j =
pullback.snd ≫ OpenCover.map (GlueData.openCover (gluing 𝒰 f g)) j
[PROOFSTEP]
congr 1
[GOAL]
case e_a
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i = pullback.snd
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case e_a.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ (pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i) ≫ pullback.fst = pullback.snd ≫ pullback.fst
[PROOFSTEP]
simp only [pullbackFstιToV_fst]
[GOAL]
case e_a.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullback.snd ≫ pullback.fst = pullback.snd ≫ pullback.fst
[PROOFSTEP]
rfl
[GOAL]
case e_a.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ (pullbackFstιToV 𝒰 f g i j ≫ fV 𝒰 f g j i) ≫ pullback.snd = pullback.snd ≫ pullback.snd
[PROOFSTEP]
simp only [pullbackFstιToV_fst]
[GOAL]
case e_a.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
j : (OpenCover.pullbackCover (GlueData.openCover (gluing 𝒰 f g)) pullback.fst).J
⊢ pullback.snd ≫ pullback.snd = pullback.snd ≫ pullback.snd
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i) ≅ pullback (OpenCover.map 𝒰 i ≫ f) g
[PROOFSTEP]
fconstructor
[GOAL]
case hom
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i) ⟶ pullback (OpenCover.map 𝒰 i ≫ f) g
case inv
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ pullback (OpenCover.map 𝒰 i ≫ f) g ⟶ pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i)
case hom_inv_id
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ autoParam (?hom ≫ ?inv = 𝟙 (pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i))) _auto✝
case inv_hom_id
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ autoParam (?inv ≫ ?hom = 𝟙 (pullback (OpenCover.map 𝒰 i ≫ f) g)) _auto✝
[PROOFSTEP]
exact pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g) (by rw [← pullback.condition_assoc, Category.assoc, p_comm])
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g
[PROOFSTEP]
rw [← pullback.condition_assoc, Category.assoc, p_comm]
[GOAL]
case inv
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ pullback (OpenCover.map 𝒰 i ≫ f) g ⟶ pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i)
case hom_inv_id
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ autoParam
(pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫
?inv =
𝟙 (pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i)))
_auto✝
case inv_hom_id
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ autoParam
(?inv ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) =
𝟙 (pullback (OpenCover.map 𝒰 i ≫ f) g))
_auto✝
[PROOFSTEP]
refine' pullback.lift ((gluing 𝒰 f g).ι i) pullback.fst (by erw [Multicoequalizer.π_desc])
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i
[PROOFSTEP]
erw [Multicoequalizer.π_desc]
[GOAL]
case hom_inv_id
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ autoParam
(pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫
pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst
(_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i) =
𝟙 (pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i)))
_auto✝
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case hom_inv_id.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ (pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫
pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst
(_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i)) ≫
pullback.fst =
𝟙 (pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i)) ≫ pullback.fst
[PROOFSTEP]
simpa using lift_comp_ι 𝒰 f g i
[GOAL]
case hom_inv_id.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ (pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) ≫
pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst
(_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i)) ≫
pullback.snd =
𝟙 (pullback (p1 𝒰 f g) (OpenCover.map 𝒰 i)) ≫ pullback.snd
[PROOFSTEP]
simp only [Category.assoc, pullback.lift_snd, pullback.lift_fst, Category.id_comp]
[GOAL]
case inv_hom_id
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ autoParam
(pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst
(_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i) ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g) =
𝟙 (pullback (OpenCover.map 𝒰 i ≫ f) g))
_auto✝
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case inv_hom_id.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ (pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst
(_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i) ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) ≫
pullback.fst =
𝟙 (pullback (OpenCover.map 𝒰 i ≫ f) g) ≫ pullback.fst
[PROOFSTEP]
simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, Category.id_comp]
[GOAL]
case inv_hom_id.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ (pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst
(_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i) ≫
pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g)) ≫
pullback.snd =
𝟙 (pullback (OpenCover.map 𝒰 i ≫ f) g) ≫ pullback.snd
[PROOFSTEP]
simp only [Category.assoc, pullback.lift_snd, pullback.lift_fst_assoc, Category.id_comp]
[GOAL]
case inv_hom_id.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ GlueData.ι (gluing 𝒰 f g) i ≫ p2 𝒰 f g = pullback.snd
[PROOFSTEP]
erw [Multicoequalizer.π_desc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ (pullbackP1Iso 𝒰 f g i).hom ≫ pullback.fst = pullback.snd
[PROOFSTEP]
delta pullbackP1Iso
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ (Iso.mk
(pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g))
(pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst
(_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i))).hom ≫
pullback.fst =
pullback.snd
[PROOFSTEP]
simp only [pullback.lift_fst]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ (pullbackP1Iso 𝒰 f g i).hom ≫ pullback.snd = pullback.fst ≫ p2 𝒰 f g
[PROOFSTEP]
delta pullbackP1Iso
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ (Iso.mk
(pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g))
(pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst
(_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i))).hom ≫
pullback.snd =
pullback.fst ≫ p2 𝒰 f g
[PROOFSTEP]
simp only [pullback.lift_snd]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ (pullbackP1Iso 𝒰 f g i).inv ≫ pullback.fst = GlueData.ι (gluing 𝒰 f g) i
[PROOFSTEP]
delta pullbackP1Iso
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ (Iso.mk
(pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g))
(pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst
(_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i))).inv ≫
pullback.fst =
GlueData.ι (gluing 𝒰 f g) i
[PROOFSTEP]
simp only [pullback.lift_fst]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ (pullbackP1Iso 𝒰 f g i).inv ≫ pullback.snd = pullback.fst
[PROOFSTEP]
delta pullbackP1Iso
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ (Iso.mk
(pullback.lift pullback.snd (pullback.fst ≫ p2 𝒰 f g)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i ≫ f = (pullback.fst ≫ p2 𝒰 f g) ≫ g))
(pullback.lift (GlueData.ι (gluing 𝒰 f g) i) pullback.fst
(_ : GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i))).inv ≫
pullback.snd =
pullback.fst
[PROOFSTEP]
simp only [pullback.lift_snd]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
i : 𝒰.J
⊢ (pullbackP1Iso 𝒰 f g i).hom ≫ GlueData.ι (gluing 𝒰 f g) i = pullback.fst
[PROOFSTEP]
rw [← pullbackP1Iso_inv_fst, Iso.hom_inv_id_assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
⊢ IsLimit (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g))
[PROOFSTEP]
apply PullbackCone.isLimitAux'
[GOAL]
case create
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s : PullbackCone f g
⊢ (s : PullbackCone f g) →
{ l //
l ≫ PullbackCone.fst (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) =
PullbackCone.fst s ∧
l ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) =
PullbackCone.snd s ∧
∀ {m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt},
m ≫ PullbackCone.fst (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) =
PullbackCone.fst s →
m ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) =
PullbackCone.snd s →
m = l }
[PROOFSTEP]
intro s
[GOAL]
case create
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
⊢ { l //
l ≫ PullbackCone.fst (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) =
PullbackCone.fst s ∧
l ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) =
PullbackCone.snd s ∧
∀ {m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt},
m ≫ PullbackCone.fst (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) =
PullbackCone.fst s →
m ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) =
PullbackCone.snd s →
m = l }
[PROOFSTEP]
refine' ⟨gluedLift 𝒰 f g s, gluedLift_p1 𝒰 f g s, gluedLift_p2 𝒰 f g s, _⟩
[GOAL]
case create
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
⊢ ∀ {m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt},
m ≫ PullbackCone.fst (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) =
PullbackCone.fst s →
m ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) =
PullbackCone.snd s →
m = gluedLift 𝒰 f g s
[PROOFSTEP]
intro m h₁ h₂
[GOAL]
case create
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ PullbackCone.fst (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.fst s
h₂ : m ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.snd s
⊢ m = gluedLift 𝒰 f g s
[PROOFSTEP]
change m ≫ p1 𝒰 f g = _ at h₁
[GOAL]
case create
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₂ : m ≫ PullbackCone.snd (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)) = PullbackCone.snd s
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
⊢ m = gluedLift 𝒰 f g s
[PROOFSTEP]
change m ≫ p2 𝒰 f g = _ at h₂
[GOAL]
case create
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
⊢ m = gluedLift 𝒰 f g s
[PROOFSTEP]
apply (𝒰.pullbackCover s.fst).hom_ext
[GOAL]
case create.h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
⊢ ∀ (x : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J),
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) x ≫ m =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) x ≫ gluedLift 𝒰 f g s
[PROOFSTEP]
intro i
[GOAL]
case create.h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
⊢ OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) i ≫ m =
OpenCover.map (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)) i ≫ gluedLift 𝒰 f g s
[PROOFSTEP]
rw [OpenCover.pullbackCover_map]
[GOAL]
case create.h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
⊢ pullback.fst ≫ m = pullback.fst ≫ gluedLift 𝒰 f g s
[PROOFSTEP]
have := pullbackRightPullbackFstIso (p1 𝒰 f g) (𝒰.map i) m ≪≫ pullback.congrHom h₁ rfl
[GOAL]
case create.h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i)
⊢ pullback.fst ≫ m = pullback.fst ≫ gluedLift 𝒰 f g s
[PROOFSTEP]
erw [(𝒰.pullbackCover s.fst).ι_glueMorphisms]
[GOAL]
case create.h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i)
⊢ pullback.fst ≫ m =
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i
[PROOFSTEP]
rw [← cancel_epi (pullbackRightPullbackFstIso (p1 𝒰 f g) (𝒰.map i) m ≪≫ pullback.congrHom h₁ rfl).hom, Iso.trans_hom,
Category.assoc, pullback.congrHom_hom, pullback.lift_fst_assoc, Category.comp_id,
pullbackRightPullbackFstIso_hom_fst_assoc, pullback.condition]
[GOAL]
case create.h
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i)
⊢ pullback.snd ≫ pullback.fst =
((pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) m).hom ≫
pullback.map (m ≫ p1 𝒰 f g) (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i) (𝟙 s.pt)
(𝟙 (OpenCover.obj 𝒰 i)) (𝟙 X) (_ : (m ≫ p1 𝒰 f g) ≫ 𝟙 X = 𝟙 s.pt ≫ PullbackCone.fst s)
(_ : OpenCover.map 𝒰 i ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i)) ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i
[PROOFSTEP]
trans pullback.snd ≫ (pullbackP1Iso 𝒰 f g _).hom ≫ (gluing 𝒰 f g).ι _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i)
⊢ pullback.snd ≫ pullback.fst = pullback.snd ≫ (pullbackP1Iso 𝒰 f g i).hom ≫ GlueData.ι (gluing 𝒰 f g) i
[PROOFSTEP]
congr 1
[GOAL]
case e_a
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i)
⊢ pullback.fst = (pullbackP1Iso 𝒰 f g i).hom ≫ GlueData.ι (gluing 𝒰 f g) i
[PROOFSTEP]
rw [← pullbackP1Iso_hom_ι]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i)
⊢ pullback.snd ≫ (pullbackP1Iso 𝒰 f g i).hom ≫ GlueData.ι (gluing 𝒰 f g) i =
((pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) m).hom ≫
pullback.map (m ≫ p1 𝒰 f g) (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i) (𝟙 s.pt)
(𝟙 (OpenCover.obj 𝒰 i)) (𝟙 X) (_ : (m ≫ p1 𝒰 f g) ≫ 𝟙 X = 𝟙 s.pt ≫ PullbackCone.fst s)
(_ : OpenCover.map 𝒰 i ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i)) ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g) ≫
GlueData.ι (gluing 𝒰 f g) i
[PROOFSTEP]
simp_rw [← Category.assoc]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i)
⊢ (pullback.snd ≫ (pullbackP1Iso 𝒰 f g i).hom) ≫ GlueData.ι (gluing 𝒰 f g) i =
((((pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) m).hom ≫
pullback.map (m ≫ p1 𝒰 f g) (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i) (𝟙 s.pt)
(𝟙 (OpenCover.obj 𝒰 i)) (𝟙 X) (_ : (m ≫ p1 𝒰 f g) ≫ 𝟙 X = 𝟙 s.pt ≫ PullbackCone.fst s)
(_ : OpenCover.map 𝒰 i ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i)) ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom) ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
GlueData.ι (gluing 𝒰 f g) i
[PROOFSTEP]
congr 1
[GOAL]
case e_a
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i)
⊢ pullback.snd ≫ (pullbackP1Iso 𝒰 f g i).hom =
(((pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) m).hom ≫
pullback.map (m ≫ p1 𝒰 f g) (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i) (𝟙 s.pt)
(𝟙 (OpenCover.obj 𝒰 i)) (𝟙 X) (_ : (m ≫ p1 𝒰 f g) ≫ 𝟙 X = 𝟙 s.pt ≫ PullbackCone.fst s)
(_ : OpenCover.map 𝒰 i ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i)) ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom) ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case e_a.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i)
⊢ (pullback.snd ≫ (pullbackP1Iso 𝒰 f g i).hom) ≫ pullback.fst =
((((pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) m).hom ≫
pullback.map (m ≫ p1 𝒰 f g) (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i) (𝟙 s.pt)
(𝟙 (OpenCover.obj 𝒰 i)) (𝟙 X) (_ : (m ≫ p1 𝒰 f g) ≫ 𝟙 X = 𝟙 s.pt ≫ PullbackCone.fst s)
(_ : OpenCover.map 𝒰 i ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i)) ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom) ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
pullback.fst
[PROOFSTEP]
simp only [Category.comp_id, pullbackRightPullbackFstIso_hom_snd, Category.assoc, pullbackP1Iso_hom_fst,
pullback.lift_snd, pullback.lift_fst, pullbackSymmetry_hom_comp_fst]
[GOAL]
case e_a.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i)
⊢ (pullback.snd ≫ (pullbackP1Iso 𝒰 f g i).hom) ≫ pullback.snd =
((((pullbackRightPullbackFstIso (p1 𝒰 f g) (OpenCover.map 𝒰 i) m).hom ≫
pullback.map (m ≫ p1 𝒰 f g) (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i) (𝟙 s.pt)
(𝟙 (OpenCover.obj 𝒰 i)) (𝟙 X) (_ : (m ≫ p1 𝒰 f g) ≫ 𝟙 X = 𝟙 s.pt ≫ PullbackCone.fst s)
(_ : OpenCover.map 𝒰 i ≫ 𝟙 X = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i)) ≫
(pullbackSymmetry (PullbackCone.fst s) (OpenCover.map 𝒰 i)).hom) ≫
pullback.map (OpenCover.map 𝒰 i) (PullbackCone.fst s) (OpenCover.map 𝒰 i ≫ f) g (𝟙 (OpenCover.obj 𝒰 i))
(PullbackCone.snd s) f (_ : OpenCover.map 𝒰 i ≫ f = 𝟙 (OpenCover.obj 𝒰 i) ≫ OpenCover.map 𝒰 i ≫ f)
(_ : PullbackCone.fst s ≫ f = PullbackCone.snd s ≫ g)) ≫
pullback.snd
[PROOFSTEP]
simp only [Category.comp_id, pullbackRightPullbackFstIso_hom_fst_assoc, pullbackP1Iso_hom_snd, Category.assoc,
pullback.lift_fst_assoc, pullbackSymmetry_hom_comp_snd_assoc, pullback.lift_snd]
[GOAL]
case e_a.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f) g
s✝ s : PullbackCone f g
m : s.pt ⟶ (PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g)).pt
h₁ : m ≫ p1 𝒰 f g = PullbackCone.fst s
h₂ : m ≫ p2 𝒰 f g = PullbackCone.snd s
i : (OpenCover.pullbackCover 𝒰 (PullbackCone.fst s)).J
this : pullback m pullback.fst ≅ pullback (PullbackCone.fst s) (OpenCover.map 𝒰 i)
⊢ pullback.snd ≫ pullback.fst ≫ p2 𝒰 f g = pullback.fst ≫ PullbackCone.snd s
[PROOFSTEP]
rw [← pullback.condition_assoc, h₂]
[GOAL]
C✝ : Type u
inst✝¹ : Category.{v, u} C✝
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
A B C : CommRingCat
f : Spec.obj (Opposite.op A) ⟶ Spec.obj (Opposite.op C)
g : Spec.obj (Opposite.op B) ⟶ Spec.obj (Opposite.op C)
⊢ HasPullback f g
[PROOFSTEP]
rw [← Spec.image_preimage f, ← Spec.image_preimage g]
[GOAL]
C✝ : Type u
inst✝¹ : Category.{v, u} C✝
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
A B C : CommRingCat
f : Spec.obj (Opposite.op A) ⟶ Spec.obj (Opposite.op C)
g : Spec.obj (Opposite.op B) ⟶ Spec.obj (Opposite.op C)
⊢ HasPullback (Spec.map (Spec.preimage f)) (Spec.map (Spec.preimage g))
[PROOFSTEP]
exact ⟨⟨⟨_, isLimitOfHasPullbackOfPreservesLimit Spec (Spec.preimage f) (Spec.preimage g)⟩⟩⟩
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y✝ Z✝ : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z✝
g✝ : Y✝ ⟶ Z✝
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
i : (affineCover Z).J
⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g
[PROOFSTEP]
let Xᵢ := pullback f (Z.affineCover.map i)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y✝ Z✝ : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z✝
g✝ : Y✝ ⟶ Z✝
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
i : (affineCover Z).J
Xᵢ : Scheme := pullback f (OpenCover.map (affineCover Z) i)
⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g
[PROOFSTEP]
let Yᵢ := pullback g (Z.affineCover.map i)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y✝ Z✝ : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z✝
g✝ : Y✝ ⟶ Z✝
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
i : (affineCover Z).J
Xᵢ : Scheme := pullback f (OpenCover.map (affineCover Z) i)
Yᵢ : Scheme := pullback g (OpenCover.map (affineCover Z) i)
⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g
[PROOFSTEP]
let W := pullback (pullback.snd : Yᵢ ⟶ _) (pullback.snd : Xᵢ ⟶ _)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y✝ Z✝ : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z✝
g✝ : Y✝ ⟶ Z✝
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
i : (affineCover Z).J
Xᵢ : Scheme := pullback f (OpenCover.map (affineCover Z) i)
Yᵢ : Scheme := pullback g (OpenCover.map (affineCover Z) i)
W : Scheme := pullback pullback.snd pullback.snd
⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g
[PROOFSTEP]
have :=
bigSquareIsPullback (pullback.fst : W ⟶ _) (pullback.fst : Yᵢ ⟶ _) (pullback.snd : Xᵢ ⟶ _) (Z.affineCover.map i)
pullback.snd pullback.snd g pullback.condition.symm pullback.condition.symm
(PullbackCone.flipIsLimit <| pullbackIsPullback _ _) (PullbackCone.flipIsLimit <| pullbackIsPullback _ _)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y✝ Z✝ : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z✝
g✝ : Y✝ ⟶ Z✝
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
i : (affineCover Z).J
Xᵢ : Scheme := pullback f (OpenCover.map (affineCover Z) i)
Yᵢ : Scheme := pullback g (OpenCover.map (affineCover Z) i)
W : Scheme := pullback pullback.snd pullback.snd
this :
IsLimit
(PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map (affineCover Z) i = (pullback.fst ≫ pullback.fst) ≫ g))
⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g
[PROOFSTEP]
have : HasPullback (pullback.snd ≫ Z.affineCover.map i : Xᵢ ⟶ _) g := ⟨⟨⟨_, this⟩⟩⟩
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y✝ Z✝ : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z✝
g✝ : Y✝ ⟶ Z✝
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
i : (affineCover Z).J
Xᵢ : Scheme := pullback f (OpenCover.map (affineCover Z) i)
Yᵢ : Scheme := pullback g (OpenCover.map (affineCover Z) i)
W : Scheme := pullback pullback.snd pullback.snd
this✝ :
IsLimit
(PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map (affineCover Z) i = (pullback.fst ≫ pullback.fst) ≫ g))
this : HasPullback (pullback.snd ≫ OpenCover.map (affineCover Z) i) g
⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g
[PROOFSTEP]
rw [← pullback.condition] at this
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X✝ Y✝ Z✝ : Scheme
𝒰 : OpenCover X✝
f✝ : X✝ ⟶ Z✝
g✝ : Y✝ ⟶ Z✝
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
X Y Z : Scheme
f : X ⟶ Z
g : Y ⟶ Z
i : (affineCover Z).J
Xᵢ : Scheme := pullback f (OpenCover.map (affineCover Z) i)
Yᵢ : Scheme := pullback g (OpenCover.map (affineCover Z) i)
W : Scheme := pullback pullback.snd pullback.snd
this✝ :
IsLimit
(PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map (affineCover Z) i = (pullback.fst ≫ pullback.fst) ≫ g))
this : HasPullback (pullback.fst ≫ f) g
⊢ HasPullback (OpenCover.map (OpenCover.pullbackCover (affineCover Z) f) i ≫ f) g
[PROOFSTEP]
exact this
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
⊢ OpenCover (pullback f g)
[PROOFSTEP]
fapply
((gluing 𝒰 f g).openCover.pushforwardIso (limit.isoLimitCone ⟨_, gluedIsLimit 𝒰 f g⟩).inv).copy 𝒰.J
(fun i => pullback (𝒰.map i ≫ f) g)
(fun i => pullback.map _ _ _ _ (𝒰.map i) (𝟙 _) (𝟙 _) (Category.comp_id _) (by simp)) (Equiv.refl 𝒰.J) fun _ =>
Iso.refl _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ g ≫ 𝟙 Z = 𝟙 Y ≫ g
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
⊢ ∀ (i : 𝒰.J),
pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z)
(_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) =
(Iso.refl ((fun i => pullback (OpenCover.map 𝒰 i ≫ f) g) i)).hom ≫
OpenCover.map
(OpenCover.pushforwardIso (GlueData.openCover (gluing 𝒰 f g))
(limit.isoLimitCone
{ cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g),
isLimit := gluedIsLimit 𝒰 f g }).inv)
(↑(Equiv.refl 𝒰.J) i)
[PROOFSTEP]
rintro (i : 𝒰.J)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z)
(_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) =
(Iso.refl ((fun i => pullback (OpenCover.map 𝒰 i ≫ f) g) i)).hom ≫
OpenCover.map
(OpenCover.pushforwardIso (GlueData.openCover (gluing 𝒰 f g))
(limit.isoLimitCone
{ cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g),
isLimit := gluedIsLimit 𝒰 f g }).inv)
(↑(Equiv.refl 𝒰.J) i)
[PROOFSTEP]
change pullback.map _ _ _ _ _ _ _ _ _ = 𝟙 _ ≫ (gluing 𝒰 f g).ι i ≫ _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z)
(_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) =
𝟙 (GlueData.U (gluing 𝒰 f g).toGlueData i) ≫
GlueData.ι (gluing 𝒰 f g) i ≫
OpenCover.map
(openCoverOfIsIso
(limit.isoLimitCone
{ cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g),
isLimit := gluedIsLimit 𝒰 f g }).inv)
(↑((Equiv.punitProd (GlueData.openCover (gluing 𝒰 f g)).J).symm.trans
(Equiv.sigmaEquivProd PUnit (GlueData.openCover (gluing 𝒰 f g)).J).symm)
(↑(Equiv.refl 𝒰.J) i)).fst
[PROOFSTEP]
refine' Eq.trans _ (Category.id_comp _).symm
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z)
(_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) =
GlueData.ι (gluing 𝒰 f g) i ≫
OpenCover.map
(openCoverOfIsIso
(limit.isoLimitCone
{ cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g),
isLimit := gluedIsLimit 𝒰 f g }).inv)
(↑((Equiv.punitProd (GlueData.openCover (gluing 𝒰 f g)).J).symm.trans
(Equiv.sigmaEquivProd PUnit (GlueData.openCover (gluing 𝒰 f g)).J).symm)
(↑(Equiv.refl 𝒰.J) i)).fst
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z)
(_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
pullback.fst =
(GlueData.ι (gluing 𝒰 f g) i ≫
OpenCover.map
(openCoverOfIsIso
(limit.isoLimitCone
{ cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g),
isLimit := gluedIsLimit 𝒰 f g }).inv)
(↑((Equiv.punitProd (GlueData.openCover (gluing 𝒰 f g)).J).symm.trans
(Equiv.sigmaEquivProd PUnit (GlueData.openCover (gluing 𝒰 f g)).J).symm)
(↑(Equiv.refl 𝒰.J) i)).fst) ≫
pullback.fst
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z)
(_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
pullback.snd =
(GlueData.ι (gluing 𝒰 f g) i ≫
OpenCover.map
(openCoverOfIsIso
(limit.isoLimitCone
{ cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g),
isLimit := gluedIsLimit 𝒰 f g }).inv)
(↑((Equiv.punitProd (GlueData.openCover (gluing 𝒰 f g)).J).symm.trans
(Equiv.sigmaEquivProd PUnit (GlueData.openCover (gluing 𝒰 f g)).J).symm)
(↑(Equiv.refl 𝒰.J) i)).fst) ≫
pullback.snd
[PROOFSTEP]
all_goals
dsimp
simp only [limit.isoLimitCone_inv_π, PullbackCone.mk_π_app_left, Category.comp_id, PullbackCone.mk_π_app_right,
Category.assoc, pullback.lift_fst, pullback.lift_snd]
symm
exact Multicoequalizer.π_desc _ _ _ _ _
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z)
(_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
pullback.fst =
(GlueData.ι (gluing 𝒰 f g) i ≫
OpenCover.map
(openCoverOfIsIso
(limit.isoLimitCone
{ cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g),
isLimit := gluedIsLimit 𝒰 f g }).inv)
(↑((Equiv.punitProd (GlueData.openCover (gluing 𝒰 f g)).J).symm.trans
(Equiv.sigmaEquivProd PUnit (GlueData.openCover (gluing 𝒰 f g)).J).symm)
(↑(Equiv.refl 𝒰.J) i)).fst) ≫
pullback.fst
[PROOFSTEP]
dsimp
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z)
(_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
pullback.fst =
(GlueData.ι (gluing 𝒰 f g) i ≫
(limit.isoLimitCone
{ cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g),
isLimit := gluedIsLimit 𝒰 f g }).inv) ≫
pullback.fst
[PROOFSTEP]
simp only [limit.isoLimitCone_inv_π, PullbackCone.mk_π_app_left, Category.comp_id, PullbackCone.mk_π_app_right,
Category.assoc, pullback.lift_fst, pullback.lift_snd]
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.fst ≫ OpenCover.map 𝒰 i = GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g
[PROOFSTEP]
symm
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ GlueData.ι (gluing 𝒰 f g) i ≫ p1 𝒰 f g = pullback.fst ≫ OpenCover.map 𝒰 i
[PROOFSTEP]
exact Multicoequalizer.π_desc _ _ _ _ _
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z)
(_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
pullback.snd =
(GlueData.ι (gluing 𝒰 f g) i ≫
OpenCover.map
(openCoverOfIsIso
(limit.isoLimitCone
{ cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g),
isLimit := gluedIsLimit 𝒰 f g }).inv)
(↑((Equiv.punitProd (GlueData.openCover (gluing 𝒰 f g)).J).symm.trans
(Equiv.sigmaEquivProd PUnit (GlueData.openCover (gluing 𝒰 f g)).J).symm)
(↑(Equiv.refl 𝒰.J) i)).fst) ≫
pullback.snd
[PROOFSTEP]
dsimp
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map (OpenCover.map 𝒰 i ≫ f) g f g (OpenCover.map 𝒰 i) (𝟙 Y) (𝟙 Z)
(_ : (OpenCover.map 𝒰 i ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ f) (_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
pullback.snd =
(GlueData.ι (gluing 𝒰 f g) i ≫
(limit.isoLimitCone
{ cone := PullbackCone.mk (p1 𝒰 f g) (p2 𝒰 f g) (_ : p1 𝒰 f g ≫ f = p2 𝒰 f g ≫ g),
isLimit := gluedIsLimit 𝒰 f g }).inv) ≫
pullback.snd
[PROOFSTEP]
simp only [limit.isoLimitCone_inv_π, PullbackCone.mk_π_app_left, Category.comp_id, PullbackCone.mk_π_app_right,
Category.assoc, pullback.lift_fst, pullback.lift_snd]
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.snd = GlueData.ι (gluing 𝒰 f g) i ≫ p2 𝒰 f g
[PROOFSTEP]
symm
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover X
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ GlueData.ι (gluing 𝒰 f g) i ≫ p2 𝒰 f g = pullback.snd
[PROOFSTEP]
exact Multicoequalizer.π_desc _ _ _ _ _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Y
f : X ⟶ Z
g : Y ⟶ Z
⊢ OpenCover (pullback f g)
[PROOFSTEP]
fapply
((openCoverOfLeft 𝒰 g f).pushforwardIso (pullbackSymmetry _ _).hom).copy 𝒰.J (fun i => pullback f (𝒰.map i ≫ g))
(fun i => pullback.map _ _ _ _ (𝟙 _) (𝒰.map i) (𝟙 _) (by simp) (Category.comp_id _)) (Equiv.refl _) fun i =>
pullbackSymmetry _ _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Y
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ f ≫ 𝟙 Z = 𝟙 X ≫ f
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Y
f : X ⟶ Z
g : Y ⟶ Z
⊢ ∀ (i : 𝒰.J),
pullback.map f (OpenCover.map 𝒰 i ≫ g) f g (𝟙 X) (OpenCover.map 𝒰 i) (𝟙 Z) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f)
(_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) =
(pullbackSymmetry f (OpenCover.map 𝒰 i ≫ g)).hom ≫
OpenCover.map (OpenCover.pushforwardIso (openCoverOfLeft 𝒰 g f) (pullbackSymmetry g f).hom)
(↑(Equiv.refl 𝒰.J) i)
[PROOFSTEP]
intro i
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Y
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map f (OpenCover.map 𝒰 i ≫ g) f g (𝟙 X) (OpenCover.map 𝒰 i) (𝟙 Z) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f)
(_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) =
(pullbackSymmetry f (OpenCover.map 𝒰 i ≫ g)).hom ≫
OpenCover.map (OpenCover.pushforwardIso (openCoverOfLeft 𝒰 g f) (pullbackSymmetry g f).hom) (↑(Equiv.refl 𝒰.J) i)
[PROOFSTEP]
dsimp [OpenCover.bind]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Y
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map f (OpenCover.map 𝒰 i ≫ g) f g (𝟙 X) (OpenCover.map 𝒰 i) (𝟙 Z) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f)
(_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) =
(pullbackSymmetry f (OpenCover.map 𝒰 i ≫ g)).hom ≫
pullback.map (OpenCover.map 𝒰 i ≫ g) f g f (OpenCover.map 𝒰 i) (𝟙 X) (𝟙 Z)
(_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f) ≫
(pullbackSymmetry g f).hom
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Y
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map f (OpenCover.map 𝒰 i ≫ g) f g (𝟙 X) (OpenCover.map 𝒰 i) (𝟙 Z) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f)
(_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) ≫
pullback.fst =
((pullbackSymmetry f (OpenCover.map 𝒰 i ≫ g)).hom ≫
pullback.map (OpenCover.map 𝒰 i ≫ g) f g f (OpenCover.map 𝒰 i) (𝟙 X) (𝟙 Z)
(_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f) ≫
(pullbackSymmetry g f).hom) ≫
pullback.fst
[PROOFSTEP]
simp
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Y
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map f (OpenCover.map 𝒰 i ≫ g) f g (𝟙 X) (OpenCover.map 𝒰 i) (𝟙 Z) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f)
(_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) ≫
pullback.snd =
((pullbackSymmetry f (OpenCover.map 𝒰 i ≫ g)).hom ≫
pullback.map (OpenCover.map 𝒰 i ≫ g) f g f (OpenCover.map 𝒰 i) (𝟙 X) (𝟙 Z)
(_ : (OpenCover.map 𝒰 i ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰 i ≫ g) (_ : f ≫ 𝟙 Z = 𝟙 X ≫ f) ≫
(pullbackSymmetry g f).hom) ≫
pullback.snd
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰X : OpenCover X
𝒰Y : OpenCover Y
f : X ⟶ Z
g : Y ⟶ Z
⊢ OpenCover (pullback f g)
[PROOFSTEP]
fapply
((openCoverOfLeft 𝒰X f g).bind fun x => openCoverOfRight 𝒰Y (𝒰X.map x ≫ f) g).copy (𝒰X.J × 𝒰Y.J)
(fun ij => pullback (𝒰X.map ij.1 ≫ f) (𝒰Y.map ij.2 ≫ g))
(fun ij => pullback.map _ _ _ _ (𝒰X.map ij.1) (𝒰Y.map ij.2) (𝟙 _) (Category.comp_id _) (Category.comp_id _))
(Equiv.sigmaEquivProd _ _).symm fun _ => Iso.refl _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰X : OpenCover X
𝒰Y : OpenCover Y
f : X ⟶ Z
g : Y ⟶ Z
⊢ ∀ (i : 𝒰X.J × 𝒰Y.J),
pullback.map (OpenCover.map 𝒰X i.fst ≫ f) (OpenCover.map 𝒰Y i.snd ≫ g) f g (OpenCover.map 𝒰X i.fst)
(OpenCover.map 𝒰Y i.snd) (𝟙 Z) (_ : (OpenCover.map 𝒰X i.fst ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰X i.fst ≫ f)
(_ : (OpenCover.map 𝒰Y i.snd ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰Y i.snd ≫ g) =
(Iso.refl ((fun ij => pullback (OpenCover.map 𝒰X ij.fst ≫ f) (OpenCover.map 𝒰Y ij.snd ≫ g)) i)).hom ≫
OpenCover.map (OpenCover.bind (openCoverOfLeft 𝒰X f g) fun x => openCoverOfRight 𝒰Y (OpenCover.map 𝒰X x ≫ f) g)
(↑(Equiv.sigmaEquivProd 𝒰X.J 𝒰Y.J).symm i)
[PROOFSTEP]
rintro ⟨i, j⟩
[GOAL]
case mk
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰X : OpenCover X
𝒰Y : OpenCover Y
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰X.J
j : 𝒰Y.J
⊢ pullback.map (OpenCover.map 𝒰X (i, j).fst ≫ f) (OpenCover.map 𝒰Y (i, j).snd ≫ g) f g (OpenCover.map 𝒰X (i, j).fst)
(OpenCover.map 𝒰Y (i, j).snd) (𝟙 Z)
(_ : (OpenCover.map 𝒰X (i, j).fst ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰X (i, j).fst ≫ f)
(_ : (OpenCover.map 𝒰Y (i, j).snd ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰Y (i, j).snd ≫ g) =
(Iso.refl ((fun ij => pullback (OpenCover.map 𝒰X ij.fst ≫ f) (OpenCover.map 𝒰Y ij.snd ≫ g)) (i, j))).hom ≫
OpenCover.map (OpenCover.bind (openCoverOfLeft 𝒰X f g) fun x => openCoverOfRight 𝒰Y (OpenCover.map 𝒰X x ≫ f) g)
(↑(Equiv.sigmaEquivProd 𝒰X.J 𝒰Y.J).symm (i, j))
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case mk.h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰X : OpenCover X
𝒰Y : OpenCover Y
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰X.J
j : 𝒰Y.J
⊢ pullback.map (OpenCover.map 𝒰X (i, j).fst ≫ f) (OpenCover.map 𝒰Y (i, j).snd ≫ g) f g (OpenCover.map 𝒰X (i, j).fst)
(OpenCover.map 𝒰Y (i, j).snd) (𝟙 Z)
(_ : (OpenCover.map 𝒰X (i, j).fst ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰X (i, j).fst ≫ f)
(_ : (OpenCover.map 𝒰Y (i, j).snd ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰Y (i, j).snd ≫ g) ≫
pullback.fst =
((Iso.refl ((fun ij => pullback (OpenCover.map 𝒰X ij.fst ≫ f) (OpenCover.map 𝒰Y ij.snd ≫ g)) (i, j))).hom ≫
OpenCover.map (OpenCover.bind (openCoverOfLeft 𝒰X f g) fun x => openCoverOfRight 𝒰Y (OpenCover.map 𝒰X x ≫ f) g)
(↑(Equiv.sigmaEquivProd 𝒰X.J 𝒰Y.J).symm (i, j))) ≫
pullback.fst
[PROOFSTEP]
simp
[GOAL]
case mk.h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰 : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰.J), HasPullback (OpenCover.map 𝒰 i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰X : OpenCover X
𝒰Y : OpenCover Y
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰X.J
j : 𝒰Y.J
⊢ pullback.map (OpenCover.map 𝒰X (i, j).fst ≫ f) (OpenCover.map 𝒰Y (i, j).snd ≫ g) f g (OpenCover.map 𝒰X (i, j).fst)
(OpenCover.map 𝒰Y (i, j).snd) (𝟙 Z)
(_ : (OpenCover.map 𝒰X (i, j).fst ≫ f) ≫ 𝟙 Z = OpenCover.map 𝒰X (i, j).fst ≫ f)
(_ : (OpenCover.map 𝒰Y (i, j).snd ≫ g) ≫ 𝟙 Z = OpenCover.map 𝒰Y (i, j).snd ≫ g) ≫
pullback.snd =
((Iso.refl ((fun ij => pullback (OpenCover.map 𝒰X ij.fst ≫ f) (OpenCover.map 𝒰Y ij.snd ≫ g)) (i, j))).hom ≫
OpenCover.map (OpenCover.bind (openCoverOfLeft 𝒰X f g) fun x => openCoverOfRight 𝒰Y (OpenCover.map 𝒰X x ≫ f) g)
(↑(Equiv.sigmaEquivProd 𝒰X.J 𝒰Y.J).symm (i, j))) ≫
pullback.snd
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
⊢ OpenCover (pullback f g)
[PROOFSTEP]
apply (openCoverOfLeft (𝒰.pullbackCover f) f g).bind
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
⊢ (x : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J) →
OpenCover (OpenCover.obj (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g) x)
[PROOFSTEP]
intro i
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J
⊢ OpenCover (OpenCover.obj (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g) i)
[PROOFSTEP]
let Xᵢ := pullback f (𝒰.map i)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J
Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i)
⊢ OpenCover (OpenCover.obj (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g) i)
[PROOFSTEP]
let Yᵢ := pullback g (𝒰.map i)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J
Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i)
Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i)
⊢ OpenCover (OpenCover.obj (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g) i)
[PROOFSTEP]
let W := pullback (pullback.snd : Yᵢ ⟶ _) (pullback.snd : Xᵢ ⟶ _)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J
Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i)
Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i)
W : Scheme := pullback pullback.snd pullback.snd
⊢ OpenCover (OpenCover.obj (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g) i)
[PROOFSTEP]
have :=
bigSquareIsPullback (pullback.fst : W ⟶ _) (pullback.fst : Yᵢ ⟶ _) (pullback.snd : Xᵢ ⟶ _) (𝒰.map i) pullback.snd
pullback.snd g pullback.condition.symm pullback.condition.symm (PullbackCone.flipIsLimit <| pullbackIsPullback _ _)
(PullbackCone.flipIsLimit <| pullbackIsPullback _ _)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J
Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i)
Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i)
W : Scheme := pullback pullback.snd pullback.snd
this :
IsLimit
(PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ g))
⊢ OpenCover (OpenCover.obj (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g) i)
[PROOFSTEP]
refine'
@openCoverOfIsIso (f :=
(pullbackSymmetry _ _).hom ≫ (limit.isoLimitCone ⟨_, this⟩).inv ≫ pullback.map _ _ _ _ (𝟙 _) (𝟙 _) (𝟙 _) _ _) ?_
[GOAL]
case refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J
Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i)
Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i)
W : Scheme := pullback pullback.snd pullback.snd
this :
IsLimit
(PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ g))
⊢ (pullback.snd ≫ OpenCover.map 𝒰 i) ≫ 𝟙 Z =
𝟙 (pullback f (OpenCover.map 𝒰 i)) ≫ OpenCover.map (OpenCover.pullbackCover 𝒰 f) i ≫ f
[PROOFSTEP]
simp only [Category.comp_id, Category.id_comp, ← pullback.condition]
-- Porting note : `simpa` failed, but this is indeed `rfl`
[GOAL]
case refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J
Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i)
Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i)
W : Scheme := pullback pullback.snd pullback.snd
this :
IsLimit
(PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ g))
⊢ pullback.fst ≫ f = OpenCover.map (OpenCover.pullbackCover 𝒰 f) i ≫ f
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J
Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i)
Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i)
W : Scheme := pullback pullback.snd pullback.snd
this :
IsLimit
(PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ g))
⊢ g ≫ 𝟙 Z = 𝟙 Y ≫ g
[PROOFSTEP]
simp only [Category.comp_id, Category.id_comp]
-- Porting note : this `IsIso` instance was `inferInstance`
[GOAL]
case refine'_3
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : (openCoverOfLeft (OpenCover.pullbackCover 𝒰 f) f g).J
Xᵢ : Scheme := pullback f (OpenCover.map 𝒰 i)
Yᵢ : Scheme := pullback g (OpenCover.map 𝒰 i)
W : Scheme := pullback pullback.snd pullback.snd
this :
IsLimit
(PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ g))
⊢ IsIso
((pullbackSymmetry pullback.snd pullback.snd).hom ≫
(limit.isoLimitCone
{
cone :=
PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ : pullback.snd ≫ pullback.snd ≫ OpenCover.map 𝒰 i = (pullback.fst ≫ pullback.fst) ≫ g),
isLimit := this }).inv ≫
pullback.map (pullback.snd ≫ OpenCover.map 𝒰 i) g (OpenCover.map (OpenCover.pullbackCover 𝒰 f) i ≫ f) g
(𝟙 (pullback f (OpenCover.map 𝒰 i))) (𝟙 Y) (𝟙 Z)
(_ :
(pullback.snd ≫ OpenCover.map 𝒰 i) ≫ 𝟙 Z =
𝟙 (pullback f (OpenCover.map 𝒰 i)) ≫ OpenCover.map (OpenCover.pullbackCover 𝒰 f) i ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g))
[PROOFSTEP]
apply IsIso.comp_isIso
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
⊢ OpenCover (pullback f g)
[PROOFSTEP]
apply
(openCoverOfBase'.{u, u} 𝒰 f g).copy 𝒰.J
(fun i => pullback (pullback.snd : pullback f (𝒰.map i) ⟶ _) (pullback.snd : pullback g (𝒰.map i) ⟶ _))
(fun i => pullback.map _ _ _ _ pullback.fst pullback.fst (𝒰.map i) pullback.condition.symm pullback.condition.symm)
((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) fun _ => Iso.refl _
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
⊢ ∀ (i : 𝒰.J),
pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) =
(Iso.refl ((fun i => pullback pullback.snd pullback.snd) i)).hom ≫
OpenCover.map (openCoverOfBase' 𝒰 f g)
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i)
[PROOFSTEP]
intro i
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) =
(Iso.refl ((fun i => pullback pullback.snd pullback.snd) i)).hom ≫
OpenCover.map (openCoverOfBase' 𝒰 f g)
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i)
[PROOFSTEP]
rw [Iso.refl_hom, Category.id_comp, openCoverOfBase'_map]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) =
(pullbackSymmetry pullback.snd pullback.snd).hom ≫
(limit.isoLimitCone
{
cone :=
PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ :
(pullback.snd ≫ pullback.snd) ≫
OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst =
(pullback.fst ≫ pullback.fst) ≫ g),
isLimit :=
bigSquareIsPullback pullback.fst pullback.fst pullback.snd
(OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)
pullback.snd pullback.snd g (_ : pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.snd)
(_ :
pullback.snd ≫
OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst =
pullback.fst ≫ g)
(PullbackCone.flipIsLimit
(pullbackIsPullback g
(OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)))
(PullbackCone.flipIsLimit (pullbackIsPullback pullback.snd pullback.snd)) }).inv ≫
pullback.map
(pullback.snd ≫
OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)
g (pullback.fst ≫ f) g
(𝟙
(pullback f
(OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)))
(𝟙 Y) (𝟙 Z)
(_ :
(pullback.snd ≫
OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst) ≫
𝟙 Z =
𝟙
(pullback f
(OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)) ≫
pullback.fst ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
pullback.map (pullback.fst ≫ f) g f g pullback.fst (𝟙 Y) (𝟙 Z)
(_ :
(OpenCover.map (OpenCover.pullbackCover 𝒰 f)
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst ≫
f) ≫
𝟙 Z =
OpenCover.map (OpenCover.pullbackCover 𝒰 f)
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst ≫
f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g)
[PROOFSTEP]
apply pullback.hom_ext
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) ≫
pullback.fst =
((pullbackSymmetry pullback.snd pullback.snd).hom ≫
(limit.isoLimitCone
{
cone :=
PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ :
(pullback.snd ≫ pullback.snd) ≫
OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst =
(pullback.fst ≫ pullback.fst) ≫ g),
isLimit :=
bigSquareIsPullback pullback.fst pullback.fst pullback.snd
(OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)
pullback.snd pullback.snd g (_ : pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.snd)
(_ :
pullback.snd ≫
OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst =
pullback.fst ≫ g)
(PullbackCone.flipIsLimit
(pullbackIsPullback g
(OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)))
(PullbackCone.flipIsLimit (pullbackIsPullback pullback.snd pullback.snd)) }).inv ≫
pullback.map
(pullback.snd ≫
OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)
g (pullback.fst ≫ f) g
(𝟙
(pullback f
(OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)))
(𝟙 Y) (𝟙 Z)
(_ :
(pullback.snd ≫
OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst) ≫
𝟙 Z =
𝟙
(pullback f
(OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)) ≫
pullback.fst ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
pullback.map (pullback.fst ≫ f) g f g pullback.fst (𝟙 Y) (𝟙 Z)
(_ :
(OpenCover.map (OpenCover.pullbackCover 𝒰 f)
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst ≫
f) ≫
𝟙 Z =
OpenCover.map (OpenCover.pullbackCover 𝒰 f)
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst ≫
f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g)) ≫
pullback.fst
[PROOFSTEP]
dsimp
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) ≫
pullback.snd =
((pullbackSymmetry pullback.snd pullback.snd).hom ≫
(limit.isoLimitCone
{
cone :=
PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ :
(pullback.snd ≫ pullback.snd) ≫
OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst =
(pullback.fst ≫ pullback.fst) ≫ g),
isLimit :=
bigSquareIsPullback pullback.fst pullback.fst pullback.snd
(OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)
pullback.snd pullback.snd g (_ : pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.snd)
(_ :
pullback.snd ≫
OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst =
pullback.fst ≫ g)
(PullbackCone.flipIsLimit
(pullbackIsPullback g
(OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)))
(PullbackCone.flipIsLimit (pullbackIsPullback pullback.snd pullback.snd)) }).inv ≫
pullback.map
(pullback.snd ≫
OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)
g (pullback.fst ≫ f) g
(𝟙
(pullback f
(OpenCover.map 𝒰 (↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)))
(𝟙 Y) (𝟙 Z)
(_ :
(pullback.snd ≫
OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst) ≫
𝟙 Z =
𝟙
(pullback f
(OpenCover.map 𝒰
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst)) ≫
pullback.fst ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
pullback.map (pullback.fst ≫ f) g f g pullback.fst (𝟙 Y) (𝟙 Z)
(_ :
(OpenCover.map (OpenCover.pullbackCover 𝒰 f)
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst ≫
f) ≫
𝟙 Z =
OpenCover.map (OpenCover.pullbackCover 𝒰 f)
(↑((Equiv.prodPUnit 𝒰.J).symm.trans (Equiv.sigmaEquivProd 𝒰.J PUnit).symm) i).fst ≫
f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g)) ≫
pullback.snd
[PROOFSTEP]
dsimp
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) ≫
pullback.fst =
((pullbackSymmetry pullback.snd pullback.snd).hom ≫
(limit.isoLimitCone
{
cone :=
PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ :
(pullback.snd ≫ pullback.snd) ≫
OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst =
(pullback.fst ≫ pullback.fst) ≫ g),
isLimit :=
bigSquareIsPullback pullback.fst pullback.fst pullback.snd
(OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst) pullback.snd
pullback.snd g (_ : pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.snd)
(_ :
pullback.snd ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst =
pullback.fst ≫ g)
(PullbackCone.flipIsLimit
(pullbackIsPullback g
(OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst)))
(PullbackCone.flipIsLimit (pullbackIsPullback pullback.snd pullback.snd)) }).inv ≫
pullback.map (pullback.snd ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst) g
(pullback.fst ≫ f) g
(𝟙 (pullback f (OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst))) (𝟙 Y)
(𝟙 Z)
(_ :
(pullback.snd ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst) ≫ 𝟙 Z =
𝟙 (pullback f (OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst)) ≫
pullback.fst ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
pullback.map (pullback.fst ≫ f) g f g pullback.fst (𝟙 Y) (𝟙 Z)
(_ :
(OpenCover.map (OpenCover.pullbackCover 𝒰 f)
(↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst ≫
f) ≫
𝟙 Z =
OpenCover.map (OpenCover.pullbackCover 𝒰 f)
(↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst ≫
f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g)) ≫
pullback.fst
[PROOFSTEP]
simp only [limit.lift_π, PullbackCone.mk_pt, PullbackCone.mk_π_app, Category.assoc, limit.lift_π_assoc, cospan_left,
Category.comp_id, limit.isoLimitCone_inv_π, limit.isoLimitCone_inv_π_assoc, pullbackSymmetry_hom_comp_fst_assoc,
pullbackSymmetry_hom_comp_snd_assoc]
[GOAL]
case h₀
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.fst ≫ pullback.fst = pullback.fst ≫ pullback.fst
[PROOFSTEP]
rfl
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.map pullback.snd pullback.snd f g pullback.fst pullback.fst (OpenCover.map 𝒰 i)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ f)
(_ : pullback.snd ≫ OpenCover.map 𝒰 i = pullback.fst ≫ g) ≫
pullback.snd =
((pullbackSymmetry pullback.snd pullback.snd).hom ≫
(limit.isoLimitCone
{
cone :=
PullbackCone.mk pullback.snd (pullback.fst ≫ pullback.fst)
(_ :
(pullback.snd ≫ pullback.snd) ≫
OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst =
(pullback.fst ≫ pullback.fst) ≫ g),
isLimit :=
bigSquareIsPullback pullback.fst pullback.fst pullback.snd
(OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst) pullback.snd
pullback.snd g (_ : pullback.snd ≫ pullback.snd = pullback.fst ≫ pullback.snd)
(_ :
pullback.snd ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst =
pullback.fst ≫ g)
(PullbackCone.flipIsLimit
(pullbackIsPullback g
(OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst)))
(PullbackCone.flipIsLimit (pullbackIsPullback pullback.snd pullback.snd)) }).inv ≫
pullback.map (pullback.snd ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst) g
(pullback.fst ≫ f) g
(𝟙 (pullback f (OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst))) (𝟙 Y)
(𝟙 Z)
(_ :
(pullback.snd ≫ OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst) ≫ 𝟙 Z =
𝟙 (pullback f (OpenCover.map 𝒰 (↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst)) ≫
pullback.fst ≫ f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g) ≫
pullback.map (pullback.fst ≫ f) g f g pullback.fst (𝟙 Y) (𝟙 Z)
(_ :
(OpenCover.map (OpenCover.pullbackCover 𝒰 f)
(↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst ≫
f) ≫
𝟙 Z =
OpenCover.map (OpenCover.pullbackCover 𝒰 f)
(↑(Equiv.sigmaEquivProd 𝒰.J PUnit).symm (i, PUnit.unit)).fst ≫
f)
(_ : g ≫ 𝟙 Z = 𝟙 Y ≫ g)) ≫
pullback.snd
[PROOFSTEP]
simp only [limit.lift_π, PullbackCone.mk_pt, PullbackCone.mk_π_app, Category.assoc, limit.lift_π_assoc, cospan_left,
Category.comp_id, limit.isoLimitCone_inv_π, limit.isoLimitCone_inv_π_assoc, pullbackSymmetry_hom_comp_fst_assoc,
pullbackSymmetry_hom_comp_snd_assoc]
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X Y Z : Scheme
𝒰✝ : OpenCover X
f✝ : X ⟶ Z
g✝ : Y ⟶ Z
inst✝ : ∀ (i : 𝒰✝.J), HasPullback (OpenCover.map 𝒰✝ i ≫ f✝) g✝
s : PullbackCone f✝ g✝
𝒰 : OpenCover Z
f : X ⟶ Z
g : Y ⟶ Z
i : 𝒰.J
⊢ pullback.snd ≫ pullback.fst = pullback.snd ≫ pullback.fst
[PROOFSTEP]
rfl
[GOAL]
X Y S X' Y' S' : Scheme
f : X ⟶ S
g : Y ⟶ S
f' : X' ⟶ S'
g' : Y' ⟶ S'
i₁ : X ⟶ X'
i₂ : Y ⟶ Y'
i₃ : S ⟶ S'
e₁ : f ≫ i₃ = i₁ ≫ f'
e₂ : g ≫ i₃ = i₂ ≫ g'
inst✝² : IsOpenImmersion i₁
inst✝¹ : IsOpenImmersion i₂
inst✝ : Mono i₃
⊢ IsOpenImmersion (pullback.map f g f' g' i₁ i₂ i₃ e₁ e₂)
[PROOFSTEP]
rw [pullback_map_eq_pullbackFstFstIso_inv]
-- Porting note : was automatic
[GOAL]
X Y S X' Y' S' : Scheme
f : X ⟶ S
g : Y ⟶ S
f' : X' ⟶ S'
g' : Y' ⟶ S'
i₁ : X ⟶ X'
i₂ : Y ⟶ Y'
i₃ : S ⟶ S'
e₁ : f ≫ i₃ = i₁ ≫ f'
e₂ : g ≫ i₃ = i₂ ≫ g'
inst✝² : IsOpenImmersion i₁
inst✝¹ : IsOpenImmersion i₂
inst✝ : Mono i₃
⊢ IsOpenImmersion ((pullbackFstFstIso f g f' g' i₁ i₂ i₃ e₁ e₂).inv ≫ pullback.snd ≫ pullback.fst)
[PROOFSTEP]
exact PresheafedSpace.IsOpenImmersion.comp _ (hg := PresheafedSpace.IsOpenImmersion.comp _ _)
| {"mathlib_filename": "Mathlib.AlgebraicGeometry.Pullbacks", "llama_tokens": 109064} |
[GOAL]
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n : ℕ
h₀ : x 0 ≤ y 0
hx : ∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k)
hy : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)
⊢ x n ≤ y n
[PROOFSTEP]
induction' n with n ihn
[GOAL]
case zero
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n : ℕ
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k)
hy✝ : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)
hx : ∀ (k : ℕ), k < Nat.zero → x (k + 1) ≤ f (x k)
hy : ∀ (k : ℕ), k < Nat.zero → f (y k) ≤ y (k + 1)
⊢ x Nat.zero ≤ y Nat.zero
[PROOFSTEP]
exact h₀
[GOAL]
case succ
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n✝ : ℕ
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) ≤ f (x k)
hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1)
n : ℕ
ihn : (∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n ≤ y n
hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) ≤ f (x k)
hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)
⊢ x (Nat.succ n) ≤ y (Nat.succ n)
[PROOFSTEP]
refine' (hx _ n.lt_succ_self).trans ((hf $ ihn _ _).trans (hy _ n.lt_succ_self))
[GOAL]
case succ.refine'_1
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n✝ : ℕ
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) ≤ f (x k)
hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1)
n : ℕ
ihn : (∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n ≤ y n
hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) ≤ f (x k)
hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)
⊢ ∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k)
case succ.refine'_2
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n✝ : ℕ
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) ≤ f (x k)
hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1)
n : ℕ
ihn : (∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n ≤ y n
hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) ≤ f (x k)
hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)
⊢ ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)
[PROOFSTEP]
exact fun k hk => hx _ (hk.trans n.lt_succ_self)
[GOAL]
case succ.refine'_2
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n✝ : ℕ
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) ≤ f (x k)
hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1)
n : ℕ
ihn : (∀ (k : ℕ), k < n → x (k + 1) ≤ f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n ≤ y n
hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) ≤ f (x k)
hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)
⊢ ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)
[PROOFSTEP]
exact fun k hk => hy _ (hk.trans n.lt_succ_self)
[GOAL]
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n : ℕ
hn : 0 < n
h₀ : x 0 ≤ y 0
hx : ∀ (k : ℕ), k < n → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)
⊢ x n < y n
[PROOFSTEP]
induction' n with n ihn
[GOAL]
case zero
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n : ℕ
hn✝ : 0 < n
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n → x (k + 1) < f (x k)
hy✝ : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)
hn : 0 < Nat.zero
hx : ∀ (k : ℕ), k < Nat.zero → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < Nat.zero → f (y k) ≤ y (k + 1)
⊢ x Nat.zero < y Nat.zero
[PROOFSTEP]
exact hn.false.elim
[GOAL]
case succ
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n✝ : ℕ
hn✝ : 0 < n✝
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k)
hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1)
n : ℕ
ihn : 0 < n → (∀ (k : ℕ), k < n → x (k + 1) < f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n < y n
hn : 0 < Nat.succ n
hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)
⊢ x (Nat.succ n) < y (Nat.succ n)
[PROOFSTEP]
suffices x n ≤ y n from (hx n n.lt_succ_self).trans_le ((hf this).trans $ hy n n.lt_succ_self)
[GOAL]
case succ
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n✝ : ℕ
hn✝ : 0 < n✝
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k)
hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1)
n : ℕ
ihn : 0 < n → (∀ (k : ℕ), k < n → x (k + 1) < f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n < y n
hn : 0 < Nat.succ n
hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)
⊢ x n ≤ y n
[PROOFSTEP]
cases n with
| zero => exact h₀
| succ n =>
refine' (ihn n.zero_lt_succ (fun k hk => hx _ _) fun k hk => hy _ _).le <;> exact hk.trans n.succ.lt_succ_self
[GOAL]
case succ
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n✝ : ℕ
hn✝ : 0 < n✝
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k)
hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1)
n : ℕ
ihn : 0 < n → (∀ (k : ℕ), k < n → x (k + 1) < f (x k)) → (∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)) → x n < y n
hn : 0 < Nat.succ n
hx : ∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)
⊢ x n ≤ y n
[PROOFSTEP]
cases n with
| zero => exact h₀
| succ n =>
refine' (ihn n.zero_lt_succ (fun k hk => hx _ _) fun k hk => hy _ _).le <;> exact hk.trans n.succ.lt_succ_self
[GOAL]
case succ.zero
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n : ℕ
hn✝ : 0 < n
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n → x (k + 1) < f (x k)
hy✝ : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)
ihn :
0 < Nat.zero →
(∀ (k : ℕ), k < Nat.zero → x (k + 1) < f (x k)) →
(∀ (k : ℕ), k < Nat.zero → f (y k) ≤ y (k + 1)) → x Nat.zero < y Nat.zero
hn : 0 < Nat.succ Nat.zero
hx : ∀ (k : ℕ), k < Nat.succ Nat.zero → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < Nat.succ Nat.zero → f (y k) ≤ y (k + 1)
⊢ x Nat.zero ≤ y Nat.zero
[PROOFSTEP]
| zero => exact h₀
[GOAL]
case succ.zero
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n : ℕ
hn✝ : 0 < n
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n → x (k + 1) < f (x k)
hy✝ : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)
ihn :
0 < Nat.zero →
(∀ (k : ℕ), k < Nat.zero → x (k + 1) < f (x k)) →
(∀ (k : ℕ), k < Nat.zero → f (y k) ≤ y (k + 1)) → x Nat.zero < y Nat.zero
hn : 0 < Nat.succ Nat.zero
hx : ∀ (k : ℕ), k < Nat.succ Nat.zero → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < Nat.succ Nat.zero → f (y k) ≤ y (k + 1)
⊢ x Nat.zero ≤ y Nat.zero
[PROOFSTEP]
exact h₀
[GOAL]
case succ.succ
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n✝ : ℕ
hn✝ : 0 < n✝
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k)
hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1)
n : ℕ
ihn :
0 < Nat.succ n →
(∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k)) →
(∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)) → x (Nat.succ n) < y (Nat.succ n)
hn : 0 < Nat.succ (Nat.succ n)
hx : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → f (y k) ≤ y (k + 1)
⊢ x (Nat.succ n) ≤ y (Nat.succ n)
[PROOFSTEP]
| succ n =>
refine' (ihn n.zero_lt_succ (fun k hk => hx _ _) fun k hk => hy _ _).le <;> exact hk.trans n.succ.lt_succ_self
[GOAL]
case succ.succ
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n✝ : ℕ
hn✝ : 0 < n✝
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k)
hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1)
n : ℕ
ihn :
0 < Nat.succ n →
(∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k)) →
(∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)) → x (Nat.succ n) < y (Nat.succ n)
hn : 0 < Nat.succ (Nat.succ n)
hx : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → f (y k) ≤ y (k + 1)
⊢ x (Nat.succ n) ≤ y (Nat.succ n)
[PROOFSTEP]
refine' (ihn n.zero_lt_succ (fun k hk => hx _ _) fun k hk => hy _ _).le
[GOAL]
case succ.succ.refine'_1
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n✝ : ℕ
hn✝ : 0 < n✝
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k)
hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1)
n : ℕ
ihn :
0 < Nat.succ n →
(∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k)) →
(∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)) → x (Nat.succ n) < y (Nat.succ n)
hn : 0 < Nat.succ (Nat.succ n)
hx : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → f (y k) ≤ y (k + 1)
k : ℕ
hk : k < Nat.succ n
⊢ k < Nat.succ (Nat.succ n)
[PROOFSTEP]
exact hk.trans n.succ.lt_succ_self
[GOAL]
case succ.succ.refine'_2
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n✝ : ℕ
hn✝ : 0 < n✝
h₀ : x 0 ≤ y 0
hx✝ : ∀ (k : ℕ), k < n✝ → x (k + 1) < f (x k)
hy✝ : ∀ (k : ℕ), k < n✝ → f (y k) ≤ y (k + 1)
n : ℕ
ihn :
0 < Nat.succ n →
(∀ (k : ℕ), k < Nat.succ n → x (k + 1) < f (x k)) →
(∀ (k : ℕ), k < Nat.succ n → f (y k) ≤ y (k + 1)) → x (Nat.succ n) < y (Nat.succ n)
hn : 0 < Nat.succ (Nat.succ n)
hx : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < Nat.succ (Nat.succ n) → f (y k) ≤ y (k + 1)
k : ℕ
hk : k < Nat.succ n
⊢ k < Nat.succ (Nat.succ n)
[PROOFSTEP]
exact hk.trans n.succ.lt_succ_self
[GOAL]
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
n : ℕ
h₀ : x 0 < y 0
hx : ∀ (k : ℕ), k < n → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < n → f (y k) ≤ y (k + 1)
⊢ x n < y n
[PROOFSTEP]
cases n
[GOAL]
case zero
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
h₀ : x 0 < y 0
hx : ∀ (k : ℕ), k < Nat.zero → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < Nat.zero → f (y k) ≤ y (k + 1)
⊢ x Nat.zero < y Nat.zero
case succ
α : Type u_1
inst✝ : Preorder α
f : α → α
x y : ℕ → α
hf : Monotone f
h₀ : x 0 < y 0
n✝ : ℕ
hx : ∀ (k : ℕ), k < Nat.succ n✝ → x (k + 1) < f (x k)
hy : ∀ (k : ℕ), k < Nat.succ n✝ → f (y k) ≤ y (k + 1)
⊢ x (Nat.succ n✝) < y (Nat.succ n✝)
[PROOFSTEP]
exacts [h₀, hf.seq_pos_lt_seq_of_lt_of_le (Nat.zero_lt_succ _) h₀.le hx hy]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Preorder α
f : α → α
x✝ y : ℕ → α
g : β → β
h : β → α
hf : Monotone f
H : h ∘ g ≤ f ∘ h
n : ℕ
x : β
⊢ (h ∘ g^[n]) x ≤ (f^[n] ∘ h) x
[PROOFSTEP]
apply hf.seq_le_seq n
[GOAL]
case h₀
α : Type u_1
β : Type u_2
inst✝ : Preorder α
f : α → α
x✝ y : ℕ → α
g : β → β
h : β → α
hf : Monotone f
H : h ∘ g ≤ f ∘ h
n : ℕ
x : β
⊢ (h ∘ g^[0]) x ≤ (f^[0] ∘ h) x
[PROOFSTEP]
intros
[GOAL]
case hx
α : Type u_1
β : Type u_2
inst✝ : Preorder α
f : α → α
x✝ y : ℕ → α
g : β → β
h : β → α
hf : Monotone f
H : h ∘ g ≤ f ∘ h
n : ℕ
x : β
⊢ ∀ (k : ℕ), k < n → (h ∘ g^[k + 1]) x ≤ f ((h ∘ g^[k]) x)
[PROOFSTEP]
intros
[GOAL]
case hy
α : Type u_1
β : Type u_2
inst✝ : Preorder α
f : α → α
x✝ y : ℕ → α
g : β → β
h : β → α
hf : Monotone f
H : h ∘ g ≤ f ∘ h
n : ℕ
x : β
⊢ ∀ (k : ℕ), k < n → f ((f^[k] ∘ h) x) ≤ (f^[k + 1] ∘ h) x
[PROOFSTEP]
intros
[GOAL]
case h₀
α : Type u_1
β : Type u_2
inst✝ : Preorder α
f : α → α
x✝ y : ℕ → α
g : β → β
h : β → α
hf : Monotone f
H : h ∘ g ≤ f ∘ h
n : ℕ
x : β
⊢ (h ∘ g^[0]) x ≤ (f^[0] ∘ h) x
[PROOFSTEP]
simp [iterate_succ', -iterate_succ, comp_apply, id_eq, le_refl]
[GOAL]
case hx
α : Type u_1
β : Type u_2
inst✝ : Preorder α
f : α → α
x✝ y : ℕ → α
g : β → β
h : β → α
hf : Monotone f
H : h ∘ g ≤ f ∘ h
n : ℕ
x : β
k✝ : ℕ
a✝ : k✝ < n
⊢ (h ∘ g^[k✝ + 1]) x ≤ f ((h ∘ g^[k✝]) x)
[PROOFSTEP]
simp [iterate_succ', -iterate_succ, comp_apply, id_eq, le_refl]
[GOAL]
case hy
α : Type u_1
β : Type u_2
inst✝ : Preorder α
f : α → α
x✝ y : ℕ → α
g : β → β
h : β → α
hf : Monotone f
H : h ∘ g ≤ f ∘ h
n : ℕ
x : β
k✝ : ℕ
a✝ : k✝ < n
⊢ f ((f^[k✝] ∘ h) x) ≤ (f^[k✝ + 1] ∘ h) x
[PROOFSTEP]
simp [iterate_succ', -iterate_succ, comp_apply, id_eq, le_refl]
[GOAL]
case hx
α : Type u_1
β : Type u_2
inst✝ : Preorder α
f : α → α
x✝ y : ℕ → α
g : β → β
h : β → α
hf : Monotone f
H : h ∘ g ≤ f ∘ h
n : ℕ
x : β
k✝ : ℕ
a✝ : k✝ < n
⊢ h (g (g^[k✝] x)) ≤ f (h (g^[k✝] x))
[PROOFSTEP]
case hx => exact H _
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Preorder α
f : α → α
x✝ y : ℕ → α
g : β → β
h : β → α
hf : Monotone f
H : h ∘ g ≤ f ∘ h
n : ℕ
x : β
k✝ : ℕ
a✝ : k✝ < n
⊢ h (g (g^[k✝] x)) ≤ f (h (g^[k✝] x))
[PROOFSTEP]
case hx => exact H _
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Preorder α
f : α → α
x✝ y : ℕ → α
g : β → β
h : β → α
hf : Monotone f
H : h ∘ g ≤ f ∘ h
n : ℕ
x : β
k✝ : ℕ
a✝ : k✝ < n
⊢ h (g (g^[k✝] x)) ≤ f (h (g^[k✝] x))
[PROOFSTEP]
exact H _
[GOAL]
α : Type u_1
inst✝ : Preorder α
f : α → α
h : id ≤ f
n : ℕ
⊢ id ≤ f^[n]
[PROOFSTEP]
simpa only [iterate_id] using monotone_id.iterate_le_of_le h n
[GOAL]
α : Type u_1
inst✝ : Preorder α
f : α → α
h : id ≤ f
n : ℕ
x : α
⊢ f^[n] x ≤ f^[n + 1] x
[PROOFSTEP]
rw [iterate_succ_apply']
[GOAL]
α : Type u_1
inst✝ : Preorder α
f : α → α
h : id ≤ f
n : ℕ
x : α
⊢ f^[n] x ≤ f (f^[n] x)
[PROOFSTEP]
exact h _
[GOAL]
α : Type u_1
inst✝ : Preorder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : Monotone g
x : α
hx : f x ≤ g x
n : ℕ
⊢ f^[n] x ≤ g^[n] x
[PROOFSTEP]
apply hf.seq_le_seq n
[GOAL]
case h₀
α : Type u_1
inst✝ : Preorder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : Monotone g
x : α
hx : f x ≤ g x
n : ℕ
⊢ f^[0] x ≤ g^[0] x
[PROOFSTEP]
rfl
[GOAL]
case hx
α : Type u_1
inst✝ : Preorder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : Monotone g
x : α
hx : f x ≤ g x
n : ℕ
⊢ ∀ (k : ℕ), k < n → f^[k + 1] x ≤ f (f^[k] x)
[PROOFSTEP]
intros
[GOAL]
case hx
α : Type u_1
inst✝ : Preorder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : Monotone g
x : α
hx : f x ≤ g x
n k✝ : ℕ
a✝ : k✝ < n
⊢ f^[k✝ + 1] x ≤ f (f^[k✝] x)
[PROOFSTEP]
rw [iterate_succ_apply']
[GOAL]
case hy
α : Type u_1
inst✝ : Preorder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : Monotone g
x : α
hx : f x ≤ g x
n : ℕ
⊢ ∀ (k : ℕ), k < n → f (g^[k] x) ≤ g^[k + 1] x
[PROOFSTEP]
intros
[GOAL]
case hy
α : Type u_1
inst✝ : Preorder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : Monotone g
x : α
hx : f x ≤ g x
n k✝ : ℕ
a✝ : k✝ < n
⊢ f (g^[k✝] x) ≤ g^[k✝ + 1] x
[PROOFSTEP]
simp [h.iterate_right _ _, hg.iterate _ hx]
[GOAL]
α : Type u_1
inst✝ : Preorder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : StrictMono g
x : α
hx : f x < g x
n : ℕ
hn : 0 < n
⊢ f^[n] x < g^[n] x
[PROOFSTEP]
apply hf.seq_pos_lt_seq_of_le_of_lt hn
[GOAL]
case h₀
α : Type u_1
inst✝ : Preorder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : StrictMono g
x : α
hx : f x < g x
n : ℕ
hn : 0 < n
⊢ f^[0] x ≤ g^[0] x
[PROOFSTEP]
rfl
[GOAL]
case hx
α : Type u_1
inst✝ : Preorder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : StrictMono g
x : α
hx : f x < g x
n : ℕ
hn : 0 < n
⊢ ∀ (k : ℕ), k < n → f^[k + 1] x ≤ f (f^[k] x)
[PROOFSTEP]
intros
[GOAL]
case hx
α : Type u_1
inst✝ : Preorder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : StrictMono g
x : α
hx : f x < g x
n : ℕ
hn : 0 < n
k✝ : ℕ
a✝ : k✝ < n
⊢ f^[k✝ + 1] x ≤ f (f^[k✝] x)
[PROOFSTEP]
rw [iterate_succ_apply']
[GOAL]
case hy
α : Type u_1
inst✝ : Preorder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : StrictMono g
x : α
hx : f x < g x
n : ℕ
hn : 0 < n
⊢ ∀ (k : ℕ), k < n → f (g^[k] x) < g^[k + 1] x
[PROOFSTEP]
intros
[GOAL]
case hy
α : Type u_1
inst✝ : Preorder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : StrictMono g
x : α
hx : f x < g x
n : ℕ
hn : 0 < n
k✝ : ℕ
a✝ : k✝ < n
⊢ f (g^[k✝] x) < g^[k✝ + 1] x
[PROOFSTEP]
simp [h.iterate_right _ _, hg.iterate _ hx]
[GOAL]
α : Type u_1
inst✝ : LinearOrder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : StrictMono g
x : α
n : ℕ
hn : 0 < n
⊢ f^[n] x < g^[n] x ↔ f x < g x
[PROOFSTEP]
rcases lt_trichotomy (f x) (g x) with (H | H | H)
[GOAL]
case inl
α : Type u_1
inst✝ : LinearOrder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : StrictMono g
x : α
n : ℕ
hn : 0 < n
H : f x < g x
⊢ f^[n] x < g^[n] x ↔ f x < g x
[PROOFSTEP]
simp only [*, iterate_pos_lt_of_map_lt]
[GOAL]
case inr.inl
α : Type u_1
inst✝ : LinearOrder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : StrictMono g
x : α
n : ℕ
hn : 0 < n
H : f x = g x
⊢ f^[n] x < g^[n] x ↔ f x < g x
[PROOFSTEP]
simp only [*, h.iterate_eq_of_map_eq, lt_irrefl]
[GOAL]
case inr.inr
α : Type u_1
inst✝ : LinearOrder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : StrictMono g
x : α
n : ℕ
hn : 0 < n
H : g x < f x
⊢ f^[n] x < g^[n] x ↔ f x < g x
[PROOFSTEP]
simp only [lt_asymm H, lt_asymm (h.symm.iterate_pos_lt_of_map_lt' hg hf H hn)]
[GOAL]
α : Type u_1
inst✝ : LinearOrder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : StrictMono g
x : α
n : ℕ
hn : 0 < n
⊢ f^[n] x ≤ g^[n] x ↔ f x ≤ g x
[PROOFSTEP]
simpa only [not_lt] using not_congr (h.symm.iterate_pos_lt_iff_map_lt' hg hf hn)
[GOAL]
α : Type u_1
inst✝ : LinearOrder α
f g : α → α
h : Commute f g
hf : StrictMono f
hg : Monotone g
x : α
n : ℕ
hn : 0 < n
⊢ f^[n] x ≤ g^[n] x ↔ f x ≤ g x
[PROOFSTEP]
simpa only [not_lt] using not_congr (h.symm.iterate_pos_lt_iff_map_lt hg hf hn)
[GOAL]
α : Type u_1
inst✝ : LinearOrder α
f g : α → α
h : Commute f g
hf : Monotone f
hg : StrictMono g
x : α
n : ℕ
hn : 0 < n
⊢ f^[n] x = g^[n] x ↔ f x = g x
[PROOFSTEP]
simp only [le_antisymm_iff, h.iterate_pos_le_iff_map_le hf hg hn, h.symm.iterate_pos_le_iff_map_le' hg hf hn]
[GOAL]
α : Type u_1
inst✝ : Preorder α
f : α → α
x : α
hf : Monotone f
hx : x ≤ f x
n : ℕ
⊢ f^[n] x ≤ f^[n + 1] x
[PROOFSTEP]
rw [iterate_succ_apply]
[GOAL]
α : Type u_1
inst✝ : Preorder α
f : α → α
x : α
hf : Monotone f
hx : x ≤ f x
n : ℕ
⊢ f^[n] x ≤ f^[n] (f x)
[PROOFSTEP]
exact hf.iterate n hx
[GOAL]
α : Type u_1
inst✝ : Preorder α
f : α → α
x : α
hf : StrictMono f
hx : x < f x
n : ℕ
⊢ f^[n] x < f^[n + 1] x
[PROOFSTEP]
rw [iterate_succ_apply]
[GOAL]
α : Type u_1
inst✝ : Preorder α
f : α → α
x : α
hf : StrictMono f
hx : x < f x
n : ℕ
⊢ f^[n] x < f^[n] (f x)
[PROOFSTEP]
exact hf.iterate n hx
| {"mathlib_filename": "Mathlib.Order.Iterate", "llama_tokens": 10646} |
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : SemilatticeSup α
a b c : α
⊢ ¬SupIrred a ↔ IsMin a ∨ ∃ b c, b ⊔ c = a ∧ b < a ∧ c < a
[PROOFSTEP]
rw [SupIrred, not_and_or]
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : SemilatticeSup α
a b c : α
⊢ (¬¬IsMin a ∨ ¬∀ ⦃b c : α⦄, b ⊔ c = a → b = a ∨ c = a) ↔ IsMin a ∨ ∃ b c, b ⊔ c = a ∧ b < a ∧ c < a
[PROOFSTEP]
push_neg
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : SemilatticeSup α
a b c : α
⊢ (IsMin a ∨ Exists fun ⦃b⦄ => Exists fun ⦃c⦄ => b ⊔ c = a ∧ b ≠ a ∧ c ≠ a) ↔ IsMin a ∨ ∃ b c, b ⊔ c = a ∧ b < a ∧ c < a
[PROOFSTEP]
rw [exists₂_congr]
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : SemilatticeSup α
a b c : α
⊢ ∀ (a_1 b : α), a_1 ⊔ b = a ∧ a_1 ≠ a ∧ b ≠ a ↔ a_1 ⊔ b = a ∧ a_1 < a ∧ b < a
[PROOFSTEP]
simp (config := { contextual := true }) [@eq_comm _ _ a]
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : SemilatticeSup α
a b c : α
⊢ ¬SupPrime a ↔ IsMin a ∨ ∃ b c, a ≤ b ⊔ c ∧ ¬a ≤ b ∧ ¬a ≤ c
[PROOFSTEP]
rw [SupPrime, not_and_or]
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : SemilatticeSup α
a b c : α
⊢ (¬¬IsMin a ∨ ¬∀ ⦃b c : α⦄, a ≤ b ⊔ c → a ≤ b ∨ a ≤ c) ↔ IsMin a ∨ ∃ b c, a ≤ b ⊔ c ∧ ¬a ≤ b ∧ ¬a ≤ c
[PROOFSTEP]
push_neg
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : SemilatticeSup α
a b c : α
⊢ (IsMin a ∨ Exists fun ⦃b⦄ => Exists fun ⦃c⦄ => a ≤ b ⊔ c ∧ ¬a ≤ b ∧ ¬a ≤ c) ↔
IsMin a ∨ ∃ b c, a ≤ b ⊔ c ∧ ¬a ≤ b ∧ ¬a ≤ c
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : SemilatticeSup α
a b✝ c✝ : α
h : ∀ ⦃b c : α⦄, a ≤ b ⊔ c → a ≤ b ∨ a ≤ c
b c : α
ha : b ⊔ c = a
⊢ b = a ∨ c = a
[PROOFSTEP]
simpa [← ha] using h ha.ge
[GOAL]
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
a b c : α
inst✝ : OrderBot α
s : Finset ι
f : ι → α
ha : SupIrred a
⊢ a ≠ ⊥
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
b c : α
inst✝ : OrderBot α
s : Finset ι
f : ι → α
ha : SupIrred ⊥
⊢ False
[PROOFSTEP]
exact not_supIrred_bot ha
[GOAL]
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
a b c : α
inst✝ : OrderBot α
s : Finset ι
f : ι → α
ha : SupPrime a
⊢ a ≠ ⊥
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
b c : α
inst✝ : OrderBot α
s : Finset ι
f : ι → α
ha : SupPrime ⊥
⊢ False
[PROOFSTEP]
exact not_supPrime_bot ha
[GOAL]
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
a b c : α
inst✝ : OrderBot α
s : Finset ι
f : ι → α
ha : SupIrred a
h : sup s f = a
⊢ ∃ i, i ∈ s ∧ f i = a
[PROOFSTEP]
classical
induction' s using Finset.induction with i s _ ih
· simpa [ha.ne_bot] using h.symm
simp only [exists_prop, exists_mem_insert] at ih ⊢
rw [sup_insert] at h
exact (ha.2 h).imp_right ih
[GOAL]
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
a b c : α
inst✝ : OrderBot α
s : Finset ι
f : ι → α
ha : SupIrred a
h : sup s f = a
⊢ ∃ i, i ∈ s ∧ f i = a
[PROOFSTEP]
induction' s using Finset.induction with i s _ ih
[GOAL]
case empty
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
a b c : α
inst✝ : OrderBot α
s : Finset ι
f : ι → α
ha : SupIrred a
h✝ : sup s f = a
h : sup ∅ f = a
⊢ ∃ i, i ∈ ∅ ∧ f i = a
[PROOFSTEP]
simpa [ha.ne_bot] using h.symm
[GOAL]
case insert
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
a b c : α
inst✝ : OrderBot α
s✝ : Finset ι
f : ι → α
ha : SupIrred a
h✝ : sup s✝ f = a
i : ι
s : Finset ι
a✝ : ¬i ∈ s
ih : sup s f = a → ∃ i, i ∈ s ∧ f i = a
h : sup (insert i s) f = a
⊢ ∃ i_1, i_1 ∈ insert i s ∧ f i_1 = a
[PROOFSTEP]
simp only [exists_prop, exists_mem_insert] at ih ⊢
[GOAL]
case insert
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
a b c : α
inst✝ : OrderBot α
s✝ : Finset ι
f : ι → α
ha : SupIrred a
h✝ : sup s✝ f = a
i : ι
s : Finset ι
a✝ : ¬i ∈ s
ih : sup s f = a → ∃ i, i ∈ s ∧ f i = a
h : sup (insert i s) f = a
⊢ f i = a ∨ ∃ x, x ∈ s ∧ f x = a
[PROOFSTEP]
rw [sup_insert] at h
[GOAL]
case insert
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
a b c : α
inst✝ : OrderBot α
s✝ : Finset ι
f : ι → α
ha : SupIrred a
h✝ : sup s✝ f = a
i : ι
s : Finset ι
a✝ : ¬i ∈ s
ih : sup s f = a → ∃ i, i ∈ s ∧ f i = a
h : f i ⊔ sup s f = a
⊢ f i = a ∨ ∃ x, x ∈ s ∧ f x = a
[PROOFSTEP]
exact (ha.2 h).imp_right ih
[GOAL]
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
a b c : α
inst✝ : OrderBot α
s : Finset ι
f : ι → α
ha : SupPrime a
⊢ a ≤ sup s f ↔ ∃ i, i ∈ s ∧ a ≤ f i
[PROOFSTEP]
classical
induction' s using Finset.induction with i s _ ih
· simp [ha.ne_bot]
· simp only [exists_prop, exists_mem_insert, sup_insert, ha.le_sup, ih]
[GOAL]
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
a b c : α
inst✝ : OrderBot α
s : Finset ι
f : ι → α
ha : SupPrime a
⊢ a ≤ sup s f ↔ ∃ i, i ∈ s ∧ a ≤ f i
[PROOFSTEP]
induction' s using Finset.induction with i s _ ih
[GOAL]
case empty
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
a b c : α
inst✝ : OrderBot α
s : Finset ι
f : ι → α
ha : SupPrime a
⊢ a ≤ sup ∅ f ↔ ∃ i, i ∈ ∅ ∧ a ≤ f i
[PROOFSTEP]
simp [ha.ne_bot]
[GOAL]
case insert
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeSup α
a b c : α
inst✝ : OrderBot α
s✝ : Finset ι
f : ι → α
ha : SupPrime a
i : ι
s : Finset ι
a✝ : ¬i ∈ s
ih : a ≤ sup s f ↔ ∃ i, i ∈ s ∧ a ≤ f i
⊢ a ≤ sup (insert i s) f ↔ ∃ i_1, i_1 ∈ insert i s ∧ a ≤ f i_1
[PROOFSTEP]
simp only [exists_prop, exists_mem_insert, sup_insert, ha.le_sup, ih]
[GOAL]
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a✝ b c : α
inst✝¹ : OrderBot α
s : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
a : α
⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
[PROOFSTEP]
classical
apply WellFoundedLT.induction a _
clear a
rintro a ih
by_cases ha : SupIrred a
· exact ⟨{ a }, by simp [ha]⟩
rw [not_supIrred] at ha
obtain ha | ⟨b, c, rfl, hb, hc⟩ := ha
· exact ⟨∅, by simp [ha.eq_bot]⟩
obtain ⟨s, rfl, hs⟩ := ih _ hb
obtain ⟨t, rfl, ht⟩ := ih _ hc
exact ⟨s ∪ t, sup_union, forall_mem_union.2 ⟨hs, ht⟩⟩
[GOAL]
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a✝ b c : α
inst✝¹ : OrderBot α
s : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
a : α
⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
[PROOFSTEP]
apply WellFoundedLT.induction a _
[GOAL]
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a✝ b c : α
inst✝¹ : OrderBot α
s : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
a : α
⊢ ∀ (x : α),
(∀ (y : α), y < x → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b) →
∃ s, sup s id = x ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
[PROOFSTEP]
clear a
[GOAL]
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a b c : α
inst✝¹ : OrderBot α
s : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
⊢ ∀ (x : α),
(∀ (y : α), y < x → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b) →
∃ s, sup s id = x ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
[PROOFSTEP]
rintro a ih
[GOAL]
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a✝ b c : α
inst✝¹ : OrderBot α
s : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
a : α
ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
[PROOFSTEP]
by_cases ha : SupIrred a
[GOAL]
case pos
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a✝ b c : α
inst✝¹ : OrderBot α
s : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
a : α
ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
ha : SupIrred a
⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
[PROOFSTEP]
exact ⟨{ a }, by simp [ha]⟩
[GOAL]
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a✝ b c : α
inst✝¹ : OrderBot α
s : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
a : α
ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
ha : SupIrred a
⊢ sup {a} id = a ∧ ∀ ⦃b : α⦄, b ∈ {a} → SupIrred b
[PROOFSTEP]
simp [ha]
[GOAL]
case neg
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a✝ b c : α
inst✝¹ : OrderBot α
s : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
a : α
ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
ha : ¬SupIrred a
⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
[PROOFSTEP]
rw [not_supIrred] at ha
[GOAL]
case neg
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a✝ b c : α
inst✝¹ : OrderBot α
s : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
a : α
ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
ha : IsMin a ∨ ∃ b c, b ⊔ c = a ∧ b < a ∧ c < a
⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
[PROOFSTEP]
obtain ha | ⟨b, c, rfl, hb, hc⟩ := ha
[GOAL]
case neg.inl
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a✝ b c : α
inst✝¹ : OrderBot α
s : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
a : α
ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
ha : IsMin a
⊢ ∃ s, sup s id = a ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
[PROOFSTEP]
exact ⟨∅, by simp [ha.eq_bot]⟩
[GOAL]
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a✝ b c : α
inst✝¹ : OrderBot α
s : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
a : α
ih : ∀ (y : α), y < a → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
ha : IsMin a
⊢ sup ∅ id = a ∧ ∀ ⦃b : α⦄, b ∈ ∅ → SupIrred b
[PROOFSTEP]
simp [ha.eq_bot]
[GOAL]
case neg.inr.intro.intro.intro.intro
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a b✝ c✝ : α
inst✝¹ : OrderBot α
s : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
b c : α
ih : ∀ (y : α), y < b ⊔ c → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
hb : b < b ⊔ c
hc : c < b ⊔ c
⊢ ∃ s, sup s id = b ⊔ c ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
[PROOFSTEP]
obtain ⟨s, rfl, hs⟩ := ih _ hb
[GOAL]
case neg.inr.intro.intro.intro.intro.intro.intro
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a b c✝ : α
inst✝¹ : OrderBot α
s✝ : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
c : α
s : Finset α
hs : ∀ ⦃b : α⦄, b ∈ s → SupIrred b
ih : ∀ (y : α), y < sup s id ⊔ c → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
hb : sup s id < sup s id ⊔ c
hc : c < sup s id ⊔ c
⊢ ∃ s_1, sup s_1 id = sup s id ⊔ c ∧ ∀ ⦃b : α⦄, b ∈ s_1 → SupIrred b
[PROOFSTEP]
obtain ⟨t, rfl, ht⟩ := ih _ hc
[GOAL]
case neg.inr.intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u_1
α : Type u_2
inst✝² : SemilatticeSup α
a b c : α
inst✝¹ : OrderBot α
s✝ : Finset ι
f : ι → α
inst✝ : WellFoundedLT α
s : Finset α
hs : ∀ ⦃b : α⦄, b ∈ s → SupIrred b
t : Finset α
ht : ∀ ⦃b : α⦄, b ∈ t → SupIrred b
ih : ∀ (y : α), y < sup s id ⊔ sup t id → ∃ s, sup s id = y ∧ ∀ ⦃b : α⦄, b ∈ s → SupIrred b
hb : sup s id < sup s id ⊔ sup t id
hc : sup t id < sup s id ⊔ sup t id
⊢ ∃ s_1, sup s_1 id = sup s id ⊔ sup t id ∧ ∀ ⦃b : α⦄, b ∈ s_1 → SupIrred b
[PROOFSTEP]
exact ⟨s ∪ t, sup_union, forall_mem_union.2 ⟨hs, ht⟩⟩
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : SemilatticeInf α
a b✝ c✝ : α
h : ∀ ⦃b c : α⦄, b ⊓ c ≤ a → b ≤ a ∨ c ≤ a
b c : α
ha : b ⊓ c = a
⊢ b = a ∨ c = a
[PROOFSTEP]
simpa [← ha] using h ha.le
[GOAL]
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeInf α
a b c : α
inst✝ : OrderTop α
s : Finset ι
f : ι → α
ha : InfIrred a
⊢ a ≠ ⊤
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeInf α
b c : α
inst✝ : OrderTop α
s : Finset ι
f : ι → α
ha : InfIrred ⊤
⊢ False
[PROOFSTEP]
exact not_infIrred_top ha
[GOAL]
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeInf α
a b c : α
inst✝ : OrderTop α
s : Finset ι
f : ι → α
ha : InfPrime a
⊢ a ≠ ⊤
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
α : Type u_2
inst✝¹ : SemilatticeInf α
b c : α
inst✝ : OrderTop α
s : Finset ι
f : ι → α
ha : InfPrime ⊤
⊢ False
[PROOFSTEP]
exact not_infPrime_top ha
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : DistribLattice α
a b✝ c✝ : α
h : ∀ ⦃b c : α⦄, b ⊔ c = a → b = a ∨ c = a
b c : α
⊢ a ≤ b ⊔ c → a ≤ b ∨ a ≤ c
[PROOFSTEP]
simp_rw [← inf_eq_left, inf_sup_left]
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : DistribLattice α
a b✝ c✝ : α
h : ∀ ⦃b c : α⦄, b ⊔ c = a → b = a ∨ c = a
b c : α
⊢ a ⊓ b ⊔ a ⊓ c = a → a ⊓ b = a ∨ a ⊓ c = a
[PROOFSTEP]
exact @h _ _
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : DistribLattice α
a b✝ c✝ : α
h : ∀ ⦃b c : α⦄, b ⊓ c = a → b = a ∨ c = a
b c : α
⊢ b ⊓ c ≤ a → b ≤ a ∨ c ≤ a
[PROOFSTEP]
simp_rw [← sup_eq_left, sup_inf_left]
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : DistribLattice α
a b✝ c✝ : α
h : ∀ ⦃b c : α⦄, b ⊓ c = a → b = a ∨ c = a
b c : α
⊢ (a ⊔ b) ⊓ (a ⊔ c) = a → a ⊔ b = a ∨ a ⊔ c = a
[PROOFSTEP]
exact @h _ _
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : LinearOrder α
a : α
⊢ ∀ ⦃b c : α⦄, a ≤ b ⊔ c → a ≤ b ∨ a ≤ c
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : LinearOrder α
a : α
⊢ ∀ ⦃b c : α⦄, b ⊓ c ≤ a → b ≤ a ∨ c ≤ a
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : LinearOrder α
a x✝¹ x✝ : α
⊢ x✝¹ ⊔ x✝ = a → x✝¹ = a ∨ x✝ = a
[PROOFSTEP]
simpa only [sup_eq_max, max_eq_iff] using Or.imp And.left And.left
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : LinearOrder α
a x✝¹ x✝ : α
⊢ x✝¹ ⊓ x✝ = a → x✝¹ = a ∨ x✝ = a
[PROOFSTEP]
simpa only [inf_eq_min, min_eq_iff] using Or.imp And.left And.left
| {"mathlib_filename": "Mathlib.Order.Irreducible", "llama_tokens": 7347} |
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
T' : Theory L
L' : Language
φ : L →ᴸ L'
h : LHom.Injective φ
⊢ IsSatisfiable (LHom.onTheory φ T) ↔ IsSatisfiable T
[PROOFSTEP]
classical
refine' ⟨isSatisfiable_of_isSatisfiable_onTheory φ, fun h' => _⟩
haveI : Inhabited h'.some := Classical.inhabited_of_nonempty'
exact Model.isSatisfiable (h'.some.defaultExpansion h)
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
T' : Theory L
L' : Language
φ : L →ᴸ L'
h : LHom.Injective φ
⊢ IsSatisfiable (LHom.onTheory φ T) ↔ IsSatisfiable T
[PROOFSTEP]
refine' ⟨isSatisfiable_of_isSatisfiable_onTheory φ, fun h' => _⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
T' : Theory L
L' : Language
φ : L →ᴸ L'
h : LHom.Injective φ
h' : IsSatisfiable T
⊢ IsSatisfiable (LHom.onTheory φ T)
[PROOFSTEP]
haveI : Inhabited h'.some := Classical.inhabited_of_nonempty'
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
T' : Theory L
L' : Language
φ : L →ᴸ L'
h : LHom.Injective φ
h' : IsSatisfiable T
this : Inhabited ↑(Nonempty.some h')
⊢ IsSatisfiable (LHom.onTheory φ T)
[PROOFSTEP]
exact Model.isSatisfiable (h'.some.defaultExpansion h)
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
h : IsFinitelySatisfiable T
⊢ IsSatisfiable T
[PROOFSTEP]
classical
set M : Finset T → Type max u v := fun T0 : Finset T =>
(h (T0.map (Function.Embedding.subtype fun x => x ∈ T)) T0.map_subtype_subset).some.Carrier
let M' := Filter.Product (Ultrafilter.of (Filter.atTop : Filter (Finset T))) M
have h' : M' ⊨ T := by
refine' ⟨fun φ hφ => _⟩
rw [Ultraproduct.sentence_realize]
refine'
Filter.Eventually.filter_mono (Ultrafilter.of_le _)
(Filter.eventually_atTop.2
⟨{⟨φ, hφ⟩}, fun s h' => Theory.realize_sentence_of_mem (s.map (Function.Embedding.subtype fun x => x ∈ T)) _⟩)
simp only [Finset.coe_map, Function.Embedding.coe_subtype, Set.mem_image, Finset.mem_coe, Subtype.exists,
Subtype.coe_mk, exists_and_right, exists_eq_right]
exact ⟨hφ, h' (Finset.mem_singleton_self _)⟩
exact ⟨ModelType.of T M'⟩
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
h : IsFinitelySatisfiable T
⊢ IsSatisfiable T
[PROOFSTEP]
set M : Finset T → Type max u v := fun T0 : Finset T =>
(h (T0.map (Function.Embedding.subtype fun x => x ∈ T)) T0.map_subtype_subset).some.Carrier
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
h : IsFinitelySatisfiable T
M : Finset ↑T → Type (max u v) :=
fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0)))
⊢ IsSatisfiable T
[PROOFSTEP]
let M' := Filter.Product (Ultrafilter.of (Filter.atTop : Filter (Finset T))) M
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
h : IsFinitelySatisfiable T
M : Finset ↑T → Type (max u v) :=
fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0)))
M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M
⊢ IsSatisfiable T
[PROOFSTEP]
have h' : M' ⊨ T := by
refine' ⟨fun φ hφ => _⟩
rw [Ultraproduct.sentence_realize]
refine'
Filter.Eventually.filter_mono (Ultrafilter.of_le _)
(Filter.eventually_atTop.2
⟨{⟨φ, hφ⟩}, fun s h' => Theory.realize_sentence_of_mem (s.map (Function.Embedding.subtype fun x => x ∈ T)) _⟩)
simp only [Finset.coe_map, Function.Embedding.coe_subtype, Set.mem_image, Finset.mem_coe, Subtype.exists,
Subtype.coe_mk, exists_and_right, exists_eq_right]
exact ⟨hφ, h' (Finset.mem_singleton_self _)⟩
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
h : IsFinitelySatisfiable T
M : Finset ↑T → Type (max u v) :=
fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0)))
M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M
⊢ M' ⊨ T
[PROOFSTEP]
refine' ⟨fun φ hφ => _⟩
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
h : IsFinitelySatisfiable T
M : Finset ↑T → Type (max u v) :=
fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0)))
M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M
φ : Sentence L
hφ : φ ∈ T
⊢ M' ⊨ φ
[PROOFSTEP]
rw [Ultraproduct.sentence_realize]
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
h : IsFinitelySatisfiable T
M : Finset ↑T → Type (max u v) :=
fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0)))
M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M
φ : Sentence L
hφ : φ ∈ T
⊢ ∀ᶠ (a : Finset ↑T) in ↑(Ultrafilter.of Filter.atTop), M a ⊨ φ
[PROOFSTEP]
refine'
Filter.Eventually.filter_mono (Ultrafilter.of_le _)
(Filter.eventually_atTop.2
⟨{⟨φ, hφ⟩}, fun s h' => Theory.realize_sentence_of_mem (s.map (Function.Embedding.subtype fun x => x ∈ T)) _⟩)
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
h : IsFinitelySatisfiable T
M : Finset ↑T → Type (max u v) :=
fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0)))
M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M
φ : Sentence L
hφ : φ ∈ T
s : Finset ↑T
h' : s ≥ {{ val := φ, property := hφ }}
⊢ φ ∈ ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) s)
[PROOFSTEP]
simp only [Finset.coe_map, Function.Embedding.coe_subtype, Set.mem_image, Finset.mem_coe, Subtype.exists,
Subtype.coe_mk, exists_and_right, exists_eq_right]
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
h : IsFinitelySatisfiable T
M : Finset ↑T → Type (max u v) :=
fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0)))
M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M
φ : Sentence L
hφ : φ ∈ T
s : Finset ↑T
h' : s ≥ {{ val := φ, property := hφ }}
⊢ ∃ x, { val := φ, property := (_ : φ ∈ T) } ∈ s
[PROOFSTEP]
exact ⟨hφ, h' (Finset.mem_singleton_self _)⟩
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
h : IsFinitelySatisfiable T
M : Finset ↑T → Type (max u v) :=
fun T0 => ↑(Nonempty.some (_ : IsSatisfiable ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ T) T0)))
M' : Type (max u v) := Filter.Product (↑(Ultrafilter.of Filter.atTop)) M
h' : M' ⊨ T
⊢ IsSatisfiable T
[PROOFSTEP]
exact ⟨ModelType.of T M'⟩
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' : Theory L
ι : Type u_1
inst✝ : Nonempty ι
T : ι → Theory L
h : Directed (fun x x_1 => x ⊆ x_1) T
⊢ IsSatisfiable (⋃ (i : ι), T i) ↔ ∀ (i : ι), IsSatisfiable (T i)
[PROOFSTEP]
refine' ⟨fun h' i => h'.mono (Set.subset_iUnion _ _), fun h' => _⟩
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' : Theory L
ι : Type u_1
inst✝ : Nonempty ι
T : ι → Theory L
h : Directed (fun x x_1 => x ⊆ x_1) T
h' : ∀ (i : ι), IsSatisfiable (T i)
⊢ IsSatisfiable (⋃ (i : ι), T i)
[PROOFSTEP]
rw [isSatisfiable_iff_isFinitelySatisfiable, IsFinitelySatisfiable]
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' : Theory L
ι : Type u_1
inst✝ : Nonempty ι
T : ι → Theory L
h : Directed (fun x x_1 => x ⊆ x_1) T
h' : ∀ (i : ι), IsSatisfiable (T i)
⊢ ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ ⋃ (i : ι), T i → IsSatisfiable ↑T0
[PROOFSTEP]
intro T0 hT0
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' : Theory L
ι : Type u_1
inst✝ : Nonempty ι
T : ι → Theory L
h : Directed (fun x x_1 => x ⊆ x_1) T
h' : ∀ (i : ι), IsSatisfiable (T i)
T0 : Finset (Sentence L)
hT0 : ↑T0 ⊆ ⋃ (i : ι), T i
⊢ IsSatisfiable ↑T0
[PROOFSTEP]
obtain ⟨i, hi⟩ := h.exists_mem_subset_of_finset_subset_biUnion hT0
[GOAL]
case intro
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' : Theory L
ι : Type u_1
inst✝ : Nonempty ι
T : ι → Theory L
h : Directed (fun x x_1 => x ⊆ x_1) T
h' : ∀ (i : ι), IsSatisfiable (T i)
T0 : Finset (Sentence L)
hT0 : ↑T0 ⊆ ⋃ (i : ι), T i
i : ι
hi : ↑T0 ⊆ T i
⊢ IsSatisfiable ↑T0
[PROOFSTEP]
exact (h' i).mono hi
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Nonempty M
inst✝¹ : Structure L M
inst✝ : M ⊨ T
h : lift #↑s ≤ lift #M
⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s)
[PROOFSTEP]
haveI : Inhabited M := Classical.inhabited_of_nonempty inferInstance
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Nonempty M
inst✝¹ : Structure L M
inst✝ : M ⊨ T
h : lift #↑s ≤ lift #M
this : Inhabited M
⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s)
[PROOFSTEP]
rw [Cardinal.lift_mk_le'] at h
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Nonempty M
inst✝¹ : Structure L M
inst✝ : M ⊨ T
h : Nonempty (↑s ↪ M)
this : Inhabited M
⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s)
[PROOFSTEP]
letI : (constantsOn α).Structure M := constantsOn.structure (Function.extend (↑) h.some default)
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Nonempty M
inst✝¹ : Structure L M
inst✝ : M ⊨ T
h : Nonempty (↑s ↪ M)
this✝ : Inhabited M
this : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default)
⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s)
[PROOFSTEP]
have : M ⊨ (L.lhomWithConstants α).onTheory T ∪ L.distinctConstantsTheory s :=
by
refine' ((LHom.onTheory_model _ _).2 inferInstance).union _
rw [model_distinctConstantsTheory]
refine' fun a as b bs ab => _
rw [← Subtype.coe_mk a as, ← Subtype.coe_mk b bs, ← Subtype.ext_iff]
exact
h.some.injective
((Subtype.coe_injective.extend_apply h.some default ⟨a, as⟩).symm.trans
(ab.trans (Subtype.coe_injective.extend_apply h.some default ⟨b, bs⟩)))
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Nonempty M
inst✝¹ : Structure L M
inst✝ : M ⊨ T
h : Nonempty (↑s ↪ M)
this✝ : Inhabited M
this : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default)
⊢ M ⊨ LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s
[PROOFSTEP]
refine' ((LHom.onTheory_model _ _).2 inferInstance).union _
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Nonempty M
inst✝¹ : Structure L M
inst✝ : M ⊨ T
h : Nonempty (↑s ↪ M)
this✝ : Inhabited M
this : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default)
⊢ M ⊨ distinctConstantsTheory L s
[PROOFSTEP]
rw [model_distinctConstantsTheory]
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Nonempty M
inst✝¹ : Structure L M
inst✝ : M ⊨ T
h : Nonempty (↑s ↪ M)
this✝ : Inhabited M
this : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default)
⊢ Set.InjOn (fun i => ↑(Language.con L i)) s
[PROOFSTEP]
refine' fun a as b bs ab => _
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Nonempty M
inst✝¹ : Structure L M
inst✝ : M ⊨ T
h : Nonempty (↑s ↪ M)
this✝ : Inhabited M
this : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default)
a : α
as : a ∈ s
b : α
bs : b ∈ s
ab : (fun i => ↑(Language.con L i)) a = (fun i => ↑(Language.con L i)) b
⊢ a = b
[PROOFSTEP]
rw [← Subtype.coe_mk a as, ← Subtype.coe_mk b bs, ← Subtype.ext_iff]
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Nonempty M
inst✝¹ : Structure L M
inst✝ : M ⊨ T
h : Nonempty (↑s ↪ M)
this✝ : Inhabited M
this : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default)
a : α
as : a ∈ s
b : α
bs : b ∈ s
ab : (fun i => ↑(Language.con L i)) a = (fun i => ↑(Language.con L i)) b
⊢ { val := a, property := as } = { val := b, property := bs }
[PROOFSTEP]
exact
h.some.injective
((Subtype.coe_injective.extend_apply h.some default ⟨a, as⟩).symm.trans
(ab.trans (Subtype.coe_injective.extend_apply h.some default ⟨b, bs⟩)))
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Nonempty M
inst✝¹ : Structure L M
inst✝ : M ⊨ T
h : Nonempty (↑s ↪ M)
this✝¹ : Inhabited M
this✝ : Structure (constantsOn α) M := constantsOn.structure (Function.extend Subtype.val (↑(Nonempty.some h)) default)
this : M ⊨ LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s
⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s)
[PROOFSTEP]
exact Model.isSatisfiable M
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s)
[PROOFSTEP]
classical
rw [distinctConstantsTheory_eq_iUnion, Set.union_iUnion, isSatisfiable_directed_union_iff]
·
exact fun t =>
isSatisfiable_union_distinctConstantsTheory_of_card_le T _ M
((lift_le_aleph0.2 (finset_card_lt_aleph0 _).le).trans (aleph0_le_lift.2 (aleph0_le_mk M)))
· apply Monotone.directed_le
refine' monotone_const.union (monotone_distinctConstantsTheory.comp _)
simp only [Finset.coe_map, Function.Embedding.coe_subtype]
exact
Monotone.comp (g := Set.image ((↑) : s → α)) (f := ((↑) : Finset s → Set s)) Set.monotone_image fun _ _ =>
Finset.coe_subset.2
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
⊢ IsSatisfiable (LHom.onTheory (lhomWithConstants L α) T ∪ distinctConstantsTheory L s)
[PROOFSTEP]
rw [distinctConstantsTheory_eq_iUnion, Set.union_iUnion, isSatisfiable_directed_union_iff]
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
⊢ ∀ (i : Finset ↑s),
IsSatisfiable
(LHom.onTheory (lhomWithConstants L α) T ∪
distinctConstantsTheory L ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i))
[PROOFSTEP]
exact fun t =>
isSatisfiable_union_distinctConstantsTheory_of_card_le T _ M
((lift_le_aleph0.2 (finset_card_lt_aleph0 _).le).trans (aleph0_le_lift.2 (aleph0_le_mk M)))
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
⊢ Directed (fun x x_1 => x ⊆ x_1) fun i =>
LHom.onTheory (lhomWithConstants L α) T ∪
distinctConstantsTheory L ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i)
[PROOFSTEP]
apply Monotone.directed_le
[GOAL]
case a
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
⊢ Monotone fun i =>
LHom.onTheory (lhomWithConstants L α) T ∪
distinctConstantsTheory L ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i)
[PROOFSTEP]
refine' monotone_const.union (monotone_distinctConstantsTheory.comp _)
[GOAL]
case a
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
⊢ Monotone fun i => ↑(Finset.map (Function.Embedding.subtype fun x => x ∈ s) i)
[PROOFSTEP]
simp only [Finset.coe_map, Function.Embedding.coe_subtype]
[GOAL]
case a
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
s : Set α
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
⊢ Monotone fun i => (fun a => ↑a) '' ↑i
[PROOFSTEP]
exact
Monotone.comp (g := Set.image ((↑) : s → α)) (f := ((↑) : Finset s → Set s)) Set.monotone_image fun _ _ =>
Finset.coe_subset.2
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
κ : Cardinal.{w}
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
⊢ ∃ N, lift κ ≤ #↑N
[PROOFSTEP]
obtain ⟨N⟩ := isSatisfiable_union_distinctConstantsTheory_of_infinite T (Set.univ : Set κ.out) M
[GOAL]
case intro
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
κ : Cardinal.{w}
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ)
⊢ ∃ N, lift κ ≤ #↑N
[PROOFSTEP]
refine' ⟨(N.is_model.mono (Set.subset_union_left _ _)).bundled.reduct _, _⟩
[GOAL]
case intro
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
κ : Cardinal.{w}
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ)
⊢ lift κ ≤
#↑(ModelType.reduct (lhomWithConstants L (Quotient.out κ))
(Model.bundled (_ : ↑N ⊨ LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T)))
[PROOFSTEP]
haveI : N ⊨ distinctConstantsTheory _ _ := N.is_model.mono (Set.subset_union_right _ _)
[GOAL]
case intro
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
κ : Cardinal.{w}
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ)
this : ↑N ⊨ distinctConstantsTheory L Set.univ
⊢ lift κ ≤
#↑(ModelType.reduct (lhomWithConstants L (Quotient.out κ))
(Model.bundled (_ : ↑N ⊨ LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T)))
[PROOFSTEP]
rw [ModelType.reduct_Carrier, coe_of]
[GOAL]
case intro
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
κ : Cardinal.{w}
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ)
this : ↑N ⊨ distinctConstantsTheory L Set.univ
⊢ lift κ ≤ #↑N
[PROOFSTEP]
refine' _root_.trans (lift_le.2 (le_of_eq (Cardinal.mk_out κ).symm)) _
[GOAL]
case intro
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
κ : Cardinal.{w}
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ)
this : ↑N ⊨ distinctConstantsTheory L Set.univ
⊢ lift #(Quotient.out κ) ≤ #↑N
[PROOFSTEP]
rw [← mk_univ]
[GOAL]
case intro
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
κ : Cardinal.{w}
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ)
this : ↑N ⊨ distinctConstantsTheory L Set.univ
⊢ lift #↑Set.univ ≤ #↑N
[PROOFSTEP]
refine' (card_le_of_model_distinctConstantsTheory L Set.univ N).trans (lift_le.{max u v w}.1 _)
[GOAL]
case intro
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' T : Theory L
κ : Cardinal.{w}
M : Type w'
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Infinite M
N : ModelType (LHom.onTheory (lhomWithConstants L (Quotient.out κ)) T ∪ distinctConstantsTheory L Set.univ)
this : ↑N ⊨ distinctConstantsTheory L Set.univ
⊢ lift (lift #↑N) ≤ lift #↑N
[PROOFSTEP]
rw [lift_lift]
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' : Theory L
ι : Type u_1
T : ι → Theory L
⊢ IsSatisfiable (⋃ (i : ι), T i) ↔ ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i)
[PROOFSTEP]
classical
refine' ⟨fun h s => h.mono (Set.iUnion_mono fun _ => Set.iUnion_subset_iff.2 fun _ => refl _), fun h => _⟩
rw [isSatisfiable_iff_isFinitelySatisfiable]
intro s hs
rw [Set.iUnion_eq_iUnion_finset] at hs
obtain ⟨t, ht⟩ :=
Directed.exists_mem_subset_of_finset_subset_biUnion
(by
exact
Monotone.directed_le fun t1 t2 (h : ∀ ⦃x⦄, x ∈ t1 → x ∈ t2) =>
Set.iUnion_mono fun _ => Set.iUnion_mono' fun h1 => ⟨h h1, refl _⟩)
hs
exact (h t).mono ht
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' : Theory L
ι : Type u_1
T : ι → Theory L
⊢ IsSatisfiable (⋃ (i : ι), T i) ↔ ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i)
[PROOFSTEP]
refine' ⟨fun h s => h.mono (Set.iUnion_mono fun _ => Set.iUnion_subset_iff.2 fun _ => refl _), fun h => _⟩
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' : Theory L
ι : Type u_1
T : ι → Theory L
h : ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i)
⊢ IsSatisfiable (⋃ (i : ι), T i)
[PROOFSTEP]
rw [isSatisfiable_iff_isFinitelySatisfiable]
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' : Theory L
ι : Type u_1
T : ι → Theory L
h : ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i)
⊢ IsFinitelySatisfiable (⋃ (i : ι), T i)
[PROOFSTEP]
intro s hs
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' : Theory L
ι : Type u_1
T : ι → Theory L
h : ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i)
s : Finset (Sentence L)
hs : ↑s ⊆ ⋃ (i : ι), T i
⊢ IsSatisfiable ↑s
[PROOFSTEP]
rw [Set.iUnion_eq_iUnion_finset] at hs
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' : Theory L
ι : Type u_1
T : ι → Theory L
h : ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i)
s : Finset (Sentence L)
hs : ↑s ⊆ ⋃ (t : Finset ι) (i : ι) (_ : i ∈ t), T i
⊢ IsSatisfiable ↑s
[PROOFSTEP]
obtain ⟨t, ht⟩ :=
Directed.exists_mem_subset_of_finset_subset_biUnion
(by
exact
Monotone.directed_le fun t1 t2 (h : ∀ ⦃x⦄, x ∈ t1 → x ∈ t2) =>
Set.iUnion_mono fun _ => Set.iUnion_mono' fun h1 => ⟨h h1, refl _⟩)
hs
[GOAL]
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' : Theory L
ι : Type u_1
T : ι → Theory L
h : ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i)
s : Finset (Sentence L)
hs : ↑s ⊆ ⋃ (t : Finset ι) (i : ι) (_ : i ∈ t), T i
⊢ Directed (fun x x_1 => x ⊆ x_1) fun i => ⋃ (i_1 : ι) (_ : i_1 ∈ i), T i_1
[PROOFSTEP]
exact
Monotone.directed_le fun t1 t2 (h : ∀ ⦃x⦄, x ∈ t1 → x ∈ t2) =>
Set.iUnion_mono fun _ => Set.iUnion_mono' fun h1 => ⟨h h1, refl _⟩
[GOAL]
case intro
L : Language
T✝ : Theory L
α : Type w
n : ℕ
T' : Theory L
ι : Type u_1
T : ι → Theory L
h : ∀ (s : Finset ι), IsSatisfiable (⋃ (i : ι) (_ : i ∈ s), T i)
s : Finset (Sentence L)
hs : ↑s ⊆ ⋃ (t : Finset ι) (i : ι) (_ : i ∈ t), T i
t : Finset ι
ht : ↑s ⊆ ⋃ (i : ι) (_ : i ∈ t), T i
⊢ IsSatisfiable ↑s
[PROOFSTEP]
exact (h t).mono ht
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝¹ : Structure L M
inst✝ : Nonempty M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h3 : lift κ ≤ lift #M
⊢ ∃ N, Nonempty (↑N ↪ₑ[L] M) ∧ #↑N = κ
[PROOFSTEP]
obtain ⟨S, _, hS⟩ := exists_elementarySubstructure_card_eq L ∅ κ h1 (by simp) h2 h3
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝¹ : Structure L M
inst✝ : Nonempty M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h3 : lift κ ≤ lift #M
⊢ lift #↑∅ ≤ lift κ
[PROOFSTEP]
simp
[GOAL]
case intro.intro
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝¹ : Structure L M
inst✝ : Nonempty M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h3 : lift κ ≤ lift #M
S : ElementarySubstructure L M
left✝ : ∅ ⊆ ↑S
hS : lift #{ x // x ∈ S } = lift κ
⊢ ∃ N, Nonempty (↑N ↪ₑ[L] M) ∧ #↑N = κ
[PROOFSTEP]
have : Small.{w} S := by
rw [← lift_inj.{_, w + 1}, lift_lift, lift_lift] at hS
exact small_iff_lift_mk_lt_univ.2 (lt_of_eq_of_lt hS κ.lift_lt_univ')
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝¹ : Structure L M
inst✝ : Nonempty M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h3 : lift κ ≤ lift #M
S : ElementarySubstructure L M
left✝ : ∅ ⊆ ↑S
hS : lift #{ x // x ∈ S } = lift κ
⊢ Small.{w, w'} { x // x ∈ S }
[PROOFSTEP]
rw [← lift_inj.{_, w + 1}, lift_lift, lift_lift] at hS
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝¹ : Structure L M
inst✝ : Nonempty M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h3 : lift κ ≤ lift #M
S : ElementarySubstructure L M
left✝ : ∅ ⊆ ↑S
hS : lift #{ x // x ∈ S } = lift κ
⊢ Small.{w, w'} { x // x ∈ S }
[PROOFSTEP]
exact small_iff_lift_mk_lt_univ.2 (lt_of_eq_of_lt hS κ.lift_lt_univ')
[GOAL]
case intro.intro
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝¹ : Structure L M
inst✝ : Nonempty M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h3 : lift κ ≤ lift #M
S : ElementarySubstructure L M
left✝ : ∅ ⊆ ↑S
hS : lift #{ x // x ∈ S } = lift κ
this : Small.{w, w'} { x // x ∈ S }
⊢ ∃ N, Nonempty (↑N ↪ₑ[L] M) ∧ #↑N = κ
[PROOFSTEP]
refine'
⟨(equivShrink S).bundledInduced L, ⟨S.subtype.comp (Equiv.bundledInducedEquiv L _).symm.toElementaryEmbedding⟩,
lift_inj.1 (_root_.trans _ hS)⟩
[GOAL]
case intro.intro
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝¹ : Structure L M
inst✝ : Nonempty M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h3 : lift κ ≤ lift #M
S : ElementarySubstructure L M
left✝ : ∅ ⊆ ↑S
hS : lift #{ x // x ∈ S } = lift κ
this : Small.{w, w'} { x // x ∈ S }
⊢ lift #↑(Equiv.bundledInduced L (equivShrink { x // x ∈ S })) = lift #{ x // x ∈ S }
[PROOFSTEP]
simp only [Equiv.bundledInduced_α, lift_mk_shrink']
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : lift (card L) ≤ lift κ
h2 : lift #M ≤ lift κ
⊢ ∃ N, Nonempty (M ↪ₑ[L] ↑N) ∧ #↑N = κ
[PROOFSTEP]
obtain ⟨N0, hN0⟩ := (L.elementaryDiagram M).exists_large_model_of_infinite_model κ M
[GOAL]
case intro
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : lift (card L) ≤ lift κ
h2 : lift #M ≤ lift κ
N0 : Theory.ModelType (elementaryDiagram L M)
hN0 : lift κ ≤ #↑N0
⊢ ∃ N, Nonempty (M ↪ₑ[L] ↑N) ∧ #↑N = κ
[PROOFSTEP]
rw [← lift_le.{max u v}, lift_lift, lift_lift] at h2
[GOAL]
case intro
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : lift (card L) ≤ lift κ
h2 : lift #M ≤ lift κ
N0 : Theory.ModelType (elementaryDiagram L M)
hN0 : lift κ ≤ #↑N0
⊢ ∃ N, Nonempty (M ↪ₑ[L] ↑N) ∧ #↑N = κ
[PROOFSTEP]
obtain ⟨N, ⟨NN0⟩, hN⟩ :=
exists_elementaryEmbedding_card_eq_of_le (L[[M]]) N0 κ
(aleph0_le_lift.1 ((aleph0_le_lift.2 (aleph0_le_mk M)).trans h2))
(by
simp only [card_withConstants, lift_add, lift_lift]
rw [add_comm, add_eq_max (aleph0_le_lift.2 (infinite_iff.1 iM)), max_le_iff]
rw [← lift_le.{w'}, lift_lift, lift_lift] at h1
exact ⟨h2, h1⟩)
(hN0.trans (by rw [← lift_umax', lift_id]))
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : lift (card L) ≤ lift κ
h2 : lift #M ≤ lift κ
N0 : Theory.ModelType (elementaryDiagram L M)
hN0 : lift κ ≤ #↑N0
⊢ lift (card (L[[M]])) ≤ lift κ
[PROOFSTEP]
simp only [card_withConstants, lift_add, lift_lift]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : lift (card L) ≤ lift κ
h2 : lift #M ≤ lift κ
N0 : Theory.ModelType (elementaryDiagram L M)
hN0 : lift κ ≤ #↑N0
⊢ lift (card L) + lift #M ≤ lift κ
[PROOFSTEP]
rw [add_comm, add_eq_max (aleph0_le_lift.2 (infinite_iff.1 iM)), max_le_iff]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : lift (card L) ≤ lift κ
h2 : lift #M ≤ lift κ
N0 : Theory.ModelType (elementaryDiagram L M)
hN0 : lift κ ≤ #↑N0
⊢ lift #M ≤ lift κ ∧ lift (card L) ≤ lift κ
[PROOFSTEP]
rw [← lift_le.{w'}, lift_lift, lift_lift] at h1
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : lift (card L) ≤ lift κ
h2 : lift #M ≤ lift κ
N0 : Theory.ModelType (elementaryDiagram L M)
hN0 : lift κ ≤ #↑N0
⊢ lift #M ≤ lift κ ∧ lift (card L) ≤ lift κ
[PROOFSTEP]
exact ⟨h2, h1⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : lift (card L) ≤ lift κ
h2 : lift #M ≤ lift κ
N0 : Theory.ModelType (elementaryDiagram L M)
hN0 : lift κ ≤ #↑N0
⊢ #↑N0 ≤ lift #↑N0
[PROOFSTEP]
rw [← lift_umax', lift_id]
[GOAL]
case intro.intro.intro.intro
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : lift (card L) ≤ lift κ
h2 : lift #M ≤ lift κ
N0 : Theory.ModelType (elementaryDiagram L M)
hN0 : lift κ ≤ #↑N0
N : Bundled (Structure (L[[M]]))
hN : #↑N = κ
NN0 : ↑N ↪ₑ[L[[M]]] ↑N0
⊢ ∃ N, Nonempty (M ↪ₑ[L] ↑N) ∧ #↑N = κ
[PROOFSTEP]
letI := (lhomWithConstants L M).reduct N
[GOAL]
case intro.intro.intro.intro
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : lift (card L) ≤ lift κ
h2 : lift #M ≤ lift κ
N0 : Theory.ModelType (elementaryDiagram L M)
hN0 : lift κ ≤ #↑N0
N : Bundled (Structure (L[[M]]))
hN : #↑N = κ
NN0 : ↑N ↪ₑ[L[[M]]] ↑N0
this : Structure L ↑N := LHom.reduct (lhomWithConstants L M) ↑N
⊢ ∃ N, Nonempty (M ↪ₑ[L] ↑N) ∧ #↑N = κ
[PROOFSTEP]
haveI h : N ⊨ L.elementaryDiagram M := (NN0.theory_model_iff (L.elementaryDiagram M)).2 inferInstance
[GOAL]
case intro.intro.intro.intro
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : lift (card L) ≤ lift κ
h2 : lift #M ≤ lift κ
N0 : Theory.ModelType (elementaryDiagram L M)
hN0 : lift κ ≤ #↑N0
N : Bundled (Structure (L[[M]]))
hN : #↑N = κ
NN0 : ↑N ↪ₑ[L[[M]]] ↑N0
this : Structure L ↑N := LHom.reduct (lhomWithConstants L M) ↑N
h : ↑N ⊨ elementaryDiagram L M
⊢ ∃ N, Nonempty (M ↪ₑ[L] ↑N) ∧ #↑N = κ
[PROOFSTEP]
refine' ⟨Bundled.of N, ⟨_⟩, hN⟩
[GOAL]
case intro.intro.intro.intro
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : lift (card L) ≤ lift κ
h2 : lift #M ≤ lift κ
N0 : Theory.ModelType (elementaryDiagram L M)
hN0 : lift κ ≤ #↑N0
N : Bundled (Structure (L[[M]]))
hN : #↑N = κ
NN0 : ↑N ↪ₑ[L[[M]]] ↑N0
this : Structure L ↑N := LHom.reduct (lhomWithConstants L M) ↑N
h : ↑N ⊨ elementaryDiagram L M
⊢ M ↪ₑ[L] ↑(Bundled.of ↑N)
[PROOFSTEP]
apply ElementaryEmbedding.ofModelsElementaryDiagram L M N
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ
[PROOFSTEP]
cases le_or_gt (lift.{w'} κ) (Cardinal.lift.{w} #M)
[GOAL]
case inl
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h✝ : lift κ ≤ lift #M
⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ
case inr
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h✝ : lift κ > lift #M
⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ
[PROOFSTEP]
case inl h =>
obtain ⟨N, hN1, hN2⟩ := exists_elementaryEmbedding_card_eq_of_le L M κ h1 h2 h
exact ⟨N, Or.inl hN1, hN2⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h : lift κ ≤ lift #M
⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ
[PROOFSTEP]
case inl h =>
obtain ⟨N, hN1, hN2⟩ := exists_elementaryEmbedding_card_eq_of_le L M κ h1 h2 h
exact ⟨N, Or.inl hN1, hN2⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h : lift κ ≤ lift #M
⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ
[PROOFSTEP]
obtain ⟨N, hN1, hN2⟩ := exists_elementaryEmbedding_card_eq_of_le L M κ h1 h2 h
[GOAL]
case intro.intro
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h : lift κ ≤ lift #M
N : Bundled (Structure L)
hN1 : Nonempty (↑N ↪ₑ[L] M)
hN2 : #↑N = κ
⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ
[PROOFSTEP]
exact ⟨N, Or.inl hN1, hN2⟩
[GOAL]
case inr
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h✝ : lift κ > lift #M
⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ
[PROOFSTEP]
case inr h =>
obtain ⟨N, hN1, hN2⟩ := exists_elementaryEmbedding_card_eq_of_ge L M κ h2 (le_of_lt h)
exact ⟨N, Or.inr hN1, hN2⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h : lift κ > lift #M
⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ
[PROOFSTEP]
case inr h =>
obtain ⟨N, hN1, hN2⟩ := exists_elementaryEmbedding_card_eq_of_ge L M κ h2 (le_of_lt h)
exact ⟨N, Or.inr hN1, hN2⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h : lift κ > lift #M
⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ
[PROOFSTEP]
obtain ⟨N, hN1, hN2⟩ := exists_elementaryEmbedding_card_eq_of_ge L M κ h2 (le_of_lt h)
[GOAL]
case intro.intro
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝ : Structure L M
iM : Infinite M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
h : lift κ > lift #M
N : Bundled (Structure L)
hN1 : Nonempty (M ↪ₑ[L] ↑N)
hN2 : #↑N = κ
⊢ ∃ N, (Nonempty (↑N ↪ₑ[L] M) ∨ Nonempty (M ↪ₑ[L] ↑N)) ∧ #↑N = κ
[PROOFSTEP]
exact ⟨N, Or.inr hN1, hN2⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝¹ : Structure L M
inst✝ : Infinite M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
⊢ ∃ N, (M ≅[L] ↑N) ∧ #↑N = κ
[PROOFSTEP]
obtain ⟨N, NM | MN, hNκ⟩ := exists_elementaryEmbedding_card_eq L M κ h1 h2
[GOAL]
case intro.intro.inl
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝¹ : Structure L M
inst✝ : Infinite M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
N : Bundled (Structure L)
hNκ : #↑N = κ
NM : Nonempty (↑N ↪ₑ[L] M)
⊢ ∃ N, (M ≅[L] ↑N) ∧ #↑N = κ
[PROOFSTEP]
exact ⟨N, NM.some.elementarilyEquivalent.symm, hNκ⟩
[GOAL]
case intro.intro.inr
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w'
inst✝¹ : Structure L M
inst✝ : Infinite M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
N : Bundled (Structure L)
hNκ : #↑N = κ
MN : Nonempty (M ↪ₑ[L] ↑N)
⊢ ∃ N, (M ≅[L] ↑N) ∧ #↑N = κ
[PROOFSTEP]
exact ⟨N, MN.some.elementarilyEquivalent, hNκ⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
h : ∃ M, Infinite ↑M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
⊢ ∃ N, #↑N = κ
[PROOFSTEP]
cases h with
| intro M MI =>
haveI := MI
obtain ⟨N, hN, rfl⟩ := exists_elementarilyEquivalent_card_eq L M κ h1 h2
haveI : Nonempty N := hN.nonempty
exact ⟨hN.theory_model.bundled, rfl⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
h : ∃ M, Infinite ↑M
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
⊢ ∃ N, #↑N = κ
[PROOFSTEP]
cases h with
| intro M MI =>
haveI := MI
obtain ⟨N, hN, rfl⟩ := exists_elementarilyEquivalent_card_eq L M κ h1 h2
haveI : Nonempty N := hN.nonempty
exact ⟨hN.theory_model.bundled, rfl⟩
[GOAL]
case intro
L : Language
T : Theory L
α : Type w
n : ℕ
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
M : ModelType T
MI : Infinite ↑M
⊢ ∃ N, #↑N = κ
[PROOFSTEP]
| intro M MI =>
haveI := MI
obtain ⟨N, hN, rfl⟩ := exists_elementarilyEquivalent_card_eq L M κ h1 h2
haveI : Nonempty N := hN.nonempty
exact ⟨hN.theory_model.bundled, rfl⟩
[GOAL]
case intro
L : Language
T : Theory L
α : Type w
n : ℕ
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
M : ModelType T
MI : Infinite ↑M
⊢ ∃ N, #↑N = κ
[PROOFSTEP]
haveI := MI
[GOAL]
case intro
L : Language
T : Theory L
α : Type w
n : ℕ
κ : Cardinal.{w}
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
M : ModelType T
MI this : Infinite ↑M
⊢ ∃ N, #↑N = κ
[PROOFSTEP]
obtain ⟨N, hN, rfl⟩ := exists_elementarilyEquivalent_card_eq L M κ h1 h2
[GOAL]
case intro.intro.intro
L : Language
T : Theory L
α : Type w
n : ℕ
M : ModelType T
MI this : Infinite ↑M
N : Bundled (Structure L)
hN : ↑M ≅[L] ↑N
h1 : ℵ₀ ≤ #↑N
h2 : lift (card L) ≤ lift #↑N
⊢ ∃ N_1, #↑N_1 = #↑N
[PROOFSTEP]
haveI : Nonempty N := hN.nonempty
[GOAL]
case intro.intro.intro
L : Language
T : Theory L
α : Type w
n : ℕ
M : ModelType T
MI this✝ : Infinite ↑M
N : Bundled (Structure L)
hN : ↑M ≅[L] ↑N
h1 : ℵ₀ ≤ #↑N
h2 : lift (card L) ≤ lift #↑N
this : Nonempty ↑N
⊢ ∃ N_1, #↑N_1 = #↑N
[PROOFSTEP]
exact ⟨hN.theory_model.bundled, rfl⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
⊢ T ⊨ᵇ φ ↔ ¬IsSatisfiable (T ∪ {Formula.not φ})
[PROOFSTEP]
rw [models_sentence_iff, IsSatisfiable]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
⊢ (∀ (M : ModelType T), ↑M ⊨ φ) ↔ ¬Nonempty (ModelType (T ∪ {Formula.not φ}))
[PROOFSTEP]
refine'
⟨fun h1 h2 =>
(Sentence.realize_not _).1
(realize_sentence_of_mem (T ∪ {Formula.not φ}) (Set.subset_union_right _ _ (Set.mem_singleton _)))
(h1 (h2.some.subtheoryModel (Set.subset_union_left _ _))),
fun h M => _⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
h : ¬Nonempty (ModelType (T ∪ {Formula.not φ}))
M : ModelType T
⊢ ↑M ⊨ φ
[PROOFSTEP]
contrapose! h
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
M : ModelType T
h : ¬↑M ⊨ φ
⊢ Nonempty (ModelType (T ∪ {Formula.not φ}))
[PROOFSTEP]
rw [← Sentence.realize_not] at h
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
M : ModelType T
h : ↑M ⊨ Formula.not φ
⊢ Nonempty (ModelType (T ∪ {Formula.not φ}))
[PROOFSTEP]
refine'
⟨{ Carrier := M
is_model := ⟨fun ψ hψ => hψ.elim (realize_sentence_of_mem _) fun h' => _⟩ }⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
M : ModelType T
h : ↑M ⊨ Formula.not φ
ψ : Sentence L
hψ : ψ ∈ T ∪ {Formula.not φ}
h' : ψ ∈ {Formula.not φ}
⊢ ↑M ⊨ ψ
[PROOFSTEP]
rw [Set.mem_singleton_iff.1 h']
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
M : ModelType T
h : ↑M ⊨ Formula.not φ
ψ : Sentence L
hψ : ψ ∈ T ∪ {Formula.not φ}
h' : ψ ∈ {Formula.not φ}
⊢ ↑M ⊨ Formula.not φ
[PROOFSTEP]
exact h
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
h : T ⊨ᵇ φ
M : Type u_1
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Nonempty M
⊢ M ⊨ φ
[PROOFSTEP]
rw [models_iff_not_satisfiable] at h
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
h : ¬IsSatisfiable (T ∪ {Formula.not φ})
M : Type u_1
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Nonempty M
⊢ M ⊨ φ
[PROOFSTEP]
contrapose! h
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
M : Type u_1
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Nonempty M
h : ¬M ⊨ φ
⊢ IsSatisfiable (T ∪ {Formula.not φ})
[PROOFSTEP]
have : M ⊨ T ∪ {Formula.not φ} :=
by
simp only [Set.union_singleton, model_iff, Set.mem_insert_iff, forall_eq_or_imp, Sentence.realize_not]
rw [← model_iff]
exact ⟨h, inferInstance⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
M : Type u_1
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Nonempty M
h : ¬M ⊨ φ
⊢ M ⊨ T ∪ {Formula.not φ}
[PROOFSTEP]
simp only [Set.union_singleton, model_iff, Set.mem_insert_iff, forall_eq_or_imp, Sentence.realize_not]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
M : Type u_1
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Nonempty M
h : ¬M ⊨ φ
⊢ ¬M ⊨ φ ∧ ∀ (a : Sentence L), a ∈ T → M ⊨ a
[PROOFSTEP]
rw [← model_iff]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
M : Type u_1
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Nonempty M
h : ¬M ⊨ φ
⊢ ¬M ⊨ φ ∧ M ⊨ T
[PROOFSTEP]
exact ⟨h, inferInstance⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
M : Type u_1
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Nonempty M
h : ¬M ⊨ φ
this : M ⊨ T ∪ {Formula.not φ}
⊢ IsSatisfiable (T ∪ {Formula.not φ})
[PROOFSTEP]
exact Model.isSatisfiable M
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
⊢ T ⊨ᵇ φ ↔ ∃ T0, ↑T0 ⊆ T ∧ ↑T0 ⊨ᵇ φ
[PROOFSTEP]
simp only [models_iff_not_satisfiable]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
⊢ ¬IsSatisfiable (T ∪ {Formula.not φ}) ↔ ∃ T0, ↑T0 ⊆ T ∧ ¬IsSatisfiable (↑T0 ∪ {Formula.not φ})
[PROOFSTEP]
rw [← not_iff_not, not_not, isSatisfiable_iff_isFinitelySatisfiable, IsFinitelySatisfiable]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
⊢ (∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0) ↔
¬∃ T0, ↑T0 ⊆ T ∧ ¬IsSatisfiable (↑T0 ∪ {Formula.not φ})
[PROOFSTEP]
push_neg
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
⊢ (∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0) ↔
∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ})
[PROOFSTEP]
letI := Classical.decEq (Sentence L)
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
this : DecidableEq (Sentence L) := Classical.decEq (Sentence L)
⊢ (∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0) ↔
∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ})
[PROOFSTEP]
constructor
[GOAL]
case mp
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
this : DecidableEq (Sentence L) := Classical.decEq (Sentence L)
⊢ (∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0) →
∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ})
[PROOFSTEP]
intro h T0 hT0
[GOAL]
case mp
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
this : DecidableEq (Sentence L) := Classical.decEq (Sentence L)
h : ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0
T0 : Finset (Sentence L)
hT0 : ↑T0 ⊆ T
⊢ IsSatisfiable (↑T0 ∪ {Formula.not φ})
[PROOFSTEP]
simpa using
h (T0 ∪ {Formula.not φ})
(by
simp only [Finset.coe_union, Finset.coe_singleton]
exact Set.union_subset_union hT0 (Set.Subset.refl _))
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
this : DecidableEq (Sentence L) := Classical.decEq (Sentence L)
h : ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0
T0 : Finset (Sentence L)
hT0 : ↑T0 ⊆ T
⊢ ↑(T0 ∪ {Formula.not φ}) ⊆ T ∪ {Formula.not φ}
[PROOFSTEP]
simp only [Finset.coe_union, Finset.coe_singleton]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
this : DecidableEq (Sentence L) := Classical.decEq (Sentence L)
h : ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0
T0 : Finset (Sentence L)
hT0 : ↑T0 ⊆ T
⊢ ↑T0 ∪ {Formula.not φ} ⊆ T ∪ {Formula.not φ}
[PROOFSTEP]
exact Set.union_subset_union hT0 (Set.Subset.refl _)
[GOAL]
case mpr
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
this : DecidableEq (Sentence L) := Classical.decEq (Sentence L)
⊢ (∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ})) →
∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T ∪ {Formula.not φ} → IsSatisfiable ↑T0
[PROOFSTEP]
intro h T0 hT0
[GOAL]
case mpr
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
this : DecidableEq (Sentence L) := Classical.decEq (Sentence L)
h : ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ})
T0 : Finset (Sentence L)
hT0 : ↑T0 ⊆ T ∪ {Formula.not φ}
⊢ IsSatisfiable ↑T0
[PROOFSTEP]
exact IsSatisfiable.mono (h (T0.erase (Formula.not φ)) (by simpa using hT0)) (by simp)
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
this : DecidableEq (Sentence L) := Classical.decEq (Sentence L)
h : ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ})
T0 : Finset (Sentence L)
hT0 : ↑T0 ⊆ T ∪ {Formula.not φ}
⊢ ↑(Finset.erase T0 (Formula.not φ)) ⊆ T
[PROOFSTEP]
simpa using hT0
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : Sentence L
this : DecidableEq (Sentence L) := Classical.decEq (Sentence L)
h : ∀ (T0 : Finset (Sentence L)), ↑T0 ⊆ T → IsSatisfiable (↑T0 ∪ {Formula.not φ})
T0 : Finset (Sentence L)
hT0 : ↑T0 ⊆ T ∪ {Formula.not φ}
⊢ ↑T0 ⊆ ↑(Finset.erase T0 (Formula.not φ)) ∪ {Formula.not φ}
[PROOFSTEP]
simp
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsComplete T
φ : Sentence L
⊢ T ⊨ᵇ Formula.not φ ↔ ¬T ⊨ᵇ φ
[PROOFSTEP]
cases' h.2 φ with hφ hφn
[GOAL]
case inl
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsComplete T
φ : Sentence L
hφ : T ⊨ᵇ φ
⊢ T ⊨ᵇ Formula.not φ ↔ ¬T ⊨ᵇ φ
[PROOFSTEP]
simp only [hφ, not_true, iff_false_iff]
[GOAL]
case inl
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsComplete T
φ : Sentence L
hφ : T ⊨ᵇ φ
⊢ ¬T ⊨ᵇ Formula.not φ
[PROOFSTEP]
rw [models_sentence_iff, not_forall]
[GOAL]
case inl
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsComplete T
φ : Sentence L
hφ : T ⊨ᵇ φ
⊢ ∃ x, ¬↑x ⊨ Formula.not φ
[PROOFSTEP]
refine' ⟨h.1.some, _⟩
[GOAL]
case inl
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsComplete T
φ : Sentence L
hφ : T ⊨ᵇ φ
⊢ ¬↑(Nonempty.some (_ : IsSatisfiable T)) ⊨ Formula.not φ
[PROOFSTEP]
simp only [Sentence.realize_not, Classical.not_not]
[GOAL]
case inl
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsComplete T
φ : Sentence L
hφ : T ⊨ᵇ φ
⊢ ↑(Nonempty.some (_ : IsSatisfiable T)) ⊨ φ
[PROOFSTEP]
exact models_sentence_iff.1 hφ _
[GOAL]
case inr
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsComplete T
φ : Sentence L
hφn : T ⊨ᵇ Formula.not φ
⊢ T ⊨ᵇ Formula.not φ ↔ ¬T ⊨ᵇ φ
[PROOFSTEP]
simp only [hφn, true_iff_iff]
[GOAL]
case inr
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsComplete T
φ : Sentence L
hφn : T ⊨ᵇ Formula.not φ
⊢ ¬T ⊨ᵇ φ
[PROOFSTEP]
intro hφ
[GOAL]
case inr
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsComplete T
φ : Sentence L
hφn : T ⊨ᵇ Formula.not φ
hφ : T ⊨ᵇ φ
⊢ False
[PROOFSTEP]
rw [models_sentence_iff] at *
[GOAL]
case inr
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsComplete T
φ : Sentence L
hφn : ∀ (M : ModelType T), ↑M ⊨ Formula.not φ
hφ : ∀ (M : ModelType T), ↑M ⊨ φ
⊢ False
[PROOFSTEP]
exact hφn h.1.some (hφ _)
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsComplete T
φ : Sentence L
M : Type u_1
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Nonempty M
⊢ M ⊨ φ ↔ T ⊨ᵇ φ
[PROOFSTEP]
cases' h.2 φ with hφ hφn
[GOAL]
case inl
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsComplete T
φ : Sentence L
M : Type u_1
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Nonempty M
hφ : T ⊨ᵇ φ
⊢ M ⊨ φ ↔ T ⊨ᵇ φ
[PROOFSTEP]
exact iff_of_true (hφ.realize_sentence M) hφ
[GOAL]
case inr
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsComplete T
φ : Sentence L
M : Type u_1
inst✝² : Structure L M
inst✝¹ : M ⊨ T
inst✝ : Nonempty M
hφn : T ⊨ᵇ Formula.not φ
⊢ M ⊨ φ ↔ T ⊨ᵇ φ
[PROOFSTEP]
exact iff_of_false ((Sentence.realize_not M).1 (hφn.realize_sentence M)) ((h.models_not_iff φ).1 hφn)
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsMaximal T
φ : Sentence L
hφ : T ⊨ᵇ φ
⊢ φ ∈ T
[PROOFSTEP]
refine' (h.mem_or_not_mem φ).resolve_right fun con => _
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsMaximal T
φ : Sentence L
hφ : T ⊨ᵇ φ
con : Formula.not φ ∈ T
⊢ False
[PROOFSTEP]
rw [models_iff_not_satisfiable, Set.union_singleton, Set.insert_eq_of_mem con] at hφ
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
h : IsMaximal T
φ : Sentence L
hφ : ¬IsSatisfiable T
con : Formula.not φ ∈ T
⊢ False
[PROOFSTEP]
exact hφ h.1
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : BoundedFormula L α n
M : ModelType T
v : α → ↑M
xs : Fin n → ↑M
⊢ BoundedFormula.Realize (φ ⇔ φ) v xs
[PROOFSTEP]
rw [BoundedFormula.realize_iff]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α n
h : SemanticallyEquivalent T φ ψ
M : ModelType T
v : α → ↑M
xs : Fin n → ↑M
⊢ BoundedFormula.Realize (ψ ⇔ φ) v xs
[PROOFSTEP]
rw [BoundedFormula.realize_iff, Iff.comm, ← BoundedFormula.realize_iff]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α n
h : SemanticallyEquivalent T φ ψ
M : ModelType T
v : α → ↑M
xs : Fin n → ↑M
⊢ BoundedFormula.Realize (φ ⇔ ψ) v xs
[PROOFSTEP]
exact h M v xs
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ θ : BoundedFormula L α n
h1 : SemanticallyEquivalent T φ ψ
h2 : SemanticallyEquivalent T ψ θ
M : ModelType T
v : α → ↑M
xs : Fin n → ↑M
⊢ BoundedFormula.Realize (φ ⇔ θ) v xs
[PROOFSTEP]
have h1' := h1 M v xs
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ θ : BoundedFormula L α n
h1 : SemanticallyEquivalent T φ ψ
h2 : SemanticallyEquivalent T ψ θ
M : ModelType T
v : α → ↑M
xs : Fin n → ↑M
h1' : BoundedFormula.Realize (φ ⇔ ψ) v xs
⊢ BoundedFormula.Realize (φ ⇔ θ) v xs
[PROOFSTEP]
have h2' := h2 M v xs
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ θ : BoundedFormula L α n
h1 : SemanticallyEquivalent T φ ψ
h2 : SemanticallyEquivalent T ψ θ
M : ModelType T
v : α → ↑M
xs : Fin n → ↑M
h1' : BoundedFormula.Realize (φ ⇔ ψ) v xs
h2' : BoundedFormula.Realize (ψ ⇔ θ) v xs
⊢ BoundedFormula.Realize (φ ⇔ θ) v xs
[PROOFSTEP]
rw [BoundedFormula.realize_iff] at *
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ θ : BoundedFormula L α n
h1 : SemanticallyEquivalent T φ ψ
h2 : SemanticallyEquivalent T ψ θ
M : ModelType T
v : α → ↑M
xs : Fin n → ↑M
h1' : BoundedFormula.Realize φ v xs ↔ BoundedFormula.Realize ψ v xs
h2' : BoundedFormula.Realize ψ v xs ↔ BoundedFormula.Realize θ v xs
⊢ BoundedFormula.Realize φ v xs ↔ BoundedFormula.Realize θ v xs
[PROOFSTEP]
exact ⟨h2'.1 ∘ h1'.1, h1'.2 ∘ h2'.2⟩
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α (n + 1)
h : SemanticallyEquivalent T φ ψ
⊢ SemanticallyEquivalent T (∀'φ) (∀'ψ)
[PROOFSTEP]
simp_rw [SemanticallyEquivalent, ModelsBoundedFormula, BoundedFormula.realize_iff, BoundedFormula.realize_all]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α (n + 1)
h : SemanticallyEquivalent T φ ψ
⊢ ∀ (M : ModelType T) (v : α → ↑M) (xs : Fin n → ↑M),
(∀ (a : ↑M), BoundedFormula.Realize φ v (Fin.snoc xs a)) ↔ ∀ (a : ↑M), BoundedFormula.Realize ψ v (Fin.snoc xs a)
[PROOFSTEP]
exact fun M v xs => forall_congr' fun a => h.realize_bd_iff
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α (n + 1)
h : SemanticallyEquivalent T φ ψ
⊢ SemanticallyEquivalent T (∃'φ) (∃'ψ)
[PROOFSTEP]
simp_rw [SemanticallyEquivalent, ModelsBoundedFormula, BoundedFormula.realize_iff, BoundedFormula.realize_ex]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α (n + 1)
h : SemanticallyEquivalent T φ ψ
⊢ ∀ (M : ModelType T) (v : α → ↑M) (xs : Fin n → ↑M),
(∃ a, BoundedFormula.Realize φ v (Fin.snoc xs a)) ↔ ∃ a, BoundedFormula.Realize ψ v (Fin.snoc xs a)
[PROOFSTEP]
exact fun M v xs => exists_congr fun a => h.realize_bd_iff
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α n
h : SemanticallyEquivalent T φ ψ
⊢ SemanticallyEquivalent T (∼φ) ∼ψ
[PROOFSTEP]
simp_rw [SemanticallyEquivalent, ModelsBoundedFormula, BoundedFormula.realize_iff, BoundedFormula.realize_not]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α n
h : SemanticallyEquivalent T φ ψ
⊢ ∀ (M : ModelType T) (v : α → ↑M) (xs : Fin n → ↑M), ¬BoundedFormula.Realize φ v xs ↔ ¬BoundedFormula.Realize ψ v xs
[PROOFSTEP]
exact fun M v xs => not_congr h.realize_bd_iff
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ φ' ψ' : BoundedFormula L α n
h : SemanticallyEquivalent T φ ψ
h' : SemanticallyEquivalent T φ' ψ'
⊢ SemanticallyEquivalent T (φ ⟹ φ') (ψ ⟹ ψ')
[PROOFSTEP]
simp_rw [SemanticallyEquivalent, ModelsBoundedFormula, BoundedFormula.realize_iff, BoundedFormula.realize_imp]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ φ' ψ' : BoundedFormula L α n
h : SemanticallyEquivalent T φ ψ
h' : SemanticallyEquivalent T φ' ψ'
⊢ ∀ (M : ModelType T) (v : α → ↑M) (xs : Fin n → ↑M),
BoundedFormula.Realize φ v xs → BoundedFormula.Realize φ' v xs ↔
BoundedFormula.Realize ψ v xs → BoundedFormula.Realize ψ' v xs
[PROOFSTEP]
exact fun M v xs => imp_congr h.realize_bd_iff h'.realize_bd_iff
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
M : Type w
inst✝ : Structure L M
φ : Sentence L
⊢ φ ∈ completeTheory L M ∨ Formula.not φ ∈ completeTheory L M
[PROOFSTEP]
simp_rw [completeTheory, Set.mem_setOf_eq, Sentence.Realize, Formula.realize_not, or_not]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α n
M : Theory.ModelType T
v : α → ↑M
xs : Fin n → ↑M
⊢ Realize (φ ⇔ ∼∼φ) v xs
[PROOFSTEP]
simp
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α n
M : Theory.ModelType T
v : α → ↑M
xs : Fin n → ↑M
⊢ Realize (φ ⟹ ψ ⇔ ∼φ ⊔ ψ) v xs
[PROOFSTEP]
simp [imp_iff_not_or]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α n
M : Theory.ModelType T
v : α → ↑M
xs : Fin n → ↑M
⊢ Realize (φ ⊔ ψ ⇔ ∼(∼φ ⊓ ∼ψ)) v xs
[PROOFSTEP]
simp [imp_iff_not_or]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α n
M : Theory.ModelType T
v : α → ↑M
xs : Fin n → ↑M
⊢ Realize (φ ⊓ ψ ⇔ ∼(∼φ ⊔ ∼ψ)) v xs
[PROOFSTEP]
simp [and_iff_not_or_not]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ✝ ψ : BoundedFormula L α n
φ : BoundedFormula L α (n + 1)
M : Theory.ModelType T
v : α → ↑M
xs : Fin n → ↑M
⊢ Realize (∀'φ ⇔ ∼(∃'∼φ)) v xs
[PROOFSTEP]
simp
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ✝ ψ : BoundedFormula L α n
φ : BoundedFormula L α (n + 1)
M : Theory.ModelType T
v : α → ↑M
xs : Fin n → ↑M
⊢ Realize (∃'φ ⇔ ∼(∀'∼φ)) v xs
[PROOFSTEP]
simp
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α n
M : Theory.ModelType T
v : α → ↑M
xs : Fin n → ↑M
⊢ Realize (φ ⇔ ∀'liftAt 1 n φ) v xs
[PROOFSTEP]
skip
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ ψ : BoundedFormula L α n
M : Theory.ModelType T
v : α → ↑M
xs : Fin n → ↑M
⊢ Realize (φ ⇔ ∀'liftAt 1 n φ) v xs
[PROOFSTEP]
rw [realize_iff, realize_all_liftAt_one_self]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
φ : BoundedFormula L α n
M : Theory.ModelType ∅
v : α → ↑M
xs : Fin n → ↑M
⊢ Realize (φ ⇔ toPrenex φ) v xs
[PROOFSTEP]
rw [realize_iff, realize_toPrenex]
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
P : {m : ℕ} → BoundedFormula L α m → Prop
φ : BoundedFormula L α n
hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ
hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ)
hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ)
hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂)
⊢ P φ
[PROOFSTEP]
suffices h' : ∀ {m} {φ : L.BoundedFormula α m}, φ.IsPrenex → P φ
[GOAL]
L : Language
T : Theory L
α : Type w
n : ℕ
P : {m : ℕ} → BoundedFormula L α m → Prop
φ : BoundedFormula L α n
hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ
hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ)
hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ)
hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂)
h' : ∀ {m : ℕ} {φ : BoundedFormula L α m}, IsPrenex φ → P φ
⊢ P φ
[PROOFSTEP]
exact (hse φ.semanticallyEquivalent_toPrenex).2 (h' φ.toPrenex_isPrenex)
[GOAL]
case h'
L : Language
T : Theory L
α : Type w
n : ℕ
P : {m : ℕ} → BoundedFormula L α m → Prop
φ : BoundedFormula L α n
hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ
hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ)
hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ)
hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂)
⊢ ∀ {m : ℕ} {φ : BoundedFormula L α m}, IsPrenex φ → P φ
[PROOFSTEP]
intro m φ hφ
[GOAL]
case h'
L : Language
T : Theory L
α : Type w
n : ℕ
P : {m : ℕ} → BoundedFormula L α m → Prop
φ✝ : BoundedFormula L α n
hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ
hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ)
hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ)
hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂)
m : ℕ
φ : BoundedFormula L α m
hφ : IsPrenex φ
⊢ P φ
[PROOFSTEP]
induction' hφ with _ _ hφ _ _ _ hφ _ _ _ hφ
[GOAL]
case h'.of_isQF
L : Language
T : Theory L
α : Type w
n : ℕ
P : {m : ℕ} → BoundedFormula L α m → Prop
φ✝¹ : BoundedFormula L α n
hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ
hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ)
hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ)
hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂)
m : ℕ
φ : BoundedFormula L α m
n✝ : ℕ
φ✝ : BoundedFormula L α n✝
hφ : IsQF φ✝
⊢ P φ✝
[PROOFSTEP]
exact hqf hφ
[GOAL]
case h'.all
L : Language
T : Theory L
α : Type w
n : ℕ
P : {m : ℕ} → BoundedFormula L α m → Prop
φ✝¹ : BoundedFormula L α n
hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ
hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ)
hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ)
hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂)
m : ℕ
φ : BoundedFormula L α m
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
h✝ : IsPrenex φ✝
hφ : P φ✝
⊢ P (∀'φ✝)
[PROOFSTEP]
exact hall hφ
[GOAL]
case h'.ex
L : Language
T : Theory L
α : Type w
n : ℕ
P : {m : ℕ} → BoundedFormula L α m → Prop
φ✝¹ : BoundedFormula L α n
hqf : ∀ {m : ℕ} {ψ : BoundedFormula L α m}, IsQF ψ → P ψ
hall : ∀ {m : ℕ} {ψ : BoundedFormula L α (m + 1)}, P ψ → P (∀'ψ)
hex : ∀ {m : ℕ} {φ : BoundedFormula L α (m + 1)}, P φ → P (∃'φ)
hse : ∀ {m : ℕ} {φ₁ φ₂ : BoundedFormula L α m}, Theory.SemanticallyEquivalent ∅ φ₁ φ₂ → (P φ₁ ↔ P φ₂)
m : ℕ
φ : BoundedFormula L α m
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
h✝ : IsPrenex φ✝
hφ : P φ✝
⊢ P (∃'φ✝)
[PROOFSTEP]
exact hex hφ
[GOAL]
L : Language
κ : Cardinal.{w}
T : Theory L
h : Categorical κ T
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
hS : Theory.IsSatisfiable T
hT : ∀ (M : Theory.ModelType T), Infinite ↑M
φ : Sentence L
⊢ T ⊨ᵇ φ ∨ T ⊨ᵇ Formula.not φ
[PROOFSTEP]
obtain ⟨_, _⟩ := Theory.exists_model_card_eq ⟨hS.some, hT hS.some⟩ κ h1 h2
[GOAL]
case intro
L : Language
κ : Cardinal.{w}
T : Theory L
h : Categorical κ T
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
hS : Theory.IsSatisfiable T
hT : ∀ (M : Theory.ModelType T), Infinite ↑M
φ : Sentence L
w✝ : Theory.ModelType T
h✝ : #↑w✝ = κ
⊢ T ⊨ᵇ φ ∨ T ⊨ᵇ Formula.not φ
[PROOFSTEP]
rw [Theory.models_sentence_iff, Theory.models_sentence_iff]
[GOAL]
case intro
L : Language
κ : Cardinal.{w}
T : Theory L
h : Categorical κ T
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
hS : Theory.IsSatisfiable T
hT : ∀ (M : Theory.ModelType T), Infinite ↑M
φ : Sentence L
w✝ : Theory.ModelType T
h✝ : #↑w✝ = κ
⊢ (∀ (M : Theory.ModelType T), ↑M ⊨ φ) ∨ ∀ (M : Theory.ModelType T), ↑M ⊨ Formula.not φ
[PROOFSTEP]
by_contra con
[GOAL]
case intro
L : Language
κ : Cardinal.{w}
T : Theory L
h : Categorical κ T
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
hS : Theory.IsSatisfiable T
hT : ∀ (M : Theory.ModelType T), Infinite ↑M
φ : Sentence L
w✝ : Theory.ModelType T
h✝ : #↑w✝ = κ
con : ¬((∀ (M : Theory.ModelType T), ↑M ⊨ φ) ∨ ∀ (M : Theory.ModelType T), ↑M ⊨ Formula.not φ)
⊢ False
[PROOFSTEP]
push_neg at con
[GOAL]
case intro
L : Language
κ : Cardinal.{w}
T : Theory L
h : Categorical κ T
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
hS : Theory.IsSatisfiable T
hT : ∀ (M : Theory.ModelType T), Infinite ↑M
φ : Sentence L
w✝ : Theory.ModelType T
h✝ : #↑w✝ = κ
con : (∃ M, ¬↑M ⊨ φ) ∧ ∃ M, ¬↑M ⊨ Formula.not φ
⊢ False
[PROOFSTEP]
obtain ⟨⟨MF, hMF⟩, MT, hMT⟩ := con
[GOAL]
case intro.intro.intro.intro
L : Language
κ : Cardinal.{w}
T : Theory L
h : Categorical κ T
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
hS : Theory.IsSatisfiable T
hT : ∀ (M : Theory.ModelType T), Infinite ↑M
φ : Sentence L
w✝ : Theory.ModelType T
h✝ : #↑w✝ = κ
MF : Theory.ModelType T
hMF : ¬↑MF ⊨ φ
MT : Theory.ModelType T
hMT : ¬↑MT ⊨ Formula.not φ
⊢ False
[PROOFSTEP]
rw [Sentence.realize_not, Classical.not_not] at hMT
[GOAL]
case intro.intro.intro.intro
L : Language
κ : Cardinal.{w}
T : Theory L
h : Categorical κ T
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
hS : Theory.IsSatisfiable T
hT : ∀ (M : Theory.ModelType T), Infinite ↑M
φ : Sentence L
w✝ : Theory.ModelType T
h✝ : #↑w✝ = κ
MF : Theory.ModelType T
hMF : ¬↑MF ⊨ φ
MT : Theory.ModelType T
hMT : ↑MT ⊨ φ
⊢ False
[PROOFSTEP]
refine' hMF _
[GOAL]
case intro.intro.intro.intro
L : Language
κ : Cardinal.{w}
T : Theory L
h : Categorical κ T
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
hS : Theory.IsSatisfiable T
hT : ∀ (M : Theory.ModelType T), Infinite ↑M
φ : Sentence L
w✝ : Theory.ModelType T
h✝ : #↑w✝ = κ
MF : Theory.ModelType T
hMF : ¬↑MF ⊨ φ
MT : Theory.ModelType T
hMT : ↑MT ⊨ φ
⊢ ↑MF ⊨ φ
[PROOFSTEP]
haveI := hT MT
[GOAL]
case intro.intro.intro.intro
L : Language
κ : Cardinal.{w}
T : Theory L
h : Categorical κ T
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
hS : Theory.IsSatisfiable T
hT : ∀ (M : Theory.ModelType T), Infinite ↑M
φ : Sentence L
w✝ : Theory.ModelType T
h✝ : #↑w✝ = κ
MF : Theory.ModelType T
hMF : ¬↑MF ⊨ φ
MT : Theory.ModelType T
hMT : ↑MT ⊨ φ
this : Infinite ↑MT
⊢ ↑MF ⊨ φ
[PROOFSTEP]
haveI := hT MF
[GOAL]
case intro.intro.intro.intro
L : Language
κ : Cardinal.{w}
T : Theory L
h : Categorical κ T
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
hS : Theory.IsSatisfiable T
hT : ∀ (M : Theory.ModelType T), Infinite ↑M
φ : Sentence L
w✝ : Theory.ModelType T
h✝ : #↑w✝ = κ
MF : Theory.ModelType T
hMF : ¬↑MF ⊨ φ
MT : Theory.ModelType T
hMT : ↑MT ⊨ φ
this✝ : Infinite ↑MT
this : Infinite ↑MF
⊢ ↑MF ⊨ φ
[PROOFSTEP]
obtain ⟨NT, MNT, hNT⟩ := exists_elementarilyEquivalent_card_eq L MT κ h1 h2
[GOAL]
case intro.intro.intro.intro.intro.intro
L : Language
κ : Cardinal.{w}
T : Theory L
h : Categorical κ T
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
hS : Theory.IsSatisfiable T
hT : ∀ (M : Theory.ModelType T), Infinite ↑M
φ : Sentence L
w✝ : Theory.ModelType T
h✝ : #↑w✝ = κ
MF : Theory.ModelType T
hMF : ¬↑MF ⊨ φ
MT : Theory.ModelType T
hMT : ↑MT ⊨ φ
this✝ : Infinite ↑MT
this : Infinite ↑MF
NT : Bundled (Structure L)
MNT : ↑MT ≅[L] ↑NT
hNT : #↑NT = κ
⊢ ↑MF ⊨ φ
[PROOFSTEP]
obtain ⟨NF, MNF, hNF⟩ := exists_elementarilyEquivalent_card_eq L MF κ h1 h2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
L : Language
κ : Cardinal.{w}
T : Theory L
h : Categorical κ T
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
hS : Theory.IsSatisfiable T
hT : ∀ (M : Theory.ModelType T), Infinite ↑M
φ : Sentence L
w✝ : Theory.ModelType T
h✝ : #↑w✝ = κ
MF : Theory.ModelType T
hMF : ¬↑MF ⊨ φ
MT : Theory.ModelType T
hMT : ↑MT ⊨ φ
this✝ : Infinite ↑MT
this : Infinite ↑MF
NT : Bundled (Structure L)
MNT : ↑MT ≅[L] ↑NT
hNT : #↑NT = κ
NF : Bundled (Structure L)
MNF : ↑MF ≅[L] ↑NF
hNF : #↑NF = κ
⊢ ↑MF ⊨ φ
[PROOFSTEP]
obtain ⟨TF⟩ := h (MNT.toModel T) (MNF.toModel T) hNT hNF
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
L : Language
κ : Cardinal.{w}
T : Theory L
h : Categorical κ T
h1 : ℵ₀ ≤ κ
h2 : lift (card L) ≤ lift κ
hS : Theory.IsSatisfiable T
hT : ∀ (M : Theory.ModelType T), Infinite ↑M
φ : Sentence L
w✝ : Theory.ModelType T
h✝ : #↑w✝ = κ
MF : Theory.ModelType T
hMF : ¬↑MF ⊨ φ
MT : Theory.ModelType T
hMT : ↑MT ⊨ φ
this✝ : Infinite ↑MT
this : Infinite ↑MF
NT : Bundled (Structure L)
MNT : ↑MT ≅[L] ↑NT
hNT : #↑NT = κ
NF : Bundled (Structure L)
MNF : ↑MF ≅[L] ↑NF
hNF : #↑NF = κ
TF : ↑(ElementarilyEquivalent.toModel T MNT) ≃[L] ↑(ElementarilyEquivalent.toModel T MNF)
⊢ ↑MF ⊨ φ
[PROOFSTEP]
exact ((MNT.realize_sentence φ).trans ((TF.realize_sentence φ).trans (MNF.realize_sentence φ).symm)).1 hMT
[GOAL]
L : Language
κ : Cardinal.{w}
T✝ : Theory L
T : Theory Language.empty
M N : Theory.ModelType T
hM : #↑M = κ
hN : #↑N = κ
⊢ Nonempty (↑M ≃[Language.empty] ↑N)
[PROOFSTEP]
rw [empty.nonempty_equiv_iff, hM, hN]
[GOAL]
L : Language
κ : Cardinal.{w}
T : Theory L
⊢ lift (card Language.empty) ≤ lift ℵ₀
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.ModelTheory.Satisfiability", "llama_tokens": 31921} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
⊢ disjointed ≤ id
[PROOFSTEP]
rintro f n
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
n : ℕ
⊢ disjointed f n ≤ id f n
[PROOFSTEP]
cases n
[GOAL]
case zero
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
⊢ disjointed f Nat.zero ≤ id f Nat.zero
[PROOFSTEP]
rfl
[GOAL]
case succ
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
n✝ : ℕ
⊢ disjointed f (Nat.succ n✝) ≤ id f (Nat.succ n✝)
[PROOFSTEP]
exact sdiff_le
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
⊢ Pairwise (Disjoint on disjointed f)
[PROOFSTEP]
refine' (Symmetric.pairwise_on Disjoint.symm _).2 fun m n h => _
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
m n : ℕ
h : m < n
⊢ Disjoint (disjointed f m) (disjointed f n)
[PROOFSTEP]
cases n
[GOAL]
case zero
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
m : ℕ
h : m < Nat.zero
⊢ Disjoint (disjointed f m) (disjointed f Nat.zero)
[PROOFSTEP]
exact (Nat.not_lt_zero _ h).elim
[GOAL]
case succ
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
m n✝ : ℕ
h : m < Nat.succ n✝
⊢ Disjoint (disjointed f m) (disjointed f (Nat.succ n✝))
[PROOFSTEP]
exact disjoint_sdiff_self_right.mono_left ((disjointed_le f m).trans (le_partialSups_of_le f (Nat.lt_add_one_iff.1 h)))
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
p : α → Sort u_3
hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i)
n : ℕ
h : p (f (n + 1))
⊢ p (disjointed f (n + 1))
[PROOFSTEP]
suffices H : ∀ k, p (f (n + 1) \ partialSups f k)
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
p : α → Sort u_3
hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i)
n : ℕ
h : p (f (n + 1))
H : (k : ℕ) → p (f (n + 1) \ ↑(partialSups f) k)
⊢ p (disjointed f (n + 1))
[PROOFSTEP]
exact H n
[GOAL]
case H
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
p : α → Sort u_3
hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i)
n : ℕ
h : p (f (n + 1))
⊢ (k : ℕ) → p (f (n + 1) \ ↑(partialSups f) k)
[PROOFSTEP]
rintro k
[GOAL]
case H
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
p : α → Sort u_3
hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i)
n : ℕ
h : p (f (n + 1))
k : ℕ
⊢ p (f (n + 1) \ ↑(partialSups f) k)
[PROOFSTEP]
induction' k with k ih
[GOAL]
case H.zero
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
p : α → Sort u_3
hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i)
n : ℕ
h : p (f (n + 1))
⊢ p (f (n + 1) \ ↑(partialSups f) Nat.zero)
[PROOFSTEP]
exact hdiff h
[GOAL]
case H.succ
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
p : α → Sort u_3
hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i)
n : ℕ
h : p (f (n + 1))
k : ℕ
ih : p (f (n + 1) \ ↑(partialSups f) k)
⊢ p (f (n + 1) \ ↑(partialSups f) (Nat.succ k))
[PROOFSTEP]
rw [partialSups_succ, ← sdiff_sdiff_left]
[GOAL]
case H.succ
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
p : α → Sort u_3
hdiff : ⦃t : α⦄ → ⦃i : ℕ⦄ → p t → p (t \ f i)
n : ℕ
h : p (f (n + 1))
k : ℕ
ih : p (f (n + 1) \ ↑(partialSups f) k)
⊢ p ((f (n + 1) \ ↑(partialSups f) k) \ f (k + 1))
[PROOFSTEP]
exact hdiff ih
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
hf : Monotone f
n : ℕ
⊢ disjointed f (n + 1) = f (n + 1) \ f n
[PROOFSTEP]
rw [disjointed_succ, hf.partialSups_eq]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
⊢ partialSups (disjointed f) = partialSups f
[PROOFSTEP]
ext n
[GOAL]
case h.h
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
n : ℕ
⊢ ↑(partialSups (disjointed f)) n = ↑(partialSups f) n
[PROOFSTEP]
induction' n with k ih
[GOAL]
case h.h.zero
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
⊢ ↑(partialSups (disjointed f)) Nat.zero = ↑(partialSups f) Nat.zero
[PROOFSTEP]
rw [partialSups_zero, partialSups_zero, disjointed_zero]
[GOAL]
case h.h.succ
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f : ℕ → α
k : ℕ
ih : ↑(partialSups (disjointed f)) k = ↑(partialSups f) k
⊢ ↑(partialSups (disjointed f)) (Nat.succ k) = ↑(partialSups f) (Nat.succ k)
[PROOFSTEP]
rw [partialSups_succ, partialSups_succ, disjointed_succ, ih, sup_sdiff_self_right]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f d : ℕ → α
hdisj : Pairwise (Disjoint on d)
hsups : partialSups d = partialSups f
⊢ d = disjointed f
[PROOFSTEP]
ext n
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f d : ℕ → α
hdisj : Pairwise (Disjoint on d)
hsups : partialSups d = partialSups f
n : ℕ
⊢ d n = disjointed f n
[PROOFSTEP]
cases' n with n
[GOAL]
case h.zero
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f d : ℕ → α
hdisj : Pairwise (Disjoint on d)
hsups : partialSups d = partialSups f
⊢ d Nat.zero = disjointed f Nat.zero
[PROOFSTEP]
rw [← partialSups_zero d, hsups, partialSups_zero, disjointed_zero]
[GOAL]
case h.succ
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f d : ℕ → α
hdisj : Pairwise (Disjoint on d)
hsups : partialSups d = partialSups f
n : ℕ
⊢ d (Nat.succ n) = disjointed f (Nat.succ n)
[PROOFSTEP]
suffices h : d n.succ = partialSups d n.succ \ partialSups d n
[GOAL]
case h.succ
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f d : ℕ → α
hdisj : Pairwise (Disjoint on d)
hsups : partialSups d = partialSups f
n : ℕ
h : d (Nat.succ n) = ↑(partialSups d) (Nat.succ n) \ ↑(partialSups d) n
⊢ d (Nat.succ n) = disjointed f (Nat.succ n)
[PROOFSTEP]
rw [h, hsups, partialSups_succ, disjointed_succ, sup_sdiff, sdiff_self, bot_sup_eq]
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f d : ℕ → α
hdisj : Pairwise (Disjoint on d)
hsups : partialSups d = partialSups f
n : ℕ
⊢ d (Nat.succ n) = ↑(partialSups d) (Nat.succ n) \ ↑(partialSups d) n
[PROOFSTEP]
rw [partialSups_succ, sup_sdiff, sdiff_self, bot_sup_eq, eq_comm, sdiff_eq_self_iff_disjoint]
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f d : ℕ → α
hdisj : Pairwise (Disjoint on d)
hsups : partialSups d = partialSups f
n : ℕ
⊢ Disjoint (↑(partialSups d) n) (d (n + 1))
[PROOFSTEP]
suffices h : ∀ m ≤ n, Disjoint (partialSups d m) (d n.succ)
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f d : ℕ → α
hdisj : Pairwise (Disjoint on d)
hsups : partialSups d = partialSups f
n : ℕ
h : ∀ (m : ℕ), m ≤ n → Disjoint (↑(partialSups d) m) (d (Nat.succ n))
⊢ Disjoint (↑(partialSups d) n) (d (n + 1))
[PROOFSTEP]
exact h n le_rfl
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f d : ℕ → α
hdisj : Pairwise (Disjoint on d)
hsups : partialSups d = partialSups f
n : ℕ
⊢ ∀ (m : ℕ), m ≤ n → Disjoint (↑(partialSups d) m) (d (Nat.succ n))
[PROOFSTEP]
rintro m hm
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f d : ℕ → α
hdisj : Pairwise (Disjoint on d)
hsups : partialSups d = partialSups f
n m : ℕ
hm : m ≤ n
⊢ Disjoint (↑(partialSups d) m) (d (Nat.succ n))
[PROOFSTEP]
induction' m with m ih
[GOAL]
case h.zero
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f d : ℕ → α
hdisj : Pairwise (Disjoint on d)
hsups : partialSups d = partialSups f
n m : ℕ
hm✝ : m ≤ n
hm : Nat.zero ≤ n
⊢ Disjoint (↑(partialSups d) Nat.zero) (d (Nat.succ n))
[PROOFSTEP]
exact hdisj (Nat.succ_ne_zero _).symm
[GOAL]
case h.succ
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f d : ℕ → α
hdisj : Pairwise (Disjoint on d)
hsups : partialSups d = partialSups f
n m✝ : ℕ
hm✝ : m✝ ≤ n
m : ℕ
ih : m ≤ n → Disjoint (↑(partialSups d) m) (d (Nat.succ n))
hm : Nat.succ m ≤ n
⊢ Disjoint (↑(partialSups d) (Nat.succ m)) (d (Nat.succ n))
[PROOFSTEP]
rw [partialSups_succ, disjoint_iff, inf_sup_right, sup_eq_bot_iff, ← disjoint_iff, ← disjoint_iff]
[GOAL]
case h.succ
α : Type u_1
β : Type u_2
inst✝ : GeneralizedBooleanAlgebra α
f d : ℕ → α
hdisj : Pairwise (Disjoint on d)
hsups : partialSups d = partialSups f
n m✝ : ℕ
hm✝ : m✝ ≤ n
m : ℕ
ih : m ≤ n → Disjoint (↑(partialSups d) m) (d (Nat.succ n))
hm : Nat.succ m ≤ n
⊢ Disjoint (↑(partialSups d) m) (d (Nat.succ n)) ∧ Disjoint (d (m + 1)) (d (Nat.succ n))
[PROOFSTEP]
exact ⟨ih (Nat.le_of_succ_le hm), hdisj (Nat.lt_succ_of_le hm).ne⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CompleteBooleanAlgebra α
f : ℕ → α
n : ℕ
⊢ disjointed f n = f n ⊓ ⨅ (i : ℕ) (_ : i < n), (f i)ᶜ
[PROOFSTEP]
cases n
[GOAL]
case zero
α : Type u_1
β : Type u_2
inst✝ : CompleteBooleanAlgebra α
f : ℕ → α
⊢ disjointed f Nat.zero = f Nat.zero ⊓ ⨅ (i : ℕ) (_ : i < Nat.zero), (f i)ᶜ
[PROOFSTEP]
rw [disjointed_zero, eq_comm, inf_eq_left]
[GOAL]
case zero
α : Type u_1
β : Type u_2
inst✝ : CompleteBooleanAlgebra α
f : ℕ → α
⊢ f Nat.zero ≤ ⨅ (i : ℕ) (_ : i < Nat.zero), (f i)ᶜ
[PROOFSTEP]
simp_rw [le_iInf_iff]
[GOAL]
case zero
α : Type u_1
β : Type u_2
inst✝ : CompleteBooleanAlgebra α
f : ℕ → α
⊢ ∀ (i : ℕ), i < Nat.zero → f Nat.zero ≤ (f i)ᶜ
[PROOFSTEP]
exact fun i hi => (i.not_lt_zero hi).elim
[GOAL]
case succ
α : Type u_1
β : Type u_2
inst✝ : CompleteBooleanAlgebra α
f : ℕ → α
n✝ : ℕ
⊢ disjointed f (Nat.succ n✝) = f (Nat.succ n✝) ⊓ ⨅ (i : ℕ) (_ : i < Nat.succ n✝), (f i)ᶜ
[PROOFSTEP]
simp_rw [disjointed_succ, partialSups_eq_biSup, sdiff_eq, compl_iSup]
[GOAL]
case succ
α : Type u_1
β : Type u_2
inst✝ : CompleteBooleanAlgebra α
f : ℕ → α
n✝ : ℕ
⊢ f (n✝ + 1) ⊓ ⨅ (i : ℕ) (_ : i ≤ n✝), (f i)ᶜ = f (Nat.succ n✝) ⊓ ⨅ (i : ℕ) (_ : i < Nat.succ n✝), (f i)ᶜ
[PROOFSTEP]
congr
[GOAL]
case succ.e_a.e_s
α : Type u_1
β : Type u_2
inst✝ : CompleteBooleanAlgebra α
f : ℕ → α
n✝ : ℕ
⊢ (fun i => ⨅ (_ : i ≤ n✝), (f i)ᶜ) = fun i => ⨅ (_ : i < Nat.succ n✝), (f i)ᶜ
[PROOFSTEP]
ext i
[GOAL]
case succ.e_a.e_s.h
α : Type u_1
β : Type u_2
inst✝ : CompleteBooleanAlgebra α
f : ℕ → α
n✝ i : ℕ
⊢ ⨅ (_ : i ≤ n✝), (f i)ᶜ = ⨅ (_ : i < Nat.succ n✝), (f i)ᶜ
[PROOFSTEP]
rw [Nat.lt_succ_iff]
[GOAL]
α : Type u_1
β : Type u_2
s : ℕ → Set α
H : ∀ (x : α), ∃ n, x ∈ s n
inst✝ : (x : α) → (n : ℕ) → Decidable (x ∈ s n)
n : ℕ
⊢ (fun x => Nat.find (_ : ∃ n, x ∈ s n)) ⁻¹' {n} = disjointed s n
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
s : ℕ → Set α
H : ∀ (x : α), ∃ n, x ∈ s n
inst✝ : (x : α) → (n : ℕ) → Decidable (x ∈ s n)
n : ℕ
x : α
⊢ x ∈ (fun x => Nat.find (_ : ∃ n, x ∈ s n)) ⁻¹' {n} ↔ x ∈ disjointed s n
[PROOFSTEP]
simp [Nat.find_eq_iff, disjointed_eq_inter_compl]
| {"mathlib_filename": "Mathlib.Order.Disjointed", "llama_tokens": 5447} |
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : OrderBot α
a b c d : α
ha : a ≠ ⊥
hab : Disjoint a b
h : a = b
⊢ Disjoint a a
[PROOFSTEP]
rwa [← h] at hab
[GOAL]
α : Type u_1
inst✝¹ : SemilatticeInf α
inst✝ : OrderBot α
a b c d : α
⊢ Disjoint (a ⊓ b) c ↔ Disjoint a (b ⊓ c)
[PROOFSTEP]
rw [disjoint_iff_inf_le, disjoint_iff_inf_le, inf_assoc]
[GOAL]
α : Type u_1
inst✝¹ : SemilatticeInf α
inst✝ : OrderBot α
a b c d : α
⊢ Disjoint a (b ⊓ c) ↔ Disjoint b (a ⊓ c)
[PROOFSTEP]
simp_rw [disjoint_iff_inf_le, inf_left_comm]
[GOAL]
α : Type u_1
inst✝¹ : SemilatticeInf α
inst✝ : OrderBot α
a b c d : α
⊢ Disjoint (a ⊓ b) c ↔ Disjoint (a ⊓ c) b
[PROOFSTEP]
simp_rw [disjoint_iff_inf_le, inf_right_comm]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a b c : α
⊢ Disjoint (a ⊔ b) c ↔ Disjoint a c ∧ Disjoint b c
[PROOFSTEP]
simp only [disjoint_iff, inf_sup_right, sup_eq_bot_iff]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a b c : α
⊢ Disjoint a (b ⊔ c) ↔ Disjoint a b ∧ Disjoint a c
[PROOFSTEP]
simp only [disjoint_iff, inf_sup_left, sup_eq_bot_iff]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderBot α
a b c : α
h : a ≤ c ⊔ b
hd : Disjoint a c
⊢ a ≤ b ⊔ c
[PROOFSTEP]
rwa [sup_comm]
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : OrderTop α
a b c d : α
ha : a ≠ ⊤
hab : Codisjoint a b
h : a = b
⊢ Codisjoint a a
[PROOFSTEP]
rwa [← h] at hab
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderTop α
a b c : α
⊢ Codisjoint (a ⊓ b) c ↔ Codisjoint a c ∧ Codisjoint b c
[PROOFSTEP]
simp only [codisjoint_iff, sup_inf_right, inf_eq_top_iff]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderTop α
a b c : α
⊢ Codisjoint a (b ⊓ c) ↔ Codisjoint a b ∧ Codisjoint a c
[PROOFSTEP]
simp only [codisjoint_iff, sup_inf_left, inf_eq_top_iff]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : OrderTop α
a b c : α
h : b ⊓ a ≤ c
hd : Codisjoint b c
⊢ a ⊓ b ≤ c
[PROOFSTEP]
rwa [inf_comm]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : BoundedOrder α
a b c : α
hab : Disjoint a b
hbc : Codisjoint b c
⊢ a ≤ c
[PROOFSTEP]
rw [← @inf_top_eq _ _ _ a, ← @bot_sup_eq _ _ _ c, ← hab.eq_bot, ← hbc.eq_top, sup_inf_right]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : BoundedOrder α
a b c : α
hab : Disjoint a b
hbc : Codisjoint b c
⊢ a ⊓ (b ⊔ c) ≤ (a ⊔ c) ⊓ (b ⊔ c)
[PROOFSTEP]
exact inf_le_inf_right _ le_sup_left
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : BoundedOrder α
a b x y z : α
h : IsCompl x y
hle : a ≤ b ⊔ y
⊢ b ⊓ x ⊔ y ⊓ x = b ⊓ x
[PROOFSTEP]
rw [h.symm.inf_eq_bot, sup_bot_eq]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : BoundedOrder α
a b x y z : α
h : IsCompl y z
⊢ x ⊓ y = ⊥ ↔ x ≤ z
[PROOFSTEP]
rw [← le_bot_iff, ← h.le_sup_right_iff_inf_left_le, bot_sup_eq]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : BoundedOrder α
a b x y z : α
h : IsCompl y z
⊢ Disjoint x y ↔ x ≤ z
[PROOFSTEP]
rw [disjoint_iff]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : BoundedOrder α
a b x y z : α
h : IsCompl y z
⊢ x ⊓ y = ⊥ ↔ x ≤ z
[PROOFSTEP]
exact h.inf_left_eq_bot_iff
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : BoundedOrder α
a b x y z x' y' : α
h : IsCompl x y
h' : IsCompl x' y'
⊢ (x ⊔ x') ⊓ (y ⊓ y') = ⊥
[PROOFSTEP]
rw [inf_sup_right, ← inf_assoc, h.inf_eq_bot, bot_inf_eq, bot_sup_eq, inf_left_comm, h'.inf_eq_bot, inf_bot_eq]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : BoundedOrder α
a b x y z x' y' : α
h : IsCompl x y
h' : IsCompl x' y'
⊢ x ⊔ x' ⊔ y ⊓ y' = ⊤
[PROOFSTEP]
rw [sup_inf_left, @sup_comm _ _ x, sup_assoc, h.sup_eq_top, sup_top_eq, top_inf_eq, sup_assoc, sup_left_comm,
h'.sup_eq_top, sup_top_eq]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
x y : α × β
⊢ Disjoint x y ↔ Disjoint x.fst y.fst ∧ Disjoint x.snd y.snd
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
x y : α × β
⊢ Disjoint x y → Disjoint x.fst y.fst ∧ Disjoint x.snd y.snd
[PROOFSTEP]
intro h
[GOAL]
case mp
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
x y : α × β
h : Disjoint x y
⊢ Disjoint x.fst y.fst ∧ Disjoint x.snd y.snd
[PROOFSTEP]
refine' ⟨fun a hx hy ↦ (@h (a, ⊥) ⟨hx, _⟩ ⟨hy, _⟩).1, fun b hx hy ↦ (@h (⊥, b) ⟨_, hx⟩ ⟨_, hy⟩).2⟩
[GOAL]
case mp.refine'_1
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
x y : α × β
h : Disjoint x y
a : α
hx : a ≤ x.fst
hy : a ≤ y.fst
⊢ (a, ⊥).snd ≤ x.snd
case mp.refine'_2
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
x y : α × β
h : Disjoint x y
a : α
hx : a ≤ x.fst
hy : a ≤ y.fst
⊢ (a, ⊥).snd ≤ y.snd
case mp.refine'_3
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
x y : α × β
h : Disjoint x y
b : β
hx : b ≤ x.snd
hy : b ≤ y.snd
⊢ (⊥, b).fst ≤ x.fst
case mp.refine'_4
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
x y : α × β
h : Disjoint x y
b : β
hx : b ≤ x.snd
hy : b ≤ y.snd
⊢ (⊥, b).fst ≤ y.fst
[PROOFSTEP]
all_goals exact bot_le
[GOAL]
case mp.refine'_1
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
x y : α × β
h : Disjoint x y
a : α
hx : a ≤ x.fst
hy : a ≤ y.fst
⊢ (a, ⊥).snd ≤ x.snd
[PROOFSTEP]
exact bot_le
[GOAL]
case mp.refine'_2
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
x y : α × β
h : Disjoint x y
a : α
hx : a ≤ x.fst
hy : a ≤ y.fst
⊢ (a, ⊥).snd ≤ y.snd
[PROOFSTEP]
exact bot_le
[GOAL]
case mp.refine'_3
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
x y : α × β
h : Disjoint x y
b : β
hx : b ≤ x.snd
hy : b ≤ y.snd
⊢ (⊥, b).fst ≤ x.fst
[PROOFSTEP]
exact bot_le
[GOAL]
case mp.refine'_4
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
x y : α × β
h : Disjoint x y
b : β
hx : b ≤ x.snd
hy : b ≤ y.snd
⊢ (⊥, b).fst ≤ y.fst
[PROOFSTEP]
exact bot_le
[GOAL]
case mpr
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
x y : α × β
⊢ Disjoint x.fst y.fst ∧ Disjoint x.snd y.snd → Disjoint x y
[PROOFSTEP]
rintro ⟨ha, hb⟩ z hza hzb
[GOAL]
case mpr.intro
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
x y : α × β
ha : Disjoint x.fst y.fst
hb : Disjoint x.snd y.snd
z : α × β
hza : z ≤ x
hzb : z ≤ y
⊢ z ≤ ⊥
[PROOFSTEP]
refine' ⟨ha hza.1 hzb.1, hb hza.2 hzb.2⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : BoundedOrder α
inst✝ : BoundedOrder β
x y : α × β
⊢ IsCompl x y ↔ IsCompl x.fst y.fst ∧ IsCompl x.snd y.snd
[PROOFSTEP]
simp_rw [isCompl_iff, Prod.disjoint_iff, Prod.codisjoint_iff, and_and_and_comm]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : BoundedOrder α
a b : Complementeds α
⊢ ↑a ≤ ↑b ↔ a ≤ b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : BoundedOrder α
a b : Complementeds α
⊢ Disjoint ↑a ↑b ↔ Disjoint a b
[PROOFSTEP]
rw [disjoint_iff, disjoint_iff, ← coe_inf, ← coe_bot, coe_inj]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : BoundedOrder α
a b : Complementeds α
⊢ Codisjoint ↑a ↑b ↔ Codisjoint a b
[PROOFSTEP]
rw [codisjoint_iff, codisjoint_iff, ← coe_sup, ← coe_top, coe_inj]
[GOAL]
α : Type u_1
inst✝¹ : DistribLattice α
inst✝ : BoundedOrder α
a b : Complementeds α
⊢ IsCompl ↑a ↑b ↔ IsCompl a b
[PROOFSTEP]
simp_rw [isCompl_iff, disjoint_coe, codisjoint_coe]
| {"mathlib_filename": "Mathlib.Order.Disjoint", "llama_tokens": 4251} |
[GOAL]
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
inst✝ : Preorder α
⊢ Function.Injective fun c => ↑c.toOrderHom
[PROOFSTEP]
rintro ⟨⟩ ⟨⟩ h
[GOAL]
case mk.mk
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
inst✝ : Preorder α
toOrderHom✝¹ : α →o α
le_closure'✝¹ : ∀ (x : α), x ≤ OrderHom.toFun toOrderHom✝¹ x
idempotent'✝¹ : ∀ (x : α), OrderHom.toFun toOrderHom✝¹ (OrderHom.toFun toOrderHom✝¹ x) = OrderHom.toFun toOrderHom✝¹ x
toOrderHom✝ : α →o α
le_closure'✝ : ∀ (x : α), x ≤ OrderHom.toFun toOrderHom✝ x
idempotent'✝ : ∀ (x : α), OrderHom.toFun toOrderHom✝ (OrderHom.toFun toOrderHom✝ x) = OrderHom.toFun toOrderHom✝ x
h :
(fun c => ↑c.toOrderHom) { toOrderHom := toOrderHom✝¹, le_closure' := le_closure'✝¹, idempotent' := idempotent'✝¹ } =
(fun c => ↑c.toOrderHom) { toOrderHom := toOrderHom✝, le_closure' := le_closure'✝, idempotent' := idempotent'✝ }
⊢ { toOrderHom := toOrderHom✝¹, le_closure' := le_closure'✝¹, idempotent' := idempotent'✝¹ } =
{ toOrderHom := toOrderHom✝, le_closure' := le_closure'✝, idempotent' := idempotent'✝ }
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toOrderHom
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
inst✝ : Preorder α
toOrderHom✝¹ : α →o α
le_closure'✝¹ : ∀ (x : α), x ≤ OrderHom.toFun toOrderHom✝¹ x
idempotent'✝¹ : ∀ (x : α), OrderHom.toFun toOrderHom✝¹ (OrderHom.toFun toOrderHom✝¹ x) = OrderHom.toFun toOrderHom✝¹ x
toOrderHom✝ : α →o α
le_closure'✝ : ∀ (x : α), x ≤ OrderHom.toFun toOrderHom✝ x
idempotent'✝ : ∀ (x : α), OrderHom.toFun toOrderHom✝ (OrderHom.toFun toOrderHom✝ x) = OrderHom.toFun toOrderHom✝ x
h :
(fun c => ↑c.toOrderHom) { toOrderHom := toOrderHom✝¹, le_closure' := le_closure'✝¹, idempotent' := idempotent'✝¹ } =
(fun c => ↑c.toOrderHom) { toOrderHom := toOrderHom✝, le_closure' := le_closure'✝, idempotent' := idempotent'✝ }
⊢ toOrderHom✝¹ = toOrderHom✝
[PROOFSTEP]
exact FunLike.ext' h
[GOAL]
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
inst✝¹ inst✝ : PartialOrder α
c : ClosureOperator α
c₁ : α → α
monotone'✝¹ : Monotone c₁
le_closure'✝¹ : ∀ (x : α), x ≤ OrderHom.toFun { toFun := c₁, monotone' := monotone'✝¹ } x
idempotent'✝¹ :
∀ (x : α),
OrderHom.toFun { toFun := c₁, monotone' := monotone'✝¹ }
(OrderHom.toFun { toFun := c₁, monotone' := monotone'✝¹ } x) =
OrderHom.toFun { toFun := c₁, monotone' := monotone'✝¹ } x
c₂ : α → α
monotone'✝ : Monotone c₂
le_closure'✝ : ∀ (x : α), x ≤ OrderHom.toFun { toFun := c₂, monotone' := monotone'✝ } x
idempotent'✝ :
∀ (x : α),
OrderHom.toFun { toFun := c₂, monotone' := monotone'✝ }
(OrderHom.toFun { toFun := c₂, monotone' := monotone'✝ } x) =
OrderHom.toFun { toFun := c₂, monotone' := monotone'✝ } x
h :
↑{ toOrderHom := { toFun := c₁, monotone' := monotone'✝¹ }, le_closure' := le_closure'✝¹,
idempotent' := idempotent'✝¹ } =
↑{ toOrderHom := { toFun := c₂, monotone' := monotone'✝ }, le_closure' := le_closure'✝,
idempotent' := idempotent'✝ }
⊢ { toOrderHom := { toFun := c₁, monotone' := monotone'✝¹ }, le_closure' := le_closure'✝¹,
idempotent' := idempotent'✝¹ } =
{ toOrderHom := { toFun := c₂, monotone' := monotone'✝ }, le_closure' := le_closure'✝, idempotent' := idempotent'✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
inst✝¹ inst✝ : PartialOrder α
c : ClosureOperator α
x : α
⊢ x ∈ Set.range ↑c → x ∈ closed c
[PROOFSTEP]
rintro ⟨y, rfl⟩
[GOAL]
case intro
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
inst✝¹ inst✝ : PartialOrder α
c : ClosureOperator α
y : α
⊢ ↑c y ∈ closed c
[PROOFSTEP]
apply c.idempotent
[GOAL]
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
inst✝¹ inst✝ : PartialOrder α
c : ClosureOperator α
x y : α
hy : closed c y
⊢ ↑c x ≤ y ↔ x ≤ y
[PROOFSTEP]
rw [← c.closure_eq_self_of_mem_closed hy, ← le_closure_iff]
[GOAL]
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
inst✝¹ inst✝ : PartialOrder α
c✝ c : ClosureOperator α
⊢ c =
mk₃ (↑c) (closed c) (_ : ∀ (x : α), x ≤ ↑c x) (_ : ∀ (x : α), ↑c x ∈ closed c)
(_ : ∀ (x y : α), x ≤ y → closed c y → ↑c x ≤ y)
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
inst✝¹ inst✝ : PartialOrder α
c✝ c : ClosureOperator α
x✝ : α
⊢ ↑c x✝ =
↑(mk₃ (↑c) (closed c) (_ : ∀ (x : α), x ≤ ↑c x) (_ : ∀ (x : α), ↑c x ∈ closed c)
(_ : ∀ (x y : α), x ≤ y → closed c y → ↑c x ≤ y))
x✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
inst✝ : SemilatticeSup α
c : ClosureOperator α
x y : α
⊢ ↑c (x ⊔ ↑c y) = ↑c (x ⊔ y)
[PROOFSTEP]
rw [sup_comm, closure_sup_closure_left, sup_comm (a := x)]
[GOAL]
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
inst✝ : SemilatticeSup α
c : ClosureOperator α
x y : α
⊢ ↑c (↑c x ⊔ ↑c y) = ↑c (x ⊔ y)
[PROOFSTEP]
rw [closure_sup_closure_left, closure_sup_closure_right]
[GOAL]
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
β : Type u_4
inst✝¹ : Preorder α
inst✝ : Preorder β
u : β → α
l : LowerAdjoint u
l₁ : α → β
gc'✝¹ : GaloisConnection l₁ u
l₂ : α → β
gc'✝ : GaloisConnection l₂ u
h : { toFun := l₁, gc' := gc'✝¹ }.toFun = { toFun := l₂, gc' := gc'✝ }.toFun
⊢ { toFun := l₁, gc' := gc'✝¹ } = { toFun := l₂, gc' := gc'✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
β : Type u_4
inst✝ : SetLike α β
l : LowerAdjoint SetLike.coe
s : Set β
x : β
⊢ x ∈ toFun l s ↔ ∀ (S : α), s ⊆ ↑S → x ∈ S
[PROOFSTEP]
simp_rw [← SetLike.mem_coe, ← Set.singleton_subset_iff, ← l.le_iff_subset]
[GOAL]
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
β : Type u_4
inst✝ : SetLike α β
l : LowerAdjoint SetLike.coe
s : Set β
x : β
⊢ toFun l {x} ≤ toFun l s ↔ ∀ (S : α), toFun l s ≤ S → toFun l {x} ≤ S
[PROOFSTEP]
exact ⟨fun h S => h.trans, fun h => h _ le_rfl⟩
[GOAL]
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
β : Type u_4
inst✝ : SetLike α β
l : LowerAdjoint SetLike.coe
x y : α
⊢ toFun l (↑(toFun l ↑x) ∪ ↑(toFun l ↑y)) = toFun l (↑x ∪ ↑y)
[PROOFSTEP]
rw [closure_union_closure_right, closure_union_closure_left]
[GOAL]
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
β : Type u_4
inst✝ : PartialOrder α
c : ClosureOperator α
⊢ GaloisConnection.closureOperator (_ : GaloisConnection (ClosureOperator.toClosed c) Subtype.val) = c
[PROOFSTEP]
ext x
[GOAL]
case a.h
α : Type u_1
ι : Sort u_2
κ : ι → Sort u_3
β : Type u_4
inst✝ : PartialOrder α
c : ClosureOperator α
x : α
⊢ ↑(GaloisConnection.closureOperator (_ : GaloisConnection (ClosureOperator.toClosed c) Subtype.val)) x = ↑c x
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Order.Closure", "llama_tokens": 3203} |
[GOAL]
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : LE α
⊢ OrderTop α ⊕' NoTopOrder α
[PROOFSTEP]
by_cases H : ∀ a : α, ∃ b, ¬b ≤ a
[GOAL]
case pos
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : LE α
H : ∀ (a : α), ∃ b, ¬b ≤ a
⊢ OrderTop α ⊕' NoTopOrder α
[PROOFSTEP]
exact PSum.inr ⟨H⟩
[GOAL]
case neg
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : LE α
H : ¬∀ (a : α), ∃ b, ¬b ≤ a
⊢ OrderTop α ⊕' NoTopOrder α
[PROOFSTEP]
push_neg at H
[GOAL]
case neg
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : LE α
H : ∃ a, ∀ (b : α), b ≤ a
⊢ OrderTop α ⊕' NoTopOrder α
[PROOFSTEP]
letI : Top α := ⟨Classical.choose H⟩
[GOAL]
case neg
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : LE α
H : ∃ a, ∀ (b : α), b ≤ a
this : Top α := { top := Classical.choose H }
⊢ OrderTop α ⊕' NoTopOrder α
[PROOFSTEP]
exact PSum.inl ⟨Classical.choose_spec H⟩
[GOAL]
α : Type u
β : Type v
γ : Type u_1
δ : Type u_2
inst✝² : LinearOrder α
inst✝¹ : Preorder β
inst✝ : OrderTop β
f : α → β
H : StrictMono f
a : α
h_top : f a = ⊤
x : α
p : β
⊢ p ≤ f a
[PROOFSTEP]
rw [h_top]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
δ : Type u_2
inst✝² : LinearOrder α
inst✝¹ : Preorder β
inst✝ : OrderTop β
f : α → β
H : StrictMono f
a : α
h_top : f a = ⊤
x : α
p : β
⊢ p ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
hA : PartialOrder α
A : OrderTop α
hB : PartialOrder α
B : OrderTop α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ ⊤ = ⊤
[PROOFSTEP]
cases PartialOrder.ext H
[GOAL]
case refl
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
hA : PartialOrder α
A B : OrderTop α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ ⊤ = ⊤
[PROOFSTEP]
apply top_unique
[GOAL]
case refl.h
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
hA : PartialOrder α
A B : OrderTop α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ ⊤ ≤ ⊤
[PROOFSTEP]
exact @le_top _ _ A _
[GOAL]
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
A B : OrderTop α
⊢ A = B
[PROOFSTEP]
rcases A with ⟨ha⟩
[GOAL]
case mk
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
B : OrderTop α
toTop✝ : Top α
ha : ∀ (a : α), a ≤ ⊤
⊢ mk ha = B
[PROOFSTEP]
rcases B with ⟨hb⟩
[GOAL]
case mk.mk
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
toTop✝¹ : Top α
ha : ∀ (a : α), a ≤ ⊤
toTop✝ : Top α
hb : ∀ (a : α), a ≤ ⊤
⊢ mk ha = mk hb
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toTop
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
toTop✝¹ : Top α
ha : ∀ (a : α), a ≤ ⊤
toTop✝ : Top α
hb : ∀ (a : α), a ≤ ⊤
⊢ toTop✝¹ = toTop✝
[PROOFSTEP]
ext
[GOAL]
case mk.mk.e_toTop.top
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
toTop✝¹ : Top α
ha : ∀ (a : α), a ≤ ⊤
toTop✝ : Top α
hb : ∀ (a : α), a ≤ ⊤
⊢ ⊤ = ⊤
[PROOFSTEP]
exact le_antisymm (hb _) (ha _)
[GOAL]
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : LE α
⊢ OrderBot α ⊕' NoBotOrder α
[PROOFSTEP]
by_cases H : ∀ a : α, ∃ b, ¬a ≤ b
[GOAL]
case pos
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : LE α
H : ∀ (a : α), ∃ b, ¬a ≤ b
⊢ OrderBot α ⊕' NoBotOrder α
[PROOFSTEP]
exact PSum.inr ⟨H⟩
[GOAL]
case neg
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : LE α
H : ¬∀ (a : α), ∃ b, ¬a ≤ b
⊢ OrderBot α ⊕' NoBotOrder α
[PROOFSTEP]
push_neg at H
[GOAL]
case neg
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : LE α
H : ∃ a, ∀ (b : α), a ≤ b
⊢ OrderBot α ⊕' NoBotOrder α
[PROOFSTEP]
letI : Bot α := ⟨Classical.choose H⟩
[GOAL]
case neg
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : LE α
H : ∃ a, ∀ (b : α), a ≤ b
this : Bot α := { bot := Classical.choose H }
⊢ OrderBot α ⊕' NoBotOrder α
[PROOFSTEP]
exact PSum.inl ⟨Classical.choose_spec H⟩
[GOAL]
α : Type u
β : Type v
γ : Type u_1
δ : Type u_2
inst✝² : LinearOrder α
inst✝¹ : PartialOrder β
inst✝ : OrderBot β
f : α → β
H : StrictMono f
a : α
h_bot : f a = ⊥
x : α
p : β
⊢ f a ≤ p
[PROOFSTEP]
rw [h_bot]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
δ : Type u_2
inst✝² : LinearOrder α
inst✝¹ : PartialOrder β
inst✝ : OrderBot β
f : α → β
H : StrictMono f
a : α
h_bot : f a = ⊥
x : α
p : β
⊢ ⊥ ≤ p
[PROOFSTEP]
exact bot_le
[GOAL]
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
hA : PartialOrder α
A : OrderBot α
hB : PartialOrder α
B : OrderBot α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ ⊥ = ⊥
[PROOFSTEP]
cases PartialOrder.ext H
[GOAL]
case refl
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
hA : PartialOrder α
A B : OrderBot α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ ⊥ = ⊥
[PROOFSTEP]
apply bot_unique
[GOAL]
case refl.h
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
hA : PartialOrder α
A B : OrderBot α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ ⊥ ≤ ⊥
[PROOFSTEP]
exact @bot_le _ _ A _
[GOAL]
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
A B : OrderBot α
⊢ A = B
[PROOFSTEP]
rcases A with ⟨ha⟩
[GOAL]
case mk
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
B : OrderBot α
toBot✝ : Bot α
ha : ∀ (a : α), ⊥ ≤ a
⊢ mk ha = B
[PROOFSTEP]
rcases B with ⟨hb⟩
[GOAL]
case mk.mk
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
toBot✝¹ : Bot α
ha : ∀ (a : α), ⊥ ≤ a
toBot✝ : Bot α
hb : ∀ (a : α), ⊥ ≤ a
⊢ mk ha = mk hb
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toBot
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
toBot✝¹ : Bot α
ha : ∀ (a : α), ⊥ ≤ a
toBot✝ : Bot α
hb : ∀ (a : α), ⊥ ≤ a
⊢ toBot✝¹ = toBot✝
[PROOFSTEP]
ext
[GOAL]
case mk.mk.e_toBot.bot
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
toBot✝¹ : Bot α
ha : ∀ (a : α), ⊥ ≤ a
toBot✝ : Bot α
hb : ∀ (a : α), ⊥ ≤ a
⊢ ⊥ = ⊥
[PROOFSTEP]
exact le_antisymm (ha _) (hb _)
[GOAL]
α : Type u
β : Type v
γ : Type u_1
δ : Type u_2
inst✝¹ : SemilatticeSup α
inst✝ : OrderBot α
a b : α
⊢ a ⊔ b = ⊥ ↔ a = ⊥ ∧ b = ⊥
[PROOFSTEP]
rw [eq_bot_iff, sup_le_iff]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
δ : Type u_2
inst✝¹ : SemilatticeSup α
inst✝ : OrderBot α
a b : α
⊢ a ≤ ⊥ ∧ b ≤ ⊥ ↔ a = ⊥ ∧ b = ⊥
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
A B : BoundedOrder α
⊢ A = B
[PROOFSTEP]
have ht : @BoundedOrder.toOrderTop α _ A = @BoundedOrder.toOrderTop α _ B := OrderTop.ext
[GOAL]
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
A B : BoundedOrder α
ht : toOrderTop = toOrderTop
⊢ A = B
[PROOFSTEP]
have hb : @BoundedOrder.toOrderBot α _ A = @BoundedOrder.toOrderBot α _ B := OrderBot.ext
[GOAL]
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
A B : BoundedOrder α
ht : toOrderTop = toOrderTop
hb : toOrderBot = toOrderBot
⊢ A = B
[PROOFSTEP]
cases A
[GOAL]
case mk
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
B : BoundedOrder α
toOrderTop✝ : OrderTop α
toOrderBot✝ : OrderBot α
ht : toOrderTop = toOrderTop
hb : toOrderBot = toOrderBot
⊢ mk = B
[PROOFSTEP]
cases B
[GOAL]
case mk.mk
α✝ : Type u
β : Type v
γ : Type u_1
δ : Type u_2
α : Type u_3
inst✝ : PartialOrder α
toOrderTop✝¹ : OrderTop α
toOrderBot✝¹ : OrderBot α
toOrderTop✝ : OrderTop α
toOrderBot✝ : OrderBot α
ht : toOrderTop = toOrderTop
hb : toOrderBot = toOrderBot
⊢ mk = mk
[PROOFSTEP]
congr
[GOAL]
α : Type u
β : Type v
γ : Type u_1
δ : Type u_2
inst✝³ : LE α
inst✝² : Top α
inst✝¹ : LE β
inst✝ : OrderTop β
f : α → β
map_le : ∀ (a b : α), f a ≤ f b → a ≤ b
map_top : f ⊤ = ⊤
a : α
⊢ f a ≤ f ⊤
[PROOFSTEP]
rw [map_top]
-- Porting note: lean3 didn't need the type annotation
[GOAL]
α : Type u
β : Type v
γ : Type u_1
δ : Type u_2
inst✝³ : LE α
inst✝² : Top α
inst✝¹ : LE β
inst✝ : OrderTop β
f : α → β
map_le : ∀ (a b : α), f a ≤ f b → a ≤ b
map_top : f ⊤ = ⊤
a : α
⊢ f a ≤ ⊤
[PROOFSTEP]
exact @le_top β _ _ _
[GOAL]
α : Type u
β : Type v
γ : Type u_1
δ : Type u_2
inst✝³ : LE α
inst✝² : Bot α
inst✝¹ : LE β
inst✝ : OrderBot β
f : α → β
map_le : ∀ (a b : α), f a ≤ f b → a ≤ b
map_bot : f ⊥ = ⊥
a : α
⊢ f ⊥ ≤ f a
[PROOFSTEP]
rw [map_bot]
-- Porting note: lean3 didn't need the type annotation
[GOAL]
α : Type u
β : Type v
γ : Type u_1
δ : Type u_2
inst✝³ : LE α
inst✝² : Bot α
inst✝¹ : LE β
inst✝ : OrderBot β
f : α → β
map_le : ∀ (a b : α), f a ≤ f b → a ≤ b
map_bot : f ⊥ = ⊥
a : α
⊢ ⊥ ≤ f a
[PROOFSTEP]
exact @bot_le β _ _ _
[GOAL]
α : Type u
β : Type v
γ : Type u_1
δ : Type u_2
p : α → Prop
inst✝² : PartialOrder α
inst✝¹ : OrderBot α
inst✝ : OrderBot (Subtype p)
hbot : p ⊥
x : { x // p x }
⊢ ↑x = ⊥ ↔ x = ⊥
[PROOFSTEP]
rw [← coe_bot hbot, ext_iff]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
δ : Type u_2
p : α → Prop
inst✝² : PartialOrder α
inst✝¹ : OrderTop α
inst✝ : OrderTop (Subtype p)
htop : p ⊤
x : { x // p x }
⊢ ↑x = ⊤ ↔ x = ⊤
[PROOFSTEP]
rw [← coe_top htop, ext_iff]
[GOAL]
α : Type u
β : Type v
γ : Type u_1
δ : Type u_2
inst✝¹ : LinearOrder α
inst✝ : OrderBot α
a b : α
⊢ min a b = ⊥ ↔ a = ⊥ ∨ b = ⊥
[PROOFSTEP]
simp only [← inf_eq_min, ← le_bot_iff, inf_le_iff]
| {"mathlib_filename": "Mathlib.Order.BoundedOrder", "llama_tokens": 5010} |
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
x y : X
hxz : IsMaximal x (x ⊔ y)
hyz : IsMaximal y (x ⊔ y)
⊢ IsMaximal (x ⊓ y) y
[PROOFSTEP]
rw [inf_comm]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
x y : X
hxz : IsMaximal x (x ⊔ y)
hyz : IsMaximal y (x ⊔ y)
⊢ IsMaximal (y ⊓ x) y
[PROOFSTEP]
rw [sup_comm] at hxz hyz
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
x y : X
hxz : IsMaximal x (y ⊔ x)
hyz : IsMaximal y (y ⊔ x)
⊢ IsMaximal (y ⊓ x) y
[PROOFSTEP]
exact isMaximal_inf_left_of_isMaximal_sup hyz hxz
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
x b a y : X
ha : x ⊓ y = a
hxy : x ≠ y
hxb : IsMaximal x b
hyb : IsMaximal y b
⊢ IsMaximal a y
[PROOFSTEP]
have hb : x ⊔ y = b := sup_eq_of_isMaximal hxb hyb hxy
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
x b a y : X
ha : x ⊓ y = a
hxy : x ≠ y
hxb : IsMaximal x b
hyb : IsMaximal y b
hb : x ⊔ y = b
⊢ IsMaximal a y
[PROOFSTEP]
substs a b
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
x y : X
hxy : x ≠ y
hxb : IsMaximal x (x ⊔ y)
hyb : IsMaximal y (x ⊔ y)
⊢ IsMaximal (x ⊓ y) y
[PROOFSTEP]
exact isMaximal_inf_right_of_isMaximal_sup hxb hyb
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
x y a b : X
hm : IsMaximal x a
ha : x ⊔ y = a
hb : x ⊓ y = b
⊢ Iso (x, a) (b, y)
[PROOFSTEP]
substs a b
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
x y : X
hm : IsMaximal x (x ⊔ y)
⊢ Iso (x, x ⊔ y) (x ⊓ y, y)
[PROOFSTEP]
exact second_iso hm
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x y : X
hx : x ∈ s
hy : y ∈ s
⊢ x ≤ y ∨ y ≤ x
[PROOFSTEP]
rcases Set.mem_range.1 hx with ⟨i, rfl⟩
[GOAL]
case intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
y : X
hy : y ∈ s
i : Fin (s.length + 1)
hx : series s i ∈ s
⊢ series s i ≤ y ∨ y ≤ series s i
[PROOFSTEP]
rcases Set.mem_range.1 hy with ⟨j, rfl⟩
[GOAL]
case intro.intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : Fin (s.length + 1)
hx : series s i ∈ s
j : Fin (s.length + 1)
hy : series s j ∈ s
⊢ series s i ≤ series s j ∨ series s j ≤ series s i
[PROOFSTEP]
rw [s.strictMono.le_iff_le, s.strictMono.le_iff_le]
[GOAL]
case intro.intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : Fin (s.length + 1)
hx : series s i ∈ s
j : Fin (s.length + 1)
hy : series s j ∈ s
⊢ i ≤ j ∨ j ≤ i
[PROOFSTEP]
exact le_total i j
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
hl : s₁.length = s₂.length
h :
∀ (i : Fin (s₁.length + 1)), series s₁ i = series s₂ (↑(Fin.castIso (_ : Nat.succ s₁.length = Nat.succ s₂.length)) i)
⊢ s₁ = s₂
[PROOFSTEP]
cases s₁
[GOAL]
case mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₂ : CompositionSeries X
length✝ : ℕ
series✝ : Fin (length✝ + 1) → X
step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i))
hl : { length := length✝, series := series✝, step' := step'✝ }.length = s₂.length
h :
∀ (i : Fin ({ length := length✝, series := series✝, step' := step'✝ }.length + 1)),
series { length := length✝, series := series✝, step' := step'✝ } i =
series s₂
(↑(Fin.castIso
(_ : Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length = Nat.succ s₂.length))
i)
⊢ { length := length✝, series := series✝, step' := step'✝ } = s₂
[PROOFSTEP]
cases s₂
[GOAL]
case mk.mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
length✝¹ : ℕ
series✝¹ : Fin (length✝¹ + 1) → X
step'✝¹ : ∀ (i : Fin length✝¹), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i))
length✝ : ℕ
series✝ : Fin (length✝ + 1) → X
step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i))
hl :
{ length := length✝¹, series := series✝¹, step' := step'✝¹ }.length =
{ length := length✝, series := series✝, step' := step'✝ }.length
h :
∀ (i : Fin ({ length := length✝¹, series := series✝¹, step' := step'✝¹ }.length + 1)),
series { length := length✝¹, series := series✝¹, step' := step'✝¹ } i =
series { length := length✝, series := series✝, step' := step'✝ }
(↑(Fin.castIso
(_ :
Nat.succ { length := length✝¹, series := series✝¹, step' := step'✝¹ }.length =
Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length))
i)
⊢ { length := length✝¹, series := series✝¹, step' := step'✝¹ } =
{ length := length✝, series := series✝, step' := step'✝ }
[PROOFSTEP]
dsimp at hl h
[GOAL]
case mk.mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
length✝¹ : ℕ
series✝¹ : Fin (length✝¹ + 1) → X
step'✝¹ : ∀ (i : Fin length✝¹), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i))
length✝ : ℕ
series✝ : Fin (length✝ + 1) → X
step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i))
hl : length✝¹ = length✝
h : ∀ (i : Fin (length✝¹ + 1)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝¹ = Nat.succ length✝)) i)
⊢ { length := length✝¹, series := series✝¹, step' := step'✝¹ } =
{ length := length✝, series := series✝, step' := step'✝ }
[PROOFSTEP]
subst hl
[GOAL]
case mk.mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
length✝ : ℕ
series✝¹ : Fin (length✝ + 1) → X
step'✝¹ : ∀ (i : Fin length✝), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i))
series✝ : Fin (length✝ + 1) → X
step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i))
h : ∀ (i : Fin (length✝ + 1)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝ = Nat.succ length✝)) i)
⊢ { length := length✝, series := series✝¹, step' := step'✝¹ } =
{ length := length✝, series := series✝, step' := step'✝ }
[PROOFSTEP]
simpa [Function.funext_iff] using h
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
⊢ List.length (toList s) = s.length + 1
[PROOFSTEP]
rw [toList, List.length_ofFn]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
⊢ toList s ≠ []
[PROOFSTEP]
rw [← List.length_pos_iff_ne_nil, length_toList]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
⊢ 0 < s.length + 1
[PROOFSTEP]
exact Nat.succ_pos _
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : List.ofFn s₁.series = List.ofFn s₂.series
⊢ s₁ = s₂
[PROOFSTEP]
have h₁ : s₁.length = s₂.length :=
Nat.succ_injective ((List.length_ofFn s₁).symm.trans <| (congr_arg List.length h).trans <| List.length_ofFn s₂)
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : List.ofFn s₁.series = List.ofFn s₂.series
h₁ : s₁.length = s₂.length
⊢ s₁ = s₂
[PROOFSTEP]
have h₂ : ∀ i : Fin s₁.length.succ, s₁ i = s₂ (Fin.castIso (congr_arg Nat.succ h₁) i) :=
-- Porting note: `List.nthLe_ofFn` has been deprecated but `List.get_ofFn` has a
-- different type, so we do golf here.congr_fun <|
List.ofFn_injective <| h.trans <| List.ofFn_congr (congr_arg Nat.succ h₁).symm _
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : List.ofFn s₁.series = List.ofFn s₂.series
h₁ : s₁.length = s₂.length
h₂ :
∀ (i : Fin (Nat.succ s₁.length)),
series s₁ i = series s₂ (↑(Fin.castIso (_ : Nat.succ s₁.length = Nat.succ s₂.length)) i)
⊢ s₁ = s₂
[PROOFSTEP]
cases s₁
[GOAL]
case mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₂ : CompositionSeries X
length✝ : ℕ
series✝ : Fin (length✝ + 1) → X
step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i))
h : List.ofFn { length := length✝, series := series✝, step' := step'✝ }.series = List.ofFn s₂.series
h₁ : { length := length✝, series := series✝, step' := step'✝ }.length = s₂.length
h₂ :
∀ (i : Fin (Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length)),
series { length := length✝, series := series✝, step' := step'✝ } i =
series s₂
(↑(Fin.castIso
(_ : Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length = Nat.succ s₂.length))
i)
⊢ { length := length✝, series := series✝, step' := step'✝ } = s₂
[PROOFSTEP]
cases s₂
[GOAL]
case mk.mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
length✝¹ : ℕ
series✝¹ : Fin (length✝¹ + 1) → X
step'✝¹ : ∀ (i : Fin length✝¹), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i))
length✝ : ℕ
series✝ : Fin (length✝ + 1) → X
step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i))
h :
List.ofFn { length := length✝¹, series := series✝¹, step' := step'✝¹ }.series =
List.ofFn { length := length✝, series := series✝, step' := step'✝ }.series
h₁ :
{ length := length✝¹, series := series✝¹, step' := step'✝¹ }.length =
{ length := length✝, series := series✝, step' := step'✝ }.length
h₂ :
∀ (i : Fin (Nat.succ { length := length✝¹, series := series✝¹, step' := step'✝¹ }.length)),
series { length := length✝¹, series := series✝¹, step' := step'✝¹ } i =
series { length := length✝, series := series✝, step' := step'✝ }
(↑(Fin.castIso
(_ :
Nat.succ { length := length✝¹, series := series✝¹, step' := step'✝¹ }.length =
Nat.succ { length := length✝, series := series✝, step' := step'✝ }.length))
i)
⊢ { length := length✝¹, series := series✝¹, step' := step'✝¹ } =
{ length := length✝, series := series✝, step' := step'✝ }
[PROOFSTEP]
dsimp at h h₁ h₂
[GOAL]
case mk.mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
length✝¹ : ℕ
series✝¹ : Fin (length✝¹ + 1) → X
step'✝¹ : ∀ (i : Fin length✝¹), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i))
length✝ : ℕ
series✝ : Fin (length✝ + 1) → X
step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i))
h : List.ofFn series✝¹ = List.ofFn series✝
h₁ : length✝¹ = length✝
h₂ : ∀ (i : Fin (Nat.succ length✝¹)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝¹ = Nat.succ length✝)) i)
⊢ { length := length✝¹, series := series✝¹, step' := step'✝¹ } =
{ length := length✝, series := series✝, step' := step'✝ }
[PROOFSTEP]
subst h₁
[GOAL]
case mk.mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
length✝ : ℕ
series✝¹ : Fin (length✝ + 1) → X
step'✝¹ : ∀ (i : Fin length✝), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i))
series✝ : Fin (length✝ + 1) → X
step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i))
h : List.ofFn series✝¹ = List.ofFn series✝
h₂ : ∀ (i : Fin (Nat.succ length✝)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝ = Nat.succ length✝)) i)
⊢ { length := length✝, series := series✝¹, step' := step'✝¹ } =
{ length := length✝, series := series✝, step' := step'✝ }
[PROOFSTEP]
simp only [mk.injEq, heq_eq_eq, true_and]
[GOAL]
case mk.mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
length✝ : ℕ
series✝¹ : Fin (length✝ + 1) → X
step'✝¹ : ∀ (i : Fin length✝), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i))
series✝ : Fin (length✝ + 1) → X
step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i))
h : List.ofFn series✝¹ = List.ofFn series✝
h₂ : ∀ (i : Fin (Nat.succ length✝)), series✝¹ i = series✝ (↑(Fin.castIso (_ : Nat.succ length✝ = Nat.succ length✝)) i)
⊢ series✝¹ = series✝
[PROOFSTEP]
simp only [Fin.castIso_refl] at h₂
[GOAL]
case mk.mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
length✝ : ℕ
series✝¹ : Fin (length✝ + 1) → X
step'✝¹ : ∀ (i : Fin length✝), IsMaximal (series✝¹ (Fin.castSucc i)) (series✝¹ (Fin.succ i))
series✝ : Fin (length✝ + 1) → X
step'✝ : ∀ (i : Fin length✝), IsMaximal (series✝ (Fin.castSucc i)) (series✝ (Fin.succ i))
h : List.ofFn series✝¹ = List.ofFn series✝
h₂ : ∀ (i : Fin (Nat.succ length✝)), series✝¹ i = series✝ (↑(OrderIso.refl (Fin (Nat.succ length✝))) i)
⊢ series✝¹ = series✝
[PROOFSTEP]
exact funext h₂
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
⊢ ∀ (i : ℕ) (h : i < List.length (toList s) - 1),
IsMaximal (List.get (toList s) { val := i, isLt := (_ : i < List.length (toList s)) })
(List.get (toList s) { val := i + 1, isLt := (_ : Nat.succ i < List.length (toList s)) })
[PROOFSTEP]
intro i hi
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : ℕ
hi : i < List.length (toList s) - 1
⊢ IsMaximal (List.get (toList s) { val := i, isLt := (_ : i < List.length (toList s)) })
(List.get (toList s) { val := i + 1, isLt := (_ : Nat.succ i < List.length (toList s)) })
[PROOFSTEP]
simp only [toList, List.get_ofFn]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : ℕ
hi : i < List.length (toList s) - 1
⊢ IsMaximal
(series s
(↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1))
{ val := i, isLt := (_ : i < List.length (toList s)) }))
(series s
(↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1))
{ val := i + 1, isLt := (_ : Nat.succ i < List.length (toList s)) }))
[PROOFSTEP]
rw [length_toList] at hi
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : ℕ
hi✝ : i < List.length (toList s) - 1
hi : i < s.length + 1 - 1
⊢ IsMaximal
(series s
(↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1))
{ val := i, isLt := (_ : i < List.length (toList s)) }))
(series s
(↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1))
{ val := i + 1, isLt := (_ : Nat.succ i < List.length (toList s)) }))
[PROOFSTEP]
exact s.step ⟨i, hi⟩
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i j : Fin (List.length (toList s))
h : i < j
⊢ List.get (toList s) i < List.get (toList s) j
[PROOFSTEP]
dsimp [toList]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i j : Fin (List.length (toList s))
h : i < j
⊢ List.get (List.ofFn s.series) i < List.get (List.ofFn s.series) j
[PROOFSTEP]
rw [List.get_ofFn, List.get_ofFn]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i j : Fin (List.length (toList s))
h : i < j
⊢ series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) i) <
series s (↑(Fin.castIso (_ : List.length (List.ofFn s.series) = s.length + 1)) j)
[PROOFSTEP]
exact s.strictMono h
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
⊢ x ∈ toList s ↔ x ∈ s
[PROOFSTEP]
rw [toList, List.mem_ofFn, mem_def]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
l : List X
hl : l ≠ []
hc : List.Chain' IsMaximal l
i : Fin (List.length l - 1 + 1)
⊢ ↑i < List.length l
[PROOFSTEP]
conv_rhs => rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt (List.length_pos_of_ne_nil hl))]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
l : List X
hl : l ≠ []
hc : List.Chain' IsMaximal l
i : Fin (List.length l - 1 + 1)
| List.length l
[PROOFSTEP]
rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt (List.length_pos_of_ne_nil hl))]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
l : List X
hl : l ≠ []
hc : List.Chain' IsMaximal l
i : Fin (List.length l - 1 + 1)
| List.length l
[PROOFSTEP]
rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt (List.length_pos_of_ne_nil hl))]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
l : List X
hl : l ≠ []
hc : List.Chain' IsMaximal l
i : Fin (List.length l - 1 + 1)
| List.length l
[PROOFSTEP]
rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt (List.length_pos_of_ne_nil hl))]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
l : List X
hl : l ≠ []
hc : List.Chain' IsMaximal l
i : Fin (List.length l - 1 + 1)
⊢ ↑i < List.length l - Nat.succ 0 + Nat.succ 0
[PROOFSTEP]
exact i.2
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
⊢ ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s)) = s
[PROOFSTEP]
refine' ext_fun _ _
[GOAL]
case refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
⊢ (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length = s.length
[PROOFSTEP]
rw [length_ofList, length_toList, Nat.succ_sub_one]
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
⊢ ∀ (i : Fin ((ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length + 1)),
series (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))) i =
series s
(↑(Fin.castIso
(_ :
Nat.succ (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length =
Nat.succ s.length))
i)
[PROOFSTEP]
rintro
⟨i, hi⟩
-- Porting note: Was `dsimp [ofList, toList]; rw [List.nthLe_ofFn']`.
[GOAL]
case refine'_2.mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : ℕ
hi : i < (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length + 1
⊢ series (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))) { val := i, isLt := hi } =
series s
(↑(Fin.castIso
(_ :
Nat.succ (ofList (toList s) (_ : toList s ≠ []) (_ : List.Chain' IsMaximal (toList s))).length =
Nat.succ s.length))
{ val := i, isLt := hi })
[PROOFSTEP]
simp [ofList, toList, -List.ofFn_succ]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
l : List X
hl : l ≠ []
hc : List.Chain' IsMaximal l
⊢ toList (ofList l hl hc) = l
[PROOFSTEP]
refine' List.ext_get _ _
[GOAL]
case refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
l : List X
hl : l ≠ []
hc : List.Chain' IsMaximal l
⊢ List.length (toList (ofList l hl hc)) = List.length l
[PROOFSTEP]
rw [length_toList, length_ofList, tsub_add_cancel_of_le (Nat.succ_le_of_lt <| List.length_pos_of_ne_nil hl)]
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
l : List X
hl : l ≠ []
hc : List.Chain' IsMaximal l
⊢ ∀ (n : ℕ) (h₁ : n < List.length (toList (ofList l hl hc))) (h₂ : n < List.length l),
List.get (toList (ofList l hl hc)) { val := n, isLt := h₁ } = List.get l { val := n, isLt := h₂ }
[PROOFSTEP]
intro i hi hi'
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
l : List X
hl : l ≠ []
hc : List.Chain' IsMaximal l
i : ℕ
hi : i < List.length (toList (ofList l hl hc))
hi' : i < List.length l
⊢ List.get (toList (ofList l hl hc)) { val := i, isLt := hi } = List.get l { val := i, isLt := hi' }
[PROOFSTEP]
dsimp [ofList, toList]
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
l : List X
hl : l ≠ []
hc : List.Chain' IsMaximal l
i : ℕ
hi : i < List.length (toList (ofList l hl hc))
hi' : i < List.length l
⊢ List.get (List.ofFn fun i => List.nthLe l ↑i (_ : ↑i < List.length l)) { val := i, isLt := hi } =
List.get l { val := i, isLt := hi' }
[PROOFSTEP]
rw [List.get_ofFn]
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
l : List X
hl : l ≠ []
hc : List.Chain' IsMaximal l
i : ℕ
hi : i < List.length (toList (ofList l hl hc))
hi' : i < List.length l
⊢ List.nthLe l
↑(↑(Fin.castIso
(_ : List.length (List.ofFn fun i => List.nthLe l ↑i (_ : ↑i < List.length l)) = List.length l - 1 + 1))
{ val := i, isLt := hi })
(_ :
↑(↑(Fin.castIso
(_ :
List.length (List.ofFn fun i => List.nthLe l ↑i (_ : ↑i < List.length l)) = List.length l - 1 + 1))
{ val := i, isLt := hi }) <
List.length l) =
List.get l { val := i, isLt := hi' }
[PROOFSTEP]
rfl
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : ∀ (x : X), x ∈ s₁ ↔ x ∈ s₂
⊢ toList s₁ ~ toList s₂
[PROOFSTEP]
classical exact List.perm_of_nodup_nodup_toFinset_eq s₁.toList_nodup s₂.toList_nodup (Finset.ext <| by simp [*])
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : ∀ (x : X), x ∈ s₁ ↔ x ∈ s₂
⊢ toList s₁ ~ toList s₂
[PROOFSTEP]
exact List.perm_of_nodup_nodup_toFinset_eq s₁.toList_nodup s₂.toList_nodup (Finset.ext <| by simp [*])
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : ∀ (x : X), x ∈ s₁ ↔ x ∈ s₂
⊢ ∀ (a : X), a ∈ List.toFinset (toList s₁) ↔ a ∈ List.toFinset (toList s₂)
[PROOFSTEP]
simp [*]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : Fin (s.length - 1)
⊢ IsMaximal ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.castSucc i))
((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.succ i))
[PROOFSTEP]
have := s.step ⟨i, lt_of_lt_of_le i.2 tsub_le_self⟩
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : Fin (s.length - 1)
this :
IsMaximal (series s (Fin.castSucc { val := ↑i, isLt := (_ : ↑i < s.length) }))
(series s (Fin.succ { val := ↑i, isLt := (_ : ↑i < s.length) }))
⊢ IsMaximal ((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.castSucc i))
((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.succ i))
[PROOFSTEP]
cases i
[GOAL]
case mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
val✝ : ℕ
isLt✝ : val✝ < s.length - 1
this :
IsMaximal
(series s
(Fin.castSucc
{ val := ↑{ val := val✝, isLt := isLt✝ }, isLt := (_ : ↑{ val := val✝, isLt := isLt✝ } < s.length) }))
(series s
(Fin.succ { val := ↑{ val := val✝, isLt := isLt✝ }, isLt := (_ : ↑{ val := val✝, isLt := isLt✝ } < s.length) }))
⊢ IsMaximal
((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.castSucc { val := val✝, isLt := isLt✝ }))
((fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) (Fin.succ { val := val✝, isLt := isLt✝ }))
[PROOFSTEP]
exact this
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
⊢ { val := ↑(Fin.last (eraseTop s).length), isLt := (_ : ↑(Fin.last (eraseTop s).length) < s.length + 1) } =
{ val := s.length - 1, isLt := (_ : s.length - 1 < s.length + 1) }
[PROOFSTEP]
ext
[GOAL]
case h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
⊢ ↑{ val := ↑(Fin.last (eraseTop s).length), isLt := (_ : ↑(Fin.last (eraseTop s).length) < s.length + 1) } =
↑{ val := s.length - 1, isLt := (_ : s.length - 1 < s.length + 1) }
[PROOFSTEP]
simp only [eraseTop_length, Fin.val_last, Fin.coe_castSucc, Fin.coe_ofNat_eq_mod, Fin.val_mk]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
⊢ top (eraseTop s) ≤ top s
[PROOFSTEP]
simp [eraseTop, top, s.strictMono.le_iff_le, Fin.le_iff_val_le_val, tsub_le_self]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hx : x ≠ top s
hxs : x ∈ s
⊢ x ∈ eraseTop s
[PROOFSTEP]
rcases hxs with ⟨i, rfl⟩
[GOAL]
case intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : Fin (s.length + 1)
hx : series s i ≠ top s
⊢ series s i ∈ eraseTop s
[PROOFSTEP]
have hi : (i : ℕ) < (s.length - 1).succ :=
by
conv_rhs => rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one]
exact lt_of_le_of_ne (Nat.le_of_lt_succ i.2) (by simpa [top, s.inj, Fin.ext_iff] using hx)
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : Fin (s.length + 1)
hx : series s i ≠ top s
⊢ ↑i < Nat.succ (s.length - 1)
[PROOFSTEP]
conv_rhs => rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : Fin (s.length + 1)
hx : series s i ≠ top s
| Nat.succ (s.length - 1)
[PROOFSTEP]
rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : Fin (s.length + 1)
hx : series s i ≠ top s
| Nat.succ (s.length - 1)
[PROOFSTEP]
rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : Fin (s.length + 1)
hx : series s i ≠ top s
| Nat.succ (s.length - 1)
[PROOFSTEP]
rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : Fin (s.length + 1)
hx : series s i ≠ top s
⊢ ↑i < s.length
[PROOFSTEP]
exact lt_of_le_of_ne (Nat.le_of_lt_succ i.2) (by simpa [top, s.inj, Fin.ext_iff] using hx)
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : Fin (s.length + 1)
hx : series s i ≠ top s
⊢ ↑i ≠ s.length
[PROOFSTEP]
simpa [top, s.inj, Fin.ext_iff] using hx
[GOAL]
case intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : Fin (s.length + 1)
hx : series s i ≠ top s
hi : ↑i < Nat.succ (s.length - 1)
⊢ series s i ∈ eraseTop s
[PROOFSTEP]
refine' ⟨Fin.castSucc (n := s.length + 1) i, _⟩
[GOAL]
case intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
i : Fin (s.length + 1)
hx : series s i ≠ top s
hi : ↑i < Nat.succ (s.length - 1)
⊢ series (eraseTop s) ↑↑(Fin.castSucc i) = series s i
[PROOFSTEP]
simp [Fin.ext_iff, Nat.mod_eq_of_lt hi]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
h : 0 < s.length
⊢ x ∈ eraseTop s ↔ x ≠ top s ∧ x ∈ s
[PROOFSTEP]
simp only [mem_def]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
h : 0 < s.length
⊢ x ∈ range (eraseTop s).series ↔ x ≠ top s ∧ x ∈ range s.series
[PROOFSTEP]
dsimp only [eraseTop]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
h : 0 < s.length
⊢ (x ∈ range fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) ↔ x ≠ top s ∧ x ∈ range s.series
[PROOFSTEP]
constructor
[GOAL]
case mp
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
h : 0 < s.length
⊢ (x ∈ range fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) → x ≠ top s ∧ x ∈ range s.series
[PROOFSTEP]
rintro ⟨i, rfl⟩
[GOAL]
case mp.intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
i : Fin (s.length - 1 + 1)
⊢ (fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) i ≠ top s ∧
(fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) i ∈ range s.series
[PROOFSTEP]
have hi : (i : ℕ) < s.length :=
by
conv_rhs => rw [← Nat.succ_sub_one s.length, Nat.succ_sub h]
exact
i.2
-- Porting note: Was `simp [top, Fin.ext_iff, ne_of_lt hi]`.
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
i : Fin (s.length - 1 + 1)
⊢ ↑i < s.length
[PROOFSTEP]
conv_rhs => rw [← Nat.succ_sub_one s.length, Nat.succ_sub h]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
i : Fin (s.length - 1 + 1)
| s.length
[PROOFSTEP]
rw [← Nat.succ_sub_one s.length, Nat.succ_sub h]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
i : Fin (s.length - 1 + 1)
| s.length
[PROOFSTEP]
rw [← Nat.succ_sub_one s.length, Nat.succ_sub h]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
i : Fin (s.length - 1 + 1)
| s.length
[PROOFSTEP]
rw [← Nat.succ_sub_one s.length, Nat.succ_sub h]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
i : Fin (s.length - 1 + 1)
⊢ ↑i < Nat.succ (s.length - Nat.succ 0)
[PROOFSTEP]
exact
i.2
-- Porting note: Was `simp [top, Fin.ext_iff, ne_of_lt hi]`.
[GOAL]
case mp.intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
i : Fin (s.length - 1 + 1)
hi : ↑i < s.length
⊢ (fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) i ≠ top s ∧
(fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }) i ∈ range s.series
[PROOFSTEP]
simp [top, Fin.ext_iff, ne_of_lt hi, -Set.mem_range, Set.mem_range_self]
[GOAL]
case mpr
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
h : 0 < s.length
⊢ x ≠ top s ∧ x ∈ range s.series → x ∈ range fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }
[PROOFSTEP]
intro h
[GOAL]
case mpr
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
h✝ : 0 < s.length
h : x ≠ top s ∧ x ∈ range s.series
⊢ x ∈ range fun i => series s { val := ↑i, isLt := (_ : ↑i < s.length + 1) }
[PROOFSTEP]
exact mem_eraseTop_of_ne_of_mem h.1 h.2
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
⊢ IsMaximal (top (eraseTop s)) (top s)
[PROOFSTEP]
have : s.length - 1 + 1 = s.length := by conv_rhs => rw [← Nat.succ_sub_one s.length]; rw [Nat.succ_sub h]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
⊢ s.length - 1 + 1 = s.length
[PROOFSTEP]
conv_rhs => rw [← Nat.succ_sub_one s.length]; rw [Nat.succ_sub h]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
| s.length
[PROOFSTEP]
rw [← Nat.succ_sub_one s.length]; rw [Nat.succ_sub h]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
| s.length
[PROOFSTEP]
rw [← Nat.succ_sub_one s.length]; rw [Nat.succ_sub h]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
| s.length
[PROOFSTEP]
rw [← Nat.succ_sub_one s.length]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
| Nat.succ s.length - 1
[PROOFSTEP]
rw [Nat.succ_sub h]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
this : s.length - 1 + 1 = s.length
⊢ IsMaximal (top (eraseTop s)) (top s)
[PROOFSTEP]
rw [top_eraseTop, top]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
this : s.length - 1 + 1 = s.length
⊢ IsMaximal (series s { val := s.length - 1, isLt := (_ : s.length - 1 < s.length + 1) }) (series s (Fin.last s.length))
[PROOFSTEP]
convert s.step ⟨s.length - 1, Nat.sub_lt h zero_lt_one⟩
[GOAL]
case h.e'_5.h.e'_5
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
this : s.length - 1 + 1 = s.length
⊢ Fin.last s.length = Fin.succ { val := s.length - 1, isLt := (_ : s.length - 1 < s.length) }
[PROOFSTEP]
ext
[GOAL]
case h.e'_5.h.e'_5.h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
this : s.length - 1 + 1 = s.length
⊢ ↑(Fin.last s.length) = ↑(Fin.succ { val := s.length - 1, isLt := (_ : s.length - 1 < s.length) })
[PROOFSTEP]
simp [this]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
i : Fin m
⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.castSucc (Fin.castAdd n i)) =
a (Fin.castSucc i)
[PROOFSTEP]
cases i
[GOAL]
case mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
val✝ : ℕ
isLt✝ : val✝ < m
⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b
(Fin.castSucc (Fin.castAdd n { val := val✝, isLt := isLt✝ })) =
a (Fin.castSucc { val := val✝, isLt := isLt✝ })
[PROOFSTEP]
simp [Matrix.vecAppend_eq_ite, *]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
i : Fin m
h : a (Fin.last m) = b 0
⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.succ (Fin.castAdd n i)) =
a (Fin.succ i)
[PROOFSTEP]
cases' i with i hi
[GOAL]
case mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
h : a (Fin.last m) = b 0
i : ℕ
hi : i < m
⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b
(Fin.succ (Fin.castAdd n { val := i, isLt := hi })) =
a (Fin.succ { val := i, isLt := hi })
[PROOFSTEP]
simp only [Matrix.vecAppend_eq_ite, hi, Fin.succ_mk, Function.comp_apply, Fin.castSucc_mk, Fin.val_mk, Fin.castAdd_mk]
[GOAL]
case mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
h : a (Fin.last m) = b 0
i : ℕ
hi : i < m
⊢ (if h : i + 1 < m then a { val := i + 1, isLt := (_ : i + 1 < Nat.succ m) }
else
b
{ val := i + 1 - m,
isLt := (_ : ↑{ val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (m + n)) } - m < Nat.succ n) }) =
a { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) }
[PROOFSTEP]
split_ifs with h_1
[GOAL]
case pos
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
h : a (Fin.last m) = b 0
i : ℕ
hi : i < m
h_1 : i + 1 < m
⊢ a { val := i + 1, isLt := (_ : i + 1 < Nat.succ m) } = a { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) }
[PROOFSTEP]
rfl
[GOAL]
case neg
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
h : a (Fin.last m) = b 0
i : ℕ
hi : i < m
h_1 : ¬i + 1 < m
⊢ b
{ val := i + 1 - m,
isLt := (_ : ↑{ val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (m + n)) } - m < Nat.succ n) } =
a { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) }
[PROOFSTEP]
have : i + 1 = m := le_antisymm hi (le_of_not_gt h_1)
[GOAL]
case neg
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
h : a (Fin.last m) = b 0
i : ℕ
hi : i < m
h_1 : ¬i + 1 < m
this : i + 1 = m
⊢ b
{ val := i + 1 - m,
isLt := (_ : ↑{ val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (m + n)) } - m < Nat.succ n) } =
a { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) }
[PROOFSTEP]
calc
b ⟨i + 1 - m, by simp [this]⟩ = b 0 := congr_arg b (by simp [Fin.ext_iff, this])
_ = a (Fin.last _) := h.symm
_ = _ := congr_arg a (by simp [Fin.ext_iff, this])
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
h : a (Fin.last m) = b 0
i : ℕ
hi : i < m
h_1 : ¬i + 1 < m
this : i + 1 = m
⊢ i + 1 - m < Nat.succ n
[PROOFSTEP]
simp [this]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
h : a (Fin.last m) = b 0
i : ℕ
hi : i < m
h_1 : ¬i + 1 < m
this : i + 1 = m
⊢ { val := i + 1 - m, isLt := (_ : i + 1 - m < Nat.succ n) } = 0
[PROOFSTEP]
simp [Fin.ext_iff, this]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
h : a (Fin.last m) = b 0
i : ℕ
hi : i < m
h_1 : ¬i + 1 < m
this : i + 1 = m
⊢ Fin.last m = { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ m) }
[PROOFSTEP]
simp [Fin.ext_iff, this]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
i : Fin n
⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.castSucc (Fin.natAdd m i)) =
b (Fin.castSucc i)
[PROOFSTEP]
cases i
[GOAL]
case mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
val✝ : ℕ
isLt✝ : val✝ < n
⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b
(Fin.castSucc (Fin.natAdd m { val := val✝, isLt := isLt✝ })) =
b (Fin.castSucc { val := val✝, isLt := isLt✝ })
[PROOFSTEP]
simp only [Matrix.vecAppend_eq_ite, Nat.not_lt_zero, Fin.natAdd_mk, add_lt_iff_neg_left, add_tsub_cancel_left, dif_neg,
Fin.castSucc_mk, not_false_iff, Fin.val_mk]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
i : Fin n
⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b (Fin.succ (Fin.natAdd m i)) =
b (Fin.succ i)
[PROOFSTEP]
cases' i with i hi
[GOAL]
case mk
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
α : Type u_1
m n : ℕ
a : Fin (Nat.succ m) → α
b : Fin (Nat.succ n) → α
i : ℕ
hi : i < n
⊢ Matrix.vecAppend (_ : Nat.succ (m + n) = m + Nat.succ n) (a ∘ Fin.castSucc) b
(Fin.succ (Fin.natAdd m { val := i, isLt := hi })) =
b (Fin.succ { val := i, isLt := hi })
[PROOFSTEP]
simp only [Matrix.vecAppend_eq_ite, add_assoc, Nat.not_lt_zero, Fin.natAdd_mk, add_lt_iff_neg_left,
add_tsub_cancel_left, Fin.succ_mk, dif_neg, not_false_iff, Fin.val_mk]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : top s₁ = bot s₂
i : Fin (s₁.length + s₂.length)
⊢ IsMaximal
(Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc)
s₂.series (Fin.castSucc i))
(Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc)
s₂.series (Fin.succ i))
[PROOFSTEP]
refine' Fin.addCases _ _ i
[GOAL]
case refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : top s₁ = bot s₂
i : Fin (s₁.length + s₂.length)
⊢ ∀ (i : Fin s₁.length),
IsMaximal
(Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length)
(s₁.series ∘ Fin.castSucc) s₂.series (Fin.castSucc (Fin.castAdd s₂.length i)))
(Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length)
(s₁.series ∘ Fin.castSucc) s₂.series (Fin.succ (Fin.castAdd s₂.length i)))
[PROOFSTEP]
intro i
[GOAL]
case refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : top s₁ = bot s₂
i✝ : Fin (s₁.length + s₂.length)
i : Fin s₁.length
⊢ IsMaximal
(Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc)
s₂.series (Fin.castSucc (Fin.castAdd s₂.length i)))
(Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc)
s₂.series (Fin.succ (Fin.castAdd s₂.length i)))
[PROOFSTEP]
rw [append_succ_castAdd_aux _ _ _ h, append_castAdd_aux]
[GOAL]
case refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : top s₁ = bot s₂
i✝ : Fin (s₁.length + s₂.length)
i : Fin s₁.length
⊢ IsMaximal (series s₁ (Fin.castSucc i)) (series s₁ (Fin.succ i))
[PROOFSTEP]
exact s₁.step i
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : top s₁ = bot s₂
i : Fin (s₁.length + s₂.length)
⊢ ∀ (i : Fin s₂.length),
IsMaximal
(Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length)
(s₁.series ∘ Fin.castSucc) s₂.series (Fin.castSucc (Fin.natAdd s₁.length i)))
(Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length)
(s₁.series ∘ Fin.castSucc) s₂.series (Fin.succ (Fin.natAdd s₁.length i)))
[PROOFSTEP]
intro i
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : top s₁ = bot s₂
i✝ : Fin (s₁.length + s₂.length)
i : Fin s₂.length
⊢ IsMaximal
(Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc)
s₂.series (Fin.castSucc (Fin.natAdd s₁.length i)))
(Matrix.vecAppend (_ : Nat.succ (s₁.length + s₂.length) = s₁.length + Nat.succ s₂.length) (s₁.series ∘ Fin.castSucc)
s₂.series (Fin.succ (Fin.natAdd s₁.length i)))
[PROOFSTEP]
rw [append_natAdd_aux, append_succ_natAdd_aux]
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : top s₁ = bot s₂
i✝ : Fin (s₁.length + s₂.length)
i : Fin s₂.length
⊢ IsMaximal (series s₂ (Fin.castSucc i)) (series s₂ (Fin.succ i))
[PROOFSTEP]
exact s₂.step i
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : top s₁ = bot s₂
i : Fin s₁.length
⊢ series (append s₁ s₂ h) (Fin.castSucc (Fin.castAdd s₂.length i)) = series s₁ (Fin.castSucc i)
[PROOFSTEP]
rw [coe_append, append_castAdd_aux _ _ i]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : top s₁ = bot s₂
i : Fin s₁.length
⊢ series (append s₁ s₂ h) (Fin.succ (Fin.castAdd s₂.length i)) = series s₁ (Fin.succ i)
[PROOFSTEP]
rw [coe_append, append_succ_castAdd_aux _ _ _ h]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : top s₁ = bot s₂
i : Fin s₂.length
⊢ series (append s₁ s₂ h) (Fin.castSucc (Fin.natAdd s₁.length i)) = series s₂ (Fin.castSucc i)
[PROOFSTEP]
rw [coe_append, append_natAdd_aux _ _ i]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : top s₁ = bot s₂
i : Fin s₂.length
⊢ series (append s₁ s₂ h) (Fin.succ (Fin.natAdd s₁.length i)) = series s₂ (Fin.succ i)
[PROOFSTEP]
rw [coe_append, append_succ_natAdd_aux _ _ i]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hsat : IsMaximal (top s) x
i : Fin (s.length + 1)
⊢ IsMaximal (Fin.snoc s.series x (Fin.castSucc i)) (Fin.snoc s.series x (Fin.succ i))
[PROOFSTEP]
refine' Fin.lastCases _ _ i
[GOAL]
case refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hsat : IsMaximal (top s) x
i : Fin (s.length + 1)
⊢ IsMaximal (Fin.snoc s.series x (Fin.castSucc (Fin.last s.length)))
(Fin.snoc s.series x (Fin.succ (Fin.last s.length)))
[PROOFSTEP]
rwa [Fin.snoc_castSucc, Fin.succ_last, Fin.snoc_last, ← top]
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hsat : IsMaximal (top s) x
i : Fin (s.length + 1)
⊢ ∀ (i : Fin s.length),
IsMaximal (Fin.snoc s.series x (Fin.castSucc (Fin.castSucc i))) (Fin.snoc s.series x (Fin.succ (Fin.castSucc i)))
[PROOFSTEP]
intro i
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hsat : IsMaximal (top s) x
i✝ : Fin (s.length + 1)
i : Fin s.length
⊢ IsMaximal (Fin.snoc s.series x (Fin.castSucc (Fin.castSucc i))) (Fin.snoc s.series x (Fin.succ (Fin.castSucc i)))
[PROOFSTEP]
rw [Fin.snoc_castSucc, ← Fin.castSucc_fin_succ, Fin.snoc_castSucc]
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hsat : IsMaximal (top s) x
i✝ : Fin (s.length + 1)
i : Fin s.length
⊢ IsMaximal (series s (Fin.castSucc i)) (series s (Fin.succ i))
[PROOFSTEP]
exact s.step _
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hsat : IsMaximal (top s) x
⊢ bot (snoc s x hsat) = bot s
[PROOFSTEP]
rw [bot, bot, ← snoc_castSucc s x hsat 0, Fin.castSucc_zero' (n := s.length + 1)]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x y : X
hsat : IsMaximal (top s) x
⊢ y ∈ snoc s x hsat ↔ y ∈ s ∨ y = x
[PROOFSTEP]
simp only [snoc, mem_def]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x y : X
hsat : IsMaximal (top s) x
⊢ y ∈ range (Fin.snoc s.series x) ↔ y ∈ range s.series ∨ y = x
[PROOFSTEP]
constructor
[GOAL]
case mp
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x y : X
hsat : IsMaximal (top s) x
⊢ y ∈ range (Fin.snoc s.series x) → y ∈ range s.series ∨ y = x
[PROOFSTEP]
rintro ⟨i, rfl⟩
[GOAL]
case mp.intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hsat : IsMaximal (top s) x
i : Fin (s.length + 1 + 1)
⊢ Fin.snoc s.series x i ∈ range s.series ∨ Fin.snoc s.series x i = x
[PROOFSTEP]
refine' Fin.lastCases _ (fun i => _) i
[GOAL]
case mp.intro.refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hsat : IsMaximal (top s) x
i : Fin (s.length + 1 + 1)
⊢ Fin.snoc s.series x (Fin.last (s.length + 1)) ∈ range s.series ∨ Fin.snoc s.series x (Fin.last (s.length + 1)) = x
[PROOFSTEP]
right
[GOAL]
case mp.intro.refine'_1.h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hsat : IsMaximal (top s) x
i : Fin (s.length + 1 + 1)
⊢ Fin.snoc s.series x (Fin.last (s.length + 1)) = x
[PROOFSTEP]
simp
[GOAL]
case mp.intro.refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hsat : IsMaximal (top s) x
i✝ : Fin (s.length + 1 + 1)
i : Fin (s.length + 1)
⊢ Fin.snoc s.series x (Fin.castSucc i) ∈ range s.series ∨ Fin.snoc s.series x (Fin.castSucc i) = x
[PROOFSTEP]
left
[GOAL]
case mp.intro.refine'_2.h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hsat : IsMaximal (top s) x
i✝ : Fin (s.length + 1 + 1)
i : Fin (s.length + 1)
⊢ Fin.snoc s.series x (Fin.castSucc i) ∈ range s.series
[PROOFSTEP]
simp
[GOAL]
case mpr
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x y : X
hsat : IsMaximal (top s) x
⊢ y ∈ range s.series ∨ y = x → y ∈ range (Fin.snoc s.series x)
[PROOFSTEP]
intro h
[GOAL]
case mpr
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x y : X
hsat : IsMaximal (top s) x
h : y ∈ range s.series ∨ y = x
⊢ y ∈ range (Fin.snoc s.series x)
[PROOFSTEP]
rcases h with (⟨i, rfl⟩ | rfl)
[GOAL]
case mpr.inl.intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hsat : IsMaximal (top s) x
i : Fin (s.length + 1)
⊢ series s i ∈ range (Fin.snoc s.series x)
[PROOFSTEP]
use Fin.castSucc i
[GOAL]
case h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hsat : IsMaximal (top s) x
i : Fin (s.length + 1)
⊢ Fin.snoc s.series x (Fin.castSucc i) = series s i
[PROOFSTEP]
simp
[GOAL]
case mpr.inr
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
y : X
hsat : IsMaximal (top s) y
⊢ y ∈ range (Fin.snoc s.series y)
[PROOFSTEP]
use Fin.last _
[GOAL]
case h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
y : X
hsat : IsMaximal (top s) y
⊢ Fin.snoc s.series y (Fin.last (s.length + 1)) = y
[PROOFSTEP]
simp
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
⊢ s = snoc (eraseTop s) (top s) (_ : IsMaximal (top (eraseTop s)) (top s))
[PROOFSTEP]
ext x
[GOAL]
case h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
x : X
⊢ x ∈ s ↔ x ∈ snoc (eraseTop s) (top s) (_ : IsMaximal (top (eraseTop s)) (top s))
[PROOFSTEP]
simp [mem_snoc, mem_eraseTop h]
[GOAL]
case h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : 0 < s.length
x : X
⊢ x ∈ s ↔ ¬x = top s ∧ x ∈ s ∨ x = top s
[PROOFSTEP]
by_cases h : x = s.top
[GOAL]
case pos
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h✝ : 0 < s.length
x : X
h : x = top s
⊢ x ∈ s ↔ ¬x = top s ∧ x ∈ s ∨ x = top s
[PROOFSTEP]
simp [*, s.top_mem]
[GOAL]
case neg
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h✝ : 0 < s.length
x : X
h : ¬x = top s
⊢ x ∈ s ↔ ¬x = top s ∧ x ∈ s ∨ x = top s
[PROOFSTEP]
simp [*, s.top_mem]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : IsMaximal (top (eraseTop s)) (top s)
⊢ s.length ≠ 0
[PROOFSTEP]
intro hs
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : IsMaximal (top (eraseTop s)) (top s)
hs : s.length = 0
⊢ False
[PROOFSTEP]
refine' ne_of_gt (lt_of_isMaximal h) _
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
h : IsMaximal (top (eraseTop s)) (top s)
hs : s.length = 0
⊢ top s = top (eraseTop s)
[PROOFSTEP]
simp [top, Fin.ext_iff, hs]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : Equivalent s₁ s₂
i : Fin s₂.length
⊢ Iso (series s₁ (Fin.castSucc (↑(Exists.choose h).symm i)), series s₁ (Fin.succ (↑(Exists.choose h).symm i)))
(series s₂ (Fin.castSucc i), series s₂ (Fin.succ i))
[PROOFSTEP]
simpa using h.choose_spec (h.choose.symm i)
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ t₁ t₂ : CompositionSeries X
hs : top s₁ = bot s₂
ht : top t₁ = bot t₂
h₁ : Equivalent s₁ t₁
h₂ : Equivalent s₂ t₂
e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) :=
Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv
⊢ ∀ (i : Fin (CompositionSeries.append s₁ s₂ hs).length),
Iso
(series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc i),
series (CompositionSeries.append s₁ s₂ hs) (Fin.succ i))
(series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e i)),
series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e i)))
[PROOFSTEP]
intro i
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ t₁ t₂ : CompositionSeries X
hs : top s₁ = bot s₂
ht : top t₁ = bot t₂
h₁ : Equivalent s₁ t₁
h₂ : Equivalent s₂ t₂
e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) :=
Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv
i : Fin (CompositionSeries.append s₁ s₂ hs).length
⊢ Iso
(series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc i),
series (CompositionSeries.append s₁ s₂ hs) (Fin.succ i))
(series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e i)),
series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e i)))
[PROOFSTEP]
refine' Fin.addCases _ _ i
[GOAL]
case refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ t₁ t₂ : CompositionSeries X
hs : top s₁ = bot s₂
ht : top t₁ = bot t₂
h₁ : Equivalent s₁ t₁
h₂ : Equivalent s₂ t₂
e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) :=
Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv
i : Fin (CompositionSeries.append s₁ s₂ hs).length
⊢ ∀ (i : Fin s₁.length),
Iso
(series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc (Fin.castAdd s₂.length i)),
series (CompositionSeries.append s₁ s₂ hs) (Fin.succ (Fin.castAdd s₂.length i)))
(series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e (Fin.castAdd s₂.length i))),
series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e (Fin.castAdd s₂.length i))))
[PROOFSTEP]
intro i
[GOAL]
case refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ t₁ t₂ : CompositionSeries X
hs : top s₁ = bot s₂
ht : top t₁ = bot t₂
h₁ : Equivalent s₁ t₁
h₂ : Equivalent s₂ t₂
e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) :=
Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv
i✝ : Fin (CompositionSeries.append s₁ s₂ hs).length
i : Fin s₁.length
⊢ Iso
(series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc (Fin.castAdd s₂.length i)),
series (CompositionSeries.append s₁ s₂ hs) (Fin.succ (Fin.castAdd s₂.length i)))
(series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e (Fin.castAdd s₂.length i))),
series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e (Fin.castAdd s₂.length i))))
[PROOFSTEP]
simpa [top, bot] using h₁.choose_spec i
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ t₁ t₂ : CompositionSeries X
hs : top s₁ = bot s₂
ht : top t₁ = bot t₂
h₁ : Equivalent s₁ t₁
h₂ : Equivalent s₂ t₂
e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) :=
Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv
i : Fin (CompositionSeries.append s₁ s₂ hs).length
⊢ ∀ (i : Fin s₂.length),
Iso
(series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc (Fin.natAdd s₁.length i)),
series (CompositionSeries.append s₁ s₂ hs) (Fin.succ (Fin.natAdd s₁.length i)))
(series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e (Fin.natAdd s₁.length i))),
series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e (Fin.natAdd s₁.length i))))
[PROOFSTEP]
intro i
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ t₁ t₂ : CompositionSeries X
hs : top s₁ = bot s₂
ht : top t₁ = bot t₂
h₁ : Equivalent s₁ t₁
h₂ : Equivalent s₂ t₂
e : Fin (s₁.length + s₂.length) ≃ Fin (t₁.length + t₂.length) :=
Trans.trans (Trans.trans finSumFinEquiv.symm (Equiv.sumCongr (Exists.choose h₁) (Exists.choose h₂))) finSumFinEquiv
i✝ : Fin (CompositionSeries.append s₁ s₂ hs).length
i : Fin s₂.length
⊢ Iso
(series (CompositionSeries.append s₁ s₂ hs) (Fin.castSucc (Fin.natAdd s₁.length i)),
series (CompositionSeries.append s₁ s₂ hs) (Fin.succ (Fin.natAdd s₁.length i)))
(series (CompositionSeries.append t₁ t₂ ht) (Fin.castSucc (↑e (Fin.natAdd s₁.length i))),
series (CompositionSeries.append t₁ t₂ ht) (Fin.succ (↑e (Fin.natAdd s₁.length i))))
[PROOFSTEP]
simpa [top, bot] using h₂.choose_spec i
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
x₁ x₂ : X
hsat₁ : IsMaximal (top s₁) x₁
hsat₂ : IsMaximal (top s₂) x₂
hequiv : Equivalent s₁ s₂
htop : Iso (top s₁, x₁) (top s₂, x₂)
e : Fin (Nat.succ s₁.length) ≃ Fin (Nat.succ s₂.length) :=
Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm
i : Fin (snoc s₁ x₁ hsat₁).length
⊢ Iso (series (snoc s₁ x₁ hsat₁) (Fin.castSucc i), series (snoc s₁ x₁ hsat₁) (Fin.succ i))
(series (snoc s₂ x₂ hsat₂) (Fin.castSucc (↑e i)), series (snoc s₂ x₂ hsat₂) (Fin.succ (↑e i)))
[PROOFSTEP]
refine' Fin.lastCases _ _ i
[GOAL]
case refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
x₁ x₂ : X
hsat₁ : IsMaximal (top s₁) x₁
hsat₂ : IsMaximal (top s₂) x₂
hequiv : Equivalent s₁ s₂
htop : Iso (top s₁, x₁) (top s₂, x₂)
e : Fin (Nat.succ s₁.length) ≃ Fin (Nat.succ s₂.length) :=
Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm
i : Fin (snoc s₁ x₁ hsat₁).length
⊢ Iso
(series (snoc s₁ x₁ hsat₁) (Fin.castSucc (Fin.last s₁.length)),
series (snoc s₁ x₁ hsat₁) (Fin.succ (Fin.last s₁.length)))
(series (snoc s₂ x₂ hsat₂) (Fin.castSucc (↑e (Fin.last s₁.length))),
series (snoc s₂ x₂ hsat₂) (Fin.succ (↑e (Fin.last s₁.length))))
[PROOFSTEP]
simpa [top] using htop
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
x₁ x₂ : X
hsat₁ : IsMaximal (top s₁) x₁
hsat₂ : IsMaximal (top s₂) x₂
hequiv : Equivalent s₁ s₂
htop : Iso (top s₁, x₁) (top s₂, x₂)
e : Fin (Nat.succ s₁.length) ≃ Fin (Nat.succ s₂.length) :=
Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm
i : Fin (snoc s₁ x₁ hsat₁).length
⊢ ∀ (i : Fin s₁.length),
Iso
(series (snoc s₁ x₁ hsat₁) (Fin.castSucc (Fin.castSucc i)), series (snoc s₁ x₁ hsat₁) (Fin.succ (Fin.castSucc i)))
(series (snoc s₂ x₂ hsat₂) (Fin.castSucc (↑e (Fin.castSucc i))),
series (snoc s₂ x₂ hsat₂) (Fin.succ (↑e (Fin.castSucc i))))
[PROOFSTEP]
intro i
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
x₁ x₂ : X
hsat₁ : IsMaximal (top s₁) x₁
hsat₂ : IsMaximal (top s₂) x₂
hequiv : Equivalent s₁ s₂
htop : Iso (top s₁, x₁) (top s₂, x₂)
e : Fin (Nat.succ s₁.length) ≃ Fin (Nat.succ s₂.length) :=
Trans.trans (Trans.trans finSuccEquivLast (Functor.mapEquiv Option (Exists.choose hequiv))) finSuccEquivLast.symm
i✝ : Fin (snoc s₁ x₁ hsat₁).length
i : Fin s₁.length
⊢ Iso (series (snoc s₁ x₁ hsat₁) (Fin.castSucc (Fin.castSucc i)), series (snoc s₁ x₁ hsat₁) (Fin.succ (Fin.castSucc i)))
(series (snoc s₂ x₂ hsat₂) (Fin.castSucc (↑e (Fin.castSucc i))),
series (snoc s₂ x₂ hsat₂) (Fin.succ (↑e (Fin.castSucc i))))
[PROOFSTEP]
simpa [Fin.succ_castSucc] using hequiv.choose_spec i
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
h : Equivalent s₁ s₂
⊢ s₁.length = s₂.length
[PROOFSTEP]
simpa using Fintype.card_congr h.choose
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x₁ x₂ y₁ y₂ : X
hsat₁ : IsMaximal (top s) x₁
hsat₂ : IsMaximal (top s) x₂
hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁
hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂
hr₁ : Iso (top s, x₁) (x₂, y₂)
hr₂ : Iso (x₁, y₁) (top s, x₂)
e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) :=
Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))
x✝ : Fin s.length
⊢ Fin.castSucc (Fin.castSucc x✝) < Fin.castSucc (Fin.last s.length)
[PROOFSTEP]
simp [Fin.castSucc_lt_last]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x₁ x₂ y₁ y₂ : X
hsat₁ : IsMaximal (top s) x₁
hsat₂ : IsMaximal (top s) x₂
hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁
hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂
hr₁ : Iso (top s, x₁) (x₂, y₂)
hr₂ : Iso (x₁, y₁) (top s, x₂)
e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) :=
Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))
h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length)
x✝ : Fin s.length
⊢ Fin.castSucc (Fin.castSucc x✝) < Fin.last (s.length + 1)
[PROOFSTEP]
simp [Fin.castSucc_lt_last]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x₁ x₂ y₁ y₂ : X
hsat₁ : IsMaximal (top s) x₁
hsat₂ : IsMaximal (top s) x₂
hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁
hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂
hr₁ : Iso (top s, x₁) (x₂, y₂)
hr₂ : Iso (x₁, y₁) (top s, x₂)
e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) :=
Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))
h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length)
h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1)
⊢ ∀ (i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length),
Iso
(series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc i),
series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ i))
(series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑e i)),
series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑e i)))
[PROOFSTEP]
intro i
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x₁ x₂ y₁ y₂ : X
hsat₁ : IsMaximal (top s) x₁
hsat₂ : IsMaximal (top s) x₂
hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁
hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂
hr₁ : Iso (top s, x₁) (x₂, y₂)
hr₂ : Iso (x₁, y₁) (top s, x₂)
e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) :=
Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))
h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length)
h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1)
i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length
⊢ Iso
(series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc i), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ i))
(series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.castSucc (↑e i)),
series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂) (Fin.succ (↑e i)))
[PROOFSTEP]
dsimp only []
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x₁ x₂ y₁ y₂ : X
hsat₁ : IsMaximal (top s) x₁
hsat₂ : IsMaximal (top s) x₂
hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁
hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂
hr₁ : Iso (top s, x₁) (x₂, y₂)
hr₂ : Iso (x₁, y₁) (top s, x₂)
e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) :=
Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))
h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length)
h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1)
i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length
⊢ Iso
(series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc i), series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ i))
(series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂)
(Fin.castSucc (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) i)),
series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂)
(Fin.succ (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) i)))
[PROOFSTEP]
refine' Fin.lastCases _ (fun i => _) i
[GOAL]
case refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x₁ x₂ y₁ y₂ : X
hsat₁ : IsMaximal (top s) x₁
hsat₂ : IsMaximal (top s) x₂
hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁
hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂
hr₁ : Iso (top s, x₁) (x₂, y₂)
hr₂ : Iso (x₁, y₁) (top s, x₂)
e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) :=
Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))
h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length)
h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1)
i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length
⊢ Iso
(series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc (Fin.last (snoc s x₁ hsat₁).length)),
series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ (Fin.last (snoc s x₁ hsat₁).length)))
(series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂)
(Fin.castSucc
(↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)))
(Fin.last (snoc s x₁ hsat₁).length))),
series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂)
(Fin.succ
(↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)))
(Fin.last (snoc s x₁ hsat₁).length))))
[PROOFSTEP]
erw [Equiv.swap_apply_left, snoc_castSucc, snoc_last, Fin.succ_last, snoc_last, snoc_castSucc, snoc_castSucc,
Fin.succ_castSucc, snoc_castSucc, Fin.succ_last, snoc_last]
[GOAL]
case refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x₁ x₂ y₁ y₂ : X
hsat₁ : IsMaximal (top s) x₁
hsat₂ : IsMaximal (top s) x₂
hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁
hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂
hr₁ : Iso (top s, x₁) (x₂, y₂)
hr₂ : Iso (x₁, y₁) (top s, x₂)
e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) :=
Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))
h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length)
h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1)
i : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length
⊢ Iso (x₁, y₁) (series s (Fin.last s.length), x₂)
[PROOFSTEP]
exact hr₂
[GOAL]
case refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x₁ x₂ y₁ y₂ : X
hsat₁ : IsMaximal (top s) x₁
hsat₂ : IsMaximal (top s) x₂
hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁
hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂
hr₁ : Iso (top s, x₁) (x₂, y₂)
hr₂ : Iso (x₁, y₁) (top s, x₂)
e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) :=
Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))
h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length)
h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1)
i✝ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length
i : Fin (snoc s x₁ hsat₁).length
⊢ Iso
(series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc (Fin.castSucc i)),
series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ (Fin.castSucc i)))
(series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂)
(Fin.castSucc (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc i))),
series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂)
(Fin.succ (↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc i))))
[PROOFSTEP]
refine' Fin.lastCases _ (fun i => _) i
[GOAL]
case refine'_2.refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x₁ x₂ y₁ y₂ : X
hsat₁ : IsMaximal (top s) x₁
hsat₂ : IsMaximal (top s) x₂
hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁
hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂
hr₁ : Iso (top s, x₁) (x₂, y₂)
hr₂ : Iso (x₁, y₁) (top s, x₂)
e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) :=
Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))
h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length)
h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1)
i✝ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length
i : Fin (snoc s x₁ hsat₁).length
⊢ Iso
(series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc (Fin.castSucc (Fin.last s.length))),
series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ (Fin.castSucc (Fin.last s.length))))
(series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂)
(Fin.castSucc
(↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)))
(Fin.castSucc (Fin.last s.length)))),
series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂)
(Fin.succ
(↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length)))
(Fin.castSucc (Fin.last s.length)))))
[PROOFSTEP]
erw [Equiv.swap_apply_right, snoc_castSucc, snoc_castSucc, snoc_castSucc, Fin.succ_castSucc, snoc_castSucc,
Fin.succ_last, snoc_last, snoc_last, Fin.succ_last, snoc_last]
[GOAL]
case refine'_2.refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x₁ x₂ y₁ y₂ : X
hsat₁ : IsMaximal (top s) x₁
hsat₂ : IsMaximal (top s) x₂
hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁
hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂
hr₁ : Iso (top s, x₁) (x₂, y₂)
hr₂ : Iso (x₁, y₁) (top s, x₂)
e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) :=
Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))
h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length)
h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1)
i✝ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length
i : Fin (snoc s x₁ hsat₁).length
⊢ Iso (series s (Fin.last s.length), x₁) (x₂, y₂)
[PROOFSTEP]
exact hr₁
[GOAL]
case refine'_2.refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x₁ x₂ y₁ y₂ : X
hsat₁ : IsMaximal (top s) x₁
hsat₂ : IsMaximal (top s) x₂
hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁
hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂
hr₁ : Iso (top s, x₁) (x₂, y₂)
hr₂ : Iso (x₁, y₁) (top s, x₂)
e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) :=
Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))
h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length)
h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1)
i✝¹ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length
i✝ : Fin (snoc s x₁ hsat₁).length
i : Fin s.length
⊢ Iso
(series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.castSucc (Fin.castSucc (Fin.castSucc i))),
series (snoc (snoc s x₁ hsat₁) y₁ hsaty₁) (Fin.succ (Fin.castSucc (Fin.castSucc i))))
(series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂)
(Fin.castSucc
(↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc (Fin.castSucc i)))),
series (snoc (snoc s x₂ hsat₂) y₂ hsaty₂)
(Fin.succ
(↑(Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))) (Fin.castSucc (Fin.castSucc i)))))
[PROOFSTEP]
erw [Equiv.swap_apply_of_ne_of_ne h2 h1, snoc_castSucc, snoc_castSucc, snoc_castSucc, snoc_castSucc, Fin.succ_castSucc,
snoc_castSucc, Fin.succ_castSucc, snoc_castSucc, snoc_castSucc, snoc_castSucc]
[GOAL]
case refine'_2.refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x₁ x₂ y₁ y₂ : X
hsat₁ : IsMaximal (top s) x₁
hsat₂ : IsMaximal (top s) x₂
hsaty₁ : IsMaximal (top (snoc s x₁ hsat₁)) y₁
hsaty₂ : IsMaximal (top (snoc s x₂ hsat₂)) y₂
hr₁ : Iso (top s, x₁) (x₂, y₂)
hr₂ : Iso (x₁, y₁) (top s, x₂)
e : Fin (s.length + 1 + 1) ≃ Fin (s.length + 1 + 1) :=
Equiv.swap (Fin.last (s.length + 1)) (Fin.castSucc (Fin.last s.length))
h1 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.castSucc (Fin.last s.length)
h2 : ∀ {i : Fin s.length}, Fin.castSucc (Fin.castSucc i) ≠ Fin.last (s.length + 1)
i✝¹ : Fin (snoc (snoc s x₁ hsat₁) y₁ hsaty₁).length
i✝ : Fin (snoc s x₁ hsat₁).length
i : Fin s.length
⊢ Iso (series s (Fin.castSucc i), series s (Fin.succ i)) (series s (Fin.castSucc i), series s (Fin.succ i))
[PROOFSTEP]
exact (s.step i).iso_refl
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hs₁ : s₁.length = 0
⊢ s₂.length = 0
[PROOFSTEP]
have : s₁.bot = s₁.top := congr_arg s₁ (Fin.ext (by simp [hs₁]))
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hs₁ : s₁.length = 0
⊢ ↑0 = ↑(Fin.last s₁.length)
[PROOFSTEP]
simp [hs₁]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hs₁ : s₁.length = 0
this : bot s₁ = top s₁
⊢ s₂.length = 0
[PROOFSTEP]
have : Fin.last s₂.length = (0 : Fin s₂.length.succ) := s₂.injective (hb.symm.trans (this.trans ht)).symm
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hs₁ : s₁.length = 0
this✝ : bot s₁ = top s₁
this : Fin.last s₂.length = 0
⊢ s₂.length = 0
[PROOFSTEP]
rw [Fin.ext_iff] at this
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hs₁ : s₁.length = 0
this✝ : bot s₁ = top s₁
this : ↑(Fin.last s₂.length) = ↑0
⊢ s₂.length = 0
[PROOFSTEP]
simpa
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
⊢ ¬0 < s₂.length → ¬0 < s₁.length
[PROOFSTEP]
simp only [pos_iff_ne_zero, Ne.def, not_iff_not, Classical.not_not]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
⊢ s₂.length = 0 → s₁.length = 0
[PROOFSTEP]
exact length_eq_zero_of_bot_eq_bot_of_top_eq_top_of_length_eq_zero hb.symm ht.symm
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hs₁0 : s₁.length = 0
⊢ s₁ = s₂
[PROOFSTEP]
have : ∀ x, x ∈ s₁ ↔ x = s₁.top := fun x =>
⟨fun hx => forall_mem_eq_of_length_eq_zero hs₁0 hx s₁.top_mem, fun hx => hx.symm ▸ s₁.top_mem⟩
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hs₁0 : s₁.length = 0
this : ∀ (x : X), x ∈ s₁ ↔ x = top s₁
⊢ s₁ = s₂
[PROOFSTEP]
have : ∀ x, x ∈ s₂ ↔ x = s₂.top := fun x =>
⟨fun hx =>
forall_mem_eq_of_length_eq_zero (length_eq_zero_of_bot_eq_bot_of_top_eq_top_of_length_eq_zero hb ht hs₁0) hx
s₂.top_mem,
fun hx => hx.symm ▸ s₂.top_mem⟩
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hs₁0 : s₁.length = 0
this✝ : ∀ (x : X), x ∈ s₁ ↔ x = top s₁
this : ∀ (x : X), x ∈ s₂ ↔ x = top s₂
⊢ s₁ = s₂
[PROOFSTEP]
ext
[GOAL]
case h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hs₁0 : s₁.length = 0
this✝ : ∀ (x : X), x ∈ s₁ ↔ x = top s₁
this : ∀ (x : X), x ∈ s₂ ↔ x = top s₂
x✝ : X
⊢ x✝ ∈ s₁ ↔ x✝ ∈ s₂
[PROOFSTEP]
simp [*]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
⊢ ∃ t, bot t = bot s ∧ t.length + 1 = s.length ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
[PROOFSTEP]
induction' hn : s.length with n ih generalizing s x
[GOAL]
case zero
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.zero
⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.zero ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
[PROOFSTEP]
exact (ne_of_gt (lt_of_le_of_lt hb (lt_of_isMaximal hm)) (forall_mem_eq_of_length_eq_zero hn s.top_mem s.bot_mem)).elim
[GOAL]
case succ
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
[PROOFSTEP]
have h0s : 0 < s.length := hn.symm ▸ Nat.succ_pos _
[GOAL]
case succ
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
[PROOFSTEP]
by_cases hetx : s.eraseTop.top = x
[GOAL]
case pos
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : top (eraseTop s) = x
⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
[PROOFSTEP]
use s.eraseTop
[GOAL]
case h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : top (eraseTop s) = x
⊢ bot (eraseTop s) = bot s ∧
(eraseTop s).length + 1 = Nat.succ n ∧
∃ htx, Equivalent s (snoc (eraseTop s) (top s) (_ : IsMaximal (top (eraseTop s)) (top s)))
[PROOFSTEP]
simp [← hetx, hn]
-- Porting note: `rfl` is required.
[GOAL]
case h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : top (eraseTop s) = x
⊢ Equivalent s s
[PROOFSTEP]
rfl
[GOAL]
case neg
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
[PROOFSTEP]
have imxs : IsMaximal (x ⊓ s.eraseTop.top) s.eraseTop.top :=
isMaximal_of_eq_inf x s.top rfl (Ne.symm hetx) hm (isMaximal_eraseTop_top h0s)
[GOAL]
case neg
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
[PROOFSTEP]
have := ih _ _ imxs (le_inf (by simpa) (le_top_of_mem s.eraseTop.bot_mem)) (by simp [hn])
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
⊢ bot (eraseTop s) ≤ x
[PROOFSTEP]
simpa
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
⊢ (eraseTop s).length = n
[PROOFSTEP]
simp [hn]
[GOAL]
case neg
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
this :
∃ t,
bot t = bot (eraseTop s) ∧
t.length + 1 = n ∧
∃ htx, Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
[PROOFSTEP]
rcases this with ⟨t, htb, htl, htt, hteqv⟩
[GOAL]
case neg.intro.intro.intro.intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
[PROOFSTEP]
have hmtx : IsMaximal t.top x :=
isMaximal_of_eq_inf s.eraseTop.top s.top (by rw [inf_comm, htt]) hetx (isMaximal_eraseTop_top h0s) hm
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
⊢ top (eraseTop s) ⊓ x = top t
[PROOFSTEP]
rw [inf_comm, htt]
[GOAL]
case neg.intro.intro.intro.intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
⊢ ∃ t, bot t = bot s ∧ t.length + 1 = Nat.succ n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
[PROOFSTEP]
use snoc t x hmtx
[GOAL]
case h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
⊢ bot (snoc t x hmtx) = bot s ∧
(snoc t x hmtx).length + 1 = Nat.succ n ∧
∃ htx, Equivalent s (snoc (snoc t x hmtx) (top s) (_ : IsMaximal (top (snoc t x hmtx)) (top s)))
[PROOFSTEP]
refine' ⟨by simp [htb], by simp [htl], by simp, _⟩
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
⊢ bot (snoc t x hmtx) = bot s
[PROOFSTEP]
simp [htb]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
⊢ (snoc t x hmtx).length + 1 = Nat.succ n
[PROOFSTEP]
simp [htl]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
⊢ top (snoc t x hmtx) = x
[PROOFSTEP]
simp
[GOAL]
case h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
⊢ Equivalent s (snoc (snoc t x hmtx) (top s) (_ : IsMaximal (top (snoc t x hmtx)) (top s)))
[PROOFSTEP]
have :
s.Equivalent ((snoc t s.eraseTop.top (htt.symm ▸ imxs)).snoc s.top (by simpa using isMaximal_eraseTop_top h0s)) :=
by
conv_lhs => rw [eq_snoc_eraseTop h0s]
exact Equivalent.snoc hteqv (by simpa using (isMaximal_eraseTop_top h0s).iso_refl)
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
⊢ IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s)
[PROOFSTEP]
simpa using isMaximal_eraseTop_top h0s
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
⊢ Equivalent s
(snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s)
(_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s)))
[PROOFSTEP]
conv_lhs => rw [eq_snoc_eraseTop h0s]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
| s
[PROOFSTEP]
rw [eq_snoc_eraseTop h0s]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
| s
[PROOFSTEP]
rw [eq_snoc_eraseTop h0s]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
| s
[PROOFSTEP]
rw [eq_snoc_eraseTop h0s]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
⊢ Equivalent (snoc (eraseTop s) (top s) (_ : IsMaximal (top (eraseTop s)) (top s)))
(snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s)
(_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s)))
[PROOFSTEP]
exact Equivalent.snoc hteqv (by simpa using (isMaximal_eraseTop_top h0s).iso_refl)
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
⊢ Iso (top (eraseTop s), top s) (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))), top s)
[PROOFSTEP]
simpa using (isMaximal_eraseTop_top h0s).iso_refl
[GOAL]
case h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
this :
Equivalent s
(snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s)
(_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s)))
⊢ Equivalent s (snoc (snoc t x hmtx) (top s) (_ : IsMaximal (top (snoc t x hmtx)) (top s)))
[PROOFSTEP]
refine' this.trans _
[GOAL]
case h
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
this :
Equivalent s
(snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s)
(_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s)))
⊢ Equivalent
(snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s)
(_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s)))
(snoc (snoc t x hmtx) (top s) (_ : IsMaximal (top (snoc t x hmtx)) (top s)))
[PROOFSTEP]
refine' Equivalent.snoc_snoc_swap _ _
[GOAL]
case h.refine'_1
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
this :
Equivalent s
(snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s)
(_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s)))
⊢ Iso (top t, top (eraseTop s)) (x, top s)
[PROOFSTEP]
exact iso_symm (second_iso_of_eq hm (sup_eq_of_isMaximal hm (isMaximal_eraseTop_top h0s) (Ne.symm hetx)) htt.symm)
[GOAL]
case h.refine'_2
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
this :
Equivalent s
(snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s)
(_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s)))
⊢ Iso (top (eraseTop s), top s) (top t, x)
[PROOFSTEP]
exact
second_iso_of_eq (isMaximal_eraseTop_top h0s) (sup_eq_of_isMaximal (isMaximal_eraseTop_top h0s) hm hetx)
(by rw [inf_comm, htt])
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s✝ : CompositionSeries X
x✝¹ : X
hm✝ : IsMaximal x✝¹ (top s✝)
hb✝ : bot s✝ ≤ x✝¹
x✝ : ℕ
hn✝ : s✝.length = x✝
n : ℕ
ih :
∀ (s : CompositionSeries X) (x : X) (hm : IsMaximal x (top s)),
bot s ≤ x →
s.length = n →
∃ t, bot t = bot s ∧ t.length + 1 = n ∧ ∃ htx, Equivalent s (snoc t (top s) (_ : IsMaximal (top t) (top s)))
s : CompositionSeries X
x : X
hm : IsMaximal x (top s)
hb : bot s ≤ x
hn : s.length = Nat.succ n
h0s : 0 < s.length
hetx : ¬top (eraseTop s) = x
imxs : IsMaximal (x ⊓ top (eraseTop s)) (top (eraseTop s))
t : CompositionSeries X
htb : bot t = bot (eraseTop s)
htl : t.length + 1 = n
htt : top t = x ⊓ top (eraseTop s)
hteqv : Equivalent (eraseTop s) (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))
hmtx : IsMaximal (top t) x
this :
Equivalent s
(snoc (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s)))) (top s)
(_ : IsMaximal (top (snoc t (top (eraseTop s)) (_ : IsMaximal (top t) (top (eraseTop s))))) (top s)))
⊢ top (eraseTop s) ⊓ x = top t
[PROOFSTEP]
rw [inf_comm, htt]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
⊢ Equivalent s₁ s₂
[PROOFSTEP]
induction' hle : s₁.length with n ih generalizing s₁ s₂
[GOAL]
case zero
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁✝ s₂✝ : CompositionSeries X
hb✝ : bot s₁✝ = bot s₂✝
ht✝ : top s₁✝ = top s₂✝
x✝ : ℕ
hle✝ : s₁✝.length = x✝
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hle : s₁.length = Nat.zero
⊢ Equivalent s₁ s₂
[PROOFSTEP]
rw [eq_of_bot_eq_bot_of_top_eq_top_of_length_eq_zero hb ht hle]
[GOAL]
case succ
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁✝ s₂✝ : CompositionSeries X
hb✝ : bot s₁✝ = bot s₂✝
ht✝ : top s₁✝ = top s₂✝
x✝ : ℕ
hle✝ : s₁✝.length = x✝
n : ℕ
ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hle : s₁.length = Nat.succ n
⊢ Equivalent s₁ s₂
[PROOFSTEP]
have h0s₂ : 0 < s₂.length := length_pos_of_bot_eq_bot_of_top_eq_top_of_length_pos hb ht (hle.symm ▸ Nat.succ_pos _)
[GOAL]
case succ
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁✝ s₂✝ : CompositionSeries X
hb✝ : bot s₁✝ = bot s₂✝
ht✝ : top s₁✝ = top s₂✝
x✝ : ℕ
hle✝ : s₁✝.length = x✝
n : ℕ
ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hle : s₁.length = Nat.succ n
h0s₂ : 0 < s₂.length
⊢ Equivalent s₁ s₂
[PROOFSTEP]
rcases exists_top_eq_snoc_equivalant s₁ s₂.eraseTop.top (ht.symm ▸ isMaximal_eraseTop_top h0s₂)
(hb.symm ▸ s₂.bot_eraseTop ▸ bot_le_of_mem (top_mem _)) with
⟨t, htb, htl, htt, hteq⟩
[GOAL]
case succ.intro.intro.intro.intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁✝ s₂✝ : CompositionSeries X
hb✝ : bot s₁✝ = bot s₂✝
ht✝ : top s₁✝ = top s₂✝
x✝ : ℕ
hle✝ : s₁✝.length = x✝
n : ℕ
ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hle : s₁.length = Nat.succ n
h0s₂ : 0 < s₂.length
t : CompositionSeries X
htb : bot t = bot s₁
htl : t.length + 1 = s₁.length
htt : top t = top (eraseTop s₂)
hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁)))
⊢ Equivalent s₁ s₂
[PROOFSTEP]
have := ih t s₂.eraseTop (by simp [htb, ← hb]) htt (Nat.succ_inj'.1 (htl.trans hle))
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁✝ s₂✝ : CompositionSeries X
hb✝ : bot s₁✝ = bot s₂✝
ht✝ : top s₁✝ = top s₂✝
x✝ : ℕ
hle✝ : s₁✝.length = x✝
n : ℕ
ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hle : s₁.length = Nat.succ n
h0s₂ : 0 < s₂.length
t : CompositionSeries X
htb : bot t = bot s₁
htl : t.length + 1 = s₁.length
htt : top t = top (eraseTop s₂)
hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁)))
⊢ bot t = bot (eraseTop s₂)
[PROOFSTEP]
simp [htb, ← hb]
[GOAL]
case succ.intro.intro.intro.intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁✝ s₂✝ : CompositionSeries X
hb✝ : bot s₁✝ = bot s₂✝
ht✝ : top s₁✝ = top s₂✝
x✝ : ℕ
hle✝ : s₁✝.length = x✝
n : ℕ
ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hle : s₁.length = Nat.succ n
h0s₂ : 0 < s₂.length
t : CompositionSeries X
htb : bot t = bot s₁
htl : t.length + 1 = s₁.length
htt : top t = top (eraseTop s₂)
hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁)))
this : Equivalent t (eraseTop s₂)
⊢ Equivalent s₁ s₂
[PROOFSTEP]
refine' hteq.trans _
[GOAL]
case succ.intro.intro.intro.intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁✝ s₂✝ : CompositionSeries X
hb✝ : bot s₁✝ = bot s₂✝
ht✝ : top s₁✝ = top s₂✝
x✝ : ℕ
hle✝ : s₁✝.length = x✝
n : ℕ
ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hle : s₁.length = Nat.succ n
h0s₂ : 0 < s₂.length
t : CompositionSeries X
htb : bot t = bot s₁
htl : t.length + 1 = s₁.length
htt : top t = top (eraseTop s₂)
hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁)))
this : Equivalent t (eraseTop s₂)
⊢ Equivalent (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁))) s₂
[PROOFSTEP]
conv_rhs => rw [eq_snoc_eraseTop h0s₂]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁✝ s₂✝ : CompositionSeries X
hb✝ : bot s₁✝ = bot s₂✝
ht✝ : top s₁✝ = top s₂✝
x✝ : ℕ
hle✝ : s₁✝.length = x✝
n : ℕ
ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hle : s₁.length = Nat.succ n
h0s₂ : 0 < s₂.length
t : CompositionSeries X
htb : bot t = bot s₁
htl : t.length + 1 = s₁.length
htt : top t = top (eraseTop s₂)
hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁)))
this : Equivalent t (eraseTop s₂)
| s₂
[PROOFSTEP]
rw [eq_snoc_eraseTop h0s₂]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁✝ s₂✝ : CompositionSeries X
hb✝ : bot s₁✝ = bot s₂✝
ht✝ : top s₁✝ = top s₂✝
x✝ : ℕ
hle✝ : s₁✝.length = x✝
n : ℕ
ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hle : s₁.length = Nat.succ n
h0s₂ : 0 < s₂.length
t : CompositionSeries X
htb : bot t = bot s₁
htl : t.length + 1 = s₁.length
htt : top t = top (eraseTop s₂)
hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁)))
this : Equivalent t (eraseTop s₂)
| s₂
[PROOFSTEP]
rw [eq_snoc_eraseTop h0s₂]
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁✝ s₂✝ : CompositionSeries X
hb✝ : bot s₁✝ = bot s₂✝
ht✝ : top s₁✝ = top s₂✝
x✝ : ℕ
hle✝ : s₁✝.length = x✝
n : ℕ
ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hle : s₁.length = Nat.succ n
h0s₂ : 0 < s₂.length
t : CompositionSeries X
htb : bot t = bot s₁
htl : t.length + 1 = s₁.length
htt : top t = top (eraseTop s₂)
hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁)))
this : Equivalent t (eraseTop s₂)
| s₂
[PROOFSTEP]
rw [eq_snoc_eraseTop h0s₂]
[GOAL]
case succ.intro.intro.intro.intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁✝ s₂✝ : CompositionSeries X
hb✝ : bot s₁✝ = bot s₂✝
ht✝ : top s₁✝ = top s₂✝
x✝ : ℕ
hle✝ : s₁✝.length = x✝
n : ℕ
ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hle : s₁.length = Nat.succ n
h0s₂ : 0 < s₂.length
t : CompositionSeries X
htb : bot t = bot s₁
htl : t.length + 1 = s₁.length
htt : top t = top (eraseTop s₂)
hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁)))
this : Equivalent t (eraseTop s₂)
⊢ Equivalent (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁)))
(snoc (eraseTop s₂) (top s₂) (_ : IsMaximal (top (eraseTop s₂)) (top s₂)))
[PROOFSTEP]
simp only [ht]
[GOAL]
case succ.intro.intro.intro.intro
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁✝ s₂✝ : CompositionSeries X
hb✝ : bot s₁✝ = bot s₂✝
ht✝ : top s₁✝ = top s₂✝
x✝ : ℕ
hle✝ : s₁✝.length = x✝
n : ℕ
ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hle : s₁.length = Nat.succ n
h0s₂ : 0 < s₂.length
t : CompositionSeries X
htb : bot t = bot s₁
htl : t.length + 1 = s₁.length
htt : top t = top (eraseTop s₂)
hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁)))
this : Equivalent t (eraseTop s₂)
⊢ Equivalent (snoc t (top s₂) (_ : IsMaximal (top t) (top s₂)))
(snoc (eraseTop s₂) (top s₂) (_ : IsMaximal (top (eraseTop s₂)) (top s₂)))
[PROOFSTEP]
exact Equivalent.snoc this (by simp [htt, (isMaximal_eraseTop_top h0s₂).iso_refl])
[GOAL]
X : Type u
inst✝¹ : Lattice X
inst✝ : JordanHolderLattice X
s₁✝ s₂✝ : CompositionSeries X
hb✝ : bot s₁✝ = bot s₂✝
ht✝ : top s₁✝ = top s₂✝
x✝ : ℕ
hle✝ : s₁✝.length = x✝
n : ℕ
ih : ∀ (s₁ s₂ : CompositionSeries X), bot s₁ = bot s₂ → top s₁ = top s₂ → s₁.length = n → Equivalent s₁ s₂
s₁ s₂ : CompositionSeries X
hb : bot s₁ = bot s₂
ht : top s₁ = top s₂
hle : s₁.length = Nat.succ n
h0s₂ : 0 < s₂.length
t : CompositionSeries X
htb : bot t = bot s₁
htl : t.length + 1 = s₁.length
htt : top t = top (eraseTop s₂)
hteq : Equivalent s₁ (snoc t (top s₁) (_ : IsMaximal (top t) (top s₁)))
this : Equivalent t (eraseTop s₂)
⊢ Iso (top t, top s₂) (top (eraseTop s₂), top s₂)
[PROOFSTEP]
simp [htt, (isMaximal_eraseTop_top h0s₂).iso_refl]
| {"mathlib_filename": "Mathlib.Order.JordanHolder", "llama_tokens": 53535} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
⊢ a :: l ∈ subchain s ↔ a ∈ s ∧ l ∈ subchain s ∧ ∀ (b : α), b ∈ head? l → a < b
[PROOFSTEP]
simp only [subchain, mem_setOf_eq, forall_mem_cons, chain'_cons', and_left_comm, and_comm, and_assoc]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
⊢ [a] ∈ subchain s ↔ a ∈ s
[PROOFSTEP]
simp [cons_mem_subchain_iff]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n : ℕ
hn : ↑n ≤ chainHeight s
⊢ ∃ l, l ∈ subchain s ∧ length l = n
[PROOFSTEP]
cases' (le_top : s.chainHeight ≤ ⊤).eq_or_lt with ha ha
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n : ℕ
hn : ↑n ≤ chainHeight s
ha : chainHeight s = ⊤
⊢ ∃ l, l ∈ subchain s ∧ length l = n
[PROOFSTEP]
rw [chainHeight_eq_iSup_subtype] at ha
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n : ℕ
hn : ↑n ≤ chainHeight s
ha : chainHeight s < ⊤
⊢ ∃ l, l ∈ subchain s ∧ length l = n
[PROOFSTEP]
rw [chainHeight_eq_iSup_subtype] at ha
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n : ℕ
hn : ↑n ≤ chainHeight s
ha : ⨆ (l : ↑(subchain s)), ↑(length ↑l) = ⊤
⊢ ∃ l, l ∈ subchain s ∧ length l = n
[PROOFSTEP]
obtain ⟨_, ⟨⟨l, h₁, h₂⟩, rfl⟩, h₃⟩ := not_bddAbove_iff'.mp ((WithTop.iSup_coe_eq_top _).mp ha) n
[GOAL]
case inl.intro.intro.intro.mk.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l✝ : List α
a : α
n : ℕ
hn : ↑n ≤ chainHeight s
ha : ⨆ (l : ↑(subchain s)), ↑(length ↑l) = ⊤
l : List α
h₁ : Chain' (fun x x_1 => x < x_1) l
h₂ : ∀ (i : α), i ∈ l → i ∈ s
h₃ :
¬(fun x => ↑(length ↑x)) { val := l, property := (_ : Chain' (fun x x_1 => x < x_1) l ∧ ∀ (i : α), i ∈ l → i ∈ s) } ≤
n
⊢ ∃ l, l ∈ subchain s ∧ length l = n
[PROOFSTEP]
exact
⟨l.take n, ⟨h₁.take _, fun x h ↦ h₂ _ <| take_subset _ _ h⟩,
(l.length_take n).trans <| min_eq_left <| le_of_not_ge h₃⟩
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n : ℕ
hn : ↑n ≤ chainHeight s
ha : ⨆ (l : ↑(subchain s)), ↑(length ↑l) < ⊤
⊢ ∃ l, l ∈ subchain s ∧ length l = n
[PROOFSTEP]
rw [ENat.iSup_coe_lt_top] at ha
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n : ℕ
hn : ↑n ≤ chainHeight s
ha : BddAbove (range fun l => length ↑l)
⊢ ∃ l, l ∈ subchain s ∧ length l = n
[PROOFSTEP]
obtain ⟨⟨l, h₁, h₂⟩, e : l.length = _⟩ := Nat.sSup_mem (Set.range_nonempty _) ha
[GOAL]
case inr.intro.mk.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l✝ : List α
a : α
n : ℕ
hn : ↑n ≤ chainHeight s
ha : BddAbove (range fun l => length ↑l)
l : List α
h₁ : Chain' (fun x x_1 => x < x_1) l
h₂ : ∀ (i : α), i ∈ l → i ∈ s
e : length l = sSup (range fun l => length ↑l)
⊢ ∃ l, l ∈ subchain s ∧ length l = n
[PROOFSTEP]
refine' ⟨l.take n, ⟨h₁.take _, fun x h ↦ h₂ _ <| take_subset _ _ h⟩, (l.length_take n).trans <| min_eq_left <| _⟩
[GOAL]
case inr.intro.mk.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l✝ : List α
a : α
n : ℕ
hn : ↑n ≤ chainHeight s
ha : BddAbove (range fun l => length ↑l)
l : List α
h₁ : Chain' (fun x x_1 => x < x_1) l
h₂ : ∀ (i : α), i ∈ l → i ∈ s
e : length l = sSup (range fun l => length ↑l)
⊢ n ≤ length l
[PROOFSTEP]
rwa [e, ← Nat.cast_le (α := ℕ∞), sSup_range, ENat.coe_iSup ha, ← chainHeight_eq_iSup_subtype]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n : ℕ
⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l]
[PROOFSTEP]
tfae_have 1 → 2
[GOAL]
case tfae_1_to_2
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n : ℕ
⊢ ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n
[PROOFSTEP]
exact s.exists_chain_of_le_chainHeight
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n : ℕ
tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n
⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l]
[PROOFSTEP]
tfae_have 2 → 3
[GOAL]
case tfae_2_to_3
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n : ℕ
tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n
⊢ (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l
[PROOFSTEP]
rintro ⟨l, hls, he⟩
[GOAL]
case tfae_2_to_3.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l✝ : List α
a : α
n : ℕ
tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n
l : List α
hls : l ∈ subchain s
he : length l = n
⊢ ∃ l, l ∈ subchain s ∧ n ≤ length l
[PROOFSTEP]
exact ⟨l, hls, he.ge⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n : ℕ
tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n
tfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l
⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l]
[PROOFSTEP]
tfae_have 3 → 1
[GOAL]
case tfae_3_to_1
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n : ℕ
tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n
tfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l
⊢ (∃ l, l ∈ subchain s ∧ n ≤ length l) → ↑n ≤ chainHeight s
[PROOFSTEP]
rintro ⟨l, hs, hn⟩
[GOAL]
case tfae_3_to_1.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l✝ : List α
a : α
n : ℕ
tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n
tfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l
l : List α
hs : l ∈ subchain s
hn : n ≤ length l
⊢ ↑n ≤ chainHeight s
[PROOFSTEP]
exact le_iSup₂_of_le l hs (WithTop.coe_le_coe.2 hn)
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n : ℕ
tfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n
tfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l
tfae_3_to_1 : (∃ l, l ∈ subchain s ∧ n ≤ length l) → ↑n ≤ chainHeight s
⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l]
[PROOFSTEP]
tfae_finish
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
⊢ chainHeight s = ⊤ ↔ ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n
[PROOFSTEP]
refine' ⟨fun h n ↦ le_chainHeight_iff.1 (le_top.trans_eq h.symm), fun h ↦ _⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n
⊢ chainHeight s = ⊤
[PROOFSTEP]
contrapose! h
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
h : chainHeight s ≠ ⊤
⊢ ∃ n, ∀ (l : List α), l ∈ subchain s → length l ≠ n
[PROOFSTEP]
obtain ⟨n, hn⟩ := WithTop.ne_top_iff_exists.1 h
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
h : chainHeight s ≠ ⊤
n : ℕ
hn : ↑n = chainHeight s
⊢ ∃ n, ∀ (l : List α), l ∈ subchain s → length l ≠ n
[PROOFSTEP]
exact
⟨n + 1, fun l hs ↦
(Nat.lt_succ_iff.2 <| Nat.cast_le.1 <| (length_le_chainHeight_of_mem_subchain hs).trans_eq hn.symm).ne⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
⊢ 1 ≤ chainHeight s ↔ Set.Nonempty s
[PROOFSTEP]
rw [← Nat.cast_one, Set.le_chainHeight_iff]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
⊢ (∃ l, l ∈ subchain s ∧ length l = 1) ↔ Set.Nonempty s
[PROOFSTEP]
simp only [length_eq_one, @and_comm (_ ∈ _), @eq_comm _ _ [_], exists_exists_eq_and, singleton_mem_subchain_iff,
Set.Nonempty]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
⊢ chainHeight s = 0 ↔ s = ∅
[PROOFSTEP]
rw [← not_iff_not, ← Ne.def, ← ENat.one_le_iff_ne_zero, one_le_chainHeight_iff, nonempty_iff_ne_empty]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
n m : ℕ
⊢ ↑n ≤ chainHeight s + ↑m ↔ ∃ l, l ∈ subchain s ∧ n ≤ length l + m
[PROOFSTEP]
simp_rw [← tsub_le_iff_right, ← ENat.coe_sub, (le_chainHeight_TFAE s (n - m)).out 0 2]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
n m : ℕ
⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m ↔
∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
[PROOFSTEP]
refine'
⟨fun e l h ↦ le_chainHeight_add_nat_iff.1 ((add_le_add_right (length_le_chainHeight_of_mem_subchain h) _).trans e),
fun H ↦ _⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m
[PROOFSTEP]
by_cases s.chainHeight = ⊤
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m
[PROOFSTEP]
by_cases s.chainHeight = ⊤
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : chainHeight s = ⊤
⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m
[PROOFSTEP]
suffices t.chainHeight = ⊤ by
rw [this, top_add]
exact le_top
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : chainHeight s = ⊤
this : chainHeight t = ⊤
⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m
[PROOFSTEP]
rw [this, top_add]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : chainHeight s = ⊤
this : chainHeight t = ⊤
⊢ chainHeight s + ↑n ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : chainHeight s = ⊤
⊢ chainHeight t = ⊤
[PROOFSTEP]
rw [chainHeight_eq_top_iff] at h ⊢
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n
⊢ ∀ (n : ℕ), ∃ l, l ∈ subchain t ∧ length l = n
[PROOFSTEP]
intro k
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n
k : ℕ
⊢ ∃ l, l ∈ subchain t ∧ length l = k
[PROOFSTEP]
have := (le_chainHeight_TFAE t k).out 1 2
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n
k : ℕ
this : (∃ l, l ∈ subchain t ∧ length l = k) ↔ ∃ l, l ∈ subchain t ∧ k ≤ length l
⊢ ∃ l, l ∈ subchain t ∧ length l = k
[PROOFSTEP]
rw [this]
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n
k : ℕ
this : (∃ l, l ∈ subchain t ∧ length l = k) ↔ ∃ l, l ∈ subchain t ∧ k ≤ length l
⊢ ∃ l, l ∈ subchain t ∧ k ≤ length l
[PROOFSTEP]
obtain ⟨l, hs, hl⟩ := h (k + m)
[GOAL]
case pos.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l✝ : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n
k : ℕ
this : (∃ l, l ∈ subchain t ∧ length l = k) ↔ ∃ l, l ∈ subchain t ∧ k ≤ length l
l : List α
hs : l ∈ subchain s
hl : length l = k + m
⊢ ∃ l, l ∈ subchain t ∧ k ≤ length l
[PROOFSTEP]
obtain ⟨l', ht, hl'⟩ := H l hs
[GOAL]
case pos.intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l✝ : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : ∀ (n : ℕ), ∃ l, l ∈ subchain s ∧ length l = n
k : ℕ
this : (∃ l, l ∈ subchain t ∧ length l = k) ↔ ∃ l, l ∈ subchain t ∧ k ≤ length l
l : List α
hs : l ∈ subchain s
hl : length l = k + m
l' : List β
ht : l' ∈ subchain t
hl' : length l + n ≤ length l' + m
⊢ ∃ l, l ∈ subchain t ∧ k ≤ length l
[PROOFSTEP]
exact ⟨l', ht, (add_le_add_iff_right m).1 <| _root_.trans (hl.symm.trans_le le_self_add) hl'⟩
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : ¬chainHeight s = ⊤
⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m
[PROOFSTEP]
obtain ⟨k, hk⟩ := WithTop.ne_top_iff_exists.1 h
[GOAL]
case neg.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : ¬chainHeight s = ⊤
k : ℕ
hk : ↑k = chainHeight s
⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m
[PROOFSTEP]
obtain ⟨l, hs, hl⟩ := le_chainHeight_iff.1 hk.le
[GOAL]
case neg.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l✝ : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : ¬chainHeight s = ⊤
k : ℕ
hk : ↑k = chainHeight s
l : List α
hs : l ∈ subchain s
hl : length l = k
⊢ chainHeight s + ↑n ≤ chainHeight t + ↑m
[PROOFSTEP]
rw [← hk, ← hl]
[GOAL]
case neg.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l✝ : List α
a : α
s : Set α
t : Set β
n m : ℕ
H : ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l + n ≤ length l' + m
h : ¬chainHeight s = ⊤
k : ℕ
hk : ↑k = chainHeight s
l : List α
hs : l ∈ subchain s
hl : length l = k
⊢ ↑(length l) + ↑n ≤ chainHeight t + ↑m
[PROOFSTEP]
exact le_chainHeight_add_nat_iff.2 (H l hs)
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
⊢ TFAE
[chainHeight s ≤ chainHeight t, ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l = length l',
∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l']
[PROOFSTEP]
tfae_have 1 ↔ 3
[GOAL]
case tfae_1_iff_3
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
⊢ chainHeight s ≤ chainHeight t ↔ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l'
[PROOFSTEP]
convert ← chainHeight_add_le_chainHeight_add s t 0 0
[GOAL]
case h.e'_1.h.e'_3
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
⊢ chainHeight s + ↑0 = chainHeight s
[PROOFSTEP]
apply add_zero
[GOAL]
case h.e'_1.h.e'_4
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
⊢ chainHeight t + ↑0 = chainHeight t
[PROOFSTEP]
apply add_zero
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
tfae_1_iff_3 :
chainHeight s ≤ chainHeight t ↔ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l'
⊢ TFAE
[chainHeight s ≤ chainHeight t, ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l = length l',
∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l']
[PROOFSTEP]
tfae_have 2 ↔ 3
[GOAL]
case tfae_2_iff_3
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
tfae_1_iff_3 :
chainHeight s ≤ chainHeight t ↔ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l'
⊢ (∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l = length l') ↔
∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l'
[PROOFSTEP]
refine' forall₂_congr fun l hl ↦ _
[GOAL]
case tfae_2_iff_3
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l✝ : List α
a : α
s : Set α
t : Set β
tfae_1_iff_3 :
chainHeight s ≤ chainHeight t ↔ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l'
l : List α
hl : l ∈ subchain s
⊢ (∃ l', l' ∈ subchain t ∧ length l = length l') ↔ ∃ l', l' ∈ subchain t ∧ length l ≤ length l'
[PROOFSTEP]
simp_rw [← (le_chainHeight_TFAE t l.length).out 1 2, eq_comm]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t✝ : Set α
l : List α
a : α
s : Set α
t : Set β
tfae_1_iff_3 :
chainHeight s ≤ chainHeight t ↔ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l'
tfae_2_iff_3 :
(∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l = length l') ↔
∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l'
⊢ TFAE
[chainHeight s ≤ chainHeight t, ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l = length l',
∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain t ∧ length l ≤ length l']
[PROOFSTEP]
tfae_finish
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
⊢ chainHeight (f '' s) = chainHeight s
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
⊢ chainHeight (f '' s) ≤ chainHeight s
[PROOFSTEP]
rw [chainHeight_le_chainHeight_iff]
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
⊢ chainHeight s ≤ chainHeight (f '' s)
[PROOFSTEP]
rw [chainHeight_le_chainHeight_iff]
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
⊢ ∀ (l : List β), l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ length l = length l'
[PROOFSTEP]
suffices ∀ l ∈ (f '' s).subchain, ∃ l' ∈ s.subchain, map f l' = l
by
intro l hl
obtain ⟨l', h₁, rfl⟩ := this l hl
exact ⟨l', h₁, length_map _ _⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
this : ∀ (l : List β), l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = l
⊢ ∀ (l : List β), l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ length l = length l'
[PROOFSTEP]
intro l hl
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l✝ : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
this : ∀ (l : List β), l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = l
l : List β
hl : l ∈ subchain (f '' s)
⊢ ∃ l', l' ∈ subchain s ∧ length l = length l'
[PROOFSTEP]
obtain ⟨l', h₁, rfl⟩ := this l hl
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
this : ∀ (l : List β), l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = l
l' : List α
h₁ : l' ∈ subchain s
hl : map f l' ∈ subchain (f '' s)
⊢ ∃ l'_1, l'_1 ∈ subchain s ∧ length (map f l') = length l'_1
[PROOFSTEP]
exact ⟨l', h₁, length_map _ _⟩
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
⊢ ∀ (l : List β), l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = l
[PROOFSTEP]
intro l
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l✝ : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
l : List β
⊢ l ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = l
[PROOFSTEP]
induction' l with x xs hx
[GOAL]
case a.nil
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
⊢ [] ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = []
[PROOFSTEP]
exact fun _ ↦ ⟨nil, ⟨trivial, fun x h ↦ (not_mem_nil x h).elim⟩, rfl⟩
[GOAL]
case a.cons
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
x : β
xs : List β
hx : xs ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = xs
⊢ x :: xs ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = x :: xs
[PROOFSTEP]
intro h
[GOAL]
case a.cons
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
x : β
xs : List β
hx : xs ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = xs
h : x :: xs ∈ subchain (f '' s)
⊢ ∃ l', l' ∈ subchain s ∧ map f l' = x :: xs
[PROOFSTEP]
rw [cons_mem_subchain_iff] at h
[GOAL]
case a.cons
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
x : β
xs : List β
hx : xs ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = xs
h : x ∈ f '' s ∧ xs ∈ subchain (f '' s) ∧ ∀ (b : β), b ∈ head? xs → x < b
⊢ ∃ l', l' ∈ subchain s ∧ map f l' = x :: xs
[PROOFSTEP]
obtain ⟨⟨x, hx', rfl⟩, h₁, h₂⟩ := h
[GOAL]
case a.cons.intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
xs : List β
hx : xs ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = xs
x : α
hx' : x ∈ s
h₁ : xs ∈ subchain (f '' s)
h₂ : ∀ (b : β), b ∈ head? xs → f x < b
⊢ ∃ l', l' ∈ subchain s ∧ map f l' = f x :: xs
[PROOFSTEP]
obtain ⟨l', h₃, rfl⟩ := hx h₁
[GOAL]
case a.cons.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
x : α
hx' : x ∈ s
l' : List α
h₃ : l' ∈ subchain s
hx : map f l' ∈ subchain (f '' s) → ∃ l'_1, l'_1 ∈ subchain s ∧ map f l'_1 = map f l'
h₁ : map f l' ∈ subchain (f '' s)
h₂ : ∀ (b : β), b ∈ head? (map f l') → f x < b
⊢ ∃ l'_1, l'_1 ∈ subchain s ∧ map f l'_1 = f x :: map f l'
[PROOFSTEP]
refine' ⟨x :: l', Set.cons_mem_subchain_iff.mpr ⟨hx', h₃, _⟩, rfl⟩
[GOAL]
case a.cons.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
x : α
hx' : x ∈ s
l' : List α
h₃ : l' ∈ subchain s
hx : map f l' ∈ subchain (f '' s) → ∃ l'_1, l'_1 ∈ subchain s ∧ map f l'_1 = map f l'
h₁ : map f l' ∈ subchain (f '' s)
h₂ : ∀ (b : β), b ∈ head? (map f l') → f x < b
⊢ ∀ (b : α), b ∈ head? l' → x < b
[PROOFSTEP]
cases l'
[GOAL]
case a.cons.intro.intro.intro.intro.intro.intro.nil
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
x : α
hx' : x ∈ s
h₃ : [] ∈ subchain s
hx : map f [] ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = map f []
h₁ : map f [] ∈ subchain (f '' s)
h₂ : ∀ (b : β), b ∈ head? (map f []) → f x < b
⊢ ∀ (b : α), b ∈ head? [] → x < b
[PROOFSTEP]
simp
[GOAL]
case a.cons.intro.intro.intro.intro.intro.intro.cons
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
x : α
hx' : x ∈ s
head✝ : α
tail✝ : List α
h₃ : head✝ :: tail✝ ∈ subchain s
hx : map f (head✝ :: tail✝) ∈ subchain (f '' s) → ∃ l', l' ∈ subchain s ∧ map f l' = map f (head✝ :: tail✝)
h₁ : map f (head✝ :: tail✝) ∈ subchain (f '' s)
h₂ : ∀ (b : β), b ∈ head? (map f (head✝ :: tail✝)) → f x < b
⊢ ∀ (b : α), b ∈ head? (head✝ :: tail✝) → x < b
[PROOFSTEP]
simpa [← hf] using h₂
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
⊢ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain (f '' s) ∧ length l = length l'
[PROOFSTEP]
intro l hl
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l✝ : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
l : List α
hl : l ∈ subchain s
⊢ ∃ l', l' ∈ subchain (f '' s) ∧ length l = length l'
[PROOFSTEP]
refine' ⟨l.map f, ⟨_, _⟩, _⟩
[GOAL]
case a.refine'_1
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l✝ : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
l : List α
hl : l ∈ subchain s
⊢ Chain' (fun x x_1 => x < x_1) (map f l)
[PROOFSTEP]
simp_rw [chain'_map, ← hf]
[GOAL]
case a.refine'_1
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l✝ : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
l : List α
hl : l ∈ subchain s
⊢ Chain' (fun a b => a < b) l
[PROOFSTEP]
exact hl.1
[GOAL]
case a.refine'_2
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l✝ : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
l : List α
hl : l ∈ subchain s
⊢ ∀ (i : β), i ∈ map f l → i ∈ f '' s
[PROOFSTEP]
intro _ e
[GOAL]
case a.refine'_2
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l✝ : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
l : List α
hl : l ∈ subchain s
i✝ : β
e : i✝ ∈ map f l
⊢ i✝ ∈ f '' s
[PROOFSTEP]
obtain ⟨a, ha, rfl⟩ := mem_map.mp e
[GOAL]
case a.refine'_2.intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l✝ : List α
a✝ : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
l : List α
hl : l ∈ subchain s
a : α
ha : a ∈ l
e : f a ∈ map f l
⊢ f a ∈ f '' s
[PROOFSTEP]
exact Set.mem_image_of_mem _ (hl.2 _ ha)
[GOAL]
case a.refine'_3
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s✝ t : Set α
l✝ : List α
a : α
f : α → β
hf : ∀ {x y : α}, x < y ↔ f x < f y
s : Set α
l : List α
hl : l ∈ subchain s
⊢ length l = length (map f l)
[PROOFSTEP]
rw [length_map]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
⊢ chainHeight (↑ofDual ⁻¹' s) = chainHeight s
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
⊢ chainHeight (↑ofDual ⁻¹' s) ≤ chainHeight s
[PROOFSTEP]
rw [chainHeight_le_chainHeight_iff]
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
⊢ ∀ (l : List αᵒᵈ), l ∈ subchain (↑ofDual ⁻¹' s) → ∃ l', l' ∈ subchain s ∧ length l = length l'
[PROOFSTEP]
rintro l ⟨h₁, h₂⟩
[GOAL]
case a.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l✝ : List α
a : α
l : List αᵒᵈ
h₁ : Chain' (fun x x_1 => x < x_1) l
h₂ : ∀ (i : αᵒᵈ), i ∈ l → i ∈ ↑ofDual ⁻¹' s
⊢ ∃ l', l' ∈ subchain s ∧ length l = length l'
[PROOFSTEP]
exact ⟨l.reverse, ⟨chain'_reverse.mpr h₁, fun i h ↦ h₂ i (mem_reverse.mp h)⟩, (length_reverse _).symm⟩
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
⊢ chainHeight s ≤ chainHeight (↑ofDual ⁻¹' s)
[PROOFSTEP]
rw [chainHeight_le_chainHeight_iff]
[GOAL]
case a
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l : List α
a : α
⊢ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain (↑ofDual ⁻¹' s) ∧ length l = length l'
[PROOFSTEP]
rintro l ⟨h₁, h₂⟩
[GOAL]
case a.intro
α : Type u_1
β : Type u_2
inst✝¹ : LT α
inst✝ : LT β
s t : Set α
l✝ : List α
a : α
l : List α
h₁ : Chain' (fun x x_1 => x < x_1) l
h₂ : ∀ (i : α), i ∈ l → i ∈ s
⊢ ∃ l', l' ∈ subchain (↑ofDual ⁻¹' s) ∧ length l = length l'
[PROOFSTEP]
exact ⟨l.reverse, ⟨chain'_reverse.mpr h₁, fun i h ↦ h₂ i (mem_reverse.mp h)⟩, (length_reverse _).symm⟩
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
⊢ chainHeight s = ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Ici i)
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
⊢ chainHeight s ≤ ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Ici i)
[PROOFSTEP]
refine' iSup₂_le _
[GOAL]
case a
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
⊢ ∀ (i : List α), i ∈ subchain s → ↑(length i) ≤ ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Ici i)
[PROOFSTEP]
rintro (_ | ⟨x, xs⟩) h
[GOAL]
case a.nil
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
h : [] ∈ subchain s
⊢ ↑(length []) ≤ ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Ici i)
[PROOFSTEP]
exact zero_le _
[GOAL]
case a.cons
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
x : α
xs : List α
h : x :: xs ∈ subchain s
⊢ ↑(length (x :: xs)) ≤ ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Ici i)
[PROOFSTEP]
apply le_trans _ (le_iSup₂ x (cons_mem_subchain_iff.mp h).1)
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
x : α
xs : List α
h : x :: xs ∈ subchain s
⊢ ↑(length (x :: xs)) ≤ chainHeight (s ∩ Ici x)
[PROOFSTEP]
apply length_le_chainHeight_of_mem_subchain
[GOAL]
case hl
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
x : α
xs : List α
h : x :: xs ∈ subchain s
⊢ x :: xs ∈ subchain (s ∩ Ici x)
[PROOFSTEP]
refine' ⟨h.1, fun i hi ↦ ⟨h.2 i hi, _⟩⟩
[GOAL]
case hl
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
x : α
xs : List α
h : x :: xs ∈ subchain s
i : α
hi : i ∈ x :: xs
⊢ i ∈ Ici x
[PROOFSTEP]
cases hi
[GOAL]
case hl.head
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
x : α
xs : List α
h : x :: xs ∈ subchain s
⊢ x ∈ Ici x
[PROOFSTEP]
exact left_mem_Ici
[GOAL]
case hl.tail
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
x : α
xs : List α
h : x :: xs ∈ subchain s
i : α
a✝ : Mem i xs
⊢ i ∈ Ici x
[PROOFSTEP]
rename_i hi
[GOAL]
case hl.tail
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
x : α
xs : List α
h : x :: xs ∈ subchain s
i : α
hi : Mem i xs
⊢ i ∈ Ici x
[PROOFSTEP]
cases' chain'_iff_pairwise.mp h.1 with _ _ h'
[GOAL]
case hl.tail.cons
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
x : α
xs : List α
h : x :: xs ∈ subchain s
i : α
hi : Mem i xs
a✝ : List.Pairwise (fun x x_1 => x < x_1) xs
h' : ∀ (a' : α), a' ∈ xs → x < a'
⊢ i ∈ Ici x
[PROOFSTEP]
exact (h' _ hi).le
[GOAL]
case a
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
⊢ ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Ici i) ≤ chainHeight s
[PROOFSTEP]
exact iSup₂_le fun i _ ↦ chainHeight_mono <| Set.inter_subset_left _ _
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
⊢ chainHeight s = ⨆ (i : α) (_ : i ∈ s), chainHeight (s ∩ Iic i)
[PROOFSTEP]
simp_rw [← chainHeight_dual (_ ∩ _)]
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
⊢ chainHeight s = ⨆ (i : α) (_ : i ∈ s), chainHeight (↑ofDual ⁻¹' (s ∩ Iic i))
[PROOFSTEP]
rw [← chainHeight_dual, chainHeight_eq_iSup_Ici]
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
⊢ ⨆ (i : αᵒᵈ) (_ : i ∈ ↑ofDual ⁻¹' s), chainHeight (↑ofDual ⁻¹' s ∩ Ici i) =
⨆ (i : α) (_ : i ∈ s), chainHeight (↑ofDual ⁻¹' (s ∩ Iic i))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
⊢ chainHeight (insert a s) = chainHeight s + 1
[PROOFSTEP]
rw [← add_zero (insert a s).chainHeight]
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
⊢ chainHeight (insert a s) + 0 = chainHeight s + 1
[PROOFSTEP]
change (insert a s).chainHeight + (0 : ℕ) = s.chainHeight + (1 : ℕ)
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
⊢ chainHeight (insert a s) + ↑0 = chainHeight s + ↑1
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
⊢ chainHeight (insert a s) + ↑0 ≤ chainHeight s + ↑1
[PROOFSTEP]
rw [chainHeight_add_le_chainHeight_add]
[GOAL]
case a
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
⊢ chainHeight s + ↑1 ≤ chainHeight (insert a s) + ↑0
[PROOFSTEP]
rw [chainHeight_add_le_chainHeight_add]
[GOAL]
case a
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
⊢ ∀ (l : List α), l ∈ subchain (insert a s) → ∃ l', l' ∈ subchain s ∧ length l + 0 ≤ length l' + 1
[PROOFSTEP]
rintro (_ | ⟨y, ys⟩) h
[GOAL]
case a.nil
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
h : [] ∈ subchain (insert a s)
⊢ ∃ l', l' ∈ subchain s ∧ length [] + 0 ≤ length l' + 1
[PROOFSTEP]
exact ⟨[], nil_mem_subchain _, zero_le _⟩
[GOAL]
case a.cons
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
y : α
ys : List α
h : y :: ys ∈ subchain (insert a s)
⊢ ∃ l', l' ∈ subchain s ∧ length (y :: ys) + 0 ≤ length l' + 1
[PROOFSTEP]
have h' := cons_mem_subchain_iff.mp h
[GOAL]
case a.cons
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
y : α
ys : List α
h : y :: ys ∈ subchain (insert a s)
h' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b
⊢ ∃ l', l' ∈ subchain s ∧ length (y :: ys) + 0 ≤ length l' + 1
[PROOFSTEP]
refine' ⟨ys, ⟨h'.2.1.1, fun i hi ↦ _⟩, by simp⟩
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
y : α
ys : List α
h : y :: ys ∈ subchain (insert a s)
h' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b
⊢ length (y :: ys) + 0 ≤ length ys + 1
[PROOFSTEP]
simp
[GOAL]
case a.cons
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
y : α
ys : List α
h : y :: ys ∈ subchain (insert a s)
h' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b
i : α
hi : i ∈ ys
⊢ i ∈ s
[PROOFSTEP]
apply (h'.2.1.2 i hi).resolve_left
[GOAL]
case a.cons
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
y : α
ys : List α
h : y :: ys ∈ subchain (insert a s)
h' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b
i : α
hi : i ∈ ys
⊢ ¬i = a
[PROOFSTEP]
rintro rfl
[GOAL]
case a.cons
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
y : α
ys : List α
i : α
hi : i ∈ ys
hx : ∀ (b : α), b ∈ s → i < b
h : y :: ys ∈ subchain (insert i s)
h' : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b
⊢ False
[PROOFSTEP]
cases' chain'_iff_pairwise.mp h.1 with _ _ hy
[GOAL]
case a.cons.cons
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
y : α
ys : List α
i : α
hi : i ∈ ys
hx : ∀ (b : α), b ∈ s → i < b
h : y :: ys ∈ subchain (insert i s)
h' : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b
a✝ : List.Pairwise (fun x x_1 => x < x_1) ys
hy : ∀ (a' : α), a' ∈ ys → y < a'
⊢ False
[PROOFSTEP]
cases' h'.1 with h' h'
[GOAL]
case a.cons.cons.inl
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
y : α
ys : List α
i : α
hi : i ∈ ys
hx : ∀ (b : α), b ∈ s → i < b
h : y :: ys ∈ subchain (insert i s)
h'✝ : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b
a✝ : List.Pairwise (fun x x_1 => x < x_1) ys
hy : ∀ (a' : α), a' ∈ ys → y < a'
h' : y = i
⊢ False
case a.cons.cons.inr
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
y : α
ys : List α
i : α
hi : i ∈ ys
hx : ∀ (b : α), b ∈ s → i < b
h : y :: ys ∈ subchain (insert i s)
h'✝ : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b
a✝ : List.Pairwise (fun x x_1 => x < x_1) ys
hy : ∀ (a' : α), a' ∈ ys → y < a'
h' : y ∈ s
⊢ False
[PROOFSTEP]
exacts [(hy _ hi).ne h', not_le_of_gt (hy _ hi) (hx _ h').le]
[GOAL]
case a
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
⊢ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain (insert a s) ∧ length l + 1 ≤ length l' + 0
[PROOFSTEP]
intro l hl
[GOAL]
case a
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
l : List α
hl : l ∈ subchain s
⊢ ∃ l', l' ∈ subchain (insert a s) ∧ length l + 1 ≤ length l' + 0
[PROOFSTEP]
refine' ⟨a :: l, ⟨_, _⟩, by simp⟩
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
l : List α
hl : l ∈ subchain s
⊢ length l + 1 ≤ length (a :: l) + 0
[PROOFSTEP]
simp
[GOAL]
case a.refine'_1
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
l : List α
hl : l ∈ subchain s
⊢ Chain' (fun x x_1 => x < x_1) (a :: l)
[PROOFSTEP]
rw [chain'_cons']
[GOAL]
case a.refine'_1
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
l : List α
hl : l ∈ subchain s
⊢ (∀ (y : α), y ∈ head? l → a < y) ∧ Chain' (fun x x_1 => x < x_1) l
[PROOFSTEP]
exact ⟨fun y hy ↦ hx _ (hl.2 _ (mem_of_mem_head? hy)), hl.1⟩
[GOAL]
case a.refine'_2
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
l : List α
hl : l ∈ subchain s
⊢ ∀ (i : α), i ∈ a :: l → i ∈ insert a s
[PROOFSTEP]
rintro x (_ | _)
[GOAL]
case a.refine'_2.head
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
l : List α
hl : l ∈ subchain s
⊢ a ∈ insert a s
case a.refine'_2.tail
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
hx : ∀ (b : α), b ∈ s → a < b
l : List α
hl : l ∈ subchain s
x : α
a✝ : Mem x l
⊢ x ∈ insert a s
[PROOFSTEP]
exacts [Or.inl (Set.mem_singleton a), Or.inr (hl.2 x ‹_›)]
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
ha : ∀ (b : α), b ∈ s → b < a
⊢ chainHeight (insert a s) = chainHeight s + 1
[PROOFSTEP]
rw [← chainHeight_dual, ← chainHeight_dual s]
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
a : α
ha : ∀ (b : α), b ∈ s → b < a
⊢ chainHeight (↑ofDual ⁻¹' insert a s) = chainHeight (↑ofDual ⁻¹' s) + 1
[PROOFSTEP]
exact chainHeight_insert_of_forall_gt _ ha
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
⊢ chainHeight (s ∪ t) ≤ chainHeight s + chainHeight t
[PROOFSTEP]
classical
refine' iSup₂_le fun l hl ↦ _
let l₁ := l.filter (· ∈ s)
let l₂ := l.filter (· ∈ t)
have hl₁ : ↑l₁.length ≤ s.chainHeight :=
by
apply Set.length_le_chainHeight_of_mem_subchain
exact ⟨hl.1.sublist (filter_sublist _), fun i h ↦ by simpa using (of_mem_filter h : _)⟩
have hl₂ : ↑l₂.length ≤ t.chainHeight :=
by
apply Set.length_le_chainHeight_of_mem_subchain
exact ⟨hl.1.sublist (filter_sublist _), fun i h ↦ by simpa using (of_mem_filter h : _)⟩
refine' le_trans _ (add_le_add hl₁ hl₂)
simp_rw [← Nat.cast_add, ← Multiset.coe_card, ← Multiset.card_add, ← Multiset.coe_filter]
rw [Multiset.filter_add_filter, Multiset.filter_eq_self.mpr, Multiset.card_add, Nat.cast_add]
exacts [le_add_right rfl.le, hl.2]
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
⊢ chainHeight (s ∪ t) ≤ chainHeight s + chainHeight t
[PROOFSTEP]
refine' iSup₂_le fun l hl ↦ _
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
⊢ ↑(length l) ≤ chainHeight s + chainHeight t
[PROOFSTEP]
let l₁ := l.filter (· ∈ s)
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
⊢ ↑(length l) ≤ chainHeight s + chainHeight t
[PROOFSTEP]
let l₂ := l.filter (· ∈ t)
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
l₂ : List α := filter (fun x => decide (x ∈ t)) l
⊢ ↑(length l) ≤ chainHeight s + chainHeight t
[PROOFSTEP]
have hl₁ : ↑l₁.length ≤ s.chainHeight :=
by
apply Set.length_le_chainHeight_of_mem_subchain
exact ⟨hl.1.sublist (filter_sublist _), fun i h ↦ by simpa using (of_mem_filter h : _)⟩
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
l₂ : List α := filter (fun x => decide (x ∈ t)) l
⊢ ↑(length l₁) ≤ chainHeight s
[PROOFSTEP]
apply Set.length_le_chainHeight_of_mem_subchain
[GOAL]
case hl
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
l₂ : List α := filter (fun x => decide (x ∈ t)) l
⊢ l₁ ∈ subchain s
[PROOFSTEP]
exact ⟨hl.1.sublist (filter_sublist _), fun i h ↦ by simpa using (of_mem_filter h : _)⟩
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
l₂ : List α := filter (fun x => decide (x ∈ t)) l
i : α
h : i ∈ l₁
⊢ i ∈ s
[PROOFSTEP]
simpa using (of_mem_filter h : _)
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
l₂ : List α := filter (fun x => decide (x ∈ t)) l
hl₁ : ↑(length l₁) ≤ chainHeight s
⊢ ↑(length l) ≤ chainHeight s + chainHeight t
[PROOFSTEP]
have hl₂ : ↑l₂.length ≤ t.chainHeight :=
by
apply Set.length_le_chainHeight_of_mem_subchain
exact ⟨hl.1.sublist (filter_sublist _), fun i h ↦ by simpa using (of_mem_filter h : _)⟩
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
l₂ : List α := filter (fun x => decide (x ∈ t)) l
hl₁ : ↑(length l₁) ≤ chainHeight s
⊢ ↑(length l₂) ≤ chainHeight t
[PROOFSTEP]
apply Set.length_le_chainHeight_of_mem_subchain
[GOAL]
case hl
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
l₂ : List α := filter (fun x => decide (x ∈ t)) l
hl₁ : ↑(length l₁) ≤ chainHeight s
⊢ l₂ ∈ subchain t
[PROOFSTEP]
exact ⟨hl.1.sublist (filter_sublist _), fun i h ↦ by simpa using (of_mem_filter h : _)⟩
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
l₂ : List α := filter (fun x => decide (x ∈ t)) l
hl₁ : ↑(length l₁) ≤ chainHeight s
i : α
h : i ∈ l₂
⊢ i ∈ t
[PROOFSTEP]
simpa using (of_mem_filter h : _)
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
l₂ : List α := filter (fun x => decide (x ∈ t)) l
hl₁ : ↑(length l₁) ≤ chainHeight s
hl₂ : ↑(length l₂) ≤ chainHeight t
⊢ ↑(length l) ≤ chainHeight s + chainHeight t
[PROOFSTEP]
refine' le_trans _ (add_le_add hl₁ hl₂)
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
l₂ : List α := filter (fun x => decide (x ∈ t)) l
hl₁ : ↑(length l₁) ≤ chainHeight s
hl₂ : ↑(length l₂) ≤ chainHeight t
⊢ ↑(length l) ≤ ↑(length l₁) + ↑(length l₂)
[PROOFSTEP]
simp_rw [← Nat.cast_add, ← Multiset.coe_card, ← Multiset.card_add, ← Multiset.coe_filter]
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
l₂ : List α := filter (fun x => decide (x ∈ t)) l
hl₁ : ↑(length l₁) ≤ chainHeight s
hl₂ : ↑(length l₂) ≤ chainHeight t
⊢ ↑(↑Multiset.card ↑l) ≤ ↑(↑Multiset.card (Multiset.filter (fun b => b ∈ s) ↑l + Multiset.filter (fun b => b ∈ t) ↑l))
[PROOFSTEP]
rw [Multiset.filter_add_filter, Multiset.filter_eq_self.mpr, Multiset.card_add, Nat.cast_add]
[GOAL]
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
l₂ : List α := filter (fun x => decide (x ∈ t)) l
hl₁ : ↑(length l₁) ≤ chainHeight s
hl₂ : ↑(length l₂) ≤ chainHeight t
⊢ ↑(↑Multiset.card ↑l) ≤ ↑(↑Multiset.card ↑l) + ↑(↑Multiset.card (Multiset.filter (fun a => a ∈ s ∧ a ∈ t) ↑l))
α : Type u_1
β : Type u_2
s t : Set α
inst✝ : Preorder α
l : List α
hl : l ∈ subchain (s ∪ t)
l₁ : List α := filter (fun x => decide (x ∈ s)) l
l₂ : List α := filter (fun x => decide (x ∈ t)) l
hl₁ : ↑(length l₁) ≤ chainHeight s
hl₂ : ↑(length l₂) ≤ chainHeight t
⊢ ∀ (a : α), a ∈ ↑l → a ∈ s ∨ a ∈ t
[PROOFSTEP]
exacts [le_add_right rfl.le, hl.2]
[GOAL]
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
⊢ chainHeight (s ∪ t) = chainHeight s + chainHeight t
[PROOFSTEP]
cases h : t.chainHeight
[GOAL]
case none
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
h : chainHeight t = none
⊢ chainHeight (s ∪ t) = chainHeight s + none
[PROOFSTEP]
rw [WithTop.none_eq_top, add_top, eq_top_iff, ← WithTop.none_eq_top, ← h]
[GOAL]
case none
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
h : chainHeight t = none
⊢ chainHeight t ≤ chainHeight (s ∪ t)
[PROOFSTEP]
exact Set.chainHeight_mono (Set.subset_union_right _ _)
[GOAL]
case some
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
val✝ : ℕ
h : chainHeight t = some val✝
⊢ chainHeight (s ∪ t) = chainHeight s + some val✝
[PROOFSTEP]
apply le_antisymm
[GOAL]
case some.a
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
val✝ : ℕ
h : chainHeight t = some val✝
⊢ chainHeight (s ∪ t) ≤ chainHeight s + some val✝
[PROOFSTEP]
rw [← h]
[GOAL]
case some.a
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
val✝ : ℕ
h : chainHeight t = some val✝
⊢ chainHeight (s ∪ t) ≤ chainHeight s + chainHeight t
[PROOFSTEP]
exact chainHeight_union_le
[GOAL]
case some.a
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
val✝ : ℕ
h : chainHeight t = some val✝
⊢ chainHeight s + some val✝ ≤ chainHeight (s ∪ t)
[PROOFSTEP]
rw [WithTop.some_eq_coe, ← add_zero (s ∪ t).chainHeight, ← WithTop.coe_zero, ENat.some_eq_coe,
chainHeight_add_le_chainHeight_add]
[GOAL]
case some.a
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
val✝ : ℕ
h : chainHeight t = some val✝
⊢ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain (s ∪ t) ∧ length l + val✝ ≤ length l' + 0
[PROOFSTEP]
intro l hl
[GOAL]
case some.a
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
val✝ : ℕ
h : chainHeight t = some val✝
l : List α
hl : l ∈ subchain s
⊢ ∃ l', l' ∈ subchain (s ∪ t) ∧ length l + val✝ ≤ length l' + 0
[PROOFSTEP]
obtain ⟨l', hl', rfl⟩ := exists_chain_of_le_chainHeight t h.symm.le
[GOAL]
case some.a.intro.intro
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
l : List α
hl : l ∈ subchain s
l' : List α
hl' : l' ∈ subchain t
h : chainHeight t = some (length l')
⊢ ∃ l'_1, l'_1 ∈ subchain (s ∪ t) ∧ length l + length l' ≤ length l'_1 + 0
[PROOFSTEP]
refine' ⟨l ++ l', ⟨Chain'.append hl.1 hl'.1 fun x hx y hy ↦ _, fun i hi ↦ _⟩, by simp⟩
[GOAL]
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
l : List α
hl : l ∈ subchain s
l' : List α
hl' : l' ∈ subchain t
h : chainHeight t = some (length l')
⊢ length l + length l' ≤ length (l ++ l') + 0
[PROOFSTEP]
simp
[GOAL]
case some.a.intro.intro.refine'_1
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
l : List α
hl : l ∈ subchain s
l' : List α
hl' : l' ∈ subchain t
h : chainHeight t = some (length l')
x : α
hx : x ∈ getLast? l
y : α
hy : y ∈ head? l'
⊢ x < y
[PROOFSTEP]
exact H x (hl.2 _ <| mem_of_mem_getLast? hx) y (hl'.2 _ <| mem_of_mem_head? hy)
[GOAL]
case some.a.intro.intro.refine'_2
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
l : List α
hl : l ∈ subchain s
l' : List α
hl' : l' ∈ subchain t
h : chainHeight t = some (length l')
i : α
hi : i ∈ l ++ l'
⊢ i ∈ s ∪ t
[PROOFSTEP]
rw [mem_append] at hi
[GOAL]
case some.a.intro.intro.refine'_2
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
l : List α
hl : l ∈ subchain s
l' : List α
hl' : l' ∈ subchain t
h : chainHeight t = some (length l')
i : α
hi : i ∈ l ∨ i ∈ l'
⊢ i ∈ s ∪ t
[PROOFSTEP]
cases' hi with hi hi
[GOAL]
case some.a.intro.intro.refine'_2.inl
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
l : List α
hl : l ∈ subchain s
l' : List α
hl' : l' ∈ subchain t
h : chainHeight t = some (length l')
i : α
hi : i ∈ l
⊢ i ∈ s ∪ t
case some.a.intro.intro.refine'_2.inr
α : Type u_1
β : Type u_2
s✝ t✝ : Set α
inst✝ : Preorder α
s t : Set α
H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a < b
l : List α
hl : l ∈ subchain s
l' : List α
hl' : l' ∈ subchain t
h : chainHeight t = some (length l')
i : α
hi : i ∈ l'
⊢ i ∈ s ∪ t
[PROOFSTEP]
exacts [Or.inl (hl.2 _ hi), Or.inr (hl'.2 _ hi)]
[GOAL]
α : Type u_1
β : Type u_2
s✝ t : Set α
inst✝ : Preorder α
s : Set α
hs : chainHeight s ≠ ⊤
⊢ WellFoundedGT ↑s
[PROOFSTEP]
haveI : IsTrans { x // x ∈ s } (↑· < ↑·) := inferInstance
[GOAL]
α : Type u_1
β : Type u_2
s✝ t : Set α
inst✝ : Preorder α
s : Set α
hs : chainHeight s ≠ ⊤
this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1
⊢ WellFoundedGT ↑s
[PROOFSTEP]
obtain ⟨n, hn⟩ := WithTop.ne_top_iff_exists.1 hs
[GOAL]
case intro
α : Type u_1
β : Type u_2
s✝ t : Set α
inst✝ : Preorder α
s : Set α
hs : chainHeight s ≠ ⊤
this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1
n : ℕ
hn : ↑n = chainHeight s
⊢ WellFoundedGT ↑s
[PROOFSTEP]
refine' ⟨RelEmbedding.wellFounded_iff_no_descending_seq.2 ⟨fun f ↦ _⟩⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
s✝ t : Set α
inst✝ : Preorder α
s : Set α
hs : chainHeight s ≠ ⊤
this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1
n : ℕ
hn : ↑n = chainHeight s
f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
⊢ False
[PROOFSTEP]
refine' n.lt_succ_self.not_le (WithTop.coe_le_coe.1 <| hn.symm ▸ _)
[GOAL]
case intro
α : Type u_1
β : Type u_2
s✝ t : Set α
inst✝ : Preorder α
s : Set α
hs : chainHeight s ≠ ⊤
this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1
n : ℕ
hn : ↑n = chainHeight s
f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
⊢ ↑(Nat.succ n) ≤ chainHeight s
[PROOFSTEP]
refine'
le_iSup₂_of_le _
⟨chain'_map_of_chain' ((↑) : { x // x ∈ s } → α) (fun _ _ ↦ id)
(chain'_iff_pairwise.2 <| pairwise_ofFn.2 fun i j ↦ f.map_rel_iff.2),
fun i h ↦ _⟩
_
[GOAL]
case intro.refine'_1
α : Type u_1
β : Type u_2
s✝ t : Set α
inst✝ : Preorder α
s : Set α
hs : chainHeight s ≠ ⊤
this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1
n : ℕ
hn : ↑n = chainHeight s
f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
⊢ ℕ
[PROOFSTEP]
exact n.succ
[GOAL]
case intro.refine'_2
α : Type u_1
β : Type u_2
s✝ t : Set α
inst✝ : Preorder α
s : Set α
hs : chainHeight s ≠ ⊤
this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1
n : ℕ
hn : ↑n = chainHeight s
f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
i : α
h : i ∈ map Subtype.val (ofFn fun i => ↑f ↑i)
⊢ i ∈ s
[PROOFSTEP]
obtain ⟨a, -, rfl⟩ := mem_map.1 h
[GOAL]
case intro.refine'_2.intro.intro
α : Type u_1
β : Type u_2
s✝ t : Set α
inst✝ : Preorder α
s : Set α
hs : chainHeight s ≠ ⊤
this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1
n : ℕ
hn : ↑n = chainHeight s
f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
a : { x // x ∈ s }
h : ↑a ∈ map Subtype.val (ofFn fun i => ↑f ↑i)
⊢ ↑a ∈ s
[PROOFSTEP]
exact a.prop
[GOAL]
case intro.refine'_3
α : Type u_1
β : Type u_2
s✝ t : Set α
inst✝ : Preorder α
s : Set α
hs : chainHeight s ≠ ⊤
this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1
n : ℕ
hn : ↑n = chainHeight s
f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
⊢ ↑(Nat.succ n) ≤ ↑(length (map Subtype.val (ofFn fun i => ↑f ↑i)))
[PROOFSTEP]
rw [length_map, length_ofFn]
[GOAL]
case intro.refine'_3
α : Type u_1
β : Type u_2
s✝ t : Set α
inst✝ : Preorder α
s : Set α
hs : chainHeight s ≠ ⊤
this : IsTrans { x // x ∈ s } fun x x_1 => x < x_1
n : ℕ
hn : ↑n = chainHeight s
f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
⊢ ↑(Nat.succ n) ≤ ↑(Nat.succ n)
[PROOFSTEP]
exact le_rfl
[GOAL]
α : Type u_1
β : Type u_2
s✝ t : Set α
inst✝ : Preorder α
s : Set α
hs : chainHeight s ≠ ⊤
⊢ chainHeight (↑ofDual ⁻¹' s) ≠ ⊤
[PROOFSTEP]
rwa [chainHeight_dual]
| {"mathlib_filename": "Mathlib.Order.Height", "llama_tokens": 27991} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
⊢ ∃ b, ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
[PROOFSTEP]
by_cases h : ∃ b, (a, b) ∈ f.val
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ∃ b, (a, b) ∈ ↑f
⊢ ∃ b, ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
[PROOFSTEP]
cases' h with b hb
[GOAL]
case pos.intro
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
b : β
hb : (a, b) ∈ ↑f
⊢ ∃ b, ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
[PROOFSTEP]
exact ⟨b, fun p hp ↦ f.prop _ hp _ hb⟩
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
⊢ ∃ b, ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
[PROOFSTEP]
have :
∀ x ∈ (f.val.filter fun p : α × β ↦ p.fst < a).image Prod.snd,
∀ y ∈ (f.val.filter fun p : α × β ↦ a < p.fst).image Prod.snd, x < y :=
by
intro x hx y hy
rw [Finset.mem_image] at hx hy
rcases hx with ⟨p, hp1, rfl⟩
rcases hy with ⟨q, hq1, rfl⟩
rw [Finset.mem_filter] at hp1 hq1
rw [← lt_iff_lt_of_cmp_eq_cmp (f.prop _ hp1.1 _ hq1.1)]
exact lt_trans hp1.right hq1.right
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
⊢ ∀ (x : β),
x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) →
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y
[PROOFSTEP]
intro x hx y hy
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
x : β
hx : x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f)
y : β
hy : y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f)
⊢ x < y
[PROOFSTEP]
rw [Finset.mem_image] at hx hy
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
x : β
hx : ∃ a_1, a_1 ∈ Finset.filter (fun p => p.fst < a) ↑f ∧ a_1.snd = x
y : β
hy : ∃ a_1, a_1 ∈ Finset.filter (fun p => a < p.fst) ↑f ∧ a_1.snd = y
⊢ x < y
[PROOFSTEP]
rcases hx with ⟨p, hp1, rfl⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
y : β
hy : ∃ a_1, a_1 ∈ Finset.filter (fun p => a < p.fst) ↑f ∧ a_1.snd = y
p : α × β
hp1 : p ∈ Finset.filter (fun p => p.fst < a) ↑f
⊢ p.snd < y
[PROOFSTEP]
rcases hy with ⟨q, hq1, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
p : α × β
hp1 : p ∈ Finset.filter (fun p => p.fst < a) ↑f
q : α × β
hq1 : q ∈ Finset.filter (fun p => a < p.fst) ↑f
⊢ p.snd < q.snd
[PROOFSTEP]
rw [Finset.mem_filter] at hp1 hq1
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
p : α × β
hp1 : p ∈ ↑f ∧ p.fst < a
q : α × β
hq1 : q ∈ ↑f ∧ a < q.fst
⊢ p.snd < q.snd
[PROOFSTEP]
rw [← lt_iff_lt_of_cmp_eq_cmp (f.prop _ hp1.1 _ hq1.1)]
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
p : α × β
hp1 : p ∈ ↑f ∧ p.fst < a
q : α × β
hq1 : q ∈ ↑f ∧ a < q.fst
⊢ p.fst < q.fst
[PROOFSTEP]
exact lt_trans hp1.right hq1.right
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
this :
∀ (x : β),
x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) →
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y
⊢ ∃ b, ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
[PROOFSTEP]
cases' exists_between_finsets _ _ this with b hb
[GOAL]
case neg.intro
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
this :
∀ (x : β),
x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) →
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y
b : β
hb :
(∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y
⊢ ∃ b, ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
[PROOFSTEP]
use b
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
this :
∀ (x : β),
x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) →
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y
b : β
hb :
(∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y
⊢ ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
[PROOFSTEP]
rintro ⟨p1, p2⟩ hp
[GOAL]
case h.mk
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
this :
∀ (x : β),
x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) →
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y
b : β
hb :
(∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y
p1 : α
p2 : β
hp : (p1, p2) ∈ ↑f
⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b
[PROOFSTEP]
have : p1 ≠ a := fun he ↦ h ⟨p2, he ▸ hp⟩
[GOAL]
case h.mk
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
this✝ :
∀ (x : β),
x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) →
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y
b : β
hb :
(∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y
p1 : α
p2 : β
hp : (p1, p2) ∈ ↑f
this : p1 ≠ a
⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b
[PROOFSTEP]
cases' lt_or_gt_of_ne this with hl hr
[GOAL]
case h.mk.inl
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
this✝ :
∀ (x : β),
x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) →
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y
b : β
hb :
(∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y
p1 : α
p2 : β
hp : (p1, p2) ∈ ↑f
this : p1 ≠ a
hl : p1 < a
⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b
[PROOFSTEP]
have : p1 < a ∧ p2 < b := ⟨hl, hb.1 _ (Finset.mem_image.mpr ⟨(p1, p2), Finset.mem_filter.mpr ⟨hp, hl⟩, rfl⟩)⟩
[GOAL]
case h.mk.inl
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
this✝¹ :
∀ (x : β),
x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) →
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y
b : β
hb :
(∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y
p1 : α
p2 : β
hp : (p1, p2) ∈ ↑f
this✝ : p1 ≠ a
hl : p1 < a
this : p1 < a ∧ p2 < b
⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b
[PROOFSTEP]
rw [← cmp_eq_lt_iff, ← cmp_eq_lt_iff] at this
[GOAL]
case h.mk.inl
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
this✝¹ :
∀ (x : β),
x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) →
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y
b : β
hb :
(∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y
p1 : α
p2 : β
hp : (p1, p2) ∈ ↑f
this✝ : p1 ≠ a
hl : p1 < a
this : cmp p1 a = Ordering.lt ∧ cmp p2 b = Ordering.lt
⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b
[PROOFSTEP]
exact this.1.trans this.2.symm
[GOAL]
case h.mk.inr
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
this✝ :
∀ (x : β),
x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) →
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y
b : β
hb :
(∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y
p1 : α
p2 : β
hp : (p1, p2) ∈ ↑f
this : p1 ≠ a
hr : p1 > a
⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b
[PROOFSTEP]
have : a < p1 ∧ b < p2 := ⟨hr, hb.2 _ (Finset.mem_image.mpr ⟨(p1, p2), Finset.mem_filter.mpr ⟨hp, hr⟩, rfl⟩)⟩
[GOAL]
case h.mk.inr
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
this✝¹ :
∀ (x : β),
x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) →
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y
b : β
hb :
(∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y
p1 : α
p2 : β
hp : (p1, p2) ∈ ↑f
this✝ : p1 ≠ a
hr : p1 > a
this : a < p1 ∧ b < p2
⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b
[PROOFSTEP]
rw [← cmp_eq_gt_iff, ← cmp_eq_gt_iff] at this
[GOAL]
case h.mk.inr
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
f : PartialIso α β
a : α
h : ¬∃ b, (a, b) ∈ ↑f
this✝¹ :
∀ (x : β),
x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) →
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → x < y
b : β
hb :
(∀ (x : β), x ∈ Finset.image Prod.snd (Finset.filter (fun p => p.fst < a) ↑f) → x < b) ∧
∀ (y : β), y ∈ Finset.image Prod.snd (Finset.filter (fun p => a < p.fst) ↑f) → b < y
p1 : α
p2 : β
hp : (p1, p2) ∈ ↑f
this✝ : p1 ≠ a
hr : p1 > a
this : cmp p1 a = Ordering.gt ∧ cmp p2 b = Ordering.gt
⊢ cmp (p1, p2).fst a = cmp (p1, p2).snd b
[PROOFSTEP]
exact this.1.trans this.2.symm
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : Finset (α × β)
hf : ∀ (p : α × β), p ∈ f → ∀ (q : α × β), q ∈ f → cmp p.fst q.fst = cmp p.snd q.snd
p : β × α
hp : p ∈ Finset.image (↑(Equiv.prodComm α β)) f
q : β × α
hq : q ∈ Finset.image (↑(Equiv.prodComm α β)) f
⊢ ↑(Equiv.prodComm α β).symm p ∈ f
[PROOFSTEP]
rw [← Finset.mem_coe, Finset.coe_image, Equiv.image_eq_preimage] at hp
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : Finset (α × β)
hf : ∀ (p : α × β), p ∈ f → ∀ (q : α × β), q ∈ f → cmp p.fst q.fst = cmp p.snd q.snd
p : β × α
hp : p ∈ ↑(Equiv.prodComm α β).symm ⁻¹' ↑f
q : β × α
hq : q ∈ Finset.image (↑(Equiv.prodComm α β)) f
⊢ ↑(Equiv.prodComm α β).symm p ∈ f
[PROOFSTEP]
rwa [← Finset.mem_coe]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : Finset (α × β)
hf : ∀ (p : α × β), p ∈ f → ∀ (q : α × β), q ∈ f → cmp p.fst q.fst = cmp p.snd q.snd
p : β × α
hp : p ∈ Finset.image (↑(Equiv.prodComm α β)) f
q : β × α
hq : q ∈ Finset.image (↑(Equiv.prodComm α β)) f
⊢ ↑(Equiv.prodComm α β).symm q ∈ f
[PROOFSTEP]
rw [← Finset.mem_coe, Finset.coe_image, Equiv.image_eq_preimage] at hq
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : LinearOrder β
f : Finset (α × β)
hf : ∀ (p : α × β), p ∈ f → ∀ (q : α × β), q ∈ f → cmp p.fst q.fst = cmp p.snd q.snd
p : β × α
hp : p ∈ Finset.image (↑(Equiv.prodComm α β)) f
q : β × α
hq : q ∈ ↑(Equiv.prodComm α β).symm ⁻¹' ↑f
⊢ ↑(Equiv.prodComm α β).symm q ∈ f
[PROOFSTEP]
rwa [← Finset.mem_coe]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
a : α
f : PartialIso α β
⊢ ∃ y, y ∈ {f | ∃ b, (a, b) ∈ ↑f} ∧ f ≤ y
[PROOFSTEP]
cases' exists_across f a with b a_b
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
a : α
f : PartialIso α β
b : β
a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
⊢ ∃ y, y ∈ {f | ∃ b, (a, b) ∈ ↑f} ∧ f ≤ y
[PROOFSTEP]
refine ⟨⟨insert (a, b) f.val, fun p hp q hq ↦ ?_⟩, ⟨b, Finset.mem_insert_self _ _⟩, Finset.subset_insert _ _⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
a : α
f : PartialIso α β
b : β
a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
p : α × β
hp : p ∈ insert (a, b) ↑f
q : α × β
hq : q ∈ insert (a, b) ↑f
⊢ cmp p.fst q.fst = cmp p.snd q.snd
[PROOFSTEP]
rw [Finset.mem_insert] at hp hq
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
a : α
f : PartialIso α β
b : β
a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
p : α × β
hp : p = (a, b) ∨ p ∈ ↑f
q : α × β
hq : q = (a, b) ∨ q ∈ ↑f
⊢ cmp p.fst q.fst = cmp p.snd q.snd
[PROOFSTEP]
rcases hp with (rfl | pf)
[GOAL]
case intro.inl
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
a : α
f : PartialIso α β
b : β
a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
q : α × β
hq : q = (a, b) ∨ q ∈ ↑f
⊢ cmp (a, b).fst q.fst = cmp (a, b).snd q.snd
[PROOFSTEP]
rcases hq with (rfl | qf)
[GOAL]
case intro.inr
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
a : α
f : PartialIso α β
b : β
a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
p q : α × β
hq : q = (a, b) ∨ q ∈ ↑f
pf : p ∈ ↑f
⊢ cmp p.fst q.fst = cmp p.snd q.snd
[PROOFSTEP]
rcases hq with (rfl | qf)
[GOAL]
case intro.inl.inl
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
a : α
f : PartialIso α β
b : β
a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
⊢ cmp (a, b).fst (a, b).fst = cmp (a, b).snd (a, b).snd
[PROOFSTEP]
simp only [cmp_self_eq_eq]
[GOAL]
case intro.inl.inr
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
a : α
f : PartialIso α β
b : β
a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
q : α × β
qf : q ∈ ↑f
⊢ cmp (a, b).fst q.fst = cmp (a, b).snd q.snd
[PROOFSTEP]
rw [cmp_eq_cmp_symm]
[GOAL]
case intro.inl.inr
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
a : α
f : PartialIso α β
b : β
a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
q : α × β
qf : q ∈ ↑f
⊢ cmp q.fst (a, b).fst = cmp q.snd (a, b).snd
[PROOFSTEP]
exact a_b _ qf
[GOAL]
case intro.inr.inl
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
a : α
f : PartialIso α β
b : β
a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
p : α × β
pf : p ∈ ↑f
⊢ cmp p.fst (a, b).fst = cmp p.snd (a, b).snd
[PROOFSTEP]
exact a_b _ pf
[GOAL]
case intro.inr.inr
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
a : α
f : PartialIso α β
b : β
a_b : ∀ (p : α × β), p ∈ ↑f → cmp p.fst a = cmp p.snd b
p q : α × β
pf : p ∈ ↑f
qf : q ∈ ↑f
⊢ cmp p.fst q.fst = cmp p.snd q.snd
[PROOFSTEP]
exact f.prop _ pf _ qf
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered α
inst✝² : NoMinOrder α
inst✝¹ : NoMaxOrder α
inst✝ : Nonempty α
b : β
f : PartialIso α β
⊢ ∃ y, y ∈ {f | ∃ a, (a, b) ∈ ↑f} ∧ f ≤ y
[PROOFSTEP]
rcases(definedAtLeft α b).mem_gt f.comm with ⟨f', ⟨a, ha⟩, hl⟩
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered α
inst✝² : NoMinOrder α
inst✝¹ : NoMaxOrder α
inst✝ : Nonempty α
b : β
f : PartialIso α β
f' : PartialIso β α
hl : PartialIso.comm f ≤ f'
a : α
ha : (b, a) ∈ ↑f'
⊢ ∃ y, y ∈ {f | ∃ a, (a, b) ∈ ↑f} ∧ f ≤ y
[PROOFSTEP]
refine' ⟨f'.comm, ⟨a, _⟩, _⟩
[GOAL]
case intro.intro.intro.refine'_1
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered α
inst✝² : NoMinOrder α
inst✝¹ : NoMaxOrder α
inst✝ : Nonempty α
b : β
f : PartialIso α β
f' : PartialIso β α
hl : PartialIso.comm f ≤ f'
a : α
ha : (b, a) ∈ ↑f'
⊢ (a, b) ∈ ↑(PartialIso.comm f')
[PROOFSTEP]
change (a, b) ∈ f'.val.image _
[GOAL]
case intro.intro.intro.refine'_1
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered α
inst✝² : NoMinOrder α
inst✝¹ : NoMaxOrder α
inst✝ : Nonempty α
b : β
f : PartialIso α β
f' : PartialIso β α
hl : PartialIso.comm f ≤ f'
a : α
ha : (b, a) ∈ ↑f'
⊢ (a, b) ∈ Finset.image ↑(Equiv.prodComm β α) ↑f'
[PROOFSTEP]
rwa [← Finset.mem_coe, Finset.coe_image, Equiv.image_eq_preimage]
[GOAL]
case intro.intro.intro.refine'_2
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered α
inst✝² : NoMinOrder α
inst✝¹ : NoMaxOrder α
inst✝ : Nonempty α
b : β
f : PartialIso α β
f' : PartialIso β α
hl : PartialIso.comm f ≤ f'
a : α
ha : (b, a) ∈ ↑f'
⊢ f ≤ PartialIso.comm f'
[PROOFSTEP]
change _ ⊆ f'.val.image _
[GOAL]
case intro.intro.intro.refine'_2
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : LinearOrder β
inst✝³ : DenselyOrdered α
inst✝² : NoMinOrder α
inst✝¹ : NoMaxOrder α
inst✝ : Nonempty α
b : β
f : PartialIso α β
f' : PartialIso β α
hl : PartialIso.comm f ≤ f'
a : α
ha : (b, a) ∈ ↑f'
⊢ (fun a => ↑a) f ⊆ Finset.image ↑(Equiv.prodComm β α) ↑f'
[PROOFSTEP]
rwa [← Finset.coe_subset, Finset.coe_image, ← Equiv.subset_image, ← Finset.coe_image, Finset.coe_subset]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : LinearOrder α
inst✝³ : LinearOrder β
inst✝² : Encodable α
inst✝¹ : DenselyOrdered β
inst✝ : Nontrivial β
⊢ Nonempty (α ↪o β)
[PROOFSTEP]
rcases exists_pair_lt β with ⟨x, y, hxy⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : LinearOrder α
inst✝³ : LinearOrder β
inst✝² : Encodable α
inst✝¹ : DenselyOrdered β
inst✝ : Nontrivial β
x y : β
hxy : x < y
⊢ Nonempty (α ↪o β)
[PROOFSTEP]
cases' exists_between hxy with a ha
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : LinearOrder α
inst✝³ : LinearOrder β
inst✝² : Encodable α
inst✝¹ : DenselyOrdered β
inst✝ : Nontrivial β
x y : β
hxy : x < y
a : β
ha : x < a ∧ a < y
⊢ Nonempty (α ↪o β)
[PROOFSTEP]
haveI : Nonempty (Set.Ioo x y) := ⟨⟨a, ha⟩⟩
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : LinearOrder α
inst✝³ : LinearOrder β
inst✝² : Encodable α
inst✝¹ : DenselyOrdered β
inst✝ : Nontrivial β
x y : β
hxy : x < y
a : β
ha : x < a ∧ a < y
this : Nonempty ↑(Set.Ioo x y)
⊢ Nonempty (α ↪o β)
[PROOFSTEP]
let our_ideal : Ideal (PartialIso α _) := idealOfCofinals default (definedAtLeft (Set.Ioo x y))
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : LinearOrder α
inst✝³ : LinearOrder β
inst✝² : Encodable α
inst✝¹ : DenselyOrdered β
inst✝ : Nontrivial β
x y : β
hxy : x < y
a : β
ha : x < a ∧ a < y
this : Nonempty ↑(Set.Ioo x y)
our_ideal : Ideal (PartialIso α ↑(Set.Ioo x y)) := idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y))
⊢ Nonempty (α ↪o β)
[PROOFSTEP]
let F a := funOfIdeal a our_ideal (cofinal_meets_idealOfCofinals _ _ a)
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : LinearOrder α
inst✝³ : LinearOrder β
inst✝² : Encodable α
inst✝¹ : DenselyOrdered β
inst✝ : Nontrivial β
x y : β
hxy : x < y
a : β
ha : x < a ∧ a < y
this : Nonempty ↑(Set.Ioo x y)
our_ideal : Ideal (PartialIso α ↑(Set.Ioo x y)) := idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y))
F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=
fun a =>
funOfIdeal a our_ideal
(_ : ∃ x_1, x_1 ∈ definedAtLeft (↑(Set.Ioo x y)) a ∧ x_1 ∈ idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y)))
⊢ Nonempty (α ↪o β)
[PROOFSTEP]
refine ⟨RelEmbedding.trans (OrderEmbedding.ofStrictMono (fun a ↦ (F a).val) fun a₁ a₂ ↦ ?_) (OrderEmbedding.subtype _)⟩
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : LinearOrder α
inst✝³ : LinearOrder β
inst✝² : Encodable α
inst✝¹ : DenselyOrdered β
inst✝ : Nontrivial β
x y : β
hxy : x < y
a : β
ha : x < a ∧ a < y
this : Nonempty ↑(Set.Ioo x y)
our_ideal : Ideal (PartialIso α ↑(Set.Ioo x y)) := idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y))
F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=
fun a =>
funOfIdeal a our_ideal
(_ : ∃ x_1, x_1 ∈ definedAtLeft (↑(Set.Ioo x y)) a ∧ x_1 ∈ idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y)))
a₁ a₂ : α
⊢ a₁ < a₂ → (fun a => ↑(F a)) a₁ < (fun a => ↑(F a)) a₂
[PROOFSTEP]
rcases(F a₁).prop with ⟨f, hf, ha₁⟩
[GOAL]
case intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : LinearOrder α
inst✝³ : LinearOrder β
inst✝² : Encodable α
inst✝¹ : DenselyOrdered β
inst✝ : Nontrivial β
x y : β
hxy : x < y
a : β
ha : x < a ∧ a < y
this : Nonempty ↑(Set.Ioo x y)
our_ideal : Ideal (PartialIso α ↑(Set.Ioo x y)) := idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y))
F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=
fun a =>
funOfIdeal a our_ideal
(_ : ∃ x_1, x_1 ∈ definedAtLeft (↑(Set.Ioo x y)) a ∧ x_1 ∈ idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y)))
a₁ a₂ : α
f : PartialIso α ↑(Set.Ioo x y)
hf : f ∈ our_ideal
ha₁ : (a₁, ↑(F a₁)) ∈ ↑f
⊢ a₁ < a₂ → (fun a => ↑(F a)) a₁ < (fun a => ↑(F a)) a₂
[PROOFSTEP]
rcases(F a₂).prop with ⟨g, hg, ha₂⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : LinearOrder α
inst✝³ : LinearOrder β
inst✝² : Encodable α
inst✝¹ : DenselyOrdered β
inst✝ : Nontrivial β
x y : β
hxy : x < y
a : β
ha : x < a ∧ a < y
this : Nonempty ↑(Set.Ioo x y)
our_ideal : Ideal (PartialIso α ↑(Set.Ioo x y)) := idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y))
F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=
fun a =>
funOfIdeal a our_ideal
(_ : ∃ x_1, x_1 ∈ definedAtLeft (↑(Set.Ioo x y)) a ∧ x_1 ∈ idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y)))
a₁ a₂ : α
f : PartialIso α ↑(Set.Ioo x y)
hf : f ∈ our_ideal
ha₁ : (a₁, ↑(F a₁)) ∈ ↑f
g : PartialIso α ↑(Set.Ioo x y)
hg : g ∈ our_ideal
ha₂ : (a₂, ↑(F a₂)) ∈ ↑g
⊢ a₁ < a₂ → (fun a => ↑(F a)) a₁ < (fun a => ↑(F a)) a₂
[PROOFSTEP]
rcases our_ideal.directed _ hf _ hg with ⟨m, _hm, fm, gm⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : LinearOrder α
inst✝³ : LinearOrder β
inst✝² : Encodable α
inst✝¹ : DenselyOrdered β
inst✝ : Nontrivial β
x y : β
hxy : x < y
a : β
ha : x < a ∧ a < y
this : Nonempty ↑(Set.Ioo x y)
our_ideal : Ideal (PartialIso α ↑(Set.Ioo x y)) := idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y))
F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=
fun a =>
funOfIdeal a our_ideal
(_ : ∃ x_1, x_1 ∈ definedAtLeft (↑(Set.Ioo x y)) a ∧ x_1 ∈ idealOfCofinals default (definedAtLeft ↑(Set.Ioo x y)))
a₁ a₂ : α
f : PartialIso α ↑(Set.Ioo x y)
hf : f ∈ our_ideal
ha₁ : (a₁, ↑(F a₁)) ∈ ↑f
g : PartialIso α ↑(Set.Ioo x y)
hg : g ∈ our_ideal
ha₂ : (a₂, ↑(F a₂)) ∈ ↑g
m : PartialIso α ↑(Set.Ioo x y)
_hm : m ∈ ↑our_ideal
fm : f ≤ m
gm : g ≤ m
⊢ a₁ < a₂ → (fun a => ↑(F a)) a₁ < (fun a => ↑(F a)) a₂
[PROOFSTEP]
exact (lt_iff_lt_of_cmp_eq_cmp <| m.prop (a₁, _) (fm ha₁) (a₂, _) (gm ha₂)).mp
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹¹ : LinearOrder α
inst✝¹⁰ : LinearOrder β
inst✝⁹ : Encodable α
inst✝⁸ : DenselyOrdered α
inst✝⁷ : NoMinOrder α
inst✝⁶ : NoMaxOrder α
inst✝⁵ : Nonempty α
inst✝⁴ : Encodable β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
to_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α)
our_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal
F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=
fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal)
G : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=
fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal)
a : α
b : β
⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b
[PROOFSTEP]
rcases(F a).prop with ⟨f, hf, ha⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝¹¹ : LinearOrder α
inst✝¹⁰ : LinearOrder β
inst✝⁹ : Encodable α
inst✝⁸ : DenselyOrdered α
inst✝⁷ : NoMinOrder α
inst✝⁶ : NoMaxOrder α
inst✝⁵ : Nonempty α
inst✝⁴ : Encodable β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
to_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α)
our_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal
F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=
fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal)
G : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=
fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal)
a : α
b : β
f : PartialIso α β
hf : f ∈ our_ideal
ha : (a, ↑(F a)) ∈ ↑f
⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b
[PROOFSTEP]
rcases(G b).prop with ⟨g, hg, hb⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹¹ : LinearOrder α
inst✝¹⁰ : LinearOrder β
inst✝⁹ : Encodable α
inst✝⁸ : DenselyOrdered α
inst✝⁷ : NoMinOrder α
inst✝⁶ : NoMaxOrder α
inst✝⁵ : Nonempty α
inst✝⁴ : Encodable β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
to_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α)
our_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal
F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=
fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal)
G : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=
fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal)
a : α
b : β
f : PartialIso α β
hf : f ∈ our_ideal
ha : (a, ↑(F a)) ∈ ↑f
g : PartialIso α β
hg : g ∈ our_ideal
hb : (↑(G b), b) ∈ ↑g
⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b
[PROOFSTEP]
rcases our_ideal.directed _ hf _ hg with ⟨m, _, fm, gm⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
inst✝¹¹ : LinearOrder α
inst✝¹⁰ : LinearOrder β
inst✝⁹ : Encodable α
inst✝⁸ : DenselyOrdered α
inst✝⁷ : NoMinOrder α
inst✝⁶ : NoMaxOrder α
inst✝⁵ : Nonempty α
inst✝⁴ : Encodable β
inst✝³ : DenselyOrdered β
inst✝² : NoMinOrder β
inst✝¹ : NoMaxOrder β
inst✝ : Nonempty β
to_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α)
our_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal
F : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=
fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal)
G : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=
fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal)
a : α
b : β
f : PartialIso α β
hf : f ∈ our_ideal
ha : (a, ↑(F a)) ∈ ↑f
g : PartialIso α β
hg : g ∈ our_ideal
hb : (↑(G b), b) ∈ ↑g
m : PartialIso α β
left✝ : m ∈ ↑our_ideal
fm : f ≤ m
gm : g ≤ m
⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b
[PROOFSTEP]
exact m.prop (a, _) (fm ha) (_, b) (gm hb)
| {"mathlib_filename": "Mathlib.Order.CountableDenseLinearOrder", "llama_tokens": 16694} |
{"mathlib_filename": "Mathlib.Order.Synonym", "llama_tokens": 0} |
|
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
p q : Substructure L M
h : ↑p = ↑q
⊢ p = q
[PROOFSTEP]
cases p
[GOAL]
case mk
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
q : Substructure L M
carrier✝ : Set M
fun_mem✝ : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f carrier✝
h : ↑{ carrier := carrier✝, fun_mem := fun_mem✝ } = ↑q
⊢ { carrier := carrier✝, fun_mem := fun_mem✝ } = q
[PROOFSTEP]
cases q
[GOAL]
case mk.mk
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
carrier✝¹ : Set M
fun_mem✝¹ : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f carrier✝¹
carrier✝ : Set M
fun_mem✝ : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f carrier✝
h : ↑{ carrier := carrier✝¹, fun_mem := fun_mem✝¹ } = ↑{ carrier := carrier✝, fun_mem := fun_mem✝ }
⊢ { carrier := carrier✝¹, fun_mem := fun_mem✝¹ } = { carrier := carrier✝, fun_mem := fun_mem✝ }
[PROOFSTEP]
congr
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
α : Type u_3
t : Term L α
xs : α → M
h : ∀ (a : α), xs a ∈ S
⊢ realize xs t ∈ S
[PROOFSTEP]
induction' t with a n f ts ih
[GOAL]
case var
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
α : Type u_3
xs : α → M
h : ∀ (a : α), xs a ∈ S
a : α
⊢ realize xs (var a) ∈ S
[PROOFSTEP]
exact h a
[GOAL]
case func
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
α : Type u_3
xs : α → M
h : ∀ (a : α), xs a ∈ S
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih : ∀ (a : Fin n), realize xs (ts a) ∈ S
⊢ realize xs (func f ts) ∈ S
[PROOFSTEP]
exact Substructure.fun_mem _ _ _ ih
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set (Substructure L M)
n : ℕ
f : Functions L n
⊢ ∀ (s_1 : Set M), (s_1 ∈ Set.range fun t => ⋂ (_ : t ∈ s), ↑t) → ClosedUnder f s_1
[PROOFSTEP]
rintro _ ⟨t, rfl⟩
[GOAL]
case intro
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set (Substructure L M)
n : ℕ
f : Functions L n
t : Substructure L M
⊢ ClosedUnder f ((fun t => ⋂ (_ : t ∈ s), ↑t) t)
[PROOFSTEP]
by_cases h : t ∈ s
[GOAL]
case pos
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set (Substructure L M)
n : ℕ
f : Functions L n
t : Substructure L M
h : t ∈ s
⊢ ClosedUnder f ((fun t => ⋂ (_ : t ∈ s), ↑t) t)
[PROOFSTEP]
simpa [h] using t.fun_mem f
[GOAL]
case neg
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set (Substructure L M)
n : ℕ
f : Functions L n
t : Substructure L M
h : ¬t ∈ s
⊢ ClosedUnder f ((fun t => ⋂ (_ : t ∈ s), ↑t) t)
[PROOFSTEP]
simp [h]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
ι : Sort u_3
S : ι → Substructure L M
x : M
⊢ x ∈ ⨅ (i : ι), S i ↔ ∀ (i : ι), x ∈ S i
[PROOFSTEP]
simp only [iInf, mem_sInf, Set.forall_range_iff]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
ι : Sort u_3
S : ι → Substructure L M
⊢ ↑(⨅ (i : ι), S i) = ⋂ (i : ι), ↑(S i)
[PROOFSTEP]
simp only [iInf, coe_sInf, Set.biInter_range]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
⊢ ↑(LowerAdjoint.toFun (closure L) s) = range (Term.realize Subtype.val)
[PROOFSTEP]
let S : L.Substructure M :=
⟨range (Term.realize (L := L) ((↑) : s → M)), fun {n} f x hx =>
by
simp only [mem_range] at *
refine' ⟨func f fun i => Classical.choose (hx i), _⟩
simp only [Term.realize, fun i => Classical.choose_spec (hx i)]⟩
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
n : ℕ
f : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ range (Term.realize Subtype.val)
⊢ funMap f x ∈ range (Term.realize Subtype.val)
[PROOFSTEP]
simp only [mem_range] at *
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
n : ℕ
f : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), ∃ y, Term.realize Subtype.val y = x i
⊢ ∃ y, Term.realize Subtype.val y = funMap f x
[PROOFSTEP]
refine' ⟨func f fun i => Classical.choose (hx i), _⟩
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
n : ℕ
f : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), ∃ y, Term.realize Subtype.val y = x i
⊢ Term.realize Subtype.val (func f fun i => Classical.choose (_ : ∃ y, Term.realize Subtype.val y = x i)) = funMap f x
[PROOFSTEP]
simp only [Term.realize, fun i => Classical.choose_spec (hx i)]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
s : Set M
S : Substructure L M :=
{ carrier := range (Term.realize Subtype.val),
fun_mem :=
(_ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
(∀ (i : Fin n), x i ∈ range (Term.realize Subtype.val)) → funMap f x ∈ range (Term.realize Subtype.val)) }
⊢ ↑(LowerAdjoint.toFun (closure L) s) = range (Term.realize Subtype.val)
[PROOFSTEP]
change _ = (S : Set M)
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
s : Set M
S : Substructure L M :=
{ carrier := range (Term.realize Subtype.val),
fun_mem :=
(_ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
(∀ (i : Fin n), x i ∈ range (Term.realize Subtype.val)) → funMap f x ∈ range (Term.realize Subtype.val)) }
⊢ ↑(LowerAdjoint.toFun (closure L) s) = ↑S
[PROOFSTEP]
rw [← SetLike.ext'_iff]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
s : Set M
S : Substructure L M :=
{ carrier := range (Term.realize Subtype.val),
fun_mem :=
(_ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
(∀ (i : Fin n), x i ∈ range (Term.realize Subtype.val)) → funMap f x ∈ range (Term.realize Subtype.val)) }
⊢ LowerAdjoint.toFun (closure L) s = S
[PROOFSTEP]
refine' closure_eq_of_le (fun x hx => ⟨var ⟨x, hx⟩, rfl⟩) (le_sInf fun S' hS' => _)
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
s : Set M
S : Substructure L M :=
{ carrier := range (Term.realize Subtype.val),
fun_mem :=
(_ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
(∀ (i : Fin n), x i ∈ range (Term.realize Subtype.val)) → funMap f x ∈ range (Term.realize Subtype.val)) }
S' : Substructure L M
hS' : S' ∈ {S | s ⊆ ↑S}
⊢ S ≤ S'
[PROOFSTEP]
rintro _ ⟨t, rfl⟩
[GOAL]
case intro
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
s : Set M
S : Substructure L M :=
{ carrier := range (Term.realize Subtype.val),
fun_mem :=
(_ :
∀ {n : ℕ} (f : Functions L n) (x : Fin n → M),
(∀ (i : Fin n), x i ∈ range (Term.realize Subtype.val)) → funMap f x ∈ range (Term.realize Subtype.val)) }
S' : Substructure L M
hS' : S' ∈ {S | s ⊆ ↑S}
t : Term L { x // x ∈ s }
⊢ Term.realize Subtype.val t ∈ S'
[PROOFSTEP]
exact t.realize_mem _ fun i => hS' i.2
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
S : Substructure L M
s : Set M
inst✝ : Small.{u, w} ↑s
⊢ Small.{u, w} { x // x ∈ LowerAdjoint.toFun (closure L) s }
[PROOFSTEP]
rw [← SetLike.coe_sort_coe, Substructure.coe_closure_eq_range_term_realize]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
S : Substructure L M
s : Set M
inst✝ : Small.{u, w} ↑s
⊢ Small.{u, w} ↑(range (Term.realize Subtype.val))
[PROOFSTEP]
exact small_range _
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
x : M
⊢ x ∈ LowerAdjoint.toFun (closure L) s ↔ ∃ t, Term.realize Subtype.val t = x
[PROOFSTEP]
rw [← SetLike.mem_coe, coe_closure_eq_range_term_realize, mem_range]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
⊢ lift #{ x // x ∈ LowerAdjoint.toFun (closure L) s } ≤ #(Term L ↑s)
[PROOFSTEP]
rw [← SetLike.coe_sort_coe, coe_closure_eq_range_term_realize]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
⊢ lift #↑(range (Term.realize Subtype.val)) ≤ #(Term L ↑s)
[PROOFSTEP]
rw [← Cardinal.lift_id'.{w, max u w} #(L.Term s)]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
⊢ lift #↑(range (Term.realize Subtype.val)) ≤ lift #(Term L ↑s)
[PROOFSTEP]
exact Cardinal.mk_range_le_lift
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
⊢ lift #{ x // x ∈ LowerAdjoint.toFun (closure L) s } ≤ max ℵ₀ (lift #↑s + lift #((i : ℕ) × Functions L i))
[PROOFSTEP]
rw [← lift_umax]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
⊢ lift #{ x // x ∈ LowerAdjoint.toFun (closure L) s } ≤ max ℵ₀ (lift #↑s + lift #((i : ℕ) × Functions L i))
[PROOFSTEP]
refine' lift_card_closure_le_card_term.trans (Term.card_le.trans _)
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
⊢ max ℵ₀ #(↑s ⊕ (i : ℕ) × Functions L i) ≤ max ℵ₀ (lift #↑s + lift #((i : ℕ) × Functions L i))
[PROOFSTEP]
rw [mk_sum, lift_umax.{w, u}]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
S : Substructure L M
s : Set M
inst✝ : Countable ((l : ℕ) × Functions L l)
h : Set.Countable s
⊢ Countable { x // x ∈ LowerAdjoint.toFun (closure L) s }
[PROOFSTEP]
haveI : Countable s := h.to_subtype
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
S : Substructure L M
s : Set M
inst✝ : Countable ((l : ℕ) × Functions L l)
h : Set.Countable s
this : Countable ↑s
⊢ Countable { x // x ∈ LowerAdjoint.toFun (closure L) s }
[PROOFSTEP]
rw [← mk_le_aleph0_iff, ← lift_le_aleph0]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
S : Substructure L M
s : Set M
inst✝ : Countable ((l : ℕ) × Functions L l)
h : Set.Countable s
this : Countable ↑s
⊢ lift #{ x // x ∈ LowerAdjoint.toFun (closure L) s } ≤ ℵ₀
[PROOFSTEP]
exact lift_card_closure_le_card_term.trans mk_le_aleph0
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s✝ : Set M
p : M → Prop
x : M
s : Set M
hs : LowerAdjoint.toFun (closure L) s = ⊤
Hs : ∀ (x : M), x ∈ s → p x
Hfun : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f (setOf p)
⊢ p x
[PROOFSTEP]
have : ∀ x ∈ closure L s, p x := fun x hx => closure_induction hx Hs fun {n} => Hfun
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s✝ : Set M
p : M → Prop
x : M
s : Set M
hs : LowerAdjoint.toFun (closure L) s = ⊤
Hs : ∀ (x : M), x ∈ s → p x
Hfun : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f (setOf p)
this : ∀ (x : M), x ∈ LowerAdjoint.toFun (closure L) s → p x
⊢ p x
[PROOFSTEP]
simpa [hs] using this x
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
⊢ Small.{u, w} { x // x ∈ ⊥ }
[PROOFSTEP]
rw [← closure_empty]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
⊢ Small.{u, w} { x // x ∈ LowerAdjoint.toFun (closure L) ∅ }
[PROOFSTEP]
haveI : Small.{u} (∅ : Set M) := small_subsingleton _
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
this : Small.{u, w} ↑∅
⊢ Small.{u, w} { x // x ∈ LowerAdjoint.toFun (closure L) ∅ }
[PROOFSTEP]
exact Substructure.small_closure
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
s : Set M
φ : M →[L] N
S : Substructure L N
n : ℕ
f : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ ↑φ ⁻¹' ↑S
⊢ funMap f x ∈ ↑φ ⁻¹' ↑S
[PROOFSTEP]
rw [mem_preimage, φ.map_fun]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
s : Set M
φ : M →[L] N
S : Substructure L N
n : ℕ
f : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ ↑φ ⁻¹' ↑S
⊢ funMap f (↑φ ∘ x) ∈ ↑S
[PROOFSTEP]
exact S.fun_mem f (φ ∘ x) hx
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
s : Set M
S : Substructure L P
⊢ ∀ (x : P), x ∈ comap (Hom.id L P) S ↔ x ∈ S
[PROOFSTEP]
simp
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
s : Set M
φ : M →[L] N
S : Substructure L M
n : ℕ
f : Functions L n
x : Fin n → N
hx : ∀ (i : Fin n), x i ∈ ↑φ '' ↑S
⊢ (fun a => ↑φ a) (funMap f fun i => Classical.choose (_ : x i ∈ ↑φ '' ↑S)) = funMap f x
[PROOFSTEP]
simp only [Hom.map_fun, SetLike.mem_coe]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
s : Set M
φ : M →[L] N
S : Substructure L M
n : ℕ
f : Functions L n
x : Fin n → N
hx : ∀ (i : Fin n), x i ∈ ↑φ '' ↑S
⊢ funMap f (↑φ ∘ fun i => Classical.choose (_ : ∃ x_1, (fun x_2 => x_2 ∈ S ∧ ↑φ x_2 = x i) x_1)) = funMap f x
[PROOFSTEP]
exact congr rfl (funext fun i => (Classical.choose_spec (hx i)).2)
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
s : Set M
ι : Type u_3
f : M →[L] N
hf : Function.Injective ↑f
S : Substructure L M
x : M
⊢ x ∈ comap f (map f S) → x ∈ S
[PROOFSTEP]
simp [mem_comap, mem_map, hf.eq_iff]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ : Substructure L M
s : Set M
ι : Type u_3
f : M →[L] N
hf : Function.Surjective ↑f
S : Substructure L N
x : N
h : x ∈ S
y : M
hy : ↑f y = x
⊢ y ∈ comap f S ∧ ↑f y = x
[PROOFSTEP]
simp [hy, h]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s : Set M
m : { x // x ∈ ⊤ }
⊢ (fun m => { val := m, property := (_ : m ∈ ⊤) }) (↑(subtype ⊤) m) = m
[PROOFSTEP]
simp
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s✝ s : Set M
p : (x : M) → x ∈ LowerAdjoint.toFun (closure L) s → Prop
Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(LowerAdjoint.toFun (closure L) s))
Hfun : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f {x | ∃ hx, p x hx}
x : M
hx : x ∈ LowerAdjoint.toFun (closure L) s
⊢ p x hx
[PROOFSTEP]
refine' Exists.elim _ fun (hx : x ∈ closure L s) (hc : p x hx) => hc
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
s✝ s : Set M
p : (x : M) → x ∈ LowerAdjoint.toFun (closure L) s → Prop
Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(LowerAdjoint.toFun (closure L) s))
Hfun : ∀ {n : ℕ} (f : Functions L n), ClosedUnder f {x | ∃ hx, p x hx}
x : M
hx : x ∈ LowerAdjoint.toFun (closure L) s
⊢ ∃ x_1, p x x_1
[PROOFSTEP]
exact closure_induction hx (fun x hx => ⟨subset_closure hx, Hs x hx⟩) @Hfun
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
S✝ : Substructure L M
L' : Language
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
S : Substructure L' M
n : ℕ
f : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ ↑S
⊢ funMap f x ∈ ↑S
[PROOFSTEP]
have h := S.fun_mem (φ.onFunction f) x hx
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
S✝ : Substructure L M
L' : Language
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
S : Substructure L' M
n : ℕ
f : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ ↑S
h : funMap (onFunction φ f) x ∈ ↑S
⊢ funMap f x ∈ ↑S
[PROOFSTEP]
simp only [LHom.map_onFunction, Substructure.mem_carrier] at h
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
S✝ : Substructure L M
L' : Language
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
S : Substructure L' M
n : ℕ
f : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ ↑S
h : funMap f x ∈ S
⊢ funMap f x ∈ ↑S
[PROOFSTEP]
exact h
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
S✝ : Substructure L M
L' : Language
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
S T : Substructure L' M
h :
(fun S =>
{ carrier := ↑S,
fun_mem := (_ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), (∀ (i : Fin n), x i ∈ ↑S) → funMap f x ∈ S) })
S =
(fun S =>
{ carrier := ↑S,
fun_mem := (_ : ∀ {n : ℕ} (f : Functions L n) (x : Fin n → M), (∀ (i : Fin n), x i ∈ ↑S) → funMap f x ∈ S) })
T
⊢ S = T
[PROOFSTEP]
simp only [SetLike.coe_set_eq, Substructure.mk.injEq] at h
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
S✝ : Substructure L M
L' : Language
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
S T : Substructure L' M
h : S = T
⊢ S = T
[PROOFSTEP]
exact h
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ S : Substructure L M
A : Set M
h : A ⊆ ↑S
n : ℕ
f : Functions (L[[↑A]]) n
⊢ ClosedUnder f ↑S
[PROOFSTEP]
cases' f with f f
[GOAL]
case inl
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ S : Substructure L M
A : Set M
h : A ⊆ ↑S
n : ℕ
f : Functions L n
⊢ ClosedUnder (Sum.inl f) ↑S
[PROOFSTEP]
exact S.fun_mem f
[GOAL]
case inr
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ S : Substructure L M
A : Set M
h : A ⊆ ↑S
n : ℕ
f : Functions (constantsOn ↑A) n
⊢ ClosedUnder (Sum.inr f) ↑S
[PROOFSTEP]
cases n
[GOAL]
case inr.zero
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ S : Substructure L M
A : Set M
h : A ⊆ ↑S
f : Functions (constantsOn ↑A) Nat.zero
⊢ ClosedUnder (Sum.inr f) ↑S
[PROOFSTEP]
exact fun _ _ => h f.2
[GOAL]
case inr.succ
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ S : Substructure L M
A : Set M
h : A ⊆ ↑S
n✝ : ℕ
f : Functions (constantsOn ↑A) (Nat.succ n✝)
⊢ ClosedUnder (Sum.inr f) ↑S
[PROOFSTEP]
exact isEmptyElim f
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
A s : Set M
h : A ⊆ ↑S
⊢ ↑(LHom.substructureReduct (lhomWithConstants L ↑A)) (withConstants S h) = S
[PROOFSTEP]
ext
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
A s : Set M
h : A ⊆ ↑S
x✝ : M
⊢ x✝ ∈ ↑(LHom.substructureReduct (lhomWithConstants L ↑A)) (withConstants S h) ↔ x✝ ∈ S
[PROOFSTEP]
simp
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
A s : Set M
h : A ⊆ ↑S
⊢ A ⊆ ↑(LowerAdjoint.toFun (closure (L[[↑A]])) s)
[PROOFSTEP]
intro a ha
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
A s : Set M
h : A ⊆ ↑S
a : M
ha : a ∈ A
⊢ a ∈ ↑(LowerAdjoint.toFun (closure (L[[↑A]])) s)
[PROOFSTEP]
simp only [SetLike.mem_coe]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
A s : Set M
h : A ⊆ ↑S
a : M
ha : a ∈ A
⊢ a ∈ LowerAdjoint.toFun (closure (L[[↑A]])) s
[PROOFSTEP]
let a' : L[[A]].Constants := Sum.inr ⟨a, ha⟩
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
A s : Set M
h : A ⊆ ↑S
a : M
ha : a ∈ A
a' : Language.Constants (L[[↑A]]) := Sum.inr { val := a, property := ha }
⊢ a ∈ LowerAdjoint.toFun (closure (L[[↑A]])) s
[PROOFSTEP]
exact constants_mem a'
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
A s : Set M
h : A ⊆ ↑S
⊢ LowerAdjoint.toFun (closure (L[[↑A]])) s =
withConstants (LowerAdjoint.toFun (closure L) (A ∪ s)) (_ : A ⊆ ↑(LowerAdjoint.toFun (closure L) (A ∪ s)))
[PROOFSTEP]
refine' closure_eq_of_le ((A.subset_union_right s).trans subset_closure) _
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
A s : Set M
h : A ⊆ ↑S
⊢ withConstants (LowerAdjoint.toFun (closure L) (A ∪ s)) (_ : A ⊆ ↑(LowerAdjoint.toFun (closure L) (A ∪ s))) ≤
LowerAdjoint.toFun (closure (L[[↑A]])) s
[PROOFSTEP]
rw [← (L.lhomWithConstants A).substructureReduct.le_iff_le]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
A s : Set M
h : A ⊆ ↑S
⊢ ↑(LHom.substructureReduct (lhomWithConstants L ↑A))
(withConstants (LowerAdjoint.toFun (closure L) (A ∪ s)) (_ : A ⊆ ↑(LowerAdjoint.toFun (closure L) (A ∪ s)))) ≤
↑(LHom.substructureReduct (lhomWithConstants L ↑A)) (LowerAdjoint.toFun (closure (L[[↑A]])) s)
[PROOFSTEP]
simp only [subset_closure, reduct_withConstants, closure_le, LHom.coe_substructureReduct, Set.union_subset_iff,
and_true_iff]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
A s : Set M
h : A ⊆ ↑S
⊢ A ⊆ ↑(LowerAdjoint.toFun (closure (L[[↑A]])) s)
[PROOFSTEP]
exact subset_closure_withConstants
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
p : Substructure L N
f✝ : M →[L] N
h : ∀ (c : M), ↑f✝ c ∈ p
n : ℕ
f : Functions L n
x : Fin n → M
⊢ (fun c => { val := ↑f✝ c, property := (_ : ↑f✝ c ∈ p) }) (funMap f x) =
funMap f ((fun c => { val := ↑f✝ c, property := (_ : ↑f✝ c ∈ p) }) ∘ x)
[PROOFSTEP]
aesop
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f : M →[L] N
⊢ range f = Substructure.map f ⊤
[PROOFSTEP]
ext
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f : M →[L] N
x✝ : N
⊢ x✝ ∈ range f ↔ x✝ ∈ Substructure.map f ⊤
[PROOFSTEP]
simp
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f : M →[L] N
⊢ range f = ⊤ ↔ Function.Surjective ↑f
[PROOFSTEP]
rw [SetLike.ext'_iff, range_coe, coe_top, Set.range_iff_surjective]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f : M →[L] N
p : Substructure L N
⊢ range f ≤ p ↔ comap f p = ⊤
[PROOFSTEP]
rw [range_eq_map, map_le_iff_le_comap, eq_top_iff]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f g : M →[L] N
n : ℕ
fn : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x}
⊢ funMap fn x ∈ {x | ↑f x = ↑g x}
[PROOFSTEP]
have h : f ∘ x = g ∘ x := by
ext
repeat' rw [Function.comp_apply]
apply hx
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f g : M →[L] N
n : ℕ
fn : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x}
⊢ ↑f ∘ x = ↑g ∘ x
[PROOFSTEP]
ext
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f g : M →[L] N
n : ℕ
fn : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x}
x✝ : Fin n
⊢ (↑f ∘ x) x✝ = (↑g ∘ x) x✝
[PROOFSTEP]
repeat' rw [Function.comp_apply]
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f g : M →[L] N
n : ℕ
fn : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x}
x✝ : Fin n
⊢ (↑f ∘ x) x✝ = (↑g ∘ x) x✝
[PROOFSTEP]
rw [Function.comp_apply]
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f g : M →[L] N
n : ℕ
fn : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x}
x✝ : Fin n
⊢ ↑f (x x✝) = (↑g ∘ x) x✝
[PROOFSTEP]
rw [Function.comp_apply]
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f g : M →[L] N
n : ℕ
fn : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x}
x✝ : Fin n
⊢ ↑f (x x✝) = ↑g (x x✝)
[PROOFSTEP]
rw [Function.comp_apply]
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f g : M →[L] N
n : ℕ
fn : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x}
x✝ : Fin n
⊢ ↑f (x x✝) = ↑g (x x✝)
[PROOFSTEP]
apply hx
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f g : M →[L] N
n : ℕ
fn : Functions L n
x : Fin n → M
hx : ∀ (i : Fin n), x i ∈ {x | ↑f x = ↑g x}
h : ↑f ∘ x = ↑g ∘ x
⊢ funMap fn x ∈ {x | ↑f x = ↑g x}
[PROOFSTEP]
simp [h]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
p : Substructure L N
f : M ↪[L] N
h : ∀ (c : M), ↑f c ∈ p
n : ℕ
r : Relations L n
x : Fin n → M
⊢ RelMap r
({ toFun := ↑(Hom.codRestrict p (toHom f) h),
inj' :=
(_ :
∀ (a b : M), ↑(Hom.codRestrict p (toHom f) h) a = ↑(Hom.codRestrict p (toHom f) h) b → a = b) }.toFun ∘
x) ↔
RelMap r x
[PROOFSTEP]
simp only
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
p : Substructure L N
f : M ↪[L] N
h : ∀ (c : M), ↑f c ∈ p
n : ℕ
r : Relations L n
x : Fin n → M
⊢ RelMap r (↑(Hom.codRestrict p (toHom f) h) ∘ x) ↔ RelMap r x
[PROOFSTEP]
rw [← p.subtype.map_rel]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
p : Substructure L N
f : M ↪[L] N
h : ∀ (c : M), ↑f c ∈ p
n : ℕ
r : Relations L n
x : Fin n → M
⊢ RelMap r (↑(subtype p) ∘ ↑(Hom.codRestrict p (toHom f) h) ∘ x) ↔ RelMap r x
[PROOFSTEP]
change RelMap r (Hom.comp p.subtype.toHom (f.toHom.codRestrict p h) ∘ x) ↔ _
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
p : Substructure L N
f : M ↪[L] N
h : ∀ (c : M), ↑f c ∈ p
n : ℕ
r : Relations L n
x : Fin n → M
⊢ RelMap r (↑(Hom.comp (toHom (subtype p)) (Hom.codRestrict p (toHom f) h)) ∘ x) ↔ RelMap r x
[PROOFSTEP]
rw [Hom.subtype_comp_codRestrict, ← f.map_rel]
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
p : Substructure L N
f : M ↪[L] N
h : ∀ (c : M), ↑f c ∈ p
n : ℕ
r : Relations L n
x : Fin n → M
⊢ RelMap r (↑(toHom f) ∘ x) ↔ RelMap r (↑f ∘ x)
[PROOFSTEP]
rfl
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f✝ : M ↪[L] N
s : Substructure L M
n : ℕ
f : Functions L n
x : Fin n → { x // x ∈ s }
⊢ Equiv.toFun
{
toFun :=
↑(codRestrict (Substructure.map (toHom f✝) s) (domRestrict f✝ s)
(_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f✝ s) x ∈ Substructure.map (toHom f✝) s)),
invFun := fun n =>
{ val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s),
property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s) ∈ ↑s) },
left_inv :=
(_ :
∀ (x : { x // x ∈ s }),
(fun n =>
{ val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s),
property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s) ∈ ↑s) })
(↑(codRestrict (Substructure.map (toHom f✝) s) (domRestrict f✝ s)
(_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f✝ s) x ∈ Substructure.map (toHom f✝) s))
x) =
x),
right_inv :=
(_ :
∀ (x : { x // x ∈ Substructure.map (toHom f✝) s }),
↑(codRestrict (Substructure.map (toHom f✝) s) (domRestrict f✝ s)
(_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f✝ s) x ∈ Substructure.map (toHom f✝) s))
((fun n =>
{ val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s),
property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s) ∈ ↑s) })
x) =
x) }
(funMap f x) =
funMap f
({
toFun :=
↑(codRestrict (Substructure.map (toHom f✝) s) (domRestrict f✝ s)
(_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f✝ s) x ∈ Substructure.map (toHom f✝) s)),
invFun := fun n =>
{ val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s),
property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s) ∈ ↑s) },
left_inv :=
(_ :
∀ (x : { x // x ∈ s }),
(fun n =>
{ val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s),
property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s) ∈ ↑s) })
(↑(codRestrict (Substructure.map (toHom f✝) s) (domRestrict f✝ s)
(_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f✝ s) x ∈ Substructure.map (toHom f✝) s))
x) =
x),
right_inv :=
(_ :
∀ (x : { x // x ∈ Substructure.map (toHom f✝) s }),
↑(codRestrict (Substructure.map (toHom f✝) s) (domRestrict f✝ s)
(_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f✝ s) x ∈ Substructure.map (toHom f✝) s))
((fun n =>
{ val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s),
property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f✝) s) ∈ ↑s) })
x) =
x) }.toFun ∘
x)
[PROOFSTEP]
aesop
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f : M ↪[L] N
s : Substructure L M
n : ℕ
R : Relations L n
x : Fin n → { x // x ∈ s }
⊢ RelMap R
({
toFun :=
↑(codRestrict (Substructure.map (toHom f) s) (domRestrict f s)
(_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f s) x ∈ Substructure.map (toHom f) s)),
invFun := fun n =>
{ val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f) s),
property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f) s) ∈ ↑s) },
left_inv :=
(_ :
∀ (x : { x // x ∈ s }),
(fun n =>
{ val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f) s),
property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f) s) ∈ ↑s) })
(↑(codRestrict (Substructure.map (toHom f) s) (domRestrict f s)
(_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f s) x ∈ Substructure.map (toHom f) s))
x) =
x),
right_inv :=
(_ :
∀ (x : { x // x ∈ Substructure.map (toHom f) s }),
↑(codRestrict (Substructure.map (toHom f) s) (domRestrict f s)
(_ : ∀ (x : { x // x ∈ s }), ↑(domRestrict f s) x ∈ Substructure.map (toHom f) s))
((fun n =>
{ val := Classical.choose (_ : ↑n ∈ Substructure.map (toHom f) s),
property := (_ : Classical.choose (_ : ↑n ∈ Substructure.map (toHom f) s) ∈ ↑s) })
x) =
x) }.toFun ∘
x) ↔
RelMap R x
[PROOFSTEP]
aesop
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f✝ : M ↪[L] N
n : ℕ
f : Functions L n
x : Fin n → M
⊢ Equiv.toFun
{ toFun := ↑(codRestrict (Hom.range (toHom f✝)) f✝ (_ : ∀ (x : M), ↑(toHom f✝) x ∈ Hom.range (toHom f✝))),
invFun := fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f✝)),
left_inv :=
(_ :
∀ (m : M),
(fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f✝)))
(↑(codRestrict (Hom.range (toHom f✝)) f✝ (_ : ∀ (x : M), ↑(toHom f✝) x ∈ Hom.range (toHom f✝))) m) =
m),
right_inv :=
(_ :
∀ (x : { x // x ∈ Hom.range (toHom f✝) }),
↑(codRestrict (Hom.range (toHom f✝)) f✝ (_ : ∀ (x : M), ↑(toHom f✝) x ∈ Hom.range (toHom f✝)))
((fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f✝))) x) =
x) }
(funMap f x) =
funMap f
({ toFun := ↑(codRestrict (Hom.range (toHom f✝)) f✝ (_ : ∀ (x : M), ↑(toHom f✝) x ∈ Hom.range (toHom f✝))),
invFun := fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f✝)),
left_inv :=
(_ :
∀ (m : M),
(fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f✝)))
(↑(codRestrict (Hom.range (toHom f✝)) f✝ (_ : ∀ (x : M), ↑(toHom f✝) x ∈ Hom.range (toHom f✝)))
m) =
m),
right_inv :=
(_ :
∀ (x : { x // x ∈ Hom.range (toHom f✝) }),
↑(codRestrict (Hom.range (toHom f✝)) f✝ (_ : ∀ (x : M), ↑(toHom f✝) x ∈ Hom.range (toHom f✝)))
((fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f✝))) x) =
x) }.toFun ∘
x)
[PROOFSTEP]
aesop
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f : M ↪[L] N
n : ℕ
R : Relations L n
x : Fin n → M
⊢ RelMap R
({ toFun := ↑(codRestrict (Hom.range (toHom f)) f (_ : ∀ (x : M), ↑(toHom f) x ∈ Hom.range (toHom f))),
invFun := fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f)),
left_inv :=
(_ :
∀ (m : M),
(fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f)))
(↑(codRestrict (Hom.range (toHom f)) f (_ : ∀ (x : M), ↑(toHom f) x ∈ Hom.range (toHom f))) m) =
m),
right_inv :=
(_ :
∀ (x : { x // x ∈ Hom.range (toHom f) }),
↑(codRestrict (Hom.range (toHom f)) f (_ : ∀ (x : M), ↑(toHom f) x ∈ Hom.range (toHom f)))
((fun n => Classical.choose (_ : ↑n ∈ Hom.range (toHom f))) x) =
x) }.toFun ∘
x) ↔
RelMap R x
[PROOFSTEP]
aesop
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f : M ≃[L] N
⊢ Hom.range (toHom f) = ⊤
[PROOFSTEP]
ext n
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f : M ≃[L] N
n : N
⊢ n ∈ Hom.range (toHom f) ↔ n ∈ ⊤
[PROOFSTEP]
simp only [Hom.mem_range, coe_toHom, Substructure.mem_top, iff_true_iff]
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S : Substructure L M
f : M ≃[L] N
n : N
⊢ ∃ y, ↑f y = n
[PROOFSTEP]
exact ⟨f.symm n, apply_symm_apply _ _⟩
[GOAL]
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ S : Substructure L M
⊢ Hom.range (Embedding.toHom (subtype S)) = S
[PROOFSTEP]
ext x
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ S : Substructure L M
x : M
⊢ x ∈ Hom.range (Embedding.toHom (subtype S)) ↔ x ∈ S
[PROOFSTEP]
simp only [Hom.mem_range, Embedding.coe_toHom, coeSubtype]
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ S : Substructure L M
x : M
⊢ (∃ y, ↑y = x) ↔ x ∈ S
[PROOFSTEP]
refine' ⟨_, fun h => ⟨⟨x, h⟩, rfl⟩⟩
[GOAL]
case h
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ S : Substructure L M
x : M
⊢ (∃ y, ↑y = x) → x ∈ S
[PROOFSTEP]
rintro ⟨⟨y, hy⟩, rfl⟩
[GOAL]
case h.intro.mk
L : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
S✝ S : Substructure L M
y : M
hy : y ∈ S
⊢ ↑{ val := y, property := hy } ∈ S
[PROOFSTEP]
exact hy
| {"mathlib_filename": "Mathlib.ModelTheory.Substructures", "llama_tokens": 18550} |
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : CompleteLattice α
f : α →o α
p : α → Prop
step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a)
hSup : ∀ (s : Set α), (∀ (a : α), a ∈ s → p a) → p (sSup s)
⊢ p (↑lfp f)
[PROOFSTEP]
set s := {a | a ≤ lfp f ∧ p a}
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : CompleteLattice α
f : α →o α
p : α → Prop
step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a)
hSup : ∀ (s : Set α), (∀ (a : α), a ∈ s → p a) → p (sSup s)
s : Set α := {a | a ≤ ↑lfp f ∧ p a}
⊢ p (↑lfp f)
[PROOFSTEP]
specialize hSup s fun a => And.right
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : CompleteLattice α
f : α →o α
p : α → Prop
step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a)
s : Set α := {a | a ≤ ↑lfp f ∧ p a}
hSup : p (sSup s)
⊢ p (↑lfp f)
[PROOFSTEP]
suffices : sSup s = lfp f
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : CompleteLattice α
f : α →o α
p : α → Prop
step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a)
s : Set α := {a | a ≤ ↑lfp f ∧ p a}
hSup : p (sSup s)
this : sSup s = ↑lfp f
⊢ p (↑lfp f)
case this
α : Type u
β : Type v
γ : Type w
inst✝ : CompleteLattice α
f : α →o α
p : α → Prop
step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a)
s : Set α := {a | a ≤ ↑lfp f ∧ p a}
hSup : p (sSup s)
⊢ sSup s = ↑lfp f
[PROOFSTEP]
exact this ▸ hSup
[GOAL]
case this
α : Type u
β : Type v
γ : Type w
inst✝ : CompleteLattice α
f : α →o α
p : α → Prop
step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a)
s : Set α := {a | a ≤ ↑lfp f ∧ p a}
hSup : p (sSup s)
⊢ sSup s = ↑lfp f
[PROOFSTEP]
have h : sSup s ≤ lfp f := sSup_le fun b => And.left
[GOAL]
case this
α : Type u
β : Type v
γ : Type w
inst✝ : CompleteLattice α
f : α →o α
p : α → Prop
step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a)
s : Set α := {a | a ≤ ↑lfp f ∧ p a}
hSup : p (sSup s)
h : sSup s ≤ ↑lfp f
⊢ sSup s = ↑lfp f
[PROOFSTEP]
have hmem : f (sSup s) ∈ s := ⟨f.map_le_lfp h, step _ hSup h⟩
[GOAL]
case this
α : Type u
β : Type v
γ : Type w
inst✝ : CompleteLattice α
f : α →o α
p : α → Prop
step : ∀ (a : α), p a → a ≤ ↑lfp f → p (↑f a)
s : Set α := {a | a ≤ ↑lfp f ∧ p a}
hSup : p (sSup s)
h : sSup s ≤ ↑lfp f
hmem : ↑f (sSup s) ∈ s
⊢ sSup s = ↑lfp f
[PROOFSTEP]
exact h.antisymm (f.lfp_le <| le_sSup hmem)
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
f : β →o α
g : α →o β
h : α →o α →o α
⊢ ↑lfp (comp lfp h) = ↑lfp (onDiag h)
[PROOFSTEP]
let a := lfp (lfp.comp h)
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
f : β →o α
g : α →o β
h : α →o α →o α
a : α := ↑lfp (comp lfp h)
⊢ ↑lfp (comp lfp h) = ↑lfp (onDiag h)
[PROOFSTEP]
refine' (lfp_le _ _).antisymm (lfp_le _ (Eq.le _))
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
f : β →o α
g : α →o β
h : α →o α →o α
a : α := ↑lfp (comp lfp h)
⊢ ↑(comp lfp h) (↑lfp (onDiag h)) ≤ ↑lfp (onDiag h)
[PROOFSTEP]
exact lfp_le _ h.onDiag.map_lfp.le
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
f : β →o α
g : α →o β
h : α →o α →o α
a : α := ↑lfp (comp lfp h)
⊢ ↑(onDiag h) (↑lfp (comp lfp h)) = ↑lfp (comp lfp h)
[PROOFSTEP]
have ha : (lfp ∘ h) a = a := (lfp.comp h).map_lfp
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
f : β →o α
g : α →o β
h : α →o α →o α
a : α := ↑lfp (comp lfp h)
ha : (↑lfp ∘ ↑h) a = a
⊢ ↑(onDiag h) (↑lfp (comp lfp h)) = ↑lfp (comp lfp h)
[PROOFSTEP]
calc
h a a = h a (lfp (h a)) := congr_arg (h a) ha.symm
_ = lfp (h a) := (h a).map_lfp
_ = a := ha
| {"mathlib_filename": "Mathlib.Order.FixedPoints", "llama_tokens": 1954} |
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝ : Sup α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
sup_idem : ∀ (a : α), a ⊔ a = a
a b c : α
hab : a ≤ b
hbc : b ≤ c
⊢ a ≤ c
[PROOFSTEP]
show a ⊔ c = c
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝ : Sup α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
sup_idem : ∀ (a : α), a ⊔ a = a
a b c : α
hab : a ≤ b
hbc : b ≤ c
⊢ a ⊔ c = c
[PROOFSTEP]
rw [← hbc, ← sup_assoc, hab]
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝ : Sup α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
sup_idem : ∀ (a : α), a ⊔ a = a
a b : α
hab : a ≤ b
hba : b ≤ a
⊢ a = b
[PROOFSTEP]
rwa [← hba, sup_comm]
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝ : Sup α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
sup_idem : ∀ (a : α), a ⊔ a = a
a b : α
⊢ a ⊔ (a ⊔ b) = a ⊔ b
[PROOFSTEP]
rw [← sup_assoc, sup_idem]
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝ : Sup α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
sup_idem : ∀ (a : α), a ⊔ a = a
a b : α
⊢ b ⊔ (a ⊔ b) = a ⊔ b
[PROOFSTEP]
rw [sup_comm, sup_assoc, sup_idem]
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝ : Sup α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
sup_idem : ∀ (a : α), a ⊔ a = a
a b c : α
hac : a ≤ c
hbc : b ≤ c
⊢ a ⊔ b ≤ c
[PROOFSTEP]
show (a ⊔ b) ⊔ c = c
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝ : Sup α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
sup_idem : ∀ (a : α), a ⊔ a = a
a b c : α
hac : a ≤ c
hbc : b ≤ c
⊢ a ⊔ b ⊔ c = c
[PROOFSTEP]
rwa [sup_assoc, hbc]
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d : α
⊢ a ⊔ b ≤ a ∧ a ≤ a ⊔ b ↔ b ≤ a
[PROOFSTEP]
simp [le_rfl]
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d : α
⊢ a ⊔ b ≤ b ∧ b ≤ a ⊔ b ↔ a ≤ b
[PROOFSTEP]
simp [le_rfl]
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d : α
⊢ a ≤ b ↔ ∃ c, b = a ⊔ c
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d : α
⊢ a ≤ b → ∃ c, b = a ⊔ c
[PROOFSTEP]
intro h
[GOAL]
case mp
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d : α
h : a ≤ b
⊢ ∃ c, b = a ⊔ c
[PROOFSTEP]
exact ⟨b, (sup_eq_right.mpr h).symm⟩
[GOAL]
case mpr
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d : α
⊢ (∃ c, b = a ⊔ c) → a ≤ b
[PROOFSTEP]
rintro ⟨c, rfl : _ = _ ⊔ _⟩
[GOAL]
case mpr.intro
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a c✝ d c : α
⊢ a ≤ a ⊔ c
[PROOFSTEP]
exact le_sup_left
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d : α
⊢ a ⊔ a = a
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d : α
⊢ a ⊔ b = b ⊔ a
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d : α
⊢ a ⊔ b ≤ b ⊔ a
[PROOFSTEP]
simp
[GOAL]
case a
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d : α
⊢ b ⊔ a ≤ a ⊔ b
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d x : α
⊢ a ⊔ b ⊔ c ≤ x ↔ a ⊔ (b ⊔ c) ≤ x
[PROOFSTEP]
simp only [sup_le_iff]
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d x : α
⊢ (a ≤ x ∧ b ≤ x) ∧ c ≤ x ↔ a ≤ x ∧ b ≤ x ∧ c ≤ x
[PROOFSTEP]
rw [and_assoc]
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a✝ b✝ c✝ d a b c : α
⊢ a ⊔ b ⊔ c = c ⊔ b ⊔ a
[PROOFSTEP]
rw [sup_comm, @sup_comm _ _ a, sup_assoc]
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d : α
⊢ a ⊔ (a ⊔ b) = a ⊔ b
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a b c d : α
⊢ a ⊔ b ⊔ b = a ⊔ b
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a✝ b✝ c✝ d a b c : α
⊢ a ⊔ (b ⊔ c) = b ⊔ (a ⊔ c)
[PROOFSTEP]
rw [← sup_assoc, ← sup_assoc, @sup_comm α _ a]
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a✝ b✝ c✝ d a b c : α
⊢ a ⊔ b ⊔ c = a ⊔ c ⊔ b
[PROOFSTEP]
rw [sup_assoc, sup_assoc, @sup_comm _ _ b]
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a✝ b✝ c✝ d✝ a b c d : α
⊢ a ⊔ b ⊔ (c ⊔ d) = a ⊔ c ⊔ (b ⊔ d)
[PROOFSTEP]
rw [sup_assoc, sup_left_comm b, ← sup_assoc]
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a✝ b✝ c✝ d a b c : α
⊢ a ⊔ (b ⊔ c) = a ⊔ b ⊔ (a ⊔ c)
[PROOFSTEP]
rw [sup_sup_sup_comm, sup_idem]
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeSup α
a✝ b✝ c✝ d a b c : α
⊢ a ⊔ b ⊔ c = a ⊔ c ⊔ (b ⊔ c)
[PROOFSTEP]
rw [sup_sup_sup_comm, sup_idem]
[GOAL]
α✝ : Type u
β : Type v
inst✝ : SemilatticeSup α✝
a b c✝ d : α✝
α : Type u_1
A B : SemilatticeSup α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
x y c : α
⊢ x ⊔ y ≤ c ↔ x ⊔ y ≤ c
[PROOFSTEP]
simp only [sup_le_iff]
[GOAL]
α✝ : Type u
β : Type v
inst✝ : SemilatticeSup α✝
a b c✝ d : α✝
α : Type u_1
A B : SemilatticeSup α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
x y c : α
⊢ x ⊔ y ≤ c ↔ x ≤ c ∧ y ≤ c
[PROOFSTEP]
rw [← H, @sup_le_iff α A, H, H]
[GOAL]
α✝ : Type u
β : Type v
inst✝ : SemilatticeSup α✝
a b c d : α✝
α : Type u_1
A B : SemilatticeSup α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ A = B
[PROOFSTEP]
have ss : A.toSup = B.toSup := by ext; apply SemilatticeSup.ext_sup H
[GOAL]
α✝ : Type u
β : Type v
inst✝ : SemilatticeSup α✝
a b c d : α✝
α : Type u_1
A B : SemilatticeSup α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ toSup = toSup
[PROOFSTEP]
ext
[GOAL]
case sup.h.h
α✝ : Type u
β : Type v
inst✝ : SemilatticeSup α✝
a b c d : α✝
α : Type u_1
A B : SemilatticeSup α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
x✝¹ x✝ : α
⊢ x✝¹ ⊔ x✝ = x✝¹ ⊔ x✝
[PROOFSTEP]
apply SemilatticeSup.ext_sup H
[GOAL]
α✝ : Type u
β : Type v
inst✝ : SemilatticeSup α✝
a b c d : α✝
α : Type u_1
A B : SemilatticeSup α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
ss : toSup = toSup
⊢ A = B
[PROOFSTEP]
cases A
[GOAL]
case mk
α✝ : Type u
β : Type v
inst✝ : SemilatticeSup α✝
a b c d : α✝
α : Type u_1
B : SemilatticeSup α
toSup✝ : Sup α
toPartialOrder✝ : PartialOrder α
le_sup_left✝ : ∀ (a b : α), a ≤ a ⊔ b
le_sup_right✝ : ∀ (a b : α), b ≤ a ⊔ b
sup_le✝ : ∀ (a b c : α), a ≤ c → b ≤ c → a ⊔ b ≤ c
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
ss : toSup = toSup
⊢ mk le_sup_left✝ le_sup_right✝ sup_le✝ = B
[PROOFSTEP]
cases B
[GOAL]
case mk.mk
α✝ : Type u
β : Type v
inst✝ : SemilatticeSup α✝
a b c d : α✝
α : Type u_1
toSup✝¹ : Sup α
toPartialOrder✝¹ : PartialOrder α
le_sup_left✝¹ : ∀ (a b : α), a ≤ a ⊔ b
le_sup_right✝¹ : ∀ (a b : α), b ≤ a ⊔ b
sup_le✝¹ : ∀ (a b c : α), a ≤ c → b ≤ c → a ⊔ b ≤ c
toSup✝ : Sup α
toPartialOrder✝ : PartialOrder α
le_sup_left✝ : ∀ (a b : α), a ≤ a ⊔ b
le_sup_right✝ : ∀ (a b : α), b ≤ a ⊔ b
sup_le✝ : ∀ (a b c : α), a ≤ c → b ≤ c → a ⊔ b ≤ c
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
ss : toSup = toSup
⊢ mk le_sup_left✝¹ le_sup_right✝¹ sup_le✝¹ = mk le_sup_left✝ le_sup_right✝ sup_le✝
[PROOFSTEP]
cases PartialOrder.ext H
[GOAL]
case mk.mk.refl
α✝ : Type u
β : Type v
inst✝ : SemilatticeSup α✝
a b c d : α✝
α : Type u_1
toSup✝¹ : Sup α
toPartialOrder✝ : PartialOrder α
le_sup_left✝¹ : ∀ (a b : α), a ≤ a ⊔ b
le_sup_right✝¹ : ∀ (a b : α), b ≤ a ⊔ b
sup_le✝¹ : ∀ (a b c : α), a ≤ c → b ≤ c → a ⊔ b ≤ c
toSup✝ : Sup α
le_sup_left✝ : ∀ (a b : α), a ≤ a ⊔ b
le_sup_right✝ : ∀ (a b : α), b ≤ a ⊔ b
sup_le✝ : ∀ (a b c : α), a ≤ c → b ≤ c → a ⊔ b ≤ c
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
ss : toSup = toSup
⊢ mk le_sup_left✝¹ le_sup_right✝¹ sup_le✝¹ = mk le_sup_left✝ le_sup_right✝ sup_le✝
[PROOFSTEP]
congr
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeInf α
a b c d : α
⊢ a ⊓ b ≤ a ∧ a ≤ a ⊓ b ↔ a ≤ b
[PROOFSTEP]
simp [le_rfl]
[GOAL]
α : Type u
β : Type v
inst✝ : SemilatticeInf α
a b c d : α
⊢ a ⊓ b ≤ b ∧ b ≤ a ⊓ b ↔ b ≤ a
[PROOFSTEP]
simp [le_rfl]
[GOAL]
α✝ : Type u
β : Type v
inst✝ : SemilatticeInf α✝
a b c✝ d : α✝
α : Type u_1
A B : SemilatticeInf α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
x y c : α
⊢ c ≤ x ⊓ y ↔ c ≤ x ⊓ y
[PROOFSTEP]
simp only [le_inf_iff]
[GOAL]
α✝ : Type u
β : Type v
inst✝ : SemilatticeInf α✝
a b c✝ d : α✝
α : Type u_1
A B : SemilatticeInf α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
x y c : α
⊢ c ≤ x ⊓ y ↔ c ≤ x ∧ c ≤ y
[PROOFSTEP]
rw [← H, @le_inf_iff α A, H, H]
[GOAL]
α✝ : Type u
β : Type v
inst✝ : SemilatticeInf α✝
a b c d : α✝
α : Type u_1
A B : SemilatticeInf α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ A = B
[PROOFSTEP]
have ss : A.toInf = B.toInf := by ext; apply SemilatticeInf.ext_inf H
[GOAL]
α✝ : Type u
β : Type v
inst✝ : SemilatticeInf α✝
a b c d : α✝
α : Type u_1
A B : SemilatticeInf α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ toInf = toInf
[PROOFSTEP]
ext
[GOAL]
case inf.h.h
α✝ : Type u
β : Type v
inst✝ : SemilatticeInf α✝
a b c d : α✝
α : Type u_1
A B : SemilatticeInf α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
x✝¹ x✝ : α
⊢ x✝¹ ⊓ x✝ = x✝¹ ⊓ x✝
[PROOFSTEP]
apply SemilatticeInf.ext_inf H
[GOAL]
α✝ : Type u
β : Type v
inst✝ : SemilatticeInf α✝
a b c d : α✝
α : Type u_1
A B : SemilatticeInf α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
ss : toInf = toInf
⊢ A = B
[PROOFSTEP]
cases A
[GOAL]
case mk
α✝ : Type u
β : Type v
inst✝ : SemilatticeInf α✝
a b c d : α✝
α : Type u_1
B : SemilatticeInf α
toInf✝ : Inf α
toPartialOrder✝ : PartialOrder α
inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a
inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b
le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
ss : toInf = toInf
⊢ mk inf_le_left✝ inf_le_right✝ le_inf✝ = B
[PROOFSTEP]
cases B
[GOAL]
case mk.mk
α✝ : Type u
β : Type v
inst✝ : SemilatticeInf α✝
a b c d : α✝
α : Type u_1
toInf✝¹ : Inf α
toPartialOrder✝¹ : PartialOrder α
inf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a
inf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b
le_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c
toInf✝ : Inf α
toPartialOrder✝ : PartialOrder α
inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a
inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b
le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
ss : toInf = toInf
⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝
[PROOFSTEP]
cases PartialOrder.ext H
[GOAL]
case mk.mk.refl
α✝ : Type u
β : Type v
inst✝ : SemilatticeInf α✝
a b c d : α✝
α : Type u_1
toInf✝¹ : Inf α
toPartialOrder✝ : PartialOrder α
inf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a
inf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b
le_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c
toInf✝ : Inf α
inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a
inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b
le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
ss : toInf = toInf
⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝
[PROOFSTEP]
congr
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝ : Inf α
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
inf_idem : ∀ (a : α), a ⊓ a = a
⊢ SemilatticeInf α
[PROOFSTEP]
haveI : SemilatticeSup αᵒᵈ := SemilatticeSup.mk' inf_comm inf_assoc inf_idem
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝ : Inf α
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
inf_idem : ∀ (a : α), a ⊓ a = a
this : SemilatticeSup αᵒᵈ
⊢ SemilatticeInf α
[PROOFSTEP]
haveI i := OrderDual.semilatticeInf αᵒᵈ
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝ : Inf α
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
inf_idem : ∀ (a : α), a ⊓ a = a
this : SemilatticeSup αᵒᵈ
i : SemilatticeInf αᵒᵈᵒᵈ
⊢ SemilatticeInf α
[PROOFSTEP]
exact i
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝¹ : Sup α
inst✝ : Inf α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
sup_idem : ∀ (a : α), a ⊔ a = a
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
inf_idem : ∀ (a : α), a ⊓ a = a
sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a
inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a
a b : α
h : a ⊔ b = b
⊢ b ⊓ a = a
[PROOFSTEP]
rw [← h, inf_comm, inf_sup_self]
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝¹ : Sup α
inst✝ : Inf α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
sup_idem : ∀ (a : α), a ⊔ a = a
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
inf_idem : ∀ (a : α), a ⊓ a = a
sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a
inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a
a b : α
h : b ⊓ a = a
⊢ a ⊔ b = b
[PROOFSTEP]
rw [← h, sup_comm, sup_inf_self]
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝¹ : Sup α
inst✝ : Inf α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a
inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a
b : α
⊢ b ⊔ b = b ⊔ b ⊓ (b ⊔ b)
[PROOFSTEP]
rw [inf_sup_self]
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝¹ : Sup α
inst✝ : Inf α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a
inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a
b : α
⊢ b ⊔ b ⊓ (b ⊔ b) = b
[PROOFSTEP]
rw [sup_inf_self]
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝¹ : Sup α
inst✝ : Inf α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a
inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a
sup_idem : ∀ (b : α), b ⊔ b = b
b : α
⊢ b ⊓ b = b ⊓ (b ⊔ b ⊓ b)
[PROOFSTEP]
rw [sup_inf_self]
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝¹ : Sup α
inst✝ : Inf α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a
inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a
sup_idem : ∀ (b : α), b ⊔ b = b
b : α
⊢ b ⊓ (b ⊔ b ⊓ b) = b
[PROOFSTEP]
rw [inf_sup_self]
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝¹ : Sup α
inst✝ : Inf α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a
inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a
sup_idem : ∀ (b : α), b ⊔ b = b
inf_idem : ∀ (b : α), b ⊓ b = b
semilatt_inf_inst : SemilatticeInf α := SemilatticeInf.mk' inf_comm inf_assoc inf_idem
semilatt_sup_inst : SemilatticeSup α := SemilatticeSup.mk' sup_comm sup_assoc sup_idem
partial_order_eq : SemilatticeSup.toPartialOrder = SemilatticeInf.toPartialOrder
a b : α
⊢ a ⊓ b ≤ a
[PROOFSTEP]
rw [partial_order_eq]
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝¹ : Sup α
inst✝ : Inf α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a
inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a
sup_idem : ∀ (b : α), b ⊔ b = b
inf_idem : ∀ (b : α), b ⊓ b = b
semilatt_inf_inst : SemilatticeInf α := SemilatticeInf.mk' inf_comm inf_assoc inf_idem
semilatt_sup_inst : SemilatticeSup α := SemilatticeSup.mk' sup_comm sup_assoc sup_idem
partial_order_eq : SemilatticeSup.toPartialOrder = SemilatticeInf.toPartialOrder
a b : α
⊢ a ⊓ b ≤ a
[PROOFSTEP]
apply inf_le_left
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝¹ : Sup α
inst✝ : Inf α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a
inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a
sup_idem : ∀ (b : α), b ⊔ b = b
inf_idem : ∀ (b : α), b ⊓ b = b
semilatt_inf_inst : SemilatticeInf α := SemilatticeInf.mk' inf_comm inf_assoc inf_idem
semilatt_sup_inst : SemilatticeSup α := SemilatticeSup.mk' sup_comm sup_assoc sup_idem
partial_order_eq : SemilatticeSup.toPartialOrder = SemilatticeInf.toPartialOrder
a b : α
⊢ a ⊓ b ≤ b
[PROOFSTEP]
rw [partial_order_eq]
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝¹ : Sup α
inst✝ : Inf α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a
inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a
sup_idem : ∀ (b : α), b ⊔ b = b
inf_idem : ∀ (b : α), b ⊓ b = b
semilatt_inf_inst : SemilatticeInf α := SemilatticeInf.mk' inf_comm inf_assoc inf_idem
semilatt_sup_inst : SemilatticeSup α := SemilatticeSup.mk' sup_comm sup_assoc sup_idem
partial_order_eq : SemilatticeSup.toPartialOrder = SemilatticeInf.toPartialOrder
a b : α
⊢ a ⊓ b ≤ b
[PROOFSTEP]
apply inf_le_right
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝¹ : Sup α
inst✝ : Inf α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a
inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a
sup_idem : ∀ (b : α), b ⊔ b = b
inf_idem : ∀ (b : α), b ⊓ b = b
semilatt_inf_inst : SemilatticeInf α := SemilatticeInf.mk' inf_comm inf_assoc inf_idem
semilatt_sup_inst : SemilatticeSup α := SemilatticeSup.mk' sup_comm sup_assoc sup_idem
partial_order_eq : SemilatticeSup.toPartialOrder = SemilatticeInf.toPartialOrder
a b c : α
⊢ a ≤ b → a ≤ c → a ≤ b ⊓ c
[PROOFSTEP]
rw [partial_order_eq]
[GOAL]
α✝ : Type u
β : Type v
α : Type u_1
inst✝¹ : Sup α
inst✝ : Inf α
sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a
sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)
inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a
inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)
sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a
inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a
sup_idem : ∀ (b : α), b ⊔ b = b
inf_idem : ∀ (b : α), b ⊓ b = b
semilatt_inf_inst : SemilatticeInf α := SemilatticeInf.mk' inf_comm inf_assoc inf_idem
semilatt_sup_inst : SemilatticeSup α := SemilatticeSup.mk' sup_comm sup_assoc sup_idem
partial_order_eq : SemilatticeSup.toPartialOrder = SemilatticeInf.toPartialOrder
a b c : α
⊢ a ≤ b → a ≤ c → a ≤ b ⊓ c
[PROOFSTEP]
apply le_inf
[GOAL]
α : Type u
β : Type v
inst✝ : Lattice α
a b c d : α
⊢ a ⊔ b ≤ a ⊓ b ↔ a = b
[PROOFSTEP]
simp [le_antisymm_iff, and_comm]
[GOAL]
α : Type u
β : Type v
inst✝ : Lattice α
a b c d : α
⊢ a ⊓ b = a ⊔ b ↔ a = b
[PROOFSTEP]
rw [← inf_le_sup.ge_iff_eq, sup_le_inf]
[GOAL]
α : Type u
β : Type v
inst✝ : Lattice α
a b c d : α
⊢ a ⊓ b < a ⊔ b ↔ a ≠ b
[PROOFSTEP]
rw [inf_le_sup.lt_iff_ne, Ne.def, inf_eq_sup]
[GOAL]
α : Type u
β : Type v
inst✝ : Lattice α
a b c d : α
⊢ a ⊓ b = c ∧ a ⊔ b = c ↔ a = c ∧ b = c
[PROOFSTEP]
refine' ⟨fun h ↦ _, _⟩
[GOAL]
case refine'_1
α : Type u
β : Type v
inst✝ : Lattice α
a b c d : α
h : a ⊓ b = c ∧ a ⊔ b = c
⊢ a = c ∧ b = c
case refine'_2 α : Type u β : Type v inst✝ : Lattice α a b c d : α ⊢ a = c ∧ b = c → a ⊓ b = c ∧ a ⊔ b = c
[PROOFSTEP]
{ obtain rfl := sup_eq_inf.1 (h.2.trans h.1.symm)
simpa using h
}
[GOAL]
case refine'_1
α : Type u
β : Type v
inst✝ : Lattice α
a b c d : α
h : a ⊓ b = c ∧ a ⊔ b = c
⊢ a = c ∧ b = c
[PROOFSTEP]
obtain rfl := sup_eq_inf.1 (h.2.trans h.1.symm)
[GOAL]
case refine'_1
α : Type u
β : Type v
inst✝ : Lattice α
a c d : α
h : a ⊓ a = c ∧ a ⊔ a = c
⊢ a = c ∧ a = c
[PROOFSTEP]
simpa using h
[GOAL]
case refine'_2
α : Type u
β : Type v
inst✝ : Lattice α
a b c d : α
⊢ a = c ∧ b = c → a ⊓ b = c ∧ a ⊔ b = c
[PROOFSTEP]
{ rintro ⟨rfl, rfl⟩
exact ⟨inf_idem, sup_idem⟩
}
[GOAL]
case refine'_2
α : Type u
β : Type v
inst✝ : Lattice α
a b c d : α
⊢ a = c ∧ b = c → a ⊓ b = c ∧ a ⊔ b = c
[PROOFSTEP]
rintro ⟨rfl, rfl⟩
[GOAL]
case refine'_2.intro
α : Type u
β : Type v
inst✝ : Lattice α
b d : α
⊢ b ⊓ b = b ∧ b ⊔ b = b
[PROOFSTEP]
exact ⟨inf_idem, sup_idem⟩
[GOAL]
α : Type u
β : Type v
inst✝ : Lattice α
a b c d : α
⊢ a ⊓ (a ⊔ b) = a
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
inst✝ : Lattice α
a b c d : α
⊢ a ⊔ a ⊓ b = a
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
inst✝ : Lattice α
a b c d : α
⊢ a ⊔ b = b ↔ a ⊓ b = a
[PROOFSTEP]
rw [sup_eq_right, ← inf_eq_left]
[GOAL]
α✝ : Type u
β : Type v
inst✝ : Lattice α✝
a b c d : α✝
α : Type u_1
A B : Lattice α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ A = B
[PROOFSTEP]
cases A
[GOAL]
case mk
α✝ : Type u
β : Type v
inst✝ : Lattice α✝
a b c d : α✝
α : Type u_1
B : Lattice α
toSemilatticeSup✝ : SemilatticeSup α
toInf✝ : Inf α
inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a
inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b
le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ mk inf_le_left✝ inf_le_right✝ le_inf✝ = B
[PROOFSTEP]
cases B
[GOAL]
case mk.mk
α✝ : Type u
β : Type v
inst✝ : Lattice α✝
a b c d : α✝
α : Type u_1
toSemilatticeSup✝¹ : SemilatticeSup α
toInf✝¹ : Inf α
inf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a
inf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b
le_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c
toSemilatticeSup✝ : SemilatticeSup α
toInf✝ : Inf α
inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a
inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b
le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝
[PROOFSTEP]
cases SemilatticeSup.ext H
[GOAL]
case mk.mk.refl
α✝ : Type u
β : Type v
inst✝ : Lattice α✝
a b c d : α✝
α : Type u_1
toSemilatticeSup✝ : SemilatticeSup α
toInf✝¹ : Inf α
inf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a
inf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b
le_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c
toInf✝ : Inf α
inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a
inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b
le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝
[PROOFSTEP]
cases SemilatticeInf.ext H
[GOAL]
case mk.mk.refl.refl
α✝ : Type u
β : Type v
inst✝ : Lattice α✝
a b c d : α✝
α : Type u_1
toSemilatticeSup✝ : SemilatticeSup α
toInf✝ : Inf α
inf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a
inf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b
le_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c
inf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a
inf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b
le_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝
[PROOFSTEP]
congr
[GOAL]
α : Type u
β : Type v
inst✝ : DistribLattice α
x y z : α
⊢ y ⊓ z ⊔ x = (y ⊔ x) ⊓ (z ⊔ x)
[PROOFSTEP]
simp only [sup_inf_left, fun y : α => @sup_comm α _ y x, eq_self_iff_true]
[GOAL]
α : Type u
β : Type v
inst✝ : DistribLattice α
x y z : α
⊢ x ⊓ (y ⊔ z) = x ⊓ (x ⊔ z) ⊓ (y ⊔ z)
[PROOFSTEP]
rw [inf_sup_self]
[GOAL]
α : Type u
β : Type v
inst✝ : DistribLattice α
x y z : α
⊢ x ⊓ (x ⊔ z) ⊓ (y ⊔ z) = x ⊓ (x ⊓ y ⊔ z)
[PROOFSTEP]
simp only [inf_assoc, sup_inf_right, eq_self_iff_true]
[GOAL]
α : Type u
β : Type v
inst✝ : DistribLattice α
x y z : α
⊢ x ⊓ (x ⊓ y ⊔ z) = (x ⊔ x ⊓ y) ⊓ (x ⊓ y ⊔ z)
[PROOFSTEP]
rw [sup_inf_self]
[GOAL]
α : Type u
β : Type v
inst✝ : DistribLattice α
x y z : α
⊢ (x ⊔ x ⊓ y) ⊓ (x ⊓ y ⊔ z) = (x ⊓ y ⊔ x) ⊓ (x ⊓ y ⊔ z)
[PROOFSTEP]
rw [sup_comm]
[GOAL]
α : Type u
β : Type v
inst✝ : DistribLattice α
x y z : α
⊢ (x ⊓ y ⊔ x) ⊓ (x ⊓ y ⊔ z) = x ⊓ y ⊔ x ⊓ z
[PROOFSTEP]
rw [sup_inf_left]
[GOAL]
α : Type u
β : Type v
inst✝ : DistribLattice α
x y z : α
⊢ (y ⊔ z) ⊓ x = y ⊓ x ⊔ z ⊓ x
[PROOFSTEP]
simp only [inf_sup_left, fun y : α => @inf_comm α _ y x, eq_self_iff_true]
[GOAL]
α : Type u
β : Type v
inst✝ : DistribLattice α
x y z : α
h₁ : x ⊓ z ≤ y ⊓ z
h₂ : x ⊔ z ≤ y ⊔ z
⊢ y ⊓ z ⊔ x = (y ⊔ x) ⊓ (x ⊔ z)
[PROOFSTEP]
rw [sup_inf_right, @sup_comm _ _ x]
[GOAL]
α : Type u
β : Type v
inst✝ : LinearOrder α
a✝ b✝ c d a b : α
p : α → Prop
ha : p a
hb : p b
h : a ≤ b
⊢ p (a ⊔ b)
[PROOFSTEP]
rwa [sup_eq_right.2 h]
[GOAL]
α : Type u
β : Type v
inst✝ : LinearOrder α
a✝ b✝ c d a b : α
p : α → Prop
ha : p a
hb : p b
h : b ≤ a
⊢ p (a ⊔ b)
[PROOFSTEP]
rwa [sup_eq_left.2 h]
[GOAL]
α : Type u
β : Type v
inst✝ : LinearOrder α
a b c d : α
⊢ a ≤ b ⊔ c ↔ a ≤ b ∨ a ≤ c
[PROOFSTEP]
exact
⟨fun h => (le_total c b).imp (fun bc => by rwa [sup_eq_left.2 bc] at h ) (fun bc => by rwa [sup_eq_right.2 bc] at h ),
fun h => h.elim le_sup_of_le_left le_sup_of_le_right⟩
[GOAL]
α : Type u
β : Type v
inst✝ : LinearOrder α
a b c d : α
h : a ≤ b ⊔ c
bc : c ≤ b
⊢ a ≤ b
[PROOFSTEP]
rwa [sup_eq_left.2 bc] at h
[GOAL]
α : Type u
β : Type v
inst✝ : LinearOrder α
a b c d : α
h : a ≤ b ⊔ c
bc : b ≤ c
⊢ a ≤ c
[PROOFSTEP]
rwa [sup_eq_right.2 bc] at h
[GOAL]
α : Type u
β : Type v
inst✝ : LinearOrder α
a b c d : α
⊢ a < b ⊔ c ↔ a < b ∨ a < c
[PROOFSTEP]
exact
⟨fun h => (le_total c b).imp (fun bc => by rwa [sup_eq_left.2 bc] at h ) (fun bc => by rwa [sup_eq_right.2 bc] at h ),
fun h => h.elim lt_sup_of_lt_left lt_sup_of_lt_right⟩
[GOAL]
α : Type u
β : Type v
inst✝ : LinearOrder α
a b c d : α
h : a < b ⊔ c
bc : c ≤ b
⊢ a < b
[PROOFSTEP]
rwa [sup_eq_left.2 bc] at h
[GOAL]
α : Type u
β : Type v
inst✝ : LinearOrder α
a b c d : α
h : a < b ⊔ c
bc : b ≤ c
⊢ a < c
[PROOFSTEP]
rwa [sup_eq_right.2 bc] at h
[GOAL]
α : Type u
β : Type v
inst✝² : SemilatticeSup α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
⊢ (fun x x_1 => x ⊔ x_1) = maxDefault
[PROOFSTEP]
ext x y
[GOAL]
case h.h
α : Type u
β : Type v
inst✝² : SemilatticeSup α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
x y : α
⊢ x ⊔ y = maxDefault x y
[PROOFSTEP]
unfold maxDefault
[GOAL]
case h.h
α : Type u
β : Type v
inst✝² : SemilatticeSup α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
x y : α
⊢ x ⊔ y = if x ≤ y then y else x
[PROOFSTEP]
split_ifs with h'
[GOAL]
case pos
α : Type u
β : Type v
inst✝² : SemilatticeSup α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
x y : α
h' : x ≤ y
⊢ x ⊔ y = y
case neg
α : Type u
β : Type v
inst✝² : SemilatticeSup α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
x y : α
h' : ¬x ≤ y
⊢ x ⊔ y = x
[PROOFSTEP]
exacts [sup_of_le_right h', sup_of_le_left $ (total_of (· ≤ ·) x y).resolve_left h']
[GOAL]
α : Type u
β : Type v
inst✝² : SemilatticeInf α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
⊢ (fun x x_1 => x ⊓ x_1) = minDefault
[PROOFSTEP]
ext x y
[GOAL]
case h.h
α : Type u
β : Type v
inst✝² : SemilatticeInf α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
x y : α
⊢ x ⊓ y = minDefault x y
[PROOFSTEP]
unfold minDefault
[GOAL]
case h.h
α : Type u
β : Type v
inst✝² : SemilatticeInf α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
x y : α
⊢ x ⊓ y = if x ≤ y then x else y
[PROOFSTEP]
split_ifs with h'
[GOAL]
case pos
α : Type u
β : Type v
inst✝² : SemilatticeInf α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
x y : α
h' : x ≤ y
⊢ x ⊓ y = x
case neg
α : Type u
β : Type v
inst✝² : SemilatticeInf α
inst✝¹ : DecidableRel fun x x_1 => x ≤ x_1
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
x y : α
h' : ¬x ≤ y
⊢ x ⊓ y = y
[PROOFSTEP]
exacts [inf_of_le_left h', inf_of_le_right $ (total_of (· ≤ ·) x y).resolve_left h']
[GOAL]
α✝ : Type u
β : Type v
α : Type u
inst✝⁴ : Lattice α
inst✝³ : DecidableEq α
inst✝² : DecidableRel fun x x_1 => x ≤ x_1
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
src✝ : Lattice α := inst✝⁴
⊢ ∀ (a b : α), min a b = if a ≤ b then a else b
[PROOFSTEP]
exact congr_fun₂ inf_eq_minDefault
[GOAL]
α✝ : Type u
β : Type v
α : Type u
inst✝⁴ : Lattice α
inst✝³ : DecidableEq α
inst✝² : DecidableRel fun x x_1 => x ≤ x_1
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
src✝ : Lattice α := inst✝⁴
⊢ ∀ (a b : α), max a b = if a ≤ b then b else a
[PROOFSTEP]
exact congr_fun₂ sup_eq_maxDefault
[GOAL]
α : Type u
β : Type v
ι : Type u_1
π : ι → Type u_2
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → SemilatticeSup (π i)
f : (i : ι) → π i
i : ι
a b : π i
j : ι
⊢ update f i (a ⊔ b) j = (update f i a ⊔ update f i b) j
[PROOFSTEP]
obtain rfl | hji := eq_or_ne j i
[GOAL]
case inl
α : Type u
β : Type v
ι : Type u_1
π : ι → Type u_2
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → SemilatticeSup (π i)
f : (i : ι) → π i
j : ι
a b : π j
⊢ update f j (a ⊔ b) j = (update f j a ⊔ update f j b) j
[PROOFSTEP]
simp [update_noteq, *]
[GOAL]
case inr
α : Type u
β : Type v
ι : Type u_1
π : ι → Type u_2
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → SemilatticeSup (π i)
f : (i : ι) → π i
i : ι
a b : π i
j : ι
hji : j ≠ i
⊢ update f i (a ⊔ b) j = (update f i a ⊔ update f i b) j
[PROOFSTEP]
simp [update_noteq, *]
[GOAL]
α : Type u
β : Type v
ι : Type u_1
π : ι → Type u_2
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → SemilatticeInf (π i)
f : (i : ι) → π i
i : ι
a b : π i
j : ι
⊢ update f i (a ⊓ b) j = (update f i a ⊓ update f i b) j
[PROOFSTEP]
obtain rfl | hji := eq_or_ne j i
[GOAL]
case inl
α : Type u
β : Type v
ι : Type u_1
π : ι → Type u_2
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → SemilatticeInf (π i)
f : (i : ι) → π i
j : ι
a b : π j
⊢ update f j (a ⊓ b) j = (update f j a ⊓ update f j b) j
[PROOFSTEP]
simp [update_noteq, *]
[GOAL]
case inr
α : Type u
β : Type v
ι : Type u_1
π : ι → Type u_2
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → SemilatticeInf (π i)
f : (i : ι) → π i
i : ι
a b : π i
j : ι
hji : j ≠ i
⊢ update f i (a ⊓ b) j = (update f i a ⊓ update f i b) j
[PROOFSTEP]
simp [update_noteq, *]
[GOAL]
α : Type u
β : Type v
inst✝¹ : SemilatticeInf α
inst✝ : SemilatticeInf β
f : α → β
h : ∀ (x y : α), f (x ⊓ y) = f x ⊓ f y
x y : α
hxy : x ≤ y
⊢ f x ⊓ f y = f x
[PROOFSTEP]
rw [← h, inf_eq_left.2 hxy]
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : SemilatticeSup β
f : α → β
hf : Monotone f
x y : α
h : x ≤ y
⊢ f (x ⊔ y) = f x ⊔ f y
[PROOFSTEP]
simp only [h, hf h, sup_of_le_right]
[GOAL]
α : Type u
β : Type v
inst✝¹ : LinearOrder α
inst✝ : SemilatticeSup β
f : α → β
hf : Monotone f
x y : α
h : y ≤ x
⊢ f (x ⊔ y) = f x ⊔ f y
[PROOFSTEP]
simp only [h, hf h, sup_of_le_left]
[GOAL]
α : Type u
β : Type v
inst✝¹ : Sup α
inst✝ : SemilatticeSup β
f : α → β
hf_inj : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b : α
⊢ a ≤ a ⊔ b
[PROOFSTEP]
change f a ≤ f (a ⊔ b)
[GOAL]
α : Type u
β : Type v
inst✝¹ : Sup α
inst✝ : SemilatticeSup β
f : α → β
hf_inj : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b : α
⊢ f a ≤ f (a ⊔ b)
[PROOFSTEP]
rw [map_sup]
[GOAL]
α : Type u
β : Type v
inst✝¹ : Sup α
inst✝ : SemilatticeSup β
f : α → β
hf_inj : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b : α
⊢ f a ≤ f a ⊔ f b
[PROOFSTEP]
exact le_sup_left
[GOAL]
α : Type u
β : Type v
inst✝¹ : Sup α
inst✝ : SemilatticeSup β
f : α → β
hf_inj : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b : α
⊢ b ≤ a ⊔ b
[PROOFSTEP]
change f b ≤ f (a ⊔ b)
[GOAL]
α : Type u
β : Type v
inst✝¹ : Sup α
inst✝ : SemilatticeSup β
f : α → β
hf_inj : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b : α
⊢ f b ≤ f (a ⊔ b)
[PROOFSTEP]
rw [map_sup]
[GOAL]
α : Type u
β : Type v
inst✝¹ : Sup α
inst✝ : SemilatticeSup β
f : α → β
hf_inj : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b : α
⊢ f b ≤ f a ⊔ f b
[PROOFSTEP]
exact le_sup_right
[GOAL]
α : Type u
β : Type v
inst✝¹ : Sup α
inst✝ : SemilatticeSup β
f : α → β
hf_inj : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b c : α
ha : a ≤ c
hb : b ≤ c
⊢ a ⊔ b ≤ c
[PROOFSTEP]
change f (a ⊔ b) ≤ f c
[GOAL]
α : Type u
β : Type v
inst✝¹ : Sup α
inst✝ : SemilatticeSup β
f : α → β
hf_inj : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b c : α
ha : a ≤ c
hb : b ≤ c
⊢ f (a ⊔ b) ≤ f c
[PROOFSTEP]
rw [map_sup]
[GOAL]
α : Type u
β : Type v
inst✝¹ : Sup α
inst✝ : SemilatticeSup β
f : α → β
hf_inj : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b c : α
ha : a ≤ c
hb : b ≤ c
⊢ f a ⊔ f b ≤ f c
[PROOFSTEP]
exact sup_le ha hb
[GOAL]
α : Type u
β : Type v
inst✝¹ : Inf α
inst✝ : SemilatticeInf β
f : α → β
hf_inj : Injective f
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b : α
⊢ a ⊓ b ≤ a
[PROOFSTEP]
change f (a ⊓ b) ≤ f a
[GOAL]
α : Type u
β : Type v
inst✝¹ : Inf α
inst✝ : SemilatticeInf β
f : α → β
hf_inj : Injective f
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b : α
⊢ f (a ⊓ b) ≤ f a
[PROOFSTEP]
rw [map_inf]
[GOAL]
α : Type u
β : Type v
inst✝¹ : Inf α
inst✝ : SemilatticeInf β
f : α → β
hf_inj : Injective f
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b : α
⊢ f a ⊓ f b ≤ f a
[PROOFSTEP]
exact inf_le_left
[GOAL]
α : Type u
β : Type v
inst✝¹ : Inf α
inst✝ : SemilatticeInf β
f : α → β
hf_inj : Injective f
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b : α
⊢ a ⊓ b ≤ b
[PROOFSTEP]
change f (a ⊓ b) ≤ f b
[GOAL]
α : Type u
β : Type v
inst✝¹ : Inf α
inst✝ : SemilatticeInf β
f : α → β
hf_inj : Injective f
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b : α
⊢ f (a ⊓ b) ≤ f b
[PROOFSTEP]
rw [map_inf]
[GOAL]
α : Type u
β : Type v
inst✝¹ : Inf α
inst✝ : SemilatticeInf β
f : α → β
hf_inj : Injective f
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b : α
⊢ f a ⊓ f b ≤ f b
[PROOFSTEP]
exact inf_le_right
[GOAL]
α : Type u
β : Type v
inst✝¹ : Inf α
inst✝ : SemilatticeInf β
f : α → β
hf_inj : Injective f
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b c : α
ha : a ≤ b
hb : a ≤ c
⊢ a ≤ b ⊓ c
[PROOFSTEP]
change f a ≤ f (b ⊓ c)
[GOAL]
α : Type u
β : Type v
inst✝¹ : Inf α
inst✝ : SemilatticeInf β
f : α → β
hf_inj : Injective f
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b c : α
ha : a ≤ b
hb : a ≤ c
⊢ f a ≤ f (b ⊓ c)
[PROOFSTEP]
rw [map_inf]
[GOAL]
α : Type u
β : Type v
inst✝¹ : Inf α
inst✝ : SemilatticeInf β
f : α → β
hf_inj : Injective f
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
src✝ : PartialOrder α := PartialOrder.lift f hf_inj
a b c : α
ha : a ≤ b
hb : a ≤ c
⊢ f a ≤ f b ⊓ f c
[PROOFSTEP]
exact le_inf ha hb
[GOAL]
α : Type u
β : Type v
inst✝² : Sup α
inst✝¹ : Inf α
inst✝ : DistribLattice β
f : α → β
hf_inj : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
src✝ : Lattice α := Injective.lattice f hf_inj map_sup map_inf
a b c : α
⊢ (a ⊔ b) ⊓ (a ⊔ c) ≤ a ⊔ b ⊓ c
[PROOFSTEP]
change f ((a ⊔ b) ⊓ (a ⊔ c)) ≤ f (a ⊔ b ⊓ c)
[GOAL]
α : Type u
β : Type v
inst✝² : Sup α
inst✝¹ : Inf α
inst✝ : DistribLattice β
f : α → β
hf_inj : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
src✝ : Lattice α := Injective.lattice f hf_inj map_sup map_inf
a b c : α
⊢ f ((a ⊔ b) ⊓ (a ⊔ c)) ≤ f (a ⊔ b ⊓ c)
[PROOFSTEP]
rw [map_inf, map_sup, map_sup, map_sup, map_inf]
[GOAL]
α : Type u
β : Type v
inst✝² : Sup α
inst✝¹ : Inf α
inst✝ : DistribLattice β
f : α → β
hf_inj : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
src✝ : Lattice α := Injective.lattice f hf_inj map_sup map_inf
a b c : α
⊢ (f a ⊔ f b) ⊓ (f a ⊔ f c) ≤ f a ⊔ f b ⊓ f c
[PROOFSTEP]
exact le_sup_inf
| {"mathlib_filename": "Mathlib.Order.Lattice", "llama_tokens": 21368} |
[GOAL]
𝕆 : Type u_1
ℙ : Type u_2
α : Type u_3
β : Type u_4
inst✝⁴ : Preorder 𝕆
inst✝³ : Preorder ℙ
inst✝² : Preorder α
inst✝¹ : Preorder β
n : ℕ
inst✝ : GradeMinOrder (Fin n) α
a : Fin n
h : IsMin a
⊢ IsMin ↑a
[PROOFSTEP]
cases n
[GOAL]
case zero
𝕆 : Type u_1
ℙ : Type u_2
α : Type u_3
β : Type u_4
inst✝⁴ : Preorder 𝕆
inst✝³ : Preorder ℙ
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : GradeMinOrder (Fin zero) α
a : Fin zero
h : IsMin a
⊢ IsMin ↑a
[PROOFSTEP]
exact a.elim0
[GOAL]
case succ
𝕆 : Type u_1
ℙ : Type u_2
α : Type u_3
β : Type u_4
inst✝⁴ : Preorder 𝕆
inst✝³ : Preorder ℙ
inst✝² : Preorder α
inst✝¹ : Preorder β
n✝ : ℕ
inst✝ : GradeMinOrder (Fin (succ n✝)) α
a : Fin (succ n✝)
h : IsMin a
⊢ IsMin ↑a
[PROOFSTEP]
rw [h.eq_bot, Fin.bot_eq_zero]
[GOAL]
case succ
𝕆 : Type u_1
ℙ : Type u_2
α : Type u_3
β : Type u_4
inst✝⁴ : Preorder 𝕆
inst✝³ : Preorder ℙ
inst✝² : Preorder α
inst✝¹ : Preorder β
n✝ : ℕ
inst✝ : GradeMinOrder (Fin (succ n✝)) α
a : Fin (succ n✝)
h : IsMin a
⊢ IsMin ↑0
[PROOFSTEP]
exact isMin_bot
| {"mathlib_filename": "Mathlib.Order.Grade", "llama_tokens": 595} |
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsRefl α r
inst✝ : IsAntisymm α r
a b : α
⊢ a = b → r a b ∧ r b a
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsRefl α r
inst✝ : IsAntisymm α r
a : α
⊢ r a a ∧ r a a
[PROOFSTEP]
exact ⟨refl _, refl _⟩
[GOAL]
α : Type u
β : Type v
r✝ : α → α → Prop
s : β → β → Prop
r : α → α → Prop
inst✝ : IsTrichotomous α r
a b : α
⊢ Function.swap r a b ∨ a = b ∨ Function.swap r b a
[PROOFSTEP]
simpa [Function.swap, or_comm, or_left_comm] using trichotomous_of r a b
[GOAL]
α : Type u
β : Type v
r✝ : α → α → Prop
s : β → β → Prop
r : α → α → Prop
inst✝¹ : IsIrrefl α r
inst✝ : Subsingleton α
⊢ ∀ (a b : α), r a b = EmptyRelation a b
[PROOFSTEP]
simpa using not_rel_of_subsingleton r
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrans α r
inst✝ : IsTrichotomous α r
a b c : α
⊢ ¬r b a → r b c → r a c
[PROOFSTEP]
intro h₁ h₂
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrans α r
inst✝ : IsTrichotomous α r
a b c : α
h₁ : ¬r b a
h₂ : r b c
⊢ r a c
[PROOFSTEP]
rcases trichotomous_of r a b with (h₃ | rfl | h₃)
[GOAL]
case inl
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrans α r
inst✝ : IsTrichotomous α r
a b c : α
h₁ : ¬r b a
h₂ : r b c
h₃ : r a b
⊢ r a c
case inr.inl
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrans α r
inst✝ : IsTrichotomous α r
a c : α
h₁ : ¬r a a
h₂ : r a c
⊢ r a c
case inr.inr
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrans α r
inst✝ : IsTrichotomous α r
a b c : α
h₁ : ¬r b a
h₂ : r b c
h₃ : r b a
⊢ r a c
[PROOFSTEP]
exacts [_root_.trans h₃ h₂, h₂, absurd h₃ h₁]
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrans α r
inst✝ : IsTrichotomous α r
a b c : α
⊢ r a b → ¬r c b → r a c
[PROOFSTEP]
intro h₁ h₂
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrans α r
inst✝ : IsTrichotomous α r
a b c : α
h₁ : r a b
h₂ : ¬r c b
⊢ r a c
[PROOFSTEP]
rcases trichotomous_of r b c with (h₃ | rfl | h₃)
[GOAL]
case inl
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrans α r
inst✝ : IsTrichotomous α r
a b c : α
h₁ : r a b
h₂ : ¬r c b
h₃ : r b c
⊢ r a c
case inr.inl
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrans α r
inst✝ : IsTrichotomous α r
a b : α
h₁ : r a b
h₂ : ¬r b b
⊢ r a b
case inr.inr
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsTrans α r
inst✝ : IsTrichotomous α r
a b c : α
h₁ : r a b
h₂ : ¬r c b
h₃ : r c b
⊢ r a c
[PROOFSTEP]
exacts [_root_.trans h₁ h₃, h₁, absurd h₃ h₂]
[GOAL]
α : Type u
β : Type v
r✝ : α → α → Prop
s : β → β → Prop
r : α → α → Prop
inst✝ : IsStrictOrder α r
x y : α
h : x < y
e : y = x
⊢ False
[PROOFSTEP]
rw [e] at h
[GOAL]
α : Type u
β : Type v
r✝ : α → α → Prop
s : β → β → Prop
r : α → α → Prop
inst✝ : IsStrictOrder α r
x y : α
h : x < x
e : y = x
⊢ False
[PROOFSTEP]
exact irrefl _ h
[GOAL]
α : Type u
β : Type v
r✝ : α → α → Prop
s : β → β → Prop
r : α → α → Prop
inst✝ : IsOrderConnected α r
a b c : α
h₁ : ¬r a b
h₂ : ¬r b c
⊢ ¬(r a b ∨ r b c)
[PROOFSTEP]
simp [h₁, h₂]
[GOAL]
α✝ : Type u
β : Type v
r✝ : α✝ → α✝ → Prop
s : β → β → Prop
α : Type ?u.14854
r : α → α → Prop
inst✝ : IsWellOrder α r
⊢ IsTrichotomous α r
[PROOFSTEP]
infer_instance
-- see Note [lower instance priority]
[GOAL]
α✝ : Type u
β : Type v
r✝ : α✝ → α✝ → Prop
s : β → β → Prop
α : Type ?u.14937
r : α → α → Prop
inst✝ : IsWellOrder α r
⊢ IsTrans α r
[PROOFSTEP]
infer_instance
-- see Note [lower instance priority]
[GOAL]
α✝ : Type u
β : Type v
r✝ : α✝ → α✝ → Prop
s : β → β → Prop
α : Type ?u.15023
r : α → α → Prop
inst✝ : IsWellOrder α r
⊢ IsIrrefl α r
[PROOFSTEP]
infer_instance
-- see Note [lower instance priority]
[GOAL]
α✝ : Type u
β : Type v
r✝ : α✝ → α✝ → Prop
s : β → β → Prop
α : Type ?u.15135
r : α → α → Prop
inst✝ : IsWellOrder α r
⊢ IsAsymm α r
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsWellOrder α r
inst✝ : IsWellOrder β s
a b c : α × β
h₁ : Prod.Lex r s a b
h₂ : Prod.Lex r s b c
⊢ Prod.Lex r s a c
[PROOFSTEP]
cases' h₁ with a₁ a₂ b₁ b₂ ab a₁ b₁ b₂ ab
[GOAL]
case left
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsWellOrder α r
inst✝ : IsWellOrder β s
c : α × β
a₁ : α
a₂ : β
b₁ : α
b₂ : β
ab : r a₁ b₁
h₂ : Prod.Lex r s (b₁, b₂) c
⊢ Prod.Lex r s (a₁, a₂) c
[PROOFSTEP]
cases' h₂ with _ _ c₁ c₂ bc _ _ c₂ bc
[GOAL]
case right
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsWellOrder α r
inst✝ : IsWellOrder β s
c : α × β
a₁ : α
b₁ b₂ : β
ab : s b₁ b₂
h₂ : Prod.Lex r s (a₁, b₂) c
⊢ Prod.Lex r s (a₁, b₁) c
[PROOFSTEP]
cases' h₂ with _ _ c₁ c₂ bc _ _ c₂ bc
[GOAL]
case left.left
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsWellOrder α r
inst✝ : IsWellOrder β s
a₁ : α
a₂ : β
b₁ : α
b₂ : β
ab : r a₁ b₁
c₁ : α
c₂ : β
bc : r b₁ c₁
⊢ Prod.Lex r s (a₁, a₂) (c₁, c₂)
case left.right
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsWellOrder α r
inst✝ : IsWellOrder β s
a₁ : α
a₂ : β
b₁ : α
b₂ : β
ab : r a₁ b₁
c₂ : β
bc : s b₂ c₂
⊢ Prod.Lex r s (a₁, a₂) (b₁, c₂)
case right.left
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsWellOrder α r
inst✝ : IsWellOrder β s
a₁ : α
b₁ b₂ : β
ab : s b₁ b₂
c₁ : α
c₂ : β
bc : r a₁ c₁
⊢ Prod.Lex r s (a₁, b₁) (c₁, c₂)
case right.right
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝¹ : IsWellOrder α r
inst✝ : IsWellOrder β s
a₁ : α
b₁ b₂ : β
ab : s b₁ b₂
c₂ : β
bc : s b₂ c₂
⊢ Prod.Lex r s (a₁, b₁) (a₁, c₂)
[PROOFSTEP]
exacts [.left _ _ (_root_.trans ab bc), .left _ _ ab, .left _ _ bc, .right _ (_root_.trans ab bc)]
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝³ : PartialOrder α
inst✝² : WellFoundedLT α
inst✝¹ : Preorder β
inst✝ : WellFoundedLT β
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
refine @Subrelation.wf (α × β) (Prod.Lex (· < ·) (· < ·)) (· < ·) ?_ IsWellFounded.wf
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝³ : PartialOrder α
inst✝² : WellFoundedLT α
inst✝¹ : Preorder β
inst✝ : WellFoundedLT β
⊢ Subrelation (fun x x_1 => x < x_1) (Prod.Lex (fun x x_1 => x < x_1) fun x x_1 => x < x_1)
[PROOFSTEP]
rintro ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ w
[GOAL]
case mk.mk
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝³ : PartialOrder α
inst✝² : WellFoundedLT α
inst✝¹ : Preorder β
inst✝ : WellFoundedLT β
a₁ : α
b₁ : β
a₂ : α
b₂ : β
w : (a₁, b₁) < (a₂, b₂)
⊢ Prod.Lex (fun x x_1 => x < x_1) (fun x x_1 => x < x_1) (a₁, b₁) (a₂, b₂)
[PROOFSTEP]
simp only [Prod.mk_lt_mk] at w
[GOAL]
case mk.mk
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝³ : PartialOrder α
inst✝² : WellFoundedLT α
inst✝¹ : Preorder β
inst✝ : WellFoundedLT β
a₁ : α
b₁ : β
a₂ : α
b₂ : β
w : a₁ < a₂ ∧ b₁ ≤ b₂ ∨ a₁ ≤ a₂ ∧ b₁ < b₂
⊢ Prod.Lex (fun x x_1 => x < x_1) (fun x x_1 => x < x_1) (a₁, b₁) (a₂, b₂)
[PROOFSTEP]
rcases eq_or_ne a₁ a₂ with rfl | ha
[GOAL]
case mk.mk.inl
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝³ : PartialOrder α
inst✝² : WellFoundedLT α
inst✝¹ : Preorder β
inst✝ : WellFoundedLT β
a₁ : α
b₁ b₂ : β
w : a₁ < a₁ ∧ b₁ ≤ b₂ ∨ a₁ ≤ a₁ ∧ b₁ < b₂
⊢ Prod.Lex (fun x x_1 => x < x_1) (fun x x_1 => x < x_1) (a₁, b₁) (a₁, b₂)
[PROOFSTEP]
right
[GOAL]
case mk.mk.inl.h
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝³ : PartialOrder α
inst✝² : WellFoundedLT α
inst✝¹ : Preorder β
inst✝ : WellFoundedLT β
a₁ : α
b₁ b₂ : β
w : a₁ < a₁ ∧ b₁ ≤ b₂ ∨ a₁ ≤ a₁ ∧ b₁ < b₂
⊢ b₁ < b₂
[PROOFSTEP]
simpa using w
[GOAL]
case mk.mk.inr
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝³ : PartialOrder α
inst✝² : WellFoundedLT α
inst✝¹ : Preorder β
inst✝ : WellFoundedLT β
a₁ : α
b₁ : β
a₂ : α
b₂ : β
w : a₁ < a₂ ∧ b₁ ≤ b₂ ∨ a₁ ≤ a₂ ∧ b₁ < b₂
ha : a₁ ≠ a₂
⊢ Prod.Lex (fun x x_1 => x < x_1) (fun x x_1 => x < x_1) (a₁, b₁) (a₂, b₂)
[PROOFSTEP]
left
[GOAL]
case mk.mk.inr.h
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝³ : PartialOrder α
inst✝² : WellFoundedLT α
inst✝¹ : Preorder β
inst✝ : WellFoundedLT β
a₁ : α
b₁ : β
a₂ : α
b₂ : β
w : a₁ < a₂ ∧ b₁ ≤ b₂ ∨ a₁ ≤ a₂ ∧ b₁ < b₂
ha : a₁ ≠ a₂
⊢ a₁ < a₂
[PROOFSTEP]
rcases w with ⟨a_lt, _⟩ | ⟨a_le, _⟩
[GOAL]
case mk.mk.inr.h.inl.intro
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝³ : PartialOrder α
inst✝² : WellFoundedLT α
inst✝¹ : Preorder β
inst✝ : WellFoundedLT β
a₁ : α
b₁ : β
a₂ : α
b₂ : β
ha : a₁ ≠ a₂
a_lt : a₁ < a₂
right✝ : b₁ ≤ b₂
⊢ a₁ < a₂
[PROOFSTEP]
assumption
[GOAL]
case mk.mk.inr.h.inr.intro
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝³ : PartialOrder α
inst✝² : WellFoundedLT α
inst✝¹ : Preorder β
inst✝ : WellFoundedLT β
a₁ : α
b₁ : β
a₂ : α
b₂ : β
ha : a₁ ≠ a₂
a_le : a₁ ≤ a₂
right✝ : b₁ < b₂
⊢ a₁ < a₂
[PROOFSTEP]
exact Ne.lt_of_le ha a_le
[GOAL]
α : Type u
β : Type v
r✝ : α → α → Prop
s✝ : β → β → Prop
r : α → α → Prop
s : Set α
⊢ ¬Bounded r s ↔ Unbounded r s
[PROOFSTEP]
simp only [Bounded, Unbounded, not_forall, not_exists, exists_prop, not_and, not_not]
[GOAL]
α : Type u
β : Type v
r✝ : α → α → Prop
s✝ : β → β → Prop
r : α → α → Prop
s : Set α
⊢ ¬Unbounded r s ↔ Bounded r s
[PROOFSTEP]
rw [not_iff_comm, not_bounded_iff]
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : HasSubset α
a b c : α
hab : a = b
hbc : b ⊆ c
⊢ a ⊆ c
[PROOFSTEP]
rwa [hab]
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : HasSubset α
a b c : α
hab : a ⊆ b
hbc : b = c
⊢ a ⊆ c
[PROOFSTEP]
rwa [← hbc]
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : HasSSubset α
a b c : α
hab : a = b
hbc : b ⊂ c
⊢ a ⊂ c
[PROOFSTEP]
rwa [hab]
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : HasSSubset α
a b c : α
hab : a ⊂ b
hbc : b = c
⊢ a ⊂ c
[PROOFSTEP]
rwa [← hbc]
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : LinearOrder α
⊢ IsOrderConnected α fun x x_1 => x < x_1
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : LinearOrder α
⊢ IsIncompTrans α fun x x_1 => x < x_1
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
β : Type v
r : α → α → Prop
s : β → β → Prop
inst✝ : LinearOrder α
⊢ IsStrictWeakOrder α fun x x_1 => x < x_1
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.Order.RelClasses", "llama_tokens": 5644} |
{"mathlib_filename": "Mathlib.Order.LatticeIntervals", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
a b c : α
h : a ≤ b
⊢ ¬a ⩿ b ↔ ∃ c, a < c ∧ c < b
[PROOFSTEP]
simp_rw [Wcovby, h, true_and_iff, not_forall, exists_prop, not_not]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
a b c : α
⊢ (∀ ⦃c : α⦄, a < c → ¬c < b) ↔ Ioo a b = ∅
[PROOFSTEP]
simp [eq_empty_iff_forall_not_mem]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
a b c : α
f : α ↪o β
hab : a ⩿ b
h : OrdConnected (range ↑f)
⊢ ↑f a ⩿ ↑f b
[PROOFSTEP]
refine' ⟨f.monotone hab.le, fun c ha hb => _⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
a b c✝ : α
f : α ↪o β
hab : a ⩿ b
h : OrdConnected (range ↑f)
c : (fun x => β) a
ha : ↑f a < c
hb : c < ↑f b
⊢ False
[PROOFSTEP]
obtain ⟨c, rfl⟩ := h.out (mem_range_self _) (mem_range_self _) ⟨ha.le, hb.le⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
a b c✝ : α
f : α ↪o β
hab : a ⩿ b
h : OrdConnected (range ↑f)
c : α
ha : ↑f a < ↑f c
hb : ↑f c < ↑f b
⊢ False
[PROOFSTEP]
rw [f.lt_iff_lt] at ha hb
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
a b c✝ : α
f : α ↪o β
hab : a ⩿ b
h : OrdConnected (range ↑f)
c : α
ha : a < c
hb : c < b
⊢ False
[PROOFSTEP]
exact hab.2 ha hb
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c : α
h : a ⩿ b
h2 : a ≤ c
h3 : c ≤ b
⊢ c = a ∨ c = b
[PROOFSTEP]
rcases h2.eq_or_lt with (h2 | h2)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c : α
h : a ⩿ b
h2✝ : a ≤ c
h3 : c ≤ b
h2 : a = c
⊢ c = a ∨ c = b
[PROOFSTEP]
exact Or.inl h2.symm
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c : α
h : a ⩿ b
h2✝ : a ≤ c
h3 : c ≤ b
h2 : a < c
⊢ c = a ∨ c = b
[PROOFSTEP]
rcases h3.eq_or_lt with (h3 | h3)
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c : α
h : a ⩿ b
h2✝ : a ≤ c
h3✝ : c ≤ b
h2 : a < c
h3 : c = b
⊢ c = a ∨ c = b
[PROOFSTEP]
exact Or.inr h3
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c : α
h : a ⩿ b
h2✝ : a ≤ c
h3✝ : c ≤ b
h2 : a < c
h3 : c < b
⊢ c = a ∨ c = b
[PROOFSTEP]
exact (h.2 h2 h3).elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c : α
h : a ⩿ b
⊢ a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b
[PROOFSTEP]
refine' ⟨fun h2 => h.eq_or_eq h2.1 h2.2, _⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c : α
h : a ⩿ b
⊢ c = a ∨ c = b → a ≤ c ∧ c ≤ b
[PROOFSTEP]
rintro (rfl | rfl)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
b c : α
h : c ⩿ b
⊢ c ≤ c ∧ c ≤ b
case inr α : Type u_1 β : Type u_2 inst✝ : PartialOrder α a c : α h : a ⩿ c ⊢ a ≤ c ∧ c ≤ c
[PROOFSTEP]
exacts [⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c : α
h : a ⩿ b
⊢ Icc a b = {a, b}
[PROOFSTEP]
ext c
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c✝ : α
h : a ⩿ b
c : α
⊢ c ∈ Icc a b ↔ c ∈ {a, b}
[PROOFSTEP]
exact h.le_and_le_iff
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c : α
h : a ⩿ b
⊢ Ico a b ⊆ {a}
[PROOFSTEP]
rw [← Icc_diff_right, h.Icc_eq, diff_singleton_subset_iff, pair_comm]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c : α
h : a ⩿ b
⊢ Ioc a b ⊆ {b}
[PROOFSTEP]
rw [← Icc_diff_left, h.Icc_eq, diff_singleton_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : LT α
a b : α
h : a < b
⊢ ¬a ⋖ b ↔ ∃ c, a < c ∧ c < b
[PROOFSTEP]
simp_rw [Covby, h, true_and_iff, not_forall, exists_prop, not_not]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : Preorder β
a b c : α
⊢ (∀ ⦃c : α⦄, a < c → ¬c < b) ↔ Ioo a b = ∅
[PROOFSTEP]
simp [eq_empty_iff_forall_not_mem]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c : α
⊢ a ⩿ b ↔ a ⋖ b ∨ a = b
[PROOFSTEP]
rw [le_antisymm_iff, wcovby_iff_covby_or_le_and_le]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c : α
h : a ⋖ b
⊢ Ico a b = {a}
[PROOFSTEP]
rw [← Ioo_union_left h.lt, h.Ioo_eq, empty_union]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b c : α
h : a ⋖ b
⊢ Ioc a b = {b}
[PROOFSTEP]
rw [← Ioo_union_right h.lt, h.Ioo_eq, empty_union]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : LinearOrder α
a b c : α
h : a ⋖ b
⊢ Ioi a = Ici b
[PROOFSTEP]
rw [← Ioo_union_Ici_eq_Ioi h.lt, h.Ioo_eq, empty_union]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : LinearOrder α
a b c : α
h : a ⋖ b
⊢ Iio b = Iic a
[PROOFSTEP]
rw [← Iic_union_Ioo_eq_Iio h.lt, h.Ioo_eq, union_empty]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : LinearOrder α
a b c : α
h : a < b
⊢ ∃ a', a' > a ∧ ∃ b', b' < b ∧ ∀ (x : α), x < a' → ∀ (y : α), y > b' → x < y
[PROOFSTEP]
by_cases h' : a ⋖ b
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝ : LinearOrder α
a b c : α
h : a < b
h' : a ⋖ b
⊢ ∃ a', a' > a ∧ ∃ b', b' < b ∧ ∀ (x : α), x < a' → ∀ (y : α), y > b' → x < y
[PROOFSTEP]
exact ⟨b, h, a, h, fun x hx y hy => hx.trans_le <| h'.ge_of_gt hy⟩
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝ : LinearOrder α
a b c : α
h : a < b
h' : ¬a ⋖ b
⊢ ∃ a', a' > a ∧ ∃ b', b' < b ∧ ∀ (x : α), x < a' → ∀ (y : α), y > b' → x < y
[PROOFSTEP]
rcases h.exists_lt_lt h' with ⟨c, ha, hb⟩
[GOAL]
case neg.intro.intro
α : Type u_1
β : Type u_2
inst✝ : LinearOrder α
a b c✝ : α
h : a < b
h' : ¬a ⋖ b
c : α
ha : a < c
hb : c < b
⊢ ∃ a', a' > a ∧ ∃ b', b' < b ∧ ∀ (x : α), x < a' → ∀ (y : α), y > b' → x < y
[PROOFSTEP]
exact ⟨c, ha, c, hb, fun _ h₁ _ => lt_trans h₁⟩
[GOAL]
α : Type u_1
β : Type u_2
x : α
s : Set α
⊢ s ⩿ insert x s
[PROOFSTEP]
refine' wcovby_of_eq_or_eq (subset_insert x s) fun t hst h2t => _
[GOAL]
α : Type u_1
β : Type u_2
x : α
s t : Set α
hst : s ≤ t
h2t : t ≤ insert x s
⊢ t = s ∨ t = insert x s
[PROOFSTEP]
by_cases h : x ∈ t
[GOAL]
case pos
α : Type u_1
β : Type u_2
x : α
s t : Set α
hst : s ≤ t
h2t : t ≤ insert x s
h : x ∈ t
⊢ t = s ∨ t = insert x s
[PROOFSTEP]
exact Or.inr (subset_antisymm h2t <| insert_subset_iff.mpr ⟨h, hst⟩)
[GOAL]
case neg
α : Type u_1
β : Type u_2
x : α
s t : Set α
hst : s ≤ t
h2t : t ≤ insert x s
h : ¬x ∈ t
⊢ t = s ∨ t = insert x s
[PROOFSTEP]
refine' Or.inl (subset_antisymm _ hst)
[GOAL]
case neg
α : Type u_1
β : Type u_2
x : α
s t : Set α
hst : s ≤ t
h2t : t ≤ insert x s
h : ¬x ∈ t
⊢ t ⊆ s
[PROOFSTEP]
rwa [← diff_singleton_eq_self h, diff_singleton_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
⊢ x ⩿ y → x.fst = y.fst ∨ x.snd = y.snd
[PROOFSTEP]
refine' fun h => of_not_not fun hab => _
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
h : x ⩿ y
hab : ¬(x.fst = y.fst ∨ x.snd = y.snd)
⊢ False
[PROOFSTEP]
push_neg at hab
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
h : x ⩿ y
hab : x.fst ≠ y.fst ∧ x.snd ≠ y.snd
⊢ False
[PROOFSTEP]
exact h.2 (mk_lt_mk.2 <| Or.inl ⟨hab.1.lt_of_le h.1.1, le_rfl⟩) (mk_lt_mk.2 <| Or.inr ⟨le_rfl, hab.2.lt_of_le h.1.2⟩)
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
⊢ (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂
[PROOFSTEP]
refine' ⟨Wcovby.fst, (And.imp mk_le_mk_iff_left.2) fun h c h₁ h₂ => _⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
h : ∀ ⦃c : α⦄, a₁ < c → ¬c < a₂
c : α × β
h₁ : (a₁, b) < c
h₂ : c < (a₂, b)
⊢ False
[PROOFSTEP]
have : c.2 = b := h₂.le.2.antisymm h₁.le.2
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
h : ∀ ⦃c : α⦄, a₁ < c → ¬c < a₂
c : α × β
h₁ : (a₁, b) < c
h₂ : c < (a₂, b)
this : c.snd = b
⊢ False
[PROOFSTEP]
rw [← @Prod.mk.eta _ _ c, this, mk_lt_mk_iff_left] at h₁ h₂
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
h : ∀ ⦃c : α⦄, a₁ < c → ¬c < a₂
c : α × β
h₁ : a₁ < c.fst
h₂ : c.fst < a₂
this : c.snd = b
⊢ False
[PROOFSTEP]
exact h h₁ h₂
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
⊢ (a₁, b) ⋖ (a₂, b) ↔ a₁ ⋖ a₂
[PROOFSTEP]
simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_left, mk_lt_mk_iff_left]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
⊢ (a, b₁) ⋖ (a, b₂) ↔ b₁ ⋖ b₂
[PROOFSTEP]
simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_right, mk_lt_mk_iff_right]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
⊢ (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂
[PROOFSTEP]
refine' ⟨fun h => _, _⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
h : (a₁, b₁) ⩿ (a₂, b₂)
⊢ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂
[PROOFSTEP]
obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovby h
[GOAL]
case refine'_1.inl
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ : α
b b₁ b₂ : β
x y : α × β
h : (a₁, b₁) ⩿ (a₁, b₂)
⊢ a₁ ⩿ a₁ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₁
[PROOFSTEP]
exact Or.inr ⟨mk_wcovby_mk_iff_right.1 h, rfl⟩
[GOAL]
case refine'_1.inr
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ : β
x y : α × β
h : (a₁, b₁) ⩿ (a₂, b₁)
⊢ a₁ ⩿ a₂ ∧ b₁ = b₁ ∨ b₁ ⩿ b₁ ∧ a₁ = a₂
[PROOFSTEP]
exact Or.inl ⟨mk_wcovby_mk_iff_left.1 h, rfl⟩
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
⊢ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂ → (a₁, b₁) ⩿ (a₂, b₂)
[PROOFSTEP]
rintro (⟨h, rfl⟩ | ⟨h, rfl⟩)
[GOAL]
case refine'_2.inl.intro
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ : β
x y : α × β
h : a₁ ⩿ a₂
⊢ (a₁, b₁) ⩿ (a₂, b₁)
[PROOFSTEP]
exact mk_wcovby_mk_iff_left.2 h
[GOAL]
case refine'_2.inr.intro
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ : α
b b₁ b₂ : β
x y : α × β
h : b₁ ⩿ b₂
⊢ (a₁, b₁) ⩿ (a₁, b₂)
[PROOFSTEP]
exact mk_wcovby_mk_iff_right.2 h
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
⊢ (a₁, b₁) ⋖ (a₂, b₂) ↔ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂
[PROOFSTEP]
refine' ⟨fun h => _, _⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
h : (a₁, b₁) ⋖ (a₂, b₂)
⊢ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂
[PROOFSTEP]
obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovby h.wcovby
[GOAL]
case refine'_1.inl
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ : α
b b₁ b₂ : β
x y : α × β
h : (a₁, b₁) ⋖ (a₁, b₂)
⊢ a₁ ⋖ a₁ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₁
[PROOFSTEP]
exact Or.inr ⟨mk_covby_mk_iff_right.1 h, rfl⟩
[GOAL]
case refine'_1.inr
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ : β
x y : α × β
h : (a₁, b₁) ⋖ (a₂, b₁)
⊢ a₁ ⋖ a₂ ∧ b₁ = b₁ ∨ b₁ ⋖ b₁ ∧ a₁ = a₂
[PROOFSTEP]
exact Or.inl ⟨mk_covby_mk_iff_left.1 h, rfl⟩
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
⊢ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂ → (a₁, b₁) ⋖ (a₂, b₂)
[PROOFSTEP]
rintro (⟨h, rfl⟩ | ⟨h, rfl⟩)
[GOAL]
case refine'_2.inl.intro
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ : β
x y : α × β
h : a₁ ⋖ a₂
⊢ (a₁, b₁) ⋖ (a₂, b₁)
[PROOFSTEP]
exact mk_covby_mk_iff_left.2 h
[GOAL]
case refine'_2.inr.intro
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ : α
b b₁ b₂ : β
x y : α × β
h : b₁ ⋖ b₂
⊢ (a₁, b₁) ⋖ (a₁, b₂)
[PROOFSTEP]
exact mk_covby_mk_iff_right.2 h
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
⊢ x ⩿ y ↔ x.fst ⩿ y.fst ∧ x.snd = y.snd ∨ x.snd ⩿ y.snd ∧ x.fst = y.fst
[PROOFSTEP]
cases x
[GOAL]
case mk
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
y : α × β
fst✝ : α
snd✝ : β
⊢ (fst✝, snd✝) ⩿ y ↔
(fst✝, snd✝).fst ⩿ y.fst ∧ (fst✝, snd✝).snd = y.snd ∨ (fst✝, snd✝).snd ⩿ y.snd ∧ (fst✝, snd✝).fst = y.fst
[PROOFSTEP]
cases y
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
fst✝¹ : α
snd✝¹ : β
fst✝ : α
snd✝ : β
⊢ (fst✝¹, snd✝¹) ⩿ (fst✝, snd✝) ↔
(fst✝¹, snd✝¹).fst ⩿ (fst✝, snd✝).fst ∧ (fst✝¹, snd✝¹).snd = (fst✝, snd✝).snd ∨
(fst✝¹, snd✝¹).snd ⩿ (fst✝, snd✝).snd ∧ (fst✝¹, snd✝¹).fst = (fst✝, snd✝).fst
[PROOFSTEP]
exact mk_wcovby_mk_iff
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
⊢ x ⋖ y ↔ x.fst ⋖ y.fst ∧ x.snd = y.snd ∨ x.snd ⋖ y.snd ∧ x.fst = y.fst
[PROOFSTEP]
cases x
[GOAL]
case mk
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
y : α × β
fst✝ : α
snd✝ : β
⊢ (fst✝, snd✝) ⋖ y ↔
(fst✝, snd✝).fst ⋖ y.fst ∧ (fst✝, snd✝).snd = y.snd ∨ (fst✝, snd✝).snd ⋖ y.snd ∧ (fst✝, snd✝).fst = y.fst
[PROOFSTEP]
cases y
[GOAL]
case mk.mk
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : PartialOrder β
a a₁ a₂ : α
b b₁ b₂ : β
fst✝¹ : α
snd✝¹ : β
fst✝ : α
snd✝ : β
⊢ (fst✝¹, snd✝¹) ⋖ (fst✝, snd✝) ↔
(fst✝¹, snd✝¹).fst ⋖ (fst✝, snd✝).fst ∧ (fst✝¹, snd✝¹).snd = (fst✝, snd✝).snd ∨
(fst✝¹, snd✝¹).snd ⋖ (fst✝, snd✝).snd ∧ (fst✝¹, snd✝¹).fst = (fst✝, snd✝).fst
[PROOFSTEP]
exact mk_covby_mk_iff
| {"mathlib_filename": "Mathlib.Order.Cover", "llama_tokens": 8334} |
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
t : Term L α
g : α → β
v : β → M
⊢ realize v (relabel g t) = realize (v ∘ g) t
[PROOFSTEP]
induction' t with _ n f ts ih
[GOAL]
case var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
g : α → β
v : β → M
_a✝ : α
⊢ realize v (relabel g (var _a✝)) = realize (v ∘ g) (var _a✝)
[PROOFSTEP]
rfl
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
g : α → β
v : β → M
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih : ∀ (a : Fin n), realize v (relabel g (ts a)) = realize (v ∘ g) (ts a)
⊢ realize v (relabel g (func f ts)) = realize (v ∘ g) (func f ts)
[PROOFSTEP]
simp [ih]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
f : Functions L 1
t : Term L α
v : α → M
⊢ realize v (Functions.apply₁ f t) = funMap f ![realize v t]
[PROOFSTEP]
rw [Functions.apply₁, Term.realize]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
f : Functions L 1
t : Term L α
v : α → M
⊢ (funMap f fun i => realize v (Matrix.vecCons t ![] i)) = funMap f ![realize v t]
[PROOFSTEP]
refine' congr rfl (funext fun i => _)
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
f : Functions L 1
t : Term L α
v : α → M
i : Fin 1
⊢ realize v (Matrix.vecCons t ![] i) = Matrix.vecCons (realize v t) ![] i
[PROOFSTEP]
simp only [Matrix.cons_val_fin_one]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
f : Functions L 2
t₁ t₂ : Term L α
v : α → M
⊢ realize v (Functions.apply₂ f t₁ t₂) = funMap f ![realize v t₁, realize v t₂]
[PROOFSTEP]
rw [Functions.apply₂, Term.realize]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
f : Functions L 2
t₁ t₂ : Term L α
v : α → M
⊢ (funMap f fun i => realize v (Matrix.vecCons t₁ ![t₂] i)) = funMap f ![realize v t₁, realize v t₂]
[PROOFSTEP]
refine' congr rfl (funext (Fin.cases _ _))
[GOAL]
case refine'_1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
f : Functions L 2
t₁ t₂ : Term L α
v : α → M
⊢ realize v (Matrix.vecCons t₁ ![t₂] 0) = Matrix.vecCons (realize v t₁) ![realize v t₂] 0
[PROOFSTEP]
simp only [Matrix.cons_val_zero]
[GOAL]
case refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
f : Functions L 2
t₁ t₂ : Term L α
v : α → M
⊢ ∀ (i : Fin 1), realize v (Matrix.vecCons t₁ ![t₂] (succ i)) = Matrix.vecCons (realize v t₁) ![realize v t₂] (succ i)
[PROOFSTEP]
simp only [Matrix.cons_val_succ, Matrix.cons_val_fin_one, forall_const]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
t : Term L α
tf : α → Term L β
v : β → M
⊢ realize v (subst t tf) = realize (fun a => realize v (tf a)) t
[PROOFSTEP]
induction' t with _ _ _ _ ih
[GOAL]
case var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
tf : α → Term L β
v : β → M
_a✝ : α
⊢ realize v (subst (var _a✝) tf) = realize (fun a => realize v (tf a)) (var _a✝)
[PROOFSTEP]
rfl
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
tf : α → Term L β
v : β → M
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L α
ih : ∀ (a : Fin l✝), realize v (subst (_ts✝ a) tf) = realize (fun a => realize v (tf a)) (_ts✝ a)
⊢ realize v (subst (func _f✝ _ts✝) tf) = realize (fun a => realize v (tf a)) (func _f✝ _ts✝)
[PROOFSTEP]
simp [ih]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
inst✝ : DecidableEq α
t : Term L α
s : Set α
h : ↑(varFinset t) ⊆ s
v : α → M
⊢ realize (v ∘ Subtype.val) (restrictVar t (Set.inclusion h)) = realize v t
[PROOFSTEP]
induction' t with _ _ _ _ ih
[GOAL]
case var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
inst✝ : DecidableEq α
t : Term L α
s : Set α
h✝ : ↑(varFinset t) ⊆ s
v : α → M
_a✝ : α
h : ↑(varFinset (var _a✝)) ⊆ s
⊢ realize (v ∘ Subtype.val) (restrictVar (var _a✝) (Set.inclusion h)) = realize v (var _a✝)
[PROOFSTEP]
rfl
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
inst✝ : DecidableEq α
t : Term L α
s : Set α
h✝ : ↑(varFinset t) ⊆ s
v : α → M
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L α
ih :
∀ (a : Fin l✝) (h : ↑(varFinset (_ts✝ a)) ⊆ s),
realize (v ∘ Subtype.val) (restrictVar (_ts✝ a) (Set.inclusion h)) = realize v (_ts✝ a)
h : ↑(varFinset (func _f✝ _ts✝)) ⊆ s
⊢ realize (v ∘ Subtype.val) (restrictVar (func _f✝ _ts✝) (Set.inclusion h)) = realize v (func _f✝ _ts✝)
[PROOFSTEP]
simp_rw [varFinset, Finset.coe_biUnion, Set.iUnion_subset_iff] at h
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
inst✝ : DecidableEq α
t : Term L α
s : Set α
h✝¹ : ↑(varFinset t) ⊆ s
v : α → M
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L α
ih :
∀ (a : Fin l✝) (h : ↑(varFinset (_ts✝ a)) ⊆ s),
realize (v ∘ Subtype.val) (restrictVar (_ts✝ a) (Set.inclusion h)) = realize v (_ts✝ a)
h✝ : ↑(Finset.biUnion Finset.univ fun i => varFinset (_ts✝ i)) ⊆ s
h : ∀ (i : Fin l✝), i ∈ ↑Finset.univ → ↑(varFinset (_ts✝ i)) ⊆ s
⊢ realize (v ∘ Subtype.val) (restrictVar (func _f✝ _ts✝) (Set.inclusion h✝)) = realize v (func _f✝ _ts✝)
[PROOFSTEP]
exact congr rfl (funext fun i => ih i (h i (Finset.mem_univ i)))
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
inst✝ : DecidableEq α
γ : Type u_3
t : Term L (α ⊕ γ)
s : Set α
h : ↑(varFinsetLeft t) ⊆ s
v : α → M
xs : γ → M
⊢ realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft t (Set.inclusion h)) = realize (Sum.elim v xs) t
[PROOFSTEP]
induction' t with a _ _ _ ih
[GOAL]
case var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
inst✝ : DecidableEq α
γ : Type u_3
t : Term L (α ⊕ γ)
s : Set α
h✝ : ↑(varFinsetLeft t) ⊆ s
v : α → M
xs : γ → M
a : α ⊕ γ
h : ↑(varFinsetLeft (var a)) ⊆ s
⊢ realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (var a) (Set.inclusion h)) = realize (Sum.elim v xs) (var a)
[PROOFSTEP]
cases a
[GOAL]
case var.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
inst✝ : DecidableEq α
γ : Type u_3
t : Term L (α ⊕ γ)
s : Set α
h✝ : ↑(varFinsetLeft t) ⊆ s
v : α → M
xs : γ → M
val✝ : α
h : ↑(varFinsetLeft (var (Sum.inl val✝))) ⊆ s
⊢ realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (var (Sum.inl val✝)) (Set.inclusion h)) =
realize (Sum.elim v xs) (var (Sum.inl val✝))
[PROOFSTEP]
rfl
[GOAL]
case var.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
inst✝ : DecidableEq α
γ : Type u_3
t : Term L (α ⊕ γ)
s : Set α
h✝ : ↑(varFinsetLeft t) ⊆ s
v : α → M
xs : γ → M
val✝ : γ
h : ↑(varFinsetLeft (var (Sum.inr val✝))) ⊆ s
⊢ realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (var (Sum.inr val✝)) (Set.inclusion h)) =
realize (Sum.elim v xs) (var (Sum.inr val✝))
[PROOFSTEP]
rfl
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
inst✝ : DecidableEq α
γ : Type u_3
t : Term L (α ⊕ γ)
s : Set α
h✝ : ↑(varFinsetLeft t) ⊆ s
v : α → M
xs : γ → M
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L (α ⊕ γ)
ih :
∀ (a : Fin l✝) (h : ↑(varFinsetLeft (_ts✝ a)) ⊆ s),
realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (_ts✝ a) (Set.inclusion h)) =
realize (Sum.elim v xs) (_ts✝ a)
h : ↑(varFinsetLeft (func _f✝ _ts✝)) ⊆ s
⊢ realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (func _f✝ _ts✝) (Set.inclusion h)) =
realize (Sum.elim v xs) (func _f✝ _ts✝)
[PROOFSTEP]
simp_rw [varFinsetLeft, Finset.coe_biUnion, Set.iUnion_subset_iff] at h
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
inst✝ : DecidableEq α
γ : Type u_3
t : Term L (α ⊕ γ)
s : Set α
h✝¹ : ↑(varFinsetLeft t) ⊆ s
v : α → M
xs : γ → M
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L (α ⊕ γ)
ih :
∀ (a : Fin l✝) (h : ↑(varFinsetLeft (_ts✝ a)) ⊆ s),
realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (_ts✝ a) (Set.inclusion h)) =
realize (Sum.elim v xs) (_ts✝ a)
h✝ : ↑(Finset.biUnion Finset.univ fun i => varFinsetLeft (_ts✝ i)) ⊆ s
h : ∀ (i : Fin l✝), i ∈ ↑Finset.univ → ↑(varFinsetLeft (_ts✝ i)) ⊆ s
⊢ realize (Sum.elim (v ∘ Subtype.val) xs) (restrictVarLeft (func _f✝ _ts✝) (Set.inclusion h✝)) =
realize (Sum.elim v xs) (func _f✝ _ts✝)
[PROOFSTEP]
exact congr rfl (funext fun i => ih i (h i (Finset.mem_univ i)))
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
t : Term (L[[α]]) β
v : β → M
⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars t) = realize v t
[PROOFSTEP]
induction' t with _ n f ts ih
[GOAL]
case var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
_a✝ : β
⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (var _a✝)) = realize v (var _a✝)
[PROOFSTEP]
simp
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
n : ℕ
f : Functions (L[[α]]) n
ts : Fin n → Term (L[[α]]) β
ih : ∀ (a : Fin n), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a)
⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func f ts)) = realize v (func f ts)
[PROOFSTEP]
cases n
[GOAL]
case func.zero
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
f : Functions (L[[α]]) Nat.zero
ts : Fin Nat.zero → Term (L[[α]]) β
ih :
∀ (a : Fin Nat.zero), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a)
⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func f ts)) = realize v (func f ts)
[PROOFSTEP]
cases f
[GOAL]
case func.zero.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
ts : Fin Nat.zero → Term (L[[α]]) β
ih :
∀ (a : Fin Nat.zero), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a)
val✝ : Functions L Nat.zero
⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func (Sum.inl val✝) ts)) =
realize v (func (Sum.inl val✝) ts)
[PROOFSTEP]
simp only [realize, ih, Nat.zero_eq, constantsOn, mk₂_Functions]
--Porting note: below lemma does not work with simp for some reason
[GOAL]
case func.zero.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
ts : Fin Nat.zero → Term (L[[α]]) β
ih :
∀ (a : Fin Nat.zero), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a)
val✝ : Functions L Nat.zero
⊢ (funMap val✝ fun i => realize v (ts i)) = funMap (Sum.inl val✝) fun i => realize v (ts i)
[PROOFSTEP]
rw [withConstants_funMap_sum_inl]
[GOAL]
case func.zero.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
ts : Fin Nat.zero → Term (L[[α]]) β
ih :
∀ (a : Fin Nat.zero), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a)
val✝ : Functions (constantsOn α) Nat.zero
⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func (Sum.inr val✝) ts)) =
realize v (func (Sum.inr val✝) ts)
[PROOFSTEP]
simp only [realize, constantsToVars, Sum.elim_inl, funMap_eq_coe_constants]
[GOAL]
case func.zero.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
ts : Fin Nat.zero → Term (L[[α]]) β
ih :
∀ (a : Fin Nat.zero), realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a)
val✝ : Functions (constantsOn α) Nat.zero
⊢ ↑(Language.con L val✝) = ↑(Sum.inr val✝)
[PROOFSTEP]
rfl
[GOAL]
case func.succ
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
n✝ : ℕ
f : Functions (L[[α]]) (Nat.succ n✝)
ts : Fin (Nat.succ n✝) → Term (L[[α]]) β
ih :
∀ (a : Fin (Nat.succ n✝)),
realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a)
⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func f ts)) = realize v (func f ts)
[PROOFSTEP]
cases' f with _ f
[GOAL]
case func.succ.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
n✝ : ℕ
ts : Fin (Nat.succ n✝) → Term (L[[α]]) β
ih :
∀ (a : Fin (Nat.succ n✝)),
realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a)
val✝ : Functions L (Nat.succ n✝)
⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func (Sum.inl val✝) ts)) =
realize v (func (Sum.inl val✝) ts)
[PROOFSTEP]
simp only [realize, ih, constantsOn, mk₂_Functions]
--Porting note: below lemma does not work with simp for some reason
[GOAL]
case func.succ.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
n✝ : ℕ
ts : Fin (Nat.succ n✝) → Term (L[[α]]) β
ih :
∀ (a : Fin (Nat.succ n✝)),
realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a)
val✝ : Functions L (Nat.succ n✝)
⊢ (funMap val✝ fun i => realize v (ts i)) = funMap (Sum.inl val✝) fun i => realize v (ts i)
[PROOFSTEP]
rw [withConstants_funMap_sum_inl]
[GOAL]
case func.succ.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
n✝ : ℕ
ts : Fin (Nat.succ n✝) → Term (L[[α]]) β
ih :
∀ (a : Fin (Nat.succ n✝)),
realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (ts a)) = realize v (ts a)
f : Functions (constantsOn α) (Nat.succ n✝)
⊢ realize (Sum.elim (fun a => ↑(Language.con L a)) v) (constantsToVars (func (Sum.inr f) ts)) =
realize v (func (Sum.inr f) ts)
[PROOFSTEP]
exact isEmptyElim f
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
t : Term L (α ⊕ β)
v : β → M
⊢ realize v (varsToConstants t) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) t
[PROOFSTEP]
induction' t with ab n f ts ih
[GOAL]
case var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
ab : α ⊕ β
⊢ realize v (varsToConstants (var ab)) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) (var ab)
[PROOFSTEP]
cases' ab with a b
[GOAL]
case var.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
a : α
⊢ realize v (varsToConstants (var (Sum.inl a))) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) (var (Sum.inl a))
[PROOFSTEP]
simp [Language.con, realize, constantMap, funMap_eq_coe_constants]
[GOAL]
case var.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
b : β
⊢ realize v (varsToConstants (var (Sum.inr b))) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) (var (Sum.inr b))
[PROOFSTEP]
simp [realize, constantMap]
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
n : ℕ
f : Functions L n
ts : Fin n → Term L (α ⊕ β)
ih : ∀ (a : Fin n), realize v (varsToConstants (ts a)) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) (ts a)
⊢ realize v (varsToConstants (func f ts)) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) (func f ts)
[PROOFSTEP]
simp only [realize, constantsOn, mk₂_Functions, ih]
--Porting note: below lemma does not work with simp for some reason
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
v : β → M
n : ℕ
f : Functions L n
ts : Fin n → Term L (α ⊕ β)
ih : ∀ (a : Fin n), realize v (varsToConstants (ts a)) = realize (Sum.elim (fun a => ↑(Language.con L a)) v) (ts a)
⊢ (funMap (Sum.inl f) fun i => realize (Sum.elim (fun a => ↑(Language.con L a)) v) (ts i)) =
funMap f fun i => realize (Sum.elim (fun a => ↑(Language.con L a)) v) (ts i)
[PROOFSTEP]
rw [withConstants_funMap_sum_inl]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
n : ℕ
t : Term (L[[α]]) (β ⊕ Fin n)
v : β → M
xs : Fin n → M
⊢ realize (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs) (↑constantsVarsEquivLeft t) =
realize (Sum.elim v xs) t
[PROOFSTEP]
simp only [constantsVarsEquivLeft, realize_relabel, Equiv.coe_trans, Function.comp_apply, constantsVarsEquiv_apply,
relabelEquiv_symm_apply]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
n : ℕ
t : Term (L[[α]]) (β ⊕ Fin n)
v : β → M
xs : Fin n → M
⊢ realize (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs ∘ ↑(Equiv.sumAssoc α β (Fin n)).symm)
(constantsToVars t) =
realize (Sum.elim v xs) t
[PROOFSTEP]
refine' _root_.trans _ realize_constantsToVars
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
n : ℕ
t : Term (L[[α]]) (β ⊕ Fin n)
v : β → M
xs : Fin n → M
⊢ realize (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs ∘ ↑(Equiv.sumAssoc α β (Fin n)).symm)
(constantsToVars t) =
realize (Sum.elim (fun a => ↑(Language.con L a)) (Sum.elim v xs)) (constantsToVars t)
[PROOFSTEP]
rcongr x
[GOAL]
case e_v.h
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
n : ℕ
t : Term (L[[α]]) (β ⊕ Fin n)
v : β → M
xs : Fin n → M
x : α ⊕ β ⊕ Fin n
⊢ (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs ∘ ↑(Equiv.sumAssoc α β (Fin n)).symm) x =
Sum.elim (fun a => ↑(Language.con L a)) (Sum.elim v xs) x
[PROOFSTEP]
rcases x with (a | (b | i))
[GOAL]
case e_v.h.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
n : ℕ
t : Term (L[[α]]) (β ⊕ Fin n)
v : β → M
xs : Fin n → M
a : α
⊢ (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs ∘ ↑(Equiv.sumAssoc α β (Fin n)).symm) (Sum.inl a) =
Sum.elim (fun a => ↑(Language.con L a)) (Sum.elim v xs) (Sum.inl a)
[PROOFSTEP]
simp
[GOAL]
case e_v.h.inr.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
n : ℕ
t : Term (L[[α]]) (β ⊕ Fin n)
v : β → M
xs : Fin n → M
b : β
⊢ (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs ∘ ↑(Equiv.sumAssoc α β (Fin n)).symm) (Sum.inr (Sum.inl b)) =
Sum.elim (fun a => ↑(Language.con L a)) (Sum.elim v xs) (Sum.inr (Sum.inl b))
[PROOFSTEP]
simp
[GOAL]
case e_v.h.inr.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
n : ℕ
t : Term (L[[α]]) (β ⊕ Fin n)
v : β → M
xs : Fin n → M
i : Fin n
⊢ (Sum.elim (Sum.elim (fun a => ↑(Language.con L a)) v) xs ∘ ↑(Equiv.sumAssoc α β (Fin n)).symm) (Sum.inr (Sum.inr i)) =
Sum.elim (fun a => ↑(Language.con L a)) (Sum.elim v xs) (Sum.inr (Sum.inr i))
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
t : Term L α
v : α → M
⊢ Term.realize v (onTerm φ t) = Term.realize v t
[PROOFSTEP]
induction' t with _ n f ts ih
[GOAL]
case var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
v : α → M
_a✝ : α
⊢ Term.realize v (onTerm φ (var _a✝)) = Term.realize v (var _a✝)
[PROOFSTEP]
rfl
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
v : α → M
n : ℕ
f : Functions L n
ts : Fin n → Term L α
ih : ∀ (a : Fin n), Term.realize v (onTerm φ (ts a)) = Term.realize v (ts a)
⊢ Term.realize v (onTerm φ (func f ts)) = Term.realize v (func f ts)
[PROOFSTEP]
simp only [Term.realize, LHom.onTerm, LHom.map_onFunction, ih]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
g : M →[L] N
t : Term L α
v : α → M
⊢ Term.realize (↑g ∘ v) t = ↑g (Term.realize v t)
[PROOFSTEP]
induction t
[GOAL]
case var
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
g : M →[L] N
v : α → M
_a✝ : α
⊢ Term.realize (↑g ∘ v) (var _a✝) = ↑g (Term.realize v (var _a✝))
[PROOFSTEP]
rfl
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
g : M →[L] N
v : α → M
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L α
_ts_ih✝ : ∀ (a : Fin l✝), Term.realize (↑g ∘ v) (_ts✝ a) = ↑g (Term.realize v (_ts✝ a))
⊢ Term.realize (↑g ∘ v) (func _f✝ _ts✝) = ↑g (Term.realize v (func _f✝ _ts✝))
[PROOFSTEP]
rw [Term.realize, Term.realize, g.map_fun]
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
g : M →[L] N
v : α → M
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L α
_ts_ih✝ : ∀ (a : Fin l✝), Term.realize (↑g ∘ v) (_ts✝ a) = ↑g (Term.realize v (_ts✝ a))
⊢ (funMap _f✝ fun i => Term.realize (↑g ∘ v) (_ts✝ i)) = funMap _f✝ (↑g ∘ fun i => Term.realize v (_ts✝ i))
[PROOFSTEP]
refine' congr rfl _
[GOAL]
case func
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
g : M →[L] N
v : α → M
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L α
_ts_ih✝ : ∀ (a : Fin l✝), Term.realize (↑g ∘ v) (_ts✝ a) = ↑g (Term.realize v (_ts✝ a))
⊢ (fun i => Term.realize (↑g ∘ v) (_ts✝ i)) = ↑g ∘ fun i => Term.realize v (_ts✝ i)
[PROOFSTEP]
ext x
[GOAL]
case func.h
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
g : M →[L] N
v : α → M
l✝ : ℕ
_f✝ : Functions L l✝
_ts✝ : Fin l✝ → Term L α
_ts_ih✝ : ∀ (a : Fin l✝), Term.realize (↑g ∘ v) (_ts✝ a) = ↑g (Term.realize v (_ts✝ a))
x : Fin l✝
⊢ Term.realize (↑g ∘ v) (_ts✝ x) = (↑g ∘ fun i => Term.realize v (_ts✝ i)) x
[PROOFSTEP]
simp [*]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
⊢ Realize ⊤ v xs ↔ True
[PROOFSTEP]
simp [Top.top]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
⊢ Realize (φ ⊓ ψ) v xs ↔ Realize φ v xs ∧ Realize ψ v xs
[PROOFSTEP]
simp [Inf.inf, Realize]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
⊢ (Realize φ v xs → Realize ψ v xs → False) → False ↔ Realize φ v xs ∧ Realize ψ v xs
[PROOFSTEP]
tauto
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l✝ : ℕ
φ ψ : BoundedFormula L α l✝
θ : BoundedFormula L α (Nat.succ l✝)
v✝ : α → M
xs✝ : Fin l✝ → M
l : List (BoundedFormula L α n)
v : α → M
xs : Fin n → M
⊢ Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ l) v xs ↔ ∀ (φ : BoundedFormula L α n), φ ∈ l → Realize φ v xs
[PROOFSTEP]
induction' l with φ l ih
[GOAL]
case nil
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
v : α → M
xs : Fin n → M
⊢ Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ []) v xs ↔ ∀ (φ : BoundedFormula L α n), φ ∈ [] → Realize φ v xs
[PROOFSTEP]
simp
[GOAL]
case cons
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l✝ : ℕ
φ✝ ψ : BoundedFormula L α l✝
θ : BoundedFormula L α (Nat.succ l✝)
v✝ : α → M
xs✝ : Fin l✝ → M
v : α → M
xs : Fin n → M
φ : BoundedFormula L α n
l : List (BoundedFormula L α n)
ih : Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ l) v xs ↔ ∀ (φ : BoundedFormula L α n), φ ∈ l → Realize φ v xs
⊢ Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ (φ :: l)) v xs ↔
∀ (φ_1 : BoundedFormula L α n), φ_1 ∈ φ :: l → Realize φ_1 v xs
[PROOFSTEP]
simp [ih]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
⊢ Realize (φ ⟹ ψ) v xs ↔ Realize φ v xs → Realize ψ v xs
[PROOFSTEP]
simp only [Realize]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
R : Relations L 1
t : Term L (α ⊕ Fin l)
⊢ Realize (Relations.boundedFormula₁ R t) v xs ↔ RelMap R ![realize (Sum.elim v xs) t]
[PROOFSTEP]
rw [Relations.boundedFormula₁, realize_rel, iff_eq_eq]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
R : Relations L 1
t : Term L (α ⊕ Fin l)
⊢ (RelMap R fun i => realize (Sum.elim v xs) (Matrix.vecCons t ![] i)) = RelMap R ![realize (Sum.elim v xs) t]
[PROOFSTEP]
refine' congr rfl (funext fun _ => _)
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
R : Relations L 1
t : Term L (α ⊕ Fin l)
x✝ : Fin 1
⊢ realize (Sum.elim v xs) (Matrix.vecCons t ![] x✝) = Matrix.vecCons (realize (Sum.elim v xs) t) ![] x✝
[PROOFSTEP]
simp only [Matrix.cons_val_fin_one]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
R : Relations L 2
t₁ t₂ : Term L (α ⊕ Fin l)
⊢ Realize (Relations.boundedFormula₂ R t₁ t₂) v xs ↔ RelMap R ![realize (Sum.elim v xs) t₁, realize (Sum.elim v xs) t₂]
[PROOFSTEP]
rw [Relations.boundedFormula₂, realize_rel, iff_eq_eq]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
R : Relations L 2
t₁ t₂ : Term L (α ⊕ Fin l)
⊢ (RelMap R fun i => realize (Sum.elim v xs) (Matrix.vecCons t₁ ![t₂] i)) =
RelMap R ![realize (Sum.elim v xs) t₁, realize (Sum.elim v xs) t₂]
[PROOFSTEP]
refine' congr rfl (funext (Fin.cases _ _))
[GOAL]
case refine'_1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
R : Relations L 2
t₁ t₂ : Term L (α ⊕ Fin l)
⊢ realize (Sum.elim v xs) (Matrix.vecCons t₁ ![t₂] 0) =
Matrix.vecCons (realize (Sum.elim v xs) t₁) ![realize (Sum.elim v xs) t₂] 0
[PROOFSTEP]
simp only [Matrix.cons_val_zero]
[GOAL]
case refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
R : Relations L 2
t₁ t₂ : Term L (α ⊕ Fin l)
⊢ ∀ (i : Fin 1),
realize (Sum.elim v xs) (Matrix.vecCons t₁ ![t₂] (succ i)) =
Matrix.vecCons (realize (Sum.elim v xs) t₁) ![realize (Sum.elim v xs) t₂] (succ i)
[PROOFSTEP]
simp only [Matrix.cons_val_succ, Matrix.cons_val_fin_one, forall_const]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
⊢ Realize (φ ⊔ ψ) v xs ↔ Realize φ v xs ∨ Realize ψ v xs
[PROOFSTEP]
simp only [realize, Sup.sup, realize_not, eq_iff_iff]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
⊢ Realize (∼φ ⟹ ψ) v xs ↔ Realize φ v xs ∨ Realize ψ v xs
[PROOFSTEP]
tauto
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l✝ : ℕ
φ ψ : BoundedFormula L α l✝
θ : BoundedFormula L α (Nat.succ l✝)
v✝ : α → M
xs✝ : Fin l✝ → M
l : List (BoundedFormula L α n)
v : α → M
xs : Fin n → M
⊢ Realize (List.foldr (fun x x_1 => x ⊔ x_1) ⊥ l) v xs ↔ ∃ φ, φ ∈ l ∧ Realize φ v xs
[PROOFSTEP]
induction' l with φ l ih
[GOAL]
case nil
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
v : α → M
xs : Fin n → M
⊢ Realize (List.foldr (fun x x_1 => x ⊔ x_1) ⊥ []) v xs ↔ ∃ φ, φ ∈ [] ∧ Realize φ v xs
[PROOFSTEP]
simp
[GOAL]
case cons
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l✝ : ℕ
φ✝ ψ : BoundedFormula L α l✝
θ : BoundedFormula L α (Nat.succ l✝)
v✝ : α → M
xs✝ : Fin l✝ → M
v : α → M
xs : Fin n → M
φ : BoundedFormula L α n
l : List (BoundedFormula L α n)
ih : Realize (List.foldr (fun x x_1 => x ⊔ x_1) ⊥ l) v xs ↔ ∃ φ, φ ∈ l ∧ Realize φ v xs
⊢ Realize (List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (φ :: l)) v xs ↔ ∃ φ_1, φ_1 ∈ φ :: l ∧ Realize φ_1 v xs
[PROOFSTEP]
simp_rw [List.foldr_cons, realize_sup, ih, List.mem_cons, or_and_right, exists_or, exists_eq_left]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
⊢ Realize (∃'θ) v xs ↔ ∃ a, Realize θ v (snoc xs a)
[PROOFSTEP]
rw [BoundedFormula.ex, realize_not, realize_all, not_forall]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
⊢ (∃ x, ¬Realize (∼θ) v (snoc xs x)) ↔ ∃ a, Realize θ v (snoc xs a)
[PROOFSTEP]
simp_rw [realize_not, Classical.not_not]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v : α → M
xs : Fin l → M
⊢ Realize (φ ⇔ ψ) v xs ↔ (Realize φ v xs ↔ Realize ψ v xs)
[PROOFSTEP]
simp only [BoundedFormula.iff, realize_inf, realize_imp, and_imp, ← iff_def]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
m n : ℕ
h : m = n
h' : m ≤ n
φ : BoundedFormula L α m
v : α → M
xs : Fin n → M
⊢ Realize (castLE h' φ) v xs ↔ Realize φ v (xs ∘ ↑(castIso h))
[PROOFSTEP]
subst h
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
m : ℕ
φ : BoundedFormula L α m
v : α → M
h' : m ≤ m
xs : Fin m → M
⊢ Realize (castLE h' φ) v xs ↔ Realize φ v (xs ∘ ↑(castIso (_ : m = m)))
[PROOFSTEP]
simp only [castLE_rfl, castIso_refl, OrderIso.coe_refl, Function.comp.right_id]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝ : Structure L' M
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n → Relations L' n
n : ℕ
φ : BoundedFormula L α n
v : α → M
v' : β → M
xs : Fin n → M
h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t
h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x
⊢ Realize (mapTermRel ft fr (fun x => id) φ) v' xs ↔ Realize φ v xs
[PROOFSTEP]
induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Structure L' M
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n → Relations L' n
n : ℕ
v : α → M
v' : β → M
xs✝ : Fin n → M
h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t
h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x
n✝ : ℕ
xs : Fin n✝ → M
⊢ Realize (mapTermRel ft fr (fun x => id) falsum) v' xs ↔ Realize falsum v xs
[PROOFSTEP]
rfl
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Structure L' M
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n → Relations L' n
n : ℕ
v : α → M
v' : β → M
xs✝ : Fin n → M
h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t
h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x
n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
xs : Fin n✝ → M
⊢ Realize (mapTermRel ft fr (fun x => id) (equal t₁✝ t₂✝)) v' xs ↔ Realize (equal t₁✝ t₂✝) v xs
[PROOFSTEP]
simp [mapTermRel, Realize, h1]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Structure L' M
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n → Relations L' n
n : ℕ
v : α → M
v' : β → M
xs✝ : Fin n → M
h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t
h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
xs : Fin n✝ → M
⊢ Realize (mapTermRel ft fr (fun x => id) (rel R✝ ts✝)) v' xs ↔ Realize (rel R✝ ts✝) v xs
[PROOFSTEP]
simp [mapTermRel, Realize, h1, h2]
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Structure L' M
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n → Relations L' n
n : ℕ
v : α → M
v' : β → M
xs✝ : Fin n → M
h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t
h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x
n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 : ∀ {xs : Fin n✝ → M}, Realize (mapTermRel ft fr (fun x => id) f₁✝) v' xs ↔ Realize f₁✝ v xs
ih2 : ∀ {xs : Fin n✝ → M}, Realize (mapTermRel ft fr (fun x => id) f₂✝) v' xs ↔ Realize f₂✝ v xs
xs : Fin n✝ → M
⊢ Realize (mapTermRel ft fr (fun x => id) (f₁✝ ⟹ f₂✝)) v' xs ↔ Realize (f₁✝ ⟹ f₂✝) v xs
[PROOFSTEP]
simp [mapTermRel, Realize, ih1, ih2]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Structure L' M
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)
fr : (n : ℕ) → Relations L n → Relations L' n
n : ℕ
v : α → M
v' : β → M
xs✝ : Fin n → M
h1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t
h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih : ∀ {xs : Fin (n✝ + 1) → M}, Realize (mapTermRel ft fr (fun x => id) f✝) v' xs ↔ Realize f✝ v xs
xs : Fin n✝ → M
⊢ Realize (mapTermRel ft fr (fun x => id) (∀'f✝)) v' xs ↔ Realize (∀'f✝) v xs
[PROOFSTEP]
simp only [mapTermRel, Realize, ih, id.def]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝ : Structure L' M
k : ℕ
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin (k + n))
fr : (n : ℕ) → Relations L n → Relations L' n
n : ℕ
φ : BoundedFormula L α n
v : {n : ℕ} → (Fin (k + n) → M) → α → M
v' : β → M
xs : Fin (k + n) → M
h1 :
∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (k + n) → M),
realize (Sum.elim v' xs') (ft n t) = realize (Sum.elim (v xs') (xs' ∘ natAdd k)) t
h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x
hv : ∀ (n : ℕ) (xs : Fin (k + n) → M) (x : M), v (snoc xs x) = v xs
⊢ Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) φ) v' xs ↔ Realize φ (v xs) (xs ∘ natAdd k)
[PROOFSTEP]
induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Structure L' M
k : ℕ
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin (k + n))
fr : (n : ℕ) → Relations L n → Relations L' n
n : ℕ
v : {n : ℕ} → (Fin (k + n) → M) → α → M
v' : β → M
xs✝ : Fin (k + n) → M
h1 :
∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (k + n) → M),
realize (Sum.elim v' xs') (ft n t) = realize (Sum.elim (v xs') (xs' ∘ natAdd k)) t
h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x
hv : ∀ (n : ℕ) (xs : Fin (k + n) → M) (x : M), v (snoc xs x) = v xs
n✝ : ℕ
xs : Fin (k + n✝) → M
⊢ Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) falsum) v' xs ↔
Realize falsum (v xs) (xs ∘ natAdd k)
[PROOFSTEP]
rfl
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Structure L' M
k : ℕ
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin (k + n))
fr : (n : ℕ) → Relations L n → Relations L' n
n : ℕ
v : {n : ℕ} → (Fin (k + n) → M) → α → M
v' : β → M
xs✝ : Fin (k + n) → M
h1 :
∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (k + n) → M),
realize (Sum.elim v' xs') (ft n t) = realize (Sum.elim (v xs') (xs' ∘ natAdd k)) t
h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x
hv : ∀ (n : ℕ) (xs : Fin (k + n) → M) (x : M), v (snoc xs x) = v xs
n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
xs : Fin (k + n✝) → M
⊢ Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) (equal t₁✝ t₂✝)) v' xs ↔
Realize (equal t₁✝ t₂✝) (v xs) (xs ∘ natAdd k)
[PROOFSTEP]
simp [mapTermRel, Realize, h1]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Structure L' M
k : ℕ
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin (k + n))
fr : (n : ℕ) → Relations L n → Relations L' n
n : ℕ
v : {n : ℕ} → (Fin (k + n) → M) → α → M
v' : β → M
xs✝ : Fin (k + n) → M
h1 :
∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (k + n) → M),
realize (Sum.elim v' xs') (ft n t) = realize (Sum.elim (v xs') (xs' ∘ natAdd k)) t
h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x
hv : ∀ (n : ℕ) (xs : Fin (k + n) → M) (x : M), v (snoc xs x) = v xs
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
xs : Fin (k + n✝) → M
⊢ Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) (rel R✝ ts✝)) v' xs ↔
Realize (rel R✝ ts✝) (v xs) (xs ∘ natAdd k)
[PROOFSTEP]
simp [mapTermRel, Realize, h1, h2]
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Structure L' M
k : ℕ
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin (k + n))
fr : (n : ℕ) → Relations L n → Relations L' n
n : ℕ
v : {n : ℕ} → (Fin (k + n) → M) → α → M
v' : β → M
xs✝ : Fin (k + n) → M
h1 :
∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (k + n) → M),
realize (Sum.elim v' xs') (ft n t) = realize (Sum.elim (v xs') (xs' ∘ natAdd k)) t
h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x
hv : ∀ (n : ℕ) (xs : Fin (k + n) → M) (x : M), v (snoc xs x) = v xs
n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 :
∀ (xs : Fin (k + n✝) → M),
Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) f₁✝) v' xs ↔
Realize f₁✝ (v xs) (xs ∘ natAdd k)
ih2 :
∀ (xs : Fin (k + n✝) → M),
Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) f₂✝) v' xs ↔
Realize f₂✝ (v xs) (xs ∘ natAdd k)
xs : Fin (k + n✝) → M
⊢ Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) (f₁✝ ⟹ f₂✝)) v' xs ↔
Realize (f₁✝ ⟹ f₂✝) (v xs) (xs ∘ natAdd k)
[PROOFSTEP]
simp [mapTermRel, Realize, ih1, ih2]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Structure L' M
k : ℕ
ft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin (k + n))
fr : (n : ℕ) → Relations L n → Relations L' n
n : ℕ
v : {n : ℕ} → (Fin (k + n) → M) → α → M
v' : β → M
xs✝ : Fin (k + n) → M
h1 :
∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (k + n) → M),
realize (Sum.elim v' xs') (ft n t) = realize (Sum.elim (v xs') (xs' ∘ natAdd k)) t
h2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x
hv : ∀ (n : ℕ) (xs : Fin (k + n) → M) (x : M), v (snoc xs x) = v xs
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih :
∀ (xs : Fin (k + (n✝ + 1)) → M),
Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) f✝) v' xs ↔
Realize f✝ (v xs) (xs ∘ natAdd k)
xs : Fin (k + n✝) → M
⊢ Realize (mapTermRel ft fr (fun n => castLE (_ : k + (n + 1) ≤ k + n + 1)) (∀'f✝)) v' xs ↔
Realize (∀'f✝) (v xs) (xs ∘ natAdd k)
[PROOFSTEP]
simp [mapTermRel, Realize, ih, hv]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
m n : ℕ
φ : BoundedFormula L α n
g : α → β ⊕ Fin m
v : β → M
xs : Fin (m + n) → M
⊢ Realize (relabel g φ) v xs ↔ Realize φ (Sum.elim v (xs ∘ castAdd n) ∘ g) (xs ∘ natAdd m)
[PROOFSTEP]
rw [relabel, realize_mapTermRel_add_castLe]
[GOAL]
case h1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
m n : ℕ
φ : BoundedFormula L α n
g : α → β ⊕ Fin m
v : β → M
xs : Fin (m + n) → M
⊢ ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs' : Fin (m + n) → M),
realize (Sum.elim v xs') (Term.relabel (relabelAux g n) t) =
realize (Sum.elim (Sum.elim v (xs' ∘ castAdd n) ∘ g) (xs' ∘ natAdd m)) t
[PROOFSTEP]
intros
[GOAL]
case h2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
m n : ℕ
φ : BoundedFormula L α n
g : α → β ⊕ Fin m
v : β → M
xs : Fin (m + n) → M
⊢ ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (id R) x = RelMap R x
[PROOFSTEP]
intros
[GOAL]
case hv
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
m n : ℕ
φ : BoundedFormula L α n
g : α → β ⊕ Fin m
v : β → M
xs : Fin (m + n) → M
⊢ ∀ (n : ℕ) (xs : Fin (m + n) → M) (x : M),
Sum.elim v (snoc xs x ∘ castAdd (n + 1)) ∘ g = Sum.elim v (xs ∘ castAdd n) ∘ g
[PROOFSTEP]
intros
[GOAL]
case h1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
m n : ℕ
φ : BoundedFormula L α n
g : α → β ⊕ Fin m
v : β → M
xs : Fin (m + n) → M
n✝ : ℕ
t✝ : Term L (α ⊕ Fin n✝)
xs'✝ : Fin (m + n✝) → M
⊢ realize (Sum.elim v xs'✝) (Term.relabel (relabelAux g n✝) t✝) =
realize (Sum.elim (Sum.elim v (xs'✝ ∘ castAdd n✝) ∘ g) (xs'✝ ∘ natAdd m)) t✝
[PROOFSTEP]
simp
[GOAL]
case h2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
m n : ℕ
φ : BoundedFormula L α n
g : α → β ⊕ Fin m
v : β → M
xs : Fin (m + n) → M
n✝ : ℕ
R✝ : Relations L n✝
x✝ : Fin n✝ → M
⊢ RelMap (id R✝) x✝ = RelMap R✝ x✝
[PROOFSTEP]
simp
[GOAL]
case hv
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
m n : ℕ
φ : BoundedFormula L α n
g : α → β ⊕ Fin m
v : β → M
xs : Fin (m + n) → M
n✝ : ℕ
xs✝ : Fin (m + n✝) → M
x✝ : M
⊢ Sum.elim v (snoc xs✝ x✝ ∘ castAdd (n✝ + 1)) ∘ g = Sum.elim v (xs✝ ∘ castAdd n✝) ∘ g
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
n n' m : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin (n + n') → M
hmn : m + n' ≤ n + 1
⊢ Realize (liftAt n' m φ) v xs ↔ Realize φ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')
[PROOFSTEP]
rw [liftAt]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
n n' m : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin (n + n') → M
hmn : m + n' ≤ n + 1
⊢ Realize (mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) φ) v
xs ↔
Realize φ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')
[PROOFSTEP]
induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 k _ ih3
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
n✝ : ℕ
xs : Fin (n✝ + n') → M
hmn : m + n' ≤ n✝ + 1
⊢ Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) falsum)
v xs ↔
Realize falsum v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')
[PROOFSTEP]
simp [mapTermRel, Realize]
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
xs : Fin (n✝ + n') → M
hmn : m + n' ≤ n✝ + 1
⊢ Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1))
(equal t₁✝ t₂✝))
v xs ↔
Realize (equal t₁✝ t₂✝) v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')
[PROOFSTEP]
simp [mapTermRel, Realize, realize_rel, realize_liftAt, Sum.elim_comp_map]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
xs : Fin (n✝ + n') → M
hmn : m + n' ≤ n✝ + 1
⊢ Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1))
(rel R✝ ts✝))
v xs ↔
Realize (rel R✝ ts✝) v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')
[PROOFSTEP]
simp [mapTermRel, Realize, realize_rel, realize_liftAt, Sum.elim_comp_map]
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 :
∀ {xs : Fin (n✝ + n') → M},
m + n' ≤ n✝ + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f₁✝)
v xs ↔
Realize f₁✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
ih2 :
∀ {xs : Fin (n✝ + n') → M},
m + n' ≤ n✝ + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f₂✝)
v xs ↔
Realize f₂✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (n✝ + n') → M
hmn : m + n' ≤ n✝ + 1
⊢ Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1))
(f₁✝ ⟹ f₂✝))
v xs ↔
Realize (f₁✝ ⟹ f₂✝) v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')
[PROOFSTEP]
simp only [mapTermRel, Realize, ih1 hmn, ih2 hmn]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
⊢ Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) (∀'f✝))
v xs ↔
Realize (∀'f✝) v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')
[PROOFSTEP]
have h : k + 1 + n' = k + n' + 1 := by rw [add_assoc, add_comm 1 n', ← add_assoc]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
⊢ k + 1 + n' = k + n' + 1
[PROOFSTEP]
rw [add_assoc, add_comm 1 n', ← add_assoc]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h : k + 1 + n' = k + n' + 1
⊢ Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) (∀'f✝))
v xs ↔
Realize (∀'f✝) v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')
[PROOFSTEP]
simp only [mapTermRel, Realize, realize_castLE_of_eq h, ih3 (hmn.trans k.succ.le_succ)]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h : k + 1 + n' = k + n' + 1
⊢ (∀ (x : M), Realize f✝ v ((snoc xs x ∘ ↑(castIso h)) ∘ fun i => if ↑i < m then castAdd n' i else addNat i n')) ↔
∀ (x : M), Realize f✝ v (snoc (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') x)
[PROOFSTEP]
refine' forall_congr' fun x => iff_eq_eq.mpr (congr rfl (funext (Fin.lastCases _ fun i => _)))
[GOAL]
case all.refine'_1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h : k + 1 + n' = k + n' + 1
x : M
⊢ ((snoc xs x ∘ ↑(castIso h)) ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') (last k) =
snoc (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') x (last k)
[PROOFSTEP]
simp only [Function.comp_apply, val_last, snoc_last]
[GOAL]
case all.refine'_1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h : k + 1 + n' = k + n' + 1
x : M
⊢ snoc xs x (↑(castIso h) (if k < m then castAdd n' (last k) else addNat (last k) n')) = x
[PROOFSTEP]
by_cases h : k < m
[GOAL]
case pos
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h✝ : k + 1 + n' = k + n' + 1
x : M
h : k < m
⊢ snoc xs x (↑(castIso h✝) (if k < m then castAdd n' (last k) else addNat (last k) n')) = x
[PROOFSTEP]
rw [if_pos h]
[GOAL]
case pos
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h✝ : k + 1 + n' = k + n' + 1
x : M
h : k < m
⊢ snoc xs x (↑(castIso h✝) (castAdd n' (last k))) = x
[PROOFSTEP]
refine' (congr rfl (ext _)).trans (snoc_last _ _)
[GOAL]
case pos
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h✝ : k + 1 + n' = k + n' + 1
x : M
h : k < m
⊢ ↑(↑(castIso h✝) (castAdd n' (last k))) = ↑(last (k + n'))
[PROOFSTEP]
simp only [coe_orderIso_apply, coe_castAdd, val_last, self_eq_add_right]
[GOAL]
case pos
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h✝ : k + 1 + n' = k + n' + 1
x : M
h : k < m
⊢ n' = 0
[PROOFSTEP]
refine' le_antisymm (le_of_add_le_add_left ((hmn.trans (Nat.succ_le_of_lt h)).trans _)) n'.zero_le
[GOAL]
case pos
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h✝ : k + 1 + n' = k + n' + 1
x : M
h : k < m
⊢ m ≤ m + 0
[PROOFSTEP]
rw [add_zero]
[GOAL]
case neg
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h✝ : k + 1 + n' = k + n' + 1
x : M
h : ¬k < m
⊢ snoc xs x (↑(castIso h✝) (if k < m then castAdd n' (last k) else addNat (last k) n')) = x
[PROOFSTEP]
rw [if_neg h]
[GOAL]
case neg
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h✝ : k + 1 + n' = k + n' + 1
x : M
h : ¬k < m
⊢ snoc xs x (↑(castIso h✝) (addNat (last k) n')) = x
[PROOFSTEP]
refine' (congr rfl (ext _)).trans (snoc_last _ _)
[GOAL]
case neg
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h✝ : k + 1 + n' = k + n' + 1
x : M
h : ¬k < m
⊢ ↑(↑(castIso h✝) (addNat (last k) n')) = ↑(last (k + n'))
[PROOFSTEP]
simp
[GOAL]
case all.refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h : k + 1 + n' = k + n' + 1
x : M
i : Fin k
⊢ ((snoc xs x ∘ ↑(castIso h)) ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') (castSucc i) =
snoc (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n') x (castSucc i)
[PROOFSTEP]
simp only [Function.comp_apply, Fin.snoc_castSucc]
[GOAL]
case all.refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h : k + 1 + n' = k + n' + 1
x : M
i : Fin k
⊢ snoc xs x (↑(castIso h) (if ↑(castSucc i) < m then castAdd n' (castSucc i) else addNat (castSucc i) n')) =
xs (if ↑i < m then castAdd n' i else addNat i n')
[PROOFSTEP]
refine' (congr rfl (ext _)).trans (snoc_castSucc _ _ _)
[GOAL]
case all.refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h : k + 1 + n' = k + n' + 1
x : M
i : Fin k
⊢ ↑(↑(castIso h) (if ↑(castSucc i) < m then castAdd n' (castSucc i) else addNat (castSucc i) n')) =
↑(castSucc (if ↑i < m then castAdd n' i else addNat i n'))
[PROOFSTEP]
simp only [coe_castSucc, coe_orderIso_apply]
[GOAL]
case all.refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h : k + 1 + n' = k + n' + 1
x : M
i : Fin k
⊢ ↑(if ↑i < m then castAdd n' (castSucc i) else addNat (castSucc i) n') =
↑(if ↑i < m then castAdd n' i else addNat i n')
[PROOFSTEP]
split_ifs
[GOAL]
case pos
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h : k + 1 + n' = k + n' + 1
x : M
i : Fin k
h✝ : ↑i < m
⊢ ↑(castAdd n' (castSucc i)) = ↑(castAdd n' i)
[PROOFSTEP]
simp
[GOAL]
case neg
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
n n' m : ℕ
v : α → M
xs✝ : Fin (n + n') → M
hmn✝ : m + n' ≤ n + 1
k : ℕ
f✝ : BoundedFormula L α (k + 1)
ih3 :
∀ {xs : Fin (k + 1 + n') → M},
m + n' ≤ k + 1 + 1 →
(Realize
(mapTermRel (fun k t => Term.liftAt n' m t) (fun x => id) (fun x => castLE (_ : x + 1 + n' ≤ x + n' + 1)) f✝)
v xs ↔
Realize f✝ v (xs ∘ fun i => if ↑i < m then castAdd n' i else addNat i n'))
xs : Fin (k + n') → M
hmn : m + n' ≤ k + 1
h : k + 1 + n' = k + n' + 1
x : M
i : Fin k
h✝ : ¬↑i < m
⊢ ↑(addNat (castSucc i) n') = ↑(addNat i n')
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
n m : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin (n + 1) → M
hmn : m ≤ n
⊢ Realize (liftAt 1 m φ) v xs ↔ Realize φ v (xs ∘ fun i => if ↑i < m then castSucc i else succ i)
[PROOFSTEP]
simp [realize_liftAt (add_le_add_right hmn 1), castSucc]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin (n + 1) → M
⊢ Realize (liftAt 1 n φ) v xs ↔ Realize φ v (xs ∘ castSucc)
[PROOFSTEP]
rw [realize_liftAt_one (refl n), iff_eq_eq]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin (n + 1) → M
⊢ Realize φ v (xs ∘ fun i => if ↑i < n then castSucc i else succ i) = Realize φ v (xs ∘ castSucc)
[PROOFSTEP]
refine' congr rfl (congr rfl (funext fun i => _))
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin (n + 1) → M
i : Fin n
⊢ (if ↑i < n then castSucc i else succ i) = castSucc i
[PROOFSTEP]
rw [if_pos i.is_lt]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
φ : BoundedFormula L α n✝
tf : α → Term L β
v : β → M
xs : Fin n✝ → M
n : ℕ
t : Term L (α ⊕ Fin n)
x : Fin n → M
⊢ realize (Sum.elim v x) (Term.subst t (Sum.elim (Term.relabel Sum.inl ∘ tf) (var ∘ Sum.inr))) =
realize (Sum.elim (fun a => realize v (tf a)) x) t
[PROOFSTEP]
rw [Term.realize_subst]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
φ : BoundedFormula L α n✝
tf : α → Term L β
v : β → M
xs : Fin n✝ → M
n : ℕ
t : Term L (α ⊕ Fin n)
x : Fin n → M
⊢ realize (fun a => realize (Sum.elim v x) (Sum.elim (Term.relabel Sum.inl ∘ tf) (var ∘ Sum.inr) a)) t =
realize (Sum.elim (fun a => realize v (tf a)) x) t
[PROOFSTEP]
rcongr a
[GOAL]
case e_v.h
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
φ : BoundedFormula L α n✝
tf : α → Term L β
v : β → M
xs : Fin n✝ → M
n : ℕ
t : Term L (α ⊕ Fin n)
x : Fin n → M
a : α ⊕ Fin n
⊢ realize (Sum.elim v x) (Sum.elim (Term.relabel Sum.inl ∘ tf) (var ∘ Sum.inr) a) =
Sum.elim (fun a => realize v (tf a)) x a
[PROOFSTEP]
cases a
[GOAL]
case e_v.h.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
φ : BoundedFormula L α n✝
tf : α → Term L β
v : β → M
xs : Fin n✝ → M
n : ℕ
t : Term L (α ⊕ Fin n)
x : Fin n → M
val✝ : α
⊢ realize (Sum.elim v x) (Sum.elim (Term.relabel Sum.inl ∘ tf) (var ∘ Sum.inr) (Sum.inl val✝)) =
Sum.elim (fun a => realize v (tf a)) x (Sum.inl val✝)
[PROOFSTEP]
simp only [Sum.elim_inl, Function.comp_apply, Term.realize_relabel, Sum.elim_comp_inl]
[GOAL]
case e_v.h.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
φ : BoundedFormula L α n✝
tf : α → Term L β
v : β → M
xs : Fin n✝ → M
n : ℕ
t : Term L (α ⊕ Fin n)
x : Fin n → M
val✝ : Fin n
⊢ realize (Sum.elim v x) (Sum.elim (Term.relabel Sum.inl ∘ tf) (var ∘ Sum.inr) (Sum.inr val✝)) =
Sum.elim (fun a => realize v (tf a)) x (Sum.inr val✝)
[PROOFSTEP]
rfl
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
φ : BoundedFormula L α n
tf : α → Term L β
v : β → M
xs : Fin n → M
⊢ ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (id R) x = RelMap R x
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝ : DecidableEq α
n : ℕ
φ : BoundedFormula L α n
s : Set α
h : ↑(freeVarFinset φ) ⊆ s
v : α → M
xs : Fin n → M
⊢ Realize (restrictFreeVar φ (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize φ v xs
[PROOFSTEP]
induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : DecidableEq α
n : ℕ
φ : BoundedFormula L α n
s : Set α
h✝ : ↑(freeVarFinset φ) ⊆ s
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
h : ↑(freeVarFinset falsum) ⊆ s
xs : Fin n✝ → M
⊢ Realize (restrictFreeVar falsum (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize falsum v xs
[PROOFSTEP]
rfl
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : DecidableEq α
n : ℕ
φ : BoundedFormula L α n
s : Set α
h✝ : ↑(freeVarFinset φ) ⊆ s
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
h : ↑(freeVarFinset (equal t₁✝ t₂✝)) ⊆ s
xs : Fin n✝ → M
⊢ Realize (restrictFreeVar (equal t₁✝ t₂✝) (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize (equal t₁✝ t₂✝) v xs
[PROOFSTEP]
simp [restrictFreeVar, Realize]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : DecidableEq α
n : ℕ
φ : BoundedFormula L α n
s : Set α
h✝ : ↑(freeVarFinset φ) ⊆ s
v : α → M
xs✝ : Fin n → M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
h : ↑(freeVarFinset (rel R✝ ts✝)) ⊆ s
xs : Fin n✝ → M
⊢ Realize (restrictFreeVar (rel R✝ ts✝) (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize (rel R✝ ts✝) v xs
[PROOFSTEP]
simp [restrictFreeVar, Realize]
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : DecidableEq α
n : ℕ
φ : BoundedFormula L α n
s : Set α
h✝ : ↑(freeVarFinset φ) ⊆ s
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 :
∀ (h : ↑(freeVarFinset f₁✝) ⊆ s) {xs : Fin n✝ → M},
Realize (restrictFreeVar f₁✝ (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize f₁✝ v xs
ih2 :
∀ (h : ↑(freeVarFinset f₂✝) ⊆ s) {xs : Fin n✝ → M},
Realize (restrictFreeVar f₂✝ (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize f₂✝ v xs
h : ↑(freeVarFinset (f₁✝ ⟹ f₂✝)) ⊆ s
xs : Fin n✝ → M
⊢ Realize (restrictFreeVar (f₁✝ ⟹ f₂✝) (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize (f₁✝ ⟹ f₂✝) v xs
[PROOFSTEP]
simp [restrictFreeVar, Realize, ih1, ih2]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : DecidableEq α
n : ℕ
φ : BoundedFormula L α n
s : Set α
h✝ : ↑(freeVarFinset φ) ⊆ s
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 :
∀ (h : ↑(freeVarFinset f✝) ⊆ s) {xs : Fin (n✝ + 1) → M},
Realize (restrictFreeVar f✝ (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize f✝ v xs
h : ↑(freeVarFinset (∀'f✝)) ⊆ s
xs : Fin n✝ → M
⊢ Realize (restrictFreeVar (∀'f✝) (Set.inclusion h)) (v ∘ Subtype.val) xs ↔ Realize (∀'f✝) v xs
[PROOFSTEP]
simp [restrictFreeVar, Realize, ih3]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
n : ℕ
φ : BoundedFormula (L[[α]]) β n
v : β → M
xs : Fin n → M
⊢ Realize (↑constantsVarsEquiv φ) (Sum.elim (fun a => ↑(Language.con L a)) v) xs ↔ Realize φ v xs
[PROOFSTEP]
refine' realize_mapTermRel_id (fun n t xs => realize_constantsVarsEquivLeft) fun n R xs => _
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
n✝ : ℕ
φ : BoundedFormula (L[[α]]) β n✝
v : β → M
xs✝ : Fin n✝ → M
n : ℕ
R : Relations (L[[α]]) n
xs : Fin n → M
⊢ RelMap (↑((fun x => Equiv.sumEmpty (Relations L x) (Relations (constantsOn α) x)) n) R) xs = RelMap R xs
[PROOFSTEP]
rw [← (lhomWithConstants L α).map_onRelation (Equiv.sumEmpty (L.Relations n) ((constantsOn α).Relations n) R) xs]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
n✝ : ℕ
φ : BoundedFormula (L[[α]]) β n✝
v : β → M
xs✝ : Fin n✝ → M
n : ℕ
R : Relations (L[[α]]) n
xs : Fin n → M
⊢ RelMap (LHom.onRelation (lhomWithConstants L α) (↑(Equiv.sumEmpty (Relations L n) (Relations (constantsOn α) n)) R))
xs =
RelMap R xs
[PROOFSTEP]
rcongr
[GOAL]
case a
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
n✝ : ℕ
φ : BoundedFormula (L[[α]]) β n✝
v : β → M
xs✝ : Fin n✝ → M
n : ℕ
R : Relations (L[[α]]) n
xs : Fin n → M
⊢ RelMap (LHom.onRelation (lhomWithConstants L α) (↑(Equiv.sumEmpty (Relations L n) (Relations (constantsOn α) n)) R))
xs ↔
RelMap R xs
[PROOFSTEP]
cases' R with R R
[GOAL]
case a.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
n✝ : ℕ
φ : BoundedFormula (L[[α]]) β n✝
v : β → M
xs✝ : Fin n✝ → M
n : ℕ
xs : Fin n → M
R : Relations L n
⊢ RelMap
(LHom.onRelation (lhomWithConstants L α)
(↑(Equiv.sumEmpty (Relations L n) (Relations (constantsOn α) n)) (Sum.inl R)))
xs ↔
RelMap (Sum.inl R) xs
[PROOFSTEP]
simp
[GOAL]
case a.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝¹ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
n✝ : ℕ
φ : BoundedFormula (L[[α]]) β n✝
v : β → M
xs✝ : Fin n✝ → M
n : ℕ
xs : Fin n → M
R : Relations (constantsOn α) n
⊢ RelMap
(LHom.onRelation (lhomWithConstants L α)
(↑(Equiv.sumEmpty (Relations L n) (Relations (constantsOn α) n)) (Sum.inr R)))
xs ↔
RelMap (Sum.inr R) xs
[PROOFSTEP]
exact isEmptyElim R
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
g : α ≃ β
k : ℕ
φ : BoundedFormula L α k
v : β → M
xs : Fin k → M
⊢ Realize (↑(relabelEquiv g) φ) v xs ↔ Realize φ (v ∘ ↑g) xs
[PROOFSTEP]
simp only [relabelEquiv, mapTermRelEquiv_apply, Equiv.coe_refl]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
g : α ≃ β
k : ℕ
φ : BoundedFormula L α k
v : β → M
xs : Fin k → M
⊢ Realize
(mapTermRel (fun n => ↑(Term.relabelEquiv (Equiv.sumCongr g (_root_.Equiv.refl (Fin n))))) (fun n => id)
(fun x => id) φ)
v xs ↔
Realize φ (v ∘ ↑g) xs
[PROOFSTEP]
refine' realize_mapTermRel_id (fun n t xs => _) fun _ _ _ => rfl
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
g : α ≃ β
k : ℕ
φ : BoundedFormula L α k
v : β → M
xs✝ : Fin k → M
n : ℕ
t : Term L (α ⊕ Fin n)
xs : Fin n → M
⊢ realize (Sum.elim v xs) (↑(Term.relabelEquiv (Equiv.sumCongr g (_root_.Equiv.refl (Fin n)))) t) =
realize (Sum.elim (v ∘ ↑g) xs) t
[PROOFSTEP]
simp only [relabelEquiv_apply, Term.realize_relabel]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
g : α ≃ β
k : ℕ
φ : BoundedFormula L α k
v : β → M
xs✝ : Fin k → M
n : ℕ
t : Term L (α ⊕ Fin n)
xs : Fin n → M
⊢ realize (Sum.elim v xs ∘ ↑(Equiv.sumCongr g (_root_.Equiv.refl (Fin n)))) t = realize (Sum.elim (v ∘ ↑g) xs) t
[PROOFSTEP]
refine' congr (congr rfl _) rfl
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
g : α ≃ β
k : ℕ
φ : BoundedFormula L α k
v : β → M
xs✝ : Fin k → M
n : ℕ
t : Term L (α ⊕ Fin n)
xs : Fin n → M
⊢ Sum.elim v xs ∘ ↑(Equiv.sumCongr g (_root_.Equiv.refl (Fin n))) = Sum.elim (v ∘ ↑g) xs
[PROOFSTEP]
ext (i | i)
[GOAL]
case h.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
g : α ≃ β
k : ℕ
φ : BoundedFormula L α k
v : β → M
xs✝ : Fin k → M
n : ℕ
t : Term L (α ⊕ Fin n)
xs : Fin n → M
i : α
⊢ (Sum.elim v xs ∘ ↑(Equiv.sumCongr g (_root_.Equiv.refl (Fin n)))) (Sum.inl i) = Sum.elim (v ∘ ↑g) xs (Sum.inl i)
[PROOFSTEP]
rfl
[GOAL]
case h.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
g : α ≃ β
k : ℕ
φ : BoundedFormula L α k
v : β → M
xs✝ : Fin k → M
n : ℕ
t : Term L (α ⊕ Fin n)
xs : Fin n → M
i : Fin n
⊢ (Sum.elim v xs ∘ ↑(Equiv.sumCongr g (_root_.Equiv.refl (Fin n)))) (Sum.inr i) = Sum.elim (v ∘ ↑g) xs (Sum.inr i)
[PROOFSTEP]
rfl
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝ : Nonempty M
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
⊢ Realize (∀'liftAt 1 n φ) v xs ↔ Realize φ v xs
[PROOFSTEP]
inhabit M
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝ : Nonempty M
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
inhabited_h : Inhabited M
⊢ Realize (∀'liftAt 1 n φ) v xs ↔ Realize φ v xs
[PROOFSTEP]
simp only [realize_all, realize_liftAt_one_self]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝ : Nonempty M
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
inhabited_h : Inhabited M
⊢ (∀ (a : M), Realize φ v (snoc xs a ∘ castSucc)) ↔ Realize φ v xs
[PROOFSTEP]
refine' ⟨fun h => _, fun h a => _⟩
[GOAL]
case refine'_1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝ : Nonempty M
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
inhabited_h : Inhabited M
h : ∀ (a : M), Realize φ v (snoc xs a ∘ castSucc)
⊢ Realize φ v xs
[PROOFSTEP]
refine' (congr rfl (funext fun i => _)).mp (h default)
[GOAL]
case refine'_1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝ : Nonempty M
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
inhabited_h : Inhabited M
h : ∀ (a : M), Realize φ v (snoc xs a ∘ castSucc)
i : Fin n
⊢ (snoc xs default ∘ castSucc) i = xs i
[PROOFSTEP]
simp
[GOAL]
case refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝ : Nonempty M
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
inhabited_h : Inhabited M
h : Realize φ v xs
a : M
⊢ Realize φ v (snoc xs a ∘ castSucc)
[PROOFSTEP]
refine' (congr rfl (funext fun i => _)).mp h
[GOAL]
case refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n✝ l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝ : Nonempty M
n : ℕ
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
inhabited_h : Inhabited M
h : Realize φ v xs
a : M
i : Fin n
⊢ xs i = (snoc xs a ∘ castSucc) i
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝ : Nonempty M
φ ψ : BoundedFormula L α n
hφ : IsQF φ
hψ : IsPrenex ψ
v : α → M
xs : Fin n → M
⊢ Realize (toPrenexImpRight φ ψ) v xs ↔ Realize (φ ⟹ ψ) v xs
[PROOFSTEP]
induction' hψ with _ _ hψ _ _ _hψ ih _ _ _hψ ih
[GOAL]
case of_isQF
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α n✝
hψ : IsQF φ✝
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
⊢ Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
[PROOFSTEP]
rw [hψ.toPrenexImpRight]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
⊢ Realize (toPrenexImpRight φ (∀'φ✝)) v xs ↔ Realize (φ ⟹ ∀'φ✝) v xs
[PROOFSTEP]
refine' _root_.trans (forall_congr' fun _ => ih hφ.liftAt) _
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
⊢ (∀ (a : M), Realize (liftAt 1 n✝ φ ⟹ φ✝) v (snoc xs a)) ↔ Realize (φ ⟹ ∀'φ✝) v xs
[PROOFSTEP]
simp only [realize_imp, realize_liftAt_one_self, snoc_comp_castSucc, realize_all]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
⊢ (∀ (a : M), Realize φ v xs → Realize φ✝ v (snoc xs a)) ↔ Realize φ v xs → ∀ (a : M), Realize φ✝ v (snoc xs a)
[PROOFSTEP]
exact ⟨fun h1 a h2 => h1 h2 a, fun h1 h2 a => h1 a h2⟩
[GOAL]
case ex
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
⊢ Realize (toPrenexImpRight φ (∃'φ✝)) v xs ↔ Realize (φ ⟹ ∃'φ✝) v xs
[PROOFSTEP]
unfold toPrenexImpRight
[GOAL]
case ex
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
⊢ Realize (∃'toPrenexImpRight (liftAt 1 n✝ φ) φ✝) v xs ↔ Realize (φ ⟹ ∃'φ✝) v xs
[PROOFSTEP]
rw [realize_ex]
[GOAL]
case ex
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
⊢ (∃ a, Realize (toPrenexImpRight (liftAt 1 n✝ φ) φ✝) v (snoc xs a)) ↔ Realize (φ ⟹ ∃'φ✝) v xs
[PROOFSTEP]
refine' _root_.trans (exists_congr fun _ => ih hφ.liftAt) _
[GOAL]
case ex
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
⊢ (∃ a, Realize (liftAt 1 n✝ φ ⟹ φ✝) v (snoc xs a)) ↔ Realize (φ ⟹ ∃'φ✝) v xs
[PROOFSTEP]
simp only [realize_imp, realize_liftAt_one_self, snoc_comp_castSucc, realize_ex]
[GOAL]
case ex
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
⊢ (∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a)) ↔ Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a)
[PROOFSTEP]
refine' ⟨_, fun h' => _⟩
[GOAL]
case ex.refine'_1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
⊢ (∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a)) → Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a)
[PROOFSTEP]
rintro ⟨a, ha⟩ h
[GOAL]
case ex.refine'_1.intro
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
a : M
ha : Realize φ v xs → Realize φ✝ v (snoc xs a)
h : Realize φ v xs
⊢ ∃ a, Realize φ✝ v (snoc xs a)
[PROOFSTEP]
exact ⟨a, ha h⟩
[GOAL]
case ex.refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
h' : Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a)
⊢ ∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a)
[PROOFSTEP]
by_cases φ.Realize v xs
[GOAL]
case ex.refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
h' : Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a)
⊢ ∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a)
[PROOFSTEP]
by_cases φ.Realize v xs
[GOAL]
case pos
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
h' : Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a)
h : Realize φ v xs
⊢ ∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a)
[PROOFSTEP]
obtain ⟨a, ha⟩ := h' h
[GOAL]
case pos.intro
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
h' : Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a)
h : Realize φ v xs
a : M
ha : Realize φ✝ v (snoc xs a)
⊢ ∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a)
[PROOFSTEP]
exact ⟨a, fun _ => ha⟩
[GOAL]
case neg
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
h' : Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a)
h : ¬Realize φ v xs
⊢ ∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a)
[PROOFSTEP]
inhabit M
[GOAL]
case neg
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝² ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ✝¹ ψ : BoundedFormula L α n
hφ✝ : IsQF φ✝¹
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hψ : IsPrenex φ✝
ih :
∀ {φ : BoundedFormula L α (n✝ + 1)},
IsQF φ → ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenexImpRight φ φ✝) v xs ↔ Realize (φ ⟹ φ✝) v xs
φ : BoundedFormula L α n✝
hφ : IsQF φ
xs : Fin n✝ → M
h' : Realize φ v xs → ∃ a, Realize φ✝ v (snoc xs a)
h : ¬Realize φ v xs
inhabited_h : Inhabited M
⊢ ∃ a, Realize φ v xs → Realize φ✝ v (snoc xs a)
[PROOFSTEP]
exact ⟨default, fun h'' => (h h'').elim⟩
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝ : Nonempty M
φ ψ : BoundedFormula L α n
hφ : IsPrenex φ
hψ : IsPrenex ψ
v : α → M
xs : Fin n → M
⊢ Realize (toPrenexImp φ ψ) v xs ↔ Realize (φ ⟹ ψ) v xs
[PROOFSTEP]
revert ψ
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
hφ : IsPrenex φ
v : α → M
xs : Fin n → M
⊢ ∀ {ψ : BoundedFormula L α n}, IsPrenex ψ → (Realize (toPrenexImp φ ψ) v xs ↔ Realize (φ ⟹ ψ) v xs)
[PROOFSTEP]
induction' hφ with _ _ hφ _ _ _hφ ih _ _ _hφ ih
[GOAL]
case of_isQF
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α n✝
hφ : IsQF φ✝
xs : Fin n✝ → M
⊢ ∀ {ψ : BoundedFormula L α n✝}, IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
[PROOFSTEP]
intro ψ hψ
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
⊢ ∀ {ψ : BoundedFormula L α n✝}, IsPrenex ψ → (Realize (toPrenexImp (∀'φ✝) ψ) v xs ↔ Realize (∀'φ✝ ⟹ ψ) v xs)
[PROOFSTEP]
intro ψ hψ
[GOAL]
case ex
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
⊢ ∀ {ψ : BoundedFormula L α n✝}, IsPrenex ψ → (Realize (toPrenexImp (∃'φ✝) ψ) v xs ↔ Realize (∃'φ✝ ⟹ ψ) v xs)
[PROOFSTEP]
intro ψ hψ
[GOAL]
case of_isQF
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α n✝
hφ : IsQF φ✝
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs
[PROOFSTEP]
rw [hφ.toPrenexImp]
[GOAL]
case of_isQF
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α n✝
hφ : IsQF φ✝
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ Realize (toPrenexImpRight φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs
[PROOFSTEP]
exact realize_toPrenexImpRight hφ hψ
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ Realize (toPrenexImp (∀'φ✝) ψ) v xs ↔ Realize (∀'φ✝ ⟹ ψ) v xs
[PROOFSTEP]
unfold toPrenexImp
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ Realize (∃'toPrenexImp φ✝ (liftAt 1 n✝ ψ)) v xs ↔ Realize (∀'φ✝ ⟹ ψ) v xs
[PROOFSTEP]
rw [realize_ex]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ (∃ a, Realize (toPrenexImp φ✝ (liftAt 1 n✝ ψ)) v (snoc xs a)) ↔ Realize (∀'φ✝ ⟹ ψ) v xs
[PROOFSTEP]
refine' _root_.trans (exists_congr fun _ => ih hψ.liftAt) _
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ (∃ a, Realize (φ✝ ⟹ liftAt 1 n✝ ψ) v (snoc xs a)) ↔ Realize (∀'φ✝ ⟹ ψ) v xs
[PROOFSTEP]
simp only [realize_imp, realize_liftAt_one_self, snoc_comp_castSucc, realize_all]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ (∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs) ↔ (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs
[PROOFSTEP]
refine' ⟨_, fun h' => _⟩
[GOAL]
case all.refine'_1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ (∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs) → (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs
[PROOFSTEP]
rintro ⟨a, ha⟩ h
[GOAL]
case all.refine'_1.intro
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
a : M
ha : Realize φ✝ v (snoc xs a) → Realize ψ v xs
h : ∀ (a : M), Realize φ✝ v (snoc xs a)
⊢ Realize ψ v xs
[PROOFSTEP]
exact ha (h a)
[GOAL]
case all.refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
h' : (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs
⊢ ∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs
[PROOFSTEP]
by_cases ψ.Realize v xs
[GOAL]
case all.refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
h' : (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs
⊢ ∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs
[PROOFSTEP]
by_cases ψ.Realize v xs
[GOAL]
case pos
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
h' : (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs
h : Realize ψ v xs
⊢ ∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs
[PROOFSTEP]
inhabit M
[GOAL]
case pos
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
h' : (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs
h : Realize ψ v xs
inhabited_h : Inhabited M
⊢ ∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs
[PROOFSTEP]
exact ⟨default, fun _h'' => h⟩
[GOAL]
case neg
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
h' : (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs
h : ¬Realize ψ v xs
⊢ ∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs
[PROOFSTEP]
obtain ⟨a, ha⟩ := not_forall.1 (h ∘ h')
[GOAL]
case neg.intro
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
h' : (∀ (a : M), Realize φ✝ v (snoc xs a)) → Realize ψ v xs
h : ¬Realize ψ v xs
a : M
ha : ¬Realize φ✝ v (snoc xs a)
⊢ ∃ a, Realize φ✝ v (snoc xs a) → Realize ψ v xs
[PROOFSTEP]
exact ⟨a, fun h => (ha h).elim⟩
[GOAL]
case ex
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ Realize (toPrenexImp (∃'φ✝) ψ) v xs ↔ Realize (∃'φ✝ ⟹ ψ) v xs
[PROOFSTEP]
refine' _root_.trans (forall_congr' fun _ => ih hψ.liftAt) _
[GOAL]
case ex
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝¹ ψ✝ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs✝¹ : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
φ✝ : BoundedFormula L α (n✝ + 1)
_hφ : IsPrenex φ✝
ih :
∀ {xs : Fin (n✝ + 1) → M} {ψ : BoundedFormula L α (n✝ + 1)},
IsPrenex ψ → (Realize (toPrenexImp φ✝ ψ) v xs ↔ Realize (φ✝ ⟹ ψ) v xs)
xs : Fin n✝ → M
ψ : BoundedFormula L α n✝
hψ : IsPrenex ψ
⊢ (∀ (a : M), Realize (φ✝ ⟹ liftAt 1 n✝ ψ) v (snoc xs a)) ↔ Realize (∃'φ✝ ⟹ ψ) v xs
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ✝ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs : Fin l → M
inst✝ : Nonempty M
φ : BoundedFormula L α n
v : α → M
⊢ ∀ {xs : Fin n → M}, Realize (toPrenex φ) v xs ↔ Realize φ v xs
[PROOFSTEP]
induction' φ with _ _ _ _ _ _ _ _ _ f1 f2 h1 h2 _ _ h
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs : Fin l → M
inst✝ : Nonempty M
v : α → M
n✝ : ℕ
⊢ ∀ {xs : Fin n✝ → M}, Realize (toPrenex falsum) v xs ↔ Realize falsum v xs
[PROOFSTEP]
exact Iff.rfl
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs : Fin l → M
inst✝ : Nonempty M
v : α → M
n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
⊢ ∀ {xs : Fin n✝ → M}, Realize (toPrenex (equal t₁✝ t₂✝)) v xs ↔ Realize (equal t₁✝ t₂✝) v xs
[PROOFSTEP]
exact Iff.rfl
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs : Fin l → M
inst✝ : Nonempty M
v : α → M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
⊢ ∀ {xs : Fin n✝ → M}, Realize (toPrenex (rel R✝ ts✝)) v xs ↔ Realize (rel R✝ ts✝) v xs
[PROOFSTEP]
exact Iff.rfl
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs : Fin l → M
inst✝ : Nonempty M
v : α → M
n✝ : ℕ
f1 f2 : BoundedFormula L α n✝
h1 : ∀ {xs : Fin n✝ → M}, Realize (toPrenex f1) v xs ↔ Realize f1 v xs
h2 : ∀ {xs : Fin n✝ → M}, Realize (toPrenex f2) v xs ↔ Realize f2 v xs
⊢ ∀ {xs : Fin n✝ → M}, Realize (toPrenex (f1 ⟹ f2)) v xs ↔ Realize (f1 ⟹ f2) v xs
[PROOFSTEP]
intros
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs : Fin l → M
inst✝ : Nonempty M
v : α → M
n✝ : ℕ
f1 f2 : BoundedFormula L α n✝
h1 : ∀ {xs : Fin n✝ → M}, Realize (toPrenex f1) v xs ↔ Realize f1 v xs
h2 : ∀ {xs : Fin n✝ → M}, Realize (toPrenex f2) v xs ↔ Realize f2 v xs
xs✝ : Fin n✝ → M
⊢ Realize (toPrenex (f1 ⟹ f2)) v xs✝ ↔ Realize (f1 ⟹ f2) v xs✝
[PROOFSTEP]
rw [toPrenex, realize_toPrenexImp f1.toPrenex_isPrenex f2.toPrenex_isPrenex, realize_imp, realize_imp, h1, h2]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs : Fin l → M
inst✝ : Nonempty M
v : α → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
h : ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenex f✝) v xs ↔ Realize f✝ v xs
⊢ ∀ {xs : Fin n✝ → M}, Realize (toPrenex (∀'f✝)) v xs ↔ Realize (∀'f✝) v xs
[PROOFSTEP]
intros
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs : Fin l → M
inst✝ : Nonempty M
v : α → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
h : ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenex f✝) v xs ↔ Realize f✝ v xs
xs✝ : Fin n✝ → M
⊢ Realize (toPrenex (∀'f✝)) v xs✝ ↔ Realize (∀'f✝) v xs✝
[PROOFSTEP]
rw [realize_all, toPrenex, realize_all]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n l : ℕ
φ ψ : BoundedFormula L α l
θ : BoundedFormula L α (Nat.succ l)
v✝ : α → M
xs : Fin l → M
inst✝ : Nonempty M
v : α → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
h : ∀ {xs : Fin (n✝ + 1) → M}, Realize (toPrenex f✝) v xs ↔ Realize f✝ v xs
xs✝ : Fin n✝ → M
⊢ (∀ (a : M), Realize (toPrenex f✝) v (snoc xs✝ a)) ↔ ∀ (a : M), Realize f✝ v (snoc xs✝ a)
[PROOFSTEP]
exact forall_congr' fun a => h
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
n : ℕ
ψ : BoundedFormula L α n
v : α → M
xs : Fin n → M
⊢ Realize (onBoundedFormula φ ψ) v xs ↔ Realize ψ v xs
[PROOFSTEP]
induction' ψ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝¹ : ℕ
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
n : ℕ
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
xs : Fin n✝ → M
⊢ Realize (onBoundedFormula φ falsum) v xs ↔ Realize falsum v xs
[PROOFSTEP]
rfl
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝¹ : ℕ
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
n : ℕ
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
xs : Fin n✝ → M
⊢ Realize (onBoundedFormula φ (equal t₁✝ t₂✝)) v xs ↔ Realize (equal t₁✝ t₂✝) v xs
[PROOFSTEP]
simp only [onBoundedFormula, realize_bdEqual, realize_onTerm]
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝¹ : ℕ
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
n : ℕ
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
xs : Fin n✝ → M
⊢ Term.realize (Sum.elim v xs) t₁✝ = Term.realize (Sum.elim v xs) t₂✝ ↔ Realize (equal t₁✝ t₂✝) v xs
[PROOFSTEP]
rfl
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝¹ : ℕ
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
n : ℕ
v : α → M
xs✝ : Fin n → M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
xs : Fin n✝ → M
⊢ Realize (onBoundedFormula φ (rel R✝ ts✝)) v xs ↔ Realize (rel R✝ ts✝) v xs
[PROOFSTEP]
simp only [onBoundedFormula, realize_rel, LHom.map_onRelation, Function.comp_apply, realize_onTerm]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝¹ : ℕ
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
n : ℕ
v : α → M
xs✝ : Fin n → M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
xs : Fin n✝ → M
⊢ (RelMap R✝ fun i => Term.realize (Sum.elim v xs) (ts✝ i)) ↔ Realize (rel R✝ ts✝) v xs
[PROOFSTEP]
rfl
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝¹ : ℕ
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
n : ℕ
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 : ∀ {xs : Fin n✝ → M}, Realize (onBoundedFormula φ f₁✝) v xs ↔ Realize f₁✝ v xs
ih2 : ∀ {xs : Fin n✝ → M}, Realize (onBoundedFormula φ f₂✝) v xs ↔ Realize f₂✝ v xs
xs : Fin n✝ → M
⊢ Realize (onBoundedFormula φ (f₁✝ ⟹ f₂✝)) v xs ↔ Realize (f₁✝ ⟹ f₂✝) v xs
[PROOFSTEP]
simp only [onBoundedFormula, ih1, ih2, realize_imp]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n✝¹ : ℕ
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
n : ℕ
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ {xs : Fin (n✝ + 1) → M}, Realize (onBoundedFormula φ f✝) v xs ↔ Realize f✝ v xs
xs : Fin n✝ → M
⊢ Realize (onBoundedFormula φ (∀'f✝)) v xs ↔ Realize (∀'f✝) v xs
[PROOFSTEP]
simp only [onBoundedFormula, ih3, realize_all]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ ψ : Formula L α
v : α → M
k : ℕ
R : Relations L k
ts : Fin k → Term L α
⊢ (RelMap R fun i => Term.realize (Sum.elim v default) (Term.relabel Sum.inl (ts i))) ↔
RelMap R fun i => Term.realize v (ts i)
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ ψ : Formula L α
v : α → M
R : Relations L 1
t : Term L α
⊢ Realize (Relations.formula₁ R t) v ↔ RelMap R ![Term.realize v t]
[PROOFSTEP]
rw [Relations.formula₁, realize_rel, iff_eq_eq]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ ψ : Formula L α
v : α → M
R : Relations L 1
t : Term L α
⊢ (RelMap R fun i => Term.realize v (Matrix.vecCons t ![] i)) = RelMap R ![Term.realize v t]
[PROOFSTEP]
refine' congr rfl (funext fun _ => _)
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ ψ : Formula L α
v : α → M
R : Relations L 1
t : Term L α
x✝ : Fin 1
⊢ Term.realize v (Matrix.vecCons t ![] x✝) = Matrix.vecCons (Term.realize v t) ![] x✝
[PROOFSTEP]
simp only [Matrix.cons_val_fin_one]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ ψ : Formula L α
v : α → M
R : Relations L 2
t₁ t₂ : Term L α
⊢ Realize (Relations.formula₂ R t₁ t₂) v ↔ RelMap R ![Term.realize v t₁, Term.realize v t₂]
[PROOFSTEP]
rw [Relations.formula₂, realize_rel, iff_eq_eq]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ ψ : Formula L α
v : α → M
R : Relations L 2
t₁ t₂ : Term L α
⊢ (RelMap R fun i => Term.realize v (Matrix.vecCons t₁ ![t₂] i)) = RelMap R ![Term.realize v t₁, Term.realize v t₂]
[PROOFSTEP]
refine' congr rfl (funext (Fin.cases _ _))
[GOAL]
case refine'_1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ ψ : Formula L α
v : α → M
R : Relations L 2
t₁ t₂ : Term L α
⊢ Term.realize v (Matrix.vecCons t₁ ![t₂] 0) = Matrix.vecCons (Term.realize v t₁) ![Term.realize v t₂] 0
[PROOFSTEP]
simp only [Matrix.cons_val_zero]
[GOAL]
case refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ ψ : Formula L α
v : α → M
R : Relations L 2
t₁ t₂ : Term L α
⊢ ∀ (i : Fin 1),
Term.realize v (Matrix.vecCons t₁ ![t₂] (succ i)) = Matrix.vecCons (Term.realize v t₁) ![Term.realize v t₂] (succ i)
[PROOFSTEP]
simp only [Matrix.cons_val_succ, Matrix.cons_val_fin_one, forall_const]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ✝ ψ : Formula L α
v✝ : α → M
φ : Formula L α
g : α → β
v : β → M
⊢ Realize (relabel g φ) v ↔ Realize φ (v ∘ g)
[PROOFSTEP]
rw [Realize, Realize, relabel, BoundedFormula.realize_relabel, iff_eq_eq, Fin.castAdd_zero]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ✝ ψ : Formula L α
v✝ : α → M
φ : Formula L α
g : α → β
v : β → M
⊢ BoundedFormula.Realize φ (Sum.elim v (default ∘ Fin.cast (_ : 0 = 0)) ∘ Sum.inl ∘ g) (default ∘ natAdd 0) =
BoundedFormula.Realize φ (v ∘ g) default
[PROOFSTEP]
exact congr rfl (funext finZeroElim)
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ✝ ψ : Formula L α
v✝ : α → M
φ : Formula L (Fin n)
v : Empty → M
x : Fin n → M
⊢ BoundedFormula.Realize (BoundedFormula.relabel Sum.inr φ) v x ↔ Realize φ x
[PROOFSTEP]
rw [BoundedFormula.realize_relabel, Formula.Realize, Sum.elim_comp_inr, Fin.castAdd_zero, cast_refl,
Function.comp.right_id, Subsingleton.elim (x ∘ (natAdd n : Fin 0 → Fin n)) default]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ ψ : Formula L α
v : α → M
t₁ t₂ : Term L α
x : α → M
⊢ Realize (Term.equal t₁ t₂) x ↔ Term.realize x t₁ = Term.realize x t₂
[PROOFSTEP]
simp [Term.equal, Realize]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ ψ : Formula L α
v : α → M
f : Functions L n
x : Fin n → M
y : M
⊢ Realize (graph f) (cons y x) ↔ funMap f x = y
[PROOFSTEP]
simp only [Formula.graph, Term.realize, realize_equal, Fin.cons_zero, Fin.cons_succ]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
φ ψ : Formula L α
v : α → M
f : Functions L n
x : Fin n → M
y : M
⊢ (y = funMap f fun i => x i) ↔ funMap f x = y
[PROOFSTEP]
rw [eq_comm]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n : ℕ
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
ψ : Formula L α
⊢ setOf (Formula.Realize (onFormula φ ψ)) = setOf (Formula.Realize ψ)
[PROOFSTEP]
ext
[GOAL]
case h
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n : ℕ
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
ψ : Formula L α
x✝ : α → M
⊢ x✝ ∈ setOf (Formula.Realize (onFormula φ ψ)) ↔ x✝ ∈ setOf (Formula.Realize ψ)
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n : ℕ
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
φ : Sentence (L[[α]])
⊢ (Realize (↑equivSentence.symm φ) fun a => ↑(Language.con L a)) ↔ M ⊨ φ
[PROOFSTEP]
simp only [equivSentence, Equiv.symm_symm, Equiv.coe_trans, Realize, BoundedFormula.realize_relabelEquiv, Function.comp]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n : ℕ
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
φ : Sentence (L[[α]])
⊢ BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ)
(fun x => ↑(Language.con L (↑(Equiv.sumEmpty α Empty) x))) default ↔
M ⊨ φ
[PROOFSTEP]
refine' _root_.trans _ BoundedFormula.realize_constantsVarsEquiv
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n : ℕ
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
φ : Sentence (L[[α]])
⊢ BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ)
(fun x => ↑(Language.con L (↑(Equiv.sumEmpty α Empty) x))) default ↔
BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ) (Sum.elim (fun a => ↑(Language.con L a)) default)
default
[PROOFSTEP]
rw [iff_iff_eq]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n : ℕ
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
φ : Sentence (L[[α]])
⊢ BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ)
(fun x => ↑(Language.con L (↑(Equiv.sumEmpty α Empty) x))) default =
BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ) (Sum.elim (fun a => ↑(Language.con L a)) default)
default
[PROOFSTEP]
congr with (_ | a)
[GOAL]
case e__v.h.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n : ℕ
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
φ : Sentence (L[[α]])
val✝ : α
⊢ ↑(Language.con L (↑(Equiv.sumEmpty α Empty) (Sum.inl val✝))) =
Sum.elim (fun a => ↑(Language.con L a)) default (Sum.inl val✝)
[PROOFSTEP]
simp
[GOAL]
case e__v.h.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n : ℕ
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
φ : Sentence (L[[α]])
a : Empty
⊢ ↑(Language.con L (↑(Equiv.sumEmpty α Empty) (Sum.inr a))) =
Sum.elim (fun a => ↑(Language.con L a)) default (Sum.inr a)
[PROOFSTEP]
cases a
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n : ℕ
inst✝¹ : Structure (L[[α]]) M
inst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M
φ : Formula L α
⊢ M ⊨ ↑equivSentence φ ↔ Realize φ fun a => ↑(Language.con L a)
[PROOFSTEP]
rw [← realize_equivSentence_symm_con M (equivSentence φ), _root_.Equiv.symm_apply_apply]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
⊢ M ≅[L] N ↔ ∀ (φ : Sentence L), M ⊨ φ ↔ N ⊨ φ
[PROOFSTEP]
simp only [ElementarilyEquivalent, Set.ext_iff, completeTheory, Set.mem_setOf_eq]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝⁴ : Structure L M
inst✝³ : Structure L N
inst✝² : Structure L P
α : Type u'
β : Type v'
n : ℕ
T✝ : Theory L
inst✝¹ : Structure L' M
φ : L →ᴸ L'
inst✝ : IsExpansionOn φ M
T : Theory L
⊢ M ⊨ onTheory φ T ↔ M ⊨ T
[PROOFSTEP]
simp [Theory.model_iff, LHom.onTheory]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T T' : Theory L
h : M ⊨ T
h' : M ⊨ T'
⊢ M ⊨ T ∪ T'
[PROOFSTEP]
simp only [model_iff, Set.mem_union] at *
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T T' : Theory L
h : ∀ (φ : Sentence L), φ ∈ T → M ⊨ φ
h' : ∀ (φ : Sentence L), φ ∈ T' → M ⊨ φ
⊢ ∀ (φ : Sentence L), φ ∈ T ∨ φ ∈ T' → M ⊨ φ
[PROOFSTEP]
exact fun φ hφ => hφ.elim (h _) (h' _)
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
φ : Sentence L
⊢ M ⊨ {φ} ↔ M ⊨ φ
[PROOFSTEP]
simp
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
inst✝ : N ⊨ completeTheory L M
φ : Sentence L
⊢ N ⊨ φ ↔ M ⊨ φ
[PROOFSTEP]
refine' ⟨fun h => _, (L.completeTheory M).realize_sentence_of_mem⟩
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
inst✝ : N ⊨ completeTheory L M
φ : Sentence L
h : N ⊨ φ
⊢ M ⊨ φ
[PROOFSTEP]
contrapose! h
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
inst✝ : N ⊨ completeTheory L M
φ : Sentence L
h : ¬M ⊨ φ
⊢ ¬N ⊨ φ
[PROOFSTEP]
rw [← Sentence.realize_not] at *
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
inst✝ : N ⊨ completeTheory L M
φ : Sentence L
h : M ⊨ Formula.not φ
⊢ N ⊨ Formula.not φ
[PROOFSTEP]
exact (L.completeTheory M).realize_sentence_of_mem (mem_completeTheory.2 h)
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
φ : BoundedFormula L α n
v : α → M
⊢ Formula.Realize (alls φ) v ↔ ∀ (xs : Fin n → M), Realize φ v xs
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
φ✝ : BoundedFormula L α n
v : α → M
φ : BoundedFormula L α Nat.zero
⊢ Formula.Realize (alls φ) v ↔ ∀ (xs : Fin Nat.zero → M), Realize φ v xs
[PROOFSTEP]
exact Unique.forall_iff.symm
[GOAL]
case succ
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
φ✝ : BoundedFormula L α n✝
v : α → M
n : ℕ
ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (alls φ) v ↔ ∀ (xs : Fin n → M), Realize φ v xs
φ : BoundedFormula L α (Nat.succ n)
⊢ Formula.Realize (alls φ) v ↔ ∀ (xs : Fin (Nat.succ n) → M), Realize φ v xs
[PROOFSTEP]
simp only [alls, ih, Realize]
[GOAL]
case succ
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
φ✝ : BoundedFormula L α n✝
v : α → M
n : ℕ
ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (alls φ) v ↔ ∀ (xs : Fin n → M), Realize φ v xs
φ : BoundedFormula L α (Nat.succ n)
⊢ (∀ (xs : Fin n → M) (x : M), Realize φ v (snoc xs x)) ↔ ∀ (xs : Fin (Nat.succ n) → M), Realize φ v xs
[PROOFSTEP]
exact ⟨fun h xs => Fin.snoc_init_self xs ▸ h _ _, fun h xs x => h (Fin.snoc xs x)⟩
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
φ : BoundedFormula L α n
v : α → M
⊢ Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
φ✝ : BoundedFormula L α n
v : α → M
φ : BoundedFormula L α Nat.zero
⊢ Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs
[PROOFSTEP]
exact Unique.exists_iff.symm
[GOAL]
case succ
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
φ✝ : BoundedFormula L α n✝
v : α → M
n : ℕ
ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs
φ : BoundedFormula L α (Nat.succ n)
⊢ Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs
[PROOFSTEP]
simp only [BoundedFormula.exs, ih, realize_ex]
[GOAL]
case succ
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
φ✝ : BoundedFormula L α n✝
v : α → M
n : ℕ
ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs
φ : BoundedFormula L α (Nat.succ n)
⊢ (∃ xs a, Realize φ v (snoc xs a)) ↔ ∃ xs, Realize φ v xs
[PROOFSTEP]
constructor
[GOAL]
case succ.mp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
φ✝ : BoundedFormula L α n✝
v : α → M
n : ℕ
ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs
φ : BoundedFormula L α (Nat.succ n)
⊢ (∃ xs a, Realize φ v (snoc xs a)) → ∃ xs, Realize φ v xs
[PROOFSTEP]
rintro ⟨xs, x, h⟩
[GOAL]
case succ.mp.intro.intro
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
φ✝ : BoundedFormula L α n✝
v : α → M
n : ℕ
ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs
φ : BoundedFormula L α (Nat.succ n)
xs : Fin n → M
x : M
h : Realize φ v (snoc xs x)
⊢ ∃ xs, Realize φ v xs
[PROOFSTEP]
exact ⟨_, h⟩
[GOAL]
case succ.mpr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
φ✝ : BoundedFormula L α n✝
v : α → M
n : ℕ
ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs
φ : BoundedFormula L α (Nat.succ n)
⊢ (∃ xs, Realize φ v xs) → ∃ xs a, Realize φ v (snoc xs a)
[PROOFSTEP]
rintro ⟨xs, h⟩
[GOAL]
case succ.mpr.intro
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
φ✝ : BoundedFormula L α n✝
v : α → M
n : ℕ
ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs
φ : BoundedFormula L α (Nat.succ n)
xs : Fin (Nat.succ n) → M
h : Realize φ v xs
⊢ ∃ xs a, Realize φ v (snoc xs a)
[PROOFSTEP]
rw [← Fin.snoc_init_self xs] at h
[GOAL]
case succ.mpr.intro
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
φ✝ : BoundedFormula L α n✝
v : α → M
n : ℕ
ih : ∀ {φ : BoundedFormula L α n}, Formula.Realize (exs φ) v ↔ ∃ xs, Realize φ v xs
φ : BoundedFormula L α (Nat.succ n)
xs : Fin (Nat.succ n) → M
h : Realize φ v (snoc (init xs) (xs (last n)))
⊢ ∃ xs a, Realize φ v (snoc xs a)
[PROOFSTEP]
exact ⟨_, _, h⟩
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
φ : BoundedFormula L α n
v : α ⊕ Fin n → M
⊢ Formula.Realize (toFormula φ) v ↔ Realize φ (v ∘ Sum.inl) (v ∘ Sum.inr)
[PROOFSTEP]
induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 a8 a9 a0
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
v : α ⊕ Fin n✝ → M
⊢ Formula.Realize (toFormula falsum) v ↔ Realize falsum (v ∘ Sum.inl) (v ∘ Sum.inr)
[PROOFSTEP]
rfl
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
v : α ⊕ Fin n✝ → M
⊢ Formula.Realize (toFormula (equal t₁✝ t₂✝)) v ↔ Realize (equal t₁✝ t₂✝) (v ∘ Sum.inl) (v ∘ Sum.inr)
[PROOFSTEP]
simp [BoundedFormula.Realize]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
v : α ⊕ Fin n✝ → M
⊢ Formula.Realize (toFormula (rel R✝ ts✝)) v ↔ Realize (rel R✝ ts✝) (v ∘ Sum.inl) (v ∘ Sum.inr)
[PROOFSTEP]
simp [BoundedFormula.Realize]
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 : ∀ (v : α ⊕ Fin n✝ → M), Formula.Realize (toFormula f₁✝) v ↔ Realize f₁✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
ih2 : ∀ (v : α ⊕ Fin n✝ → M), Formula.Realize (toFormula f₂✝) v ↔ Realize f₂✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
⊢ Formula.Realize (toFormula (f₁✝ ⟹ f₂✝)) v ↔ Realize (f₁✝ ⟹ f₂✝) (v ∘ Sum.inl) (v ∘ Sum.inr)
[PROOFSTEP]
rw [toFormula, Formula.Realize, realize_imp, ← Formula.Realize, ih1, ← Formula.Realize, ih2, realize_imp]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
⊢ Formula.Realize (toFormula (∀'f✝)) v ↔ Realize (∀'f✝) (v ∘ Sum.inl) (v ∘ Sum.inr)
[PROOFSTEP]
rw [toFormula, Formula.Realize, realize_all, realize_all]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
⊢ (∀ (a : M),
Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v
(snoc default a)) ↔
∀ (a : M), Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
[PROOFSTEP]
refine' forall_congr' fun a => _
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
⊢ Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v
(snoc default a) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
[PROOFSTEP]
have h := ih3 (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a))
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
h :
Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔
Realize f✝ (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) ∘ Sum.inl)
(Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) ∘ Sum.inr)
⊢ Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v
(snoc default a) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
[PROOFSTEP]
simp only [Sum.elim_comp_inl, Sum.elim_comp_inr] at h
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
h :
Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
⊢ Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v
(snoc default a) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
[PROOFSTEP]
rw [← h, realize_relabel, Formula.Realize, iff_iff_eq]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
h :
Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
⊢ Realize (toFormula f✝)
(Sum.elim v (snoc default a ∘ castAdd 0) ∘
Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm))
(snoc default a ∘ natAdd 1) =
Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) default
[PROOFSTEP]
simp only [Function.comp]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
h :
Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
⊢ (Realize (toFormula f✝)
(fun x =>
Sum.elim v (fun x => snoc default a (castAdd 0 x))
(Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) x))
fun x => snoc default a (natAdd 1 x)) =
Realize (toFormula f✝) (Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a)) default
[PROOFSTEP]
congr with x
[GOAL]
case all.e__v.h
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
h :
Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
x : α ⊕ Fin (n✝ + 1)
⊢ Sum.elim v (fun x => snoc default a (castAdd 0 x))
(Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) x) =
Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) x
[PROOFSTEP]
cases' x with _ x
[GOAL]
case all.e__v.h.inl
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
h :
Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
val✝ : α
⊢ Sum.elim v (fun x => snoc default a (castAdd 0 x))
(Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) (Sum.inl val✝)) =
Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inl val✝)
[PROOFSTEP]
simp
[GOAL]
case all.e__v.h.inr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
h :
Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
x : Fin (n✝ + 1)
⊢ Sum.elim v (fun x => snoc default a (castAdd 0 x))
(Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) (Sum.inr x)) =
Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inr x)
[PROOFSTEP]
refine' Fin.lastCases _ _ x
[GOAL]
case all.e__v.h.inr.refine'_1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
h :
Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
x : Fin (n✝ + 1)
⊢ Sum.elim v (fun x => snoc default a (castAdd 0 x))
(Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x))
(Sum.inr (last n✝))) =
Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inr (last n✝))
[PROOFSTEP]
rw [Sum.elim_inr, Sum.elim_inr, finSumFinEquiv_symm_last, Sum.map_inr, Sum.elim_inr]
[GOAL]
case all.e__v.h.inr.refine'_1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
h :
Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
x : Fin (n✝ + 1)
⊢ snoc default a (castAdd 0 (id 0)) = snoc (fun x => v (Sum.inr x)) a (last n✝)
[PROOFSTEP]
simp [Fin.snoc]
[GOAL]
case all.e__v.h.inr.refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
h :
Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
x : Fin (n✝ + 1)
⊢ ∀ (i : Fin n✝),
Sum.elim v (fun x => snoc default a (castAdd 0 x))
(Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x))
(Sum.inr (castSucc i))) =
Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inr (castSucc i))
[PROOFSTEP]
simp only [castSucc, Function.comp_apply, Sum.elim_inr, finSumFinEquiv_symm_apply_castAdd, Sum.map_inl, Sum.elim_inl]
[GOAL]
case all.e__v.h.inr.refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
h :
Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
x : Fin (n✝ + 1)
⊢ ∀ (i : Fin n✝), v (Sum.inr i) = snoc (fun x => v (Sum.inr x)) a (castAdd 1 i)
[PROOFSTEP]
rw [← castSucc]
[GOAL]
case all.e__v.h.inr.refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
h :
Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
x : Fin (n✝ + 1)
⊢ ∀ (i : Fin n✝), v (Sum.inr i) = snoc (fun x => v (Sum.inr x)) a (castSucc i)
[PROOFSTEP]
simp
[GOAL]
case all.e__xs.h
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
v✝ : α ⊕ Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)
v : α ⊕ Fin n✝ → M
a : M
h :
Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔
Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)
x : Fin 0
⊢ snoc default a (natAdd 1 x) = default x
[PROOFSTEP]
exact Fin.elim0 x
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
φ : BoundedFormula L α n
v : α → M
xs : Fin n → M
⊢ BoundedFormula.Realize φ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize φ v xs
[PROOFSTEP]
induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3
[GOAL]
case falsum
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
xs : Fin n✝ → M
⊢ BoundedFormula.Realize BoundedFormula.falsum (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize BoundedFormula.falsum v xs
[PROOFSTEP]
rfl
[GOAL]
case equal
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
t₁✝ t₂✝ : Term L (α ⊕ Fin n✝)
xs : Fin n✝ → M
⊢ BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) (↑g ∘ v) (↑g ∘ xs) ↔
BoundedFormula.Realize (BoundedFormula.equal t₁✝ t₂✝) v xs
[PROOFSTEP]
simp only [BoundedFormula.Realize, ← Sum.comp_elim, Equiv.realize_term, g.injective.eq_iff]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
xs : Fin n✝ → M
⊢ BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) (↑g ∘ v) (↑g ∘ xs) ↔
BoundedFormula.Realize (BoundedFormula.rel R✝ ts✝) v xs
[PROOFSTEP]
simp only [BoundedFormula.Realize, ← Sum.comp_elim, Equiv.realize_term]
[GOAL]
case rel
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ l✝ : ℕ
R✝ : Relations L l✝
ts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)
xs : Fin n✝ → M
⊢ (RelMap R✝ fun i => ↑g (Term.realize (Sum.elim v xs) (ts✝ i))) ↔
RelMap R✝ fun i => Term.realize (Sum.elim v xs) (ts✝ i)
[PROOFSTEP]
exact g.map_rel _ _
[GOAL]
case imp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f₁✝ f₂✝ : BoundedFormula L α n✝
ih1 : ∀ {xs : Fin n✝ → M}, BoundedFormula.Realize f₁✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f₁✝ v xs
ih2 : ∀ {xs : Fin n✝ → M}, BoundedFormula.Realize f₂✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f₂✝ v xs
xs : Fin n✝ → M
⊢ BoundedFormula.Realize (f₁✝ ⟹ f₂✝) (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize (f₁✝ ⟹ f₂✝) v xs
[PROOFSTEP]
rw [BoundedFormula.Realize, ih1, ih2, BoundedFormula.Realize]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs
xs : Fin n✝ → M
⊢ BoundedFormula.Realize (∀'f✝) (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize (∀'f✝) v xs
[PROOFSTEP]
rw [BoundedFormula.Realize, BoundedFormula.Realize]
[GOAL]
case all
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs
xs : Fin n✝ → M
⊢ (∀ (x : N), BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) x)) ↔
∀ (x : M), BoundedFormula.Realize f✝ v (snoc xs x)
[PROOFSTEP]
constructor
[GOAL]
case all.mp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs
xs : Fin n✝ → M
⊢ (∀ (x : N), BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) x)) →
∀ (x : M), BoundedFormula.Realize f✝ v (snoc xs x)
[PROOFSTEP]
intro h a
[GOAL]
case all.mp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs
xs : Fin n✝ → M
h : ∀ (x : N), BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) x)
a : M
⊢ BoundedFormula.Realize f✝ v (snoc xs a)
[PROOFSTEP]
have h' := h (g a)
[GOAL]
case all.mp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs
xs : Fin n✝ → M
h : ∀ (x : N), BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) x)
a : M
h' : BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) (↑g a))
⊢ BoundedFormula.Realize f✝ v (snoc xs a)
[PROOFSTEP]
rw [← Fin.comp_snoc, ih3] at h'
[GOAL]
case all.mp
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs
xs : Fin n✝ → M
h : ∀ (x : N), BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) x)
a : M
h' : BoundedFormula.Realize f✝ v (snoc xs a)
⊢ BoundedFormula.Realize f✝ v (snoc xs a)
[PROOFSTEP]
exact h'
[GOAL]
case all.mpr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs
xs : Fin n✝ → M
⊢ (∀ (x : M), BoundedFormula.Realize f✝ v (snoc xs x)) →
∀ (x : N), BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) x)
[PROOFSTEP]
intro h a
[GOAL]
case all.mpr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs
xs : Fin n✝ → M
h : ∀ (x : M), BoundedFormula.Realize f✝ v (snoc xs x)
a : N
⊢ BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) a)
[PROOFSTEP]
have h' := h (g.symm a)
[GOAL]
case all.mpr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs
xs : Fin n✝ → M
h : ∀ (x : M), BoundedFormula.Realize f✝ v (snoc xs x)
a : N
h' : BoundedFormula.Realize f✝ v (snoc xs (↑(symm g) a))
⊢ BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) a)
[PROOFSTEP]
rw [← ih3, Fin.comp_snoc, g.apply_symm_apply] at h'
[GOAL]
case all.mpr
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
v : α → M
xs✝ : Fin n → M
n✝ : ℕ
f✝ : BoundedFormula L α (n✝ + 1)
ih3 : ∀ {xs : Fin (n✝ + 1) → M}, BoundedFormula.Realize f✝ (↑g ∘ v) (↑g ∘ xs) ↔ BoundedFormula.Realize f✝ v xs
xs : Fin n✝ → M
h : ∀ (x : M), BoundedFormula.Realize f✝ v (snoc xs x)
a : N
h' : BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) a)
⊢ BoundedFormula.Realize f✝ (↑g ∘ v) (snoc (↑g ∘ xs) a)
[PROOFSTEP]
exact h'
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
φ : Formula L α
v : α → M
⊢ Formula.Realize φ (↑g ∘ v) ↔ Formula.Realize φ v
[PROOFSTEP]
rw [Formula.Realize, Formula.Realize, ← g.realize_boundedFormula φ, iff_eq_eq, Unique.eq_default (g ∘ default)]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
g : M ≃[L] N
φ : Sentence L
⊢ M ⊨ φ ↔ N ⊨ φ
[PROOFSTEP]
rw [Sentence.Realize, Sentence.Realize, ← g.realize_formula, Unique.eq_default (g ∘ default)]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
n : ℕ
⊢ M ⊨ Sentence.cardGe L n ↔ ↑n ≤ #M
[PROOFSTEP]
rw [← lift_mk_fin, ← lift_le.{0}, lift_lift, lift_mk_le, Sentence.cardGe, Sentence.Realize, BoundedFormula.realize_exs]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
n : ℕ
⊢ (∃ xs,
BoundedFormula.Realize
(List.foldr (fun x x_1 => x ⊓ x_1) ⊤
(List.map (fun ij => ∼((var ∘ Sum.inr) ij.fst =' (var ∘ Sum.inr) ij.snd))
(List.filter (fun ij => decide (ij.fst ≠ ij.snd)) (List.finRange n ×ˢ List.finRange n))))
default xs) ↔
Nonempty (Fin n ↪ M)
[PROOFSTEP]
simp_rw [BoundedFormula.realize_foldr_inf]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
n : ℕ
⊢ (∃ xs,
∀ (φ : BoundedFormula L Empty n),
φ ∈
List.map (fun ij => ∼((var ∘ Sum.inr) ij.fst =' (var ∘ Sum.inr) ij.snd))
(List.filter (fun ij => decide (ij.fst ≠ ij.snd)) (List.finRange n ×ˢ List.finRange n)) →
BoundedFormula.Realize φ default xs) ↔
Nonempty (Fin n ↪ M)
[PROOFSTEP]
simp only [Function.comp_apply, List.mem_map, Prod.exists, Ne.def, List.mem_product, List.mem_finRange,
forall_exists_index, and_imp, List.mem_filter, true_and_iff]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
n : ℕ
⊢ (∃ xs,
∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n),
(decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs) ↔
Nonempty (Fin n ↪ M)
[PROOFSTEP]
refine' ⟨_, fun xs => ⟨xs.some, _⟩⟩
[GOAL]
case refine'_1
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
n : ℕ
⊢ (∃ xs,
∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n),
(decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs) →
Nonempty (Fin n ↪ M)
[PROOFSTEP]
rintro ⟨xs, h⟩
[GOAL]
case refine'_1.intro
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
n : ℕ
xs : Fin n → M
h :
∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n),
(decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs
⊢ Nonempty (Fin n ↪ M)
[PROOFSTEP]
refine' ⟨⟨xs, fun i j ij => _⟩⟩
[GOAL]
case refine'_1.intro
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
n : ℕ
xs : Fin n → M
h :
∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n),
(decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs
i j : Fin n
ij : xs i = xs j
⊢ i = j
[PROOFSTEP]
contrapose! ij
[GOAL]
case refine'_1.intro
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
n : ℕ
xs : Fin n → M
h :
∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n),
(decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs
i j : Fin n
ij : i ≠ j
⊢ xs i ≠ xs j
[PROOFSTEP]
have hij := h _ i j (by simpa using ij) rfl
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
n : ℕ
xs : Fin n → M
h :
∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n),
(decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs
i j : Fin n
ij : i ≠ j
⊢ (decide ¬i = j) = true
[PROOFSTEP]
simpa using ij
[GOAL]
case refine'_1.intro
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
n : ℕ
xs : Fin n → M
h :
∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n),
(decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs
i j : Fin n
ij : i ≠ j
hij : BoundedFormula.Realize (∼(var (Sum.inr i) =' var (Sum.inr j))) default xs
⊢ xs i ≠ xs j
[PROOFSTEP]
simp only [BoundedFormula.realize_not, Term.realize, BoundedFormula.realize_bdEqual, Sum.elim_inr] at hij
[GOAL]
case refine'_1.intro
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
n : ℕ
xs : Fin n → M
h :
∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n),
(decide ¬x = x_1) = true → ∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default xs
i j : Fin n
ij : i ≠ j
hij : ¬xs i = xs j
⊢ xs i ≠ xs j
[PROOFSTEP]
exact hij
[GOAL]
case refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
n : ℕ
xs : Nonempty (Fin n ↪ M)
⊢ ∀ (φ : BoundedFormula L Empty n) (x x_1 : Fin n),
(decide ¬x = x_1) = true →
∼(var (Sum.inr x) =' var (Sum.inr x_1)) = φ → BoundedFormula.Realize φ default ↑(Nonempty.some xs)
[PROOFSTEP]
rintro _ i j ij rfl
[GOAL]
case refine'_2
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n✝ : ℕ
T : Theory L
n : ℕ
xs : Nonempty (Fin n ↪ M)
i j : Fin n
ij : (decide ¬i = j) = true
⊢ BoundedFormula.Realize (∼(var (Sum.inr i) =' var (Sum.inr j))) default ↑(Nonempty.some xs)
[PROOFSTEP]
simpa using ij
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
⊢ M ⊨ infiniteTheory L ↔ Infinite M
[PROOFSTEP]
simp [infiniteTheory, infinite_iff, aleph0_le]
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
⊢ M ⊨ nonemptyTheory L ↔ Nonempty M
[PROOFSTEP]
simp only [nonemptyTheory, Theory.model_iff, Set.mem_singleton_iff, forall_eq, Sentence.realize_cardGe, Nat.cast_one,
one_le_iff_ne_zero, mk_ne_zero_iff]
[GOAL]
L : Language
L' : Language
M✝ : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M✝
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
M : Type w
inst✝ : Structure (L[[α]]) M
s : Set α
⊢ M ⊨ distinctConstantsTheory L s ↔ Set.InjOn (fun i => ↑(Language.con L i)) s
[PROOFSTEP]
simp only [distinctConstantsTheory, Theory.model_iff, Set.mem_image, Set.mem_inter, Set.mem_prod, Set.mem_compl,
Prod.exists, forall_exists_index, and_imp]
[GOAL]
L : Language
L' : Language
M✝ : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M✝
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
M : Type w
inst✝ : Structure (L[[α]]) M
s : Set α
⊢ (∀ (φ : Sentence (L[[α]])) (x x_1 : α),
(x, x_1) ∈ s ×ˢ s ∩ (Set.diagonal α)ᶜ →
Formula.not (Term.equal (Constants.term (Language.con L x)) (Constants.term (Language.con L x_1))) = φ →
M ⊨ φ) ↔
Set.InjOn (fun i => ↑(Language.con L i)) s
[PROOFSTEP]
refine' ⟨fun h a as b bs ab => _, _⟩
[GOAL]
case refine'_1
L : Language
L' : Language
M✝ : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M✝
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
M : Type w
inst✝ : Structure (L[[α]]) M
s : Set α
h :
∀ (φ : Sentence (L[[α]])) (x x_1 : α),
(x, x_1) ∈ s ×ˢ s ∩ (Set.diagonal α)ᶜ →
Formula.not (Term.equal (Constants.term (Language.con L x)) (Constants.term (Language.con L x_1))) = φ → M ⊨ φ
a : α
as : a ∈ s
b : α
bs : b ∈ s
ab : (fun i => ↑(Language.con L i)) a = (fun i => ↑(Language.con L i)) b
⊢ a = b
[PROOFSTEP]
contrapose! ab
[GOAL]
case refine'_1
L : Language
L' : Language
M✝ : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M✝
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
M : Type w
inst✝ : Structure (L[[α]]) M
s : Set α
h :
∀ (φ : Sentence (L[[α]])) (x x_1 : α),
(x, x_1) ∈ s ×ˢ s ∩ (Set.diagonal α)ᶜ →
Formula.not (Term.equal (Constants.term (Language.con L x)) (Constants.term (Language.con L x_1))) = φ → M ⊨ φ
a : α
as : a ∈ s
b : α
bs : b ∈ s
ab : a ≠ b
⊢ ↑(Language.con L a) ≠ ↑(Language.con L b)
[PROOFSTEP]
have h' := h _ a b ⟨⟨as, bs⟩, ab⟩ rfl
[GOAL]
case refine'_1
L : Language
L' : Language
M✝ : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M✝
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
M : Type w
inst✝ : Structure (L[[α]]) M
s : Set α
h :
∀ (φ : Sentence (L[[α]])) (x x_1 : α),
(x, x_1) ∈ s ×ˢ s ∩ (Set.diagonal α)ᶜ →
Formula.not (Term.equal (Constants.term (Language.con L x)) (Constants.term (Language.con L x_1))) = φ → M ⊨ φ
a : α
as : a ∈ s
b : α
bs : b ∈ s
ab : a ≠ b
h' : M ⊨ Formula.not (Term.equal (Constants.term (Language.con L a)) (Constants.term (Language.con L b)))
⊢ ↑(Language.con L a) ≠ ↑(Language.con L b)
[PROOFSTEP]
simp only [Sentence.Realize, Formula.realize_not, Formula.realize_equal, Term.realize_constants] at h'
[GOAL]
case refine'_1
L : Language
L' : Language
M✝ : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M✝
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
M : Type w
inst✝ : Structure (L[[α]]) M
s : Set α
h :
∀ (φ : Sentence (L[[α]])) (x x_1 : α),
(x, x_1) ∈ s ×ˢ s ∩ (Set.diagonal α)ᶜ →
Formula.not (Term.equal (Constants.term (Language.con L x)) (Constants.term (Language.con L x_1))) = φ → M ⊨ φ
a : α
as : a ∈ s
b : α
bs : b ∈ s
ab : a ≠ b
h' : ¬↑(Language.con L a) = ↑(Language.con L b)
⊢ ↑(Language.con L a) ≠ ↑(Language.con L b)
[PROOFSTEP]
exact h'
[GOAL]
case refine'_2
L : Language
L' : Language
M✝ : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M✝
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
M : Type w
inst✝ : Structure (L[[α]]) M
s : Set α
⊢ Set.InjOn (fun i => ↑(Language.con L i)) s →
∀ (φ : Sentence (L[[α]])) (x x_1 : α),
(x, x_1) ∈ s ×ˢ s ∩ (Set.diagonal α)ᶜ →
Formula.not (Term.equal (Constants.term (Language.con L x)) (Constants.term (Language.con L x_1))) = φ → M ⊨ φ
[PROOFSTEP]
rintro h φ a b ⟨⟨as, bs⟩, ab⟩ rfl
[GOAL]
case refine'_2.intro.intro
L : Language
L' : Language
M✝ : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M✝
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
M : Type w
inst✝ : Structure (L[[α]]) M
s : Set α
h : Set.InjOn (fun i => ↑(Language.con L i)) s
a b : α
ab : (a, b) ∈ (Set.diagonal α)ᶜ
as : (a, b).fst ∈ s
bs : (a, b).snd ∈ s
⊢ M ⊨ Formula.not (Term.equal (Constants.term (Language.con L a)) (Constants.term (Language.con L b)))
[PROOFSTEP]
simp only [Sentence.Realize, Formula.realize_not, Formula.realize_equal, Term.realize_constants]
[GOAL]
case refine'_2.intro.intro
L : Language
L' : Language
M✝ : Type w
N : Type u_1
P : Type u_2
inst✝³ : Structure L M✝
inst✝² : Structure L N
inst✝¹ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
M : Type w
inst✝ : Structure (L[[α]]) M
s : Set α
h : Set.InjOn (fun i => ↑(Language.con L i)) s
a b : α
ab : (a, b) ∈ (Set.diagonal α)ᶜ
as : (a, b).fst ∈ s
bs : (a, b).snd ∈ s
⊢ ¬↑(Language.con L a) = ↑(Language.con L b)
[PROOFSTEP]
exact fun contra => ab (h as bs contra)
[GOAL]
L : Language
L' : Language
M : Type w
N : Type u_1
P : Type u_2
inst✝² : Structure L M
inst✝¹ : Structure L N
inst✝ : Structure L P
α : Type u'
β : Type v'
n : ℕ
T : Theory L
h : M ≅[L] N
⊢ M ⊨ T ↔ N ⊨ T
[PROOFSTEP]
rw [Theory.model_iff_subset_completeTheory, Theory.model_iff_subset_completeTheory, h.completeTheory_eq]
| {"mathlib_filename": "Mathlib.ModelTheory.Semantics", "llama_tokens": 97807} |
[GOAL]
P : Type u_1
inst✝ : LE P
I J s✝ t✝ : Ideal P
x y : P
s t : Ideal P
x✝ : s.toLowerSet = t.toLowerSet
⊢ s = t
[PROOFSTEP]
cases s
[GOAL]
case mk
P : Type u_1
inst✝ : LE P
I J s t✝ : Ideal P
x y : P
t : Ideal P
toLowerSet✝ : LowerSet P
nonempty'✝ : Set.Nonempty toLowerSet✝.carrier
directed'✝ : DirectedOn (fun x x_1 => x ≤ x_1) toLowerSet✝.carrier
x✝ : { toLowerSet := toLowerSet✝, nonempty' := nonempty'✝, directed' := directed'✝ }.toLowerSet = t.toLowerSet
⊢ { toLowerSet := toLowerSet✝, nonempty' := nonempty'✝, directed' := directed'✝ } = t
[PROOFSTEP]
cases t
[GOAL]
case mk.mk
P : Type u_1
inst✝ : LE P
I J s t : Ideal P
x y : P
toLowerSet✝¹ : LowerSet P
nonempty'✝¹ : Set.Nonempty toLowerSet✝¹.carrier
directed'✝¹ : DirectedOn (fun x x_1 => x ≤ x_1) toLowerSet✝¹.carrier
toLowerSet✝ : LowerSet P
nonempty'✝ : Set.Nonempty toLowerSet✝.carrier
directed'✝ : DirectedOn (fun x x_1 => x ≤ x_1) toLowerSet✝.carrier
x✝ :
{ toLowerSet := toLowerSet✝¹, nonempty' := nonempty'✝¹, directed' := directed'✝¹ }.toLowerSet =
{ toLowerSet := toLowerSet✝, nonempty' := nonempty'✝, directed' := directed'✝ }.toLowerSet
⊢ { toLowerSet := toLowerSet✝¹, nonempty' := nonempty'✝¹, directed' := directed'✝¹ } =
{ toLowerSet := toLowerSet✝, nonempty' := nonempty'✝, directed' := directed'✝ }
[PROOFSTEP]
congr
[GOAL]
P : Type u_1
inst✝ : LE P
I✝ J s t : Ideal P
x y : P
I : Ideal P
p : P
nmem : ¬p ∈ I
hp : ↑I = univ
⊢ False
[PROOFSTEP]
have := mem_univ p
[GOAL]
P : Type u_1
inst✝ : LE P
I✝ J s t : Ideal P
x y : P
I : Ideal P
p : P
nmem : ¬p ∈ I
hp : ↑I = univ
this : p ∈ univ
⊢ False
[PROOFSTEP]
rw [← hp] at this
[GOAL]
P : Type u_1
inst✝ : LE P
I✝ J s t : Ideal P
x y : P
I : Ideal P
p : P
nmem : ¬p ∈ I
hp : ↑I = univ
this : p ∈ ↑I
⊢ False
[PROOFSTEP]
exact nmem this
[GOAL]
P : Type u_1
inst✝¹ : LE P
I✝ J✝ s t : Ideal P
x y : P
inst✝ : IsDirected P fun x x_1 => x ≥ x_1
I J : Ideal P
⊢ Set.Nonempty (↑I ∩ ↑J)
[PROOFSTEP]
obtain ⟨a, ha⟩ := I.nonempty
[GOAL]
case intro
P : Type u_1
inst✝¹ : LE P
I✝ J✝ s t : Ideal P
x y : P
inst✝ : IsDirected P fun x x_1 => x ≥ x_1
I J : Ideal P
a : P
ha : a ∈ ↑I
⊢ Set.Nonempty (↑I ∩ ↑J)
[PROOFSTEP]
obtain ⟨b, hb⟩ := J.nonempty
[GOAL]
case intro.intro
P : Type u_1
inst✝¹ : LE P
I✝ J✝ s t : Ideal P
x y : P
inst✝ : IsDirected P fun x x_1 => x ≥ x_1
I J : Ideal P
a : P
ha : a ∈ ↑I
b : P
hb : b ∈ ↑J
⊢ Set.Nonempty (↑I ∩ ↑J)
[PROOFSTEP]
obtain ⟨c, hac, hbc⟩ := exists_le_le a b
[GOAL]
case intro.intro.intro.intro
P : Type u_1
inst✝¹ : LE P
I✝ J✝ s t : Ideal P
x y : P
inst✝ : IsDirected P fun x x_1 => x ≥ x_1
I J : Ideal P
a : P
ha : a ∈ ↑I
b : P
hb : b ∈ ↑J
c : P
hac : c ≤ a
hbc : c ≤ b
⊢ Set.Nonempty (↑I ∩ ↑J)
[PROOFSTEP]
exact ⟨c, I.lower hac ha, J.lower hbc hb⟩
[GOAL]
P : Type u_1
inst✝² : LE P
inst✝¹ : IsDirected P fun x x_1 => x ≤ x_1
inst✝ : Nonempty P
I : Ideal P
hI : IsCoatom I
src✝ : IsProper I := IsCoatom.isProper hI
x✝ : Ideal P
hJ : I < x✝
⊢ ↑x✝ = univ
[PROOFSTEP]
simp [hI.2 _ hJ]
[GOAL]
P : Type u_1
inst✝¹ : LE P
inst✝ : OrderTop P
I : Ideal P
h : ⊤ ∈ I
⊢ I = ⊤
[PROOFSTEP]
ext
[GOAL]
case a.h
P : Type u_1
inst✝¹ : LE P
inst✝ : OrderTop P
I : Ideal P
h : ⊤ ∈ I
x✝ : P
⊢ x✝ ∈ ↑I ↔ x✝ ∈ ↑⊤
[PROOFSTEP]
exact iff_of_true (I.lower le_top h) trivial
[GOAL]
P : Type u_1
inst✝¹ : Preorder P
inst✝ : OrderBot P
⊢ ∀ (a : Ideal P), ⊥ ≤ a
[PROOFSTEP]
simp
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeSup P
inst✝ : IsDirected P fun x x_1 => x ≥ x_1
x✝ : P
I✝ J✝ K s t I J : Ideal P
x : P
hx : x ∈ (I.toLowerSet ⊓ J.toLowerSet).carrier
y : P
hy : y ∈ (I.toLowerSet ⊓ J.toLowerSet).carrier
⊢ (fun x x_1 => x ≤ x_1) x (x ⊔ y) ∧ (fun x x_1 => x ≤ x_1) y (x ⊔ y)
[PROOFSTEP]
simp
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeSup P
inst✝ : IsDirected P fun x x_1 => x ≥ x_1
x : P
I✝ J✝ K s t I J : Ideal P
⊢ Set.Nonempty
{ carrier := {x | ∃ i, i ∈ I ∧ ∃ j, j ∈ J ∧ x ≤ i ⊔ j},
lower' :=
(_ :
∀ (x y : P),
y ≤ x →
x ∈ {x | ∃ i, i ∈ I ∧ ∃ j, j ∈ J ∧ x ≤ i ⊔ j} → y ∈ {x | ∃ i, i ∈ I ∧ ∃ j, j ∈ J ∧ x ≤ i ⊔ j}) }.carrier
[PROOFSTEP]
cases' inter_nonempty I J with w h
[GOAL]
case intro
P : Type u_1
inst✝¹ : SemilatticeSup P
inst✝ : IsDirected P fun x x_1 => x ≥ x_1
x : P
I✝ J✝ K s t I J : Ideal P
w : P
h : w ∈ ↑I ∩ ↑J
⊢ Set.Nonempty
{ carrier := {x | ∃ i, i ∈ I ∧ ∃ j, j ∈ J ∧ x ≤ i ⊔ j},
lower' :=
(_ :
∀ (x y : P),
y ≤ x →
x ∈ {x | ∃ i, i ∈ I ∧ ∃ j, j ∈ J ∧ x ≤ i ⊔ j} → y ∈ {x | ∃ i, i ∈ I ∧ ∃ j, j ∈ J ∧ x ≤ i ⊔ j}) }.carrier
[PROOFSTEP]
exact ⟨w, w, h.1, w, h.2, le_sup_left⟩
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeSup P
inst✝ : IsDirected P fun x x_1 => x ≥ x_1
x : P
I J K s t : Ideal P
hx : ¬x ∈ I
h : I = I ⊔ principal x
⊢ x ∈ I
[PROOFSTEP]
simpa only [left_eq_sup, principal_le_iff] using h
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeSup P
inst✝ : OrderBot P
x : P
I J K : Ideal P
S : Set (Ideal P)
⊢ ⊥ ∈ (⨅ (s : Ideal P) (_ : s ∈ S), s.toLowerSet).carrier
[PROOFSTEP]
rw [LowerSet.carrier_eq_coe, LowerSet.coe_iInf₂, Set.mem_iInter₂]
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeSup P
inst✝ : OrderBot P
x : P
I J K : Ideal P
S : Set (Ideal P)
⊢ ∀ (i : Ideal P), i ∈ S → ⊥ ∈ ↑i.toLowerSet
[PROOFSTEP]
exact fun s _ ↦ s.bot_mem
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeSup P
inst✝ : OrderBot P
x : P
I J K : Ideal P
S : Set (Ideal P)
a : P
ha : a ∈ (⨅ (s : Ideal P) (_ : s ∈ S), s.toLowerSet).carrier
b : P
hb : b ∈ (⨅ (s : Ideal P) (_ : s ∈ S), s.toLowerSet).carrier
⊢ a ⊔ b ∈ (⨅ (s : Ideal P) (_ : s ∈ S), s.toLowerSet).carrier
[PROOFSTEP]
rw [LowerSet.carrier_eq_coe, LowerSet.coe_iInf₂, Set.mem_iInter₂] at ha hb ⊢
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeSup P
inst✝ : OrderBot P
x : P
I J K : Ideal P
S : Set (Ideal P)
a : P
ha : ∀ (i : Ideal P), i ∈ S → a ∈ ↑i.toLowerSet
b : P
hb : ∀ (i : Ideal P), i ∈ S → b ∈ ↑i.toLowerSet
⊢ ∀ (i : Ideal P), i ∈ S → a ⊔ b ∈ ↑i.toLowerSet
[PROOFSTEP]
exact fun s hs ↦ sup_mem (ha _ hs) (hb _ hs)
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeSup P
inst✝ : OrderBot P
x : P
I J K : Ideal P
S : Set (Ideal P)
⊢ x ∈ sInf S ↔ ∀ (s : Ideal P), s ∈ S → x ∈ s
[PROOFSTEP]
simp_rw [← SetLike.mem_coe, coe_sInf, mem_iInter₂]
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeSup P
inst✝ : OrderBot P
x : P
I J K : Ideal P
S✝ : Set (Ideal P)
src✝ : Lattice (Ideal P) := inferInstance
S : Set (Ideal P)
⊢ IsGLB S (sInf S)
[PROOFSTEP]
refine' ⟨fun s hs ↦ _, fun s hs ↦ by rwa [← coe_subset_coe, coe_sInf, subset_iInter₂_iff]⟩
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeSup P
inst✝ : OrderBot P
x : P
I J K : Ideal P
S✝ : Set (Ideal P)
src✝ : Lattice (Ideal P) := inferInstance
S : Set (Ideal P)
s : Ideal P
hs : s ∈ lowerBounds S
⊢ s ≤ sInf S
[PROOFSTEP]
rwa [← coe_subset_coe, coe_sInf, subset_iInter₂_iff]
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeSup P
inst✝ : OrderBot P
x : P
I J K : Ideal P
S✝ : Set (Ideal P)
src✝ : Lattice (Ideal P) := inferInstance
S : Set (Ideal P)
s : Ideal P
hs : s ∈ S
⊢ sInf S ≤ s
[PROOFSTEP]
rw [← coe_subset_coe, coe_sInf]
[GOAL]
P : Type u_1
inst✝¹ : SemilatticeSup P
inst✝ : OrderBot P
x : P
I J K : Ideal P
S✝ : Set (Ideal P)
src✝ : Lattice (Ideal P) := inferInstance
S : Set (Ideal P)
s : Ideal P
hs : s ∈ S
⊢ ⋂ (s : Ideal P) (_ : s ∈ S), ↑s ⊆ ↑s
[PROOFSTEP]
exact biInter_subset_of_mem hs
[GOAL]
P : Type u_1
inst✝ : DistribLattice P
I J : Ideal P
x i j : P
hi : i ∈ I
hj : j ∈ J
hx : x ≤ i ⊔ j
⊢ ∃ i', i' ∈ I ∧ ∃ j', j' ∈ J ∧ x = i' ⊔ j'
[PROOFSTEP]
refine' ⟨x ⊓ i, I.lower inf_le_right hi, x ⊓ j, J.lower inf_le_right hj, _⟩
[GOAL]
P : Type u_1
inst✝ : DistribLattice P
I J : Ideal P
x i j : P
hi : i ∈ I
hj : j ∈ J
hx : x ≤ i ⊔ j
⊢ x = x ⊓ i ⊔ x ⊓ j
[PROOFSTEP]
calc
x = x ⊓ (i ⊔ j) := left_eq_inf.mpr hx
_ = x ⊓ i ⊔ x ⊓ j := inf_sup_left
[GOAL]
P : Type u_1
inst✝ : BooleanAlgebra P
x : P
I : Ideal P
hI : IsProper I
hxc : xᶜ ∈ I
⊢ ¬x ∈ I
[PROOFSTEP]
intro hx
[GOAL]
P : Type u_1
inst✝ : BooleanAlgebra P
x : P
I : Ideal P
hI : IsProper I
hxc : xᶜ ∈ I
hx : x ∈ I
⊢ False
[PROOFSTEP]
apply hI.top_not_mem
[GOAL]
P : Type u_1
inst✝ : BooleanAlgebra P
x : P
I : Ideal P
hI : IsProper I
hxc : xᶜ ∈ I
hx : x ∈ I
⊢ ⊤ ∈ I
[PROOFSTEP]
have ht : x ⊔ xᶜ ∈ I := sup_mem ‹_› ‹_›
[GOAL]
P : Type u_1
inst✝ : BooleanAlgebra P
x : P
I : Ideal P
hI : IsProper I
hxc : xᶜ ∈ I
hx : x ∈ I
ht : x ⊔ xᶜ ∈ I
⊢ ⊤ ∈ I
[PROOFSTEP]
rwa [sup_compl_eq_top] at ht
[GOAL]
P : Type u_1
inst✝ : BooleanAlgebra P
x : P
I : Ideal P
hI : IsProper I
⊢ ¬x ∈ I ∨ ¬xᶜ ∈ I
[PROOFSTEP]
have h : xᶜ ∈ I → x ∉ I := hI.not_mem_of_compl_mem
[GOAL]
P : Type u_1
inst✝ : BooleanAlgebra P
x : P
I : Ideal P
hI : IsProper I
h : xᶜ ∈ I → ¬x ∈ I
⊢ ¬x ∈ I ∨ ¬xᶜ ∈ I
[PROOFSTEP]
tauto
[GOAL]
P : Type u_1
inst✝¹ : Preorder P
p : P
ι : Type u_2
inst✝ : Encodable ι
𝒟 : ι → Cofinal P
⊢ Monotone (sequenceOfCofinals p 𝒟)
[PROOFSTEP]
apply monotone_nat_of_le_succ
[GOAL]
case hf
P : Type u_1
inst✝¹ : Preorder P
p : P
ι : Type u_2
inst✝ : Encodable ι
𝒟 : ι → Cofinal P
⊢ ∀ (n : ℕ), sequenceOfCofinals p 𝒟 n ≤ sequenceOfCofinals p 𝒟 (n + 1)
[PROOFSTEP]
intro n
[GOAL]
case hf
P : Type u_1
inst✝¹ : Preorder P
p : P
ι : Type u_2
inst✝ : Encodable ι
𝒟 : ι → Cofinal P
n : ℕ
⊢ sequenceOfCofinals p 𝒟 n ≤ sequenceOfCofinals p 𝒟 (n + 1)
[PROOFSTEP]
dsimp only [sequenceOfCofinals, Nat.add]
[GOAL]
case hf
P : Type u_1
inst✝¹ : Preorder P
p : P
ι : Type u_2
inst✝ : Encodable ι
𝒟 : ι → Cofinal P
n : ℕ
⊢ sequenceOfCofinals p 𝒟 n ≤
match Encodable.decode n with
| none => sequenceOfCofinals p 𝒟 n
| some i => Cofinal.above (𝒟 i) (sequenceOfCofinals p 𝒟 n)
[PROOFSTEP]
cases (Encodable.decode n : Option ι)
[GOAL]
case hf.none
P : Type u_1
inst✝¹ : Preorder P
p : P
ι : Type u_2
inst✝ : Encodable ι
𝒟 : ι → Cofinal P
n : ℕ
⊢ sequenceOfCofinals p 𝒟 n ≤
match none with
| none => sequenceOfCofinals p 𝒟 n
| some i => Cofinal.above (𝒟 i) (sequenceOfCofinals p 𝒟 n)
[PROOFSTEP]
rfl
[GOAL]
case hf.some
P : Type u_1
inst✝¹ : Preorder P
p : P
ι : Type u_2
inst✝ : Encodable ι
𝒟 : ι → Cofinal P
n : ℕ
val✝ : ι
⊢ sequenceOfCofinals p 𝒟 n ≤
match some val✝ with
| none => sequenceOfCofinals p 𝒟 n
| some i => Cofinal.above (𝒟 i) (sequenceOfCofinals p 𝒟 n)
[PROOFSTEP]
apply Cofinal.le_above
[GOAL]
P : Type u_1
inst✝¹ : Preorder P
p : P
ι : Type u_2
inst✝ : Encodable ι
𝒟 : ι → Cofinal P
i : ι
⊢ sequenceOfCofinals p 𝒟 (Encodable.encode i + 1) ∈ 𝒟 i
[PROOFSTEP]
dsimp only [sequenceOfCofinals, Nat.add]
[GOAL]
P : Type u_1
inst✝¹ : Preorder P
p : P
ι : Type u_2
inst✝ : Encodable ι
𝒟 : ι → Cofinal P
i : ι
⊢ (match Encodable.decode (Encodable.encode i) with
| none => sequenceOfCofinals p 𝒟 (Encodable.encode i)
| some i_1 => Cofinal.above (𝒟 i_1) (sequenceOfCofinals p 𝒟 (Encodable.encode i))) ∈
𝒟 i
[PROOFSTEP]
rw [Encodable.encodek]
[GOAL]
P : Type u_1
inst✝¹ : Preorder P
p : P
ι : Type u_2
inst✝ : Encodable ι
𝒟 : ι → Cofinal P
i : ι
⊢ (match some i with
| none => sequenceOfCofinals p 𝒟 (Encodable.encode i)
| some i_1 => Cofinal.above (𝒟 i_1) (sequenceOfCofinals p 𝒟 (Encodable.encode i))) ∈
𝒟 i
[PROOFSTEP]
apply Cofinal.above_mem
| {"mathlib_filename": "Mathlib.Order.Ideal", "llama_tokens": 6022} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : NoMaxOrder α
x✝ : α × β
a : α
b : β
⊢ ∃ b_1, (a, b) < b_1
[PROOFSTEP]
obtain ⟨c, h⟩ := exists_gt a
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : NoMaxOrder α
x✝ : α × β
a : α
b : β
c : α
h : a < c
⊢ ∃ b_1, (a, b) < b_1
[PROOFSTEP]
exact ⟨(c, b), Prod.mk_lt_mk_iff_left.2 h⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : NoMaxOrder β
x✝ : α × β
a : α
b : β
⊢ ∃ b_1, (a, b) < b_1
[PROOFSTEP]
obtain ⟨c, h⟩ := exists_gt b
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : NoMaxOrder β
x✝ : α × β
a : α
b c : β
h : b < c
⊢ ∃ b_1, (a, b) < b_1
[PROOFSTEP]
exact ⟨(a, c), Prod.mk_lt_mk_iff_right.2 h⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : NoMinOrder α
x✝ : α × β
a : α
b : β
⊢ ∃ b_1, b_1 < (a, b)
[PROOFSTEP]
obtain ⟨c, h⟩ := exists_lt a
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : NoMinOrder α
x✝ : α × β
a : α
b : β
c : α
h : c < a
⊢ ∃ b_1, b_1 < (a, b)
[PROOFSTEP]
exact ⟨(c, b), Prod.mk_lt_mk_iff_left.2 h⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : NoMinOrder β
x✝ : α × β
a : α
b : β
⊢ ∃ b_1, b_1 < (a, b)
[PROOFSTEP]
obtain ⟨c, h⟩ := exists_lt b
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : NoMinOrder β
x✝ : α × β
a : α
b c : β
h : c < b
⊢ ∃ b_1, b_1 < (a, b)
[PROOFSTEP]
exact ⟨(a, c), Prod.mk_lt_mk_iff_right.2 h⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u
π : ι → Type u_3
inst✝² : Nonempty ι
inst✝¹ : (i : ι) → Preorder (π i)
inst✝ : ∀ (i : ι), NoMaxOrder (π i)
a : (i : ι) → π i
⊢ ∃ b, a < b
[PROOFSTEP]
classical
obtain ⟨b, hb⟩ := exists_gt (a <| Classical.arbitrary _)
exact ⟨_, lt_update_self_iff.2 hb⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u
π : ι → Type u_3
inst✝² : Nonempty ι
inst✝¹ : (i : ι) → Preorder (π i)
inst✝ : ∀ (i : ι), NoMaxOrder (π i)
a : (i : ι) → π i
⊢ ∃ b, a < b
[PROOFSTEP]
obtain ⟨b, hb⟩ := exists_gt (a <| Classical.arbitrary _)
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u
π : ι → Type u_3
inst✝² : Nonempty ι
inst✝¹ : (i : ι) → Preorder (π i)
inst✝ : ∀ (i : ι), NoMaxOrder (π i)
a : (i : ι) → π i
b : π (Classical.arbitrary ι)
hb : a (Classical.arbitrary ι) < b
⊢ ∃ b, a < b
[PROOFSTEP]
exact ⟨_, lt_update_self_iff.2 hb⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u
π : ι → Type u_3
inst✝² : Nonempty ι
inst✝¹ : (i : ι) → Preorder (π i)
inst✝ : ∀ (i : ι), NoMinOrder (π i)
a : (i : ι) → π i
⊢ ∃ b, b < a
[PROOFSTEP]
classical
obtain ⟨b, hb⟩ := exists_lt (a <| Classical.arbitrary _)
exact ⟨_, update_lt_self_iff.2 hb⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u
π : ι → Type u_3
inst✝² : Nonempty ι
inst✝¹ : (i : ι) → Preorder (π i)
inst✝ : ∀ (i : ι), NoMinOrder (π i)
a : (i : ι) → π i
⊢ ∃ b, b < a
[PROOFSTEP]
obtain ⟨b, hb⟩ := exists_lt (a <| Classical.arbitrary _)
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u
π : ι → Type u_3
inst✝² : Nonempty ι
inst✝¹ : (i : ι) → Preorder (π i)
inst✝ : ∀ (i : ι), NoMinOrder (π i)
a : (i : ι) → π i
b : π (Classical.arbitrary ι)
hb : b < a (Classical.arbitrary ι)
⊢ ∃ b, b < a
[PROOFSTEP]
exact ⟨_, update_lt_self_iff.2 hb⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝¹ : LinearOrder α
inst✝ : NoBotOrder α
a : α
⊢ ∃ b, b < a
[PROOFSTEP]
simpa [not_le] using exists_not_ge a
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
inst✝¹ : LinearOrder α
inst✝ : NoTopOrder α
a : α
⊢ ∃ b, a < b
[PROOFSTEP]
simpa [not_le] using exists_not_le a
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Preorder α
a b : α
⊢ ¬IsMin a ↔ ∃ b, b < a
[PROOFSTEP]
simp [lt_iff_le_not_le, IsMin, not_forall, exists_prop]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Preorder α
a b : α
⊢ ¬IsMax a ↔ ∃ b, a < b
[PROOFSTEP]
simp [lt_iff_le_not_le, IsMax, not_forall, exists_prop]
| {"mathlib_filename": "Mathlib.Order.Max", "llama_tokens": 2223} |
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsWeakUpperModularLattice α
a b : α
⊢ a ⊓ b ⋖ a → a ⊓ b ⋖ b → b ⋖ a ⊔ b
[PROOFSTEP]
rw [inf_comm, sup_comm]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsWeakUpperModularLattice α
a b : α
⊢ b ⊓ a ⋖ a → b ⊓ a ⋖ b → b ⋖ b ⊔ a
[PROOFSTEP]
exact fun ha hb => covby_sup_of_inf_covby_of_inf_covby_left hb ha
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsWeakLowerModularLattice α
a b : α
⊢ a ⋖ a ⊔ b → b ⋖ a ⊔ b → a ⊓ b ⋖ b
[PROOFSTEP]
rw [sup_comm, inf_comm]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsWeakLowerModularLattice α
a b : α
⊢ a ⋖ b ⊔ a → b ⋖ b ⊔ a → b ⊓ a ⋖ b
[PROOFSTEP]
exact fun ha hb => inf_covby_of_covby_sup_of_covby_sup_left hb ha
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsUpperModularLattice α
a b : α
⊢ a ⊓ b ⋖ b → a ⋖ a ⊔ b
[PROOFSTEP]
rw [sup_comm, inf_comm]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsUpperModularLattice α
a b : α
⊢ b ⊓ a ⋖ b → a ⋖ b ⊔ a
[PROOFSTEP]
exact covby_sup_of_inf_covby_left
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsLowerModularLattice α
a b : α
⊢ b ⋖ a ⊔ b → a ⊓ b ⋖ a
[PROOFSTEP]
rw [inf_comm, sup_comm]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsLowerModularLattice α
a b : α
⊢ b ⋖ b ⊔ a → b ⊓ a ⋖ a
[PROOFSTEP]
exact inf_covby_of_covby_sup_left
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x y z : α
h : z ≤ x
⊢ x ⊓ y ⊔ z = x ⊓ (y ⊔ z)
[PROOFSTEP]
rw [inf_comm, sup_comm, ← sup_inf_assoc_of_le y h, inf_comm, sup_comm]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x✝ y z : αᵒᵈ
xz : x✝ ≤ z
⊢ (x✝ ⊔ y) ⊓ z = x✝ ⊔ y ⊓ z
[PROOFSTEP]
rw [inf_comm, sup_comm, eq_comm, inf_comm, sup_comm]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x✝ y z : αᵒᵈ
xz : x✝ ≤ z
⊢ z ⊓ y ⊔ x✝ = z ⊓ (y ⊔ x✝)
[PROOFSTEP]
exact @sup_inf_assoc_of_le α _ _ _ y _ xz
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x y z : α
hxy : x ≤ y
hinf : y ⊓ z ≤ x ⊓ z
hsup : y ⊔ z ≤ x ⊔ z
h : y ≤ x ⊔ z
⊢ z ⊓ y ≤ z ⊓ x
[PROOFSTEP]
rw [inf_comm, @inf_comm _ _ z]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x y z : α
hxy : x ≤ y
hinf : y ⊓ z ≤ x ⊓ z
hsup : y ⊔ z ≤ x ⊔ z
h : y ≤ x ⊔ z
⊢ y ⊓ z ≤ x ⊓ z
[PROOFSTEP]
exact hinf
[GOAL]
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
x y z : α
β : Type u_2
γ : Type u_3
inst✝¹ : PartialOrder β
inst✝ : Preorder γ
h₁ : WellFounded fun x x_1 => x < x_1
h₂ : WellFounded fun x x_1 => x < x_1
K : α
f₁ : β → α
f₂ : α → β
g₁ : γ → α
g₂ : α → γ
gci : GaloisCoinsertion f₁ f₂
gi : GaloisInsertion g₂ g₁
hf : ∀ (a : α), f₁ (f₂ a) = a ⊓ K
hg : ∀ (a : α), g₁ (g₂ a) = a ⊔ K
A B : α
hAB : A < B
⊢ Prod.Lex (fun x x_1 => x < x_1) (fun x x_1 => x < x_1) (f₂ A, g₂ A) (f₂ B, g₂ B)
[PROOFSTEP]
simp only [Prod.lex_def, lt_iff_le_not_le, ← gci.l_le_l_iff, ← gi.u_le_u_iff, hf, hg, le_antisymm_iff]
[GOAL]
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
x y z : α
β : Type u_2
γ : Type u_3
inst✝¹ : PartialOrder β
inst✝ : Preorder γ
h₁ : WellFounded fun x x_1 => x < x_1
h₂ : WellFounded fun x x_1 => x < x_1
K : α
f₁ : β → α
f₂ : α → β
g₁ : γ → α
g₂ : α → γ
gci : GaloisCoinsertion f₁ f₂
gi : GaloisInsertion g₂ g₁
hf : ∀ (a : α), f₁ (f₂ a) = a ⊓ K
hg : ∀ (a : α), g₁ (g₂ a) = a ⊔ K
A B : α
hAB : A < B
⊢ A ⊓ K ≤ B ⊓ K ∧ ¬B ⊓ K ≤ A ⊓ K ∨ (A ⊓ K ≤ B ⊓ K ∧ B ⊓ K ≤ A ⊓ K) ∧ A ⊔ K ≤ B ⊔ K ∧ ¬B ⊔ K ≤ A ⊔ K
[PROOFSTEP]
simp only [gci.l_le_l_iff, gi.u_le_u_iff, ← lt_iff_le_not_le, ← le_antisymm_iff]
[GOAL]
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
x y z : α
β : Type u_2
γ : Type u_3
inst✝¹ : PartialOrder β
inst✝ : Preorder γ
h₁ : WellFounded fun x x_1 => x < x_1
h₂ : WellFounded fun x x_1 => x < x_1
K : α
f₁ : β → α
f₂ : α → β
g₁ : γ → α
g₂ : α → γ
gci : GaloisCoinsertion f₁ f₂
gi : GaloisInsertion g₂ g₁
hf : ∀ (a : α), f₁ (f₂ a) = a ⊓ K
hg : ∀ (a : α), g₁ (g₂ a) = a ⊔ K
A B : α
hAB : A < B
⊢ A ⊓ K < B ⊓ K ∨ A ⊓ K = B ⊓ K ∧ A ⊔ K < B ⊔ K
[PROOFSTEP]
cases' lt_or_eq_of_le (inf_le_inf_right K (le_of_lt hAB)) with h h
[GOAL]
case inl
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
x y z : α
β : Type u_2
γ : Type u_3
inst✝¹ : PartialOrder β
inst✝ : Preorder γ
h₁ : WellFounded fun x x_1 => x < x_1
h₂ : WellFounded fun x x_1 => x < x_1
K : α
f₁ : β → α
f₂ : α → β
g₁ : γ → α
g₂ : α → γ
gci : GaloisCoinsertion f₁ f₂
gi : GaloisInsertion g₂ g₁
hf : ∀ (a : α), f₁ (f₂ a) = a ⊓ K
hg : ∀ (a : α), g₁ (g₂ a) = a ⊔ K
A B : α
hAB : A < B
h : A ⊓ K < B ⊓ K
⊢ A ⊓ K < B ⊓ K ∨ A ⊓ K = B ⊓ K ∧ A ⊔ K < B ⊔ K
[PROOFSTEP]
exact Or.inl h
[GOAL]
case inr
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
x y z : α
β : Type u_2
γ : Type u_3
inst✝¹ : PartialOrder β
inst✝ : Preorder γ
h₁ : WellFounded fun x x_1 => x < x_1
h₂ : WellFounded fun x x_1 => x < x_1
K : α
f₁ : β → α
f₂ : α → β
g₁ : γ → α
g₂ : α → γ
gci : GaloisCoinsertion f₁ f₂
gi : GaloisInsertion g₂ g₁
hf : ∀ (a : α), f₁ (f₂ a) = a ⊓ K
hg : ∀ (a : α), g₁ (g₂ a) = a ⊔ K
A B : α
hAB : A < B
h : A ⊓ K = B ⊓ K
⊢ A ⊓ K < B ⊓ K ∨ A ⊓ K = B ⊓ K ∧ A ⊔ K < B ⊔ K
[PROOFSTEP]
exact Or.inr ⟨h, sup_lt_sup_of_lt_of_inf_le_inf hAB (le_of_eq h.symm)⟩
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x✝ y z a b : α
x : ↑(Icc (a ⊓ b) a)
⊢ ↑((fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) })
((fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) }) x)) =
↑x
[PROOFSTEP]
change a ⊓ (↑x ⊔ b) = ↑x
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x✝ y z a b : α
x : ↑(Icc (a ⊓ b) a)
⊢ a ⊓ (↑x ⊔ b) = ↑x
[PROOFSTEP]
rw [sup_comm, ← inf_sup_assoc_of_le _ x.prop.2, sup_eq_right.2 x.prop.1]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x✝ y z a b : α
x : ↑(Icc b (a ⊔ b))
⊢ ↑((fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) })
((fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) }) x)) =
↑x
[PROOFSTEP]
change a ⊓ ↑x ⊔ b = ↑x
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x✝ y z a b : α
x : ↑(Icc b (a ⊔ b))
⊢ a ⊓ ↑x ⊔ b = ↑x
[PROOFSTEP]
rw [inf_comm, inf_sup_assoc_of_le _ x.prop.1, inf_eq_left.2 x.prop.2]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x✝ y✝ z a b : α
x y : ↑(Icc (a ⊓ b) a)
⊢ ↑{ toFun := fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) },
invFun := fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) },
left_inv :=
(_ :
∀ (x : ↑(Icc (a ⊓ b) a)),
(fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) })
((fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) }) x) =
x),
right_inv :=
(_ :
∀ (x : ↑(Icc b (a ⊔ b))),
(fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) })
((fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) }) x) =
x) }
x ≤
↑{ toFun := fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) },
invFun := fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) },
left_inv :=
(_ :
∀ (x : ↑(Icc (a ⊓ b) a)),
(fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) })
((fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) }) x) =
x),
right_inv :=
(_ :
∀ (x : ↑(Icc b (a ⊔ b))),
(fun x => { val := ↑x ⊔ b, property := (_ : b ≤ ↑x ⊔ b ∧ ↑x ⊔ b ≤ a ⊔ b) })
((fun x => { val := a ⊓ ↑x, property := (_ : a ⊓ b ≤ a ⊓ ↑x ∧ a ⊓ ↑x ≤ a) }) x) =
x) }
y ↔
x ≤ y
[PROOFSTEP]
simp only [Subtype.mk_le_mk, Equiv.coe_fn_mk, and_true_iff, le_sup_right]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x✝ y✝ z a b : α
x y : ↑(Icc (a ⊓ b) a)
⊢ ↑x ⊔ b ≤ ↑y ⊔ b ↔ x ≤ y
[PROOFSTEP]
rw [← Subtype.coe_le_coe]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x✝ y✝ z a b : α
x y : ↑(Icc (a ⊓ b) a)
⊢ ↑x ⊔ b ≤ ↑y ⊔ b ↔ ↑x ≤ ↑y
[PROOFSTEP]
refine' ⟨fun h => _, fun h => sup_le_sup_right h _⟩
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x✝ y✝ z a b : α
x y : ↑(Icc (a ⊓ b) a)
h : ↑x ⊔ b ≤ ↑y ⊔ b
⊢ ↑x ≤ ↑y
[PROOFSTEP]
rw [← sup_eq_right.2 x.prop.1, inf_sup_assoc_of_le _ x.prop.2, sup_comm, ← sup_eq_right.2 y.prop.1,
inf_sup_assoc_of_le _ y.prop.2, @sup_comm _ _ b]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x✝ y✝ z a b : α
x y : ↑(Icc (a ⊓ b) a)
h : ↑x ⊔ b ≤ ↑y ⊔ b
⊢ a ⊓ (↑x ⊔ b) ≤ a ⊓ (↑y ⊔ b)
[PROOFSTEP]
exact inf_le_inf_left _ h
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x y z a b : α
c : ↑(Ioo (a ⊓ b) a)
⊢ ↑((fun c => { val := a ⊓ ↑c, property := (_ : a ⊓ b < a ⊓ ↑c ∧ a ⊓ ↑c < a) })
((fun c => { val := ↑c ⊔ b, property := (_ : b < ↑c ⊔ b ∧ ↑c ⊔ b < a ⊔ b) }) c)) =
↑c
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x y z a b : α
c : ↑(Ioo (a ⊓ b) a)
⊢ a ⊓ (↑c ⊔ b) = ↑c
[PROOFSTEP]
rw [sup_comm, ← inf_sup_assoc_of_le _ c.prop.2.le, sup_eq_right.2 c.prop.1.le]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x y z a b : α
c : ↑(Ioo b (a ⊔ b))
⊢ ↑((fun c => { val := ↑c ⊔ b, property := (_ : b < ↑c ⊔ b ∧ ↑c ⊔ b < a ⊔ b) })
((fun c => { val := a ⊓ ↑c, property := (_ : a ⊓ b < a ⊓ ↑c ∧ a ⊓ ↑c < a) }) c)) =
↑c
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x y z a b : α
c : ↑(Ioo b (a ⊔ b))
⊢ a ⊓ ↑c ⊔ b = ↑c
[PROOFSTEP]
rw [inf_comm, inf_sup_assoc_of_le _ c.prop.1.le, inf_eq_left.2 c.prop.2.le]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x y z a b : α
⊢ a ⋖ a ⊔ b → a ⊓ b ⋖ b
[PROOFSTEP]
simp_rw [covby_iff_Ioo_eq, @sup_comm _ _ a, @inf_comm _ _ a, ← isEmpty_coe_sort, right_lt_sup, inf_lt_left,
(infIooOrderIsoIooSup b a).symm.toEquiv.isEmpty_congr]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x y z a b : α
⊢ ¬b ≤ a ∧ IsEmpty ↑(Ioo (b ⊓ a) b) → ¬b ≤ a ∧ IsEmpty ↑(Ioo (b ⊓ a) b)
[PROOFSTEP]
exact id
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x y z a b : α
⊢ a ⊓ b ⋖ a → b ⋖ a ⊔ b
[PROOFSTEP]
simp_rw [covby_iff_Ioo_eq, ← isEmpty_coe_sort, right_lt_sup, inf_lt_left,
(infIooOrderIsoIooSup a b).toEquiv.isEmpty_congr]
[GOAL]
α : Type u_1
inst✝¹ : Lattice α
inst✝ : IsModularLattice α
x y z a b : α
⊢ ¬a ≤ b ∧ IsEmpty ↑(Ioo b (a ⊔ b)) → ¬a ≤ b ∧ IsEmpty ↑(Ioo b (a ⊔ b))
[PROOFSTEP]
exact id
[GOAL]
α : Type u_1
inst✝ : Lattice α
h : ∀ (x y z : α), x ⊓ z ⊔ y ⊓ z = (x ⊓ z ⊔ y) ⊓ z
x✝ y z : α
xz : x✝ ≤ z
⊢ (x✝ ⊔ y) ⊓ z ≤ x✝ ⊔ y ⊓ z
[PROOFSTEP]
rw [← inf_eq_left.2 xz, h]
[GOAL]
α : Type u_1
inst✝ : DistribLattice α
x✝ y z : α
xz : x✝ ≤ z
⊢ (x✝ ⊔ y) ⊓ z ≤ x✝ ⊔ y ⊓ z
[PROOFSTEP]
rw [inf_sup_right, inf_eq_left.2 xz]
[GOAL]
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
inst✝ : IsModularLattice α
a b c : α
h : Disjoint a b
hsup : Disjoint (a ⊔ b) c
⊢ Disjoint a (b ⊔ c)
[PROOFSTEP]
rw [disjoint_iff_inf_le, ← h.eq_bot, sup_comm]
[GOAL]
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
inst✝ : IsModularLattice α
a b c : α
h : Disjoint a b
hsup : Disjoint (a ⊔ b) c
⊢ a ⊓ (c ⊔ b) ≤ a ⊓ b
[PROOFSTEP]
apply le_inf inf_le_left
[GOAL]
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
inst✝ : IsModularLattice α
a b c : α
h : Disjoint a b
hsup : Disjoint (a ⊔ b) c
⊢ a ⊓ (c ⊔ b) ≤ b
[PROOFSTEP]
apply (inf_le_inf_right (c ⊔ b) le_sup_right).trans
[GOAL]
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
inst✝ : IsModularLattice α
a b c : α
h : Disjoint a b
hsup : Disjoint (a ⊔ b) c
⊢ (?m.28074 ⊔ a) ⊓ (c ⊔ b) ≤ b
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
inst✝ : IsModularLattice α
a b c : α
h : Disjoint a b
hsup : Disjoint (a ⊔ b) c
⊢ α
[PROOFSTEP]
rw [sup_comm, IsModularLattice.sup_inf_sup_assoc, hsup.eq_bot, bot_sup_eq]
[GOAL]
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
inst✝ : IsModularLattice α
a b c : α
h : Disjoint b c
hsup : Disjoint a (b ⊔ c)
⊢ Disjoint (a ⊔ b) c
[PROOFSTEP]
rw [disjoint_comm, sup_comm]
[GOAL]
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
inst✝ : IsModularLattice α
a b c : α
h : Disjoint b c
hsup : Disjoint a (b ⊔ c)
⊢ Disjoint c (b ⊔ a)
[PROOFSTEP]
apply Disjoint.disjoint_sup_right_of_disjoint_sup_left h.symm
[GOAL]
α : Type u_1
inst✝² : Lattice α
inst✝¹ : OrderBot α
inst✝ : IsModularLattice α
a b c : α
h : Disjoint b c
hsup : Disjoint a (b ⊔ c)
⊢ Disjoint (c ⊔ b) a
[PROOFSTEP]
rwa [sup_comm, disjoint_comm] at hsup
[GOAL]
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Iic a)
x : α
hx : x ∈ Iic a
y : α
hy : IsCompl x y
⊢ IsCompl { val := x, property := hx } { val := y ⊓ a, property := (_ : y ⊓ a ∈ Iic a) }
[PROOFSTEP]
constructor
[GOAL]
case disjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Iic a)
x : α
hx : x ∈ Iic a
y : α
hy : IsCompl x y
⊢ Disjoint { val := x, property := hx } { val := y ⊓ a, property := (_ : y ⊓ a ∈ Iic a) }
[PROOFSTEP]
rw [disjoint_iff_inf_le]
[GOAL]
case disjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Iic a)
x : α
hx : x ∈ Iic a
y : α
hy : IsCompl x y
⊢ { val := x, property := hx } ⊓ { val := y ⊓ a, property := (_ : y ⊓ a ∈ Iic a) } ≤ ⊥
[PROOFSTEP]
change
x ⊓ (y ⊓ a) ≤
⊥
-- improve lattice subtype API
[GOAL]
case disjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Iic a)
x : α
hx : x ∈ Iic a
y : α
hy : IsCompl x y
⊢ x ⊓ (y ⊓ a) ≤ ⊥
[PROOFSTEP]
rw [← inf_assoc]
[GOAL]
case disjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Iic a)
x : α
hx : x ∈ Iic a
y : α
hy : IsCompl x y
⊢ x ⊓ y ⊓ a ≤ ⊥
[PROOFSTEP]
exact le_trans inf_le_left hy.1.le_bot
[GOAL]
case codisjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Iic a)
x : α
hx : x ∈ Iic a
y : α
hy : IsCompl x y
⊢ Codisjoint { val := x, property := hx } { val := y ⊓ a, property := (_ : y ⊓ a ∈ Iic a) }
[PROOFSTEP]
rw [codisjoint_iff_le_sup]
[GOAL]
case codisjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Iic a)
x : α
hx : x ∈ Iic a
y : α
hy : IsCompl x y
⊢ ⊤ ≤ { val := x, property := hx } ⊔ { val := y ⊓ a, property := (_ : y ⊓ a ∈ Iic a) }
[PROOFSTEP]
change a ≤ x ⊔ y ⊓ a
[GOAL]
case codisjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Iic a)
x : α
hx : x ∈ Iic a
y : α
hy : IsCompl x y
⊢ a ≤ x ⊔ y ⊓ a
[PROOFSTEP]
rw [← sup_inf_assoc_of_le _ (Set.mem_Iic.1 hx), hy.2.eq_top, top_inf_eq]
[GOAL]
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Ici a)
x : α
hx : x ∈ Ici a
y : α
hy : IsCompl x y
⊢ IsCompl { val := x, property := hx } { val := y ⊔ a, property := (_ : y ⊔ a ∈ Ici a) }
[PROOFSTEP]
constructor
[GOAL]
case disjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Ici a)
x : α
hx : x ∈ Ici a
y : α
hy : IsCompl x y
⊢ Disjoint { val := x, property := hx } { val := y ⊔ a, property := (_ : y ⊔ a ∈ Ici a) }
[PROOFSTEP]
rw [disjoint_iff_inf_le]
[GOAL]
case disjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Ici a)
x : α
hx : x ∈ Ici a
y : α
hy : IsCompl x y
⊢ { val := x, property := hx } ⊓ { val := y ⊔ a, property := (_ : y ⊔ a ∈ Ici a) } ≤ ⊥
[PROOFSTEP]
change x ⊓ (y ⊔ a) ≤ a
[GOAL]
case disjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Ici a)
x : α
hx : x ∈ Ici a
y : α
hy : IsCompl x y
⊢ x ⊓ (y ⊔ a) ≤ a
[PROOFSTEP]
rw [← inf_sup_assoc_of_le _ (Set.mem_Ici.1 hx), hy.1.eq_bot, bot_sup_eq]
[GOAL]
case codisjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Ici a)
x : α
hx : x ∈ Ici a
y : α
hy : IsCompl x y
⊢ Codisjoint { val := x, property := hx } { val := y ⊔ a, property := (_ : y ⊔ a ∈ Ici a) }
[PROOFSTEP]
rw [codisjoint_iff_le_sup]
[GOAL]
case codisjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Ici a)
x : α
hx : x ∈ Ici a
y : α
hy : IsCompl x y
⊢ ⊤ ≤ { val := x, property := hx } ⊔ { val := y ⊔ a, property := (_ : y ⊔ a ∈ Ici a) }
[PROOFSTEP]
change
⊤ ≤
x ⊔
(y ⊔ a)
-- improve lattice subtype API
[GOAL]
case codisjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Ici a)
x : α
hx : x ∈ Ici a
y : α
hy : IsCompl x y
⊢ ⊤ ≤ x ⊔ (y ⊔ a)
[PROOFSTEP]
rw [← sup_assoc]
[GOAL]
case codisjoint
α : Type u_1
inst✝³ : Lattice α
inst✝² : IsModularLattice α
a : α
inst✝¹ : BoundedOrder α
inst✝ : ComplementedLattice α
x✝ : ↑(Ici a)
x : α
hx : x ∈ Ici a
y : α
hy : IsCompl x y
⊢ ⊤ ≤ x ⊔ y ⊔ a
[PROOFSTEP]
exact le_trans hy.2.top_le le_sup_left
| {"mathlib_filename": "Mathlib.Order.ModularLattice", "llama_tokens": 10167} |
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
g : β → γ
f : α → β
s : Set α
x : α
h : IsLUB s x
⊢ IsLUB (id '' s) (id x)
[PROOFSTEP]
simpa only [image_id] using h
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
g : β → γ
f : α → β
hf : LeftOrdContinuous f
a₁ a₂ : α
h : a₁ ≤ a₂
⊢ a₂ ∈ upperBounds {a₁, a₂}
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
g : β → γ
f : α → β
hg : LeftOrdContinuous g
hf : LeftOrdContinuous f
s : Set α
x : α
h : IsLUB s x
⊢ IsLUB (g ∘ f '' s) ((g ∘ f) x)
[PROOFSTEP]
simpa only [image_image] using hg (hf h)
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
g : β → γ
f✝ : α → β
f : α → α
hf : LeftOrdContinuous f
n : ℕ
⊢ LeftOrdContinuous f^[n]
[PROOFSTEP]
induction n with
| zero => exact LeftOrdContinuous.id α
| succ n ihn => exact ihn.comp hf
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
g : β → γ
f✝ : α → β
f : α → α
hf : LeftOrdContinuous f
n : ℕ
⊢ LeftOrdContinuous f^[n]
[PROOFSTEP]
induction n with
| zero => exact LeftOrdContinuous.id α
| succ n ihn => exact ihn.comp hf
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
g : β → γ
f✝ : α → β
f : α → α
hf : LeftOrdContinuous f
⊢ LeftOrdContinuous f^[Nat.zero]
[PROOFSTEP]
| zero => exact LeftOrdContinuous.id α
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
g : β → γ
f✝ : α → β
f : α → α
hf : LeftOrdContinuous f
⊢ LeftOrdContinuous f^[Nat.zero]
[PROOFSTEP]
exact LeftOrdContinuous.id α
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
g : β → γ
f✝ : α → β
f : α → α
hf : LeftOrdContinuous f
n : ℕ
ihn : LeftOrdContinuous f^[n]
⊢ LeftOrdContinuous f^[Nat.succ n]
[PROOFSTEP]
| succ n ihn => exact ihn.comp hf
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
g : β → γ
f✝ : α → β
f : α → α
hf : LeftOrdContinuous f
n : ℕ
ihn : LeftOrdContinuous f^[n]
⊢ LeftOrdContinuous f^[Nat.succ n]
[PROOFSTEP]
exact ihn.comp hf
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup β
f : α → β
hf : LeftOrdContinuous f
x y : α
⊢ IsLUB (f '' {x, y}) (f x ⊔ f y)
[PROOFSTEP]
simp only [image_pair, isLUB_pair]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup β
f : α → β
hf : LeftOrdContinuous f
h : Injective f
x y : α
⊢ f x ≤ f y ↔ x ≤ y
[PROOFSTEP]
simp only [← sup_eq_right, ← hf.map_sup, h.eq_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : SemilatticeSup α
inst✝ : SemilatticeSup β
f : α → β
hf : LeftOrdContinuous f
h : Injective f
x y : α
⊢ f x < f y ↔ x < y
[PROOFSTEP]
simp only [lt_iff_le_not_le, hf.le_iff h]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
f : α → β
hf : LeftOrdContinuous f
s : Set α
⊢ f (sSup s) = ⨆ (x : α) (_ : x ∈ s), f x
[PROOFSTEP]
rw [hf.map_sSup', sSup_image]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
f : α → β
hf : LeftOrdContinuous f
g : ι → α
⊢ f (⨆ (i : ι), g i) = ⨆ (i : ι), f (g i)
[PROOFSTEP]
simp only [iSup, hf.map_sSup', ← range_comp]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝¹ : CompleteLattice α
inst✝ : CompleteLattice β
f : α → β
hf : LeftOrdContinuous f
g : ι → α
⊢ sSup (range (f ∘ fun i => g i)) = sSup (range fun i => f (g i))
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : ConditionallyCompleteLattice α
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : Nonempty ι
f : α → β
hf : LeftOrdContinuous f
g : ι → α
hg : BddAbove (range g)
⊢ f (⨆ (i : ι), g i) = ⨆ (i : ι), f (g i)
[PROOFSTEP]
simp only [iSup, hf.map_csSup (range_nonempty _) hg, ← range_comp]
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : ConditionallyCompleteLattice α
inst✝¹ : ConditionallyCompleteLattice β
inst✝ : Nonempty ι
f : α → β
hf : LeftOrdContinuous f
g : ι → α
hg : BddAbove (range g)
⊢ sSup (range (f ∘ g)) = sSup (range fun i => f (g i))
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
ι : Sort x
inst✝² : Preorder α
inst✝¹ : Preorder β
inst✝ : Preorder γ
g : β → γ
f : α → β
s : Set α
x : α
h : IsGLB s x
⊢ IsGLB (id '' s) (id x)
[PROOFSTEP]
simpa only [image_id] using h
| {"mathlib_filename": "Mathlib.Order.OrdContinuous", "llama_tokens": 2386} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Preorder α
inst✝ : OrderBot α
a✝ b✝ x a b : α
⊢ b < a → b = ⊥ ↔ b ≠ ⊥ → b ≤ a → a ≤ b
[PROOFSTEP]
simp only [Ne.def, @not_imp_comm (b = ⊥), not_imp, lt_iff_le_not_le]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : OrderBot α
a b x : α
h : IsAtom a
⊢ x ≤ a ↔ x = ⊥ ∨ x = a
[PROOFSTEP]
rw [le_iff_lt_or_eq, h.lt_iff]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : OrderBot α
a b x : α
⊢ ⊥ ⋖ a ↔ IsAtom a
[PROOFSTEP]
simp only [Covby, bot_lt_iff_ne_bot, IsAtom, not_imp_not]
[GOAL]
α : Type u_1
β : Type u_2
a : α
ι : Sort u_3
inst✝ : Order.Frame α
ha : IsAtom a
f : ι → α
⊢ a ≤ iSup f ↔ ∃ i, a ≤ f i
[PROOFSTEP]
refine ⟨?_, fun ⟨i, hi⟩ => le_trans hi (le_iSup _ _)⟩
[GOAL]
α : Type u_1
β : Type u_2
a : α
ι : Sort u_3
inst✝ : Order.Frame α
ha : IsAtom a
f : ι → α
⊢ a ≤ iSup f → ∃ i, a ≤ f i
[PROOFSTEP]
show (a ≤ ⨆ i, f i) → _
[GOAL]
α : Type u_1
β : Type u_2
a : α
ι : Sort u_3
inst✝ : Order.Frame α
ha : IsAtom a
f : ι → α
⊢ a ≤ ⨆ (i : ι), f i → ∃ i, a ≤ f i
[PROOFSTEP]
refine fun h => of_not_not fun ha' => ?_
[GOAL]
α : Type u_1
β : Type u_2
a : α
ι : Sort u_3
inst✝ : Order.Frame α
ha : IsAtom a
f : ι → α
h : a ≤ ⨆ (i : ι), f i
ha' : ¬∃ i, a ≤ f i
⊢ False
[PROOFSTEP]
push_neg at ha'
[GOAL]
α : Type u_1
β : Type u_2
a : α
ι : Sort u_3
inst✝ : Order.Frame α
ha : IsAtom a
f : ι → α
h : a ≤ ⨆ (i : ι), f i
ha' : ∀ (i : ι), ¬a ≤ f i
⊢ False
[PROOFSTEP]
have ha'' : Disjoint a (⨆ i, f i) :=
disjoint_iSup_iff.2 fun i => fun x hxa hxf =>
le_bot_iff.2 <|
of_not_not fun hx =>
have hxa : x < a := (le_iff_eq_or_lt.1 hxa).resolve_left (by rintro rfl; exact ha' _ hxf)
hx (ha.2 _ hxa)
[GOAL]
α : Type u_1
β : Type u_2
a : α
ι : Sort u_3
inst✝ : Order.Frame α
ha : IsAtom a
f : ι → α
h : a ≤ ⨆ (i : ι), f i
ha' : ∀ (i : ι), ¬a ≤ f i
i : ι
x : α
hxa : x ≤ a
hxf : x ≤ f i
hx : ¬x = ⊥
⊢ ¬x = a
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Sort u_3
inst✝ : Order.Frame α
f : ι → α
i : ι
x : α
hxf : x ≤ f i
hx : ¬x = ⊥
ha : IsAtom x
h : x ≤ ⨆ (i : ι), f i
ha' : ∀ (i : ι), ¬x ≤ f i
hxa : x ≤ x
⊢ False
[PROOFSTEP]
exact ha' _ hxf
[GOAL]
α : Type u_1
β : Type u_2
a : α
ι : Sort u_3
inst✝ : Order.Frame α
ha : IsAtom a
f : ι → α
h : a ≤ ⨆ (i : ι), f i
ha' : ∀ (i : ι), ¬a ≤ f i
ha'' : Disjoint a (⨆ (i : ι), f i)
⊢ False
[PROOFSTEP]
obtain rfl := le_bot_iff.1 (ha'' le_rfl h)
[GOAL]
α : Type u_1
β : Type u_2
ι : Sort u_3
inst✝ : Order.Frame α
f : ι → α
ha : IsAtom ⊥
h : ⊥ ≤ ⨆ (i : ι), f i
ha' : ∀ (i : ι), ¬⊥ ≤ f i
ha'' : Disjoint ⊥ (⨆ (i : ι), f i)
⊢ False
[PROOFSTEP]
exact ha.1 rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b✝ : α
b : ↑(Ici a)
⊢ IsAtom b ↔ a ⋖ ↑b
[PROOFSTEP]
rw [← bot_covby_iff]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b✝ : α
b : ↑(Ici a)
⊢ ⊥ ⋖ b ↔ a ⋖ ↑b
[PROOFSTEP]
refine' (Set.OrdConnected.apply_covby_apply_iff (OrderEmbedding.subtype fun c => a ≤ c) _).symm
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b✝ : α
b : ↑(Ici a)
⊢ OrdConnected (range ↑(OrderEmbedding.subtype fun c => a ≤ c))
[PROOFSTEP]
simpa only [OrderEmbedding.subtype_apply, Subtype.range_coe_subtype] using Set.ordConnected_Ici
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a✝ b : α
a : ↑(Iic b)
⊢ IsCoatom a ↔ ↑a ⋖ b
[PROOFSTEP]
rw [← covby_top_iff]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a✝ b : α
a : ↑(Iic b)
⊢ a ⋖ ⊤ ↔ ↑a ⋖ b
[PROOFSTEP]
refine' (Set.OrdConnected.apply_covby_apply_iff (OrderEmbedding.subtype fun c => c ≤ b) _).symm
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a✝ b : α
a : ↑(Iic b)
⊢ OrdConnected (range ↑(OrderEmbedding.subtype fun c => c ≤ b))
[PROOFSTEP]
simpa only [OrderEmbedding.subtype_apply, Subtype.range_coe_subtype] using Set.ordConnected_Iic
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b : α
h : a ≤ b
⊢ a ⋖ b ↔ IsAtom { val := b, property := h }
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : PartialOrder α
a b : α
h : a ≤ b
⊢ a ⋖ b ↔ IsCoatom { val := a, property := h }
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : OrderBot α
h : IsCoatomic αᵒᵈ
b : α
⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
apply h.eq_top_or_exists_le_coatom
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : OrderBot α
h : IsAtomic α
b : αᵒᵈ
⊢ b = ⊤ ∨ ∃ a, IsCoatom a ∧ b ≤ a
[PROOFSTEP]
apply h.eq_bot_or_exists_atom_le
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : OrderTop α
h : IsAtomic αᵒᵈ
b : α
⊢ b = ⊤ ∨ ∃ a, IsCoatom a ∧ b ≤ a
[PROOFSTEP]
apply h.eq_bot_or_exists_atom_le
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : PartialOrder α
inst✝ : OrderTop α
h : IsCoatomic α
b : αᵒᵈ
⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
apply h.eq_top_or_exists_le_coatom
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝² : PartialOrder α✝
α : Type u_3
inst✝¹ : BooleanAlgebra α
inst✝ : IsAtomic α
x y : α
⊢ x ≤ y ↔ ∀ (a : α), IsAtom a → a ≤ x → a ≤ y
[PROOFSTEP]
refine ⟨fun h a _ => (le_trans · h), fun h => ?_⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝² : PartialOrder α✝
α : Type u_3
inst✝¹ : BooleanAlgebra α
inst✝ : IsAtomic α
x y : α
h : ∀ (a : α), IsAtom a → a ≤ x → a ≤ y
⊢ x ≤ y
[PROOFSTEP]
have : x ⊓ yᶜ = ⊥ :=
of_not_not fun hbot =>
have ⟨a, ha, hle⟩ := (eq_bot_or_exists_atom_le _).resolve_left hbot
have ⟨hx, hy'⟩ := le_inf_iff.1 hle
have hy := h a ha hx
have : a ≤ y ⊓ yᶜ := le_inf_iff.2 ⟨hy, hy'⟩
ha.1 (by simpa using this)
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝² : PartialOrder α✝
α : Type u_3
inst✝¹ : BooleanAlgebra α
inst✝ : IsAtomic α
x y : α
h : ∀ (a : α), IsAtom a → a ≤ x → a ≤ y
hbot : ¬x ⊓ yᶜ = ⊥
a : α
ha : IsAtom a
hle : a ≤ x ⊓ yᶜ
hx : a ≤ x
hy' : a ≤ yᶜ
hy : a ≤ y
this : a ≤ y ⊓ yᶜ
⊢ a = ⊥
[PROOFSTEP]
simpa using this
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝² : PartialOrder α✝
α : Type u_3
inst✝¹ : BooleanAlgebra α
inst✝ : IsAtomic α
x y : α
h : ∀ (a : α), IsAtom a → a ≤ x → a ≤ y
this : x ⊓ yᶜ = ⊥
⊢ x ≤ y
[PROOFSTEP]
exact (eq_compl_iff_isCompl.1 (by simp)).inf_right_eq_bot_iff.1 this
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝² : PartialOrder α✝
α : Type u_3
inst✝¹ : BooleanAlgebra α
inst✝ : IsAtomic α
x y : α
h : ∀ (a : α), IsAtom a → a ≤ x → a ≤ y
this : x ⊓ yᶜ = ⊥
⊢ y = yᶜᶜ
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝² : PartialOrder α✝
α : Type u_3
inst✝¹ : BooleanAlgebra α
inst✝ : IsAtomic α
x y : α
⊢ x = y ↔ ∀ (a : α), IsAtom a → (a ≤ x ↔ a ≤ y)
[PROOFSTEP]
refine ⟨fun h => h ▸ by simp, fun h => ?_⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝² : PartialOrder α✝
α : Type u_3
inst✝¹ : BooleanAlgebra α
inst✝ : IsAtomic α
x y : α
h : x = y
⊢ ∀ (a : α), IsAtom a → (a ≤ x ↔ a ≤ x)
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝² : PartialOrder α✝
α : Type u_3
inst✝¹ : BooleanAlgebra α
inst✝ : IsAtomic α
x y : α
h : ∀ (a : α), IsAtom a → (a ≤ x ↔ a ≤ y)
⊢ x = y
[PROOFSTEP]
exact
le_antisymm (le_iff_atom_le_imp.2 fun a ha hx => (h a ha).1 hx) (le_iff_atom_le_imp.2 fun a ha hy => (h a ha).2 hy)
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝² : PartialOrder α✝
α : Type ?u.23945
inst✝¹ : CompleteBooleanAlgebra α
inst✝ : IsAtomic α
src✝ : CompleteBooleanAlgebra α := inst✝¹
ι✝ : Type ?u.23945
κ✝ : ι✝ → Type ?u.23945
f : (a : ι✝) → κ✝ a → α
a : α
ha : IsAtom a
⊢ a ≤ ⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b ↔ a ≤ ⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a)
[PROOFSTEP]
simp only [le_iInf_iff, atom_le_iSup ha]
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝² : PartialOrder α✝
α : Type ?u.23945
inst✝¹ : CompleteBooleanAlgebra α
inst✝ : IsAtomic α
src✝ : CompleteBooleanAlgebra α := inst✝¹
ι✝ : Type ?u.23945
κ✝ : ι✝ → Type ?u.23945
f : (a : ι✝) → κ✝ a → α
a : α
ha : IsAtom a
⊢ (∀ (i : ι✝), ∃ i_1, a ≤ f i i_1) ↔ ∃ i, ∀ (i_1 : ι✝), a ≤ f i_1 (i i_1)
[PROOFSTEP]
rw [Classical.skolem]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CompleteLattice α
h : IsCoatomistic αᵒᵈ
b : α
⊢ ∃ s, b = sSup s ∧ ∀ (a : α), a ∈ s → IsAtom a
[PROOFSTEP]
apply h.eq_sInf_coatoms
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CompleteLattice α
h : IsAtomistic α
b : αᵒᵈ
⊢ ∃ s, b = sInf s ∧ ∀ (a : αᵒᵈ), a ∈ s → IsCoatom a
[PROOFSTEP]
apply h.eq_sSup_atoms
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CompleteLattice α
h : IsAtomistic αᵒᵈ
b : α
⊢ ∃ s, b = sInf s ∧ ∀ (a : α), a ∈ s → IsCoatom a
[PROOFSTEP]
apply h.eq_sSup_atoms
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CompleteLattice α
h : IsCoatomistic α
b : αᵒᵈ
⊢ ∃ s, b = sSup s ∧ ∀ (a : αᵒᵈ), a ∈ s → IsAtom a
[PROOFSTEP]
apply h.eq_sInf_coatoms
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsAtomistic α
b : α
⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
rcases eq_sSup_atoms b with ⟨s, rfl, hs⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsAtomistic α
s : Set α
hs : ∀ (a : α), a ∈ s → IsAtom a
⊢ sSup s = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ sSup s
[PROOFSTEP]
cases' s.eq_empty_or_nonempty with h h
[GOAL]
case intro.intro.inl
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsAtomistic α
s : Set α
hs : ∀ (a : α), a ∈ s → IsAtom a
h : s = ∅
⊢ sSup s = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ sSup s
[PROOFSTEP]
simp [h]
[GOAL]
case intro.intro.inr
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsAtomistic α
s : Set α
hs : ∀ (a : α), a ∈ s → IsAtom a
h : Set.Nonempty s
⊢ sSup s = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ sSup s
[PROOFSTEP]
exact Or.intro_right _ ⟨h.some, hs _ h.choose_spec, le_sSup h.choose_spec⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsAtomistic α
b : α
⊢ sSup {a | IsAtom a ∧ a ≤ b} = b
[PROOFSTEP]
rcases eq_sSup_atoms b with ⟨s, rfl, hs⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsAtomistic α
s : Set α
hs : ∀ (a : α), a ∈ s → IsAtom a
⊢ sSup {a | IsAtom a ∧ a ≤ sSup s} = sSup s
[PROOFSTEP]
exact le_antisymm (sSup_le fun _ => And.right) (sSup_le_sSup fun a ha => ⟨hs a ha, le_sSup ha⟩)
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsAtomistic α
⊢ sSup {a | IsAtom a} = ⊤
[PROOFSTEP]
refine' Eq.trans (congr rfl (Set.ext fun x => _)) (sSup_atoms_le_eq ⊤)
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsAtomistic α
x : α
⊢ x ∈ {a | IsAtom a} ↔ x ∈ {a | IsAtom a ∧ a ≤ ⊤}
[PROOFSTEP]
exact (and_iff_left le_top).symm
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsAtomistic α
a b : α
h : ∀ (c : α), IsAtom c → c ≤ a → c ≤ b
⊢ a ≤ b
[PROOFSTEP]
rw [← sSup_atoms_le_eq a, ← sSup_atoms_le_eq b]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsAtomistic α
a b : α
h : ∀ (c : α), IsAtom c → c ≤ a → c ≤ b
⊢ sSup {a_1 | IsAtom a_1 ∧ a_1 ≤ a} ≤ sSup {a | IsAtom a ∧ a ≤ b}
[PROOFSTEP]
exact sSup_le_sSup fun c hc => ⟨hc.1, h c hc.1 hc.2⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsAtomistic α
a b : α
⊢ a = b ↔ ∀ (c : α), IsAtom c → (c ≤ a ↔ c ≤ b)
[PROOFSTEP]
refine ⟨fun h => h ▸ by simp, fun h => ?_⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsAtomistic α
a b : α
h : a = b
⊢ ∀ (c : α), IsAtom c → (c ≤ a ↔ c ≤ a)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsAtomistic α
a b : α
h : ∀ (c : α), IsAtom c → (c ≤ a ↔ c ≤ b)
⊢ a = b
[PROOFSTEP]
exact
le_antisymm (le_iff_atom_le_imp.2 fun a ha hx => (h a ha).1 hx) (le_iff_atom_le_imp.2 fun a ha hy => (h a ha).2 hy)
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsCoatomistic α
b : α
⊢ b = ⊤ ∨ ∃ a, IsCoatom a ∧ b ≤ a
[PROOFSTEP]
rcases eq_sInf_coatoms b with ⟨s, rfl, hs⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsCoatomistic α
s : Set α
hs : ∀ (a : α), a ∈ s → IsCoatom a
⊢ sInf s = ⊤ ∨ ∃ a, IsCoatom a ∧ sInf s ≤ a
[PROOFSTEP]
cases' s.eq_empty_or_nonempty with h h
[GOAL]
case intro.intro.inl
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsCoatomistic α
s : Set α
hs : ∀ (a : α), a ∈ s → IsCoatom a
h : s = ∅
⊢ sInf s = ⊤ ∨ ∃ a, IsCoatom a ∧ sInf s ≤ a
[PROOFSTEP]
simp [h]
[GOAL]
case intro.intro.inr
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsCoatomistic α
s : Set α
hs : ∀ (a : α), a ∈ s → IsCoatom a
h : Set.Nonempty s
⊢ sInf s = ⊤ ∨ ∃ a, IsCoatom a ∧ sInf s ≤ a
[PROOFSTEP]
exact Or.intro_right _ ⟨h.some, hs _ h.choose_spec, sInf_le h.choose_spec⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
⊢ ∃ s, b = sSup s ∧ ∀ (a : α), a ∈ s → IsAtom a
[PROOFSTEP]
inhabit α
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
⊢ ∃ s, b = sSup s ∧ ∀ (a : α), a ∈ s → IsAtom a
[PROOFSTEP]
refine ⟨{a | IsAtom a ∧ a ≤ b}, ?_, fun a ha => ha.1⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
⊢ b = sSup {a | IsAtom a ∧ a ≤ b}
[PROOFSTEP]
refine le_antisymm ?_ (sSup_le fun c hc => hc.2)
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
⊢ b ≤ sSup {a | IsAtom a ∧ a ≤ b}
[PROOFSTEP]
have : (⨅ c : α, ⨆ x, b ⊓ cond x c (cᶜ)) = b := by simp [iSup_bool_eq, iInf_const]
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
⊢ (⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ) = b
[PROOFSTEP]
simp [iSup_bool_eq, iInf_const]
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
this : (⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ) = b
⊢ b ≤ sSup {a | IsAtom a ∧ a ≤ b}
[PROOFSTEP]
rw [← this]
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
this : (⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ) = b
⊢ (⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ) ≤
sSup {a | IsAtom a ∧ a ≤ ⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ}
[PROOFSTEP]
clear this
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
⊢ (⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ) ≤
sSup {a | IsAtom a ∧ a ≤ ⨅ (c : α), ⨆ (x : Bool), b ⊓ bif x then c else cᶜ}
[PROOFSTEP]
simp_rw [iInf_iSup_eq, iSup_le_iff]
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
⊢ ∀ (i : α → Bool),
(⨅ (a : α), b ⊓ bif i a then a else aᶜ) ≤
sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ}
[PROOFSTEP]
intro g
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤
sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ}
[PROOFSTEP]
by_cases (⨅ a, b ⊓ cond (g a) a (aᶜ)) = ⊥
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤
sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ}
[PROOFSTEP]
by_cases (⨅ a, b ⊓ cond (g a) a (aᶜ)) = ⊥
[GOAL]
case pos
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
h : (⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥
⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤
sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ}
case neg
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
h : ¬(⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥
⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤
sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ}
[PROOFSTEP]
case pos => simp [h]
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
h : (⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥
⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤
sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ}
[PROOFSTEP]
case pos => simp [h]
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
h : (⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥
⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤
sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ}
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
h : ¬(⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥
⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤
sSup {a | IsAtom a ∧ a ≤ ⨆ (g : α → Bool), ⨅ (a : α), b ⊓ bif g a then a else aᶜ}
[PROOFSTEP]
refine le_sSup ⟨⟨h, fun c hc => ?_⟩, le_trans (by rfl) (le_iSup _ g)⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
h : ¬(⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥
⊢ (⨅ (a : α), b ⊓ bif g a then a else aᶜ) ≤ ⨅ (a : α), b ⊓ bif g a then a else aᶜ
[PROOFSTEP]
rfl
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
h : ¬(⨅ (a : α), b ⊓ bif g a then a else aᶜ) = ⊥
c : α
hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ
⊢ c = ⊥
[PROOFSTEP]
clear h
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
c : α
hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ
⊢ c = ⊥
[PROOFSTEP]
have := lt_of_lt_of_le hc (le_trans (iInf_le _ c) inf_le_right)
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
c : α
hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ
this : c < bif g c then c else cᶜ
⊢ c = ⊥
[PROOFSTEP]
revert this
[GOAL]
case neg
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
c : α
hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ
⊢ (c < bif g c then c else cᶜ) → c = ⊥
[PROOFSTEP]
nontriviality α
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
c : α
hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ
✝ : Nontrivial α
⊢ (c < bif g c then c else cᶜ) → c = ⊥
[PROOFSTEP]
cases g c
[GOAL]
case false
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
c : α
hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ
✝ : Nontrivial α
⊢ (c < bif false then c else cᶜ) → c = ⊥
[PROOFSTEP]
simp
[GOAL]
case true
α✝ : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α✝
α : Type ?u.31123
inst✝ : CompleteAtomicBooleanAlgebra α
b : α
inhabited_h : Inhabited α
g : α → Bool
c : α
hc : c < ⨅ (a : α), b ⊓ bif g a then a else aᶜ
✝ : Nontrivial α
⊢ (c < bif true then c else cᶜ) → c = ⊥
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LE α
inst✝ : BoundedOrder α
⊢ IsSimpleOrder α ↔ IsSimpleOrder αᵒᵈ
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
inst✝¹ : LE α
inst✝ : BoundedOrder α
⊢ IsSimpleOrder α → IsSimpleOrder αᵒᵈ
[PROOFSTEP]
intro i
[GOAL]
case mpr
α : Type u_1
β : Type u_2
inst✝¹ : LE α
inst✝ : BoundedOrder α
⊢ IsSimpleOrder αᵒᵈ → IsSimpleOrder α
[PROOFSTEP]
intro i
[GOAL]
case mp
α : Type u_1
β : Type u_2
inst✝¹ : LE α
inst✝ : BoundedOrder α
i : IsSimpleOrder α
⊢ IsSimpleOrder αᵒᵈ
[PROOFSTEP]
haveI := i
[GOAL]
case mpr
α : Type u_1
β : Type u_2
inst✝¹ : LE α
inst✝ : BoundedOrder α
i : IsSimpleOrder αᵒᵈ
⊢ IsSimpleOrder α
[PROOFSTEP]
haveI := i
[GOAL]
case mp
α : Type u_1
β : Type u_2
inst✝¹ : LE α
inst✝ : BoundedOrder α
i this : IsSimpleOrder α
⊢ IsSimpleOrder αᵒᵈ
[PROOFSTEP]
exact
{ exists_pair_ne := @exists_pair_ne α _
eq_bot_or_eq_top := fun a => Or.symm (eq_bot_or_eq_top (OrderDual.ofDual a) : _ ∨ _) }
[GOAL]
case mpr
α : Type u_1
β : Type u_2
inst✝¹ : LE α
inst✝ : BoundedOrder α
i this : IsSimpleOrder αᵒᵈ
⊢ IsSimpleOrder α
[PROOFSTEP]
exact
{ exists_pair_ne := @exists_pair_ne αᵒᵈ _
eq_bot_or_eq_top := fun a => Or.symm (eq_bot_or_eq_top (OrderDual.toDual a)) }
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
obtain ⟨a, b, h⟩ := exists_pair_ne α
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
a b : α
h : a ≠ b
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
rcases eq_bot_or_eq_top a with (rfl | rfl)
[GOAL]
case intro.intro.inl
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
b : α
h : ⊥ ≠ b
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
rcases eq_bot_or_eq_top b with (rfl | rfl)
[GOAL]
case intro.intro.inr
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
b : α
h : ⊤ ≠ b
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
rcases eq_bot_or_eq_top b with (rfl | rfl)
[GOAL]
case intro.intro.inl.inl
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
h : ⊥ ≠ ⊥
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
first
| simpa
| simpa using h.symm
[GOAL]
case intro.intro.inl.inl
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
h : ⊥ ≠ ⊥
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
simpa
[GOAL]
case intro.intro.inl.inl
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
h : ⊥ ≠ ⊥
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
simpa using h.symm
[GOAL]
case intro.intro.inl.inr
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
h : ⊥ ≠ ⊤
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
first
| simpa
| simpa using h.symm
[GOAL]
case intro.intro.inl.inr
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
h : ⊥ ≠ ⊤
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
simpa
[GOAL]
case intro.intro.inr.inl
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
h : ⊤ ≠ ⊥
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
first
| simpa
| simpa using h.symm
[GOAL]
case intro.intro.inr.inl
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
h : ⊤ ≠ ⊥
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
simpa
[GOAL]
case intro.intro.inr.inl
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
h : ⊤ ≠ ⊥
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
simpa using h.symm
[GOAL]
case intro.intro.inr.inr
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
h : ⊤ ≠ ⊤
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
first
| simpa
| simpa using h.symm
[GOAL]
case intro.intro.inr.inr
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
h : ⊤ ≠ ⊤
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
simpa
[GOAL]
case intro.intro.inr.inr
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
h : ⊤ ≠ ⊤
⊢ ⊥ ≠ ⊤
[PROOFSTEP]
simpa using h.symm
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁵ : PartialOrder α✝
inst✝⁴ : BoundedOrder α✝
inst✝³ : IsSimpleOrder α✝
α : Type ?u.47226
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
⊢ IsSimpleOrder α
[PROOFSTEP]
infer_instance
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁵ : PartialOrder α✝
inst✝⁴ : BoundedOrder α✝
inst✝³ : IsSimpleOrder α✝
α : Type ?u.47699
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
a : α
⊢ a ≤ a
[PROOFSTEP]
rcases eq_bot_or_eq_top a with (rfl | rfl)
[GOAL]
case inl
α✝ : Type u_1
β : Type u_2
inst✝⁵ : PartialOrder α✝
inst✝⁴ : BoundedOrder α✝
inst✝³ : IsSimpleOrder α✝
α : Type ?u.47699
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
⊢ ⊥ ≤ ⊥
[PROOFSTEP]
simp
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
inst✝⁵ : PartialOrder α✝
inst✝⁴ : BoundedOrder α✝
inst✝³ : IsSimpleOrder α✝
α : Type ?u.47699
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
⊢ ⊤ ≤ ⊤
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁵ : PartialOrder α✝
inst✝⁴ : BoundedOrder α✝
inst✝³ : IsSimpleOrder α✝
α : Type ?u.47699
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
a b c : α
⊢ a ≤ b → b ≤ c → a ≤ c
[PROOFSTEP]
rcases eq_bot_or_eq_top a with (rfl | rfl)
[GOAL]
case inl
α✝ : Type u_1
β : Type u_2
inst✝⁵ : PartialOrder α✝
inst✝⁴ : BoundedOrder α✝
inst✝³ : IsSimpleOrder α✝
α : Type ?u.47699
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
b c : α
⊢ ⊥ ≤ b → b ≤ c → ⊥ ≤ c
[PROOFSTEP]
simp
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
inst✝⁵ : PartialOrder α✝
inst✝⁴ : BoundedOrder α✝
inst✝³ : IsSimpleOrder α✝
α : Type ?u.47699
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
b c : α
⊢ ⊤ ≤ b → b ≤ c → ⊤ ≤ c
[PROOFSTEP]
rcases eq_bot_or_eq_top b with (rfl | rfl)
[GOAL]
case inr.inl
α✝ : Type u_1
β : Type u_2
inst✝⁵ : PartialOrder α✝
inst✝⁴ : BoundedOrder α✝
inst✝³ : IsSimpleOrder α✝
α : Type ?u.47699
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
c : α
⊢ ⊤ ≤ ⊥ → ⊥ ≤ c → ⊤ ≤ c
[PROOFSTEP]
rcases eq_bot_or_eq_top c with (rfl | rfl)
[GOAL]
case inr.inl.inl
α✝ : Type u_1
β : Type u_2
inst✝⁵ : PartialOrder α✝
inst✝⁴ : BoundedOrder α✝
inst✝³ : IsSimpleOrder α✝
α : Type ?u.47699
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
⊢ ⊤ ≤ ⊥ → ⊥ ≤ ⊥ → ⊤ ≤ ⊥
[PROOFSTEP]
simp
[GOAL]
case inr.inl.inr
α✝ : Type u_1
β : Type u_2
inst✝⁵ : PartialOrder α✝
inst✝⁴ : BoundedOrder α✝
inst✝³ : IsSimpleOrder α✝
α : Type ?u.47699
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
⊢ ⊤ ≤ ⊥ → ⊥ ≤ ⊤ → ⊤ ≤ ⊤
[PROOFSTEP]
simp
[GOAL]
case inr.inr
α✝ : Type u_1
β : Type u_2
inst✝⁵ : PartialOrder α✝
inst✝⁴ : BoundedOrder α✝
inst✝³ : IsSimpleOrder α✝
α : Type ?u.47699
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
c : α
⊢ ⊤ ≤ ⊤ → ⊤ ≤ c → ⊤ ≤ c
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : BoundedOrder α
inst✝¹ : IsSimpleOrder α
inst✝ : DecidableEq α
src✝ : PartialOrder α := inferInstance
a b : α
⊢ a ≤ b ∨ b ≤ a
[PROOFSTEP]
rcases eq_bot_or_eq_top a with (rfl | rfl)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : BoundedOrder α
inst✝¹ : IsSimpleOrder α
inst✝ : DecidableEq α
src✝ : PartialOrder α := inferInstance
b : α
⊢ ⊥ ≤ b ∨ b ≤ ⊥
[PROOFSTEP]
simp
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : BoundedOrder α
inst✝¹ : IsSimpleOrder α
inst✝ : DecidableEq α
src✝ : PartialOrder α := inferInstance
b : α
⊢ ⊤ ≤ b ∨ b ≤ ⊤
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝ : Lattice α := inferInstance
x y z : α
⊢ (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z
[PROOFSTEP]
rcases eq_bot_or_eq_top x with (rfl | rfl)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝ : Lattice α := inferInstance
y z : α
⊢ (⊥ ⊔ y) ⊓ (⊥ ⊔ z) ≤ ⊥ ⊔ y ⊓ z
[PROOFSTEP]
simp
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝ : Lattice α := inferInstance
y z : α
⊢ (⊤ ⊔ y) ⊓ (⊤ ⊔ z) ≤ ⊤ ⊔ y ⊓ z
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
⊢ IsAtomic αᵒᵈ
[PROOFSTEP]
infer_instance
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.66638
inst✝³ : DecidableEq α
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
x : α
⊢ (fun x => bif x then ⊤ else ⊥) ((fun x => decide (x = ⊤)) x) = x
[PROOFSTEP]
rcases eq_bot_or_eq_top x with (rfl | rfl)
[GOAL]
case inl
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.66638
inst✝³ : DecidableEq α
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
⊢ (fun x => bif x then ⊤ else ⊥) ((fun x => decide (x = ⊤)) ⊥) = ⊥
[PROOFSTEP]
simp [bot_ne_top]
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.66638
inst✝³ : DecidableEq α
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
⊢ (fun x => bif x then ⊤ else ⊥) ((fun x => decide (x = ⊤)) ⊤) = ⊤
[PROOFSTEP]
simp [bot_ne_top]
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.66638
inst✝³ : DecidableEq α
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
x : Bool
⊢ (fun x => decide (x = ⊤)) ((fun x => bif x then ⊤ else ⊥) x) = x
[PROOFSTEP]
cases x
[GOAL]
case false
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.66638
inst✝³ : DecidableEq α
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
⊢ (fun x => decide (x = ⊤)) ((fun x => bif x then ⊤ else ⊥) false) = false
[PROOFSTEP]
simp [bot_ne_top]
[GOAL]
case true
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.66638
inst✝³ : DecidableEq α
inst✝² : LE α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
⊢ (fun x => decide (x = ⊤)) ((fun x => bif x then ⊤ else ⊥) true) = true
[PROOFSTEP]
simp [bot_ne_top]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝ : α ≃ Bool := equivBool
a b : α
⊢ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
a ≤
↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
b ↔
a ≤ b
[PROOFSTEP]
rcases eq_bot_or_eq_top a with (rfl | rfl)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝ : α ≃ Bool := equivBool
b : α
⊢ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
⊥ ≤
↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
b ↔
⊥ ≤ b
[PROOFSTEP]
simp [bot_ne_top]
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝ : α ≃ Bool := equivBool
b : α
⊢ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
⊤ ≤
↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
b ↔
⊤ ≤ b
[PROOFSTEP]
rcases eq_bot_or_eq_top b with (rfl | rfl)
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝ : α ≃ Bool := equivBool
⊢ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
⊤ ≤
↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
⊥ ↔
⊤ ≤ ⊥
[PROOFSTEP]
simp [bot_ne_top.symm, bot_ne_top, Bool.false_lt_true]
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
inst✝³ : DecidableEq α
inst✝² : PartialOrder α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝ : α ≃ Bool := equivBool
⊢ ↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
⊤ ≤
↑{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
⊤ ↔
⊤ ≤ ⊤
[PROOFSTEP]
simp [bot_ne_top]
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.72459
inst✝³ : DecidableEq α
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α)
src✝ : DistribLattice α := IsSimpleOrder.distribLattice
x : α
⊢ x ⊓ xᶜ ≤ ⊥
[PROOFSTEP]
rcases eq_bot_or_eq_top x with (rfl | rfl)
[GOAL]
case inl
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.72459
inst✝³ : DecidableEq α
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α)
src✝ : DistribLattice α := IsSimpleOrder.distribLattice
⊢ ⊥ ⊓ ⊥ᶜ ≤ ⊥
[PROOFSTEP]
simp
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.72459
inst✝³ : DecidableEq α
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α)
src✝ : DistribLattice α := IsSimpleOrder.distribLattice
⊢ ⊤ ⊓ ⊤ᶜ ≤ ⊥
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.72459
inst✝³ : DecidableEq α
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α)
src✝ : DistribLattice α := IsSimpleOrder.distribLattice
x : α
⊢ ⊤ ≤ x ⊔ xᶜ
[PROOFSTEP]
rcases eq_bot_or_eq_top x with (rfl | rfl)
[GOAL]
case inl
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.72459
inst✝³ : DecidableEq α
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α)
src✝ : DistribLattice α := IsSimpleOrder.distribLattice
⊢ ⊤ ≤ ⊥ ⊔ ⊥ᶜ
[PROOFSTEP]
simp
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.72459
inst✝³ : DecidableEq α
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α)
src✝ : DistribLattice α := IsSimpleOrder.distribLattice
⊢ ⊤ ≤ ⊤ ⊔ ⊤ᶜ
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.72459
inst✝³ : DecidableEq α
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α)
src✝ : DistribLattice α := IsSimpleOrder.distribLattice
x y : α
⊢ x \ y = x ⊓ yᶜ
[PROOFSTEP]
rcases eq_bot_or_eq_top x with (rfl | rfl)
[GOAL]
case inl
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.72459
inst✝³ : DecidableEq α
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α)
src✝ : DistribLattice α := IsSimpleOrder.distribLattice
y : α
⊢ ⊥ \ y = ⊥ ⊓ yᶜ
[PROOFSTEP]
simp [bot_ne_top, SDiff.sdiff, compl]
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
inst✝⁷ : DecidableEq α✝
inst✝⁶ : PartialOrder α✝
inst✝⁵ : BoundedOrder α✝
inst✝⁴ : IsSimpleOrder α✝
α : Type ?u.72459
inst✝³ : DecidableEq α
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : BoundedOrder α := inferInstanceAs (BoundedOrder α)
src✝ : DistribLattice α := IsSimpleOrder.distribLattice
y : α
⊢ ⊤ \ y = ⊤ ⊓ yᶜ
[PROOFSTEP]
simp [bot_ne_top, SDiff.sdiff, compl]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
x : α
h : x ∈ s
⊢ x ≤ sSup s
[PROOFSTEP]
rcases eq_bot_or_eq_top x with (rfl | rfl)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ⊥ ∈ s
⊢ ⊥ ≤ sSup s
[PROOFSTEP]
exact bot_le
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ⊤ ∈ s
⊢ ⊤ ≤ sSup s
[PROOFSTEP]
dsimp
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ⊤ ∈ s
⊢ ⊤ ≤ if ⊤ ∈ s then ⊤ else ⊥
[PROOFSTEP]
rw [if_pos h]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
x : α
h : ∀ (b : α), b ∈ s → b ≤ x
⊢ sSup s ≤ x
[PROOFSTEP]
rcases eq_bot_or_eq_top x with (rfl | rfl)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ∀ (b : α), b ∈ s → b ≤ ⊥
⊢ sSup s ≤ ⊥
[PROOFSTEP]
dsimp
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ∀ (b : α), b ∈ s → b ≤ ⊥
⊢ (if ⊤ ∈ s then ⊤ else ⊥) ≤ ⊥
[PROOFSTEP]
rw [if_neg]
[GOAL]
case inl.hnc
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ∀ (b : α), b ∈ s → b ≤ ⊥
⊢ ¬⊤ ∈ s
[PROOFSTEP]
intro con
[GOAL]
case inl.hnc
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ∀ (b : α), b ∈ s → b ≤ ⊥
con : ⊤ ∈ s
⊢ False
[PROOFSTEP]
exact bot_ne_top (eq_top_iff.2 (h ⊤ con))
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ∀ (b : α), b ∈ s → b ≤ ⊤
⊢ sSup s ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
x : α
h : x ∈ s
⊢ sInf s ≤ x
[PROOFSTEP]
rcases eq_bot_or_eq_top x with (rfl | rfl)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ⊥ ∈ s
⊢ sInf s ≤ ⊥
[PROOFSTEP]
dsimp
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ⊥ ∈ s
⊢ (if ⊥ ∈ s then ⊥ else ⊤) ≤ ⊥
[PROOFSTEP]
rw [if_pos h]
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ⊤ ∈ s
⊢ sInf s ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
x : α
h : ∀ (b : α), b ∈ s → x ≤ b
⊢ x ≤ sInf s
[PROOFSTEP]
rcases eq_bot_or_eq_top x with (rfl | rfl)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ∀ (b : α), b ∈ s → ⊥ ≤ b
⊢ ⊥ ≤ sInf s
[PROOFSTEP]
exact bot_le
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ∀ (b : α), b ∈ s → ⊤ ≤ b
⊢ ⊤ ≤ sInf s
[PROOFSTEP]
dsimp
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ∀ (b : α), b ∈ s → ⊤ ≤ b
⊢ ⊤ ≤ if ⊥ ∈ s then ⊥ else ⊤
[PROOFSTEP]
rw [if_neg]
[GOAL]
case inr.hnc
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ∀ (b : α), b ∈ s → ⊤ ≤ b
⊢ ¬⊥ ∈ s
[PROOFSTEP]
intro con
[GOAL]
case inr.hnc
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : Lattice α := inferInstance
src✝ : BoundedOrder α := inferInstance
s : Set α
h : ∀ (b : α), b ∈ s → ⊤ ≤ b
con : ⊥ ∈ s
⊢ False
[PROOFSTEP]
exact top_ne_bot (eq_bot_iff.2 (h ⊥ con))
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice
src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra
x : α
s : Set α
⊢ x ⊓ sSup s ≤ ⨆ (b : α) (_ : b ∈ s), x ⊓ b
[PROOFSTEP]
rcases eq_bot_or_eq_top x with (rfl | rfl)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice
src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra
s : Set α
⊢ ⊥ ⊓ sSup s ≤ ⨆ (b : α) (_ : b ∈ s), ⊥ ⊓ b
[PROOFSTEP]
simp only [le_bot_iff, sSup_eq_bot, bot_inf_eq, iSup_bot, le_refl]
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice
src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra
s : Set α
⊢ ⊤ ⊓ sSup s ≤ ⨆ (b : α) (_ : b ∈ s), ⊤ ⊓ b
[PROOFSTEP]
simp only [top_inf_eq, ← sSup_eq_iSup]
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice
src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra
s : Set α
⊢ sSup s ≤ sSup s
[PROOFSTEP]
exact le_rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice
src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra
x : α
s : Set α
⊢ ⨅ (b : α) (_ : b ∈ s), x ⊔ b ≤ x ⊔ sInf s
[PROOFSTEP]
rcases eq_bot_or_eq_top x with (rfl | rfl)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice
src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra
s : Set α
⊢ ⨅ (b : α) (_ : b ∈ s), ⊥ ⊔ b ≤ ⊥ ⊔ sInf s
[PROOFSTEP]
simp only [bot_sup_eq, ← sInf_eq_iInf]
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice
src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra
s : Set α
⊢ sInf s ≤ sInf s
[PROOFSTEP]
exact le_rfl
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝² : Lattice α
inst✝¹ : BoundedOrder α
inst✝ : IsSimpleOrder α
src✝¹ : CompleteLattice α := IsSimpleOrder.completeLattice
src✝ : BooleanAlgebra α := IsSimpleOrder.booleanAlgebra
s : Set α
⊢ ⨅ (b : α) (_ : b ∈ s), ⊤ ⊔ b ≤ ⊤ ⊔ sInf s
[PROOFSTEP]
simp only [top_le_iff, top_sup_eq, iInf_top, le_sInf_iff, le_refl]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : CompleteLattice α
inst✝ : IsSimpleOrder α
⊢ IsAtomistic αᵒᵈ
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
f : β ↪o α
hbot : ↑f ⊥ = ⊥
b : β
hb : IsAtom (↑f b)
⊢ IsAtom b
[PROOFSTEP]
simp only [← bot_covby_iff] at hb ⊢
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
f : β ↪o α
hbot : ↑f ⊥ = ⊥
b : β
hb : ⊥ ⋖ ↑f b
⊢ ⊥ ⋖ b
[PROOFSTEP]
exact Covby.of_image f (hbot.symm ▸ hb)
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : PartialOrder α
inst✝³ : PartialOrder β
inst✝² : OrderBot α
inst✝¹ : IsAtomic α
inst✝ : OrderBot β
l : α → β
u : β → α
gi : GaloisInsertion l u
hbot : u ⊥ = ⊥
h_atom : ∀ (a : α), IsAtom a → u (l a) = a
a : α
⊢ IsAtom (l a) ↔ IsAtom a
[PROOFSTEP]
refine' ⟨fun hla => _, fun ha => gi.isAtom_of_u_bot hbot ((h_atom a ha).symm ▸ ha)⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : PartialOrder α
inst✝³ : PartialOrder β
inst✝² : OrderBot α
inst✝¹ : IsAtomic α
inst✝ : OrderBot β
l : α → β
u : β → α
gi : GaloisInsertion l u
hbot : u ⊥ = ⊥
h_atom : ∀ (a : α), IsAtom a → u (l a) = a
a : α
hla : IsAtom (l a)
⊢ IsAtom a
[PROOFSTEP]
obtain ⟨a', ha', hab'⟩ := (eq_bot_or_exists_atom_le (u (l a))).resolve_left (hbot ▸ fun h => hla.1 (gi.u_injective h))
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : PartialOrder α
inst✝³ : PartialOrder β
inst✝² : OrderBot α
inst✝¹ : IsAtomic α
inst✝ : OrderBot β
l : α → β
u : β → α
gi : GaloisInsertion l u
hbot : u ⊥ = ⊥
h_atom : ∀ (a : α), IsAtom a → u (l a) = a
a : α
hla : IsAtom (l a)
a' : α
ha' : IsAtom a'
hab' : a' ≤ u (l a)
⊢ IsAtom a
[PROOFSTEP]
have :=
(hla.le_iff.mp <| (gi.l_u_eq (l a) ▸ gi.gc.monotone_l hab' : l a' ≤ l a)).resolve_left fun h =>
ha'.1 (hbot ▸ h_atom a' ha' ▸ congr_arg u h)
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : PartialOrder α
inst✝³ : PartialOrder β
inst✝² : OrderBot α
inst✝¹ : IsAtomic α
inst✝ : OrderBot β
l : α → β
u : β → α
gi : GaloisInsertion l u
hbot : u ⊥ = ⊥
h_atom : ∀ (a : α), IsAtom a → u (l a) = a
a : α
hla : IsAtom (l a)
a' : α
ha' : IsAtom a'
hab' : a' ≤ u (l a)
this : l a' = l a
⊢ IsAtom a
[PROOFSTEP]
have haa' : a = a' :=
(ha'.le_iff.mp <| (gi.gc.le_u_l a).trans_eq (h_atom a' ha' ▸ congr_arg u this.symm)).resolve_left
(mt (congr_arg l) (gi.gc.l_bot.symm ▸ hla.1))
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : PartialOrder α
inst✝³ : PartialOrder β
inst✝² : OrderBot α
inst✝¹ : IsAtomic α
inst✝ : OrderBot β
l : α → β
u : β → α
gi : GaloisInsertion l u
hbot : u ⊥ = ⊥
h_atom : ∀ (a : α), IsAtom a → u (l a) = a
a : α
hla : IsAtom (l a)
a' : α
ha' : IsAtom a'
hab' : a' ≤ u (l a)
this : l a' = l a
haa' : a = a'
⊢ IsAtom a
[PROOFSTEP]
exact haa'.symm ▸ ha'
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : PartialOrder α
inst✝³ : PartialOrder β
inst✝² : OrderBot α
inst✝¹ : IsAtomic α
inst✝ : OrderBot β
l : α → β
u : β → α
gi : GaloisInsertion l u
hbot : u ⊥ = ⊥
h_atom : ∀ (a : α), IsAtom a → u (l a) = a
b : β
⊢ IsAtom (u b) ↔ IsAtom b
[PROOFSTEP]
rw [← gi.isAtom_iff hbot h_atom, gi.l_u_eq]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : PartialOrder α
inst✝³ : PartialOrder β
inst✝² : OrderTop α
inst✝¹ : IsCoatomic α
inst✝ : OrderTop β
l : α → β
u : β → α
gi : GaloisInsertion l u
h_coatom : ∀ (a : α), IsCoatom a → u (l a) = a
b : β
⊢ IsCoatom (u b) ↔ IsCoatom b
[PROOFSTEP]
refine' ⟨fun hb => gi.isCoatom_of_image hb, fun hb => _⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : PartialOrder α
inst✝³ : PartialOrder β
inst✝² : OrderTop α
inst✝¹ : IsCoatomic α
inst✝ : OrderTop β
l : α → β
u : β → α
gi : GaloisInsertion l u
h_coatom : ∀ (a : α), IsCoatom a → u (l a) = a
b : β
hb : IsCoatom b
⊢ IsCoatom (u b)
[PROOFSTEP]
obtain ⟨a, ha, hab⟩ :=
(eq_top_or_exists_le_coatom (u b)).resolve_left fun h =>
hb.1 <| (gi.gc.u_top ▸ gi.l_u_eq ⊤ : l ⊤ = ⊤) ▸ gi.l_u_eq b ▸ congr_arg l h
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : PartialOrder α
inst✝³ : PartialOrder β
inst✝² : OrderTop α
inst✝¹ : IsCoatomic α
inst✝ : OrderTop β
l : α → β
u : β → α
gi : GaloisInsertion l u
h_coatom : ∀ (a : α), IsCoatom a → u (l a) = a
b : β
hb : IsCoatom b
a : α
ha : IsCoatom a
hab : u b ≤ a
⊢ IsCoatom (u b)
[PROOFSTEP]
have : l a = b :=
(hb.le_iff.mp (gi.l_u_eq b ▸ gi.gc.monotone_l hab : b ≤ l a)).resolve_left fun hla =>
ha.1 (gi.gc.u_top ▸ h_coatom a ha ▸ congr_arg u hla)
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : PartialOrder α
inst✝³ : PartialOrder β
inst✝² : OrderTop α
inst✝¹ : IsCoatomic α
inst✝ : OrderTop β
l : α → β
u : β → α
gi : GaloisInsertion l u
h_coatom : ∀ (a : α), IsCoatom a → u (l a) = a
b : β
hb : IsCoatom b
a : α
ha : IsCoatom a
hab : u b ≤ a
this : l a = b
⊢ IsCoatom (u b)
[PROOFSTEP]
exact this ▸ (h_coatom a ha).symm ▸ ha
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : BoundedOrder α
inst✝ : BoundedOrder β
f : α ≃o β
⊢ IsSimpleOrder α ↔ IsSimpleOrder β
[PROOFSTEP]
rw [isSimpleOrder_iff_isAtom_top, isSimpleOrder_iff_isAtom_top, ← f.isAtom_iff ⊤, f.map_top]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderBot α
inst✝ : OrderBot β
f : α ≃o β
⊢ IsAtomic α ↔ IsAtomic β
[PROOFSTEP]
simp only [IsAtomic_iff, f.surjective.forall, f.surjective.exists, ← map_bot f, f.eq_iff_eq, f.le_iff_le, f.isAtom_iff]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : PartialOrder α
inst✝² : PartialOrder β
inst✝¹ : OrderTop α
inst✝ : OrderTop β
f : α ≃o β
⊢ IsCoatomic α ↔ IsCoatomic β
[PROOFSTEP]
simp only [← isAtomic_dual_iff_isCoatomic, f.dual.isAtomic_iff]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Lattice α
inst✝³ : BoundedOrder α
inst✝² : IsModularLattice α
inst✝¹ : ComplementedLattice α
inst✝ : IsAtomic α
x : α
⊢ x = ⊤ ∨ ∃ a, IsCoatom a ∧ x ≤ a
[PROOFSTEP]
rcases exists_isCompl x with ⟨y, xy⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝⁴ : Lattice α
inst✝³ : BoundedOrder α
inst✝² : IsModularLattice α
inst✝¹ : ComplementedLattice α
inst✝ : IsAtomic α
x y : α
xy : IsCompl x y
⊢ x = ⊤ ∨ ∃ a, IsCoatom a ∧ x ≤ a
[PROOFSTEP]
apply (eq_bot_or_exists_atom_le y).imp _ _
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Lattice α
inst✝³ : BoundedOrder α
inst✝² : IsModularLattice α
inst✝¹ : ComplementedLattice α
inst✝ : IsAtomic α
x y : α
xy : IsCompl x y
⊢ y = ⊥ → x = ⊤
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Lattice α
inst✝³ : BoundedOrder α
inst✝² : IsModularLattice α
inst✝¹ : ComplementedLattice α
inst✝ : IsAtomic α
x : α
xy : IsCompl x ⊥
⊢ x = ⊤
[PROOFSTEP]
exact eq_top_of_isCompl_bot xy
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁴ : Lattice α
inst✝³ : BoundedOrder α
inst✝² : IsModularLattice α
inst✝¹ : ComplementedLattice α
inst✝ : IsAtomic α
x y : α
xy : IsCompl x y
⊢ (∃ a, IsAtom a ∧ a ≤ y) → ∃ a, IsCoatom a ∧ x ≤ a
[PROOFSTEP]
rintro ⟨a, ha, ay⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
inst✝⁴ : Lattice α
inst✝³ : BoundedOrder α
inst✝² : IsModularLattice α
inst✝¹ : ComplementedLattice α
inst✝ : IsAtomic α
x y : α
xy : IsCompl x y
a : α
ha : IsAtom a
ay : a ≤ y
⊢ ∃ a, IsCoatom a ∧ x ≤ a
[PROOFSTEP]
rcases exists_isCompl (xy.symm.IicOrderIsoIci ⟨a, ay⟩) with ⟨⟨b, xb⟩, hb⟩
[GOAL]
case intro.intro.intro.mk
α : Type u_1
β : Type u_2
inst✝⁴ : Lattice α
inst✝³ : BoundedOrder α
inst✝² : IsModularLattice α
inst✝¹ : ComplementedLattice α
inst✝ : IsAtomic α
x y : α
xy : IsCompl x y
a : α
ha : IsAtom a
ay : a ≤ y
b : α
xb : b ∈ Set.Ici x
hb : IsCompl (↑(IsCompl.IicOrderIsoIci (_ : IsCompl y x)) { val := a, property := ay }) { val := b, property := xb }
⊢ ∃ a, IsCoatom a ∧ x ≤ a
[PROOFSTEP]
refine' ⟨↑(⟨b, xb⟩ : Set.Ici x), IsCoatom.of_isCoatom_coe_Ici _, xb⟩
[GOAL]
case intro.intro.intro.mk
α : Type u_1
β : Type u_2
inst✝⁴ : Lattice α
inst✝³ : BoundedOrder α
inst✝² : IsModularLattice α
inst✝¹ : ComplementedLattice α
inst✝ : IsAtomic α
x y : α
xy : IsCompl x y
a : α
ha : IsAtom a
ay : a ≤ y
b : α
xb : b ∈ Set.Ici x
hb : IsCompl (↑(IsCompl.IicOrderIsoIci (_ : IsCompl y x)) { val := a, property := ay }) { val := b, property := xb }
⊢ IsCoatom { val := b, property := xb }
[PROOFSTEP]
rw [← hb.isAtom_iff_isCoatom, OrderIso.isAtom_iff]
[GOAL]
case intro.intro.intro.mk
α : Type u_1
β : Type u_2
inst✝⁴ : Lattice α
inst✝³ : BoundedOrder α
inst✝² : IsModularLattice α
inst✝¹ : ComplementedLattice α
inst✝ : IsAtomic α
x y : α
xy : IsCompl x y
a : α
ha : IsAtom a
ay : a ≤ y
b : α
xb : b ∈ Set.Ici x
hb : IsCompl (↑(IsCompl.IicOrderIsoIci (_ : IsCompl y x)) { val := a, property := ay }) { val := b, property := xb }
⊢ IsAtom { val := a, property := ay }
[PROOFSTEP]
apply ha.Iic
[GOAL]
α : Type u_1
β : Type u_2
p : Prop
⊢ IsAtom p ↔ p
[PROOFSTEP]
simp [IsAtom, show ⊥ = False from rfl, fun q r : Prop => show q < r ↔ _ ∧ _ from .rfl]
[GOAL]
α : Type u_1
β : Type u_2
p : Prop
⊢ IsCoatom p ↔ ¬p
[PROOFSTEP]
simp [IsCoatom, show ⊤ = True from rfl, fun q r : Prop => show q < r ↔ _ ∧ _ from .rfl]
[GOAL]
α : Type u_1
β : Type u_2
p : Prop
⊢ ¬p → ∀ (b : Prop), (p → b) → b → ¬p → b
[PROOFSTEP]
tauto
[GOAL]
α : Type u_1
β : Type u_2
p : Prop
⊢ p = ⊥ ∨ p = ⊤
[PROOFSTEP]
by_cases p
[GOAL]
α : Type u_1
β : Type u_2
p : Prop
⊢ p = ⊥ ∨ p = ⊤
[PROOFSTEP]
by_cases p
[GOAL]
case pos
α : Type u_1
β : Type u_2
p : Prop
h : p
⊢ p = ⊥ ∨ p = ⊤
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
p : Prop
h : ¬p
⊢ p = ⊥ ∨ p = ⊤
[PROOFSTEP]
simp [h]
[GOAL]
case pos
α : Type u_1
β : Type u_2
p : Prop
h : p
⊢ ⊥ ∨ ⊤
[PROOFSTEP]
tauto
[GOAL]
case neg
α : Type u_1
β : Type u_2
p : Prop
h : ¬p
⊢ ¬⊥ ∨ ¬⊤
[PROOFSTEP]
tauto
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝ : (i : ι) → Bot (π i)
f : (i : ι) → π i
h : ∀ (i : ι), f i = ⊥
i : ι
⊢ f i = ⊥ i
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
⊢ IsAtom f ↔ ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥
[PROOFSTEP]
classical
constructor
case mpr =>
rintro ⟨i, ⟨hfi, hlt⟩, hbot⟩
refine ⟨fun h => hfi ((Pi.eq_bot_iff.1 h) _), fun g hgf => Pi.eq_bot_iff.2 fun j => ?_⟩
have ⟨hgf, k, hgfk⟩ := Pi.lt_def.1 hgf
obtain rfl : i = k := of_not_not fun hki => by rw [hbot _ (Ne.symm hki)] at hgfk ; simp at hgfk
by_cases hij : j = i; case pos => subst hij; refine hlt _ hgfk
refine eq_bot_iff.2 <| le_trans (hgf _) (eq_bot_iff.1 (hbot _ hij))
case mp =>
rintro ⟨hbot, h⟩
have ⟨i, hbot⟩ : ∃ i, f i ≠ ⊥ := by rw [ne_eq, Pi.eq_bot_iff, not_forall] at hbot ; exact hbot
refine ⟨i, ⟨hbot, ?c⟩, ?d⟩
case c =>
intro b hb
have := h (Function.update ⊥ i b)
simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this
simpa using
this
(fun j => by by_cases h : j = i;
{subst h; simpa using le_of_lt hb
};
simp [h])
i (by simpa using hb) i
case d =>
intro j hj
have := h (Function.update ⊥ j (f j))
simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this
simpa using
this
(fun k => by by_cases k = j;
{subst h; simp
};
simp [h])
i (by rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot]) j
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
⊢ IsAtom f ↔ ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
⊢ IsAtom f → ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥
case mpr
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
⊢ (∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥) → IsAtom f
[PROOFSTEP]
case mpr =>
rintro ⟨i, ⟨hfi, hlt⟩, hbot⟩
refine ⟨fun h => hfi ((Pi.eq_bot_iff.1 h) _), fun g hgf => Pi.eq_bot_iff.2 fun j => ?_⟩
have ⟨hgf, k, hgfk⟩ := Pi.lt_def.1 hgf
obtain rfl : i = k := of_not_not fun hki => by rw [hbot _ (Ne.symm hki)] at hgfk ; simp at hgfk
by_cases hij : j = i; case pos => subst hij; refine hlt _ hgfk
refine eq_bot_iff.2 <| le_trans (hgf _) (eq_bot_iff.1 (hbot _ hij))
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
⊢ (∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥) → IsAtom f
[PROOFSTEP]
case mpr =>
rintro ⟨i, ⟨hfi, hlt⟩, hbot⟩
refine ⟨fun h => hfi ((Pi.eq_bot_iff.1 h) _), fun g hgf => Pi.eq_bot_iff.2 fun j => ?_⟩
have ⟨hgf, k, hgfk⟩ := Pi.lt_def.1 hgf
obtain rfl : i = k := of_not_not fun hki => by rw [hbot _ (Ne.symm hki)] at hgfk ; simp at hgfk
by_cases hij : j = i; case pos => subst hij; refine hlt _ hgfk
refine eq_bot_iff.2 <| le_trans (hgf _) (eq_bot_iff.1 (hbot _ hij))
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
⊢ (∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥) → IsAtom f
[PROOFSTEP]
rintro ⟨i, ⟨hfi, hlt⟩, hbot⟩
[GOAL]
case intro.intro.intro
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
i : ι
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
hfi : f i ≠ ⊥
hlt : ∀ (b : π i), b < f i → b = ⊥
⊢ IsAtom f
[PROOFSTEP]
refine ⟨fun h => hfi ((Pi.eq_bot_iff.1 h) _), fun g hgf => Pi.eq_bot_iff.2 fun j => ?_⟩
[GOAL]
case intro.intro.intro
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
i : ι
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
hfi : f i ≠ ⊥
hlt : ∀ (b : π i), b < f i → b = ⊥
g : (i : ι) → π i
hgf : g < f
j : ι
⊢ g j = ⊥
[PROOFSTEP]
have ⟨hgf, k, hgfk⟩ := Pi.lt_def.1 hgf
[GOAL]
case intro.intro.intro
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
i : ι
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
hfi : f i ≠ ⊥
hlt : ∀ (b : π i), b < f i → b = ⊥
g : (i : ι) → π i
hgf✝ : g < f
j : ι
hgf : g ≤ f
k : ι
hgfk : g k < f k
⊢ g j = ⊥
[PROOFSTEP]
obtain rfl : i = k := of_not_not fun hki => by rw [hbot _ (Ne.symm hki)] at hgfk ; simp at hgfk
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
i : ι
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
hfi : f i ≠ ⊥
hlt : ∀ (b : π i), b < f i → b = ⊥
g : (i : ι) → π i
hgf✝ : g < f
j : ι
hgf : g ≤ f
k : ι
hgfk : g k < f k
hki : ¬i = k
⊢ False
[PROOFSTEP]
rw [hbot _ (Ne.symm hki)] at hgfk
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
i : ι
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
hfi : f i ≠ ⊥
hlt : ∀ (b : π i), b < f i → b = ⊥
g : (i : ι) → π i
hgf✝ : g < f
j : ι
hgf : g ≤ f
k : ι
hgfk : g k < ⊥
hki : ¬i = k
⊢ False
[PROOFSTEP]
simp at hgfk
[GOAL]
case intro.intro.intro
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
i : ι
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
hfi : f i ≠ ⊥
hlt : ∀ (b : π i), b < f i → b = ⊥
g : (i : ι) → π i
hgf✝ : g < f
j : ι
hgf : g ≤ f
hgfk : g i < f i
⊢ g j = ⊥
[PROOFSTEP]
by_cases hij : j = i
[GOAL]
case pos
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
i : ι
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
hfi : f i ≠ ⊥
hlt : ∀ (b : π i), b < f i → b = ⊥
g : (i : ι) → π i
hgf✝ : g < f
j : ι
hgf : g ≤ f
hgfk : g i < f i
hij : j = i
⊢ g j = ⊥
case neg
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
i : ι
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
hfi : f i ≠ ⊥
hlt : ∀ (b : π i), b < f i → b = ⊥
g : (i : ι) → π i
hgf✝ : g < f
j : ι
hgf : g ≤ f
hgfk : g i < f i
hij : ¬j = i
⊢ g j = ⊥
[PROOFSTEP]
case pos => subst hij; refine hlt _ hgfk
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
i : ι
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
hfi : f i ≠ ⊥
hlt : ∀ (b : π i), b < f i → b = ⊥
g : (i : ι) → π i
hgf✝ : g < f
j : ι
hgf : g ≤ f
hgfk : g i < f i
hij : j = i
⊢ g j = ⊥
[PROOFSTEP]
case pos => subst hij; refine hlt _ hgfk
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
i : ι
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
hfi : f i ≠ ⊥
hlt : ∀ (b : π i), b < f i → b = ⊥
g : (i : ι) → π i
hgf✝ : g < f
j : ι
hgf : g ≤ f
hgfk : g i < f i
hij : j = i
⊢ g j = ⊥
[PROOFSTEP]
subst hij
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
g : (i : ι) → π i
hgf✝ : g < f
j : ι
hgf : g ≤ f
hbot : ∀ (j_1 : ι), j_1 ≠ j → f j_1 = ⊥
hfi : f j ≠ ⊥
hlt : ∀ (b : π j), b < f j → b = ⊥
hgfk : g j < f j
⊢ g j = ⊥
[PROOFSTEP]
refine hlt _ hgfk
[GOAL]
case neg
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
i : ι
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
hfi : f i ≠ ⊥
hlt : ∀ (b : π i), b < f i → b = ⊥
g : (i : ι) → π i
hgf✝ : g < f
j : ι
hgf : g ≤ f
hgfk : g i < f i
hij : ¬j = i
⊢ g j = ⊥
[PROOFSTEP]
refine eq_bot_iff.2 <| le_trans (hgf _) (eq_bot_iff.1 (hbot _ hij))
[GOAL]
case mp
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
⊢ IsAtom f → ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥
[PROOFSTEP]
case mp =>
rintro ⟨hbot, h⟩
have ⟨i, hbot⟩ : ∃ i, f i ≠ ⊥ := by rw [ne_eq, Pi.eq_bot_iff, not_forall] at hbot ; exact hbot
refine ⟨i, ⟨hbot, ?c⟩, ?d⟩
case c =>
intro b hb
have := h (Function.update ⊥ i b)
simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this
simpa using
this
(fun j => by by_cases h : j = i;
{subst h; simpa using le_of_lt hb
};
simp [h])
i (by simpa using hb) i
case d =>
intro j hj
have := h (Function.update ⊥ j (f j))
simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this
simpa using
this
(fun k => by by_cases k = j;
{subst h; simp
};
simp [h])
i (by rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot]) j
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
⊢ IsAtom f → ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥
[PROOFSTEP]
case mp =>
rintro ⟨hbot, h⟩
have ⟨i, hbot⟩ : ∃ i, f i ≠ ⊥ := by rw [ne_eq, Pi.eq_bot_iff, not_forall] at hbot ; exact hbot
refine ⟨i, ⟨hbot, ?c⟩, ?d⟩
case c =>
intro b hb
have := h (Function.update ⊥ i b)
simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this
simpa using
this
(fun j => by by_cases h : j = i;
{subst h; simpa using le_of_lt hb
};
simp [h])
i (by simpa using hb) i
case d =>
intro j hj
have := h (Function.update ⊥ j (f j))
simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this
simpa using
this
(fun k => by by_cases k = j;
{subst h; simp
};
simp [h])
i (by rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot]) j
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
⊢ IsAtom f → ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥
[PROOFSTEP]
rintro ⟨hbot, h⟩
[GOAL]
case intro
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
⊢ ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥
[PROOFSTEP]
have ⟨i, hbot⟩ : ∃ i, f i ≠ ⊥ := by rw [ne_eq, Pi.eq_bot_iff, not_forall] at hbot ; exact hbot
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
⊢ ∃ i, f i ≠ ⊥
[PROOFSTEP]
rw [ne_eq, Pi.eq_bot_iff, not_forall] at hbot
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot : ∃ x, ¬f x = ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
⊢ ∃ i, f i ≠ ⊥
[PROOFSTEP]
exact hbot
[GOAL]
case intro
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
⊢ ∃ i, IsAtom (f i) ∧ ∀ (j : ι), j ≠ i → f j = ⊥
[PROOFSTEP]
refine ⟨i, ⟨hbot, ?c⟩, ?d⟩
[GOAL]
case c
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
⊢ ∀ (b : π i), b < f i → b = ⊥
case d
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
⊢ ∀ (j : ι), j ≠ i → f j = ⊥
[PROOFSTEP]
case c =>
intro b hb
have := h (Function.update ⊥ i b)
simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this
simpa using
this
(fun j => by by_cases h : j = i;
{subst h; simpa using le_of_lt hb
};
simp [h])
i (by simpa using hb) i
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
⊢ ∀ (b : π i), b < f i → b = ⊥
[PROOFSTEP]
case c =>
intro b hb
have := h (Function.update ⊥ i b)
simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this
simpa using
this
(fun j => by by_cases h : j = i;
{subst h; simpa using le_of_lt hb
};
simp [h])
i (by simpa using hb) i
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
⊢ ∀ (b : π i), b < f i → b = ⊥
[PROOFSTEP]
intro b hb
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
b : π i
hb : b < f i
⊢ b = ⊥
[PROOFSTEP]
have := h (Function.update ⊥ i b)
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
b : π i
hb : b < f i
this : Function.update ⊥ i b < f → Function.update ⊥ i b = ⊥
⊢ b = ⊥
[PROOFSTEP]
simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
b : π i
hb : b < f i
this :
(∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) →
∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥
⊢ b = ⊥
[PROOFSTEP]
simpa using
this
(fun j => by by_cases h : j = i;
{subst h; simpa using le_of_lt hb
};
simp [h])
i (by simpa using hb) i
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
b : π i
hb : b < f i
this :
(∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) →
∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥
j : ι
⊢ Function.update ⊥ i b j ≤ f j
[PROOFSTEP]
by_cases h : j = i
[GOAL]
case pos
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
b : π i
hb : b < f i
this :
(∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) →
∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥
j : ι
h : j = i
⊢ Function.update ⊥ i b j ≤ f j
case neg
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
b : π i
hb : b < f i
this :
(∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) →
∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥
j : ι
h : ¬j = i
⊢ Function.update ⊥ i b j ≤ f j
[PROOFSTEP]
{subst h; simpa using le_of_lt hb
}
[GOAL]
case pos
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
b : π i
hb : b < f i
this :
(∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) →
∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥
j : ι
h : j = i
⊢ Function.update ⊥ i b j ≤ f j
[PROOFSTEP]
subst h
[GOAL]
case pos
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
j : ι
hbot : f j ≠ ⊥
b : π j
hb : b < f j
this :
(∀ (i : ι), Function.update ⊥ j b i ≤ f i) →
∀ (x : ι), Function.update ⊥ j b x < f x → ∀ (i : ι), Function.update ⊥ j b i = ⊥
⊢ Function.update ⊥ j b j ≤ f j
[PROOFSTEP]
simpa using le_of_lt hb
[GOAL]
case neg
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
b : π i
hb : b < f i
this :
(∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) →
∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥
j : ι
h : ¬j = i
⊢ Function.update ⊥ i b j ≤ f j
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
b : π i
hb : b < f i
this :
(∀ (i_1 : ι), Function.update ⊥ i b i_1 ≤ f i_1) →
∀ (x : ι), Function.update ⊥ i b x < f x → ∀ (i_1 : ι), Function.update ⊥ i b i_1 = ⊥
⊢ Function.update ⊥ i b i < f i
[PROOFSTEP]
simpa using hb
[GOAL]
case d
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
⊢ ∀ (j : ι), j ≠ i → f j = ⊥
[PROOFSTEP]
case d =>
intro j hj
have := h (Function.update ⊥ j (f j))
simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this
simpa using
this
(fun k => by by_cases k = j;
{subst h; simp
};
simp [h])
i (by rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot]) j
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
⊢ ∀ (j : ι), j ≠ i → f j = ⊥
[PROOFSTEP]
case d =>
intro j hj
have := h (Function.update ⊥ j (f j))
simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this
simpa using
this
(fun k => by by_cases k = j;
{subst h; simp
};
simp [h])
i (by rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot]) j
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
⊢ ∀ (j : ι), j ≠ i → f j = ⊥
[PROOFSTEP]
intro j hj
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
j : ι
hj : j ≠ i
⊢ f j = ⊥
[PROOFSTEP]
have := h (Function.update ⊥ j (f j))
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
j : ι
hj : j ≠ i
this : Function.update ⊥ j (f j) < f → Function.update ⊥ j (f j) = ⊥
⊢ f j = ⊥
[PROOFSTEP]
simp only [lt_def, le_def, ge_iff_le, Pi.eq_bot_iff, and_imp, forall_exists_index] at this
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
j : ι
hj : j ≠ i
this :
(∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) →
∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥
⊢ f j = ⊥
[PROOFSTEP]
simpa using
this
(fun k => by by_cases k = j;
{subst h; simp
};
simp [h])
i (by rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot]) j
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
j : ι
hj : j ≠ i
this :
(∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) →
∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥
k : ι
⊢ Function.update ⊥ j (f j) k ≤ f k
[PROOFSTEP]
by_cases k = j
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
j : ι
hj : j ≠ i
this :
(∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) →
∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥
k : ι
⊢ Function.update ⊥ j (f j) k ≤ f k
[PROOFSTEP]
by_cases k = j
[GOAL]
case pos
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
j : ι
hj : j ≠ i
this :
(∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) →
∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥
k : ι
h : k = j
⊢ Function.update ⊥ j (f j) k ≤ f k
case neg
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
j : ι
hj : j ≠ i
this :
(∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) →
∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥
k : ι
h : ¬k = j
⊢ Function.update ⊥ j (f j) k ≤ f k
[PROOFSTEP]
{subst h; simp
}
[GOAL]
case pos
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
j : ι
hj : j ≠ i
this :
(∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) →
∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥
k : ι
h : k = j
⊢ Function.update ⊥ j (f j) k ≤ f k
[PROOFSTEP]
subst h
[GOAL]
case pos
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
k : ι
hj : k ≠ i
this :
(∀ (i : ι), Function.update ⊥ k (f k) i ≤ f i) →
∀ (x : ι), Function.update ⊥ k (f k) x < f x → ∀ (i : ι), Function.update ⊥ k (f k) i = ⊥
⊢ Function.update ⊥ k (f k) k ≤ f k
[PROOFSTEP]
simp
[GOAL]
case neg
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h✝ : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
j : ι
hj : j ≠ i
this :
(∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) →
∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥
k : ι
h : ¬k = j
⊢ Function.update ⊥ j (f j) k ≤ f k
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
f : (i : ι) → π i
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
hbot✝ : f ≠ ⊥
h : ∀ (b : (i : ι) → π i), b < f → b = ⊥
i : ι
hbot : f i ≠ ⊥
j : ι
hj : j ≠ i
this :
(∀ (i : ι), Function.update ⊥ j (f j) i ≤ f i) →
∀ (x : ι), Function.update ⊥ j (f j) x < f x → ∀ (i : ι), Function.update ⊥ j (f j) i = ⊥
⊢ Function.update ⊥ j (f j) i < f i
[PROOFSTEP]
rwa [Function.update_noteq (Ne.symm hj), bot_apply, bot_lt_iff_ne_bot]
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
i : ι
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
a : π i
h : IsAtom a
⊢ IsAtom (Function.update ⊥ i a i)
[PROOFSTEP]
simpa
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
f : (i : ι) → π i
⊢ IsAtom f ↔ ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
f : (i : ι) → π i
⊢ IsAtom f → ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a
case mpr
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
f : (i : ι) → π i
⊢ (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) → IsAtom f
[PROOFSTEP]
case mp =>
intro h
have ⟨i, h, hbot⟩ := isAtom_iff.1 h
refine ⟨_, _, h, funext fun j => if hij : j = i then hij ▸ by simp else ?_⟩
rw [Function.update_noteq hij, hbot _ hij, bot_apply]
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
f : (i : ι) → π i
⊢ IsAtom f → ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a
[PROOFSTEP]
case mp =>
intro h
have ⟨i, h, hbot⟩ := isAtom_iff.1 h
refine ⟨_, _, h, funext fun j => if hij : j = i then hij ▸ by simp else ?_⟩
rw [Function.update_noteq hij, hbot _ hij, bot_apply]
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
f : (i : ι) → π i
⊢ IsAtom f → ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a
[PROOFSTEP]
intro h
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
f : (i : ι) → π i
h : IsAtom f
⊢ ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a
[PROOFSTEP]
have ⟨i, h, hbot⟩ := isAtom_iff.1 h
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
f : (i : ι) → π i
h✝ : IsAtom f
i : ι
h : IsAtom (f i)
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
⊢ ∃ i a, IsAtom a ∧ f = Function.update ⊥ i a
[PROOFSTEP]
refine ⟨_, _, h, funext fun j => if hij : j = i then hij ▸ by simp else ?_⟩
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
f : (i : ι) → π i
h✝ : IsAtom f
i : ι
h : IsAtom (f i)
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
j : ι
hij : j = i
⊢ f j = Function.update ⊥ j (f j) j
[PROOFSTEP]
simp
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
f : (i : ι) → π i
h✝ : IsAtom f
i : ι
h : IsAtom (f i)
hbot : ∀ (j : ι), j ≠ i → f j = ⊥
j : ι
hij : ¬j = i
⊢ f j = Function.update ⊥ i (f i) j
[PROOFSTEP]
rw [Function.update_noteq hij, hbot _ hij, bot_apply]
[GOAL]
case mpr
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
f : (i : ι) → π i
⊢ (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) → IsAtom f
[PROOFSTEP]
case mpr =>
rintro ⟨i, a, h, rfl⟩
refine isAtom_single h
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
f : (i : ι) → π i
⊢ (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) → IsAtom f
[PROOFSTEP]
case mpr =>
rintro ⟨i, a, h, rfl⟩
refine isAtom_single h
[GOAL]
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
f : (i : ι) → π i
⊢ (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) → IsAtom f
[PROOFSTEP]
rintro ⟨i, a, h, rfl⟩
[GOAL]
case intro.intro.intro
ι : Type u_3
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → PartialOrder (π i)
inst✝ : (i : ι) → OrderBot (π i)
i : ι
a : π i
h : IsAtom a
⊢ IsAtom (Function.update ⊥ i a)
[PROOFSTEP]
refine isAtom_single h
[GOAL]
ι : Type ?u.130792
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝² : (i : ι) → PartialOrder (π i)
inst✝¹ : (i : ι) → OrderBot (π i)
inst✝ : ∀ (i : ι), IsAtomic (π i)
b : (i : ι) → π i
h : ¬b = ⊥
i : ι
hi : ¬b i = ⊥
a : π i
ha : IsAtom a
hab : a ≤ b i
this : DecidableEq ι
⊢ ∀ (j : ι), j ≠ i → ⊥ j ≤ b j
[PROOFSTEP]
simp
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
⊢ ∃ s_1, s = sSup s_1 ∧ ∀ (a : (i : ι) → π i), a ∈ s_1 → IsAtom a
[PROOFSTEP]
classical
refine ⟨{f | IsAtom f ∧ f ≤ s}, ?_, by simp; tauto⟩
ext i
rw [← sSup_atoms_le_eq (s i)]
simp_rw [isAtom_iff_eq_single]
refine le_antisymm ?le ?ge
case le =>
refine sSup_le fun a ⟨ha, hle⟩ => ?_
refine le_sSup ⟨⟨_, ⟨_, _, ha, rfl⟩, ?_⟩, by simp⟩
intro j; by_cases hij : j = i
case pos => subst hij; simpa
case neg => simp [hij]
case ge =>
refine sSup_le ?_
rintro _ ⟨⟨_, ⟨j, a, ha, rfl⟩, hle⟩, rfl⟩
by_cases hij : i = j; case neg => simp [Function.update_noteq hij]
subst hij; simp only [Function.update_same]
refine le_sSup ⟨ha, by simpa using hle i⟩
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
⊢ ∃ s_1, s = sSup s_1 ∧ ∀ (a : (i : ι) → π i), a ∈ s_1 → IsAtom a
[PROOFSTEP]
refine ⟨{f | IsAtom f ∧ f ≤ s}, ?_, by simp; tauto⟩
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
⊢ ∀ (a : (i : ι) → π i), a ∈ {f | IsAtom f ∧ f ≤ s} → IsAtom a
[PROOFSTEP]
simp
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
⊢ ∀ (a : (i : ι) → π i), IsAtom a → a ≤ s → IsAtom a
[PROOFSTEP]
tauto
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
⊢ s = sSup {f | IsAtom f ∧ f ≤ s}
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
⊢ s i = sSup {f | IsAtom f ∧ f ≤ s} i
[PROOFSTEP]
rw [← sSup_atoms_le_eq (s i)]
[GOAL]
case h
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
⊢ sSup {a | IsAtom a ∧ a ≤ s i} = sSup {f | IsAtom f ∧ f ≤ s} i
[PROOFSTEP]
simp_rw [isAtom_iff_eq_single]
[GOAL]
case h
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
⊢ sSup {a | IsAtom a ∧ a ≤ s i} = sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i
[PROOFSTEP]
refine le_antisymm ?le ?ge
[GOAL]
case le
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
⊢ sSup {a | IsAtom a ∧ a ≤ s i} ≤ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i
case ge
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
⊢ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i ≤ sSup {a | IsAtom a ∧ a ≤ s i}
[PROOFSTEP]
case le =>
refine sSup_le fun a ⟨ha, hle⟩ => ?_
refine le_sSup ⟨⟨_, ⟨_, _, ha, rfl⟩, ?_⟩, by simp⟩
intro j; by_cases hij : j = i
case pos => subst hij; simpa
case neg => simp [hij]
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
⊢ sSup {a | IsAtom a ∧ a ≤ s i} ≤ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i
[PROOFSTEP]
case le =>
refine sSup_le fun a ⟨ha, hle⟩ => ?_
refine le_sSup ⟨⟨_, ⟨_, _, ha, rfl⟩, ?_⟩, by simp⟩
intro j; by_cases hij : j = i
case pos => subst hij; simpa
case neg => simp [hij]
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
⊢ sSup {a | IsAtom a ∧ a ≤ s i} ≤ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i
[PROOFSTEP]
refine sSup_le fun a ⟨ha, hle⟩ => ?_
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i}
ha : IsAtom a
hle : a ≤ s i
⊢ a ≤ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i
[PROOFSTEP]
refine le_sSup ⟨⟨_, ⟨_, _, ha, rfl⟩, ?_⟩, by simp⟩
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i}
ha : IsAtom a
hle : a ≤ s i
⊢ (fun f => ↑f i)
{ val := Function.update ⊥ i a,
property :=
(_ :
(∃ i_1 a_1, IsAtom a_1 ∧ Function.update ⊥ i a = Function.update ⊥ i_1 a_1) ∧ Function.update ⊥ i a ≤ s) } =
a
[PROOFSTEP]
simp
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i}
ha : IsAtom a
hle : a ≤ s i
⊢ Function.update ⊥ i a ≤ s
[PROOFSTEP]
intro j
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i}
ha : IsAtom a
hle : a ≤ s i
j : ι
⊢ Function.update ⊥ i a j ≤ s j
[PROOFSTEP]
by_cases hij : j = i
[GOAL]
case pos
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i}
ha : IsAtom a
hle : a ≤ s i
j : ι
hij : j = i
⊢ Function.update ⊥ i a j ≤ s j
case neg
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i}
ha : IsAtom a
hle : a ≤ s i
j : ι
hij : ¬j = i
⊢ Function.update ⊥ i a j ≤ s j
[PROOFSTEP]
case pos => subst hij; simpa
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i}
ha : IsAtom a
hle : a ≤ s i
j : ι
hij : j = i
⊢ Function.update ⊥ i a j ≤ s j
[PROOFSTEP]
case pos => subst hij; simpa
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i}
ha : IsAtom a
hle : a ≤ s i
j : ι
hij : j = i
⊢ Function.update ⊥ i a j ≤ s j
[PROOFSTEP]
subst hij
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
j : ι
a : π j
x✝ : a ∈ {a | IsAtom a ∧ a ≤ s j}
ha : IsAtom a
hle : a ≤ s j
⊢ Function.update ⊥ j a j ≤ s j
[PROOFSTEP]
simpa
[GOAL]
case neg
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i}
ha : IsAtom a
hle : a ≤ s i
j : ι
hij : ¬j = i
⊢ Function.update ⊥ i a j ≤ s j
[PROOFSTEP]
case neg => simp [hij]
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i}
ha : IsAtom a
hle : a ≤ s i
j : ι
hij : ¬j = i
⊢ Function.update ⊥ i a j ≤ s j
[PROOFSTEP]
case neg => simp [hij]
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
x✝ : a ∈ {a | IsAtom a ∧ a ≤ s i}
ha : IsAtom a
hle : a ≤ s i
j : ι
hij : ¬j = i
⊢ Function.update ⊥ i a j ≤ s j
[PROOFSTEP]
simp [hij]
[GOAL]
case ge
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
⊢ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i ≤ sSup {a | IsAtom a ∧ a ≤ s i}
[PROOFSTEP]
case ge =>
refine sSup_le ?_
rintro _ ⟨⟨_, ⟨j, a, ha, rfl⟩, hle⟩, rfl⟩
by_cases hij : i = j; case neg => simp [Function.update_noteq hij]
subst hij; simp only [Function.update_same]
refine le_sSup ⟨ha, by simpa using hle i⟩
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
⊢ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i ≤ sSup {a | IsAtom a ∧ a ≤ s i}
[PROOFSTEP]
case ge =>
refine sSup_le ?_
rintro _ ⟨⟨_, ⟨j, a, ha, rfl⟩, hle⟩, rfl⟩
by_cases hij : i = j; case neg => simp [Function.update_noteq hij]
subst hij; simp only [Function.update_same]
refine le_sSup ⟨ha, by simpa using hle i⟩
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
⊢ sSup {f | (∃ i a, IsAtom a ∧ f = Function.update ⊥ i a) ∧ f ≤ s} i ≤ sSup {a | IsAtom a ∧ a ≤ s i}
[PROOFSTEP]
refine sSup_le ?_
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
⊢ ∀ (b : π i), (b ∈ Set.range fun f => ↑f i) → b ≤ sSup {a | IsAtom a ∧ a ≤ s i}
[PROOFSTEP]
rintro _ ⟨⟨_, ⟨j, a, ha, rfl⟩, hle⟩, rfl⟩
[GOAL]
case intro.mk.intro.intro.intro.intro
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i j : ι
a : π j
ha : IsAtom a
hle : Function.update ⊥ j a ≤ s
⊢ (fun f => ↑f i)
{ val := Function.update ⊥ j a,
property :=
(_ : (∃ i a_1, IsAtom a_1 ∧ Function.update ⊥ j a = Function.update ⊥ i a_1) ∧ Function.update ⊥ j a ≤ s) } ≤
sSup {a | IsAtom a ∧ a ≤ s i}
[PROOFSTEP]
by_cases hij : i = j
[GOAL]
case pos
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i j : ι
a : π j
ha : IsAtom a
hle : Function.update ⊥ j a ≤ s
hij : i = j
⊢ (fun f => ↑f i)
{ val := Function.update ⊥ j a,
property :=
(_ : (∃ i a_1, IsAtom a_1 ∧ Function.update ⊥ j a = Function.update ⊥ i a_1) ∧ Function.update ⊥ j a ≤ s) } ≤
sSup {a | IsAtom a ∧ a ≤ s i}
case neg
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i j : ι
a : π j
ha : IsAtom a
hle : Function.update ⊥ j a ≤ s
hij : ¬i = j
⊢ (fun f => ↑f i)
{ val := Function.update ⊥ j a,
property :=
(_ : (∃ i a_1, IsAtom a_1 ∧ Function.update ⊥ j a = Function.update ⊥ i a_1) ∧ Function.update ⊥ j a ≤ s) } ≤
sSup {a | IsAtom a ∧ a ≤ s i}
[PROOFSTEP]
case neg => simp [Function.update_noteq hij]
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i j : ι
a : π j
ha : IsAtom a
hle : Function.update ⊥ j a ≤ s
hij : ¬i = j
⊢ (fun f => ↑f i)
{ val := Function.update ⊥ j a,
property :=
(_ : (∃ i a_1, IsAtom a_1 ∧ Function.update ⊥ j a = Function.update ⊥ i a_1) ∧ Function.update ⊥ j a ≤ s) } ≤
sSup {a | IsAtom a ∧ a ≤ s i}
[PROOFSTEP]
case neg => simp [Function.update_noteq hij]
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i j : ι
a : π j
ha : IsAtom a
hle : Function.update ⊥ j a ≤ s
hij : ¬i = j
⊢ (fun f => ↑f i)
{ val := Function.update ⊥ j a,
property :=
(_ : (∃ i a_1, IsAtom a_1 ∧ Function.update ⊥ j a = Function.update ⊥ i a_1) ∧ Function.update ⊥ j a ≤ s) } ≤
sSup {a | IsAtom a ∧ a ≤ s i}
[PROOFSTEP]
simp [Function.update_noteq hij]
[GOAL]
case pos
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i j : ι
a : π j
ha : IsAtom a
hle : Function.update ⊥ j a ≤ s
hij : i = j
⊢ (fun f => ↑f i)
{ val := Function.update ⊥ j a,
property :=
(_ : (∃ i a_1, IsAtom a_1 ∧ Function.update ⊥ j a = Function.update ⊥ i a_1) ∧ Function.update ⊥ j a ≤ s) } ≤
sSup {a | IsAtom a ∧ a ≤ s i}
[PROOFSTEP]
subst hij
[GOAL]
case pos
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
ha : IsAtom a
hle : Function.update ⊥ i a ≤ s
⊢ (fun f => ↑f i)
{ val := Function.update ⊥ i a,
property :=
(_ :
(∃ i_1 a_1, IsAtom a_1 ∧ Function.update ⊥ i a = Function.update ⊥ i_1 a_1) ∧ Function.update ⊥ i a ≤ s) } ≤
sSup {a | IsAtom a ∧ a ≤ s i}
[PROOFSTEP]
simp only [Function.update_same]
[GOAL]
case pos
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
ha : IsAtom a
hle : Function.update ⊥ i a ≤ s
⊢ a ≤ sSup {a | IsAtom a ∧ a ≤ s i}
[PROOFSTEP]
refine le_sSup ⟨ha, by simpa using hle i⟩
[GOAL]
ι : Type ?u.135698
α : Type u_1
β : Type u_2
π : ι → Type u
inst✝¹ : (i : ι) → CompleteLattice (π i)
inst✝ : ∀ (i : ι), IsAtomistic (π i)
s : (i : ι) → π i
i : ι
a : π i
ha : IsAtom a
hle : Function.update ⊥ i a ≤ s
⊢ a ≤ s i
[PROOFSTEP]
simpa using hle i
[GOAL]
α : Type u_1
β : Type u_2
s : Set α
⊢ IsAtom s ↔ ∃ x, s = {x}
[PROOFSTEP]
refine'
⟨_, by
rintro ⟨x, rfl⟩
exact isAtom_singleton x⟩
[GOAL]
α : Type u_1
β : Type u_2
s : Set α
⊢ (∃ x, s = {x}) → IsAtom s
[PROOFSTEP]
rintro ⟨x, rfl⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
x : α
⊢ IsAtom {x}
[PROOFSTEP]
exact isAtom_singleton x
[GOAL]
α : Type u_1
β : Type u_2
s : Set α
⊢ IsAtom s → ∃ x, s = {x}
[PROOFSTEP]
rw [_root_.isAtom_iff, bot_eq_empty, ← nonempty_iff_ne_empty]
[GOAL]
α : Type u_1
β : Type u_2
s : Set α
⊢ (Set.Nonempty s ∧ ∀ (b : Set α), b ≠ ∅ → b ≤ s → s ≤ b) → ∃ x, s = {x}
[PROOFSTEP]
rintro ⟨⟨x, hx⟩, hs⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
s : Set α
hs : ∀ (b : Set α), b ≠ ∅ → b ≤ s → s ≤ b
x : α
hx : x ∈ s
⊢ ∃ x, s = {x}
[PROOFSTEP]
exact
⟨x,
eq_singleton_iff_unique_mem.2
⟨hx, fun y hy => (hs { y } (singleton_ne_empty _) (singleton_subset_iff.2 hy) hx).symm⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
s : Set α
⊢ IsCoatom s ↔ ∃ x, s = {x}ᶜ
[PROOFSTEP]
rw [isCompl_compl.isCoatom_iff_isAtom, isAtom_iff]
[GOAL]
α : Type u_1
β : Type u_2
s : Set α
⊢ (∃ x, sᶜ = {x}) ↔ ∃ x, s = {x}ᶜ
[PROOFSTEP]
simp_rw [@eq_comm _ s, compl_eq_comm]
[GOAL]
α : Type u_1
β : Type u_2
s : Set α
⊢ s = sSup ((fun x => {x}) '' s)
[PROOFSTEP]
rw [sSup_eq_sUnion, sUnion_image, biUnion_of_singleton]
[GOAL]
α : Type u_1
β : Type u_2
s : Set α
⊢ ∀ (a : Set α), a ∈ (fun x => {x}) '' s → IsAtom a
[PROOFSTEP]
{ rintro _ ⟨x, _, rfl⟩
exact isAtom_singleton x
}
[GOAL]
α : Type u_1
β : Type u_2
s : Set α
⊢ ∀ (a : Set α), a ∈ (fun x => {x}) '' s → IsAtom a
[PROOFSTEP]
rintro _ ⟨x, _, rfl⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
s : Set α
x : α
left✝ : x ∈ s
⊢ IsAtom ((fun x => {x}) x)
[PROOFSTEP]
exact isAtom_singleton x
[GOAL]
α : Type u_1
β : Type u_2
s : Set α
⊢ s = sInf ((fun x => {x}ᶜ) '' sᶜ)
[PROOFSTEP]
{rw [sInf_eq_sInter, sInter_image, ← compl_iUnion₂, biUnion_of_singleton, compl_compl]
}
[GOAL]
α : Type u_1
β : Type u_2
s : Set α
⊢ s = sInf ((fun x => {x}ᶜ) '' sᶜ)
[PROOFSTEP]
rw [sInf_eq_sInter, sInter_image, ← compl_iUnion₂, biUnion_of_singleton, compl_compl]
[GOAL]
α : Type u_1
β : Type u_2
s : Set α
⊢ ∀ (a : Set α), a ∈ (fun x => {x}ᶜ) '' sᶜ → IsCoatom a
[PROOFSTEP]
{ rintro _ ⟨x, _, rfl⟩
exact isCoatom_singleton_compl x
}
[GOAL]
α : Type u_1
β : Type u_2
s : Set α
⊢ ∀ (a : Set α), a ∈ (fun x => {x}ᶜ) '' sᶜ → IsCoatom a
[PROOFSTEP]
rintro _ ⟨x, _, rfl⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
s : Set α
x : α
left✝ : x ∈ sᶜ
⊢ IsCoatom ((fun x => {x}ᶜ) x)
[PROOFSTEP]
exact isCoatom_singleton_compl x
| {"mathlib_filename": "Mathlib.Order.Atoms", "llama_tokens": 54106} |
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
h : ∀ (c : Set α), IsChain r c → ∃ ub, ∀ (a : α), a ∈ c → r a ub
trans : ∀ {a b c : α}, r a b → r b c → r a c
this✝ : ∃ ub, ∀ (a : α), a ∈ maxChain r → r a ub
ub : α
hub : ∀ (a : α), a ∈ maxChain r → r a ub
a : α
ha : r ub a
this : IsChain r (insert a (maxChain r))
⊢ a ∈ maxChain r
[PROOFSTEP]
rw [maxChain_spec.right this (subset_insert _ _)]
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
h : ∀ (c : Set α), IsChain r c → ∃ ub, ∀ (a : α), a ∈ c → r a ub
trans : ∀ {a b c : α}, r a b → r b c → r a c
this✝ : ∃ ub, ∀ (a : α), a ∈ maxChain r → r a ub
ub : α
hub : ∀ (a : α), a ∈ maxChain r → r a ub
a : α
ha : r ub a
this : IsChain r (insert a (maxChain r))
⊢ a ∈ insert a (maxChain r)
[PROOFSTEP]
exact mem_insert _ _
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c✝ : Set α
inst✝ : Preorder α
s : Set α
ih : ∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub
c : Set ↑s
hc : IsChain (fun x x_1 => x ≤ x_1) c
⊢ IsChain (fun x x_1 => x ≤ x_1) (Subtype.val '' c)
[PROOFSTEP]
rintro _ ⟨p, hpc, rfl⟩ _ ⟨q, hqc, rfl⟩ hpq
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
r : α → α → Prop
c✝ : Set α
inst✝ : Preorder α
s : Set α
ih : ∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub
c : Set ↑s
hc : IsChain (fun x x_1 => x ≤ x_1) c
p : { x // x ∈ s }
hpc : p ∈ c
q : { x // x ∈ s }
hqc : q ∈ c
hpq : ↑p ≠ ↑q
⊢ (fun x x_1 => x ≤ x_1) ↑p ↑q ∨ (fun x x_1 => x ≤ x_1) ↑q ↑p
[PROOFSTEP]
refine' hc hpc hqc fun t => hpq (Subtype.ext_iff.1 t)
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
inst✝ : Preorder α
s : Set α
ih :
∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub
x : α
hxs : x ∈ s
⊢ ∃ m, m ∈ s ∧ x ≤ m ∧ ∀ (z : α), z ∈ s → m ≤ z → z ≤ m
[PROOFSTEP]
have H := zorn_preorder₀ ({y ∈ s | x ≤ y}) fun c hcs hc => ?_
[GOAL]
case refine_2
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
inst✝ : Preorder α
s : Set α
ih :
∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub
x : α
hxs : x ∈ s
H : ∃ m, m ∈ {y | y ∈ s ∧ x ≤ y} ∧ ∀ (z : α), z ∈ {y | y ∈ s ∧ x ≤ y} → m ≤ z → z ≤ m
⊢ ∃ m, m ∈ s ∧ x ≤ m ∧ ∀ (z : α), z ∈ s → m ≤ z → z ≤ m
[PROOFSTEP]
rcases H with ⟨m, ⟨hms, hxm⟩, hm⟩
[GOAL]
case refine_2.intro.intro.intro
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
inst✝ : Preorder α
s : Set α
ih :
∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub
x : α
hxs : x ∈ s
m : α
hm : ∀ (z : α), z ∈ {y | y ∈ s ∧ x ≤ y} → m ≤ z → z ≤ m
hms : m ∈ s
hxm : x ≤ m
⊢ ∃ m, m ∈ s ∧ x ≤ m ∧ ∀ (z : α), z ∈ s → m ≤ z → z ≤ m
[PROOFSTEP]
exact ⟨m, hms, hxm, fun z hzs hmz => hm _ ⟨hzs, hxm.trans hmz⟩ hmz⟩
[GOAL]
case refine_1
α : Type u_1
β : Type u_2
r : α → α → Prop
c✝ : Set α
inst✝ : Preorder α
s : Set α
ih :
∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub
x : α
hxs : x ∈ s
c : Set α
hcs : c ⊆ {y | y ∈ s ∧ x ≤ y}
hc : IsChain (fun x x_1 => x ≤ x_1) c
⊢ ∃ ub, ub ∈ {y | y ∈ s ∧ x ≤ y} ∧ ∀ (z : α), z ∈ c → z ≤ ub
[PROOFSTEP]
rcases c.eq_empty_or_nonempty with (rfl | ⟨y, hy⟩)
[GOAL]
case refine_1.inl
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
inst✝ : Preorder α
s : Set α
ih :
∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub
x : α
hxs : x ∈ s
hcs : ∅ ⊆ {y | y ∈ s ∧ x ≤ y}
hc : IsChain (fun x x_1 => x ≤ x_1) ∅
⊢ ∃ ub, ub ∈ {y | y ∈ s ∧ x ≤ y} ∧ ∀ (z : α), z ∈ ∅ → z ≤ ub
[PROOFSTEP]
exact ⟨x, ⟨hxs, le_rfl⟩, fun z => False.elim⟩
[GOAL]
case refine_1.inr.intro
α : Type u_1
β : Type u_2
r : α → α → Prop
c✝ : Set α
inst✝ : Preorder α
s : Set α
ih :
∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub
x : α
hxs : x ∈ s
c : Set α
hcs : c ⊆ {y | y ∈ s ∧ x ≤ y}
hc : IsChain (fun x x_1 => x ≤ x_1) c
y : α
hy : y ∈ c
⊢ ∃ ub, ub ∈ {y | y ∈ s ∧ x ≤ y} ∧ ∀ (z : α), z ∈ c → z ≤ ub
[PROOFSTEP]
rcases ih c (fun z hz => (hcs hz).1) hc y hy with ⟨z, hzs, hz⟩
[GOAL]
case refine_1.inr.intro.intro.intro
α : Type u_1
β : Type u_2
r : α → α → Prop
c✝ : Set α
inst✝ : Preorder α
s : Set α
ih :
∀ (c : Set α), c ⊆ s → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ s ∧ ∀ (z : α), z ∈ c → z ≤ ub
x : α
hxs : x ∈ s
c : Set α
hcs : c ⊆ {y | y ∈ s ∧ x ≤ y}
hc : IsChain (fun x x_1 => x ≤ x_1) c
y : α
hy : y ∈ c
z : α
hzs : z ∈ s
hz : ∀ (z_1 : α), z_1 ∈ c → z_1 ≤ z
⊢ ∃ ub, ub ∈ {y | y ∈ s ∧ x ≤ y} ∧ ∀ (z : α), z ∈ c → z ≤ ub
[PROOFSTEP]
exact ⟨z, ⟨hzs, (hcs hy).2.trans <| hz _ hy⟩, hz⟩
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
inst✝ : Preorder α
a : α
ih :
∀ (c : Set α),
c ⊆ Ici a → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, a ≤ ub ∧ ∀ (z : α), z ∈ c → z ≤ ub
x : α
hax : a ≤ x
⊢ ∀ (c : Set α),
c ⊆ Ici a → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ Ici a ∧ ∀ (z : α), z ∈ c → z ≤ ub
[PROOFSTEP]
simpa using ih
[GOAL]
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
hc : IsChain r c
⊢ ∃ M, IsMaxChain r M ∧ c ⊆ M
[PROOFSTEP]
have H := zorn_subset_nonempty {s | c ⊆ s ∧ IsChain r s} ?_ c ⟨Subset.rfl, hc⟩
[GOAL]
case refine_2
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
hc : IsChain r c
H : ∃ m, m ∈ {s | c ⊆ s ∧ IsChain r s} ∧ c ⊆ m ∧ ∀ (a : Set α), a ∈ {s | c ⊆ s ∧ IsChain r s} → m ⊆ a → a = m
⊢ ∃ M, IsMaxChain r M ∧ c ⊆ M
[PROOFSTEP]
obtain ⟨M, ⟨_, hM₀⟩, hM₁, hM₂⟩ := H
[GOAL]
case refine_2.intro.intro.intro.intro
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
hc : IsChain r c
M : Set α
left✝ : c ⊆ M
hM₀ : IsChain r M
hM₁ : c ⊆ M
hM₂ : ∀ (a : Set α), a ∈ {s | c ⊆ s ∧ IsChain r s} → M ⊆ a → a = M
⊢ ∃ M, IsMaxChain r M ∧ c ⊆ M
[PROOFSTEP]
exact ⟨M, ⟨hM₀, fun d hd hMd => (hM₂ _ ⟨hM₁.trans hMd, hd⟩ hMd).symm⟩, hM₁⟩
[GOAL]
case refine_1
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
hc : IsChain r c
⊢ ∀ (c_1 : Set (Set α)),
c_1 ⊆ {s | c ⊆ s ∧ IsChain r s} →
IsChain (fun x x_1 => x ⊆ x_1) c_1 →
Set.Nonempty c_1 → ∃ ub, ub ∈ {s | c ⊆ s ∧ IsChain r s} ∧ ∀ (s : Set α), s ∈ c_1 → s ⊆ ub
[PROOFSTEP]
rintro cs hcs₀ hcs₁ ⟨s, hs⟩
[GOAL]
case refine_1.intro
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
hc : IsChain r c
cs : Set (Set α)
hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s}
hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs
s : Set α
hs : s ∈ cs
⊢ ∃ ub, ub ∈ {s | c ⊆ s ∧ IsChain r s} ∧ ∀ (s : Set α), s ∈ cs → s ⊆ ub
[PROOFSTEP]
refine' ⟨⋃₀ cs, ⟨fun _ ha => Set.mem_sUnion_of_mem ((hcs₀ hs).left ha) hs, _⟩, fun _ => Set.subset_sUnion_of_mem⟩
[GOAL]
case refine_1.intro
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
hc : IsChain r c
cs : Set (Set α)
hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s}
hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs
s : Set α
hs : s ∈ cs
⊢ IsChain r (⋃₀ cs)
[PROOFSTEP]
rintro y ⟨sy, hsy, hysy⟩ z ⟨sz, hsz, hzsz⟩ hyz
[GOAL]
case refine_1.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
hc : IsChain r c
cs : Set (Set α)
hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s}
hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs
s : Set α
hs : s ∈ cs
y : α
sy : Set α
hsy : sy ∈ cs
hysy : y ∈ sy
z : α
sz : Set α
hsz : sz ∈ cs
hzsz : z ∈ sz
hyz : y ≠ z
⊢ r y z ∨ r z y
[PROOFSTEP]
obtain rfl | hsseq := eq_or_ne sy sz
[GOAL]
case refine_1.intro.intro.intro.intro.intro.inl
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
hc : IsChain r c
cs : Set (Set α)
hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s}
hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs
s : Set α
hs : s ∈ cs
y : α
sy : Set α
hsy : sy ∈ cs
hysy : y ∈ sy
z : α
hyz : y ≠ z
hsz : sy ∈ cs
hzsz : z ∈ sy
⊢ r y z ∨ r z y
[PROOFSTEP]
exact (hcs₀ hsy).right hysy hzsz hyz
[GOAL]
case refine_1.intro.intro.intro.intro.intro.inr
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
hc : IsChain r c
cs : Set (Set α)
hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s}
hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs
s : Set α
hs : s ∈ cs
y : α
sy : Set α
hsy : sy ∈ cs
hysy : y ∈ sy
z : α
sz : Set α
hsz : sz ∈ cs
hzsz : z ∈ sz
hyz : y ≠ z
hsseq : sy ≠ sz
⊢ r y z ∨ r z y
[PROOFSTEP]
cases' hcs₁ hsy hsz hsseq with h h
[GOAL]
case refine_1.intro.intro.intro.intro.intro.inr.inl
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
hc : IsChain r c
cs : Set (Set α)
hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s}
hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs
s : Set α
hs : s ∈ cs
y : α
sy : Set α
hsy : sy ∈ cs
hysy : y ∈ sy
z : α
sz : Set α
hsz : sz ∈ cs
hzsz : z ∈ sz
hyz : y ≠ z
hsseq : sy ≠ sz
h : (fun x x_1 => x ⊆ x_1) sy sz
⊢ r y z ∨ r z y
[PROOFSTEP]
exact (hcs₀ hsz).right (h hysy) hzsz hyz
[GOAL]
case refine_1.intro.intro.intro.intro.intro.inr.inr
α : Type u_1
β : Type u_2
r : α → α → Prop
c : Set α
hc : IsChain r c
cs : Set (Set α)
hcs₀ : cs ⊆ {s | c ⊆ s ∧ IsChain r s}
hcs₁ : IsChain (fun x x_1 => x ⊆ x_1) cs
s : Set α
hs : s ∈ cs
y : α
sy : Set α
hsy : sy ∈ cs
hysy : y ∈ sy
z : α
sz : Set α
hsz : sz ∈ cs
hzsz : z ∈ sz
hyz : y ≠ z
hsseq : sy ≠ sz
h : (fun x x_1 => x ⊆ x_1) sz sy
⊢ r y z ∨ r z y
[PROOFSTEP]
exact (hcs₀ hsy).right hysy (h hzsz) hyz
| {"mathlib_filename": "Mathlib.Order.Zorn", "llama_tokens": 5170} |
[GOAL]
α : Type u_1
inst✝ : CircularOrder α
a b c : α
⊢ sbtw a b c ↔ ¬btw c b a
[PROOFSTEP]
rw [sbtw_iff_btw_not_btw]
[GOAL]
α : Type u_1
inst✝ : CircularOrder α
a b c : α
⊢ btw a b c ∧ ¬btw c b a ↔ ¬btw c b a
[PROOFSTEP]
exact and_iff_right_of_imp (btw_total _ _ _).resolve_left
[GOAL]
α : Type u_1
inst✝ : CircularOrder α
a b : α
⊢ (cIcc a b)ᶜ = cIoo b a
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
inst✝ : CircularOrder α
a b x✝ : α
⊢ x✝ ∈ (cIcc a b)ᶜ ↔ x✝ ∈ cIoo b a
[PROOFSTEP]
rw [Set.mem_cIoo, sbtw_iff_not_btw, cIcc, mem_compl_iff, mem_setOf]
[GOAL]
α : Type u_1
inst✝ : CircularOrder α
a b : α
⊢ (cIoo a b)ᶜ = cIcc b a
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
inst✝ : CircularOrder α
a b x✝ : α
⊢ x✝ ∈ (cIoo a b)ᶜ ↔ x✝ ∈ cIcc b a
[PROOFSTEP]
rw [Set.mem_cIcc, btw_iff_not_sbtw, cIoo, mem_compl_iff, mem_setOf]
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
h : btw a b c
⊢ btw b c a
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
h : btw a b c
⊢ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ a ≤ b ∨ a ≤ b ∧ b ≤ c
[PROOFSTEP]
rwa [← or_assoc, or_comm]
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
⊢ sbtw a b c ↔ btw a b c ∧ ¬btw c b a
[PROOFSTEP]
simp_rw [lt_iff_le_not_le]
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
⊢ (a ≤ b ∧ ¬b ≤ a) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ a ≤ b ∧ ¬b ≤ a ↔
(a ≤ b ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ a ≤ b) ∧ ¬(c ≤ b ∧ b ≤ a ∨ b ≤ a ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b)
[PROOFSTEP]
have h1 := le_trans a b c
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
h1 : a ≤ b → b ≤ c → a ≤ c
⊢ (a ≤ b ∧ ¬b ≤ a) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ a ≤ b ∧ ¬b ≤ a ↔
(a ≤ b ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ a ≤ b) ∧ ¬(c ≤ b ∧ b ≤ a ∨ b ≤ a ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b)
[PROOFSTEP]
have h2 := le_trans b c a
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
h1 : a ≤ b → b ≤ c → a ≤ c
h2 : b ≤ c → c ≤ a → b ≤ a
⊢ (a ≤ b ∧ ¬b ≤ a) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ a ≤ b ∧ ¬b ≤ a ↔
(a ≤ b ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ a ≤ b) ∧ ¬(c ≤ b ∧ b ≤ a ∨ b ≤ a ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b)
[PROOFSTEP]
have h3 := le_trans c a b
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
h1 : a ≤ b → b ≤ c → a ≤ c
h2 : b ≤ c → c ≤ a → b ≤ a
h3 : c ≤ a → a ≤ b → c ≤ b
⊢ (a ≤ b ∧ ¬b ≤ a) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ a ≤ b ∧ ¬b ≤ a ↔
(a ≤ b ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ a ≤ b) ∧ ¬(c ≤ b ∧ b ≤ a ∨ b ≤ a ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b)
[PROOFSTEP]
revert h1 h2 h3
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
⊢ (a ≤ b → b ≤ c → a ≤ c) →
(b ≤ c → c ≤ a → b ≤ a) →
(c ≤ a → a ≤ b → c ≤ b) →
((a ≤ b ∧ ¬b ≤ a) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ a ≤ b ∧ ¬b ≤ a ↔
(a ≤ b ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ a ≤ b) ∧ ¬(c ≤ b ∧ b ≤ a ∨ b ≤ a ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b))
[PROOFSTEP]
generalize (a ≤ b) = p1
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 : Prop
⊢ (p1 → b ≤ c → a ≤ c) →
(b ≤ c → c ≤ a → b ≤ a) →
(c ≤ a → p1 → c ≤ b) →
((p1 ∧ ¬b ≤ a) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ p1 ∧ ¬b ≤ a ↔
(p1 ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ p1) ∧ ¬(c ≤ b ∧ b ≤ a ∨ b ≤ a ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b))
[PROOFSTEP]
generalize (b ≤ a) = p2
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 : Prop
⊢ (p1 → b ≤ c → a ≤ c) →
(b ≤ c → c ≤ a → p2) →
(c ≤ a → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬a ≤ c ∨ (c ≤ a ∧ ¬a ≤ c) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ a ≤ c ∨ a ≤ c ∧ c ≤ b))
[PROOFSTEP]
generalize (a ≤ c) = p3
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 : Prop
⊢ (p1 → b ≤ c → p3) →
(b ≤ c → c ≤ a → p2) →
(c ≤ a → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ c ≤ a ∧ ¬p3 ∨ (c ≤ a ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ b ≤ c ∨ b ≤ c ∧ c ≤ a ∨ c ≤ a ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
generalize (c ≤ a) = p4
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 : Prop
⊢ (p1 → b ≤ c → p3) →
(b ≤ c → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ b ≤ c ∧ ¬c ≤ b ∨ (b ≤ c ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ b ≤ c ∨ b ≤ c ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
generalize (b ≤ c) = p5
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p1
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p1
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h : p1
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p2
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h : p1
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p2
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h : ¬p1
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p2
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h : ¬p1
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p2
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝ : p1
h : p2
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p3
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝ : p1
h : p2
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p3
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝ : p1
h : ¬p2
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p3
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝ : p1
h : ¬p2
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p3
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝ : ¬p1
h : p2
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p3
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝ : ¬p1
h : p2
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p3
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝ : ¬p1
h : ¬p2
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p3
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝ : ¬p1
h : ¬p2
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p3
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : p1
h✝ : p2
h : p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : p1
h✝ : p2
h : p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : p1
h✝ : p2
h : ¬p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : p1
h✝ : p2
h : ¬p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : p1
h✝ : ¬p2
h : p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : p1
h✝ : ¬p2
h : p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : p1
h✝ : ¬p2
h : ¬p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : p1
h✝ : ¬p2
h : ¬p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : ¬p1
h✝ : p2
h : p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : ¬p1
h✝ : p2
h : p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : ¬p1
h✝ : p2
h : ¬p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : ¬p1
h✝ : p2
h : ¬p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : ¬p1
h✝ : ¬p2
h : p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : ¬p1
h✝ : ¬p2
h : p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : ¬p1
h✝ : ¬p2
h : ¬p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝¹ : ¬p1
h✝ : ¬p2
h : ¬p3
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p4
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : p2
h✝ : p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : p2
h✝ : p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : p2
h✝ : p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : p2
h✝ : p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : p2
h✝ : ¬p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : p2
h✝ : ¬p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : p2
h✝ : ¬p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : p2
h✝ : ¬p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : ¬p2
h✝ : p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : ¬p2
h✝ : p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : ¬p2
h✝ : p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : ¬p2
h✝ : p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : ¬p2
h✝ : ¬p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : ¬p2
h✝ : ¬p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : ¬p2
h✝ : ¬p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : p1
h✝¹ : ¬p2
h✝ : ¬p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : p2
h✝ : p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : p2
h✝ : p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : p2
h✝ : p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : p2
h✝ : p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : p2
h✝ : ¬p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : p2
h✝ : ¬p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : p2
h✝ : ¬p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : p2
h✝ : ¬p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : ¬p2
h✝ : p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : ¬p2
h✝ : p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : ¬p2
h✝ : p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : ¬p2
h✝ : p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : ¬p2
h✝ : ¬p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : ¬p2
h✝ : ¬p3
h : p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : ¬p2
h✝ : ¬p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝² : ¬p1
h✝¹ : ¬p2
h✝ : ¬p3
h : ¬p4
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
by_cases p5
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : p2
h✝¹ : p3
h✝ : p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : p2
h✝¹ : p3
h✝ : p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : p2
h✝¹ : p3
h✝ : ¬p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : p2
h✝¹ : p3
h✝ : ¬p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : p2
h✝¹ : ¬p3
h✝ : p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : p2
h✝¹ : ¬p3
h✝ : p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : p2
h✝¹ : ¬p3
h✝ : ¬p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : p2
h✝¹ : ¬p3
h✝ : ¬p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : ¬p2
h✝¹ : p3
h✝ : p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : ¬p2
h✝¹ : p3
h✝ : p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : ¬p2
h✝¹ : p3
h✝ : ¬p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : ¬p2
h✝¹ : p3
h✝ : ¬p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : ¬p2
h✝¹ : ¬p3
h✝ : p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : ¬p2
h✝¹ : ¬p3
h✝ : p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : ¬p2
h✝¹ : ¬p3
h✝ : ¬p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : p1
h✝² : ¬p2
h✝¹ : ¬p3
h✝ : ¬p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : p2
h✝¹ : p3
h✝ : p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : p2
h✝¹ : p3
h✝ : p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : p2
h✝¹ : p3
h✝ : ¬p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : p2
h✝¹ : p3
h✝ : ¬p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : p2
h✝¹ : ¬p3
h✝ : p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : p2
h✝¹ : ¬p3
h✝ : p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : p2
h✝¹ : ¬p3
h✝ : ¬p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : p2
h✝¹ : ¬p3
h✝ : ¬p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : ¬p2
h✝¹ : p3
h✝ : p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : ¬p2
h✝¹ : p3
h✝ : p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : ¬p2
h✝¹ : p3
h✝ : ¬p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : ¬p2
h✝¹ : p3
h✝ : ¬p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : ¬p2
h✝¹ : ¬p3
h✝ : p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : ¬p2
h✝¹ : ¬p3
h✝ : p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case pos
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : ¬p2
h✝¹ : ¬p3
h✝ : ¬p4
h : p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝ : Preorder α
a b c : α
p1 p2 p3 p4 p5 : Prop
h✝³ : ¬p1
h✝² : ¬p2
h✝¹ : ¬p3
h✝ : ¬p4
h : ¬p5
⊢ (p1 → p5 → p3) →
(p5 → p4 → p2) →
(p4 → p1 → c ≤ b) →
((p1 ∧ ¬p2) ∧ p5 ∧ ¬c ≤ b ∨ (p5 ∧ ¬c ≤ b) ∧ p4 ∧ ¬p3 ∨ (p4 ∧ ¬p3) ∧ p1 ∧ ¬p2 ↔
(p1 ∧ p5 ∨ p5 ∧ p4 ∨ p4 ∧ p1) ∧ ¬(c ≤ b ∧ p2 ∨ p2 ∧ p3 ∨ p3 ∧ c ≤ b))
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
inst✝ : Preorder α
a b c d : α
⊢ sbtw a b c → sbtw b d c → sbtw a d c
[PROOFSTEP]
rintro (⟨hab, hbc⟩ | ⟨hbc, hca⟩ | ⟨hca, hab⟩) (⟨hbd, hdc⟩ | ⟨hdc, hcb⟩ | ⟨hcb, hbd⟩)
[GOAL]
case inl.intro.inl.intro
α : Type u_1
inst✝ : Preorder α
a b c d : α
hab : a < b
hbc : b < c
hbd : b < d
hdc : d < c
⊢ sbtw a d c
[PROOFSTEP]
exact Or.inl ⟨hab.trans hbd, hdc⟩
[GOAL]
case inl.intro.inr.inl.intro
α : Type u_1
inst✝ : Preorder α
a b c d : α
hab : a < b
hbc : b < c
hdc : d < c
hcb : c < b
⊢ sbtw a d c
[PROOFSTEP]
exact (hbc.not_lt hcb).elim
[GOAL]
case inl.intro.inr.inr.intro
α : Type u_1
inst✝ : Preorder α
a b c d : α
hab : a < b
hbc : b < c
hcb : c < b
hbd : b < d
⊢ sbtw a d c
[PROOFSTEP]
exact (hbc.not_lt hcb).elim
[GOAL]
case inr.inl.intro.inl.intro
α : Type u_1
inst✝ : Preorder α
a b c d : α
hbc : b < c
hca : c < a
hbd : b < d
hdc : d < c
⊢ sbtw a d c
[PROOFSTEP]
exact Or.inr (Or.inl ⟨hdc, hca⟩)
[GOAL]
case inr.inl.intro.inr.inl.intro
α : Type u_1
inst✝ : Preorder α
a b c d : α
hbc : b < c
hca : c < a
hdc : d < c
hcb : c < b
⊢ sbtw a d c
[PROOFSTEP]
exact Or.inr (Or.inl ⟨hdc, hca⟩)
[GOAL]
case inr.inl.intro.inr.inr.intro
α : Type u_1
inst✝ : Preorder α
a b c d : α
hbc : b < c
hca : c < a
hcb : c < b
hbd : b < d
⊢ sbtw a d c
[PROOFSTEP]
exact (hbc.not_lt hcb).elim
[GOAL]
case inr.inr.intro.inl.intro
α : Type u_1
inst✝ : Preorder α
a b c d : α
hca : c < a
hab : a < b
hbd : b < d
hdc : d < c
⊢ sbtw a d c
[PROOFSTEP]
exact Or.inr (Or.inl ⟨hdc, hca⟩)
[GOAL]
case inr.inr.intro.inr.inl.intro
α : Type u_1
inst✝ : Preorder α
a b c d : α
hca : c < a
hab : a < b
hdc : d < c
hcb : c < b
⊢ sbtw a d c
[PROOFSTEP]
exact Or.inr (Or.inl ⟨hdc, hca⟩)
[GOAL]
case inr.inr.intro.inr.inr.intro
α : Type u_1
inst✝ : Preorder α
a b c d : α
hca : c < a
hab : a < b
hcb : c < b
hbd : b < d
⊢ sbtw a d c
[PROOFSTEP]
exact Or.inr (Or.inr ⟨hca, hab.trans hbd⟩)
[GOAL]
α : Type u_1
inst✝ : PartialOrder α
src✝ : CircularPreorder α := Preorder.toCircularPreorder α
a b c : α
⊢ btw a b c → btw c b a → a = b ∨ b = c ∨ c = a
[PROOFSTEP]
rintro (⟨hab, hbc⟩ | ⟨hbc, hca⟩ | ⟨hca, hab⟩) (⟨hcb, hba⟩ | ⟨hba, hac⟩ | ⟨hac, hcb⟩)
[GOAL]
case inl.intro.inl.intro
α : Type u_1
inst✝ : PartialOrder α
src✝ : CircularPreorder α := Preorder.toCircularPreorder α
a b c : α
hab : a ≤ b
hbc : b ≤ c
hcb : c ≤ b
hba : b ≤ a
⊢ a = b ∨ b = c ∨ c = a
[PROOFSTEP]
exact Or.inl (hab.antisymm hba)
[GOAL]
case inl.intro.inr.inl.intro
α : Type u_1
inst✝ : PartialOrder α
src✝ : CircularPreorder α := Preorder.toCircularPreorder α
a b c : α
hab : a ≤ b
hbc : b ≤ c
hba : b ≤ a
hac : a ≤ c
⊢ a = b ∨ b = c ∨ c = a
[PROOFSTEP]
exact Or.inl (hab.antisymm hba)
[GOAL]
case inl.intro.inr.inr.intro
α : Type u_1
inst✝ : PartialOrder α
src✝ : CircularPreorder α := Preorder.toCircularPreorder α
a b c : α
hab : a ≤ b
hbc : b ≤ c
hac : a ≤ c
hcb : c ≤ b
⊢ a = b ∨ b = c ∨ c = a
[PROOFSTEP]
exact Or.inr (Or.inl <| hbc.antisymm hcb)
[GOAL]
case inr.inl.intro.inl.intro
α : Type u_1
inst✝ : PartialOrder α
src✝ : CircularPreorder α := Preorder.toCircularPreorder α
a b c : α
hbc : b ≤ c
hca : c ≤ a
hcb : c ≤ b
hba : b ≤ a
⊢ a = b ∨ b = c ∨ c = a
[PROOFSTEP]
exact Or.inr (Or.inl <| hbc.antisymm hcb)
[GOAL]
case inr.inl.intro.inr.inl.intro
α : Type u_1
inst✝ : PartialOrder α
src✝ : CircularPreorder α := Preorder.toCircularPreorder α
a b c : α
hbc : b ≤ c
hca : c ≤ a
hba : b ≤ a
hac : a ≤ c
⊢ a = b ∨ b = c ∨ c = a
[PROOFSTEP]
exact Or.inr (Or.inr <| hca.antisymm hac)
[GOAL]
case inr.inl.intro.inr.inr.intro
α : Type u_1
inst✝ : PartialOrder α
src✝ : CircularPreorder α := Preorder.toCircularPreorder α
a b c : α
hbc : b ≤ c
hca : c ≤ a
hac : a ≤ c
hcb : c ≤ b
⊢ a = b ∨ b = c ∨ c = a
[PROOFSTEP]
exact Or.inr (Or.inl <| hbc.antisymm hcb)
[GOAL]
case inr.inr.intro.inl.intro
α : Type u_1
inst✝ : PartialOrder α
src✝ : CircularPreorder α := Preorder.toCircularPreorder α
a b c : α
hca : c ≤ a
hab : a ≤ b
hcb : c ≤ b
hba : b ≤ a
⊢ a = b ∨ b = c ∨ c = a
[PROOFSTEP]
exact Or.inl (hab.antisymm hba)
[GOAL]
case inr.inr.intro.inr.inl.intro
α : Type u_1
inst✝ : PartialOrder α
src✝ : CircularPreorder α := Preorder.toCircularPreorder α
a b c : α
hca : c ≤ a
hab : a ≤ b
hba : b ≤ a
hac : a ≤ c
⊢ a = b ∨ b = c ∨ c = a
[PROOFSTEP]
exact Or.inl (hab.antisymm hba)
[GOAL]
case inr.inr.intro.inr.inr.intro
α : Type u_1
inst✝ : PartialOrder α
src✝ : CircularPreorder α := Preorder.toCircularPreorder α
a b c : α
hca : c ≤ a
hab : a ≤ b
hac : a ≤ c
hcb : c ≤ b
⊢ a = b ∨ b = c ∨ c = a
[PROOFSTEP]
exact Or.inr (Or.inr <| hca.antisymm hac)
[GOAL]
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
cases' le_total a b with hab hba
[GOAL]
case inl
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hab : a ≤ b
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
cases' le_total b c with hbc hcb
[GOAL]
case inr
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hba : b ≤ a
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
cases' le_total b c with hbc hcb
[GOAL]
case inl.inl
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hab : a ≤ b
hbc : b ≤ c
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
cases' le_total c a with hca hac
[GOAL]
case inl.inr
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hab : a ≤ b
hcb : c ≤ b
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
cases' le_total c a with hca hac
[GOAL]
case inr.inl
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hba : b ≤ a
hbc : b ≤ c
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
cases' le_total c a with hca hac
[GOAL]
case inr.inr
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hba : b ≤ a
hcb : c ≤ b
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
cases' le_total c a with hca hac
[GOAL]
case inl.inl.inl
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hab : a ≤ b
hbc : b ≤ c
hca : c ≤ a
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
exact Or.inl (Or.inl ⟨hab, hbc⟩)
[GOAL]
case inl.inl.inr
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hab : a ≤ b
hbc : b ≤ c
hac : a ≤ c
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
exact Or.inl (Or.inl ⟨hab, hbc⟩)
[GOAL]
case inl.inr.inl
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hab : a ≤ b
hcb : c ≤ b
hca : c ≤ a
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
exact Or.inl (Or.inr <| Or.inr ⟨hca, hab⟩)
[GOAL]
case inl.inr.inr
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hab : a ≤ b
hcb : c ≤ b
hac : a ≤ c
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
exact Or.inr (Or.inr <| Or.inr ⟨hac, hcb⟩)
[GOAL]
case inr.inl.inl
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hba : b ≤ a
hbc : b ≤ c
hca : c ≤ a
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
exact Or.inl (Or.inr <| Or.inl ⟨hbc, hca⟩)
[GOAL]
case inr.inl.inr
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hba : b ≤ a
hbc : b ≤ c
hac : a ≤ c
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
exact Or.inr (Or.inr <| Or.inl ⟨hba, hac⟩)
[GOAL]
case inr.inr.inl
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hba : b ≤ a
hcb : c ≤ b
hca : c ≤ a
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
exact Or.inr (Or.inl ⟨hcb, hba⟩)
[GOAL]
case inr.inr.inr
α : Type u_1
inst✝ : LinearOrder α
src✝ : CircularPartialOrder α := PartialOrder.toCircularPartialOrder α
a b c : α
hba : b ≤ a
hcb : c ≤ b
hac : a ≤ c
⊢ btw a b c ∨ btw c b a
[PROOFSTEP]
exact Or.inr (Or.inr <| Or.inl ⟨hba, hac⟩)
| {"mathlib_filename": "Mathlib.Order.Circular", "llama_tokens": 31533} |
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
⊢ ∀ ⦃b : α⦄, b ∈ {a} → r a b → r b a
[PROOFSTEP]
rintro b (rfl : b = a)
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
b✝ b : α
⊢ r b b → r b b
[PROOFSTEP]
exact id
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
inst✝ : IsAntisymm α r
x : α
⊢ x ∈ maximals r s ↔ x ∈ s ∧ ∀ ⦃y : α⦄, y ∈ s → r x y → x = y
[PROOFSTEP]
simp only [maximals, Set.mem_sep_iff, and_congr_right_iff]
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
inst✝ : IsAntisymm α r
x : α
⊢ x ∈ s → ((∀ ⦃b : α⦄, b ∈ s → r x b → r b x) ↔ ∀ ⦃y : α⦄, y ∈ s → r x y → x = y)
[PROOFSTEP]
refine' fun _ ↦ ⟨fun h y hys hxy ↦ antisymm hxy (h hys hxy), fun h y hys hxy ↦ _⟩
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
inst✝ : IsAntisymm α r
x : α
x✝ : x ∈ s
h : ∀ ⦃y : α⦄, y ∈ s → r x y → x = y
y : α
hys : y ∈ s
hxy : r x y
⊢ r y x
[PROOFSTEP]
convert hxy
[GOAL]
case h.e'_1
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
inst✝ : IsAntisymm α r
x : α
x✝ : x ∈ s
h : ∀ ⦃y : α⦄, y ∈ s → r x y → x = y
y : α
hys : y ∈ s
hxy : r x y
⊢ y = x
[PROOFSTEP]
rw [h hys hxy]
[GOAL]
case h.e'_2
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
inst✝ : IsAntisymm α r
x : α
x✝ : x ∈ s
h : ∀ ⦃y : α⦄, y ∈ s → r x y → x = y
y : α
hys : y ∈ s
hxy : r x y
⊢ x = y
[PROOFSTEP]
rw [h hys hxy]
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
inst✝¹ : IsAntisymm α r
x : α
rlt : α → α → Prop
inst✝ : IsNonstrictStrictOrder α r rlt
⊢ x ∈ minimals r s ↔ x ∈ s ∧ ∀ ⦃y : α⦄, rlt y x → ¬y ∈ s
[PROOFSTEP]
simp [minimals, right_iff_left_not_left_of r rlt, not_imp_not, imp.swap (a := _ ∈ _)]
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
inst✝¹ : IsAntisymm α r
x : α
rlt : α → α → Prop
inst✝ : IsNonstrictStrictOrder α r rlt
⊢ x ∈ maximals r s ↔ x ∈ s ∧ ∀ ⦃y : α⦄, rlt x y → ¬y ∈ s
[PROOFSTEP]
simp [maximals, right_iff_left_not_left_of r rlt, not_imp_not, imp.swap (a := _ ∈ _)]
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
inst✝¹ : IsAntisymm α r
inst✝ : IsTrans α r
hts : t ⊆ s
h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ r y x
⊢ minimals r s = minimals r t
[PROOFSTEP]
refine
Set.ext fun a ↦ ⟨fun ⟨has, hmin⟩ ↦ ⟨?_, fun b hbt ↦ hmin (hts hbt)⟩, fun ⟨hat, hmin⟩ ↦ ⟨hts hat, fun b hbs hba ↦ ?_⟩⟩
[GOAL]
case refine_1
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b : α
inst✝¹ : IsAntisymm α r
inst✝ : IsTrans α r
hts : t ⊆ s
h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ r y x
a : α
x✝ : a ∈ minimals r s
has : a ∈ s
hmin : ∀ ⦃b : α⦄, b ∈ s → r b a → r a b
⊢ a ∈ t
[PROOFSTEP]
obtain ⟨a', ha', haa'⟩ := h _ has
[GOAL]
case refine_1.intro.intro
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b : α
inst✝¹ : IsAntisymm α r
inst✝ : IsTrans α r
hts : t ⊆ s
h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ r y x
a : α
x✝ : a ∈ minimals r s
has : a ∈ s
hmin : ∀ ⦃b : α⦄, b ∈ s → r b a → r a b
a' : α
ha' : a' ∈ t
haa' : r a' a
⊢ a ∈ t
[PROOFSTEP]
rwa [antisymm (hmin (hts ha') haa') haa']
[GOAL]
case refine_2
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
inst✝¹ : IsAntisymm α r
inst✝ : IsTrans α r
hts : t ⊆ s
h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ r y x
a : α
x✝ : a ∈ minimals r t
hat : a ∈ t
hmin : ∀ ⦃b : α⦄, b ∈ t → r b a → r a b
b : α
hbs : b ∈ s
hba : r b a
⊢ r a b
[PROOFSTEP]
obtain ⟨b', hb't, hb'b⟩ := h b hbs
[GOAL]
case refine_2.intro.intro
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
inst✝¹ : IsAntisymm α r
inst✝ : IsTrans α r
hts : t ⊆ s
h : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ r y x
a : α
x✝ : a ∈ minimals r t
hat : a ∈ t
hmin : ∀ ⦃b : α⦄, b ∈ t → r b a → r a b
b : α
hbs : b ∈ s
hba : r b a
b' : α
hb't : b' ∈ t
hb'b : r b' b
⊢ r a b
[PROOFSTEP]
rwa [antisymm (hmin hb't (Trans.trans hb'b hba)) (Trans.trans hb'b hba)]
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
inst✝ : IsSymm α r
⊢ maximals r s = minimals r s
[PROOFSTEP]
rw [minimals_of_symm, maximals_of_symm]
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
h : Set.Subsingleton s
⊢ maximals r s = s
[PROOFSTEP]
rcases h.eq_empty_or_singleton with (rfl | ⟨x, rfl⟩)
[GOAL]
case inl
α : Type u_1
r r₁ r₂ : α → α → Prop
t : Set α
a b : α
h : Set.Subsingleton ∅
⊢ maximals r ∅ = ∅
case inr.intro α : Type u_1 r r₁ r₂ : α → α → Prop t : Set α a b x : α h : Set.Subsingleton {x} ⊢ maximals r {x} = {x}
[PROOFSTEP]
exacts [minimals_empty _, maximals_singleton _ _]
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
inst✝ : IsAntisymm α r₂
h : ∀ (a b : α), r₁ a b → r₂ a b
a : α
ha : a ∈ maximals r₂ s
b : α
hb : b ∈ s
hab : r₁ a b
⊢ r₁ b a
[PROOFSTEP]
have := eq_of_mem_maximals ha hb (h _ _ hab)
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
inst✝ : IsAntisymm α r₂
h : ∀ (a b : α), r₁ a b → r₂ a b
a : α
ha : a ∈ maximals r₂ s
b : α
hb : b ∈ s
hab : r₁ a b
this : a = b
⊢ r₁ b a
[PROOFSTEP]
subst this
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b : α
inst✝ : IsAntisymm α r₂
h : ∀ (a b : α), r₁ a b → r₂ a b
a : α
ha : a ∈ maximals r₂ s
hb : a ∈ s
hab : r₁ a a
⊢ r₁ a a
[PROOFSTEP]
exact hab
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
inst✝ : IsAntisymm α r₂
h : ∀ (a b : α), r₁ a b → r₂ a b
a : α
ha : a ∈ minimals r₂ s
b : α
hb : b ∈ s
hab : r₁ b a
⊢ r₁ a b
[PROOFSTEP]
have := eq_of_mem_minimals ha hb (h _ _ hab)
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
inst✝ : IsAntisymm α r₂
h : ∀ (a b : α), r₁ a b → r₂ a b
a : α
ha : a ∈ minimals r₂ s
b : α
hb : b ∈ s
hab : r₁ b a
this : a = b
⊢ r₁ a b
[PROOFSTEP]
subst this
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b : α
inst✝ : IsAntisymm α r₂
h : ∀ (a b : α), r₁ a b → r₂ a b
a : α
ha : a ∈ minimals r₂ s
hb : a ∈ s
hab : r₁ a a
⊢ r₁ a a
[PROOFSTEP]
exact hab
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
⊢ maximals r (s ∪ t) ⊆ maximals r s ∪ maximals r t
[PROOFSTEP]
intro a ha
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b a : α
ha : a ∈ maximals r (s ∪ t)
⊢ a ∈ maximals r s ∪ maximals r t
[PROOFSTEP]
obtain h | h := ha.1
[GOAL]
case inl
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b a : α
ha : a ∈ maximals r (s ∪ t)
h : a ∈ s
⊢ a ∈ maximals r s ∪ maximals r t
[PROOFSTEP]
exact Or.inl ⟨h, fun b hb => ha.2 <| Or.inl hb⟩
[GOAL]
case inr
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b a : α
ha : a ∈ maximals r (s ∪ t)
h : a ∈ t
⊢ a ∈ maximals r s ∪ maximals r t
[PROOFSTEP]
exact Or.inr ⟨h, fun b hb => ha.2 <| Or.inr hb⟩
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
h : IsAntichain r s
a : α
ha : a ∈ s
b : α
hb : b ∈ s
hab : r a b
⊢ r b a
[PROOFSTEP]
obtain rfl := h.eq ha hb hab
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b : α
h : IsAntichain r s
a : α
ha hb : a ∈ s
hab : r a a
⊢ r a a
[PROOFSTEP]
exact hab
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
ht : IsAntichain r t
h : maximals r s ⊆ t
hs : ∀ ⦃a : α⦄, a ∈ t → ∃ b, b ∈ maximals r s ∧ r b a
⊢ maximals r s = t
[PROOFSTEP]
refine' h.antisymm fun a ha => _
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b : α
ht : IsAntichain r t
h : maximals r s ⊆ t
hs : ∀ ⦃a : α⦄, a ∈ t → ∃ b, b ∈ maximals r s ∧ r b a
a : α
ha : a ∈ t
⊢ a ∈ maximals r s
[PROOFSTEP]
obtain ⟨b, hb, hr⟩ := hs ha
[GOAL]
case intro.intro
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
ht : IsAntichain r t
h : maximals r s ⊆ t
hs : ∀ ⦃a : α⦄, a ∈ t → ∃ b, b ∈ maximals r s ∧ r b a
a : α
ha : a ∈ t
b : α
hb : b ∈ maximals r s
hr : r b a
⊢ a ∈ maximals r s
[PROOFSTEP]
rwa [of_not_not fun hab => ht (h hb) ha (Ne.symm hab) hr]
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a b : α
ht : IsAntichain r t
h : minimals r s ⊆ t
hs : ∀ ⦃a : α⦄, a ∈ t → ∃ b, b ∈ minimals r s ∧ r a b
⊢ minimals r s = t
[PROOFSTEP]
refine' h.antisymm fun a ha => _
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b : α
ht : IsAntichain r t
h : minimals r s ⊆ t
hs : ∀ ⦃a : α⦄, a ∈ t → ∃ b, b ∈ minimals r s ∧ r a b
a : α
ha : a ∈ t
⊢ a ∈ minimals r s
[PROOFSTEP]
obtain ⟨b, hb, hr⟩ := hs ha
[GOAL]
case intro.intro
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
ht : IsAntichain r t
h : minimals r s ⊆ t
hs : ∀ ⦃a : α⦄, a ∈ t → ∃ b, b ∈ minimals r s ∧ r a b
a : α
ha : a ∈ t
b : α
hb : b ∈ minimals r s
hr : r a b
⊢ a ∈ minimals r s
[PROOFSTEP]
rwa [of_not_not fun hab => ht ha (h hb) hab hr]
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
inst✝ : PartialOrder α
hs : IsAntichain (fun x x_1 => x ≤ x_1) s
a : α
x✝ : a ∈ minimals (fun x x_1 => x ≤ x_1) ↑(upperClosure s)
b : α
hb : b ∈ s
hba : b ≤ a
right✝ : ∀ ⦃b : α⦄, b ∈ ↑(upperClosure s) → (fun x x_1 => x ≤ x_1) b a → (fun x x_1 => x ≤ x_1) a b
⊢ a ∈ s
[PROOFSTEP]
rwa [eq_of_mem_minimals ‹a ∈ _› (subset_upperClosure hb) hba]
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
inst✝ : PartialOrder α
hs : IsAntichain (fun x x_1 => x ≤ x_1) s
a : α
ha : a ∈ s
b : α
x✝ : b ∈ ↑(upperClosure s)
hba : (fun x x_1 => x ≤ x_1) b a
c : α
hc : c ∈ s
hcb : c ≤ b
⊢ (fun x x_1 => x ≤ x_1) a b
[PROOFSTEP]
rwa [hs.eq' ha hc (hcb.trans hba)]
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
⊢ minimals s (f '' x) = f '' minimals r x
[PROOFSTEP]
ext a
[GOAL]
case h
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a✝ b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
a : β
⊢ a ∈ minimals s (f '' x) ↔ a ∈ f '' minimals r x
[PROOFSTEP]
simp only [minimals, mem_image, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂]
[GOAL]
case h
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a✝ b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
a : β
⊢ a ∈ {a | (∃ x_1, x_1 ∈ x ∧ f x_1 = a) ∧ ∀ (a_1 : α), a_1 ∈ x → s (f a_1) a → s a (f a_1)} ↔
∃ x_1, x_1 ∈ {a | a ∈ x ∧ ∀ ⦃b : α⦄, b ∈ x → r b a → r a b} ∧ f x_1 = a
[PROOFSTEP]
constructor
[GOAL]
case h.mp
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a✝ b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
a : β
⊢ a ∈ {a | (∃ x_1, x_1 ∈ x ∧ f x_1 = a) ∧ ∀ (a_1 : α), a_1 ∈ x → s (f a_1) a → s a (f a_1)} →
∃ x_1, x_1 ∈ {a | a ∈ x ∧ ∀ ⦃b : α⦄, b ∈ x → r b a → r a b} ∧ f x_1 = a
[PROOFSTEP]
rintro ⟨⟨a, ha, rfl⟩, h⟩
[GOAL]
case h.mp.intro.intro.intro
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a✝ b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
a : α
ha : a ∈ x
h : ∀ (a_1 : α), a_1 ∈ x → s (f a_1) (f a) → s (f a) (f a_1)
⊢ ∃ x_1, x_1 ∈ {a | a ∈ x ∧ ∀ ⦃b : α⦄, b ∈ x → r b a → r a b} ∧ f x_1 = f a
[PROOFSTEP]
exact ⟨a, ⟨ha, fun y hy hya ↦ (hf ha hy).mpr (h _ hy ((hf hy ha).mp hya))⟩, rfl⟩
[GOAL]
case h.mpr
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a✝ b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
a : β
⊢ (∃ x_1, x_1 ∈ {a | a ∈ x ∧ ∀ ⦃b : α⦄, b ∈ x → r b a → r a b} ∧ f x_1 = a) →
a ∈ {a | (∃ x_1, x_1 ∈ x ∧ f x_1 = a) ∧ ∀ (a_2 : α), a_2 ∈ x → s (f a_2) a → s a (f a_2)}
[PROOFSTEP]
rintro ⟨a, ⟨⟨ha, h⟩, rfl⟩⟩
[GOAL]
case h.mpr.intro.intro.intro
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a✝ b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
a : α
ha : a ∈ x
h : ∀ ⦃b : α⦄, b ∈ x → r b a → r a b
⊢ f a ∈ {a | (∃ x_1, x_1 ∈ x ∧ f x_1 = a) ∧ ∀ (a_1 : α), a_1 ∈ x → s (f a_1) a → s a (f a_1)}
[PROOFSTEP]
exact ⟨⟨_, ha, rfl⟩, fun y hy hya ↦ (hf ha hy).mp (h hy ((hf hy ha).mpr hya))⟩
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
f : r ↪r s
x : Set α
⊢ minimals s (↑f '' x) = ↑f '' minimals r x
[PROOFSTEP]
rw [minimals_image_of_rel_iff_rel]
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
f : r ↪r s
x : Set α
⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (↑f a) (↑f a'))
[PROOFSTEP]
simp [f.map_rel_iff]
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
y : Set β
⊢ x ∩ f ⁻¹' minimals s (f '' x ∩ y) = minimals r (x ∩ f ⁻¹' y)
[PROOFSTEP]
ext a
[GOAL]
case h
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a✝ b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
y : Set β
a : α
⊢ a ∈ x ∩ f ⁻¹' minimals s (f '' x ∩ y) ↔ a ∈ minimals r (x ∩ f ⁻¹' y)
[PROOFSTEP]
simp only [minimals, mem_inter_iff, mem_image, and_imp, forall_exists_index, forall_apply_eq_imp_iff₂,
preimage_setOf_eq, mem_setOf_eq, mem_preimage]
[GOAL]
case h
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a✝ b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
y : Set β
a : α
⊢ (a ∈ x ∧
((∃ x_1, x_1 ∈ x ∧ f x_1 = f a) ∧ f a ∈ y) ∧
∀ (a_1 : α), a_1 ∈ x → f a_1 ∈ y → s (f a_1) (f a) → s (f a) (f a_1)) ↔
(a ∈ x ∧ f a ∈ y) ∧ ∀ ⦃b : α⦄, b ∈ x → f b ∈ y → r b a → r a b
[PROOFSTEP]
exact
⟨fun ⟨hax, ⟨_, hay⟩, h2⟩ ↦
⟨⟨hax, hay⟩, fun a₁ ha₁ ha₁y ha₁a ↦ (hf hax ha₁).mpr (h2 _ ha₁ ha₁y ((hf ha₁ hax).mp ha₁a))⟩, fun ⟨⟨hax, hay⟩, h⟩ ↦
⟨hax, ⟨⟨_, hax, rfl⟩, hay⟩, fun a' ha' ha'y hsa' ↦ (hf hax ha').mp (h ha' ha'y ((hf ha' hax).mpr hsa'))⟩⟩
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
y : Set β
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
hy : y ⊆ f '' x
⊢ x ∩ f ⁻¹' minimals s y = minimals r (x ∩ f ⁻¹' y)
[PROOFSTEP]
rw [← inter_eq_self_of_subset_right hy, inter_minimals_preimage_inter_eq_of_rel_iff_rel_on hf, preimage_inter, ←
inter_assoc, inter_eq_self_of_subset_left (subset_preimage_image f x)]
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
f : r ↪r s
x : Set α
y : Set β
⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (↑f a) (↑f a'))
[PROOFSTEP]
simp [f.map_rel_iff]
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
y : Set β
x : Set α
f : r ↪r s
h : y ⊆ ↑f '' x
⊢ x ∩ ↑f ⁻¹' minimals s y = minimals r (x ∩ ↑f ⁻¹' y)
[PROOFSTEP]
rw [inter_preimage_minimals_eq_of_rel_iff_rel_on_of_subset _ h]
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
y : Set β
x : Set α
f : r ↪r s
h : y ⊆ ↑f '' x
⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (↑f a) (↑f a'))
[PROOFSTEP]
simp [f.map_rel_iff]
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
f : r ↪r s
y : Set β
⊢ minimals r (↑f ⁻¹' y) = ↑f ⁻¹' minimals s (y ∩ range ↑f)
[PROOFSTEP]
convert (f.inter_preimage_minimals_eq univ y).symm
[GOAL]
case h.e'_2.h.e'_3
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
f : r ↪r s
y : Set β
⊢ ↑f ⁻¹' y = univ ∩ ↑f ⁻¹' y
case h.e'_3
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
f : r ↪r s
y : Set β
⊢ ↑f ⁻¹' minimals s (y ∩ range ↑f) = univ ∩ ↑f ⁻¹' minimals s (↑f '' univ ∩ y)
[PROOFSTEP]
simp [univ_inter]
[GOAL]
case h.e'_3
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
f : r ↪r s
y : Set β
⊢ ↑f ⁻¹' minimals s (y ∩ range ↑f) = univ ∩ ↑f ⁻¹' minimals s (↑f '' univ ∩ y)
[PROOFSTEP]
simp [inter_comm]
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
y : Set β
⊢ x ∩ f ⁻¹' maximals s (f '' x ∩ y) = maximals r (x ∩ f ⁻¹' y)
[PROOFSTEP]
apply inter_minimals_preimage_inter_eq_of_rel_iff_rel_on
[GOAL]
case hf
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
y : Set β
⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a' a ↔ s (f a') (f a))
[PROOFSTEP]
exact fun _ _ a b ↦ hf b a
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
y : Set β
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
hy : y ⊆ f '' x
⊢ x ∩ f ⁻¹' maximals s y = maximals r (x ∩ f ⁻¹' y)
[PROOFSTEP]
apply inter_preimage_minimals_eq_of_rel_iff_rel_on_of_subset _ hy
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f : α → β
r : α → α → Prop
s : β → β → Prop
x : Set α
y : Set β
hf : ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (f a) (f a'))
hy : y ⊆ f '' x
⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a' a ↔ s (f a') (f a))
[PROOFSTEP]
exact fun _ _ a b ↦ hf b a
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
f : r ↪r s
x : Set α
y : Set β
⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a' a ↔ s (↑f a') (↑f a))
[PROOFSTEP]
simp [f.map_rel_iff]
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
y : Set β
x : Set α
f : r ↪r s
h : y ⊆ ↑f '' x
⊢ x ∩ ↑f ⁻¹' maximals s y = maximals r (x ∩ ↑f ⁻¹' y)
[PROOFSTEP]
rw [inter_preimage_maximals_eq_of_rel_iff_rel_on_of_subset _ h]
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
y : Set β
x : Set α
f : r ↪r s
h : y ⊆ ↑f '' x
⊢ ∀ ⦃a a' : α⦄, a ∈ x → a' ∈ x → (r a a' ↔ s (↑f a) (↑f a'))
[PROOFSTEP]
simp [f.map_rel_iff]
[GOAL]
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
f : r ↪r s
y : Set β
⊢ maximals r (↑f ⁻¹' y) = ↑f ⁻¹' maximals s (y ∩ range ↑f)
[PROOFSTEP]
convert (f.inter_preimage_maximals_eq univ y).symm
[GOAL]
case h.e'_2.h.e'_3
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
f : r ↪r s
y : Set β
⊢ ↑f ⁻¹' y = univ ∩ ↑f ⁻¹' y
case h.e'_3
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
f : r ↪r s
y : Set β
⊢ ↑f ⁻¹' maximals s (y ∩ range ↑f) = univ ∩ ↑f ⁻¹' maximals s (↑f '' univ ∩ y)
[PROOFSTEP]
simp [univ_inter]
[GOAL]
case h.e'_3
β : Type u_2
α : Type u_1
r✝ r₁ r₂ : α → α → Prop
s✝ t : Set α
a b : α
inst✝ : PartialOrder α
f✝ : α → β
r : α → α → Prop
s : β → β → Prop
f : r ↪r s
y : Set β
⊢ ↑f ⁻¹' maximals s (y ∩ range ↑f) = univ ∩ ↑f ⁻¹' maximals s (↑f '' univ ∩ y)
[PROOFSTEP]
simp [inter_comm]
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
inst✝¹ inst✝ : PartialOrder α
a b : α
hab : a ≤ b
⊢ minimals (fun x x_1 => x ≤ x_1) (Icc a b) = {a}
[PROOFSTEP]
simp_rw [Icc, and_comm (a := (a ≤ _))]
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
inst✝¹ inst✝ : PartialOrder α
a b : α
hab : a ≤ b
⊢ minimals (fun x x_1 => x ≤ x_1) {x | x ≤ b ∧ a ≤ x} = {a}
[PROOFSTEP]
exact maximals_Icc (α := αᵒᵈ) hab
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
inst✝¹ inst✝ : PartialOrder α
a b : α
hab : a < b
⊢ minimals (fun x x_1 => x ≤ x_1) (Ico a b) = {a}
[PROOFSTEP]
simp_rw [Ico, and_comm (a := _ ≤ _)]
[GOAL]
α : Type u_1
r r₁ r₂ : α → α → Prop
s t : Set α
a✝ b✝ : α
inst✝¹ inst✝ : PartialOrder α
a b : α
hab : a < b
⊢ minimals (fun x x_1 => x ≤ x_1) {x | x < b ∧ a ≤ x} = {a}
[PROOFSTEP]
exact maximals_Ioc (α := αᵒᵈ) hab
| {"mathlib_filename": "Mathlib.Order.Minimal", "llama_tokens": 12231} |
[GOAL]
p q : Prop
⊢ p ≤ q ∨ q ≤ p
[PROOFSTEP]
by_cases h : q
[GOAL]
case pos
p q : Prop
h : q
⊢ p ≤ q ∨ q ≤ p
[PROOFSTEP]
simp [h]
[GOAL]
case neg
p q : Prop
h : ¬q
⊢ p ≤ q ∨ q ≤ p
[PROOFSTEP]
simp [h]
[GOAL]
⊢ LinearOrder Prop
[PROOFSTEP]
classical exact Lattice.toLinearOrder Prop
[GOAL]
⊢ LinearOrder Prop
[PROOFSTEP]
exact Lattice.toLinearOrder Prop
[GOAL]
ι : Type u_1
α' : ι → Type u_2
inst✝¹ : (i : ι) → PartialOrder (α' i)
inst✝ : (i : ι) → OrderBot (α' i)
f g : (i : ι) → α' i
⊢ Disjoint f g ↔ ∀ (i : ι), Disjoint (f i) (g i)
[PROOFSTEP]
classical
constructor
· intro h i x hf hg
refine' (update_le_iff.mp <| h (update_le_iff.mpr ⟨hf, fun _ _ => _⟩) (update_le_iff.mpr ⟨hg, fun _ _ => _⟩)).1
· exact bot_le
· exact bot_le
· intro h x hf hg i
apply h i (hf i) (hg i)
[GOAL]
ι : Type u_1
α' : ι → Type u_2
inst✝¹ : (i : ι) → PartialOrder (α' i)
inst✝ : (i : ι) → OrderBot (α' i)
f g : (i : ι) → α' i
⊢ Disjoint f g ↔ ∀ (i : ι), Disjoint (f i) (g i)
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α' : ι → Type u_2
inst✝¹ : (i : ι) → PartialOrder (α' i)
inst✝ : (i : ι) → OrderBot (α' i)
f g : (i : ι) → α' i
⊢ Disjoint f g → ∀ (i : ι), Disjoint (f i) (g i)
[PROOFSTEP]
intro h i x hf hg
[GOAL]
case mp
ι : Type u_1
α' : ι → Type u_2
inst✝¹ : (i : ι) → PartialOrder (α' i)
inst✝ : (i : ι) → OrderBot (α' i)
f g : (i : ι) → α' i
h : Disjoint f g
i : ι
x : α' i
hf : x ≤ f i
hg : x ≤ g i
⊢ x ≤ ⊥
[PROOFSTEP]
refine' (update_le_iff.mp <| h (update_le_iff.mpr ⟨hf, fun _ _ => _⟩) (update_le_iff.mpr ⟨hg, fun _ _ => _⟩)).1
[GOAL]
case mp.refine'_1
ι : Type u_1
α' : ι → Type u_2
inst✝¹ : (i : ι) → PartialOrder (α' i)
inst✝ : (i : ι) → OrderBot (α' i)
f g : (i : ι) → α' i
h : Disjoint f g
i : ι
x : α' i
hf : x ≤ f i
hg : x ≤ g i
x✝¹ : ι
x✝ : x✝¹ ≠ i
⊢ ?mp.refine'_2 x✝¹ ≤ f x✝¹
[PROOFSTEP]
exact bot_le
[GOAL]
case mp.refine'_3
ι : Type u_1
α' : ι → Type u_2
inst✝¹ : (i : ι) → PartialOrder (α' i)
inst✝ : (i : ι) → OrderBot (α' i)
f g : (i : ι) → α' i
h : Disjoint f g
i : ι
x : α' i
hf : x ≤ f i
hg : x ≤ g i
x✝¹ : ι
x✝ : x✝¹ ≠ i
⊢ ⊥ ≤ g x✝¹
[PROOFSTEP]
exact bot_le
[GOAL]
case mpr
ι : Type u_1
α' : ι → Type u_2
inst✝¹ : (i : ι) → PartialOrder (α' i)
inst✝ : (i : ι) → OrderBot (α' i)
f g : (i : ι) → α' i
⊢ (∀ (i : ι), Disjoint (f i) (g i)) → Disjoint f g
[PROOFSTEP]
intro h x hf hg i
[GOAL]
case mpr
ι : Type u_1
α' : ι → Type u_2
inst✝¹ : (i : ι) → PartialOrder (α' i)
inst✝ : (i : ι) → OrderBot (α' i)
f g : (i : ι) → α' i
h : ∀ (i : ι), Disjoint (f i) (g i)
x : (i : ι) → α' i
hf : x ≤ f
hg : x ≤ g
i : ι
⊢ x i ≤ ⊥ i
[PROOFSTEP]
apply h i (hf i) (hg i)
[GOAL]
ι : Type u_1
α' : ι → Type u_2
inst✝¹ : (i : ι) → PartialOrder (α' i)
inst✝ : (i : ι) → BoundedOrder (α' i)
f g : (i : ι) → α' i
⊢ IsCompl f g ↔ ∀ (i : ι), IsCompl (f i) (g i)
[PROOFSTEP]
simp_rw [_root_.isCompl_iff, disjoint_iff, codisjoint_iff, forall_and]
[GOAL]
P Q : Prop
⊢ IsCompl P Q ↔ ¬(P ↔ Q)
[PROOFSTEP]
rw [_root_.isCompl_iff, Prop.disjoint_iff, Prop.codisjoint_iff, not_iff]
[GOAL]
P Q : Prop
⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q)
[PROOFSTEP]
by_cases P
[GOAL]
P Q : Prop
⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q)
[PROOFSTEP]
by_cases P
[GOAL]
case pos
P Q : Prop
h : P
⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q)
[PROOFSTEP]
by_cases Q
[GOAL]
case pos
P Q : Prop
h : P
⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q)
[PROOFSTEP]
by_cases Q
[GOAL]
case neg
P Q : Prop
h : ¬P
⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q)
[PROOFSTEP]
by_cases Q
[GOAL]
case neg
P Q : Prop
h : ¬P
⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q)
[PROOFSTEP]
by_cases Q
[GOAL]
case pos
P Q : Prop
h✝ : P
h : Q
⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q)
[PROOFSTEP]
simp [*]
[GOAL]
case neg
P Q : Prop
h✝ : P
h : ¬Q
⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q)
[PROOFSTEP]
simp [*]
[GOAL]
case pos
P Q : Prop
h✝ : ¬P
h : Q
⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q)
[PROOFSTEP]
simp [*]
[GOAL]
case neg
P Q : Prop
h✝ : ¬P
h : ¬Q
⊢ ¬(P ∧ Q) ∧ (P ∨ Q) ↔ (¬P ↔ Q)
[PROOFSTEP]
simp [*]
| {"mathlib_filename": "Mathlib.Order.PropInstances", "llama_tokens": 2272} |
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
⊢ ⨅ (a : ι), ⨆ (b : κ a), f a b = ⨅ (a : ↑(range fun x => range (f x))), ⨆ (b : ↑↑a), ↑b
[PROOFSTEP]
simp_rw [iInf_subtype, iInf_range, iSup_subtype, iSup_range]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
g : (a : ↑(range fun x => range (f x))) → ↑↑a
⊢ ⨅ (a : ↑(range fun x => range (f x))), ↑(g a) ≤ ⨆ (g : (a : ι) → κ a), ⨅ (a : ι), f a (g a)
[PROOFSTEP]
refine le_trans ?_ <| le_iSup _ fun a => Classical.choose (g ⟨_, a, rfl⟩).2
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
g : (a : ↑(range fun x => range (f x))) → ↑↑a
⊢ ⨅ (a : ↑(range fun x => range (f x))), ↑(g a) ≤
⨅ (a : ι),
f a
((fun a =>
Classical.choose
(_ :
↑(g
{ val := (fun x => range (f x)) a,
property := (_ : ∃ y, (fun x => range (f x)) y = (fun x => range (f x)) a) }) ∈
↑{ val := (fun x => range (f x)) a,
property := (_ : ∃ y, (fun x => range (f x)) y = (fun x => range (f x)) a) }))
a)
[PROOFSTEP]
refine le_iInf fun a => le_trans (iInf_le _ ⟨range (f a), a, rfl⟩) ?_
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
g : (a : ↑(range fun x => range (f x))) → ↑↑a
a : ι
⊢ ↑(g { val := range (f a), property := (_ : ∃ y, (fun x => range (f x)) y = range (f a)) }) ≤
f a
((fun a =>
Classical.choose
(_ :
↑(g
{ val := (fun x => range (f x)) a,
property := (_ : ∃ y, (fun x => range (f x)) y = (fun x => range (f x)) a) }) ∈
↑{ val := (fun x => range (f x)) a,
property := (_ : ∃ y, (fun x => range (f x)) y = (fun x => range (f x)) a) }))
a)
[PROOFSTEP]
rw [← Classical.choose_spec (g ⟨_, a, rfl⟩).2]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
⊢ ⨆ (a : ι), ⨅ (b : κ a), f a b = ⨅ (g : (a : ι) → κ a), ⨆ (a : ι), f a (g a)
[PROOFSTEP]
refine le_antisymm iSup_iInf_le ?_
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
⊢ ⨅ (g : (a : ι) → κ a), ⨆ (a : ι), f a (g a) ≤ ⨆ (a : ι), ⨅ (b : κ a), f a b
[PROOFSTEP]
rw [iInf_iSup_eq]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
⊢ ⨆ (g : ((a : ι) → κ a) → ι), ⨅ (a : (a : ι) → κ a), f (g a) (a (g a)) ≤ ⨆ (a : ι), ⨅ (b : κ a), f a b
[PROOFSTEP]
refine iSup_le fun g => ?_
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
g : ((a : ι) → κ a) → ι
⊢ ⨅ (a : (a : ι) → κ a), f (g a) (a (g a)) ≤ ⨆ (a : ι), ⨅ (b : κ a), f a b
[PROOFSTEP]
have ⟨a, ha⟩ : ∃ a, ∀ b, ∃ f, ∃ h : a = g f, h ▸ b = f (g f) :=
of_not_not fun h => by
push_neg at h
choose h hh using h
have := hh _ h rfl
contradiction
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
g : ((a : ι) → κ a) → ι
h : ¬∃ a, ∀ (b : κ a), ∃ f h, h ▸ b = f (g f)
⊢ False
[PROOFSTEP]
push_neg at h
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
g : ((a : ι) → κ a) → ι
h : ∀ (a : ι), ∃ b, ∀ (f : (a : ι) → κ a) (h : a = g f), h ▸ b ≠ f (g f)
⊢ False
[PROOFSTEP]
choose h hh using h
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
g : ((a : ι) → κ a) → ι
h : (a : ι) → κ a
hh : ∀ (a : ι) (f : (a : ι) → κ a) (h_1 : a = g f), h_1 ▸ h a ≠ f (g f)
⊢ False
[PROOFSTEP]
have := hh _ h rfl
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
g : ((a : ι) → κ a) → ι
h : (a : ι) → κ a
hh : ∀ (a : ι) (f : (a : ι) → κ a) (h_1 : a = g f), h_1 ▸ h a ≠ f (g f)
this : (_ : g h = g h) ▸ h (g h) ≠ h (g h)
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
g : ((a : ι) → κ a) → ι
a : ι
ha : ∀ (b : κ a), ∃ f h, h ▸ b = f (g f)
⊢ ⨅ (a : (a : ι) → κ a), f (g a) (a (g a)) ≤ ⨆ (a : ι), ⨅ (b : κ a), f a b
[PROOFSTEP]
refine le_trans ?_ (le_iSup _ a)
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
g : ((a : ι) → κ a) → ι
a : ι
ha : ∀ (b : κ a), ∃ f h, h ▸ b = f (g f)
⊢ ⨅ (a : (a : ι) → κ a), f (g a) (a (g a)) ≤ ⨅ (b : κ a), f a b
[PROOFSTEP]
refine le_iInf fun b => ?_
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
g : ((a : ι) → κ a) → ι
a : ι
ha : ∀ (b : κ a), ∃ f h, h ▸ b = f (g f)
b : κ a
⊢ ⨅ (a : (a : ι) → κ a), f (g a) (a (g a)) ≤ f a b
[PROOFSTEP]
obtain ⟨h, rfl, rfl⟩ := ha b
[GOAL]
case intro.intro
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
f : (a : ι) → κ a → α
g : ((a : ι) → κ a) → ι
h : (a : ι) → κ a
ha : ∀ (b : κ (g h)), ∃ f h_1, h_1 ▸ b = f (g f)
⊢ ⨅ (a : (a : ι) → κ a), f (g a) (a (g a)) ≤ f (g h) (h (g h))
[PROOFSTEP]
refine iInf_le _ _
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
⊢ a ⊓ sSup s =
⨅ (x : Bool),
⨆ (y : bif x then PUnit else ↑s),
match x, y with
| true, y => a
| false, y => ↑y
[PROOFSTEP]
simp_rw [iInf_bool_eq, cond, iSup_const, iSup_subtype, sSup_eq_iSup]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
⊢ (⨆ (g : (a : Bool) → bif a then PUnit else ↑s),
⨅ (a_1 : Bool),
match a_1, g a_1 with
| true, y => a
| false, y => ↑y) ≤
⨆ (b : α) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
simp_rw [iInf_bool_eq]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
⊢ ⨆ (g : (a : Bool) → bif a then PUnit else ↑s), a ⊓ ↑(g false) ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
refine iSup_le fun g => le_trans ?_ (le_iSup _ (g false).1)
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
g : (a : Bool) → bif a then PUnit else ↑s
⊢ a ⊓ ↑(g false) ≤ ⨆ (_ : ↑(g false) ∈ s), a ⊓ ↑(g false)
[PROOFSTEP]
refine le_trans ?_ (le_iSup _ (g false).2)
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
g : (a : Bool) → bif a then PUnit else ↑s
⊢ a ⊓ ↑(g false) ≤ a ⊓ ↑(g false)
[PROOFSTEP]
rfl
-- See note [lower instance priority]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
⊢ ⨅ (b : α) (_ : b ∈ s), a ⊔ b = ⨅ (b : ↑s), ⨆ (x : Bool), bif x then a else ↑b
[PROOFSTEP]
simp_rw [iInf_subtype, iSup_bool_eq, cond]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
f : ↑s → Bool
⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s
[PROOFSTEP]
by_cases ∀ i, f i = false
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
f : ↑s → Bool
⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s
[PROOFSTEP]
by_cases ∀ i, f i = false
[GOAL]
case pos
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
f : ↑s → Bool
h : ∀ (i : ↑s), f i = false
⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s
case neg
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
f : ↑s → Bool
h : ¬∀ (i : ↑s), f i = false
⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s
[PROOFSTEP]
case pos => simp [h, iInf_subtype, ← sInf_eq_iInf]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
f : ↑s → Bool
h : ∀ (i : ↑s), f i = false
⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s
[PROOFSTEP]
case pos => simp [h, iInf_subtype, ← sInf_eq_iInf]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
f : ↑s → Bool
h : ∀ (i : ↑s), f i = false
⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s
[PROOFSTEP]
simp [h, iInf_subtype, ← sInf_eq_iInf]
[GOAL]
case neg
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
f : ↑s → Bool
h : ¬∀ (i : ↑s), f i = false
⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s
[PROOFSTEP]
case neg =>
have ⟨i, h⟩ : ∃ i, f i = true := by simpa using h
refine le_trans (iInf_le _ i) ?_
simp [h]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
f : ↑s → Bool
h : ¬∀ (i : ↑s), f i = false
⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s
[PROOFSTEP]
case neg =>
have ⟨i, h⟩ : ∃ i, f i = true := by simpa using h
refine le_trans (iInf_le _ i) ?_
simp [h]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
f : ↑s → Bool
h : ¬∀ (i : ↑s), f i = false
⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s
[PROOFSTEP]
have ⟨i, h⟩ : ∃ i, f i = true := by simpa using h
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
f : ↑s → Bool
h : ¬∀ (i : ↑s), f i = false
⊢ ∃ i, f i = true
[PROOFSTEP]
simpa using h
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
f : ↑s → Bool
h✝ : ¬∀ (i : ↑s), f i = false
i : ↑s
h : f i = true
⊢ (⨅ (a_1 : ↑s), bif f a_1 then a else ↑a_1) ≤ a ⊔ sInf s
[PROOFSTEP]
refine le_trans (iInf_le _ i) ?_
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompletelyDistribLattice α
a : α
s : Set α
f : ↑s → Bool
h✝ : ¬∀ (i : ↑s), f i = false
i : ↑s
h : f i = true
⊢ (bif f i then a else ↑i) ≤ a ⊔ sInf s
[PROOFSTEP]
simp [h]
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
⊢ ⨅ (a : α), ⨆ (b : β a), g a b = ⨆ (g_1 : (a : α) → β a), ⨅ (a : α), g a (g_1 a)
[PROOFSTEP]
let lhs := ⨅ a, ⨆ b, g a b
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
⊢ ⨅ (a : α), ⨆ (b : β a), g a b = ⨆ (g_1 : (a : α) → β a), ⨅ (a : α), g a (g_1 a)
[PROOFSTEP]
let rhs := ⨆ h : ∀ a, β a, ⨅ a, g a (h a)
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
⊢ ⨅ (a : α), ⨆ (b : β a), g a b = ⨆ (g_1 : (a : α) → β a), ⨅ (a : α), g a (g_1 a)
[PROOFSTEP]
suffices lhs ≤ rhs from le_antisymm this le_iInf_iSup
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
⊢ lhs ≤ rhs
[PROOFSTEP]
by_cases ∃ x, rhs < x ∧ x < lhs
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
⊢ lhs ≤ rhs
[PROOFSTEP]
by_cases ∃ x, rhs < x ∧ x < lhs
[GOAL]
case pos
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
h : ∃ x, rhs < x ∧ x < lhs
⊢ lhs ≤ rhs
case neg
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
h : ¬∃ x, rhs < x ∧ x < lhs
⊢ lhs ≤ rhs
[PROOFSTEP]
case pos =>
rcases h with ⟨x, hr, hl⟩
suffices rhs ≥ x from nomatch not_lt.2 this hr
have : ∀ a, ∃ b, x < g a b := fun a =>
lt_iSup_iff.1 <| lt_of_not_le fun h => lt_irrefl x (lt_of_lt_of_le hl (le_trans (iInf_le _ a) h))
choose f hf using this
refine le_trans ?_ (le_iSup _ f)
refine le_iInf fun a => le_of_lt (hf a)
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
h : ∃ x, rhs < x ∧ x < lhs
⊢ lhs ≤ rhs
[PROOFSTEP]
case pos =>
rcases h with ⟨x, hr, hl⟩
suffices rhs ≥ x from nomatch not_lt.2 this hr
have : ∀ a, ∃ b, x < g a b := fun a =>
lt_iSup_iff.1 <| lt_of_not_le fun h => lt_irrefl x (lt_of_lt_of_le hl (le_trans (iInf_le _ a) h))
choose f hf using this
refine le_trans ?_ (le_iSup _ f)
refine le_iInf fun a => le_of_lt (hf a)
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
h : ∃ x, rhs < x ∧ x < lhs
⊢ lhs ≤ rhs
[PROOFSTEP]
rcases h with ⟨x, hr, hl⟩
[GOAL]
case intro.intro
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
x : α✝
hr : rhs < x
hl : x < lhs
⊢ lhs ≤ rhs
[PROOFSTEP]
suffices rhs ≥ x from nomatch not_lt.2 this hr
[GOAL]
case intro.intro
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
x : α✝
hr : rhs < x
hl : x < lhs
⊢ rhs ≥ x
[PROOFSTEP]
have : ∀ a, ∃ b, x < g a b := fun a =>
lt_iSup_iff.1 <| lt_of_not_le fun h => lt_irrefl x (lt_of_lt_of_le hl (le_trans (iInf_le _ a) h))
[GOAL]
case intro.intro
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
x : α✝
hr : rhs < x
hl : x < lhs
this : ∀ (a : α), ∃ b, x < g a b
⊢ rhs ≥ x
[PROOFSTEP]
choose f hf using this
[GOAL]
case intro.intro
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
x : α✝
hr : rhs < x
hl : x < lhs
f : (a : α) → β a
hf : ∀ (a : α), x < g a (f a)
⊢ rhs ≥ x
[PROOFSTEP]
refine le_trans ?_ (le_iSup _ f)
[GOAL]
case intro.intro
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
x : α✝
hr : rhs < x
hl : x < lhs
f : (a : α) → β a
hf : ∀ (a : α), x < g a (f a)
⊢ x ≤ ⨅ (a : α), g a (f a)
[PROOFSTEP]
refine le_iInf fun a => le_of_lt (hf a)
[GOAL]
case neg
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
h : ¬∃ x, rhs < x ∧ x < lhs
⊢ lhs ≤ rhs
[PROOFSTEP]
case neg =>
refine le_of_not_lt fun hrl : rhs < lhs => not_le_of_lt hrl ?_
replace h : ∀ x, x ≤ rhs ∨ lhs ≤ x := by simpa only [not_exists, not_and_or, not_or, not_lt] using h
have : ∀ a, ∃ b, rhs < g a b := fun a => lt_iSup_iff.1 <| lt_of_lt_of_le hrl (iInf_le _ a)
choose f hf using this
have : ∀ a, lhs ≤ g a (f a) := fun a => (h (g a (f a))).resolve_left (by simpa using hf a)
refine le_trans ?_ (le_iSup _ f)
refine le_iInf fun a => this _
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
h : ¬∃ x, rhs < x ∧ x < lhs
⊢ lhs ≤ rhs
[PROOFSTEP]
case neg =>
refine le_of_not_lt fun hrl : rhs < lhs => not_le_of_lt hrl ?_
replace h : ∀ x, x ≤ rhs ∨ lhs ≤ x := by simpa only [not_exists, not_and_or, not_or, not_lt] using h
have : ∀ a, ∃ b, rhs < g a b := fun a => lt_iSup_iff.1 <| lt_of_lt_of_le hrl (iInf_le _ a)
choose f hf using this
have : ∀ a, lhs ≤ g a (f a) := fun a => (h (g a (f a))).resolve_left (by simpa using hf a)
refine le_trans ?_ (le_iSup _ f)
refine le_iInf fun a => this _
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
h : ¬∃ x, rhs < x ∧ x < lhs
⊢ lhs ≤ rhs
[PROOFSTEP]
refine le_of_not_lt fun hrl : rhs < lhs => not_le_of_lt hrl ?_
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
h : ¬∃ x, rhs < x ∧ x < lhs
hrl : rhs < lhs
⊢ lhs ≤ rhs
[PROOFSTEP]
replace h : ∀ x, x ≤ rhs ∨ lhs ≤ x := by simpa only [not_exists, not_and_or, not_or, not_lt] using h
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
h : ¬∃ x, rhs < x ∧ x < lhs
hrl : rhs < lhs
⊢ ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x
[PROOFSTEP]
simpa only [not_exists, not_and_or, not_or, not_lt] using h
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
hrl : rhs < lhs
h : ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x
⊢ lhs ≤ rhs
[PROOFSTEP]
have : ∀ a, ∃ b, rhs < g a b := fun a => lt_iSup_iff.1 <| lt_of_lt_of_le hrl (iInf_le _ a)
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
hrl : rhs < lhs
h : ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x
this : ∀ (a : α), ∃ b, rhs < g a b
⊢ lhs ≤ rhs
[PROOFSTEP]
choose f hf using this
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
hrl : rhs < lhs
h : ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x
f : (a : α) → β a
hf : ∀ (a : α), rhs < g a (f a)
⊢ lhs ≤ rhs
[PROOFSTEP]
have : ∀ a, lhs ≤ g a (f a) := fun a => (h (g a (f a))).resolve_left (by simpa using hf a)
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
hrl : rhs < lhs
h : ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x
f : (a : α) → β a
hf : ∀ (a : α), rhs < g a (f a)
a : α
⊢ ¬g a (f a) ≤ rhs
[PROOFSTEP]
simpa using hf a
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
hrl : rhs < lhs
h : ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x
f : (a : α) → β a
hf : ∀ (a : α), rhs < g a (f a)
this : ∀ (a : α), lhs ≤ g a (f a)
⊢ lhs ≤ rhs
[PROOFSTEP]
refine le_trans ?_ (le_iSup _ f)
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteLinearOrder α✝
α : Type u
β : α → Type u
g : (a : α) → β a → α✝
lhs : α✝ := ⨅ (a : α), ⨆ (b : β a), g a b
rhs : α✝ := ⨆ (h : (a : α) → β a), ⨅ (a : α), g a (h a)
hrl : rhs < lhs
h : ∀ (x : α✝), x ≤ rhs ∨ lhs ≤ x
f : (a : α) → β a
hf : ∀ (a : α), rhs < g a (f a)
this : ∀ (a : α), lhs ≤ g a (f a)
⊢ lhs ≤ ⨅ (a : α), g a (f a)
[PROOFSTEP]
refine le_iInf fun a => this _
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Frame α
s t : Set α
a b : α
⊢ sSup s ⊓ b = ⨆ (a : α) (_ : a ∈ s), a ⊓ b
[PROOFSTEP]
simpa only [inf_comm] using @inf_sSup_eq α _ s b
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Frame α
s t : Set α
a✝ b : α
f : ι → α
a : α
⊢ (⨆ (i : ι), f i) ⊓ a = ⨆ (i : ι), f i ⊓ a
[PROOFSTEP]
rw [iSup, sSup_inf_eq, iSup_range]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Frame α
s t : Set α
a✝ b a : α
f : ι → α
⊢ a ⊓ ⨆ (i : ι), f i = ⨆ (i : ι), a ⊓ f i
[PROOFSTEP]
simpa only [inf_comm] using iSup_inf_eq f a
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝² : Frame α✝
s✝ t : Set α✝
a✝ b : α✝
α : Type ?u.26817
β : Type ?u.26820
inst✝¹ : Frame α
inst✝ : Frame β
src✝ : CompleteLattice (α × β) := completeLattice α β
a : α × β
s : Set (α × β)
⊢ a ⊓ sSup s ≤ ⨆ (b : α × β) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
simp [Prod.le_def, sSup_eq_iSup, fst_iSup, snd_iSup, fst_iInf, snd_iInf, inf_iSup_eq]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Frame α
s t : Set α
a✝ b : α
f : (i : ι) → κ i → α
a : α
⊢ (⨆ (i : ι) (j : κ i), f i j) ⊓ a = ⨆ (i : ι) (j : κ i), f i j ⊓ a
[PROOFSTEP]
simp only [iSup_inf_eq]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Frame α
s t : Set α
a✝ b : α
f : (i : ι) → κ i → α
a : α
⊢ a ⊓ ⨆ (i : ι) (j : κ i), f i j = ⨆ (i : ι) (j : κ i), a ⊓ f i j
[PROOFSTEP]
simp only [inf_iSup_eq]
[GOAL]
α : Type u
β : Type v
ι✝ : Sort w
κ : ι✝ → Sort w'
inst✝ : Frame α
s t : Set α
a b : α
ι : Type u_1
ι' : Type u_2
f : ι → α
g : ι' → α
⊢ (⨆ (i : ι), f i) ⊓ ⨆ (j : ι'), g j = ⨆ (i : ι × ι'), f i.fst ⊓ g i.snd
[PROOFSTEP]
simp_rw [iSup_inf_eq, inf_iSup_eq, iSup_prod]
[GOAL]
α : Type u
β : Type v
ι✝ : Sort w
κ : ι✝ → Sort w'
inst✝ : Frame α
s✝ t✝ : Set α
a b : α
ι : Type u_1
ι' : Type u_2
f : ι → α
g : ι' → α
s : Set ι
t : Set ι'
⊢ (⨆ (i : ι) (_ : i ∈ s), f i) ⊓ ⨆ (j : ι') (_ : j ∈ t), g j = ⨆ (p : ι × ι') (_ : p ∈ s ×ˢ t), f p.fst ⊓ g p.snd
[PROOFSTEP]
simp only [iSup_subtype', iSup_inf_iSup]
[GOAL]
α : Type u
β : Type v
ι✝ : Sort w
κ : ι✝ → Sort w'
inst✝ : Frame α
s✝ t✝ : Set α
a b : α
ι : Type u_1
ι' : Type u_2
f : ι → α
g : ι' → α
s : Set ι
t : Set ι'
⊢ ⨆ (i : { i // i ∈ s } × { i // i ∈ t }), f ↑i.fst ⊓ g ↑i.snd = ⨆ (x : { i // i ∈ s ×ˢ t }), f (↑x).fst ⊓ g (↑x).snd
[PROOFSTEP]
exact (Equiv.surjective _).iSup_congr (Equiv.Set.prod s t).symm fun x => rfl
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Frame α
s t : Set α
a b : α
⊢ sSup s ⊓ sSup t = ⨆ (p : α × α) (_ : p ∈ s ×ˢ t), p.fst ⊓ p.snd
[PROOFSTEP]
simp only [sSup_eq_iSup, biSup_inf_biSup]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Frame α
s t : Set α
a b : α
f : ι → α
⊢ Disjoint (⨆ (i : ι), f i) a ↔ ∀ (i : ι), Disjoint (f i) a
[PROOFSTEP]
simp only [disjoint_iff, iSup_inf_eq, iSup_eq_bot]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Frame α
s t : Set α
a b : α
f : ι → α
⊢ Disjoint a (⨆ (i : ι), f i) ↔ ∀ (i : ι), Disjoint a (f i)
[PROOFSTEP]
simpa only [disjoint_comm] using @iSup_disjoint_iff
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Frame α
s t : Set α
a b : α
f : (i : ι) → κ i → α
⊢ Disjoint (⨆ (i : ι) (j : κ i), f i j) a ↔ ∀ (i : ι) (j : κ i), Disjoint (f i j) a
[PROOFSTEP]
simp_rw [iSup_disjoint_iff]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Frame α
s t : Set α
a b : α
f : (i : ι) → κ i → α
⊢ Disjoint a (⨆ (i : ι) (j : κ i), f i j) ↔ ∀ (i : ι) (j : κ i), Disjoint a (f i j)
[PROOFSTEP]
simp_rw [disjoint_iSup_iff]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Frame α
s✝ t : Set α
a b : α
s : Set α
⊢ Disjoint (sSup s) a ↔ ∀ (b : α), b ∈ s → Disjoint b a
[PROOFSTEP]
simp only [disjoint_iff, sSup_inf_eq, iSup_eq_bot]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Frame α
s✝ t : Set α
a b : α
s : Set α
⊢ Disjoint a (sSup s) ↔ ∀ (b : α), b ∈ s → Disjoint a b
[PROOFSTEP]
simpa only [disjoint_comm] using @sSup_disjoint_iff
[GOAL]
α : Type u
β : Type v
ι✝ : Sort w
κ : ι✝ → Sort w'
inst✝² : Frame α
s t : Set α
a b : α
ι : Type u_1
inst✝¹ : Preorder ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
f g : ι → α
hf : Monotone f
hg : Monotone g
⊢ ⨆ (i : ι), f i ⊓ g i = (⨆ (i : ι), f i) ⊓ ⨆ (i : ι), g i
[PROOFSTEP]
refine' (le_iSup_inf_iSup f g).antisymm _
[GOAL]
α : Type u
β : Type v
ι✝ : Sort w
κ : ι✝ → Sort w'
inst✝² : Frame α
s t : Set α
a b : α
ι : Type u_1
inst✝¹ : Preorder ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
f g : ι → α
hf : Monotone f
hg : Monotone g
⊢ (⨆ (i : ι), f i) ⊓ ⨆ (i : ι), g i ≤ ⨆ (i : ι), f i ⊓ g i
[PROOFSTEP]
rw [iSup_inf_iSup]
[GOAL]
α : Type u
β : Type v
ι✝ : Sort w
κ : ι✝ → Sort w'
inst✝² : Frame α
s t : Set α
a b : α
ι : Type u_1
inst✝¹ : Preorder ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
f g : ι → α
hf : Monotone f
hg : Monotone g
⊢ ⨆ (i : ι × ι), f i.fst ⊓ g i.snd ≤ ⨆ (i : ι), f i ⊓ g i
[PROOFSTEP]
refine' iSup_mono' fun i => _
[GOAL]
α : Type u
β : Type v
ι✝ : Sort w
κ : ι✝ → Sort w'
inst✝² : Frame α
s t : Set α
a b : α
ι : Type u_1
inst✝¹ : Preorder ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
f g : ι → α
hf : Monotone f
hg : Monotone g
i : ι × ι
⊢ ∃ i', f i.fst ⊓ g i.snd ≤ f i' ⊓ g i'
[PROOFSTEP]
rcases directed_of (· ≤ ·) i.1 i.2 with ⟨j, h₁, h₂⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
ι✝ : Sort w
κ : ι✝ → Sort w'
inst✝² : Frame α
s t : Set α
a b : α
ι : Type u_1
inst✝¹ : Preorder ι
inst✝ : IsDirected ι fun x x_1 => x ≤ x_1
f g : ι → α
hf : Monotone f
hg : Monotone g
i : ι × ι
j : ι
h₁ : i.fst ≤ j
h₂ : i.snd ≤ j
⊢ ∃ i', f i.fst ⊓ g i.snd ≤ f i' ⊓ g i'
[PROOFSTEP]
exact ⟨j, inf_le_inf (hf h₁) (hg h₂)⟩
[GOAL]
α : Type u
β : Type v
ι✝ : Sort w
κ : ι✝ → Sort w'
inst✝¹ : Frame α
s✝ t : Set α
a✝ b : α
ι : Type u_1
π : ι → Type u_2
inst✝ : (i : ι) → Frame (π i)
src✝ : CompleteLattice ((i : ι) → π i) := completeLattice
a : (i : ι) → π i
s : Set ((i : ι) → π i)
i : ι
⊢ (a ⊓ sSup s) i ≤ iSup (fun b => ⨆ (_ : b ∈ s), a ⊓ b) i
[PROOFSTEP]
simp only [sSup_apply, iSup_apply, inf_apply, inf_iSup_eq, ← iSup_subtype'']
[GOAL]
α : Type u
β : Type v
ι✝ : Sort w
κ : ι✝ → Sort w'
inst✝¹ : Frame α
s✝ t : Set α
a✝ b : α
ι : Type u_1
π : ι → Type u_2
inst✝ : (i : ι) → Frame (π i)
src✝ : CompleteLattice ((i : ι) → π i) := completeLattice
a : (i : ι) → π i
s : Set ((i : ι) → π i)
i : ι
⊢ ⨆ (i_1 : ↑s), a i ⊓ ↑i_1 i ≤ ⨆ (i_1 : ↑s), a i ⊓ ↑i_1 i
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Frame α
s t : Set α
a✝ b✝ a b c : α
⊢ a ⊓ (b ⊔ c) ≤ a ⊓ b ⊔ a ⊓ c
[PROOFSTEP]
rw [← sSup_pair, ← sSup_pair, inf_sSup_eq, ← sSup_image, image_pair]
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
inst✝² : Coframe α✝
s✝ t : Set α✝
a✝ b : α✝
α : Type ?u.87146
β : Type ?u.87149
inst✝¹ : Coframe α
inst✝ : Coframe β
src✝ : CompleteLattice (α × β) := completeLattice α β
a : α × β
s : Set (α × β)
⊢ ⨅ (b : α × β) (_ : b ∈ s), a ⊔ b ≤ a ⊔ sInf s
[PROOFSTEP]
simp [Prod.le_def, sInf_eq_iInf, fst_iSup, snd_iSup, fst_iInf, snd_iInf, sup_iInf_eq]
[GOAL]
α : Type u
β : Type v
ι✝ : Sort w
κ : ι✝ → Sort w'
inst✝¹ : Coframe α
s✝ t : Set α
a✝ b : α
ι : Type u_1
π : ι → Type u_2
inst✝ : (i : ι) → Coframe (π i)
src✝ : CompleteLattice ((i : ι) → π i) := completeLattice
a : (i : ι) → π i
s : Set ((i : ι) → π i)
i : ι
⊢ iInf (fun b => ⨅ (_ : b ∈ s), a ⊔ b) i ≤ (a ⊔ sInf s) i
[PROOFSTEP]
simp only [sInf_apply, iInf_apply, sup_apply, sup_iInf_eq, ← iInf_subtype'']
[GOAL]
α : Type u
β : Type v
ι✝ : Sort w
κ : ι✝ → Sort w'
inst✝¹ : Coframe α
s✝ t : Set α
a✝ b : α
ι : Type u_1
π : ι → Type u_2
inst✝ : (i : ι) → Coframe (π i)
src✝ : CompleteLattice ((i : ι) → π i) := completeLattice
a : (i : ι) → π i
s : Set ((i : ι) → π i)
i : ι
⊢ ⨅ (i_1 : ↑s), a i ⊔ ↑i_1 i ≤ ⨅ (i_1 : ↑s), a i ⊔ ↑i_1 i
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : Coframe α
s t : Set α
a✝ b✝ : α
src✝ : Coframe α := inst✝
a b c : α
⊢ (a ⊔ b) ⊓ (a ⊔ c) ≤ a ⊔ b ⊓ c
[PROOFSTEP]
rw [← sInf_pair, ← sInf_pair, sup_sInf_eq, ← sInf_image, image_pair]
[GOAL]
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
α : Type ?u.137509
β : Type ?u.137512
inst✝¹ : CompletelyDistribLattice α
inst✝ : CompletelyDistribLattice β
src✝ : CompleteLattice (α × β) := completeLattice α β
ι✝ : Type (max ?u.137509 ?u.137512)
κ✝ : ι✝ → Type (max ?u.137509 ?u.137512)
f : (a : ι✝) → κ✝ a → α × β
⊢ ⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b = ⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a)
[PROOFSTEP]
ext
[GOAL]
case h₁
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
α : Type ?u.137509
β : Type ?u.137512
inst✝¹ : CompletelyDistribLattice α
inst✝ : CompletelyDistribLattice β
src✝ : CompleteLattice (α × β) := completeLattice α β
ι✝ : Type (max ?u.137509 ?u.137512)
κ✝ : ι✝ → Type (max ?u.137509 ?u.137512)
f : (a : ι✝) → κ✝ a → α × β
⊢ (⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b).fst = (⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a)).fst
[PROOFSTEP]
simp [fst_iSup, fst_iInf, snd_iSup, snd_iInf, iInf_iSup_eq]
[GOAL]
case h₂
α✝ : Type u
β✝ : Type v
ι : Sort w
κ : ι → Sort w'
α : Type ?u.137509
β : Type ?u.137512
inst✝¹ : CompletelyDistribLattice α
inst✝ : CompletelyDistribLattice β
src✝ : CompleteLattice (α × β) := completeLattice α β
ι✝ : Type (max ?u.137509 ?u.137512)
κ✝ : ι✝ → Type (max ?u.137509 ?u.137512)
f : (a : ι✝) → κ✝ a → α × β
⊢ (⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b).snd = (⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a)).snd
[PROOFSTEP]
simp [fst_iSup, fst_iInf, snd_iSup, snd_iInf, iInf_iSup_eq]
[GOAL]
α : Type u
β : Type v
ι✝¹ : Sort w
κ : ι✝¹ → Sort w'
ι : Type u_1
π : ι → Type u_2
inst✝ : (i : ι) → CompletelyDistribLattice (π i)
src✝ : CompleteLattice ((i : ι) → π i) := completeLattice
ι✝ : Type (max u_1 u_2)
κ✝ : ι✝ → Type (max u_1 u_2)
f : (a : ι✝) → κ✝ a → (i : ι) → π i
⊢ ⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b = ⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a)
[PROOFSTEP]
ext i
[GOAL]
case h
α : Type u
β : Type v
ι✝¹ : Sort w
κ : ι✝¹ → Sort w'
ι : Type u_1
π : ι → Type u_2
inst✝ : (i : ι) → CompletelyDistribLattice (π i)
src✝ : CompleteLattice ((i : ι) → π i) := completeLattice
ι✝ : Type (max u_1 u_2)
κ✝ : ι✝ → Type (max u_1 u_2)
f : (a : ι✝) → κ✝ a → (i : ι) → π i
i : ι
⊢ iInf (fun a => ⨆ (b : κ✝ a), f a b) i = iSup (fun g => ⨅ (a : ι✝), f a (g a)) i
[PROOFSTEP]
simp only [iInf_apply, iSup_apply, iInf_iSup_eq]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteBooleanAlgebra α
a b : α
s : Set α
f : ι → α
⊢ (iSup f)ᶜᶜ = (⨅ (i : ι), (f i)ᶜ)ᶜ
[PROOFSTEP]
simp [compl_iInf]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteBooleanAlgebra α
a b : α
s : Set α
f : ι → α
⊢ (sInf s)ᶜ = ⨆ (i : α) (_ : i ∈ s), iᶜ
[PROOFSTEP]
simp only [sInf_eq_iInf, compl_iInf]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝ : CompleteBooleanAlgebra α
a b : α
s : Set α
f : ι → α
⊢ (sSup s)ᶜ = ⨅ (i : α) (_ : i ∈ s), iᶜ
[PROOFSTEP]
simp only [sSup_eq_iSup, compl_iSup]
[GOAL]
α : Type u
β : Type v
ι✝¹ : Sort w
κ : ι✝¹ → Sort w'
ι : Type u_1
π : ι → Type u_2
inst✝ : (i : ι) → CompleteAtomicBooleanAlgebra (π i)
src✝ : CompleteBooleanAlgebra ((i : ι) → π i) := completeBooleanAlgebra
ι✝ : Type (max u_1 u_2)
κ✝ : ι✝ → Type (max u_1 u_2)
f : (a : ι✝) → κ✝ a → (i : ι) → π i
⊢ ⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b = ⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a)
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u
β : Type v
ι✝¹ : Sort w
κ : ι✝¹ → Sort w'
ι : Type u_1
π : ι → Type u_2
inst✝ : (i : ι) → CompleteAtomicBooleanAlgebra (π i)
src✝ : CompleteBooleanAlgebra ((i : ι) → π i) := completeBooleanAlgebra
ι✝ : Type (max u_1 u_2)
κ✝ : ι✝ → Type (max u_1 u_2)
f : (a : ι✝) → κ✝ a → (i : ι) → π i
x✝ : ι
⊢ iInf (fun a => ⨆ (b : κ✝ a), f a b) x✝ = iSup (fun g => ⨅ (a : ι✝), f a (g a)) x✝
[PROOFSTEP]
rw [iInf_iSup_eq]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
src✝¹ : CompleteLattice Prop := completeLattice
src✝ : BooleanAlgebra Prop := booleanAlgebra
ι✝ : Type
κ✝ : ι✝ → Type
f : (a : ι✝) → κ✝ a → Prop
⊢ ⨅ (a : ι✝), ⨆ (b : κ✝ a), f a b = ⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f a (g a)
[PROOFSTEP]
simp [Classical.skolem]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : SupSet α
inst✝³ : InfSet α
inst✝² : Top α
inst✝¹ : Bot α
inst✝ : Frame β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a
map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot
a : α
s : Set α
⊢ a ⊓ sSup s ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
change f (a ⊓ sSup s) ≤ f _
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : SupSet α
inst✝³ : InfSet α
inst✝² : Top α
inst✝¹ : Bot α
inst✝ : Frame β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a
map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot
a : α
s : Set α
⊢ f (a ⊓ sSup s) ≤ f (⨆ (b : α) (_ : b ∈ s), a ⊓ b)
[PROOFSTEP]
rw [← sSup_image, map_inf, map_sSup s, inf_iSup₂_eq]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : SupSet α
inst✝³ : InfSet α
inst✝² : Top α
inst✝¹ : Bot α
inst✝ : Frame β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a
map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot
a : α
s : Set α
⊢ ⨆ (i : α) (_ : i ∈ s), f a ⊓ f i ≤ f (sSup ((fun b => a ⊓ b) '' s))
[PROOFSTEP]
simp_rw [← map_inf]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : SupSet α
inst✝³ : InfSet α
inst✝² : Top α
inst✝¹ : Bot α
inst✝ : Frame β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a
map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot
a : α
s : Set α
⊢ ⨆ (i : α) (_ : i ∈ s), f (a ⊓ i) ≤ f (sSup ((fun a_1 => a ⊓ a_1) '' s))
[PROOFSTEP]
exact ((map_sSup _).trans iSup_image).ge
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : SupSet α
inst✝³ : InfSet α
inst✝² : Top α
inst✝¹ : Bot α
inst✝ : Coframe β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a
map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot
a : α
s : Set α
⊢ ⨅ (b : α) (_ : b ∈ s), a ⊔ b ≤ a ⊔ sInf s
[PROOFSTEP]
change f _ ≤ f (a ⊔ sInf s)
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : SupSet α
inst✝³ : InfSet α
inst✝² : Top α
inst✝¹ : Bot α
inst✝ : Coframe β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a
map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot
a : α
s : Set α
⊢ f (⨅ (b : α) (_ : b ∈ s), a ⊔ b) ≤ f (a ⊔ sInf s)
[PROOFSTEP]
rw [← sInf_image, map_sup, map_sInf s, sup_iInf₂_eq]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : SupSet α
inst✝³ : InfSet α
inst✝² : Top α
inst✝¹ : Bot α
inst✝ : Coframe β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a
map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot
a : α
s : Set α
⊢ f (sInf ((fun b => a ⊔ b) '' s)) ≤ ⨅ (i : α) (_ : i ∈ s), f a ⊔ f i
[PROOFSTEP]
simp_rw [← map_sup]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : SupSet α
inst✝³ : InfSet α
inst✝² : Top α
inst✝¹ : Bot α
inst✝ : Coframe β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a
map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot
a : α
s : Set α
⊢ f (sInf ((fun a_1 => a ⊔ a_1) '' s)) ≤ ⨅ (i : α) (_ : i ∈ s), f (a ⊔ i)
[PROOFSTEP]
exact ((map_sInf _).trans iInf_image).le
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : SupSet α
inst✝³ : InfSet α
inst✝² : Top α
inst✝¹ : Bot α
inst✝ : CompletelyDistribLattice β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_sSup : ∀ (s : Set α), f (sSup s) = ⨆ (a : α) (_ : a ∈ s), f a
map_sInf : ∀ (s : Set α), f (sInf s) = ⨅ (a : α) (_ : a ∈ s), f a
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
src✝ : CompleteLattice α := Injective.completeLattice f hf map_sup map_inf map_sSup map_sInf map_top map_bot
ι✝ : Type u
κ✝ : ι✝ → Type u
g : (a : ι✝) → κ✝ a → α
⊢ f (⨅ (a : ι✝), ⨆ (b : κ✝ a), g a b) = f (⨆ (g_1 : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), g a (g_1 a))
[PROOFSTEP]
simp_rw [iInf, map_sInf, iInf_range, iSup, map_sSup, iSup_range, map_sInf, iInf_range, iInf_iSup_eq]
-- See note [reducible non-instances]
[GOAL]
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
⊢ CompleteAtomicBooleanAlgebra PUnit
[PROOFSTEP]
refine'
{ PUnit.booleanAlgebra with
sSup := fun _ => unit
sInf := fun _ => unit .. }
[GOAL]
case refine'_1
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
⊢ ∀ (s : Set PUnit) (a : PUnit), a ∈ s → a ≤ sSup s
[PROOFSTEP]
intros
[GOAL]
case refine'_1
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
s✝ : Set PUnit
a✝¹ : PUnit
a✝ : a✝¹ ∈ s✝
⊢ a✝¹ ≤ sSup s✝
[PROOFSTEP]
trivial
[GOAL]
case refine'_2
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
⊢ ∀ (s : Set PUnit) (a : PUnit), (∀ (b : PUnit), b ∈ s → b ≤ a) → sSup s ≤ a
[PROOFSTEP]
intros
[GOAL]
case refine'_2
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
s✝ : Set PUnit
a✝¹ : PUnit
a✝ : ∀ (b : PUnit), b ∈ s✝ → b ≤ a✝¹
⊢ sSup s✝ ≤ a✝¹
[PROOFSTEP]
trivial
[GOAL]
case refine'_3
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
⊢ ∀ (s : Set PUnit) (a : PUnit), a ∈ s → sInf s ≤ a
[PROOFSTEP]
intros
[GOAL]
case refine'_3
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
s✝ : Set PUnit
a✝¹ : PUnit
a✝ : a✝¹ ∈ s✝
⊢ sInf s✝ ≤ a✝¹
[PROOFSTEP]
trivial
[GOAL]
case refine'_4
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
⊢ ∀ (s : Set PUnit) (a : PUnit), (∀ (b : PUnit), b ∈ s → a ≤ b) → a ≤ sInf s
[PROOFSTEP]
intros
[GOAL]
case refine'_4
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
s✝ : Set PUnit
a✝¹ : PUnit
a✝ : ∀ (b : PUnit), b ∈ s✝ → a✝¹ ≤ b
⊢ a✝¹ ≤ sInf s✝
[PROOFSTEP]
trivial
[GOAL]
case refine'_5
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
⊢ ∀ {ι : Type ?u.176306} {κ : ι → Type ?u.176306} (f : (a : ι) → κ a → PUnit),
⨅ (a : ι), ⨆ (b : κ a), f a b = ⨆ (g : (a : ι) → κ a), ⨅ (a : ι), f a (g a)
[PROOFSTEP]
intros
[GOAL]
case refine'_5
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
ι✝ : Type ?u.176306
κ✝ : ι✝ → Type ?u.176306
f✝ : (a : ι✝) → κ✝ a → PUnit
⊢ ⨅ (a : ι✝), ⨆ (b : κ✝ a), f✝ a b = ⨆ (g : (a : ι✝) → κ✝ a), ⨅ (a : ι✝), f✝ a (g a)
[PROOFSTEP]
trivial
[GOAL]
case refine'_6
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
⊢ ∀ (a : PUnit) (s : Set PUnit), a ⊓ sSup s ≤ ⨆ (b : PUnit) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
intros
[GOAL]
case refine'_6
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
a✝ : PUnit
s✝ : Set PUnit
⊢ a✝ ⊓ sSup s✝ ≤ ⨆ (b : PUnit) (_ : b ∈ s✝), a✝ ⊓ b
[PROOFSTEP]
trivial
[GOAL]
case refine'_7
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
⊢ ∀ (a : PUnit) (s : Set PUnit), ⨅ (b : PUnit) (_ : b ∈ s), a ⊔ b ≤ a ⊔ sInf s
[PROOFSTEP]
intros
[GOAL]
case refine'_7
α : Type u
β : Type v
ι : Sort w
κ : ι → Sort w'
s : Set PUnit
x y : PUnit
src✝ : BooleanAlgebra PUnit := booleanAlgebra
a✝ : PUnit
s✝ : Set PUnit
⊢ ⨅ (b : PUnit) (_ : b ∈ s✝), a✝ ⊔ b ≤ a✝ ⊔ sInf s✝
[PROOFSTEP]
trivial
| {"mathlib_filename": "Mathlib.Order.CompleteBooleanAlgebra", "llama_tokens": 24619} |
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
⊢ WellFoundedOn s r ↔ WellFounded fun a b => r a b ∧ a ∈ s ∧ b ∈ s
[PROOFSTEP]
have f : RelEmbedding (fun (a : s) (b : s) => r a b) fun a b : α => r a b ∧ a ∈ s ∧ b ∈ s :=
⟨⟨(↑), Subtype.coe_injective⟩, by simp⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
⊢ ∀ {a b : ↑s},
r (↑{ toFun := Subtype.val, inj' := (_ : Function.Injective fun a => ↑a) } a)
(↑{ toFun := Subtype.val, inj' := (_ : Function.Injective fun a => ↑a) } b) ∧
↑{ toFun := Subtype.val, inj' := (_ : Function.Injective fun a => ↑a) } a ∈ s ∧
↑{ toFun := Subtype.val, inj' := (_ : Function.Injective fun a => ↑a) } b ∈ s ↔
r ↑a ↑b
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f✝ : β → α
s t : Set α
x y : α
f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s
⊢ WellFoundedOn s r ↔ WellFounded fun a b => r a b ∧ a ∈ s ∧ b ∈ s
[PROOFSTEP]
refine' ⟨fun h => _, f.wellFounded⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f✝ : β → α
s t : Set α
x y : α
f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s
h : WellFoundedOn s r
⊢ WellFounded fun a b => r a b ∧ a ∈ s ∧ b ∈ s
[PROOFSTEP]
rw [WellFounded.wellFounded_iff_has_min]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f✝ : β → α
s t : Set α
x y : α
f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s
h : WellFoundedOn s r
⊢ ∀ (s_1 : Set α), Set.Nonempty s_1 → ∃ m, m ∈ s_1 ∧ ∀ (x : α), x ∈ s_1 → ¬(r x m ∧ x ∈ s ∧ m ∈ s)
[PROOFSTEP]
intro t ht
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f✝ : β → α
s t✝ : Set α
x y : α
f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s
h : WellFoundedOn s r
t : Set α
ht : Set.Nonempty t
⊢ ∃ m, m ∈ t ∧ ∀ (x : α), x ∈ t → ¬(r x m ∧ x ∈ s ∧ m ∈ s)
[PROOFSTEP]
by_cases hst : (s ∩ t).Nonempty
[GOAL]
case pos
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f✝ : β → α
s t✝ : Set α
x y : α
f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s
h : WellFoundedOn s r
t : Set α
ht : Set.Nonempty t
hst : Set.Nonempty (s ∩ t)
⊢ ∃ m, m ∈ t ∧ ∀ (x : α), x ∈ t → ¬(r x m ∧ x ∈ s ∧ m ∈ s)
[PROOFSTEP]
rw [← Subtype.preimage_coe_nonempty] at hst
[GOAL]
case pos
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f✝ : β → α
s t✝ : Set α
x y : α
f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s
h : WellFoundedOn s r
t : Set α
ht : Set.Nonempty t
hst : Set.Nonempty (Subtype.val ⁻¹' t)
⊢ ∃ m, m ∈ t ∧ ∀ (x : α), x ∈ t → ¬(r x m ∧ x ∈ s ∧ m ∈ s)
[PROOFSTEP]
rcases h.has_min (Subtype.val ⁻¹' t) hst with ⟨⟨m, ms⟩, mt, hm⟩
[GOAL]
case pos.intro.mk.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f✝ : β → α
s t✝ : Set α
x y : α
f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s
h : WellFoundedOn s r
t : Set α
ht : Set.Nonempty t
hst : Set.Nonempty (Subtype.val ⁻¹' t)
m : α
ms : m ∈ s
mt : { val := m, property := ms } ∈ Subtype.val ⁻¹' t
hm : ∀ (x : ↑s), x ∈ Subtype.val ⁻¹' t → ¬r ↑x ↑{ val := m, property := ms }
⊢ ∃ m, m ∈ t ∧ ∀ (x : α), x ∈ t → ¬(r x m ∧ x ∈ s ∧ m ∈ s)
[PROOFSTEP]
exact ⟨m, mt, fun x xt ⟨xm, xs, _⟩ => hm ⟨x, xs⟩ xt xm⟩
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f✝ : β → α
s t✝ : Set α
x y : α
f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s
h : WellFoundedOn s r
t : Set α
ht : Set.Nonempty t
hst : ¬Set.Nonempty (s ∩ t)
⊢ ∃ m, m ∈ t ∧ ∀ (x : α), x ∈ t → ¬(r x m ∧ x ∈ s ∧ m ∈ s)
[PROOFSTEP]
rcases ht with ⟨m, mt⟩
[GOAL]
case neg.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f✝ : β → α
s t✝ : Set α
x y : α
f : (fun a b => r ↑a ↑b) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s
h : WellFoundedOn s r
t : Set α
hst : ¬Set.Nonempty (s ∩ t)
m : α
mt : m ∈ t
⊢ ∃ m, m ∈ t ∧ ∀ (x : α), x ∈ t → ¬(r x m ∧ x ∈ s ∧ m ∈ s)
[PROOFSTEP]
exact ⟨m, mt, fun x _ ⟨_, _, ms⟩ => hst ⟨m, ⟨ms, mt⟩⟩⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
⊢ WellFoundedOn univ r ↔ WellFounded r
[PROOFSTEP]
simp [wellFoundedOn_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
⊢ WellFoundedOn (range f) r ↔ WellFounded (r on f)
[PROOFSTEP]
let f' : β → range f := fun c => ⟨f c, c, rfl⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
f' : β → ↑(range f) := fun c => { val := f c, property := (_ : ∃ y, f y = f c) }
⊢ WellFoundedOn (range f) r ↔ WellFounded (r on f)
[PROOFSTEP]
refine' ⟨fun h => (InvImage.wf f' h).mono fun c c' => id, fun h => ⟨_⟩⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
f' : β → ↑(range f) := fun c => { val := f c, property := (_ : ∃ y, f y = f c) }
h : WellFounded (r on f)
⊢ ∀ (a : ↑(range f)), Acc (fun a b => r ↑a ↑b) a
[PROOFSTEP]
rintro ⟨_, c, rfl⟩
[GOAL]
case mk.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
f' : β → ↑(range f) := fun c => { val := f c, property := (_ : ∃ y, f y = f c) }
h : WellFounded (r on f)
c : β
⊢ Acc (fun a b => r ↑a ↑b) { val := f c, property := (_ : ∃ y, f y = f c) }
[PROOFSTEP]
refine' Acc.of_downward_closed f' _ _ _
[GOAL]
case mk.intro.refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
f' : β → ↑(range f) := fun c => { val := f c, property := (_ : ∃ y, f y = f c) }
h : WellFounded (r on f)
c : β
⊢ ∀ {a : β} {b : ↑(range f)}, r ↑b ↑(f' a) → ∃ c, f' c = b
[PROOFSTEP]
rintro _ ⟨_, c', rfl⟩ -
[GOAL]
case mk.intro.refine'_1.mk.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
f' : β → ↑(range f) := fun c => { val := f c, property := (_ : ∃ y, f y = f c) }
h : WellFounded (r on f)
c a✝ c' : β
⊢ ∃ c, f' c = { val := f c', property := (_ : ∃ y, f y = f c') }
[PROOFSTEP]
exact ⟨c', rfl⟩
[GOAL]
case mk.intro.refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
f' : β → ↑(range f) := fun c => { val := f c, property := (_ : ∃ y, f y = f c) }
h : WellFounded (r on f)
c : β
⊢ Acc (InvImage (fun a b => r ↑a ↑b) f') c
[PROOFSTEP]
exact h.apply _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s✝ t : Set α
x y : α
s : Set β
⊢ WellFoundedOn (f '' s) r ↔ WellFoundedOn s (r on f)
[PROOFSTEP]
rw [image_eq_range]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s✝ t : Set α
x y : α
s : Set β
⊢ WellFoundedOn (range fun x => f ↑x) r ↔ WellFoundedOn s (r on f)
[PROOFSTEP]
exact wellFoundedOn_range
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
hs : WellFoundedOn s r
hx : x ∈ s
P : α → Prop
hP : ∀ (y : α), y ∈ s → (∀ (z : α), z ∈ s → r z y → P z) → P y
⊢ P x
[PROOFSTEP]
let Q : s → Prop := fun y => P y
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
hs : WellFoundedOn s r
hx : x ∈ s
P : α → Prop
hP : ∀ (y : α), y ∈ s → (∀ (z : α), z ∈ s → r z y → P z) → P y
Q : ↑s → Prop := fun y => P ↑y
⊢ P x
[PROOFSTEP]
change Q ⟨x, hx⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
hs : WellFoundedOn s r
hx : x ∈ s
P : α → Prop
hP : ∀ (y : α), y ∈ s → (∀ (z : α), z ∈ s → r z y → P z) → P y
Q : ↑s → Prop := fun y => P ↑y
⊢ Q { val := x, property := hx }
[PROOFSTEP]
refine' WellFounded.induction hs ⟨x, hx⟩ _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
hs : WellFoundedOn s r
hx : x ∈ s
P : α → Prop
hP : ∀ (y : α), y ∈ s → (∀ (z : α), z ∈ s → r z y → P z) → P y
Q : ↑s → Prop := fun y => P ↑y
⊢ ∀ (x : ↑s), (∀ (y : ↑s), r ↑y ↑x → Q y) → Q x
[PROOFSTEP]
simpa only [Subtype.forall]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
h : WellFoundedOn t r'
hle : r ≤ r'
hst : s ⊆ t
⊢ WellFoundedOn s r
[PROOFSTEP]
rw [wellFoundedOn_iff] at *
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
f : β → α
s t : Set α
x y : α
h : WellFounded fun a b => r' a b ∧ a ∈ t ∧ b ∈ t
hle : r ≤ r'
hst : s ⊆ t
⊢ WellFounded fun a b => r a b ∧ a ∈ s ∧ b ∈ s
[PROOFSTEP]
exact Subrelation.wf (fun xy => ⟨hle _ _ xy.1, hst xy.2.1, hst xy.2.2⟩) h
[GOAL]
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r' : α✝ → α✝ → Prop
f : β → α✝
s t : Set α✝
x y : α✝
α : Type u_6
r : α → α → Prop
a : α
⊢ TFAE [Acc r a, WellFoundedOn {b | ReflTransGen r b a} r, WellFoundedOn {b | TransGen r b a} r]
[PROOFSTEP]
tfae_have 1 → 2
[GOAL]
case tfae_1_to_2
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r' : α✝ → α✝ → Prop
f : β → α✝
s t : Set α✝
x y : α✝
α : Type u_6
r : α → α → Prop
a : α
⊢ Acc r a → WellFoundedOn {b | ReflTransGen r b a} r
[PROOFSTEP]
refine fun h => ⟨fun b => InvImage.accessible _ ?_⟩
[GOAL]
case tfae_1_to_2
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r' : α✝ → α✝ → Prop
f : β → α✝
s t : Set α✝
x y : α✝
α : Type u_6
r : α → α → Prop
a : α
h : Acc r a
b : ↑{b | ReflTransGen r b a}
⊢ Acc r ↑b
[PROOFSTEP]
rw [← acc_transGen_iff] at h ⊢
[GOAL]
case tfae_1_to_2
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r' : α✝ → α✝ → Prop
f : β → α✝
s t : Set α✝
x y : α✝
α : Type u_6
r : α → α → Prop
a : α
h : Acc (TransGen r) a
b : ↑{b | ReflTransGen r b a}
⊢ Acc (TransGen r) ↑b
[PROOFSTEP]
obtain h' | h' := reflTransGen_iff_eq_or_transGen.1 b.2
[GOAL]
case tfae_1_to_2.inl
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r' : α✝ → α✝ → Prop
f : β → α✝
s t : Set α✝
x y : α✝
α : Type u_6
r : α → α → Prop
a : α
h : Acc (TransGen r) a
b : ↑{b | ReflTransGen r b a}
h' : a = ↑b
⊢ Acc (TransGen r) ↑b
[PROOFSTEP]
rwa [h'] at h
[GOAL]
case tfae_1_to_2.inr
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r' : α✝ → α✝ → Prop
f : β → α✝
s t : Set α✝
x y : α✝
α : Type u_6
r : α → α → Prop
a : α
h : Acc (TransGen r) a
b : ↑{b | ReflTransGen r b a}
h' : TransGen r (↑b) a
⊢ Acc (TransGen r) ↑b
[PROOFSTEP]
exact h.inv h'
[GOAL]
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r' : α✝ → α✝ → Prop
f : β → α✝
s t : Set α✝
x y : α✝
α : Type u_6
r : α → α → Prop
a : α
tfae_1_to_2 : Acc r a → WellFoundedOn {b | ReflTransGen r b a} r
⊢ TFAE [Acc r a, WellFoundedOn {b | ReflTransGen r b a} r, WellFoundedOn {b | TransGen r b a} r]
[PROOFSTEP]
tfae_have 2 → 3
[GOAL]
case tfae_2_to_3
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r' : α✝ → α✝ → Prop
f : β → α✝
s t : Set α✝
x y : α✝
α : Type u_6
r : α → α → Prop
a : α
tfae_1_to_2 : Acc r a → WellFoundedOn {b | ReflTransGen r b a} r
⊢ WellFoundedOn {b | ReflTransGen r b a} r → WellFoundedOn {b | TransGen r b a} r
[PROOFSTEP]
exact fun h => h.subset fun _ => TransGen.to_reflTransGen
[GOAL]
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r' : α✝ → α✝ → Prop
f : β → α✝
s t : Set α✝
x y : α✝
α : Type u_6
r : α → α → Prop
a : α
tfae_1_to_2 : Acc r a → WellFoundedOn {b | ReflTransGen r b a} r
tfae_2_to_3 : WellFoundedOn {b | ReflTransGen r b a} r → WellFoundedOn {b | TransGen r b a} r
⊢ TFAE [Acc r a, WellFoundedOn {b | ReflTransGen r b a} r, WellFoundedOn {b | TransGen r b a} r]
[PROOFSTEP]
tfae_have 3 → 1
[GOAL]
case tfae_3_to_1
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r' : α✝ → α✝ → Prop
f : β → α✝
s t : Set α✝
x y : α✝
α : Type u_6
r : α → α → Prop
a : α
tfae_1_to_2 : Acc r a → WellFoundedOn {b | ReflTransGen r b a} r
tfae_2_to_3 : WellFoundedOn {b | ReflTransGen r b a} r → WellFoundedOn {b | TransGen r b a} r
⊢ WellFoundedOn {b | TransGen r b a} r → Acc r a
[PROOFSTEP]
refine fun h => Acc.intro _ (fun b hb => (h.apply ⟨b, .single hb⟩).of_fibration Subtype.val ?_)
[GOAL]
case tfae_3_to_1
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r' : α✝ → α✝ → Prop
f : β → α✝
s t : Set α✝
x y : α✝
α : Type u_6
r : α → α → Prop
a : α
tfae_1_to_2 : Acc r a → WellFoundedOn {b | ReflTransGen r b a} r
tfae_2_to_3 : WellFoundedOn {b | ReflTransGen r b a} r → WellFoundedOn {b | TransGen r b a} r
h : WellFoundedOn {b | TransGen r b a} r
b : α
hb : r b a
⊢ Fibration (fun a_1 b => r ↑a_1 ↑b) r Subtype.val
[PROOFSTEP]
exact fun ⟨c, hc⟩ d h => ⟨⟨d, .head h hc⟩, h, rfl⟩
[GOAL]
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r' : α✝ → α✝ → Prop
f : β → α✝
s t : Set α✝
x y : α✝
α : Type u_6
r : α → α → Prop
a : α
tfae_1_to_2 : Acc r a → WellFoundedOn {b | ReflTransGen r b a} r
tfae_2_to_3 : WellFoundedOn {b | ReflTransGen r b a} r → WellFoundedOn {b | TransGen r b a} r
tfae_3_to_1 : WellFoundedOn {b | TransGen r b a} r → Acc r a
⊢ TFAE [Acc r a, WellFoundedOn {b | ReflTransGen r b a} r, WellFoundedOn {b | TransGen r b a} r]
[PROOFSTEP]
tfae_finish
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
⊢ WellFoundedOn s r ↔ ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s
[PROOFSTEP]
simp only [wellFoundedOn_iff, RelEmbedding.wellFounded_iff_no_descending_seq, ← not_exists, ← not_nonempty_iff,
not_iff_not]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
⊢ Nonempty ((fun x x_1 => x > x_1) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s) ↔ ∃ x, ∀ (n : ℕ), ↑x n ∈ s
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
⊢ Nonempty ((fun x x_1 => x > x_1) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s) → ∃ x, ∀ (n : ℕ), ↑x n ∈ s
[PROOFSTEP]
rintro ⟨⟨f, hf⟩⟩
[GOAL]
case mp.intro.mk
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
f : ℕ ↪ α
hf : ∀ {a b : ℕ}, r (↑f a) (↑f b) ∧ ↑f a ∈ s ∧ ↑f b ∈ s ↔ a > b
⊢ ∃ x, ∀ (n : ℕ), ↑x n ∈ s
[PROOFSTEP]
have H : ∀ n, f n ∈ s := fun n => (hf.2 n.lt_succ_self).2.2
[GOAL]
case mp.intro.mk
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
f : ℕ ↪ α
hf : ∀ {a b : ℕ}, r (↑f a) (↑f b) ∧ ↑f a ∈ s ∧ ↑f b ∈ s ↔ a > b
H : ∀ (n : ℕ), ↑f n ∈ s
⊢ ∃ x, ∀ (n : ℕ), ↑x n ∈ s
[PROOFSTEP]
refine' ⟨⟨f, _⟩, H⟩
[GOAL]
case mp.intro.mk
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
f : ℕ ↪ α
hf : ∀ {a b : ℕ}, r (↑f a) (↑f b) ∧ ↑f a ∈ s ∧ ↑f b ∈ s ↔ a > b
H : ∀ (n : ℕ), ↑f n ∈ s
⊢ ∀ {a b : ℕ}, r (↑f a) (↑f b) ↔ a > b
[PROOFSTEP]
simpa only [H, and_true_iff] using @hf
[GOAL]
case mpr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
⊢ (∃ x, ∀ (n : ℕ), ↑x n ∈ s) → Nonempty ((fun x x_1 => x > x_1) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s)
[PROOFSTEP]
rintro ⟨⟨f, hf⟩, hfs : ∀ n, f n ∈ s⟩
[GOAL]
case mpr.intro.mk
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
f : ℕ ↪ α
hf : ∀ {a b : ℕ}, r (↑f a) (↑f b) ↔ a > b
hfs : ∀ (n : ℕ), ↑f n ∈ s
⊢ Nonempty ((fun x x_1 => x > x_1) ↪r fun a b => r a b ∧ a ∈ s ∧ b ∈ s)
[PROOFSTEP]
refine' ⟨⟨f, _⟩⟩
[GOAL]
case mpr.intro.mk
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
f : ℕ ↪ α
hf : ∀ {a b : ℕ}, r (↑f a) (↑f b) ↔ a > b
hfs : ∀ (n : ℕ), ↑f n ∈ s
⊢ ∀ {a b : ℕ}, r (↑f a) (↑f b) ∧ ↑f a ∈ s ∧ ↑f b ∈ s ↔ a > b
[PROOFSTEP]
simpa only [hfs, and_true_iff] using @hf
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
hs : WellFoundedOn s r
ht : WellFoundedOn t r
⊢ WellFoundedOn (s ∪ t) r
[PROOFSTEP]
rw [wellFoundedOn_iff_no_descending_seq] at *
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
hs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s
ht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t
⊢ ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s ∪ t
[PROOFSTEP]
rintro f hf
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
hs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s
ht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t
f : (fun x x_1 => x > x_1) ↪r r
hf : ∀ (n : ℕ), ↑f n ∈ s ∪ t
⊢ False
[PROOFSTEP]
rcases Nat.exists_subseq_of_forall_mem_union f hf with ⟨g, hg | hg⟩
[GOAL]
case intro.inl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
hs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s
ht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t
f : (fun x x_1 => x > x_1) ↪r r
hf : ∀ (n : ℕ), ↑f n ∈ s ∪ t
g : ℕ ↪o ℕ
hg : ∀ (n : ℕ), ↑f (↑g n) ∈ s
⊢ False
case intro.inr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r r' : α → α → Prop
inst✝ : IsStrictOrder α r
s t : Set α
hs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s
ht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t
f : (fun x x_1 => x > x_1) ↪r r
hf : ∀ (n : ℕ), ↑f n ∈ s ∪ t
g : ℕ ↪o ℕ
hg : ∀ (n : ℕ), ↑f (↑g n) ∈ t
⊢ False
[PROOFSTEP]
exacts [hs (g.dual.ltEmbedding.trans f) hg, ht (g.dual.ltEmbedding.trans f) hg]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
inst✝ : LT α
s t : Set α
⊢ IsWf univ ↔ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
simp [IsWf, wellFoundedOn_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
hs : PartiallyWellOrderedOn s r
ht : PartiallyWellOrderedOn t r
⊢ PartiallyWellOrderedOn (s ∪ t) r
[PROOFSTEP]
rintro f hf
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
hs : PartiallyWellOrderedOn s r
ht : PartiallyWellOrderedOn t r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s ∪ t
⊢ ∃ m n, m < n ∧ r (f m) (f n)
[PROOFSTEP]
rcases Nat.exists_subseq_of_forall_mem_union f hf with ⟨g, hgs | hgt⟩
[GOAL]
case intro.inl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
hs : PartiallyWellOrderedOn s r
ht : PartiallyWellOrderedOn t r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s ∪ t
g : ℕ ↪o ℕ
hgs : ∀ (n : ℕ), f (↑g n) ∈ s
⊢ ∃ m n, m < n ∧ r (f m) (f n)
[PROOFSTEP]
rcases hs _ hgs with ⟨m, n, hlt, hr⟩
[GOAL]
case intro.inl.intro.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
hs : PartiallyWellOrderedOn s r
ht : PartiallyWellOrderedOn t r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s ∪ t
g : ℕ ↪o ℕ
hgs : ∀ (n : ℕ), f (↑g n) ∈ s
m n : ℕ
hlt : m < n
hr : r (f (↑g m)) (f (↑g n))
⊢ ∃ m n, m < n ∧ r (f m) (f n)
[PROOFSTEP]
exact ⟨g m, g n, g.strictMono hlt, hr⟩
[GOAL]
case intro.inr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
hs : PartiallyWellOrderedOn s r
ht : PartiallyWellOrderedOn t r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s ∪ t
g : ℕ ↪o ℕ
hgt : ∀ (n : ℕ), f (↑g n) ∈ t
⊢ ∃ m n, m < n ∧ r (f m) (f n)
[PROOFSTEP]
rcases ht _ hgt with ⟨m, n, hlt, hr⟩
[GOAL]
case intro.inr.intro.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
hs : PartiallyWellOrderedOn s r
ht : PartiallyWellOrderedOn t r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s ∪ t
g : ℕ ↪o ℕ
hgt : ∀ (n : ℕ), f (↑g n) ∈ t
m n : ℕ
hlt : m < n
hr : r (f (↑g m)) (f (↑g n))
⊢ ∃ m n, m < n ∧ r (f m) (f n)
[PROOFSTEP]
exact ⟨g m, g n, g.strictMono hlt, hr⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
hs : PartiallyWellOrderedOn s r
hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂)
⊢ PartiallyWellOrderedOn (f '' s) r'
[PROOFSTEP]
intro g' hg'
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
hs : PartiallyWellOrderedOn s r
hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂)
g' : ℕ → β
hg' : ∀ (n : ℕ), g' n ∈ f '' s
⊢ ∃ m n, m < n ∧ r' (g' m) (g' n)
[PROOFSTEP]
choose g hgs heq using hg'
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
hs : PartiallyWellOrderedOn s r
hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂)
g' : ℕ → β
g : ℕ → α
hgs : ∀ (n : ℕ), g n ∈ s
heq : ∀ (n : ℕ), f (g n) = g' n
⊢ ∃ m n, m < n ∧ r' (g' m) (g' n)
[PROOFSTEP]
obtain rfl : f ∘ g = g'
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
hs : PartiallyWellOrderedOn s r
hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂)
g' : ℕ → β
g : ℕ → α
hgs : ∀ (n : ℕ), g n ∈ s
heq : ∀ (n : ℕ), f (g n) = g' n
⊢ f ∘ g = g'
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
hs : PartiallyWellOrderedOn s r
hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂)
g : ℕ → α
hgs : ∀ (n : ℕ), g n ∈ s
heq : ∀ (n : ℕ), f (g n) = (f ∘ g) n
⊢ ∃ m n, m < n ∧ r' ((f ∘ g) m) ((f ∘ g) n)
[PROOFSTEP]
exact funext heq
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
hs : PartiallyWellOrderedOn s r
hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂)
g : ℕ → α
hgs : ∀ (n : ℕ), g n ∈ s
heq : ∀ (n : ℕ), f (g n) = (f ∘ g) n
⊢ ∃ m n, m < n ∧ r' ((f ∘ g) m) ((f ∘ g) n)
[PROOFSTEP]
obtain ⟨m, n, hlt, hmn⟩ := hs g hgs
[GOAL]
case intro.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
hs : PartiallyWellOrderedOn s r
hf : ∀ (a₁ : α), a₁ ∈ s → ∀ (a₂ : α), a₂ ∈ s → r a₁ a₂ → r' (f a₁) (f a₂)
g : ℕ → α
hgs : ∀ (n : ℕ), g n ∈ s
heq : ∀ (n : ℕ), f (g n) = (f ∘ g) n
m n : ℕ
hlt : m < n
hmn : r (g m) (g n)
⊢ ∃ m n, m < n ∧ r' ((f ∘ g) m) ((f ∘ g) n)
[PROOFSTEP]
exact ⟨m, n, hlt, hf _ (hgs m) _ (hgs n) hmn⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
ha : IsAntichain r s
hp : PartiallyWellOrderedOn s r
⊢ Set.Finite s
[PROOFSTEP]
refine' not_infinite.1 fun hi => _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
ha : IsAntichain r s
hp : PartiallyWellOrderedOn s r
hi : Set.Infinite s
⊢ False
[PROOFSTEP]
obtain ⟨m, n, hmn, h⟩ := hp (fun n => hi.natEmbedding _ n) fun n => (hi.natEmbedding _ n).2
[GOAL]
case intro.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
ha : IsAntichain r s
hp : PartiallyWellOrderedOn s r
hi : Set.Infinite s
m n : ℕ
hmn : m < n
h : r ↑(↑(Infinite.natEmbedding s hi) m) ↑(↑(Infinite.natEmbedding s hi) n)
⊢ False
[PROOFSTEP]
exact
hmn.ne
((hi.natEmbedding _).injective <| Subtype.val_injective <| ha.eq (hi.natEmbedding _ m).2 (hi.natEmbedding _ n).2 h)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
inst✝ : IsRefl α r
hs : Set.Finite s
⊢ PartiallyWellOrderedOn s r
[PROOFSTEP]
intro f hf
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝ : IsRefl α r
hs : Set.Finite s
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
⊢ ∃ m n, m < n ∧ r (f m) (f n)
[PROOFSTEP]
obtain ⟨m, n, hmn, h⟩ := hs.exists_lt_map_eq_of_forall_mem hf
[GOAL]
case intro.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝ : IsRefl α r
hs : Set.Finite s
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
m n : ℕ
hmn : m < n
h : f m = f n
⊢ ∃ m n, m < n ∧ r (f m) (f n)
[PROOFSTEP]
exact ⟨m, n, hmn, h.subst <| refl (f m)⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
inst✝ : IsRefl α r
⊢ PartiallyWellOrderedOn (insert a s) r ↔ PartiallyWellOrderedOn s r
[PROOFSTEP]
simp only [← singleton_union, partiallyWellOrderedOn_union, partiallyWellOrderedOn_singleton, true_and_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
⊢ PartiallyWellOrderedOn s r ↔ ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
[PROOFSTEP]
refine' ⟨fun h t ht hrt => hrt.finite_of_partiallyWellOrderedOn (h.mono ht), _⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
⊢ (∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t) → PartiallyWellOrderedOn s r
[PROOFSTEP]
rintro hs f hf
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
⊢ ∃ m n, m < n ∧ r (f m) (f n)
[PROOFSTEP]
by_contra' H
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n)
⊢ False
[PROOFSTEP]
refine' infinite_range_of_injective (fun m n hmn => _) (hs _ (range_subset_iff.2 hf) _)
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n)
m n : ℕ
hmn : f m = f n
⊢ m = n
[PROOFSTEP]
obtain h | h | h := lt_trichotomy m n
[GOAL]
case refine'_1.inl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n)
m n : ℕ
hmn : f m = f n
h : m < n
⊢ m = n
[PROOFSTEP]
refine' (H _ _ h _).elim
[GOAL]
case refine'_1.inl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n)
m n : ℕ
hmn : f m = f n
h : m < n
⊢ r (f m) (f n)
[PROOFSTEP]
rw [hmn]
[GOAL]
case refine'_1.inl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n)
m n : ℕ
hmn : f m = f n
h : m < n
⊢ r (f n) (f n)
[PROOFSTEP]
exact refl _
[GOAL]
case refine'_1.inr.inl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n)
m n : ℕ
hmn : f m = f n
h : m = n
⊢ m = n
[PROOFSTEP]
exact h
[GOAL]
case refine'_1.inr.inr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n)
m n : ℕ
hmn : f m = f n
h : n < m
⊢ m = n
[PROOFSTEP]
refine' (H _ _ h _).elim
[GOAL]
case refine'_1.inr.inr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n)
m n : ℕ
hmn : f m = f n
h : n < m
⊢ r (f n) (f m)
[PROOFSTEP]
rw [hmn]
[GOAL]
case refine'_1.inr.inr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n)
m n : ℕ
hmn : f m = f n
h : n < m
⊢ r (f n) (f n)
[PROOFSTEP]
exact refl _
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n)
⊢ IsAntichain r (range fun y => f y)
[PROOFSTEP]
rintro _ ⟨m, hm, rfl⟩ _ ⟨n, hn, rfl⟩ hmn
[GOAL]
case refine'_2.intro.refl.intro.refl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n)
m n : ℕ
hmn : (fun y => f y) m ≠ (fun y => f y) n
⊢ rᶜ ((fun y => f y) m) ((fun y => f y) n)
[PROOFSTEP]
obtain h | h := (ne_of_apply_ne _ hmn).lt_or_lt
[GOAL]
case refine'_2.intro.refl.intro.refl.inl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n)
m n : ℕ
hmn : (fun y => f y) m ≠ (fun y => f y) n
h : m < n
⊢ rᶜ ((fun y => f y) m) ((fun y => f y) n)
[PROOFSTEP]
exact H _ _ h
[GOAL]
case refine'_2.intro.refl.intro.refl.inr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsSymm α r
hs : ∀ (t : Set α), t ⊆ s → IsAntichain r t → Set.Finite t
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
H : ∀ (m n : ℕ), m < n → ¬r (f m) (f n)
m n : ℕ
hmn : (fun y => f y) m ≠ (fun y => f y) n
h : n < m
⊢ rᶜ ((fun y => f y) m) ((fun y => f y) n)
[PROOFSTEP]
exact mt symm (H _ _ h)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
h : PartiallyWellOrderedOn s r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
⊢ ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
obtain ⟨g, h1 | h2⟩ := exists_increasing_or_nonincreasing_subseq r f
[GOAL]
case intro.inl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
h : PartiallyWellOrderedOn s r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
g : ℕ ↪o ℕ
h1 : ∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n))
⊢ ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
refine' ⟨g, fun m n hle => _⟩
[GOAL]
case intro.inl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
h : PartiallyWellOrderedOn s r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
g : ℕ ↪o ℕ
h1 : ∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n))
m n : ℕ
hle : m ≤ n
⊢ r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
obtain hlt | rfl := hle.lt_or_eq
[GOAL]
case intro.inl.inl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
h : PartiallyWellOrderedOn s r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
g : ℕ ↪o ℕ
h1 : ∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n))
m n : ℕ
hle : m ≤ n
hlt : m < n
⊢ r (f (↑g m)) (f (↑g n))
case intro.inl.inr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
h : PartiallyWellOrderedOn s r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
g : ℕ ↪o ℕ
h1 : ∀ (m n : ℕ), m < n → r (f (↑g m)) (f (↑g n))
m : ℕ
hle : m ≤ m
⊢ r (f (↑g m)) (f (↑g m))
[PROOFSTEP]
exacts [h1 m n hlt, refl_of r _]
[GOAL]
case intro.inr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
h : PartiallyWellOrderedOn s r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
g : ℕ ↪o ℕ
h2 : ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
⊢ ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
exfalso
[GOAL]
case intro.inr.h
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
h : PartiallyWellOrderedOn s r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
g : ℕ ↪o ℕ
h2 : ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
⊢ False
[PROOFSTEP]
obtain ⟨m, n, hlt, hle⟩ := h (f ∘ g) fun n => hf _
[GOAL]
case intro.inr.h.intro.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
h : PartiallyWellOrderedOn s r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
g : ℕ ↪o ℕ
h2 : ∀ (m n : ℕ), m < n → ¬r (f (↑g m)) (f (↑g n))
m n : ℕ
hlt : m < n
hle : r ((f ∘ ↑g) m) ((f ∘ ↑g) n)
⊢ False
[PROOFSTEP]
exact h2 m n hlt hle
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
⊢ PartiallyWellOrderedOn s r ↔ ∀ (f : ℕ → α), (∀ (n : ℕ), f n ∈ s) → ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
⊢ PartiallyWellOrderedOn s r → ∀ (f : ℕ → α), (∀ (n : ℕ), f n ∈ s) → ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
intro h f hf
[GOAL]
case mpr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
⊢ (∀ (f : ℕ → α), (∀ (n : ℕ), f n ∈ s) → ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n))) → PartiallyWellOrderedOn s r
[PROOFSTEP]
intro h f hf
[GOAL]
case mp
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
h : PartiallyWellOrderedOn s r
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
⊢ ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n))
[PROOFSTEP]
exact h.exists_monotone_subseq f hf
[GOAL]
case mpr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
h : ∀ (f : ℕ → α), (∀ (n : ℕ), f n ∈ s) → ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n))
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
⊢ ∃ m n, m < n ∧ r (f m) (f n)
[PROOFSTEP]
obtain ⟨g, gmon⟩ := h f hf
[GOAL]
case mpr.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
h : ∀ (f : ℕ → α), (∀ (n : ℕ), f n ∈ s) → ∃ g, ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n))
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
g : ℕ ↪o ℕ
gmon : ∀ (m n : ℕ), m ≤ n → r (f (↑g m)) (f (↑g n))
⊢ ∃ m n, m < n ∧ r (f m) (f n)
[PROOFSTEP]
exact ⟨g 0, g 1, g.lt_iff_lt.2 zero_lt_one, gmon _ _ zero_le_one⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t✝ : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
t : Set β
hs : PartiallyWellOrderedOn s r
ht : PartiallyWellOrderedOn t r'
⊢ PartiallyWellOrderedOn (s ×ˢ t) fun x y => r x.fst y.fst ∧ r' x.snd y.snd
[PROOFSTEP]
intro f hf
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t✝ : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
t : Set β
hs : PartiallyWellOrderedOn s r
ht : PartiallyWellOrderedOn t r'
f : ℕ → α × β
hf : ∀ (n : ℕ), f n ∈ s ×ˢ t
⊢ ∃ m n, m < n ∧ (fun x y => r x.fst y.fst ∧ r' x.snd y.snd) (f m) (f n)
[PROOFSTEP]
obtain ⟨g₁, h₁⟩ := hs.exists_monotone_subseq (Prod.fst ∘ f) fun n => (hf n).1
[GOAL]
case intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t✝ : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
t : Set β
hs : PartiallyWellOrderedOn s r
ht : PartiallyWellOrderedOn t r'
f : ℕ → α × β
hf : ∀ (n : ℕ), f n ∈ s ×ˢ t
g₁ : ℕ ↪o ℕ
h₁ : ∀ (m n : ℕ), m ≤ n → r ((Prod.fst ∘ f) (↑g₁ m)) ((Prod.fst ∘ f) (↑g₁ n))
⊢ ∃ m n, m < n ∧ (fun x y => r x.fst y.fst ∧ r' x.snd y.snd) (f m) (f n)
[PROOFSTEP]
obtain ⟨m, n, hlt, hle⟩ := ht (Prod.snd ∘ f ∘ g₁) fun n => (hf _).2
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t✝ : Set α
a : α
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
t : Set β
hs : PartiallyWellOrderedOn s r
ht : PartiallyWellOrderedOn t r'
f : ℕ → α × β
hf : ∀ (n : ℕ), f n ∈ s ×ˢ t
g₁ : ℕ ↪o ℕ
h₁ : ∀ (m n : ℕ), m ≤ n → r ((Prod.fst ∘ f) (↑g₁ m)) ((Prod.fst ∘ f) (↑g₁ n))
m n : ℕ
hlt : m < n
hle : r' ((Prod.snd ∘ f ∘ ↑g₁) m) ((Prod.snd ∘ f ∘ ↑g₁) n)
⊢ ∃ m n, m < n ∧ (fun x y => r x.fst y.fst ∧ r' x.snd y.snd) (f m) (f n)
[PROOFSTEP]
exact ⟨g₁ m, g₁ n, g₁.strictMono hlt, h₁ _ _ hlt.le, hle⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
inst✝ : IsPreorder α r
h : PartiallyWellOrderedOn s r
⊢ WellFoundedOn s fun a b => r a b ∧ ¬r b a
[PROOFSTEP]
letI : Preorder α :=
{ le := r
le_refl := refl_of r
le_trans := fun _ _ _ => trans_of r }
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
inst✝ : IsPreorder α r
h : PartiallyWellOrderedOn s r
this : Preorder α := Preorder.mk (_ : ∀ (a : α), r a a) (_ : ∀ (x x_1 x_2 : α), r x x_1 → r x_1 x_2 → r x x_2)
⊢ WellFoundedOn s fun a b => r a b ∧ ¬r b a
[PROOFSTEP]
change s.WellFoundedOn (· < ·)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
inst✝ : IsPreorder α r
h : PartiallyWellOrderedOn s r
this : Preorder α := Preorder.mk (_ : ∀ (a : α), r a a) (_ : ∀ (x x_1 x_2 : α), r x x_1 → r x_1 x_2 → r x x_2)
⊢ WellFoundedOn s fun x x_1 => x < x_1
[PROOFSTEP]
replace h : s.PartiallyWellOrderedOn (· ≤ ·) := h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
inst✝ : IsPreorder α r
this : Preorder α := Preorder.mk (_ : ∀ (a : α), r a a) (_ : ∀ (x x_1 x_2 : α), r x x_1 → r x_1 x_2 → r x x_2)
h : PartiallyWellOrderedOn s fun x x_1 => x ≤ x_1
⊢ WellFoundedOn s fun x x_1 => x < x_1
[PROOFSTEP]
rw [wellFoundedOn_iff_no_descending_seq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f : α → β
s t : Set α
a : α
inst✝ : IsPreorder α r
this : Preorder α := Preorder.mk (_ : ∀ (a : α), r a a) (_ : ∀ (x x_1 x_2 : α), r x x_1 → r x_1 x_2 → r x x_2)
h : PartiallyWellOrderedOn s fun x x_1 => x ≤ x_1
⊢ ∀ (f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x < x_1), ¬∀ (n : ℕ), ↑f n ∈ s
[PROOFSTEP]
intro f hf
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝ : IsPreorder α r
this : Preorder α := Preorder.mk (_ : ∀ (a : α), r a a) (_ : ∀ (x x_1 x_2 : α), r x x_1 → r x_1 x_2 → r x x_2)
h : PartiallyWellOrderedOn s fun x x_1 => x ≤ x_1
f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x < x_1
hf : ∀ (n : ℕ), ↑f n ∈ s
⊢ False
[PROOFSTEP]
obtain ⟨m, n, hlt, hle⟩ := h f hf
[GOAL]
case intro.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
r' : β → β → Prop
f✝ : α → β
s t : Set α
a : α
inst✝ : IsPreorder α r
this : Preorder α := Preorder.mk (_ : ∀ (a : α), r a a) (_ : ∀ (x x_1 x_2 : α), r x x_1 → r x_1 x_2 → r x x_2)
h : PartiallyWellOrderedOn s fun x x_1 => x ≤ x_1
f : (fun x x_1 => x > x_1) ↪r fun x x_1 => x < x_1
hf : ∀ (n : ℕ), ↑f n ∈ s
m n : ℕ
hlt : m < n
hle : ↑f m ≤ ↑f n
⊢ False
[PROOFSTEP]
exact (f.map_rel_iff.2 hlt).not_le hle
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
h : IsPwo s
⊢ IsWf s
[PROOFSTEP]
simpa only [← lt_iff_le_not_le] using h.wellFoundedOn
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
a : α
⊢ IsPwo (insert a s) ↔ IsPwo s
[PROOFSTEP]
simp only [← singleton_union, isPwo_union, isPwo_singleton, true_and_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
inst✝¹ : Preorder α
inst✝ : Preorder β
s t : Set α
a : α
⊢ IsWf (insert a s) ↔ IsWf s
[PROOFSTEP]
simp only [← singleton_union, isWf_union, isWf_singleton, true_and_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
inst✝ : IsStrictOrder α r
s : Set α
a : α
⊢ WellFoundedOn (insert a s) r ↔ WellFoundedOn s r
[PROOFSTEP]
simp only [← singleton_union, wellFoundedOn_union, wellFoundedOn_singleton, true_and_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
inst✝ : LinearOrder α
s : Set α
hs : IsWf s
⊢ IsPwo s
[PROOFSTEP]
intro f hf
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
inst✝ : LinearOrder α
s : Set α
hs : IsWf s
f : ℕ → α
hf : ∀ (n : ℕ), f n ∈ s
⊢ ∃ m n, m < n ∧ (fun x x_1 => x ≤ x_1) (f m) (f n)
[PROOFSTEP]
lift f to ℕ → s using hf
[GOAL]
case intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
inst✝ : LinearOrder α
s : Set α
hs : IsWf s
f : ℕ → ↑s
⊢ ∃ m n, m < n ∧ (fun x x_1 => x ≤ x_1) ((fun i => ↑(f i)) m) ((fun i => ↑(f i)) n)
[PROOFSTEP]
rcases hs.has_min (range f) (range_nonempty _) with ⟨_, ⟨m, rfl⟩, hm⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
inst✝ : LinearOrder α
s : Set α
hs : IsWf s
f : ℕ → ↑s
m : ℕ
hm : ∀ (x : ↑s), x ∈ range f → ¬(fun x x_1 => x < x_1) ↑x ↑(f m)
⊢ ∃ m n, m < n ∧ (fun x x_1 => x ≤ x_1) ((fun i => ↑(f i)) m) ((fun i => ↑(f i)) n)
[PROOFSTEP]
simp only [forall_range_iff, not_lt] at hm
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
inst✝ : LinearOrder α
s : Set α
hs : IsWf s
f : ℕ → ↑s
m : ℕ
hm : ∀ (i : ℕ), ↑(f m) ≤ ↑(f i)
⊢ ∃ m n, m < n ∧ (fun x x_1 => x ≤ x_1) ((fun i => ↑(f i)) m) ((fun i => ↑(f i)) n)
[PROOFSTEP]
exact ⟨m, m + 1, lt_add_one m, hm _⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
inst✝ : IsStrictOrder α r
s : Finset ι
f : ι → Set α
⊢ Set.WellFoundedOn (sup ∅ f) r ↔ ∀ (i : ι), i ∈ ∅ → Set.WellFoundedOn (f i) r
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
inst✝ : IsStrictOrder α r
s✝ : Finset ι
f : ι → Set α
a : ι
s : Finset ι
ha : ¬a ∈ s
hs : Set.WellFoundedOn (sup s f) r ↔ ∀ (i : ι), i ∈ s → Set.WellFoundedOn (f i) r
⊢ Set.WellFoundedOn (sup (cons a s ha) f) r ↔ ∀ (i : ι), i ∈ cons a s ha → Set.WellFoundedOn (f i) r
[PROOFSTEP]
simp [-sup_set_eq_biUnion, hs]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
s : Finset ι
f : ι → Set α
⊢ Set.PartiallyWellOrderedOn (sup ∅ f) r ↔ ∀ (i : ι), i ∈ ∅ → Set.PartiallyWellOrderedOn (f i) r
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
s✝ : Finset ι
f : ι → Set α
a : ι
s : Finset ι
ha : ¬a ∈ s
hs : Set.PartiallyWellOrderedOn (sup s f) r ↔ ∀ (i : ι), i ∈ s → Set.PartiallyWellOrderedOn (f i) r
⊢ Set.PartiallyWellOrderedOn (sup (cons a s ha) f) r ↔ ∀ (i : ι), i ∈ cons a s ha → Set.PartiallyWellOrderedOn (f i) r
[PROOFSTEP]
simp [-sup_set_eq_biUnion, hs]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
inst✝ : IsStrictOrder α r
s : Finset ι
f : ι → Set α
⊢ Set.WellFoundedOn (⋃ (i : ι) (_ : i ∈ s), f i) r ↔ ∀ (i : ι), i ∈ s → Set.WellFoundedOn (f i) r
[PROOFSTEP]
simpa only [Finset.sup_eq_iSup] using s.wellFoundedOn_sup
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
s : Finset ι
f : ι → Set α
⊢ Set.PartiallyWellOrderedOn (⋃ (i : ι) (_ : i ∈ s), f i) r ↔ ∀ (i : ι), i ∈ s → Set.PartiallyWellOrderedOn (f i) r
[PROOFSTEP]
simpa only [Finset.sup_eq_iSup] using s.partiallyWellOrderedOn_sup
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
inst✝ : LinearOrder α
s t : Set α
a : α
hs : IsWf s
hsn : Set.Nonempty s
ht : IsWf t
htn : Set.Nonempty t
⊢ min (_ : IsWf (s ∪ t)) (_ : Set.Nonempty (s ∪ t)) = Min.min (min hs hsn) (min ht htn)
[PROOFSTEP]
refine'
le_antisymm
(le_min (IsWf.min_le_min_of_subset (subset_union_left _ _)) (IsWf.min_le_min_of_subset (subset_union_right _ _))) _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
inst✝ : LinearOrder α
s t : Set α
a : α
hs : IsWf s
hsn : Set.Nonempty s
ht : IsWf t
htn : Set.Nonempty t
⊢ Min.min (min hs hsn) (min ht htn) ≤ min (_ : IsWf (s ∪ t)) (_ : Set.Nonempty (s ∪ t))
[PROOFSTEP]
rw [min_le_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
inst✝ : LinearOrder α
s t : Set α
a : α
hs : IsWf s
hsn : Set.Nonempty s
ht : IsWf t
htn : Set.Nonempty t
⊢ min hs hsn ≤ min (_ : IsWf (s ∪ t)) (_ : Set.Nonempty (s ∪ t)) ∨
min ht htn ≤ min (_ : IsWf (s ∪ t)) (_ : Set.Nonempty (s ∪ t))
[PROOFSTEP]
exact ((mem_union _ _ _).1 ((hs.union ht).min_mem (union_nonempty.2 (.inl hsn)))).imp (hs.min_le _) (ht.min_le _)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
s : Set α
f : ℕ → α
⊢ ((∀ (n : ℕ), f n ∈ s) → ∃ m n, m < n ∧ r (f m) (f n)) ↔ ¬IsBadSeq r s f
[PROOFSTEP]
simp [IsBadSeq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
n : ℕ
f : ℕ → α
hf : IsBadSeq r s f
⊢ { g // (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ IsMinBadSeq r rk s n g }
[PROOFSTEP]
classical
have h : ∃ (k : ℕ) (g : ℕ → α), (∀ m, m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k :=
⟨_, f, fun _ _ => rfl, hf, rfl⟩
obtain ⟨h1, h2, h3⟩ := Classical.choose_spec (Nat.find_spec h)
refine' ⟨Classical.choose (Nat.find_spec h), h1, by convert h2, fun g hg1 hg2 con => _⟩
refine' Nat.find_min h _ ⟨g, fun m mn => (h1 m mn).trans (hg1 m mn), con, rfl⟩
rwa [← h3]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
n : ℕ
f : ℕ → α
hf : IsBadSeq r s f
⊢ { g // (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ IsMinBadSeq r rk s n g }
[PROOFSTEP]
have h : ∃ (k : ℕ) (g : ℕ → α), (∀ m, m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k :=
⟨_, f, fun _ _ => rfl, hf, rfl⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
n : ℕ
f : ℕ → α
hf : IsBadSeq r s f
h : ∃ k g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k
⊢ { g // (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ IsMinBadSeq r rk s n g }
[PROOFSTEP]
obtain ⟨h1, h2, h3⟩ := Classical.choose_spec (Nat.find_spec h)
[GOAL]
case intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
n : ℕ
f : ℕ → α
hf : IsBadSeq r s f
h : ∃ k g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k
h1 :
∀ (m : ℕ),
m < n → f m = Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) m
h2 : IsBadSeq r s (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h))
h3 :
rk (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) n) =
Nat.find h
⊢ { g // (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ IsMinBadSeq r rk s n g }
[PROOFSTEP]
refine' ⟨Classical.choose (Nat.find_spec h), h1, by convert h2, fun g hg1 hg2 con => _⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
n : ℕ
f : ℕ → α
hf : IsBadSeq r s f
h : ∃ k g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k
h1 :
∀ (m : ℕ),
m < n → f m = Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) m
h2 : IsBadSeq r s (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h))
h3 :
rk (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) n) =
Nat.find h
⊢ IsBadSeq r s (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h))
[PROOFSTEP]
convert h2
[GOAL]
case intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
n : ℕ
f : ℕ → α
hf : IsBadSeq r s f
h : ∃ k g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k
h1 :
∀ (m : ℕ),
m < n → f m = Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) m
h2 : IsBadSeq r s (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h))
h3 :
rk (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) n) =
Nat.find h
g : ℕ → α
hg1 :
∀ (m : ℕ),
m < n → Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) m = g m
hg2 :
rk (g n) < rk (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) n)
con : IsBadSeq r s g
⊢ False
[PROOFSTEP]
refine' Nat.find_min h _ ⟨g, fun m mn => (h1 m mn).trans (hg1 m mn), con, rfl⟩
[GOAL]
case intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
n : ℕ
f : ℕ → α
hf : IsBadSeq r s f
h : ∃ k g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = k
h1 :
∀ (m : ℕ),
m < n → f m = Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) m
h2 : IsBadSeq r s (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h))
h3 :
rk (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) n) =
Nat.find h
g : ℕ → α
hg1 :
∀ (m : ℕ),
m < n → Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) m = g m
hg2 :
rk (g n) < rk (Classical.choose (_ : ∃ g, (∀ (m : ℕ), m < n → f m = g m) ∧ IsBadSeq r s g ∧ rk (g n) = Nat.find h) n)
con : IsBadSeq r s g
⊢ rk (g n) < Nat.find h
[PROOFSTEP]
rwa [← h3]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
⊢ (∃ f, IsBadSeq r s f) → ∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f
[PROOFSTEP]
rintro ⟨f0, hf0 : IsBadSeq r s f0⟩
[GOAL]
case intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
⊢ ∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f
[PROOFSTEP]
let fs : ∀ n : ℕ, { f : ℕ → α // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
by
refine' Nat.rec _ fun n fn => _
· exact ⟨(minBadSeqOfBadSeq r rk s 0 f0 hf0).1, (minBadSeqOfBadSeq r rk s 0 f0 hf0).2.2⟩
· exact ⟨(minBadSeqOfBadSeq r rk s (n + 1) fn.1 fn.2.1).1, (minBadSeqOfBadSeq r rk s (n + 1) fn.1 fn.2.1).2.2⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
⊢ (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f }
[PROOFSTEP]
refine' Nat.rec _ fun n fn => _
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
⊢ { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s Nat.zero f }
[PROOFSTEP]
exact ⟨(minBadSeqOfBadSeq r rk s 0 f0 hf0).1, (minBadSeqOfBadSeq r rk s 0 f0 hf0).2.2⟩
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
n : ℕ
fn : { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f }
⊢ { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s (Nat.succ n) f }
[PROOFSTEP]
exact ⟨(minBadSeqOfBadSeq r rk s (n + 1) fn.1 fn.2.1).1, (minBadSeqOfBadSeq r rk s (n + 1) fn.1 fn.2.1).2.2⟩
[GOAL]
case intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
fun t =>
Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
t
⊢ ∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f
[PROOFSTEP]
have h : ∀ m n, m ≤ n → (fs m).1 m = (fs n).1 m := fun m n mn =>
by
obtain ⟨k, rfl⟩ := exists_add_of_le mn; clear mn
induction' k with k ih
· rfl
· rw [ih,
(minBadSeqOfBadSeq r rk s (m + k + 1) (fs (m + k)).1 (fs (m + k)).2.1).2.1 m
(Nat.lt_succ_iff.2 (Nat.add_le_add_left k.zero_le m))]
rfl
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
fun t =>
Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
t
m n : ℕ
mn : m ≤ n
⊢ ↑(fs m) m = ↑(fs n) m
[PROOFSTEP]
obtain ⟨k, rfl⟩ := exists_add_of_le mn
[GOAL]
case intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
fun t =>
Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
t
m k : ℕ
mn : m ≤ m + k
⊢ ↑(fs m) m = ↑(fs (m + k)) m
[PROOFSTEP]
clear mn
[GOAL]
case intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
fun t =>
Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
t
m k : ℕ
⊢ ↑(fs m) m = ↑(fs (m + k)) m
[PROOFSTEP]
induction' k with k ih
[GOAL]
case intro.zero
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
fun t =>
Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
t
m : ℕ
⊢ ↑(fs m) m = ↑(fs (m + Nat.zero)) m
[PROOFSTEP]
rfl
[GOAL]
case intro.succ
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
fun t =>
Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
t
m k : ℕ
ih : ↑(fs m) m = ↑(fs (m + k)) m
⊢ ↑(fs m) m = ↑(fs (m + Nat.succ k)) m
[PROOFSTEP]
rw [ih,
(minBadSeqOfBadSeq r rk s (m + k + 1) (fs (m + k)).1 (fs (m + k)).2.1).2.1 m
(Nat.lt_succ_iff.2 (Nat.add_le_add_left k.zero_le m))]
[GOAL]
case intro.succ
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
fun t =>
Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
t
m k : ℕ
ih : ↑(fs m) m = ↑(fs (m + k)) m
⊢ ↑(minBadSeqOfBadSeq r rk s (m + k + 1) ↑(fs (m + k)) (_ : IsBadSeq r s ↑(fs (m + k)))) m = ↑(fs (m + Nat.succ k)) m
[PROOFSTEP]
rfl
[GOAL]
case intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
fun t =>
Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
t
h : ∀ (m n : ℕ), m ≤ n → ↑(fs m) m = ↑(fs n) m
⊢ ∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f
[PROOFSTEP]
refine ⟨fun n => (fs n).1 n, ⟨fun n => (fs n).2.1.1 n, fun m n mn => ?_⟩, fun n g hg1 hg2 => ?_⟩
[GOAL]
case intro.refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
fun t =>
Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
t
h : ∀ (m n : ℕ), m ≤ n → ↑(fs m) m = ↑(fs n) m
m n : ℕ
mn : m < n
⊢ ¬r ((fun n => ↑(fs n) n) m) ((fun n => ↑(fs n) n) n)
[PROOFSTEP]
dsimp
[GOAL]
case intro.refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
fun t =>
Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
t
h : ∀ (m n : ℕ), m ≤ n → ↑(fs m) m = ↑(fs n) m
m n : ℕ
mn : m < n
⊢ ¬r
(↑(Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
m)
m)
(↑(Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
n)
n)
[PROOFSTEP]
rw [h m n mn.le]
[GOAL]
case intro.refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
fun t =>
Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
t
h : ∀ (m n : ℕ), m ≤ n → ↑(fs m) m = ↑(fs n) m
m n : ℕ
mn : m < n
⊢ ¬r (↑(fs n) m)
(↑(Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
n)
n)
[PROOFSTEP]
exact (fs n).2.1.2 m n mn
[GOAL]
case intro.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
fun t =>
Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
t
h : ∀ (m n : ℕ), m ≤ n → ↑(fs m) m = ↑(fs n) m
n : ℕ
g : ℕ → α
hg1 : ∀ (m : ℕ), m < n → (fun n => ↑(fs n) n) m = g m
hg2 : rk (g n) < rk ((fun n => ↑(fs n) n) n)
⊢ ¬IsBadSeq r s g
[PROOFSTEP]
refine (fs n).2.2 g (fun m mn => ?_) hg2
[GOAL]
case intro.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
rk : α → ℕ
s : Set α
f0 : ℕ → α
hf0 : IsBadSeq r s f0
fs : (n : ℕ) → { f // IsBadSeq r s f ∧ IsMinBadSeq r rk s n f } :=
fun t =>
Nat.rec
{ val := ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0) ∧
IsMinBadSeq r rk s 0 ↑(minBadSeqOfBadSeq r rk s 0 f0 hf0)) }
(fun n fn =>
{ val := ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)),
property :=
(_ :
IsBadSeq r s ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn)) ∧
IsMinBadSeq r rk s (n + 1) ↑(minBadSeqOfBadSeq r rk s (n + 1) ↑fn (_ : IsBadSeq r s ↑fn))) })
t
h : ∀ (m n : ℕ), m ≤ n → ↑(fs m) m = ↑(fs n) m
n : ℕ
g : ℕ → α
hg1 : ∀ (m : ℕ), m < n → (fun n => ↑(fs n) n) m = g m
hg2 : rk (g n) < rk ((fun n => ↑(fs n) n) n)
m : ℕ
mn : m < n
⊢ ↑(fs n) m = g m
[PROOFSTEP]
rw [← h m n mn.le, ← hg1 m mn]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
rk : α → ℕ
s : Set α
⊢ PartiallyWellOrderedOn s r ↔ ¬∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f
[PROOFSTEP]
rw [iff_forall_not_isBadSeq, ← not_exists, not_congr]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
rk : α → ℕ
s : Set α
⊢ (∃ x, IsBadSeq r s x) ↔ ∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
rk : α → ℕ
s : Set α
⊢ (∃ x, IsBadSeq r s x) → ∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f
[PROOFSTEP]
apply exists_min_bad_of_exists_bad
[GOAL]
case mpr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
rk : α → ℕ
s : Set α
⊢ (∃ f, IsBadSeq r s f ∧ ∀ (n : ℕ), IsMinBadSeq r rk s n f) → ∃ x, IsBadSeq r s x
[PROOFSTEP]
rintro ⟨f, hf1, -⟩
[GOAL]
case mpr.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r : α → α → Prop
rk : α → ℕ
s : Set α
f : ℕ → α
hf1 : IsBadSeq r s f
⊢ ∃ x, IsBadSeq r s x
[PROOFSTEP]
exact ⟨f, hf1⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
⊢ PartiallyWellOrderedOn {l | ∀ (x : α), x ∈ l → x ∈ s} (List.SublistForall₂ r)
[PROOFSTEP]
rcases isEmpty_or_nonempty α
[GOAL]
case inl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : IsEmpty α
⊢ PartiallyWellOrderedOn {l | ∀ (x : α), x ∈ l → x ∈ s} (List.SublistForall₂ r)
[PROOFSTEP]
exact subsingleton_of_subsingleton.partiallyWellOrderedOn
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
⊢ PartiallyWellOrderedOn {l | ∀ (x : α), x ∈ l → x ∈ s} (List.SublistForall₂ r)
[PROOFSTEP]
inhabit α
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
⊢ PartiallyWellOrderedOn {l | ∀ (x : α), x ∈ l → x ∈ s} (List.SublistForall₂ r)
[PROOFSTEP]
rw [iff_not_exists_isMinBadSeq List.length]
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
⊢ ¬∃ f,
IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f ∧
∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
[PROOFSTEP]
rintro ⟨f, hf1, hf2⟩
[GOAL]
case inr.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
⊢ False
[PROOFSTEP]
have hnil : ∀ n, f n ≠ List.nil := fun n con => hf1.2 n n.succ n.lt_succ_self (con.symm ▸ List.SublistForall₂.nil)
[GOAL]
case inr.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
⊢ False
[PROOFSTEP]
have : ∀ n, (f n).headI ∈ s
[GOAL]
case this
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
⊢ ∀ (n : ℕ), List.headI (f n) ∈ s
[PROOFSTEP]
exact fun n => hf1.1 n _ (List.head!_mem_self (hnil n))
[GOAL]
case inr.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
⊢ False
[PROOFSTEP]
obtain ⟨g, hg⟩ := h.exists_monotone_subseq (fun n => (f n).headI) this
[GOAL]
case inr.intro.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
⊢ False
[PROOFSTEP]
have hf' := hf2 (g 0) (fun n => if n < g 0 then f n else List.tail (f (g (n - g 0)))) (fun m hm => (if_pos hm).symm) ?_
[GOAL]
case inr.intro.intro.intro.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
¬IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} fun n =>
if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))
⊢ False
case inr.intro.intro.intro.refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
⊢ List.length ((fun n => if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) (↑g 0)) < List.length (f (↑g 0))
[PROOFSTEP]
swap
[GOAL]
case inr.intro.intro.intro.refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
⊢ List.length ((fun n => if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) (↑g 0)) < List.length (f (↑g 0))
[PROOFSTEP]
simp only [if_neg (lt_irrefl (g 0)), tsub_self]
[GOAL]
case inr.intro.intro.intro.refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
⊢ List.length (List.tail (f (↑g 0))) < List.length (f (↑g 0))
[PROOFSTEP]
rw [List.length_tail, ← Nat.pred_eq_sub_one]
[GOAL]
case inr.intro.intro.intro.refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
⊢ Nat.pred (List.length (f (↑g 0))) < List.length (f (↑g 0))
[PROOFSTEP]
exact Nat.pred_lt fun con => hnil _ (List.length_eq_zero.1 con)
[GOAL]
case inr.intro.intro.intro.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
¬IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} fun n =>
if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))
⊢ False
[PROOFSTEP]
rw [IsBadSeq] at hf'
[GOAL]
case inr.intro.intro.intro.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
¬((∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) ∧
∀ (m n : ℕ),
m < n →
¬List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))))
⊢ False
[PROOFSTEP]
push_neg at hf'
[GOAL]
case inr.intro.intro.intro.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
⊢ False
[PROOFSTEP]
obtain ⟨m, n, mn, hmn⟩ :=
hf' <| fun n x hx => by
split_ifs at hx with hn
exacts [hf1.1 _ _ hx, hf1.1 _ _ (List.tail_subset _ hx)]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
n : ℕ
x : α
hx : x ∈ if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))
⊢ x ∈ s
[PROOFSTEP]
split_ifs at hx with hn
[GOAL]
case pos
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
n : ℕ
x : α
hn : n < ↑g 0
hx : x ∈ f n
⊢ x ∈ s
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
n : ℕ
x : α
hn : ¬n < ↑g 0
hx : x ∈ List.tail (f (↑g (n - ↑g 0)))
⊢ x ∈ s
[PROOFSTEP]
exacts [hf1.1 _ _ hx, hf1.1 _ _ (List.tail_subset _ hx)]
[GOAL]
case inr.intro.intro.intro.refine_2.intro.intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
m n : ℕ
mn : m < n
hmn :
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
⊢ False
[PROOFSTEP]
by_cases hn : n < g 0
[GOAL]
case pos
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
m n : ℕ
mn : m < n
hmn :
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
hn : n < ↑g 0
⊢ False
[PROOFSTEP]
apply hf1.2 m n mn
[GOAL]
case pos
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
m n : ℕ
mn : m < n
hmn :
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
hn : n < ↑g 0
⊢ List.SublistForall₂ r (f m) (f n)
[PROOFSTEP]
rwa [if_pos hn, if_pos (mn.trans hn)] at hmn
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
m n : ℕ
mn : m < n
hmn :
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
hn : ¬n < ↑g 0
⊢ False
[PROOFSTEP]
obtain ⟨n', rfl⟩ := exists_add_of_le (not_lt.1 hn)
[GOAL]
case neg.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
m n' : ℕ
mn : m < ↑g 0 + n'
hmn :
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if ↑g 0 + n' < ↑g 0 then f (↑g 0 + n') else List.tail (f (↑g (↑g 0 + n' - ↑g 0))))
hn : ¬↑g 0 + n' < ↑g 0
⊢ False
[PROOFSTEP]
rw [if_neg hn, add_comm (g 0) n', add_tsub_cancel_right] at hmn
[GOAL]
case neg.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
m n' : ℕ
mn : m < ↑g 0 + n'
hmn : List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0)))) (List.tail (f (↑g n')))
hn : ¬↑g 0 + n' < ↑g 0
⊢ False
[PROOFSTEP]
split_ifs at hmn with hm
[GOAL]
case pos
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
m n' : ℕ
mn : m < ↑g 0 + n'
hn : ¬↑g 0 + n' < ↑g 0
hm : m < ↑g 0
hmn : List.SublistForall₂ r (f m) (List.tail (f (↑g n')))
⊢ False
[PROOFSTEP]
apply hf1.2 m (g n') (lt_of_lt_of_le hm (g.monotone n'.zero_le))
[GOAL]
case pos
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
m n' : ℕ
mn : m < ↑g 0 + n'
hn : ¬↑g 0 + n' < ↑g 0
hm : m < ↑g 0
hmn : List.SublistForall₂ r (f m) (List.tail (f (↑g n')))
⊢ List.SublistForall₂ r (f m) (f (↑g n'))
[PROOFSTEP]
exact _root_.trans hmn (List.tail_sublistForall₂_self _)
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
m n' : ℕ
mn : m < ↑g 0 + n'
hn : ¬↑g 0 + n' < ↑g 0
hm : ¬m < ↑g 0
hmn : List.SublistForall₂ r (List.tail (f (↑g (m - ↑g 0)))) (List.tail (f (↑g n')))
⊢ False
[PROOFSTEP]
rw [← tsub_lt_iff_left (le_of_not_lt hm)] at mn
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
m n' : ℕ
mn : m - ↑g 0 < n'
hn : ¬↑g 0 + n' < ↑g 0
hm : ¬m < ↑g 0
hmn : List.SublistForall₂ r (List.tail (f (↑g (m - ↑g 0)))) (List.tail (f (↑g n')))
⊢ False
[PROOFSTEP]
apply hf1.2 _ _ (g.lt_iff_lt.2 mn)
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
m n' : ℕ
mn : m - ↑g 0 < n'
hn : ¬↑g 0 + n' < ↑g 0
hm : ¬m < ↑g 0
hmn : List.SublistForall₂ r (List.tail (f (↑g (m - ↑g 0)))) (List.tail (f (↑g n')))
⊢ List.SublistForall₂ r (f (↑g (m - ↑g 0))) (f (↑g n'))
[PROOFSTEP]
rw [← List.cons_head!_tail (hnil (g (m - g 0))), ← List.cons_head!_tail (hnil (g n'))]
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
r✝ r : α → α → Prop
inst✝¹ : IsRefl α r
inst✝ : IsTrans α r
s : Set α
h : PartiallyWellOrderedOn s r
h✝ : Nonempty α
inhabited_h : Inhabited α
f : ℕ → List α
hf1 : IsBadSeq (List.SublistForall₂ r) {l | ∀ (x : α), x ∈ l → x ∈ s} f
hf2 : ∀ (n : ℕ), IsMinBadSeq (List.SublistForall₂ r) List.length {l | ∀ (x : α), x ∈ l → x ∈ s} n f
hnil : ∀ (n : ℕ), f n ≠ []
this : ∀ (n : ℕ), List.headI (f n) ∈ s
g : ℕ ↪o ℕ
hg : ∀ (m n : ℕ), m ≤ n → r (List.headI (f (↑g m))) (List.headI (f (↑g n)))
hf' :
(∀ (n : ℕ), (if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0)))) ∈ {l | ∀ (x : α), x ∈ l → x ∈ s}) →
∃ m n,
m < n ∧
List.SublistForall₂ r (if m < ↑g 0 then f m else List.tail (f (↑g (m - ↑g 0))))
(if n < ↑g 0 then f n else List.tail (f (↑g (n - ↑g 0))))
m n' : ℕ
mn : m - ↑g 0 < n'
hn : ¬↑g 0 + n' < ↑g 0
hm : ¬m < ↑g 0
hmn : List.SublistForall₂ r (List.tail (f (↑g (m - ↑g 0)))) (List.tail (f (↑g n')))
⊢ List.SublistForall₂ r (List.head! (f (↑g (m - ↑g 0))) :: List.tail (f (↑g (m - ↑g 0))))
(List.head! (f (↑g n')) :: List.tail (f (↑g n')))
[PROOFSTEP]
exact List.SublistForall₂.cons (hg _ _ (le_of_lt mn)) hmn
[GOAL]
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
α : ι → Type u_6
inst✝² : (i : ι) → LinearOrder (α i)
inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1
inst✝ : Finite ι
s : Set ((i : ι) → α i)
⊢ IsPwo s
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
α : ι → Type u_6
inst✝² : (i : ι) → LinearOrder (α i)
inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1
inst✝ : Finite ι
s : Set ((i : ι) → α i)
val✝ : Fintype ι
⊢ IsPwo s
[PROOFSTEP]
suffices ∀ (s : Finset ι) (f : ℕ → ∀ s, α s), ∃ g : ℕ ↪o ℕ, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ x, x ∈ s → (f ∘ g) a x ≤ (f ∘ g) b x
by
refine isPwo_iff_exists_monotone_subseq.2 fun f _ => ?_
simpa only [Finset.mem_univ, true_imp_iff] using this Finset.univ f
[GOAL]
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
α : ι → Type u_6
inst✝² : (i : ι) → LinearOrder (α i)
inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1
inst✝ : Finite ι
s : Set ((i : ι) → α i)
val✝ : Fintype ι
this :
∀ (s : Finset ι) (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x
⊢ IsPwo s
[PROOFSTEP]
refine isPwo_iff_exists_monotone_subseq.2 fun f _ => ?_
[GOAL]
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
α : ι → Type u_6
inst✝² : (i : ι) → LinearOrder (α i)
inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1
inst✝ : Finite ι
s : Set ((i : ι) → α i)
val✝ : Fintype ι
this :
∀ (s : Finset ι) (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x
f : ℕ → (i : ι) → α i
x✝ : ∀ (n : ℕ), f n ∈ s
⊢ ∃ g, Monotone (f ∘ ↑g)
[PROOFSTEP]
simpa only [Finset.mem_univ, true_imp_iff] using this Finset.univ f
[GOAL]
case intro
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
α : ι → Type u_6
inst✝² : (i : ι) → LinearOrder (α i)
inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1
inst✝ : Finite ι
s : Set ((i : ι) → α i)
val✝ : Fintype ι
⊢ ∀ (s : Finset ι) (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x
[PROOFSTEP]
refine' Finset.cons_induction _ _
[GOAL]
case intro.refine'_1
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
α : ι → Type u_6
inst✝² : (i : ι) → LinearOrder (α i)
inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1
inst✝ : Finite ι
s : Set ((i : ι) → α i)
val✝ : Fintype ι
⊢ ∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ ∅ → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x
[PROOFSTEP]
intro f
[GOAL]
case intro.refine'_1
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
α : ι → Type u_6
inst✝² : (i : ι) → LinearOrder (α i)
inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1
inst✝ : Finite ι
s : Set ((i : ι) → α i)
val✝ : Fintype ι
f : ℕ → (s : ι) → α s
⊢ ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ ∅ → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x
[PROOFSTEP]
exists RelEmbedding.refl (· ≤ ·)
[GOAL]
case intro.refine'_1
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
α : ι → Type u_6
inst✝² : (i : ι) → LinearOrder (α i)
inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1
inst✝ : Finite ι
s : Set ((i : ι) → α i)
val✝ : Fintype ι
f : ℕ → (s : ι) → α s
⊢ ∀ ⦃a b : ℕ⦄,
a ≤ b →
∀ (x : ι),
x ∈ ∅ →
(f ∘ ↑(RelEmbedding.refl fun x x_1 => x ≤ x_1)) a x ≤ (f ∘ ↑(RelEmbedding.refl fun x x_1 => x ≤ x_1)) b x
[PROOFSTEP]
simp only [IsEmpty.forall_iff, imp_true_iff, forall_const, Finset.not_mem_empty]
[GOAL]
case intro.refine'_2
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
α : ι → Type u_6
inst✝² : (i : ι) → LinearOrder (α i)
inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1
inst✝ : Finite ι
s : Set ((i : ι) → α i)
val✝ : Fintype ι
⊢ ∀ ⦃a : ι⦄ {s : Finset ι} (h : ¬a ∈ s),
(∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x) →
∀ (f : ℕ → (s : ι) → α s),
∃ g, ∀ ⦃a_2 b : ℕ⦄, a_2 ≤ b → ∀ (x : ι), x ∈ Finset.cons a s h → (f ∘ ↑g) a_2 x ≤ (f ∘ ↑g) b x
[PROOFSTEP]
intro x s hx ih f
[GOAL]
case intro.refine'_2
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
α : ι → Type u_6
inst✝² : (i : ι) → LinearOrder (α i)
inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1
inst✝ : Finite ι
s✝ : Set ((i : ι) → α i)
val✝ : Fintype ι
x : ι
s : Finset ι
hx : ¬x ∈ s
ih : ∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x
f : ℕ → (s : ι) → α s
⊢ ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x_1 : ι), x_1 ∈ Finset.cons x s hx → (f ∘ ↑g) a x_1 ≤ (f ∘ ↑g) b x_1
[PROOFSTEP]
obtain ⟨g, hg⟩ := (IsWellFounded.wf.isWf univ).isPwo.exists_monotone_subseq (fun n => f n x) mem_univ
[GOAL]
case intro.refine'_2.intro
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
α : ι → Type u_6
inst✝² : (i : ι) → LinearOrder (α i)
inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1
inst✝ : Finite ι
s✝ : Set ((i : ι) → α i)
val✝ : Fintype ι
x : ι
s : Finset ι
hx : ¬x ∈ s
ih : ∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x
f : ℕ → (s : ι) → α s
g : ℕ ↪o ℕ
hg : Monotone ((fun n => f n x) ∘ ↑g)
⊢ ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x_1 : ι), x_1 ∈ Finset.cons x s hx → (f ∘ ↑g) a x_1 ≤ (f ∘ ↑g) b x_1
[PROOFSTEP]
obtain ⟨g', hg'⟩ := ih (f ∘ g)
[GOAL]
case intro.refine'_2.intro.intro
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
α : ι → Type u_6
inst✝² : (i : ι) → LinearOrder (α i)
inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1
inst✝ : Finite ι
s✝ : Set ((i : ι) → α i)
val✝ : Fintype ι
x : ι
s : Finset ι
hx : ¬x ∈ s
ih : ∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x
f : ℕ → (s : ι) → α s
g : ℕ ↪o ℕ
hg : Monotone ((fun n => f n x) ∘ ↑g)
g' : ℕ ↪o ℕ
hg' : ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → ((f ∘ ↑g) ∘ ↑g') a x ≤ ((f ∘ ↑g) ∘ ↑g') b x
⊢ ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x_1 : ι), x_1 ∈ Finset.cons x s hx → (f ∘ ↑g) a x_1 ≤ (f ∘ ↑g) b x_1
[PROOFSTEP]
refine' ⟨g'.trans g, fun a b hab => (Finset.forall_mem_cons _ _).2 _⟩
[GOAL]
case intro.refine'_2.intro.intro
ι : Type u_1
α✝ : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
α : ι → Type u_6
inst✝² : (i : ι) → LinearOrder (α i)
inst✝¹ : ∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1
inst✝ : Finite ι
s✝ : Set ((i : ι) → α i)
val✝ : Fintype ι
x : ι
s : Finset ι
hx : ¬x ∈ s
ih : ∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → (f ∘ ↑g) a x ≤ (f ∘ ↑g) b x
f : ℕ → (s : ι) → α s
g : ℕ ↪o ℕ
hg : Monotone ((fun n => f n x) ∘ ↑g)
g' : ℕ ↪o ℕ
hg' : ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ (x : ι), x ∈ s → ((f ∘ ↑g) ∘ ↑g') a x ≤ ((f ∘ ↑g) ∘ ↑g') b x
a b : ℕ
hab : a ≤ b
⊢ (f ∘ ↑(RelEmbedding.trans g' g)) a x ≤ (f ∘ ↑(RelEmbedding.trans g' g)) b x ∧
∀ (x : ι), x ∈ s → (f ∘ ↑(RelEmbedding.trans g' g)) a x ≤ (f ∘ ↑(RelEmbedding.trans g' g)) b x
[PROOFSTEP]
exact ⟨hg (OrderHomClass.mono g' hab), hg' hab⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFounded (rα on f)
hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g)
⊢ WellFounded (Prod.Lex rα rβ on fun c => (f c, g c))
[PROOFSTEP]
refine' (PSigma.lex_wf (wellFoundedOn_range.2 hα) fun a => hβ a).onFun.mono fun c c' h => _
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFounded (rα on f)
hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g)
⊢ γ → (a : ↑(range f)) ×' ↑(f ⁻¹' {↑a})
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFounded (rα on f)
hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g)
c c' : γ
h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c'
⊢ ((PSigma.Lex (fun a b => rα ↑a ↑b) fun a a_1 b => (rβ on g) ↑a_1 ↑b) on ?refine'_1) c c'
[PROOFSTEP]
exact fun c => ⟨⟨_, c, rfl⟩, c, rfl⟩
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFounded (rα on f)
hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g)
c c' : γ
h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c'
⊢ ((PSigma.Lex (fun a b => rα ↑a ↑b) fun a a_1 b => (rβ on g) ↑a_1 ↑b) on fun c =>
{ fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } })
c c'
[PROOFSTEP]
obtain h' | h' := Prod.lex_iff.1 h
[GOAL]
case refine'_2.inl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFounded (rα on f)
hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g)
c c' : γ
h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c'
h' : rα ((fun c => (f c, g c)) c).fst ((fun c => (f c, g c)) c').fst
⊢ ((PSigma.Lex (fun a b => rα ↑a ↑b) fun a a_1 b => (rβ on g) ↑a_1 ↑b) on fun c =>
{ fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } })
c c'
[PROOFSTEP]
exact PSigma.Lex.left _ _ h'
[GOAL]
case refine'_2.inr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFounded (rα on f)
hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g)
c c' : γ
h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c'
h' :
((fun c => (f c, g c)) c).fst = ((fun c => (f c, g c)) c').fst ∧
rβ ((fun c => (f c, g c)) c).snd ((fun c => (f c, g c)) c').snd
⊢ ((PSigma.Lex (fun a b => rα ↑a ↑b) fun a a_1 b => (rβ on g) ↑a_1 ↑b) on fun c =>
{ fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } })
c c'
[PROOFSTEP]
dsimp only [InvImage, (· on ·)] at h' ⊢
[GOAL]
case refine'_2.inr
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFounded (rα on f)
hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g)
c c' : γ
h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c'
h' : f c = f c' ∧ rβ (g c) (g c')
⊢ PSigma.Lex (fun a b => rα ↑a ↑b) (fun a a_1 b => rβ (g ↑a_1) (g ↑b))
{ fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } }
{ fst := { val := f c', property := (_ : ∃ y, f y = f c') }, snd := { val := c', property := (_ : f c' = f c') } }
[PROOFSTEP]
convert PSigma.Lex.right (⟨_, c', rfl⟩ : range f) _ using 1
[GOAL]
case h.e'_5.h
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFounded (rα on f)
hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g)
c c' : γ
h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c'
h' : f c = f c' ∧ rβ (g c) (g c')
⊢ { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } } =
{ fst := { val := f c', property := (_ : ∃ y, f y = f c') }, snd := ?refine'_2.inr.convert_4 }
case refine'_2.inr.convert_4
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFounded (rα on f)
hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g)
c c' : γ
h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c'
h' : f c = f c' ∧ rβ (g c) (g c')
⊢ ↑(f ⁻¹' {↑{ val := f c', property := (_ : ∃ y, f y = f c') }})
case refine'_2.inr.convert_6
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFounded (rα on f)
hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g)
c c' : γ
h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c'
h' : f c = f c' ∧ rβ (g c) (g c')
⊢ rβ (g ↑?refine'_2.inr.convert_4) (g ↑{ val := c', property := (_ : f c' = f c') })
[PROOFSTEP]
swap
[GOAL]
case refine'_2.inr.convert_4
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFounded (rα on f)
hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g)
c c' : γ
h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c'
h' : f c = f c' ∧ rβ (g c) (g c')
⊢ ↑(f ⁻¹' {↑{ val := f c', property := (_ : ∃ y, f y = f c') }})
case h.e'_5.h
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFounded (rα on f)
hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g)
c c' : γ
h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c'
h' : f c = f c' ∧ rβ (g c) (g c')
⊢ { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } } =
{ fst := { val := f c', property := (_ : ∃ y, f y = f c') }, snd := ?refine'_2.inr.convert_4 }
case refine'_2.inr.convert_6
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFounded (rα on f)
hβ : ∀ (a : α), WellFoundedOn (f ⁻¹' {a}) (rβ on g)
c c' : γ
h : (Prod.Lex rα rβ on fun c => (f c, g c)) c c'
h' : f c = f c' ∧ rβ (g c) (g c')
⊢ rβ (g ↑?refine'_2.inr.convert_4) (g ↑{ val := c', property := (_ : f c' = f c') })
[PROOFSTEP]
exacts [⟨c, h'.1⟩, PSigma.subtype_ext (Subtype.ext h'.1) rfl, h'.2]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFoundedOn s (rα on f)
hβ : ∀ (a : α), WellFoundedOn (s ∩ f ⁻¹' {a}) (rβ on g)
⊢ WellFoundedOn s (Prod.Lex rα rβ on fun c => (f c, g c))
[PROOFSTEP]
refine' WellFounded.prod_lex_of_wellFoundedOn_fiber hα fun a ↦ (hβ a).onFun.mono (fun b c h ↦ _)
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFoundedOn s (rα on f)
hβ : ∀ (a : α), WellFoundedOn (s ∩ f ⁻¹' {a}) (rβ on g)
a : α
b c : ↑((fun a => f ↑a) ⁻¹' {a})
h : (rβ on fun a => g ↑a) ↑b ↑c
⊢ ((fun a_1 b => (rβ on g) ↑a_1 ↑b) on ?refine'_2 a) b c
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFoundedOn s (rα on f)
hβ : ∀ (a : α), WellFoundedOn (s ∩ f ⁻¹' {a}) (rβ on g)
⊢ (a : α) → ↑((fun a => f ↑a) ⁻¹' {a}) → ↑(s ∩ f ⁻¹' {a})
[PROOFSTEP]
swap
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFoundedOn s (rα on f)
hβ : ∀ (a : α), WellFoundedOn (s ∩ f ⁻¹' {a}) (rβ on g)
⊢ (a : α) → ↑((fun a => f ↑a) ⁻¹' {a}) → ↑(s ∩ f ⁻¹' {a})
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFoundedOn s (rα on f)
hβ : ∀ (a : α), WellFoundedOn (s ∩ f ⁻¹' {a}) (rβ on g)
a : α
b c : ↑((fun a => f ↑a) ⁻¹' {a})
h : (rβ on fun a => g ↑a) ↑b ↑c
⊢ ((fun a_1 b => (rβ on g) ↑a_1 ↑b) on ?refine'_2 a) b c
[PROOFSTEP]
exact fun _ x => ⟨x, x.1.2, x.2⟩
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rα : α → α → Prop
rβ : β → β → Prop
f : γ → α
g : γ → β
s : Set γ
hα : WellFoundedOn s (rα on f)
hβ : ∀ (a : α), WellFoundedOn (s ∩ f ⁻¹' {a}) (rβ on g)
a : α
b c : ↑((fun a => f ↑a) ⁻¹' {a})
h : (rβ on fun a => g ↑a) ↑b ↑c
⊢ ((fun a_1 b => (rβ on g) ↑a_1 ↑b) on fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ s ∧ ↑↑x ∈ f ⁻¹' {a}) }) b c
[PROOFSTEP]
assumption
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
⊢ WellFounded (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c })
[PROOFSTEP]
refine' (PSigma.lex_wf (wellFoundedOn_range.2 hι) fun a => hπ a).onFun.mono fun c c' h => _
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
⊢ γ → (a : ↑(range f)) ×' ↑(f ⁻¹' {↑a})
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
⊢ ((PSigma.Lex (fun a b => rι ↑a ↑b) fun a a_1 b => (rπ ↑a on g ↑a) ↑a_1 ↑b) on ?refine'_1) c c'
[PROOFSTEP]
exact fun c => ⟨⟨_, c, rfl⟩, c, rfl⟩
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
⊢ ((PSigma.Lex (fun a b => rι ↑a ↑b) fun a a_1 b => (rπ ↑a on g ↑a) ↑a_1 ↑b) on fun c =>
{ fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } })
c c'
[PROOFSTEP]
obtain h' | ⟨h', h''⟩ := Sigma.lex_iff.1 h
[GOAL]
case refine'_2.inl
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
h' : rι ((fun c => { fst := f c, snd := g (f c) c }) c).fst ((fun c => { fst := f c, snd := g (f c) c }) c').fst
⊢ ((PSigma.Lex (fun a b => rι ↑a ↑b) fun a a_1 b => (rπ ↑a on g ↑a) ↑a_1 ↑b) on fun c =>
{ fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } })
c c'
[PROOFSTEP]
exact PSigma.Lex.left _ _ h'
[GOAL]
case refine'_2.inr.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
h' : ((fun c => { fst := f c, snd := g (f c) c }) c).fst = ((fun c => { fst := f c, snd := g (f c) c }) c').fst
h'' :
rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd)
((fun c => { fst := f c, snd := g (f c) c }) c').snd
⊢ ((PSigma.Lex (fun a b => rι ↑a ↑b) fun a a_1 b => (rπ ↑a on g ↑a) ↑a_1 ↑b) on fun c =>
{ fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } })
c c'
[PROOFSTEP]
dsimp only [InvImage, (· on ·)] at h' ⊢
[GOAL]
case refine'_2.inr.intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
h' : f c = f c'
h'' :
rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd)
((fun c => { fst := f c, snd := g (f c) c }) c').snd
⊢ PSigma.Lex (fun a b => rι ↑a ↑b) (fun a a_1 b => rπ (↑a) (g ↑a ↑a_1) (g ↑a ↑b))
{ fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } }
{ fst := { val := f c', property := (_ : ∃ y, f y = f c') }, snd := { val := c', property := (_ : f c' = f c') } }
[PROOFSTEP]
convert PSigma.Lex.right (⟨_, c', rfl⟩ : range f) _ using 1
[GOAL]
case h.e'_5.h
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
h' : f c = f c'
h'' :
rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd)
((fun c => { fst := f c, snd := g (f c) c }) c').snd
⊢ { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } } =
{ fst := { val := f c', property := (_ : ∃ y, f y = f c') }, snd := ?refine'_2.inr.intro.convert_4 }
case refine'_2.inr.intro.convert_4
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
h' : f c = f c'
h'' :
rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd)
((fun c => { fst := f c, snd := g (f c) c }) c').snd
⊢ ↑(f ⁻¹' {↑{ val := f c', property := (_ : ∃ y, f y = f c') }})
case refine'_2.inr.intro.convert_6
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
h' : f c = f c'
h'' :
rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd)
((fun c => { fst := f c, snd := g (f c) c }) c').snd
⊢ rπ (↑{ val := f c', property := (_ : ∃ y, f y = f c') })
(g ↑{ val := f c', property := (_ : ∃ y, f y = f c') } ↑?refine'_2.inr.intro.convert_4)
(g ↑{ val := f c', property := (_ : ∃ y, f y = f c') } ↑{ val := c', property := (_ : f c' = f c') })
[PROOFSTEP]
swap
[GOAL]
case refine'_2.inr.intro.convert_4
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
h' : f c = f c'
h'' :
rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd)
((fun c => { fst := f c, snd := g (f c) c }) c').snd
⊢ ↑(f ⁻¹' {↑{ val := f c', property := (_ : ∃ y, f y = f c') }})
[PROOFSTEP]
exact ⟨c, h'⟩
[GOAL]
case h.e'_5.h
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
h' : f c = f c'
h'' :
rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd)
((fun c => { fst := f c, snd := g (f c) c }) c').snd
⊢ { fst := { val := f c, property := (_ : ∃ y, f y = f c) }, snd := { val := c, property := (_ : f c = f c) } } =
{ fst := { val := f c', property := (_ : ∃ y, f y = f c') }, snd := { val := c, property := h' } }
[PROOFSTEP]
exact PSigma.subtype_ext (Subtype.ext h') rfl
[GOAL]
case refine'_2.inr.intro.convert_6
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
h' : f c = f c'
h'' :
rπ ((fun c => { fst := f c, snd := g (f c) c }) c').fst (h' ▸ ((fun c => { fst := f c, snd := g (f c) c }) c).snd)
((fun c => { fst := f c, snd := g (f c) c }) c').snd
⊢ rπ (↑{ val := f c', property := (_ : ∃ y, f y = f c') })
(g ↑{ val := f c', property := (_ : ∃ y, f y = f c') } ↑{ val := c, property := h' })
(g ↑{ val := f c', property := (_ : ∃ y, f y = f c') } ↑{ val := c', property := (_ : f c' = f c') })
[PROOFSTEP]
dsimp only [Subtype.coe_mk] at *
[GOAL]
case refine'_2.inr.intro.convert_6
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
h' : f c = f c'
h'' : rπ (f c') (h' ▸ g (f c) c) (g (f c') c')
⊢ rπ (f c') (g (f c') c) (g (f c') c')
[PROOFSTEP]
revert h'
[GOAL]
case refine'_2.inr.intro.convert_6
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
⊢ ∀ (h' : f c = f c'), rπ (f c') (h' ▸ g (f c) c) (g (f c') c') → rπ (f c') (g (f c') c) (g (f c') c')
[PROOFSTEP]
generalize f c = d
[GOAL]
case refine'_2.inr.intro.convert_6
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
d : ι
⊢ ∀ (h' : d = f c'), rπ (f c') (h' ▸ g d c) (g (f c') c') → rπ (f c') (g (f c') c) (g (f c') c')
[PROOFSTEP]
rintro rfl h''
[GOAL]
case refine'_2.inr.intro.convert_6
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFounded (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (f ⁻¹' {i}) (rπ i on g i)
c c' : γ
h : (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c }) c c'
h'' : rπ (f c') ((_ : f c' = f c') ▸ g (f c') c) (g (f c') c')
⊢ rπ (f c') (g (f c') c) (g (f c') c')
[PROOFSTEP]
exact h''
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFoundedOn s (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i)
⊢ WellFoundedOn s (Sigma.Lex rι rπ on fun c => { fst := f c, snd := g (f c) c })
[PROOFSTEP]
show WellFounded (Sigma.Lex rι rπ on fun c : s => ⟨f c, g (f c) c⟩)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFoundedOn s (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i)
⊢ WellFounded (Sigma.Lex rι rπ on fun c => { fst := f ↑c, snd := g (f ↑c) ↑c })
[PROOFSTEP]
refine'
@WellFounded.sigma_lex_of_wellFoundedOn_fiber _ s _ _ rπ (fun c => f c) (fun i c => g _ c) hι fun i =>
(hπ i).onFun.mono (fun b c h => _)
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFoundedOn s (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i)
i : ι
b c : ↑((fun c => f ↑c) ⁻¹' {i})
h : (rπ i on (fun i c => g i ↑c) i) ↑b ↑c
⊢ ((fun a b => (rπ i on g i) ↑a ↑b) on ?refine'_2 i) b c
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFoundedOn s (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i)
⊢ (i : ι) → ↑((fun c => f ↑c) ⁻¹' {i}) → ↑(s ∩ f ⁻¹' {i})
[PROOFSTEP]
swap
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFoundedOn s (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i)
⊢ (i : ι) → ↑((fun c => f ↑c) ⁻¹' {i}) → ↑(s ∩ f ⁻¹' {i})
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFoundedOn s (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i)
i : ι
b c : ↑((fun c => f ↑c) ⁻¹' {i})
h : (rπ i on (fun i c => g i ↑c) i) ↑b ↑c
⊢ ((fun a b => (rπ i on g i) ↑a ↑b) on ?refine'_2 i) b c
[PROOFSTEP]
exact fun _ x => ⟨x, x.1.2, x.2⟩
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
π : ι → Type u_5
rι : ι → ι → Prop
rπ : (i : ι) → π i → π i → Prop
f : γ → ι
g : (i : ι) → γ → π i
s : Set γ
hι : WellFoundedOn s (rι on f)
hπ : ∀ (i : ι), WellFoundedOn (s ∩ f ⁻¹' {i}) (rπ i on g i)
i : ι
b c : ↑((fun c => f ↑c) ⁻¹' {i})
h : (rπ i on (fun i c => g i ↑c) i) ↑b ↑c
⊢ ((fun a b => (rπ i on g i) ↑a ↑b) on fun x => { val := ↑↑x, property := (_ : ↑↑x ∈ s ∧ ↑↑x ∈ f ⁻¹' {i}) }) b c
[PROOFSTEP]
assumption
| {"mathlib_filename": "Mathlib.Order.WellFoundedSet", "llama_tokens": 69957} |
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c d : Concept α β r
h : c.fst = d.fst
⊢ c = d
[PROOFSTEP]
obtain ⟨⟨s₁, t₁⟩, h₁, _⟩ := c
[GOAL]
case mk.mk
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁✝ s₂ : Set α
t t₁✝ t₂ : Set β
d : Concept α β r
s₁ : Set α
t₁ : Set β
h₁ : intentClosure r (s₁, t₁).fst = (s₁, t₁).snd
closure_snd✝ : extentClosure r (s₁, t₁).snd = (s₁, t₁).fst
h : { toProd := (s₁, t₁), closure_fst := h₁, closure_snd := closure_snd✝ }.toProd.fst = d.fst
⊢ { toProd := (s₁, t₁), closure_fst := h₁, closure_snd := closure_snd✝ } = d
[PROOFSTEP]
obtain ⟨⟨s₂, t₂⟩, h₂, _⟩ := d
[GOAL]
case mk.mk.mk.mk
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁✝ s₂✝ : Set α
t t₁✝ t₂✝ : Set β
s₁ : Set α
t₁ : Set β
h₁ : intentClosure r (s₁, t₁).fst = (s₁, t₁).snd
closure_snd✝¹ : extentClosure r (s₁, t₁).snd = (s₁, t₁).fst
s₂ : Set α
t₂ : Set β
h₂ : intentClosure r (s₂, t₂).fst = (s₂, t₂).snd
closure_snd✝ : extentClosure r (s₂, t₂).snd = (s₂, t₂).fst
h :
{ toProd := (s₁, t₁), closure_fst := h₁, closure_snd := closure_snd✝¹ }.toProd.fst =
{ toProd := (s₂, t₂), closure_fst := h₂, closure_snd := closure_snd✝ }.toProd.fst
⊢ { toProd := (s₁, t₁), closure_fst := h₁, closure_snd := closure_snd✝¹ } =
{ toProd := (s₂, t₂), closure_fst := h₂, closure_snd := closure_snd✝ }
[PROOFSTEP]
dsimp at h₁ h₂ h
[GOAL]
case mk.mk.mk.mk
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁✝ s₂✝ : Set α
t t₁✝ t₂✝ : Set β
s₁ : Set α
t₁ : Set β
h₁ : intentClosure r s₁ = t₁
closure_snd✝¹ : extentClosure r (s₁, t₁).snd = (s₁, t₁).fst
s₂ : Set α
t₂ : Set β
h₂ : intentClosure r s₂ = t₂
closure_snd✝ : extentClosure r (s₂, t₂).snd = (s₂, t₂).fst
h : s₁ = s₂
⊢ { toProd := (s₁, t₁), closure_fst := h₁, closure_snd := closure_snd✝¹ } =
{ toProd := (s₂, t₂), closure_fst := h₂, closure_snd := closure_snd✝ }
[PROOFSTEP]
substs h h₁ h₂
[GOAL]
case mk.mk.mk.mk
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁✝ s₂ : Set α
t t₁ t₂ : Set β
s₁ : Set α
closure_snd✝¹ closure_snd✝ : extentClosure r (s₁, intentClosure r s₁).snd = (s₁, intentClosure r s₁).fst
⊢ { toProd := (s₁, intentClosure r s₁), closure_fst := (_ : intentClosure r s₁ = intentClosure r s₁),
closure_snd := closure_snd✝¹ } =
{ toProd := (s₁, intentClosure r s₁), closure_fst := (_ : intentClosure r s₁ = intentClosure r s₁),
closure_snd := closure_snd✝ }
[PROOFSTEP]
rfl
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c d : Concept α β r
h : c.snd = d.snd
⊢ c = d
[PROOFSTEP]
obtain ⟨⟨s₁, t₁⟩, _, h₁⟩ := c
[GOAL]
case mk.mk
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁✝ s₂ : Set α
t t₁✝ t₂ : Set β
d : Concept α β r
s₁ : Set α
t₁ : Set β
closure_fst✝ : intentClosure r (s₁, t₁).fst = (s₁, t₁).snd
h₁ : extentClosure r (s₁, t₁).snd = (s₁, t₁).fst
h : { toProd := (s₁, t₁), closure_fst := closure_fst✝, closure_snd := h₁ }.toProd.snd = d.snd
⊢ { toProd := (s₁, t₁), closure_fst := closure_fst✝, closure_snd := h₁ } = d
[PROOFSTEP]
obtain ⟨⟨s₂, t₂⟩, _, h₂⟩ := d
[GOAL]
case mk.mk.mk.mk
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁✝ s₂✝ : Set α
t t₁✝ t₂✝ : Set β
s₁ : Set α
t₁ : Set β
closure_fst✝¹ : intentClosure r (s₁, t₁).fst = (s₁, t₁).snd
h₁ : extentClosure r (s₁, t₁).snd = (s₁, t₁).fst
s₂ : Set α
t₂ : Set β
closure_fst✝ : intentClosure r (s₂, t₂).fst = (s₂, t₂).snd
h₂ : extentClosure r (s₂, t₂).snd = (s₂, t₂).fst
h :
{ toProd := (s₁, t₁), closure_fst := closure_fst✝¹, closure_snd := h₁ }.toProd.snd =
{ toProd := (s₂, t₂), closure_fst := closure_fst✝, closure_snd := h₂ }.toProd.snd
⊢ { toProd := (s₁, t₁), closure_fst := closure_fst✝¹, closure_snd := h₁ } =
{ toProd := (s₂, t₂), closure_fst := closure_fst✝, closure_snd := h₂ }
[PROOFSTEP]
dsimp at h₁ h₂ h
[GOAL]
case mk.mk.mk.mk
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁✝ s₂✝ : Set α
t t₁✝ t₂✝ : Set β
s₁ : Set α
t₁ : Set β
closure_fst✝¹ : intentClosure r (s₁, t₁).fst = (s₁, t₁).snd
h₁ : extentClosure r t₁ = s₁
s₂ : Set α
t₂ : Set β
closure_fst✝ : intentClosure r (s₂, t₂).fst = (s₂, t₂).snd
h₂ : extentClosure r t₂ = s₂
h : t₁ = t₂
⊢ { toProd := (s₁, t₁), closure_fst := closure_fst✝¹, closure_snd := h₁ } =
{ toProd := (s₂, t₂), closure_fst := closure_fst✝, closure_snd := h₂ }
[PROOFSTEP]
substs h h₁ h₂
[GOAL]
case mk.mk.mk.mk
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁✝ t₂ t₁ : Set β
closure_fst✝¹ closure_fst✝ : intentClosure r (extentClosure r t₁, t₁).fst = (extentClosure r t₁, t₁).snd
⊢ { toProd := (extentClosure r t₁, t₁), closure_fst := closure_fst✝¹,
closure_snd := (_ : extentClosure r t₁ = extentClosure r t₁) } =
{ toProd := (extentClosure r t₁, t₁), closure_fst := closure_fst✝,
closure_snd := (_ : extentClosure r t₁ = extentClosure r t₁) }
[PROOFSTEP]
rfl
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c✝ d✝ c d : Concept α β r
⊢ intentClosure r (extentClosure r (c.snd ∩ d.snd), c.snd ∩ d.snd).fst =
(extentClosure r (c.snd ∩ d.snd), c.snd ∩ d.snd).snd
[PROOFSTEP]
rw [← c.closure_fst, ← d.closure_fst, ← intentClosure_union, intentClosure_extentClosure_intentClosure]
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c✝ d✝ c d : Concept α β r
⊢ extentClosure r (c.fst ∩ d.fst, intentClosure r (c.fst ∩ d.fst)).snd =
(c.fst ∩ d.fst, intentClosure r (c.fst ∩ d.fst)).fst
[PROOFSTEP]
rw [← c.closure_snd, ← d.closure_snd, ← extentClosure_union, extentClosure_intentClosure_extentClosure]
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c d : Concept α β r
⊢ c.snd ⊆ d.snd ↔ d ≤ c
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case refine'_1
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c d : Concept α β r
h : c.snd ⊆ d.snd
⊢ d ≤ c
[PROOFSTEP]
rw [← fst_subset_fst_iff, ← c.closure_snd, ← d.closure_snd]
[GOAL]
case refine'_1
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c d : Concept α β r
h : c.snd ⊆ d.snd
⊢ extentClosure r d.snd ⊆ extentClosure r c.snd
[PROOFSTEP]
exact extentClosure_anti _ h
[GOAL]
case refine'_2
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c d : Concept α β r
h : d ≤ c
⊢ c.snd ⊆ d.snd
[PROOFSTEP]
rw [← c.closure_fst, ← d.closure_fst]
[GOAL]
case refine'_2
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c d : Concept α β r
h : d ≤ c
⊢ intentClosure r c.fst ⊆ intentClosure r d.fst
[PROOFSTEP]
exact intentClosure_anti _ h
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c d : Concept α β r
⊢ c.snd ⊂ d.snd ↔ d < c
[PROOFSTEP]
rw [ssubset_iff_subset_not_subset, lt_iff_le_not_le, snd_subset_snd_iff, snd_subset_snd_iff]
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c✝ d✝ : Concept α β r
src✝ : SemilatticeInf (Concept α β r) := instSemilatticeInfConcept
c d e : Concept α β r
⊢ c ≤ e → d ≤ e → c ⊔ d ≤ e
[PROOFSTEP]
simp_rw [← snd_subset_snd_iff]
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c✝ d✝ : Concept α β r
src✝ : SemilatticeInf (Concept α β r) := instSemilatticeInfConcept
c d e : Concept α β r
⊢ e.snd ⊆ c.snd → e.snd ⊆ d.snd → e.snd ⊆ (c ⊔ d).snd
[PROOFSTEP]
exact subset_inter
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c d : Concept α β r
S : Set (Concept α β r)
⊢ intentClosure r
(extentClosure r (⋂ (c : Concept α β r) (_ : c ∈ S), c.snd), ⋂ (c : Concept α β r) (_ : c ∈ S), c.snd).fst =
(extentClosure r (⋂ (c : Concept α β r) (_ : c ∈ S), c.snd), ⋂ (c : Concept α β r) (_ : c ∈ S), c.snd).snd
[PROOFSTEP]
simp_rw [← closure_fst, ← intentClosure_iUnion₂, intentClosure_extentClosure_intentClosure]
[GOAL]
ι : Sort u_1
α : Type u_2
β : Type u_3
γ : Type u_4
κ : ι → Sort u_5
r : α → β → Prop
s s₁ s₂ : Set α
t t₁ t₂ : Set β
c d : Concept α β r
S : Set (Concept α β r)
⊢ extentClosure r
(⋂ (c : Concept α β r) (_ : c ∈ S), c.fst, intentClosure r (⋂ (c : Concept α β r) (_ : c ∈ S), c.fst)).snd =
(⋂ (c : Concept α β r) (_ : c ∈ S), c.fst, intentClosure r (⋂ (c : Concept α β r) (_ : c ∈ S), c.fst)).fst
[PROOFSTEP]
simp_rw [← closure_snd, ← extentClosure_Union₂, extentClosure_intentClosure_extentClosure]
| {"mathlib_filename": "Mathlib.Order.Concept", "llama_tokens": 4926} |
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
inst✝ : PartialOrder α
x y : α
⊢ x ≤ y → y = x ↔ ¬x < y
[PROOFSTEP]
rw [lt_iff_le_and_ne, not_and, Classical.not_not, eq_comm]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
a b : α
⊢ min a b = if b ≤ a then b else a
[PROOFSTEP]
rw [min_def]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
a b : α
⊢ (if a ≤ b then a else b) = if b ≤ a then b else a
[PROOFSTEP]
rcases lt_trichotomy a b with (lt | eq | gt)
[GOAL]
case inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
a b : α
lt : a < b
⊢ (if a ≤ b then a else b) = if b ≤ a then b else a
[PROOFSTEP]
rw [if_pos lt.le, if_neg (not_le.mpr lt)]
[GOAL]
case inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
a b : α
eq : a = b
⊢ (if a ≤ b then a else b) = if b ≤ a then b else a
[PROOFSTEP]
rw [if_pos eq.le, if_pos eq.ge, eq]
[GOAL]
case inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
a b : α
gt : b < a
⊢ (if a ≤ b then a else b) = if b ≤ a then b else a
[PROOFSTEP]
rw [if_neg (not_le.mpr gt.gt), if_pos gt.le]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
a b : α
⊢ max a b = if b ≤ a then a else b
[PROOFSTEP]
rw [max_def]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
a b : α
⊢ (if a ≤ b then b else a) = if b ≤ a then a else b
[PROOFSTEP]
rcases lt_trichotomy a b with (lt | eq | gt)
[GOAL]
case inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
a b : α
lt : a < b
⊢ (if a ≤ b then b else a) = if b ≤ a then a else b
[PROOFSTEP]
rw [if_pos lt.le, if_neg (not_le.mpr lt)]
[GOAL]
case inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
a b : α
eq : a = b
⊢ (if a ≤ b then b else a) = if b ≤ a then a else b
[PROOFSTEP]
rw [if_pos eq.le, if_pos eq.ge, eq]
[GOAL]
case inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
a b : α
gt : b < a
⊢ (if a ≤ b then b else a) = if b ≤ a then a else b
[PROOFSTEP]
rw [if_neg (not_le.mpr gt.gt), if_pos gt.le]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : PartialOrder α
f : α → α → α
comm : Commutative f
assoc : ∀ (a b c : α), f (f a b) c ≤ f a (f b c)
a b c : α
⊢ f a (f b c) ≤ f (f a b) c
[PROOFSTEP]
rw [comm, comm b, comm _ c, comm a]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : PartialOrder α
f : α → α → α
comm : Commutative f
assoc : ∀ (a b c : α), f (f a b) c ≤ f a (f b c)
a b c : α
⊢ f (f c b) a ≤ f c (f b a)
[PROOFSTEP]
exact assoc _ _ _
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : Preorder α
le✝¹ A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le✝ B_lt : α → α → Prop
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
h : toLE = toLE
⊢ mk le_refl✝¹ le_trans✝¹ = mk le_refl✝ le_trans✝
[PROOFSTEP]
cases h
[GOAL]
case refl
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : Preorder α
le✝ A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
B_lt : α → α → Prop
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
⊢ mk le_refl✝¹ le_trans✝¹ = mk le_refl✝ le_trans✝
[PROOFSTEP]
have : A_lt = B_lt := by
funext a b
show (LT.mk A_lt).lt a b = (LT.mk B_lt).lt a b
rw [A_iff, B_iff]
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : Preorder α
le✝ A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
B_lt : α → α → Prop
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
⊢ A_lt = B_lt
[PROOFSTEP]
funext a b
[GOAL]
case h.h
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : Preorder α
le✝ A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
B_lt : α → α → Prop
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
a b : α
⊢ A_lt a b = B_lt a b
[PROOFSTEP]
show (LT.mk A_lt).lt a b = (LT.mk B_lt).lt a b
[GOAL]
case h.h
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : Preorder α
le✝ A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
B_lt : α → α → Prop
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
a b : α
⊢ (a < b) = (a < b)
[PROOFSTEP]
rw [A_iff, B_iff]
[GOAL]
case refl
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : Preorder α
le✝ A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
B_lt : α → α → Prop
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
this : A_lt = B_lt
⊢ mk le_refl✝¹ le_trans✝¹ = mk le_refl✝ le_trans✝
[PROOFSTEP]
cases this
[GOAL]
case refl.refl
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : Preorder α
le✝ A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
A_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
B_iff : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
⊢ mk le_refl✝¹ le_trans✝¹ = mk le_refl✝ le_trans✝
[PROOFSTEP]
congr
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : PartialOrder α
h : toPreorder = toPreorder
⊢ A = B
[PROOFSTEP]
cases A
[GOAL]
case mk
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
B : PartialOrder α
toPreorder✝ : Preorder α
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
h : toPreorder = toPreorder
⊢ mk le_antisymm✝ = B
[PROOFSTEP]
cases B
[GOAL]
case mk.mk
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
toPreorder✝¹ : Preorder α
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
toPreorder✝ : Preorder α
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
h : toPreorder = toPreorder
⊢ mk le_antisymm✝¹ = mk le_antisymm✝
[PROOFSTEP]
cases h
[GOAL]
case mk.mk.refl
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
toPreorder✝ : Preorder α
le_antisymm✝¹ le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
⊢ mk le_antisymm✝¹ = mk le_antisymm✝
[PROOFSTEP]
congr
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_le B_lt : α → α → Prop
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
B_min B_max : α → α → α
B_compare : α → α → Ordering
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
B_decidableEq : DecidableEq α
B_decidableLT : DecidableRel fun x x_1 => x < x_1
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
h : toPartialOrder = toPartialOrder
⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ B_decidableLE B_decidableEq B_decidableLT
[PROOFSTEP]
cases h
[GOAL]
case refl
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min B_max : α → α → α
B_compare : α → α → Ordering
B_decidableEq : DecidableEq α
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
B_decidableLT : DecidableRel fun x x_1 => x < x_1
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ B_decidableLE B_decidableEq B_decidableLT
[PROOFSTEP]
obtain rfl : A_decidableLE = B_decidableLE := Subsingleton.elim _ _
[GOAL]
case refl
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min B_max : α → α → α
B_compare : α → α → Ordering
B_decidableEq : DecidableEq α
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_decidableLT : DecidableRel fun x x_1 => x < x_1
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE B_decidableEq B_decidableLT
[PROOFSTEP]
obtain rfl : A_decidableEq = B_decidableEq := Subsingleton.elim _ _
[GOAL]
case refl
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min B_max : α → α → α
B_compare : α → α → Ordering
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_decidableLT : DecidableRel fun x x_1 => x < x_1
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq B_decidableLT
[PROOFSTEP]
obtain rfl : A_decidableLT = B_decidableLT := Subsingleton.elim _ _
[GOAL]
case refl
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min B_max : α → α → α
B_compare : α → α → Ordering
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq A_decidableLT
[PROOFSTEP]
have : A_min = B_min := by
funext a b
exact (A_min_def _ _).trans (B_min_def _ _).symm
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min B_max : α → α → α
B_compare : α → α → Ordering
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
⊢ A_min = B_min
[PROOFSTEP]
funext a b
[GOAL]
case h.h
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min B_max : α → α → α
B_compare : α → α → Ordering
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
a b : α
⊢ A_min a b = B_min a b
[PROOFSTEP]
exact (A_min_def _ _).trans (B_min_def _ _).symm
[GOAL]
case refl
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min B_max : α → α → α
B_compare : α → α → Ordering
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
this : A_min = B_min
⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq A_decidableLT
[PROOFSTEP]
cases this
[GOAL]
case refl.refl
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_max : α → α → α
B_compare : α → α → Ordering
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq A_decidableLT
[PROOFSTEP]
have : A_max = B_max := by
funext a b
exact (A_max_def _ _).trans (B_max_def _ _).symm
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_max : α → α → α
B_compare : α → α → Ordering
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
⊢ A_max = B_max
[PROOFSTEP]
funext a b
[GOAL]
case h.h
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_max : α → α → α
B_compare : α → α → Ordering
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
a b : α
⊢ A_max a b = B_max a b
[PROOFSTEP]
exact (A_max_def _ _).trans (B_max_def _ _).symm
[GOAL]
case refl.refl
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_max : α → α → α
B_compare : α → α → Ordering
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
this : A_max = B_max
⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq A_decidableLT
[PROOFSTEP]
cases this
[GOAL]
case refl.refl.refl
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_compare : α → α → Ordering
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq A_decidableLT
[PROOFSTEP]
have : A_compare = B_compare := by
funext a b
exact (A_compare_canonical _ _).trans (B_compare_canonical _ _).symm
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_compare : α → α → Ordering
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
⊢ A_compare = B_compare
[PROOFSTEP]
funext a b
[GOAL]
case h.h
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_compare : α → α → Ordering
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
a b : α
⊢ A_compare a b = B_compare a b
[PROOFSTEP]
exact (A_compare_canonical _ _).trans (B_compare_canonical _ _).symm
[GOAL]
case refl.refl.refl
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
A_le A_lt : α → α → Prop
le_refl✝¹ : ∀ (a : α), a ≤ a
le_trans✝¹ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝¹ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝¹ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
A_min A_max : α → α → α
A_compare : α → α → Ordering
le_total✝¹ : ∀ (a b : α), a ≤ b ∨ b ≤ a
A_decidableLE : DecidableRel fun x x_1 => x ≤ x_1
A_decidableEq : DecidableEq α
A_decidableLT : DecidableRel fun x x_1 => x < x_1
A_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
A_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
A_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_compare : α → α → Ordering
le_refl✝ : ∀ (a : α), a ≤ a
le_trans✝ : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
lt_iff_le_not_le✝ : ∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a
le_antisymm✝ : ∀ (a b : α), a ≤ b → b ≤ a → a = b
le_total✝ : ∀ (a b : α), a ≤ b ∨ b ≤ a
B_compare_canonical : ∀ (a b : α), compare a b = compareOfLessAndEq a b
B_min_def : ∀ (a b : α), min a b = if a ≤ b then a else b
B_max_def : ∀ (a b : α), max a b = if a ≤ b then b else a
this : A_compare = B_compare
⊢ mk le_total✝¹ A_decidableLE A_decidableEq A_decidableLT = mk le_total✝ A_decidableLE A_decidableEq A_decidableLT
[PROOFSTEP]
congr
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : Preorder α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ A = B
[PROOFSTEP]
ext x y
[GOAL]
case a.le.h.h.a
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : Preorder α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
x y : α
⊢ x ≤ y ↔ x ≤ y
[PROOFSTEP]
exact H x y
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : PartialOrder α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ A = B
[PROOFSTEP]
ext x y
[GOAL]
case a.a.le.h.h.a
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : PartialOrder α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
x y : α
⊢ x ≤ y ↔ x ≤ y
[PROOFSTEP]
exact H x y
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
⊢ A = B
[PROOFSTEP]
ext x y
[GOAL]
case a.a.a.le.h.h.a
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
A B : LinearOrder α
H : ∀ (x y : α), x ≤ y ↔ x ≤ y
x y : α
⊢ x ≤ y ↔ x ≤ y
[PROOFSTEP]
exact H x y
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
inst✝ : LinearOrder α
src✝ : PartialOrder αᵒᵈ := inferInstanceAs (PartialOrder αᵒᵈ)
a b : αᵒᵈ
⊢ max a b = if a ≤ b then a else b
[PROOFSTEP]
rw [max_comm, max_def]
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
inst✝ : LinearOrder α
src✝ : PartialOrder αᵒᵈ := inferInstanceAs (PartialOrder αᵒᵈ)
a b : αᵒᵈ
⊢ (if b ≤ a then a else b) = if a ≤ b then a else b
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
inst✝ : LinearOrder α
src✝ : PartialOrder αᵒᵈ := inferInstanceAs (PartialOrder αᵒᵈ)
a b : αᵒᵈ
⊢ min a b = if a ≤ b then b else a
[PROOFSTEP]
rw [min_comm, min_def]
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type u_3
inst✝ : LinearOrder α
src✝ : PartialOrder αᵒᵈ := inferInstanceAs (PartialOrder αᵒᵈ)
a b : αᵒᵈ
⊢ (if b ≤ a then b else a) = if a ≤ b then b else a
[PROOFSTEP]
rfl
[GOAL]
ι✝ : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι✝ → Type u_2
r : α✝ → α✝ → Prop
ι : Type u
α : ι → Type v
inst✝ : (i : ι) → Preorder (α i)
x y : (i : ι) → α i
⊢ x < y ↔ x ≤ y ∧ ∃ i, x i < y i
[PROOFSTEP]
simp (config := { contextual := true }) [lt_iff_le_not_le, Pi.le_def]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : (i : ι) → Preorder (π i)
a b c : (i : ι) → π i
inst✝ : Nonempty ι
h : a ≺ b
⊢ a < b
[PROOFSTEP]
inhabit ι
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : (i : ι) → Preorder (π i)
a b c : (i : ι) → π i
inst✝ : Nonempty ι
h : a ≺ b
inhabited_h : Inhabited ι
⊢ a < b
[PROOFSTEP]
exact Pi.lt_def.2 ⟨le_of_strongLT h, default, h _⟩
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → Preorder (π i)
x y : (i : ι) → π i
i : ι
a b : π i
⊢ update x i a ≤ update y i b ↔ a ≤ b ∧ ∀ (j : ι), j ≠ i → x j ≤ y j
[PROOFSTEP]
simp (config := { contextual := true }) [update_le_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → Preorder (π i)
x y : (i : ι) → π i
i : ι
a b : π i
⊢ update x i a ≤ update x i b ↔ a ≤ b
[PROOFSTEP]
simp [update_le_update_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → Preorder (π i)
x y : (i : ι) → π i
i : ι
a b : π i
⊢ x ≤ update x i a ↔ x i ≤ a
[PROOFSTEP]
simp [le_update_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → Preorder (π i)
x y : (i : ι) → π i
i : ι
a b : π i
⊢ update x i a ≤ x ↔ a ≤ x i
[PROOFSTEP]
simp [update_le_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → Preorder (π i)
x y : (i : ι) → π i
i : ι
a b : π i
⊢ x < update x i a ↔ x i < a
[PROOFSTEP]
simp [lt_iff_le_not_le]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → Preorder (π i)
x y : (i : ι) → π i
i : ι
a b : π i
⊢ update x i a < x ↔ a < x i
[PROOFSTEP]
simp [lt_iff_le_not_le]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Nonempty β
a b : α
⊢ const β a ≤ const β b ↔ a ≤ b
[PROOFSTEP]
simp [Pi.le_def]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Nonempty β
a b : α
⊢ const β a < const β b ↔ a < b
[PROOFSTEP]
simpa [Pi.lt_def] using le_of_lt
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
p : α → Prop
x✝ y✝ x y : α
⊢ min x y = if x < y then x else y
[PROOFSTEP]
rw [min_comm, min_def, ← ite_not]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
p : α → Prop
x✝ y✝ x y : α
⊢ (if ¬y ≤ x then x else y) = if x < y then x else y
[PROOFSTEP]
simp only [not_le]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
p : α → Prop
x✝ y✝ x y : α
⊢ max x y = if x < y then y else x
[PROOFSTEP]
rw [max_comm, max_def, ← ite_not]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
p : α → Prop
x✝ y✝ x y : α
⊢ (if ¬y ≤ x then y else x) = if x < y then y else x
[PROOFSTEP]
simp only [not_le]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
⊢ compare (f a) (f b) = compareOfLessAndEq a b
[PROOFSTEP]
have h := LinearOrder.compare_eq_compareOfLessAndEq (f a) (f b)
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
⊢ compare (f a) (f b) = compareOfLessAndEq a b
[PROOFSTEP]
simp only [h, compareOfLessAndEq]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
⊢ (if f a < f b then Ordering.lt else if f a = f b then Ordering.eq else Ordering.gt) =
if a < b then Ordering.lt else if a = b then Ordering.eq else Ordering.gt
[PROOFSTEP]
split_ifs
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝¹ : f a < f b
h✝ : a < b
⊢ Ordering.lt = Ordering.lt
[PROOFSTEP]
try
(first
| rfl
| contradiction)
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝¹ : f a < f b
h✝ : a < b
⊢ Ordering.lt = Ordering.lt
[PROOFSTEP]
first
| rfl
| contradiction
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝¹ : f a < f b
h✝ : a < b
⊢ Ordering.lt = Ordering.lt
[PROOFSTEP]
rfl
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : f a < f b
h✝¹ : ¬a < b
h✝ : a = b
⊢ False
[PROOFSTEP]
try
(first
| rfl
| contradiction)
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : f a < f b
h✝¹ : ¬a < b
h✝ : a = b
⊢ False
[PROOFSTEP]
first
| rfl
| contradiction
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : f a < f b
h✝¹ : ¬a < b
h✝ : a = b
⊢ False
[PROOFSTEP]
rfl
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : f a < f b
h✝¹ : ¬a < b
h✝ : a = b
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : f a < f b
h✝¹ : ¬a < b
h✝ : ¬a = b
⊢ False
[PROOFSTEP]
try
(first
| rfl
| contradiction)
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : f a < f b
h✝¹ : ¬a < b
h✝ : ¬a = b
⊢ False
[PROOFSTEP]
first
| rfl
| contradiction
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : f a < f b
h✝¹ : ¬a < b
h✝ : ¬a = b
⊢ False
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : f a < f b
h✝¹ : ¬a < b
h✝ : ¬a = b
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : ¬f a < f b
h✝¹ : f a = f b
h✝ : a < b
⊢ False
[PROOFSTEP]
try
(first
| rfl
| contradiction)
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : ¬f a < f b
h✝¹ : f a = f b
h✝ : a < b
⊢ False
[PROOFSTEP]
first
| rfl
| contradiction
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : ¬f a < f b
h✝¹ : f a = f b
h✝ : a < b
⊢ False
[PROOFSTEP]
rfl
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : ¬f a < f b
h✝¹ : f a = f b
h✝ : a < b
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : f a = f b
h✝¹ : ¬a < b
h✝ : a = b
⊢ Ordering.eq = Ordering.eq
[PROOFSTEP]
try
(first
| rfl
| contradiction)
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : f a = f b
h✝¹ : ¬a < b
h✝ : a = b
⊢ Ordering.eq = Ordering.eq
[PROOFSTEP]
first
| rfl
| contradiction
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : f a = f b
h✝¹ : ¬a < b
h✝ : a = b
⊢ Ordering.eq = Ordering.eq
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : f a = f b
h✝¹ : ¬a < b
h✝ : ¬a = b
⊢ False
[PROOFSTEP]
try
(first
| rfl
| contradiction)
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : f a = f b
h✝¹ : ¬a < b
h✝ : ¬a = b
⊢ False
[PROOFSTEP]
first
| rfl
| contradiction
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : f a = f b
h✝¹ : ¬a < b
h✝ : ¬a = b
⊢ False
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : f a = f b
h✝¹ : ¬a < b
h✝ : ¬a = b
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : ¬f a < f b
h✝¹ : ¬f a = f b
h✝ : a < b
⊢ False
[PROOFSTEP]
try
(first
| rfl
| contradiction)
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : ¬f a < f b
h✝¹ : ¬f a = f b
h✝ : a < b
⊢ False
[PROOFSTEP]
first
| rfl
| contradiction
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : ¬f a < f b
h✝¹ : ¬f a = f b
h✝ : a < b
⊢ False
[PROOFSTEP]
rfl
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : ¬f a < f b
h✝¹ : ¬f a = f b
h✝ : a < b
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : ¬f a = f b
h✝¹ : ¬a < b
h✝ : a = b
⊢ False
[PROOFSTEP]
try
(first
| rfl
| contradiction)
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : ¬f a = f b
h✝¹ : ¬a < b
h✝ : a = b
⊢ False
[PROOFSTEP]
first
| rfl
| contradiction
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : ¬f a = f b
h✝¹ : ¬a < b
h✝ : a = b
⊢ False
[PROOFSTEP]
rfl
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : ¬f a = f b
h✝¹ : ¬a < b
h✝ : a = b
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : ¬f a = f b
h✝¹ : ¬a < b
h✝ : ¬a = b
⊢ Ordering.gt = Ordering.gt
[PROOFSTEP]
try
(first
| rfl
| contradiction)
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : ¬f a = f b
h✝¹ : ¬a < b
h✝ : ¬a = b
⊢ Ordering.gt = Ordering.gt
[PROOFSTEP]
first
| rfl
| contradiction
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : ¬f a = f b
h✝¹ : ¬a < b
h✝ : ¬a = b
⊢ Ordering.gt = Ordering.gt
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : f a = f b
h✝¹ : ¬a < b
h✝ : ¬a = b
⊢ False
[PROOFSTEP]
have : ¬f a = f b := by rename_i h; exact inj.ne h
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : f a = f b
h✝¹ : ¬a < b
h✝ : ¬a = b
⊢ ¬f a = f b
[PROOFSTEP]
rename_i h
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h✝³ : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : ¬f a < f b
h✝¹ : f a = f b
h✝ : ¬a < b
h : ¬a = b
⊢ ¬f a = f b
[PROOFSTEP]
exact inj.ne h
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : f a = f b
h✝¹ : ¬a < b
h✝ : ¬a = b
this : ¬f a = f b
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : ¬f a = f b
h✝¹ : ¬a < b
h✝ : a = b
⊢ False
[PROOFSTEP]
have : f a = f b := by rename_i h; exact congrArg f h
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : ¬f a = f b
h✝¹ : ¬a < b
h✝ : a = b
⊢ f a = f b
[PROOFSTEP]
rename_i h
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h✝³ : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝² : ¬f a < f b
h✝¹ : ¬f a = f b
h✝ : ¬a < b
h : a = b
⊢ f a = f b
[PROOFSTEP]
exact congrArg f h
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : α
inst✝² : LinearOrder β
inst✝¹ : DecidableEq α
f : α → β
inj : Injective f
inst✝ : Decidable (a < b)
h : compare (f a) (f b) = compareOfLessAndEq (f a) (f b)
h✝³ : ¬f a < f b
h✝² : ¬f a = f b
h✝¹ : ¬a < b
h✝ : a = b
this : f a = f b
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.96324
β : Type ?u.96321
inst✝² : LinearOrder β
inst✝¹ : Sup α
inst✝ : Inf α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) }
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
⊢ ∀ (a b : α), min a b = if a ≤ b then a else b
[PROOFSTEP]
intros x y
[GOAL]
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.96324
β : Type ?u.96321
inst✝² : LinearOrder β
inst✝¹ : Sup α
inst✝ : Inf α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) }
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
x y : α
⊢ min x y = if x ≤ y then x else y
[PROOFSTEP]
apply inj
[GOAL]
case a
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.96324
β : Type ?u.96321
inst✝² : LinearOrder β
inst✝¹ : Sup α
inst✝ : Inf α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) }
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
x y : α
⊢ f (min x y) = f (if x ≤ y then x else y)
[PROOFSTEP]
rw [apply_ite f]
[GOAL]
case a
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.96324
β : Type ?u.96321
inst✝² : LinearOrder β
inst✝¹ : Sup α
inst✝ : Inf α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) }
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
x y : α
⊢ f (min x y) = if x ≤ y then f x else f y
[PROOFSTEP]
exact (hinf _ _).trans (min_def _ _)
[GOAL]
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.96324
β : Type ?u.96321
inst✝² : LinearOrder β
inst✝¹ : Sup α
inst✝ : Inf α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) }
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
⊢ ∀ (a b : α), max a b = if a ≤ b then b else a
[PROOFSTEP]
intros x y
[GOAL]
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.96324
β : Type ?u.96321
inst✝² : LinearOrder β
inst✝¹ : Sup α
inst✝ : Inf α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) }
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
x y : α
⊢ max x y = if x ≤ y then y else x
[PROOFSTEP]
apply inj
[GOAL]
case a
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.96324
β : Type ?u.96321
inst✝² : LinearOrder β
inst✝¹ : Sup α
inst✝ : Inf α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) }
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
x y : α
⊢ f (max x y) = f (if x ≤ y then y else x)
[PROOFSTEP]
rw [apply_ite f]
[GOAL]
case a
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.96324
β : Type ?u.96321
inst✝² : LinearOrder β
inst✝¹ : Sup α
inst✝ : Inf α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
instOrdα : Ord α := { compare := fun a b => compare (f a) (f b) }
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
x y : α
⊢ f (max x y) = if x ≤ y then f y else f x
[PROOFSTEP]
exact (hsup _ _).trans (max_def _ _)
[GOAL]
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.97808
β : Type ?u.97805
inst✝³ : LinearOrder β
inst✝² : Sup α
inst✝¹ : Inf α
inst✝ : Ord α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
compare_f : ∀ (a b : α), compare a b = compare (f a) (f b)
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
⊢ ∀ (a b : α), min a b = if a ≤ b then a else b
[PROOFSTEP]
intros x y
[GOAL]
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.97808
β : Type ?u.97805
inst✝³ : LinearOrder β
inst✝² : Sup α
inst✝¹ : Inf α
inst✝ : Ord α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
compare_f : ∀ (a b : α), compare a b = compare (f a) (f b)
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
x y : α
⊢ min x y = if x ≤ y then x else y
[PROOFSTEP]
apply inj
[GOAL]
case a
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.97808
β : Type ?u.97805
inst✝³ : LinearOrder β
inst✝² : Sup α
inst✝¹ : Inf α
inst✝ : Ord α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
compare_f : ∀ (a b : α), compare a b = compare (f a) (f b)
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
x y : α
⊢ f (min x y) = f (if x ≤ y then x else y)
[PROOFSTEP]
rw [apply_ite f]
[GOAL]
case a
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.97808
β : Type ?u.97805
inst✝³ : LinearOrder β
inst✝² : Sup α
inst✝¹ : Inf α
inst✝ : Ord α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
compare_f : ∀ (a b : α), compare a b = compare (f a) (f b)
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
x y : α
⊢ f (min x y) = if x ≤ y then f x else f y
[PROOFSTEP]
exact (hinf _ _).trans (min_def _ _)
[GOAL]
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.97808
β : Type ?u.97805
inst✝³ : LinearOrder β
inst✝² : Sup α
inst✝¹ : Inf α
inst✝ : Ord α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
compare_f : ∀ (a b : α), compare a b = compare (f a) (f b)
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
⊢ ∀ (a b : α), max a b = if a ≤ b then b else a
[PROOFSTEP]
intros x y
[GOAL]
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.97808
β : Type ?u.97805
inst✝³ : LinearOrder β
inst✝² : Sup α
inst✝¹ : Inf α
inst✝ : Ord α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
compare_f : ∀ (a b : α), compare a b = compare (f a) (f b)
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
x y : α
⊢ max x y = if x ≤ y then y else x
[PROOFSTEP]
apply inj
[GOAL]
case a
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.97808
β : Type ?u.97805
inst✝³ : LinearOrder β
inst✝² : Sup α
inst✝¹ : Inf α
inst✝ : Ord α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
compare_f : ∀ (a b : α), compare a b = compare (f a) (f b)
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
x y : α
⊢ f (max x y) = f (if x ≤ y then y else x)
[PROOFSTEP]
rw [apply_ite f]
[GOAL]
case a
ι : Type u_1
α✝ : Type u
β✝ : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : Type ?u.97808
β : Type ?u.97805
inst✝³ : LinearOrder β
inst✝² : Sup α
inst✝¹ : Inf α
inst✝ : Ord α
f : α → β
inj : Injective f
hsup : ∀ (x y : α), f (x ⊔ y) = max (f x) (f y)
hinf : ∀ (x y : α), f (x ⊓ y) = min (f x) (f y)
compare_f : ∀ (a b : α), compare a b = compare (f a) (f b)
decidableLE : (x y : α) → Decidable (f x ≤ f y) := fun x y => inferInstance
decidableLT : (x y : α) → Decidable (f x < f y) := fun x y => inferInstance
decidableEq : (x y : α) → Decidable (x = y) := fun x y => decidable_of_iff (f x = f y) (_ : f x = f y ↔ x = y)
src✝ : PartialOrder α := PartialOrder.lift f inj
x y : α
⊢ f (max x y) = if x ≤ y then f y else f x
[PROOFSTEP]
exact (hsup _ _).trans (max_def _ _)
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
⊢ x < y ↔ x.fst < y.fst ∧ x.snd ≤ y.snd ∨ x.fst ≤ y.fst ∧ x.snd < y.snd
[PROOFSTEP]
refine' ⟨fun h ↦ _, _⟩
[GOAL]
case refine'_1
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
h : x < y
⊢ x.fst < y.fst ∧ x.snd ≤ y.snd ∨ x.fst ≤ y.fst ∧ x.snd < y.snd
[PROOFSTEP]
by_cases h₁ : y.1 ≤ x.1
[GOAL]
case pos
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
h : x < y
h₁ : y.fst ≤ x.fst
⊢ x.fst < y.fst ∧ x.snd ≤ y.snd ∨ x.fst ≤ y.fst ∧ x.snd < y.snd
[PROOFSTEP]
exact Or.inr ⟨h.1.1, LE.le.lt_of_not_le h.1.2 fun h₂ ↦ h.2 ⟨h₁, h₂⟩⟩
[GOAL]
case neg
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
h : x < y
h₁ : ¬y.fst ≤ x.fst
⊢ x.fst < y.fst ∧ x.snd ≤ y.snd ∨ x.fst ≤ y.fst ∧ x.snd < y.snd
[PROOFSTEP]
exact Or.inl ⟨LE.le.lt_of_not_le h.1.1 h₁, h.1.2⟩
[GOAL]
case refine'_2
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
⊢ x.fst < y.fst ∧ x.snd ≤ y.snd ∨ x.fst ≤ y.fst ∧ x.snd < y.snd → x < y
[PROOFSTEP]
rintro (⟨h₁, h₂⟩ | ⟨h₁, h₂⟩)
[GOAL]
case refine'_2.inl.intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
h₁ : x.fst < y.fst
h₂ : x.snd ≤ y.snd
⊢ x < y
[PROOFSTEP]
exact ⟨⟨h₁.le, h₂⟩, fun h ↦ h₁.not_le h.1⟩
[GOAL]
case refine'_2.inr.intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝¹ : Preorder α
inst✝ : Preorder β
a a₁ a₂ : α
b b₁ b₂ : β
x y : α × β
h₁ : x.fst ≤ y.fst
h₂ : x.snd < y.snd
⊢ x < y
[PROOFSTEP]
exact ⟨⟨h₁, h₂.le⟩, fun h ↦ h₂.not_le h.2⟩
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LT α
⊢ DenselyOrdered αᵒᵈ → DenselyOrdered α
[PROOFSTEP]
convert @OrderDual.denselyOrdered αᵒᵈ _
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : DenselyOrdered α
inst✝ : DenselyOrdered β
a b : α × β
⊢ a < b → ∃ a_2, a < a_2 ∧ a_2 < b
[PROOFSTEP]
simp_rw [Prod.lt_iff]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : DenselyOrdered α
inst✝ : DenselyOrdered β
a b : α × β
⊢ a.fst < b.fst ∧ a.snd ≤ b.snd ∨ a.fst ≤ b.fst ∧ a.snd < b.snd →
∃ a_2,
(a.fst < a_2.fst ∧ a.snd ≤ a_2.snd ∨ a.fst ≤ a_2.fst ∧ a.snd < a_2.snd) ∧
(a_2.fst < b.fst ∧ a_2.snd ≤ b.snd ∨ a_2.fst ≤ b.fst ∧ a_2.snd < b.snd)
[PROOFSTEP]
rintro (⟨h₁, h₂⟩ | ⟨h₁, h₂⟩)
[GOAL]
case inl.intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : DenselyOrdered α
inst✝ : DenselyOrdered β
a b : α × β
h₁ : a.fst < b.fst
h₂ : a.snd ≤ b.snd
⊢ ∃ a_1,
(a.fst < a_1.fst ∧ a.snd ≤ a_1.snd ∨ a.fst ≤ a_1.fst ∧ a.snd < a_1.snd) ∧
(a_1.fst < b.fst ∧ a_1.snd ≤ b.snd ∨ a_1.fst ≤ b.fst ∧ a_1.snd < b.snd)
[PROOFSTEP]
obtain ⟨c, ha, hb⟩ := exists_between h₁
[GOAL]
case inl.intro.intro.intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : DenselyOrdered α
inst✝ : DenselyOrdered β
a b : α × β
h₁ : a.fst < b.fst
h₂ : a.snd ≤ b.snd
c : α
ha : a.fst < c
hb : c < b.fst
⊢ ∃ a_1,
(a.fst < a_1.fst ∧ a.snd ≤ a_1.snd ∨ a.fst ≤ a_1.fst ∧ a.snd < a_1.snd) ∧
(a_1.fst < b.fst ∧ a_1.snd ≤ b.snd ∨ a_1.fst ≤ b.fst ∧ a_1.snd < b.snd)
[PROOFSTEP]
exact ⟨(c, _), Or.inl ⟨ha, h₂⟩, Or.inl ⟨hb, le_rfl⟩⟩
[GOAL]
case inr.intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : DenselyOrdered α
inst✝ : DenselyOrdered β
a b : α × β
h₁ : a.fst ≤ b.fst
h₂ : a.snd < b.snd
⊢ ∃ a_1,
(a.fst < a_1.fst ∧ a.snd ≤ a_1.snd ∨ a.fst ≤ a_1.fst ∧ a.snd < a_1.snd) ∧
(a_1.fst < b.fst ∧ a_1.snd ≤ b.snd ∨ a_1.fst ≤ b.fst ∧ a_1.snd < b.snd)
[PROOFSTEP]
obtain ⟨c, ha, hb⟩ := exists_between h₂
[GOAL]
case inr.intro.intro.intro
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝³ : Preorder α
inst✝² : Preorder β
inst✝¹ : DenselyOrdered α
inst✝ : DenselyOrdered β
a b : α × β
h₁ : a.fst ≤ b.fst
h₂ : a.snd < b.snd
c : β
ha : a.snd < c
hb : c < b.snd
⊢ ∃ a_1,
(a.fst < a_1.fst ∧ a.snd ≤ a_1.snd ∨ a.fst ≤ a_1.fst ∧ a.snd < a_1.snd) ∧
(a_1.fst < b.fst ∧ a_1.snd ≤ b.snd ∨ a_1.fst ≤ b.fst ∧ a_1.snd < b.snd)
[PROOFSTEP]
exact ⟨(_, c), Or.inr ⟨h₁, ha⟩, Or.inr ⟨le_rfl, hb⟩⟩
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : ι → Type u_3
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
a b : (i : ι) → α i
⊢ a < b → ∃ a_2, a < a_2 ∧ a_2 < b
[PROOFSTEP]
classical
simp_rw [Pi.lt_def]
rintro ⟨hab, i, hi⟩
obtain ⟨c, ha, hb⟩ := exists_between hi
exact
⟨Function.update a i c, ⟨le_update_iff.2 ⟨ha.le, fun _ _ ↦ le_rfl⟩, i, by rwa [update_same]⟩,
update_le_iff.2 ⟨hb.le, fun _ _ ↦ hab _⟩, i, by rwa [update_same]⟩
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : ι → Type u_3
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
a b : (i : ι) → α i
⊢ a < b → ∃ a_2, a < a_2 ∧ a_2 < b
[PROOFSTEP]
simp_rw [Pi.lt_def]
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : ι → Type u_3
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
a b : (i : ι) → α i
⊢ (a ≤ b ∧ ∃ i, a i < b i) → ∃ a_2, (a ≤ a_2 ∧ ∃ i, a i < a_2 i) ∧ a_2 ≤ b ∧ ∃ i, a_2 i < b i
[PROOFSTEP]
rintro ⟨hab, i, hi⟩
[GOAL]
case intro.intro
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : ι → Type u_3
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
a b : (i : ι) → α i
hab : a ≤ b
i : ι
hi : a i < b i
⊢ ∃ a_1, (a ≤ a_1 ∧ ∃ i, a i < a_1 i) ∧ a_1 ≤ b ∧ ∃ i, a_1 i < b i
[PROOFSTEP]
obtain ⟨c, ha, hb⟩ := exists_between hi
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : ι → Type u_3
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
a b : (i : ι) → α i
hab : a ≤ b
i : ι
hi : a i < b i
c : α i
ha : a i < c
hb : c < b i
⊢ ∃ a_1, (a ≤ a_1 ∧ ∃ i, a i < a_1 i) ∧ a_1 ≤ b ∧ ∃ i, a_1 i < b i
[PROOFSTEP]
exact
⟨Function.update a i c, ⟨le_update_iff.2 ⟨ha.le, fun _ _ ↦ le_rfl⟩, i, by rwa [update_same]⟩,
update_le_iff.2 ⟨hb.le, fun _ _ ↦ hab _⟩, i, by rwa [update_same]⟩
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : ι → Type u_3
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
a b : (i : ι) → α i
hab : a ≤ b
i : ι
hi : a i < b i
c : α i
ha : a i < c
hb : c < b i
⊢ a i < update a i c i
[PROOFSTEP]
rwa [update_same]
[GOAL]
ι : Type u_1
α✝ : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α✝ → α✝ → Prop
α : ι → Type u_3
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
a b : (i : ι) → α i
hab : a ≤ b
i : ι
hi : a i < b i
c : α i
ha : a i < c
hb : c < b i
⊢ update a i c i < b i
[PROOFSTEP]
rwa [update_same]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
⊢ x = y ∨ y = z ∨ x = z
[PROOFSTEP]
by_contra hne
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : ¬(x = y ∨ y = z ∨ x = z)
⊢ False
[PROOFSTEP]
simp only [not_or, ← Ne.def] at hne
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
⊢ False
[PROOFSTEP]
cases' hne.1.lt_or_lt with h₁ h₁
[GOAL]
case inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : x < y
⊢ False
[PROOFSTEP]
cases' hne.2.1.lt_or_lt with h₂ h₂
[GOAL]
case inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : y < x
⊢ False
[PROOFSTEP]
cases' hne.2.1.lt_or_lt with h₂ h₂
[GOAL]
case inl.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : x < y
h₂ : y < z
⊢ False
[PROOFSTEP]
cases' hne.2.2.lt_or_lt with h₃ h₃
[GOAL]
case inl.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : x < y
h₂ : z < y
⊢ False
[PROOFSTEP]
cases' hne.2.2.lt_or_lt with h₃ h₃
[GOAL]
case inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : y < x
h₂ : y < z
⊢ False
[PROOFSTEP]
cases' hne.2.2.lt_or_lt with h₃ h₃
[GOAL]
case inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : y < x
h₂ : z < y
⊢ False
[PROOFSTEP]
cases' hne.2.2.lt_or_lt with h₃ h₃
[GOAL]
case inl.inl.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : x < y
h₂ : y < z
h₃ : x < z
⊢ False
case inl.inl.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : x < y
h₂ : y < z
h₃ : z < x
⊢ False
case inl.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : x < y
h₂ : z < y
h₃ : x < z
⊢ False
case inl.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : x < y
h₂ : z < y
h₃ : z < x
⊢ False
case inr.inl.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : y < x
h₂ : y < z
h₃ : x < z
⊢ False
case inr.inl.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : y < x
h₂ : y < z
h₃ : z < x
⊢ False
case inr.inr.inl
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : y < x
h₂ : z < y
h₃ : x < z
⊢ False
case inr.inr.inr
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
inst✝ : LinearOrder α
h : ∀ ⦃x y z : α⦄, x < y → y < z → False
x y z : α
hne : x ≠ y ∧ y ≠ z ∧ x ≠ z
h₁ : y < x
h₂ : z < y
h₃ : z < x
⊢ False
[PROOFSTEP]
exacts [h h₁ h₂, h h₂ h₃, h h₃ h₂, h h₃ h₁, h h₁ h₃, h h₂ h₃, h h₁ h₃, h h₂ h₁]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : PUnit
⊢ ∀ (a : PUnit), a ≤ a
[PROOFSTEP]
intros
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : PUnit
a✝ : PUnit
⊢ a✝ ≤ a✝
[PROOFSTEP]
trivial
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : PUnit
⊢ ∀ (a b c : PUnit), a ≤ b → b ≤ c → a ≤ c
[PROOFSTEP]
intros
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : PUnit
a✝² b✝ c✝ : PUnit
a✝¹ : a✝² ≤ b✝
a✝ : b✝ ≤ c✝
⊢ a✝² ≤ c✝
[PROOFSTEP]
trivial
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : PUnit
⊢ ∀ (a b : PUnit), a < b ↔ a ≤ b ∧ ¬b ≤ a
[PROOFSTEP]
simp only [not_true, and_false, forall_const]
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : PUnit
⊢ ∀ (a b : PUnit), a ≤ b → b ≤ a → a = b
[PROOFSTEP]
intros
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : PUnit
a✝² b✝ : PUnit
a✝¹ : a✝² ≤ b✝
a✝ : b✝ ≤ a✝²
⊢ a✝² = b✝
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : PUnit
⊢ ∀ (a b : PUnit), a ≤ b ∨ b ≤ a
[PROOFSTEP]
intros
[GOAL]
ι : Type u_1
α : Type u
β : Type v
γ : Type w
π : ι → Type u_2
r : α → α → Prop
a b : PUnit
a✝ b✝ : PUnit
⊢ a✝ ≤ b✝ ∨ b✝ ≤ a✝
[PROOFSTEP]
exact Or.inl trivial
| {"mathlib_filename": "Mathlib.Order.Basic", "llama_tokens": 41941} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
⊢ WellFounded r ↔ ∀ (s : Set α), Set.Nonempty s → ∃ m, m ∈ s ∧ ∀ (x : α), x ∈ s → ¬r x m
[PROOFSTEP]
refine ⟨fun h => h.has_min, fun h => ⟨fun x => ?_⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
h : ∀ (s : Set α), Set.Nonempty s → ∃ m, m ∈ s ∧ ∀ (x : α), x ∈ s → ¬r x m
x : α
⊢ Acc r x
[PROOFSTEP]
by_contra hx
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
h : ∀ (s : Set α), Set.Nonempty s → ∃ m, m ∈ s ∧ ∀ (x : α), x ∈ s → ¬r x m
x : α
hx : ¬Acc r x
⊢ False
[PROOFSTEP]
obtain ⟨m, hm, hm'⟩ := h {x | ¬Acc r x} ⟨x, hx⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
h : ∀ (s : Set α), Set.Nonempty s → ∃ m, m ∈ s ∧ ∀ (x : α), x ∈ s → ¬r x m
x : α
hx : ¬Acc r x
m : α
hm : m ∈ {x | ¬Acc r x}
hm' : ∀ (x : α), x ∈ {x | ¬Acc r x} → ¬r x m
⊢ False
[PROOFSTEP]
refine' hm ⟨_, fun y hy => _⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
h : ∀ (s : Set α), Set.Nonempty s → ∃ m, m ∈ s ∧ ∀ (x : α), x ∈ s → ¬r x m
x : α
hx : ¬Acc r x
m : α
hm : m ∈ {x | ¬Acc r x}
hm' : ∀ (x : α), x ∈ {x | ¬Acc r x} → ¬r x m
y : α
hy : r y m
⊢ Acc r y
[PROOFSTEP]
by_contra hy'
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
h : ∀ (s : Set α), Set.Nonempty s → ∃ m, m ∈ s ∧ ∀ (x : α), x ∈ s → ¬r x m
x : α
hx : ¬Acc r x
m : α
hm : m ∈ {x | ¬Acc r x}
hm' : ∀ (x : α), x ∈ {x | ¬Acc r x} → ¬r x m
y : α
hy : r y m
hy' : ¬Acc r y
⊢ False
[PROOFSTEP]
exact hm' y hy' hy
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wf : WellFounded r
x : α
h : ∃ y, r x y
⊢ r x (WellFounded.succ wf x)
[PROOFSTEP]
rw [WellFounded.succ, dif_pos h]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wf : WellFounded r
x : α
h : ∃ y, r x y
⊢ r x (min wf {y | r x y} h)
[PROOFSTEP]
apply min_mem
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
⊢ r y (WellFounded.succ (_ : WellFounded r) x) ↔ r y x ∨ y = x
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
⊢ r y (WellFounded.succ (_ : WellFounded r) x) → r y x ∨ y = x
[PROOFSTEP]
intro h'
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
⊢ r y x ∨ y = x
[PROOFSTEP]
have : ¬r x y := by
intro hy
rw [WellFounded.succ, dif_pos] at h'
exact wo.wf.not_lt_min _ h hy h'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
⊢ ¬r x y
[PROOFSTEP]
intro hy
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
hy : r x y
⊢ False
[PROOFSTEP]
rw [WellFounded.succ, dif_pos] at h'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h'✝ : r y (if h : ∃ y, r x y then min (_ : WellFounded r) {y | r x y} h else x)
h' : r y (min (_ : WellFounded r) {y | r x y} ?hc)
hy : r x y
⊢ False
case hc
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (if h : ∃ y, r x y then min (_ : WellFounded r) {y | r x y} h else x)
hy : r x y
⊢ ∃ y, r x y
[PROOFSTEP]
exact wo.wf.not_lt_min _ h hy h'
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
this : ¬r x y
⊢ r y x ∨ y = x
[PROOFSTEP]
rcases trichotomous_of r x y with (hy | hy | hy)
[GOAL]
case mp.inl
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
this : ¬r x y
hy : r x y
⊢ r y x ∨ y = x
case mp.inr.inl
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
this : ¬r x y
hy : x = y
⊢ r y x ∨ y = x
case mp.inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
this : ¬r x y
hy : r y x
⊢ r y x ∨ y = x
[PROOFSTEP]
exfalso
[GOAL]
case mp.inl.h
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
this : ¬r x y
hy : r x y
⊢ False
case mp.inr.inl
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
this : ¬r x y
hy : x = y
⊢ r y x ∨ y = x
case mp.inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
this : ¬r x y
hy : r y x
⊢ r y x ∨ y = x
[PROOFSTEP]
exact this hy
[GOAL]
case mp.inr.inl
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
this : ¬r x y
hy : x = y
⊢ r y x ∨ y = x
case mp.inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
this : ¬r x y
hy : r y x
⊢ r y x ∨ y = x
[PROOFSTEP]
right
[GOAL]
case mp.inr.inl.h
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
this : ¬r x y
hy : x = y
⊢ y = x
case mp.inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
this : ¬r x y
hy : r y x
⊢ r y x ∨ y = x
[PROOFSTEP]
exact hy.symm
[GOAL]
case mp.inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
this : ¬r x y
hy : r y x
⊢ r y x ∨ y = x
[PROOFSTEP]
left
[GOAL]
case mp.inr.inr.h
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
h' : r y (WellFounded.succ (_ : WellFounded r) x)
this : ¬r x y
hy : r y x
⊢ r y x
[PROOFSTEP]
exact hy
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
⊢ r y x ∨ y = x → r y (WellFounded.succ (_ : WellFounded r) x)
[PROOFSTEP]
rintro (hy | rfl)
[GOAL]
case mpr.inl
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
x : α
h : ∃ y, r x y
y : α
hy : r y x
⊢ r y (WellFounded.succ (_ : WellFounded r) x)
case mpr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
y : α
h : ∃ y_1, r y y_1
⊢ r y (WellFounded.succ (_ : WellFounded r) y)
[PROOFSTEP]
exact _root_.trans hy (wo.wf.lt_succ h)
[GOAL]
case mpr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r' r : α → α → Prop
wo : IsWellOrder α r
y : α
h : ∃ y_1, r y y_1
⊢ r y (WellFounded.succ (_ : WellFounded r) y)
[PROOFSTEP]
exact wo.wf.lt_succ h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f g : β → γ
hf : StrictMono f
hg : StrictMono g
hfg : range f = range g
b : β
H : ∀ (a : β), a < b → f a = g a
⊢ f b ≤ g b
[PROOFSTEP]
obtain ⟨c, hc⟩ : g b ∈ Set.range f := by
rw [hfg]
exact Set.mem_range_self b
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f g : β → γ
hf : StrictMono f
hg : StrictMono g
hfg : range f = range g
b : β
H : ∀ (a : β), a < b → f a = g a
⊢ g b ∈ range f
[PROOFSTEP]
rw [hfg]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f g : β → γ
hf : StrictMono f
hg : StrictMono g
hfg : range f = range g
b : β
H : ∀ (a : β), a < b → f a = g a
⊢ g b ∈ range g
[PROOFSTEP]
exact Set.mem_range_self b
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f g : β → γ
hf : StrictMono f
hg : StrictMono g
hfg : range f = range g
b : β
H : ∀ (a : β), a < b → f a = g a
c : β
hc : f c = g b
⊢ f b ≤ g b
[PROOFSTEP]
cases' lt_or_le c b with hcb hbc
[GOAL]
case intro.inl
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f g : β → γ
hf : StrictMono f
hg : StrictMono g
hfg : range f = range g
b : β
H : ∀ (a : β), a < b → f a = g a
c : β
hc : f c = g b
hcb : c < b
⊢ f b ≤ g b
[PROOFSTEP]
rw [H c hcb] at hc
[GOAL]
case intro.inl
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f g : β → γ
hf : StrictMono f
hg : StrictMono g
hfg : range f = range g
b : β
H : ∀ (a : β), a < b → f a = g a
c : β
hc : g c = g b
hcb : c < b
⊢ f b ≤ g b
[PROOFSTEP]
rw [hg.injective hc] at hcb
[GOAL]
case intro.inl
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f g : β → γ
hf : StrictMono f
hg : StrictMono g
hfg : range f = range g
b : β
H : ∀ (a : β), a < b → f a = g a
c : β
hc : g c = g b
hcb : b < b
⊢ f b ≤ g b
[PROOFSTEP]
exact hcb.false.elim
[GOAL]
case intro.inr
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f g : β → γ
hf : StrictMono f
hg : StrictMono g
hfg : range f = range g
b : β
H : ∀ (a : β), a < b → f a = g a
c : β
hc : f c = g b
hbc : b ≤ c
⊢ f b ≤ g b
[PROOFSTEP]
rw [← hc]
[GOAL]
case intro.inr
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f g : β → γ
hf : StrictMono f
hg : StrictMono g
hfg : range f = range g
b : β
H : ∀ (a : β), a < b → f a = g a
c : β
hc : f c = g b
hbc : b ≤ c
⊢ f b ≤ f c
[PROOFSTEP]
exact hf.monotone hbc
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f g : β → γ
hf : StrictMono f
hg : StrictMono g
hfg : range f = range g
⊢ f = g
[PROOFSTEP]
funext a
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f g : β → γ
hf : StrictMono f
hg : StrictMono g
hfg : range f = range g
a : β
⊢ f a = g a
[PROOFSTEP]
apply h.induction a
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f g : β → γ
hf : StrictMono f
hg : StrictMono g
hfg : range f = range g
a : β
⊢ ∀ (x : β), (∀ (y : β), y < x → f y = g y) → f x = g x
[PROOFSTEP]
exact fun b H =>
le_antisymm (eq_strictMono_iff_eq_range_aux hf hg hfg H)
(eq_strictMono_iff_eq_range_aux hg hf hfg.symm fun a hab => (H a hab).symm)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f : β → β
hf : StrictMono f
⊢ ∀ (n : β), n ≤ f n
[PROOFSTEP]
by_contra' h₁
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f : β → β
hf : StrictMono f
h₁ : ∃ n, f n < n
⊢ False
[PROOFSTEP]
have h₂ := h.min_mem _ h₁
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r r' : α → α → Prop
inst✝¹ : LinearOrder β
h : WellFounded fun x x_1 => x < x_1
inst✝ : PartialOrder γ
f : β → β
hf : StrictMono f
h₁ : ∃ n, f n < n
h₂ : min h (fun x => Preorder.toLT.1 (f x) x) h₁ ∈ fun x => Preorder.toLT.1 (f x) x
⊢ False
[PROOFSTEP]
exact h.not_lt_min _ h₁ (hf h₂) h₂
| {"mathlib_filename": "Mathlib.Order.WellFounded", "llama_tokens": 6602} |
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
⊢ IsCompactElement k ↔ ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s
[PROOFSTEP]
classical
constructor
· intro H ι s hs
obtain ⟨t, ht, ht'⟩ := H (Set.range s) hs
have : ∀ x : t, ∃ i, s i = x := fun x => ht x.prop
choose f hf using this
refine' ⟨Finset.univ.image f, ht'.trans _⟩
· rw [Finset.sup_le_iff]
intro b hb
rw [← show s (f ⟨b, hb⟩) = id b from hf _]
exact Finset.le_sup (Finset.mem_image_of_mem f <| Finset.mem_univ (Subtype.mk b hb))
· intro H s hs
obtain ⟨t, ht⟩ :=
H s Subtype.val
(by
delta iSup
rwa [Subtype.range_coe])
refine' ⟨t.image Subtype.val, by simp, ht.trans _⟩
rw [Finset.sup_le_iff]
exact fun x hx => @Finset.le_sup _ _ _ _ _ id _ (Finset.mem_image_of_mem Subtype.val hx)
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
⊢ IsCompactElement k ↔ ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
⊢ IsCompactElement k → ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s
[PROOFSTEP]
intro H ι s hs
[GOAL]
case mp
ι✝ : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι✝ → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : IsCompactElement k
ι : Type u
s : ι → α
hs : k ≤ iSup s
⊢ ∃ t, k ≤ Finset.sup t s
[PROOFSTEP]
obtain ⟨t, ht, ht'⟩ := H (Set.range s) hs
[GOAL]
case mp.intro.intro
ι✝ : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι✝ → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : IsCompactElement k
ι : Type u
s : ι → α
hs : k ≤ iSup s
t : Finset α
ht : ↑t ⊆ Set.range s
ht' : k ≤ Finset.sup t id
⊢ ∃ t, k ≤ Finset.sup t s
[PROOFSTEP]
have : ∀ x : t, ∃ i, s i = x := fun x => ht x.prop
[GOAL]
case mp.intro.intro
ι✝ : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι✝ → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : IsCompactElement k
ι : Type u
s : ι → α
hs : k ≤ iSup s
t : Finset α
ht : ↑t ⊆ Set.range s
ht' : k ≤ Finset.sup t id
this : ∀ (x : { x // x ∈ t }), ∃ i, s i = ↑x
⊢ ∃ t, k ≤ Finset.sup t s
[PROOFSTEP]
choose f hf using this
[GOAL]
case mp.intro.intro
ι✝ : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι✝ → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : IsCompactElement k
ι : Type u
s : ι → α
hs : k ≤ iSup s
t : Finset α
ht : ↑t ⊆ Set.range s
ht' : k ≤ Finset.sup t id
f : { x // x ∈ t } → ι
hf : ∀ (x : { x // x ∈ t }), s (f x) = ↑x
⊢ ∃ t, k ≤ Finset.sup t s
[PROOFSTEP]
refine' ⟨Finset.univ.image f, ht'.trans _⟩
[GOAL]
case mp.intro.intro
ι✝ : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι✝ → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : IsCompactElement k
ι : Type u
s : ι → α
hs : k ≤ iSup s
t : Finset α
ht : ↑t ⊆ Set.range s
ht' : k ≤ Finset.sup t id
f : { x // x ∈ t } → ι
hf : ∀ (x : { x // x ∈ t }), s (f x) = ↑x
⊢ Finset.sup t id ≤ Finset.sup (Finset.image f Finset.univ) s
[PROOFSTEP]
rw [Finset.sup_le_iff]
[GOAL]
case mp.intro.intro
ι✝ : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι✝ → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : IsCompactElement k
ι : Type u
s : ι → α
hs : k ≤ iSup s
t : Finset α
ht : ↑t ⊆ Set.range s
ht' : k ≤ Finset.sup t id
f : { x // x ∈ t } → ι
hf : ∀ (x : { x // x ∈ t }), s (f x) = ↑x
⊢ ∀ (b : α), b ∈ t → id b ≤ Finset.sup (Finset.image f Finset.univ) s
[PROOFSTEP]
intro b hb
[GOAL]
case mp.intro.intro
ι✝ : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι✝ → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : IsCompactElement k
ι : Type u
s : ι → α
hs : k ≤ iSup s
t : Finset α
ht : ↑t ⊆ Set.range s
ht' : k ≤ Finset.sup t id
f : { x // x ∈ t } → ι
hf : ∀ (x : { x // x ∈ t }), s (f x) = ↑x
b : α
hb : b ∈ t
⊢ id b ≤ Finset.sup (Finset.image f Finset.univ) s
[PROOFSTEP]
rw [← show s (f ⟨b, hb⟩) = id b from hf _]
[GOAL]
case mp.intro.intro
ι✝ : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι✝ → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : IsCompactElement k
ι : Type u
s : ι → α
hs : k ≤ iSup s
t : Finset α
ht : ↑t ⊆ Set.range s
ht' : k ≤ Finset.sup t id
f : { x // x ∈ t } → ι
hf : ∀ (x : { x // x ∈ t }), s (f x) = ↑x
b : α
hb : b ∈ t
⊢ s (f { val := b, property := hb }) ≤ Finset.sup (Finset.image f Finset.univ) s
[PROOFSTEP]
exact Finset.le_sup (Finset.mem_image_of_mem f <| Finset.mem_univ (Subtype.mk b hb))
[GOAL]
case mpr
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
⊢ (∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s) → IsCompactElement k
[PROOFSTEP]
intro H s hs
[GOAL]
case mpr
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s
s : Set α
hs : k ≤ sSup s
⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id
[PROOFSTEP]
obtain ⟨t, ht⟩ :=
H s Subtype.val
(by
delta iSup
rwa [Subtype.range_coe])
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s
s : Set α
hs : k ≤ sSup s
⊢ k ≤ iSup Subtype.val
[PROOFSTEP]
delta iSup
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s
s : Set α
hs : k ≤ sSup s
⊢ k ≤ sSup (Set.range Subtype.val)
[PROOFSTEP]
rwa [Subtype.range_coe]
[GOAL]
case mpr.intro
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s
s : Set α
hs : k ≤ sSup s
t : Finset ↑s
ht : k ≤ Finset.sup t Subtype.val
⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id
[PROOFSTEP]
refine' ⟨t.image Subtype.val, by simp, ht.trans _⟩
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s
s : Set α
hs : k ≤ sSup s
t : Finset ↑s
ht : k ≤ Finset.sup t Subtype.val
⊢ ↑(Finset.image Subtype.val t) ⊆ s
[PROOFSTEP]
simp
[GOAL]
case mpr.intro
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s
s : Set α
hs : k ≤ sSup s
t : Finset ↑s
ht : k ≤ Finset.sup t Subtype.val
⊢ Finset.sup t Subtype.val ≤ Finset.sup (Finset.image Subtype.val t) id
[PROOFSTEP]
rw [Finset.sup_le_iff]
[GOAL]
case mpr.intro
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u
inst✝ : CompleteLattice α
k : α
H : ∀ (ι : Type u) (s : ι → α), k ≤ iSup s → ∃ t, k ≤ Finset.sup t s
s : Set α
hs : k ≤ sSup s
t : Finset ↑s
ht : k ≤ Finset.sup t Subtype.val
⊢ ∀ (b : ↑s), b ∈ t → ↑b ≤ Finset.sup (Finset.image Subtype.val t) id
[PROOFSTEP]
exact fun x hx => @Finset.le_sup _ _ _ _ _ id _ (Finset.mem_image_of_mem Subtype.val hx)
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
⊢ IsCompactElement k ↔
∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
[PROOFSTEP]
classical
constructor
· intro hk s hne hdir hsup
obtain ⟨t, ht⟩ := hk s hsup
have t_below_s : ∀ x ∈ t, ∃ y ∈ s, x ≤ y := fun x hxt => ⟨x, ht.left hxt, le_rfl⟩
obtain ⟨x, ⟨hxs, hsupx⟩⟩ := Finset.sup_le_of_le_directed s hne hdir t t_below_s
exact ⟨x, ⟨hxs, le_trans ht.right hsupx⟩⟩
· intro hk s hsup
let S : Set α :=
{x | ∃ t : Finset α, ↑t ⊆ s ∧ x = t.sup id}
-- S is directed, nonempty, and still has sup above k.
have dir_US : DirectedOn (· ≤ ·) S := by
rintro x ⟨c, hc⟩ y ⟨d, hd⟩
use x ⊔ y
constructor
· use c ∪ d
constructor
· simp only [hc.left, hd.left, Set.union_subset_iff, Finset.coe_union, and_self_iff]
· simp only [hc.right, hd.right, Finset.sup_union]
simp only [and_self_iff, le_sup_left, le_sup_right]
have sup_S : sSup s ≤ sSup S := by
apply sSup_le_sSup
intro x hx
use{ x }
simpa only [and_true_iff, id.def, Finset.coe_singleton, eq_self_iff_true, Finset.sup_singleton,
Set.singleton_subset_iff]
have Sne : S.Nonempty := by
suffices : ⊥ ∈ S
exact Set.nonempty_of_mem this
use∅
simp only [Set.empty_subset, Finset.coe_empty, Finset.sup_empty, eq_self_iff_true, and_self_iff]
-- Now apply the defn of compact and finish.
obtain ⟨j, ⟨hjS, hjk⟩⟩ := hk S Sne dir_US (le_trans hsup sup_S)
obtain ⟨t, ⟨htS, htsup⟩⟩ := hjS
use t
exact ⟨htS, by rwa [← htsup]⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
⊢ IsCompactElement k ↔
∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
⊢ IsCompactElement k →
∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
[PROOFSTEP]
intro hk s hne hdir hsup
[GOAL]
case mp
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : IsCompactElement k
s : Set α
hne : Set.Nonempty s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) s
hsup : k ≤ sSup s
⊢ ∃ x, x ∈ s ∧ k ≤ x
[PROOFSTEP]
obtain ⟨t, ht⟩ := hk s hsup
[GOAL]
case mp.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : IsCompactElement k
s : Set α
hne : Set.Nonempty s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) s
hsup : k ≤ sSup s
t : Finset α
ht : ↑t ⊆ s ∧ k ≤ Finset.sup t id
⊢ ∃ x, x ∈ s ∧ k ≤ x
[PROOFSTEP]
have t_below_s : ∀ x ∈ t, ∃ y ∈ s, x ≤ y := fun x hxt => ⟨x, ht.left hxt, le_rfl⟩
[GOAL]
case mp.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : IsCompactElement k
s : Set α
hne : Set.Nonempty s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) s
hsup : k ≤ sSup s
t : Finset α
ht : ↑t ⊆ s ∧ k ≤ Finset.sup t id
t_below_s : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ x ≤ y
⊢ ∃ x, x ∈ s ∧ k ≤ x
[PROOFSTEP]
obtain ⟨x, ⟨hxs, hsupx⟩⟩ := Finset.sup_le_of_le_directed s hne hdir t t_below_s
[GOAL]
case mp.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : IsCompactElement k
s : Set α
hne : Set.Nonempty s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) s
hsup : k ≤ sSup s
t : Finset α
ht : ↑t ⊆ s ∧ k ≤ Finset.sup t id
t_below_s : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ x ≤ y
x : α
hxs : x ∈ s
hsupx : Finset.sup t id ≤ x
⊢ ∃ x, x ∈ s ∧ k ≤ x
[PROOFSTEP]
exact ⟨x, ⟨hxs, le_trans ht.right hsupx⟩⟩
[GOAL]
case mpr
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
⊢ (∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x) →
IsCompactElement k
[PROOFSTEP]
intro hk s hsup
[GOAL]
case mpr
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id
[PROOFSTEP]
let S : Set α :=
{x | ∃ t : Finset α, ↑t ⊆ s ∧ x = t.sup id}
-- S is directed, nonempty, and still has sup above k.
[GOAL]
case mpr
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id
[PROOFSTEP]
have dir_US : DirectedOn (· ≤ ·) S := by
rintro x ⟨c, hc⟩ y ⟨d, hd⟩
use x ⊔ y
constructor
· use c ∪ d
constructor
· simp only [hc.left, hd.left, Set.union_subset_iff, Finset.coe_union, and_self_iff]
· simp only [hc.right, hd.right, Finset.sup_union]
simp only [and_self_iff, le_sup_left, le_sup_right]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
⊢ DirectedOn (fun x x_1 => x ≤ x_1) S
[PROOFSTEP]
rintro x ⟨c, hc⟩ y ⟨d, hd⟩
[GOAL]
case intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
x : α
c : Finset α
hc : ↑c ⊆ s ∧ x = Finset.sup c id
y : α
d : Finset α
hd : ↑d ⊆ s ∧ y = Finset.sup d id
⊢ ∃ z, z ∈ S ∧ (fun x x_1 => x ≤ x_1) x z ∧ (fun x x_1 => x ≤ x_1) y z
[PROOFSTEP]
use x ⊔ y
[GOAL]
case h
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
x : α
c : Finset α
hc : ↑c ⊆ s ∧ x = Finset.sup c id
y : α
d : Finset α
hd : ↑d ⊆ s ∧ y = Finset.sup d id
⊢ x ⊔ y ∈ S ∧ (fun x x_1 => x ≤ x_1) x (x ⊔ y) ∧ (fun x x_1 => x ≤ x_1) y (x ⊔ y)
[PROOFSTEP]
constructor
[GOAL]
case h.left
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
x : α
c : Finset α
hc : ↑c ⊆ s ∧ x = Finset.sup c id
y : α
d : Finset α
hd : ↑d ⊆ s ∧ y = Finset.sup d id
⊢ x ⊔ y ∈ S
[PROOFSTEP]
use c ∪ d
[GOAL]
case h
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
x : α
c : Finset α
hc : ↑c ⊆ s ∧ x = Finset.sup c id
y : α
d : Finset α
hd : ↑d ⊆ s ∧ y = Finset.sup d id
⊢ ↑(c ∪ d) ⊆ s ∧ x ⊔ y = Finset.sup (c ∪ d) id
[PROOFSTEP]
constructor
[GOAL]
case h.left
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
x : α
c : Finset α
hc : ↑c ⊆ s ∧ x = Finset.sup c id
y : α
d : Finset α
hd : ↑d ⊆ s ∧ y = Finset.sup d id
⊢ ↑(c ∪ d) ⊆ s
[PROOFSTEP]
simp only [hc.left, hd.left, Set.union_subset_iff, Finset.coe_union, and_self_iff]
[GOAL]
case h.right
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
x : α
c : Finset α
hc : ↑c ⊆ s ∧ x = Finset.sup c id
y : α
d : Finset α
hd : ↑d ⊆ s ∧ y = Finset.sup d id
⊢ x ⊔ y = Finset.sup (c ∪ d) id
[PROOFSTEP]
simp only [hc.right, hd.right, Finset.sup_union]
[GOAL]
case h.right
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
x : α
c : Finset α
hc : ↑c ⊆ s ∧ x = Finset.sup c id
y : α
d : Finset α
hd : ↑d ⊆ s ∧ y = Finset.sup d id
⊢ (fun x x_1 => x ≤ x_1) x (x ⊔ y) ∧ (fun x x_1 => x ≤ x_1) y (x ⊔ y)
[PROOFSTEP]
simp only [and_self_iff, le_sup_left, le_sup_right]
[GOAL]
case mpr
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id
[PROOFSTEP]
have sup_S : sSup s ≤ sSup S := by
apply sSup_le_sSup
intro x hx
use{ x }
simpa only [and_true_iff, id.def, Finset.coe_singleton, eq_self_iff_true, Finset.sup_singleton,
Set.singleton_subset_iff]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
⊢ sSup s ≤ sSup S
[PROOFSTEP]
apply sSup_le_sSup
[GOAL]
case h
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
⊢ s ⊆ S
[PROOFSTEP]
intro x hx
[GOAL]
case h
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
x : α
hx : x ∈ s
⊢ x ∈ S
[PROOFSTEP]
use{ x }
[GOAL]
case h
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
x : α
hx : x ∈ s
⊢ ↑{x} ⊆ s ∧ x = Finset.sup {x} id
[PROOFSTEP]
simpa only [and_true_iff, id.def, Finset.coe_singleton, eq_self_iff_true, Finset.sup_singleton,
Set.singleton_subset_iff]
[GOAL]
case mpr
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
sup_S : sSup s ≤ sSup S
⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id
[PROOFSTEP]
have Sne : S.Nonempty := by
suffices : ⊥ ∈ S
exact Set.nonempty_of_mem this
use∅
simp only [Set.empty_subset, Finset.coe_empty, Finset.sup_empty, eq_self_iff_true, and_self_iff]
-- Now apply the defn of compact and finish.
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
sup_S : sSup s ≤ sSup S
⊢ Set.Nonempty S
[PROOFSTEP]
suffices : ⊥ ∈ S
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
sup_S : sSup s ≤ sSup S
this : ⊥ ∈ S
⊢ Set.Nonempty S
case this
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
sup_S : sSup s ≤ sSup S
⊢ ⊥ ∈ S
[PROOFSTEP]
exact Set.nonempty_of_mem this
[GOAL]
case this
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
sup_S : sSup s ≤ sSup S
⊢ ⊥ ∈ S
[PROOFSTEP]
use∅
[GOAL]
case h
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
sup_S : sSup s ≤ sSup S
⊢ ↑∅ ⊆ s ∧ ⊥ = Finset.sup ∅ id
[PROOFSTEP]
simp only [Set.empty_subset, Finset.coe_empty, Finset.sup_empty, eq_self_iff_true, and_self_iff]
-- Now apply the defn of compact and finish.
[GOAL]
case mpr
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
sup_S : sSup s ≤ sSup S
Sne : Set.Nonempty S
⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id
[PROOFSTEP]
obtain ⟨j, ⟨hjS, hjk⟩⟩ := hk S Sne dir_US (le_trans hsup sup_S)
[GOAL]
case mpr.intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
sup_S : sSup s ≤ sSup S
Sne : Set.Nonempty S
j : α
hjS : j ∈ S
hjk : k ≤ j
⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id
[PROOFSTEP]
obtain ⟨t, ⟨htS, htsup⟩⟩ := hjS
[GOAL]
case mpr.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
sup_S : sSup s ≤ sSup S
Sne : Set.Nonempty S
j : α
hjk : k ≤ j
t : Finset α
htS : ↑t ⊆ s
htsup : j = Finset.sup t id
⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id
[PROOFSTEP]
use t
[GOAL]
case h
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
sup_S : sSup s ≤ sSup S
Sne : Set.Nonempty S
j : α
hjk : k ≤ j
t : Finset α
htS : ↑t ⊆ s
htsup : j = Finset.sup t id
⊢ ↑t ⊆ s ∧ k ≤ Finset.sup t id
[PROOFSTEP]
exact ⟨htS, by rwa [← htsup]⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hsup : k ≤ sSup s
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ x = Finset.sup t id}
dir_US : DirectedOn (fun x x_1 => x ≤ x_1) S
sup_S : sSup s ≤ sSup S
Sne : Set.Nonempty S
j : α
hjk : k ≤ j
t : Finset α
htS : ↑t ⊆ s
htsup : j = Finset.sup t id
⊢ k ≤ Finset.sup t id
[PROOFSTEP]
rwa [← htsup]
[GOAL]
ι✝ : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f✝ : ι✝ → α
k : α
hk : IsCompactElement k
ι : Type u_3
f : ι → α
h : k ≤ ⨆ (i : ι), f i
⊢ ∃ s, k ≤ ⨆ (i : ι) (_ : i ∈ s), f i
[PROOFSTEP]
classical
let g : Finset ι → α := fun s => ⨆ i ∈ s, f i
have h1 : DirectedOn (· ≤ ·) (Set.range g) :=
by
rintro - ⟨s, rfl⟩ - ⟨t, rfl⟩
exact
⟨g (s ∪ t), ⟨s ∪ t, rfl⟩, iSup_le_iSup_of_subset (Finset.subset_union_left s t),
iSup_le_iSup_of_subset (Finset.subset_union_right s t)⟩
have h2 : k ≤ sSup (Set.range g) :=
h.trans
(iSup_le fun i => le_sSup_of_le ⟨{ i }, rfl⟩ (le_iSup_of_le i (le_iSup_of_le (Finset.mem_singleton_self i) le_rfl)))
obtain ⟨-, ⟨s, rfl⟩, hs⟩ :=
(isCompactElement_iff_le_of_directed_sSup_le α k).mp hk (Set.range g) (Set.range_nonempty g) h1 h2
exact ⟨s, hs⟩
[GOAL]
ι✝ : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f✝ : ι✝ → α
k : α
hk : IsCompactElement k
ι : Type u_3
f : ι → α
h : k ≤ ⨆ (i : ι), f i
⊢ ∃ s, k ≤ ⨆ (i : ι) (_ : i ∈ s), f i
[PROOFSTEP]
let g : Finset ι → α := fun s => ⨆ i ∈ s, f i
[GOAL]
ι✝ : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f✝ : ι✝ → α
k : α
hk : IsCompactElement k
ι : Type u_3
f : ι → α
h : k ≤ ⨆ (i : ι), f i
g : Finset ι → α := fun s => ⨆ (i : ι) (_ : i ∈ s), f i
⊢ ∃ s, k ≤ ⨆ (i : ι) (_ : i ∈ s), f i
[PROOFSTEP]
have h1 : DirectedOn (· ≤ ·) (Set.range g) :=
by
rintro - ⟨s, rfl⟩ - ⟨t, rfl⟩
exact
⟨g (s ∪ t), ⟨s ∪ t, rfl⟩, iSup_le_iSup_of_subset (Finset.subset_union_left s t),
iSup_le_iSup_of_subset (Finset.subset_union_right s t)⟩
[GOAL]
ι✝ : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f✝ : ι✝ → α
k : α
hk : IsCompactElement k
ι : Type u_3
f : ι → α
h : k ≤ ⨆ (i : ι), f i
g : Finset ι → α := fun s => ⨆ (i : ι) (_ : i ∈ s), f i
⊢ DirectedOn (fun x x_1 => x ≤ x_1) (Set.range g)
[PROOFSTEP]
rintro - ⟨s, rfl⟩ - ⟨t, rfl⟩
[GOAL]
case intro.intro
ι✝ : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f✝ : ι✝ → α
k : α
hk : IsCompactElement k
ι : Type u_3
f : ι → α
h : k ≤ ⨆ (i : ι), f i
g : Finset ι → α := fun s => ⨆ (i : ι) (_ : i ∈ s), f i
s t : Finset ι
⊢ ∃ z, z ∈ Set.range g ∧ (fun x x_1 => x ≤ x_1) (g s) z ∧ (fun x x_1 => x ≤ x_1) (g t) z
[PROOFSTEP]
exact
⟨g (s ∪ t), ⟨s ∪ t, rfl⟩, iSup_le_iSup_of_subset (Finset.subset_union_left s t),
iSup_le_iSup_of_subset (Finset.subset_union_right s t)⟩
[GOAL]
ι✝ : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f✝ : ι✝ → α
k : α
hk : IsCompactElement k
ι : Type u_3
f : ι → α
h : k ≤ ⨆ (i : ι), f i
g : Finset ι → α := fun s => ⨆ (i : ι) (_ : i ∈ s), f i
h1 : DirectedOn (fun x x_1 => x ≤ x_1) (Set.range g)
⊢ ∃ s, k ≤ ⨆ (i : ι) (_ : i ∈ s), f i
[PROOFSTEP]
have h2 : k ≤ sSup (Set.range g) :=
h.trans
(iSup_le fun i => le_sSup_of_le ⟨{ i }, rfl⟩ (le_iSup_of_le i (le_iSup_of_le (Finset.mem_singleton_self i) le_rfl)))
[GOAL]
ι✝ : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f✝ : ι✝ → α
k : α
hk : IsCompactElement k
ι : Type u_3
f : ι → α
h : k ≤ ⨆ (i : ι), f i
g : Finset ι → α := fun s => ⨆ (i : ι) (_ : i ∈ s), f i
h1 : DirectedOn (fun x x_1 => x ≤ x_1) (Set.range g)
h2 : k ≤ sSup (Set.range g)
⊢ ∃ s, k ≤ ⨆ (i : ι) (_ : i ∈ s), f i
[PROOFSTEP]
obtain ⟨-, ⟨s, rfl⟩, hs⟩ :=
(isCompactElement_iff_le_of_directed_sSup_le α k).mp hk (Set.range g) (Set.range_nonempty g) h1 h2
[GOAL]
case intro.intro.intro
ι✝ : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f✝ : ι✝ → α
k : α
hk : IsCompactElement k
ι : Type u_3
f : ι → α
h : k ≤ ⨆ (i : ι), f i
g : Finset ι → α := fun s => ⨆ (i : ι) (_ : i ∈ s), f i
h1 : DirectedOn (fun x x_1 => x ≤ x_1) (Set.range g)
h2 : k ≤ sSup (Set.range g)
s : Finset ι
hs : k ≤ g s
⊢ ∃ s, k ≤ ⨆ (i : ι) (_ : i ∈ s), f i
[PROOFSTEP]
exact ⟨s, hs⟩
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u_3
inst✝ : CompleteLattice α
k : α
hk : IsCompactElement k
s : Set α
hemp : Set.Nonempty s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) s
hbelow : ∀ (x : α), x ∈ s → x < k
⊢ sSup s < k
[PROOFSTEP]
rw [isCompactElement_iff_le_of_directed_sSup_le] at hk
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u_3
inst✝ : CompleteLattice α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hemp : Set.Nonempty s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) s
hbelow : ∀ (x : α), x ∈ s → x < k
⊢ sSup s < k
[PROOFSTEP]
by_contra h
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u_3
inst✝ : CompleteLattice α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hemp : Set.Nonempty s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) s
hbelow : ∀ (x : α), x ∈ s → x < k
h : ¬sSup s < k
⊢ False
[PROOFSTEP]
have sSup' : sSup s ≤ k := sSup_le s k fun s hs => (hbelow s hs).le
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u_3
inst✝ : CompleteLattice α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hemp : Set.Nonempty s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) s
hbelow : ∀ (x : α), x ∈ s → x < k
h : ¬sSup s < k
sSup' : sSup s ≤ k
⊢ False
[PROOFSTEP]
replace sSup : sSup s = k := eq_iff_le_not_lt.mpr ⟨sSup', h⟩
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u_3
inst✝ : CompleteLattice α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ SupSet.sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hemp : Set.Nonempty s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) s
hbelow : ∀ (x : α), x ∈ s → x < k
h : ¬SupSet.sSup s < k
sSup' : SupSet.sSup s ≤ k
sSup : SupSet.sSup s = k
⊢ False
[PROOFSTEP]
obtain ⟨x, hxs, hkx⟩ := hk s hemp hdir sSup.symm.le
[GOAL]
case intro.intro
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u_3
inst✝ : CompleteLattice α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ SupSet.sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hemp : Set.Nonempty s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) s
hbelow : ∀ (x : α), x ∈ s → x < k
h : ¬SupSet.sSup s < k
sSup' : SupSet.sSup s ≤ k
sSup : SupSet.sSup s = k
x : α
hxs : x ∈ s
hkx : k ≤ x
⊢ False
[PROOFSTEP]
obtain hxk := hbelow x hxs
[GOAL]
case intro.intro
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f : ι → α✝
α : Type u_3
inst✝ : CompleteLattice α
k : α
hk : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → k ≤ SupSet.sSup s → ∃ x, x ∈ s ∧ k ≤ x
s : Set α
hemp : Set.Nonempty s
hdir : DirectedOn (fun x x_1 => x ≤ x_1) s
hbelow : ∀ (x : α), x ∈ s → x < k
h : ¬SupSet.sSup s < k
sSup' : SupSet.sSup s ≤ k
sSup : SupSet.sSup s = k
x : α
hxs : x ∈ s
hkx : k ≤ x
hxk : x < k
⊢ False
[PROOFSTEP]
exact hxk.ne (hxk.le.antisymm hkx)
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι → α✝
α : Type u_3
β : Type u_4
inst✝ : CompleteLattice α
f : β → α
s : Finset β
h : ∀ (x : β), x ∈ s → IsCompactElement (f x)
⊢ IsCompactElement (Finset.sup s f)
[PROOFSTEP]
classical
rw [isCompactElement_iff_le_of_directed_sSup_le]
intro d hemp hdir hsup
rw [← Function.comp.left_id f]
rw [← Finset.sup_image]
apply Finset.sup_le_of_le_directed d hemp hdir
rintro x hx
obtain ⟨p, ⟨hps, rfl⟩⟩ := Finset.mem_image.mp hx
specialize h p hps
rw [isCompactElement_iff_le_of_directed_sSup_le] at h
specialize h d hemp hdir (le_trans (Finset.le_sup hps) hsup)
simpa only [exists_prop]
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι → α✝
α : Type u_3
β : Type u_4
inst✝ : CompleteLattice α
f : β → α
s : Finset β
h : ∀ (x : β), x ∈ s → IsCompactElement (f x)
⊢ IsCompactElement (Finset.sup s f)
[PROOFSTEP]
rw [isCompactElement_iff_le_of_directed_sSup_le]
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι → α✝
α : Type u_3
β : Type u_4
inst✝ : CompleteLattice α
f : β → α
s : Finset β
h : ∀ (x : β), x ∈ s → IsCompactElement (f x)
⊢ ∀ (s_1 : Set α),
Set.Nonempty s_1 →
DirectedOn (fun x x_1 => x ≤ x_1) s_1 → Finset.sup s f ≤ sSup s_1 → ∃ x, x ∈ s_1 ∧ Finset.sup s f ≤ x
[PROOFSTEP]
intro d hemp hdir hsup
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι → α✝
α : Type u_3
β : Type u_4
inst✝ : CompleteLattice α
f : β → α
s : Finset β
h : ∀ (x : β), x ∈ s → IsCompactElement (f x)
d : Set α
hemp : Set.Nonempty d
hdir : DirectedOn (fun x x_1 => x ≤ x_1) d
hsup : Finset.sup s f ≤ sSup d
⊢ ∃ x, x ∈ d ∧ Finset.sup s f ≤ x
[PROOFSTEP]
rw [← Function.comp.left_id f]
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι → α✝
α : Type u_3
β : Type u_4
inst✝ : CompleteLattice α
f : β → α
s : Finset β
h : ∀ (x : β), x ∈ s → IsCompactElement (f x)
d : Set α
hemp : Set.Nonempty d
hdir : DirectedOn (fun x x_1 => x ≤ x_1) d
hsup : Finset.sup s f ≤ sSup d
⊢ ∃ x, x ∈ d ∧ Finset.sup s (id ∘ f) ≤ x
[PROOFSTEP]
rw [← Finset.sup_image]
[GOAL]
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι → α✝
α : Type u_3
β : Type u_4
inst✝ : CompleteLattice α
f : β → α
s : Finset β
h : ∀ (x : β), x ∈ s → IsCompactElement (f x)
d : Set α
hemp : Set.Nonempty d
hdir : DirectedOn (fun x x_1 => x ≤ x_1) d
hsup : Finset.sup s f ≤ sSup d
⊢ ∃ x, x ∈ d ∧ Finset.sup (Finset.image f s) id ≤ x
[PROOFSTEP]
apply Finset.sup_le_of_le_directed d hemp hdir
[GOAL]
case a
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι → α✝
α : Type u_3
β : Type u_4
inst✝ : CompleteLattice α
f : β → α
s : Finset β
h : ∀ (x : β), x ∈ s → IsCompactElement (f x)
d : Set α
hemp : Set.Nonempty d
hdir : DirectedOn (fun x x_1 => x ≤ x_1) d
hsup : Finset.sup s f ≤ sSup d
⊢ ∀ (x : α), x ∈ Finset.image f s → ∃ y, y ∈ d ∧ x ≤ y
[PROOFSTEP]
rintro x hx
[GOAL]
case a
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι → α✝
α : Type u_3
β : Type u_4
inst✝ : CompleteLattice α
f : β → α
s : Finset β
h : ∀ (x : β), x ∈ s → IsCompactElement (f x)
d : Set α
hemp : Set.Nonempty d
hdir : DirectedOn (fun x x_1 => x ≤ x_1) d
hsup : Finset.sup s f ≤ sSup d
x : α
hx : x ∈ Finset.image f s
⊢ ∃ y, y ∈ d ∧ x ≤ y
[PROOFSTEP]
obtain ⟨p, ⟨hps, rfl⟩⟩ := Finset.mem_image.mp hx
[GOAL]
case a.intro.intro
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι → α✝
α : Type u_3
β : Type u_4
inst✝ : CompleteLattice α
f : β → α
s : Finset β
h : ∀ (x : β), x ∈ s → IsCompactElement (f x)
d : Set α
hemp : Set.Nonempty d
hdir : DirectedOn (fun x x_1 => x ≤ x_1) d
hsup : Finset.sup s f ≤ sSup d
p : β
hps : p ∈ s
hx : f p ∈ Finset.image f s
⊢ ∃ y, y ∈ d ∧ f p ≤ y
[PROOFSTEP]
specialize h p hps
[GOAL]
case a.intro.intro
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι → α✝
α : Type u_3
β : Type u_4
inst✝ : CompleteLattice α
f : β → α
s : Finset β
d : Set α
hemp : Set.Nonempty d
hdir : DirectedOn (fun x x_1 => x ≤ x_1) d
hsup : Finset.sup s f ≤ sSup d
p : β
hps : p ∈ s
hx : f p ∈ Finset.image f s
h : IsCompactElement (f p)
⊢ ∃ y, y ∈ d ∧ f p ≤ y
[PROOFSTEP]
rw [isCompactElement_iff_le_of_directed_sSup_le] at h
[GOAL]
case a.intro.intro
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι → α✝
α : Type u_3
β : Type u_4
inst✝ : CompleteLattice α
f : β → α
s : Finset β
d : Set α
hemp : Set.Nonempty d
hdir : DirectedOn (fun x x_1 => x ≤ x_1) d
hsup : Finset.sup s f ≤ sSup d
p : β
hps : p ∈ s
hx : f p ∈ Finset.image f s
h : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → f p ≤ sSup s → ∃ x, x ∈ s ∧ f p ≤ x
⊢ ∃ y, y ∈ d ∧ f p ≤ y
[PROOFSTEP]
specialize h d hemp hdir (le_trans (Finset.le_sup hps) hsup)
[GOAL]
case a.intro.intro
ι : Sort u_1
α✝ : Type u_2
inst✝¹ : CompleteLattice α✝
f✝ : ι → α✝
α : Type u_3
β : Type u_4
inst✝ : CompleteLattice α
f : β → α
s : Finset β
d : Set α
hemp : Set.Nonempty d
hdir : DirectedOn (fun x x_1 => x ≤ x_1) d
hsup : Finset.sup s f ≤ sSup d
p : β
hps : p ∈ s
hx : f p ∈ Finset.image f s
h : ∃ x, x ∈ d ∧ f p ≤ x
⊢ ∃ y, y ∈ d ∧ f p ≤ y
[PROOFSTEP]
simpa only [exists_prop]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
⊢ ∃ t, ↑t ⊆ s ∧ sSup s = Finset.sup t id
[PROOFSTEP]
let S := {x | ∃ t : Finset α, ↑t ⊆ s ∧ t.sup id = x}
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x}
⊢ ∃ t, ↑t ⊆ s ∧ sSup s = Finset.sup t id
[PROOFSTEP]
obtain ⟨m, ⟨t, ⟨ht₁, rfl⟩⟩, hm⟩ := h.has_min S ⟨⊥, ∅, by simp⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x}
⊢ ↑∅ ⊆ s ∧ Finset.sup ∅ id = ⊥
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x}
t : Finset α
ht₁ : ↑t ⊆ s
hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id
⊢ ∃ t, ↑t ⊆ s ∧ sSup s = Finset.sup t id
[PROOFSTEP]
refine' ⟨t, ht₁, (sSup_le _ _ fun y hy => _).antisymm _⟩
[GOAL]
case intro.intro.intro.intro.refine'_1
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x}
t : Finset α
ht₁ : ↑t ⊆ s
hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id
y : α
hy : y ∈ s
⊢ y ≤ Finset.sup t id
[PROOFSTEP]
classical
rw [eq_of_le_of_not_lt (Finset.sup_mono (t.subset_insert y))
(hm _ ⟨insert y t, by simp [Set.insert_subset_iff, hy, ht₁]⟩)]
simp
[GOAL]
case intro.intro.intro.intro.refine'_1
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x}
t : Finset α
ht₁ : ↑t ⊆ s
hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id
y : α
hy : y ∈ s
⊢ y ≤ Finset.sup t id
[PROOFSTEP]
rw [eq_of_le_of_not_lt (Finset.sup_mono (t.subset_insert y))
(hm _ ⟨insert y t, by simp [Set.insert_subset_iff, hy, ht₁]⟩)]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x}
t : Finset α
ht₁ : ↑t ⊆ s
hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id
y : α
hy : y ∈ s
⊢ ↑(insert y t) ⊆ s ∧ Finset.sup (insert y t) id = Finset.sup (insert y t) id
[PROOFSTEP]
simp [Set.insert_subset_iff, hy, ht₁]
[GOAL]
case intro.intro.intro.intro.refine'_1
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x}
t : Finset α
ht₁ : ↑t ⊆ s
hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id
y : α
hy : y ∈ s
⊢ y ≤ Finset.sup (insert y t) id
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.intro.refine'_2
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x}
t : Finset α
ht₁ : ↑t ⊆ s
hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id
⊢ Finset.sup t id ≤ sSup s
[PROOFSTEP]
rw [Finset.sup_id_eq_sSup]
[GOAL]
case intro.intro.intro.intro.refine'_2
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
S : Set α := {x | ∃ t, ↑t ⊆ s ∧ Finset.sup t id = x}
t : Finset α
ht₁ : ↑t ⊆ s
hm : ∀ (x : α), x ∈ S → ¬x > Finset.sup t id
⊢ sSup ↑t ≤ sSup s
[PROOFSTEP]
exact sSup_le_sSup ht₁
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupFiniteCompact α
⊢ IsSupClosedCompact α
[PROOFSTEP]
intro s hne hsc
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupFiniteCompact α
s : Set α
hne : Set.Nonempty s
hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s
⊢ sSup s ∈ s
[PROOFSTEP]
obtain ⟨t, ht₁, ht₂⟩ := h s
[GOAL]
case intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupFiniteCompact α
s : Set α
hne : Set.Nonempty s
hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
⊢ sSup s ∈ s
[PROOFSTEP]
clear h
[GOAL]
case intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
s : Set α
hne : Set.Nonempty s
hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
⊢ sSup s ∈ s
[PROOFSTEP]
cases' t.eq_empty_or_nonempty with h h
[GOAL]
case intro.intro.inl
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
s : Set α
hne : Set.Nonempty s
hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
h : t = ∅
⊢ sSup s ∈ s
[PROOFSTEP]
subst h
[GOAL]
case intro.intro.inl
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
s : Set α
hne : Set.Nonempty s
hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s
ht₁ : ↑∅ ⊆ s
ht₂ : sSup s = Finset.sup ∅ id
⊢ sSup s ∈ s
[PROOFSTEP]
rw [Finset.sup_empty] at ht₂
[GOAL]
case intro.intro.inl
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
s : Set α
hne : Set.Nonempty s
hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s
ht₁ : ↑∅ ⊆ s
ht₂ : sSup s = ⊥
⊢ sSup s ∈ s
[PROOFSTEP]
rw [ht₂]
[GOAL]
case intro.intro.inl
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
s : Set α
hne : Set.Nonempty s
hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s
ht₁ : ↑∅ ⊆ s
ht₂ : sSup s = ⊥
⊢ ⊥ ∈ s
[PROOFSTEP]
simp [eq_singleton_bot_of_sSup_eq_bot_of_nonempty ht₂ hne]
[GOAL]
case intro.intro.inr
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
s : Set α
hne : Set.Nonempty s
hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
h : Finset.Nonempty t
⊢ sSup s ∈ s
[PROOFSTEP]
rw [ht₂]
[GOAL]
case intro.intro.inr
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
s : Set α
hne : Set.Nonempty s
hsc : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a ⊔ b ∈ s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
h : Finset.Nonempty t
⊢ Finset.sup t id ∈ s
[PROOFSTEP]
exact t.sup_closed_of_sup_closed h ht₁ hsc
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
⊢ WellFounded fun x x_1 => x > x_1
[PROOFSTEP]
refine' RelEmbedding.wellFounded_iff_no_descending_seq.mpr ⟨fun a => _⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
⊢ False
[PROOFSTEP]
suffices sSup (Set.range a) ∈ Set.range a
by
obtain ⟨n, hn⟩ := Set.mem_range.mp this
have h' : sSup (Set.range a) < a (n + 1) := by
change _ > _
simp [← hn, a.map_rel_iff]
apply lt_irrefl (a (n + 1))
apply lt_of_le_of_lt _ h'
apply le_sSup
apply Set.mem_range_self
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
this : sSup (Set.range ↑a) ∈ Set.range ↑a
⊢ False
[PROOFSTEP]
obtain ⟨n, hn⟩ := Set.mem_range.mp this
[GOAL]
case intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
this : sSup (Set.range ↑a) ∈ Set.range ↑a
n : ℕ
hn : ↑a n = sSup (Set.range ↑a)
⊢ False
[PROOFSTEP]
have h' : sSup (Set.range a) < a (n + 1) := by
change _ > _
simp [← hn, a.map_rel_iff]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
this : sSup (Set.range ↑a) ∈ Set.range ↑a
n : ℕ
hn : ↑a n = sSup (Set.range ↑a)
⊢ sSup (Set.range ↑a) < ↑a (n + 1)
[PROOFSTEP]
change _ > _
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
this : sSup (Set.range ↑a) ∈ Set.range ↑a
n : ℕ
hn : ↑a n = sSup (Set.range ↑a)
⊢ ↑a (n + 1) > sSup (Set.range ↑a)
[PROOFSTEP]
simp [← hn, a.map_rel_iff]
[GOAL]
case intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
this : sSup (Set.range ↑a) ∈ Set.range ↑a
n : ℕ
hn : ↑a n = sSup (Set.range ↑a)
h' : sSup (Set.range ↑a) < ↑a (n + 1)
⊢ False
[PROOFSTEP]
apply lt_irrefl (a (n + 1))
[GOAL]
case intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
this : sSup (Set.range ↑a) ∈ Set.range ↑a
n : ℕ
hn : ↑a n = sSup (Set.range ↑a)
h' : sSup (Set.range ↑a) < ↑a (n + 1)
⊢ ↑a (n + 1) < ↑a (n + 1)
[PROOFSTEP]
apply lt_of_le_of_lt _ h'
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
this : sSup (Set.range ↑a) ∈ Set.range ↑a
n : ℕ
hn : ↑a n = sSup (Set.range ↑a)
h' : sSup (Set.range ↑a) < ↑a (n + 1)
⊢ ↑a (n + 1) ≤ sSup (Set.range ↑a)
[PROOFSTEP]
apply le_sSup
[GOAL]
case a
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
this : sSup (Set.range ↑a) ∈ Set.range ↑a
n : ℕ
hn : ↑a n = sSup (Set.range ↑a)
h' : sSup (Set.range ↑a) < ↑a (n + 1)
⊢ ↑a (n + 1) ∈ Set.range ↑a
[PROOFSTEP]
apply Set.mem_range_self
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
⊢ sSup (Set.range ↑a) ∈ Set.range ↑a
[PROOFSTEP]
apply h (Set.range a)
[GOAL]
case x
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
⊢ Set.Nonempty (Set.range ↑a)
[PROOFSTEP]
use a 37
[GOAL]
case h
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
⊢ ↑a 37 ∈ Set.range ↑a
[PROOFSTEP]
apply Set.mem_range_self
[GOAL]
case a
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
⊢ ∀ (a_1 : α), a_1 ∈ Set.range ↑a → ∀ (b : α), b ∈ Set.range ↑a → a_1 ⊔ b ∈ Set.range ↑a
[PROOFSTEP]
rintro x ⟨m, hm⟩ y ⟨n, hn⟩
[GOAL]
case a.intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
x : α
m : ℕ
hm : ↑a m = x
y : α
n : ℕ
hn : ↑a n = y
⊢ x ⊔ y ∈ Set.range ↑a
[PROOFSTEP]
use m ⊔ n
[GOAL]
case h
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
x : α
m : ℕ
hm : ↑a m = x
y : α
n : ℕ
hn : ↑a n = y
⊢ ↑a (m ⊔ n) = x ⊔ y
[PROOFSTEP]
rw [← hm, ← hn]
[GOAL]
case h
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupClosedCompact α
a : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
x : α
m : ℕ
hm : ↑a m = x
y : α
n : ℕ
hn : ↑a n = y
⊢ ↑a (m ⊔ n) = ↑a m ⊔ ↑a n
[PROOFSTEP]
apply RelHomClass.map_sup a
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
⊢ IsSupFiniteCompact α ↔ ∀ (k : α), IsCompactElement k
[PROOFSTEP]
refine' ⟨fun h k s hs => _, fun h s => _⟩
[GOAL]
case refine'_1
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupFiniteCompact α
k : α
s : Set α
hs : k ≤ sSup s
⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id
[PROOFSTEP]
obtain ⟨t, ⟨hts, htsup⟩⟩ := h s
[GOAL]
case refine'_1.intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupFiniteCompact α
k : α
s : Set α
hs : k ≤ sSup s
t : Finset α
hts : ↑t ⊆ s
htsup : sSup s = Finset.sup t id
⊢ ∃ t, ↑t ⊆ s ∧ k ≤ Finset.sup t id
[PROOFSTEP]
use t, hts
[GOAL]
case right
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : IsSupFiniteCompact α
k : α
s : Set α
hs : k ≤ sSup s
t : Finset α
hts : ↑t ⊆ s
htsup : sSup s = Finset.sup t id
⊢ k ≤ Finset.sup t id
[PROOFSTEP]
rwa [← htsup]
[GOAL]
case refine'_2
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : ∀ (k : α), IsCompactElement k
s : Set α
⊢ ∃ t, ↑t ⊆ s ∧ sSup s = Finset.sup t id
[PROOFSTEP]
obtain ⟨t, ⟨hts, htsup⟩⟩ := h (sSup s) s (by rfl)
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : ∀ (k : α), IsCompactElement k
s : Set α
⊢ sSup s ≤ sSup s
[PROOFSTEP]
rfl
[GOAL]
case refine'_2.intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : ∀ (k : α), IsCompactElement k
s : Set α
t : Finset α
hts : ↑t ⊆ s
htsup : sSup s ≤ Finset.sup t id
⊢ ∃ t, ↑t ⊆ s ∧ sSup s = Finset.sup t id
[PROOFSTEP]
have : sSup s = t.sup id := by
suffices t.sup id ≤ sSup s by apply le_antisymm <;> assumption
simp only [id.def, Finset.sup_le_iff]
intro x hx
exact le_sSup _ _ (hts hx)
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : ∀ (k : α), IsCompactElement k
s : Set α
t : Finset α
hts : ↑t ⊆ s
htsup : sSup s ≤ Finset.sup t id
⊢ sSup s = Finset.sup t id
[PROOFSTEP]
suffices t.sup id ≤ sSup s by apply le_antisymm <;> assumption
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : ∀ (k : α), IsCompactElement k
s : Set α
t : Finset α
hts : ↑t ⊆ s
htsup : sSup s ≤ Finset.sup t id
this : Finset.sup t id ≤ sSup s
⊢ sSup s = Finset.sup t id
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : ∀ (k : α), IsCompactElement k
s : Set α
t : Finset α
hts : ↑t ⊆ s
htsup : sSup s ≤ Finset.sup t id
this : Finset.sup t id ≤ sSup s
⊢ sSup s ≤ Finset.sup t id
[PROOFSTEP]
assumption
[GOAL]
case a
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : ∀ (k : α), IsCompactElement k
s : Set α
t : Finset α
hts : ↑t ⊆ s
htsup : sSup s ≤ Finset.sup t id
this : Finset.sup t id ≤ sSup s
⊢ Finset.sup t id ≤ sSup s
[PROOFSTEP]
assumption
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : ∀ (k : α), IsCompactElement k
s : Set α
t : Finset α
hts : ↑t ⊆ s
htsup : sSup s ≤ Finset.sup t id
⊢ Finset.sup t id ≤ sSup s
[PROOFSTEP]
simp only [id.def, Finset.sup_le_iff]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : ∀ (k : α), IsCompactElement k
s : Set α
t : Finset α
hts : ↑t ⊆ s
htsup : sSup s ≤ Finset.sup t id
⊢ ∀ (b : α), b ∈ t → b ≤ sSup s
[PROOFSTEP]
intro x hx
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : ∀ (k : α), IsCompactElement k
s : Set α
t : Finset α
hts : ↑t ⊆ s
htsup : sSup s ≤ Finset.sup t id
x : α
hx : x ∈ t
⊢ x ≤ sSup s
[PROOFSTEP]
exact le_sSup _ _ (hts hx)
[GOAL]
case refine'_2.intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : ∀ (k : α), IsCompactElement k
s : Set α
t : Finset α
hts : ↑t ⊆ s
htsup : sSup s ≤ Finset.sup t id
this : sSup s = Finset.sup t id
⊢ ∃ t, ↑t ⊆ s ∧ sSup s = Finset.sup t id
[PROOFSTEP]
exact ⟨t, hts, this⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
⊢ TFAE [WellFounded fun x x_1 => x > x_1, IsSupFiniteCompact α, IsSupClosedCompact α, ∀ (k : α), IsCompactElement k]
[PROOFSTEP]
tfae_have 1 → 2
[GOAL]
case tfae_1_to_2
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
⊢ (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α
[PROOFSTEP]
exact WellFounded.isSupFiniteCompact α
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α
⊢ TFAE [WellFounded fun x x_1 => x > x_1, IsSupFiniteCompact α, IsSupClosedCompact α, ∀ (k : α), IsCompactElement k]
[PROOFSTEP]
tfae_have 2 → 3
[GOAL]
case tfae_2_to_3
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α
⊢ IsSupFiniteCompact α → IsSupClosedCompact α
[PROOFSTEP]
exact IsSupFiniteCompact.isSupClosedCompact α
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α
tfae_2_to_3 : IsSupFiniteCompact α → IsSupClosedCompact α
⊢ TFAE [WellFounded fun x x_1 => x > x_1, IsSupFiniteCompact α, IsSupClosedCompact α, ∀ (k : α), IsCompactElement k]
[PROOFSTEP]
tfae_have 3 → 1
[GOAL]
case tfae_3_to_1
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α
tfae_2_to_3 : IsSupFiniteCompact α → IsSupClosedCompact α
⊢ IsSupClosedCompact α → WellFounded fun x x_1 => x > x_1
[PROOFSTEP]
exact IsSupClosedCompact.wellFounded α
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α
tfae_2_to_3 : IsSupFiniteCompact α → IsSupClosedCompact α
tfae_3_to_1 : IsSupClosedCompact α → WellFounded fun x x_1 => x > x_1
⊢ TFAE [WellFounded fun x x_1 => x > x_1, IsSupFiniteCompact α, IsSupClosedCompact α, ∀ (k : α), IsCompactElement k]
[PROOFSTEP]
tfae_have 2 ↔ 4
[GOAL]
case tfae_2_iff_4
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α
tfae_2_to_3 : IsSupFiniteCompact α → IsSupClosedCompact α
tfae_3_to_1 : IsSupClosedCompact α → WellFounded fun x x_1 => x > x_1
⊢ IsSupFiniteCompact α ↔ ∀ (k : α), IsCompactElement k
[PROOFSTEP]
exact isSupFiniteCompact_iff_all_elements_compact α
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
tfae_1_to_2 : (WellFounded fun x x_1 => x > x_1) → IsSupFiniteCompact α
tfae_2_to_3 : IsSupFiniteCompact α → IsSupClosedCompact α
tfae_3_to_1 : IsSupClosedCompact α → WellFounded fun x x_1 => x > x_1
tfae_2_iff_4 : IsSupFiniteCompact α ↔ ∀ (k : α), IsCompactElement k
⊢ TFAE [WellFounded fun x x_1 => x > x_1, IsSupFiniteCompact α, IsSupClosedCompact α, ∀ (k : α), IsCompactElement k]
[PROOFSTEP]
tfae_finish
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
⊢ Set.Finite s
[PROOFSTEP]
classical
refine' Set.not_infinite.mp fun contra => _
obtain ⟨t, ht₁, ht₂⟩ := WellFounded.isSupFiniteCompact α h s
replace contra : ∃ x : α, x ∈ s ∧ x ≠ ⊥ ∧ x ∉ t
· have : (s \ (insert ⊥ t : Finset α)).Infinite := contra.diff (Finset.finite_toSet _)
obtain ⟨x, hx₁, hx₂⟩ := this.nonempty
exact ⟨x, hx₁, by simpa [not_or] using hx₂⟩
obtain ⟨x, hx₀, hx₁, hx₂⟩ := contra
replace hs : x ⊓ sSup s = ⊥
· have := hs.mono (by simp [ht₁, hx₀, -Set.union_singleton] : ↑t ∪ { x } ≤ s) (by simp : x ∈ _)
simpa [Disjoint, hx₂, ← t.sup_id_eq_sSup, ← ht₂] using this.eq_bot
apply hx₁
rw [← hs, eq_comm, inf_eq_left]
exact le_sSup _ _ hx₀
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
⊢ Set.Finite s
[PROOFSTEP]
refine' Set.not_infinite.mp fun contra => _
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
contra : Set.Infinite s
⊢ False
[PROOFSTEP]
obtain ⟨t, ht₁, ht₂⟩ := WellFounded.isSupFiniteCompact α h s
[GOAL]
case intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
contra : Set.Infinite s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
⊢ False
[PROOFSTEP]
replace contra : ∃ x : α, x ∈ s ∧ x ≠ ⊥ ∧ x ∉ t
[GOAL]
case contra
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
contra : Set.Infinite s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
⊢ ∃ x, x ∈ s ∧ x ≠ ⊥ ∧ ¬x ∈ t
[PROOFSTEP]
have : (s \ (insert ⊥ t : Finset α)).Infinite := contra.diff (Finset.finite_toSet _)
[GOAL]
case contra
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
contra : Set.Infinite s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
this : Set.Infinite (s \ ↑(insert ⊥ t))
⊢ ∃ x, x ∈ s ∧ x ≠ ⊥ ∧ ¬x ∈ t
[PROOFSTEP]
obtain ⟨x, hx₁, hx₂⟩ := this.nonempty
[GOAL]
case contra.intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
contra : Set.Infinite s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
this : Set.Infinite (s \ ↑(insert ⊥ t))
x : α
hx₁ : x ∈ s
hx₂ : ¬x ∈ ↑(insert ⊥ t)
⊢ ∃ x, x ∈ s ∧ x ≠ ⊥ ∧ ¬x ∈ t
[PROOFSTEP]
exact ⟨x, hx₁, by simpa [not_or] using hx₂⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
contra : Set.Infinite s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
this : Set.Infinite (s \ ↑(insert ⊥ t))
x : α
hx₁ : x ∈ s
hx₂ : ¬x ∈ ↑(insert ⊥ t)
⊢ x ≠ ⊥ ∧ ¬x ∈ t
[PROOFSTEP]
simpa [not_or] using hx₂
[GOAL]
case intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
contra : ∃ x, x ∈ s ∧ x ≠ ⊥ ∧ ¬x ∈ t
⊢ False
[PROOFSTEP]
obtain ⟨x, hx₀, hx₁, hx₂⟩ := contra
[GOAL]
case intro.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
x : α
hx₀ : x ∈ s
hx₁ : x ≠ ⊥
hx₂ : ¬x ∈ t
⊢ False
[PROOFSTEP]
replace hs : x ⊓ sSup s = ⊥
[GOAL]
case hs
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
x : α
hx₀ : x ∈ s
hx₁ : x ≠ ⊥
hx₂ : ¬x ∈ t
⊢ x ⊓ sSup s = ⊥
[PROOFSTEP]
have := hs.mono (by simp [ht₁, hx₀, -Set.union_singleton] : ↑t ∪ { x } ≤ s) (by simp : x ∈ _)
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
x : α
hx₀ : x ∈ s
hx₁ : x ≠ ⊥
hx₂ : ¬x ∈ t
⊢ ↑t ∪ {x} ≤ s
[PROOFSTEP]
simp [ht₁, hx₀, -Set.union_singleton]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
x : α
hx₀ : x ∈ s
hx₁ : x ≠ ⊥
hx₂ : ¬x ∈ t
⊢ x ∈ ↑t ∪ {x}
[PROOFSTEP]
simp
[GOAL]
case hs
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
hs : SetIndependent s
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
x : α
hx₀ : x ∈ s
hx₁ : x ≠ ⊥
hx₂ : ¬x ∈ t
this : Disjoint x (sSup ((↑t ∪ {x}) \ {x}))
⊢ x ⊓ sSup s = ⊥
[PROOFSTEP]
simpa [Disjoint, hx₂, ← t.sup_id_eq_sSup, ← ht₂] using this.eq_bot
[GOAL]
case intro.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
x : α
hx₀ : x ∈ s
hx₁ : x ≠ ⊥
hx₂ : ¬x ∈ t
hs : x ⊓ sSup s = ⊥
⊢ False
[PROOFSTEP]
apply hx₁
[GOAL]
case intro.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
x : α
hx₀ : x ∈ s
hx₁ : x ≠ ⊥
hx₂ : ¬x ∈ t
hs : x ⊓ sSup s = ⊥
⊢ x = ⊥
[PROOFSTEP]
rw [← hs, eq_comm, inf_eq_left]
[GOAL]
case intro.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
s : Set α
t : Finset α
ht₁ : ↑t ⊆ s
ht₂ : sSup s = Finset.sup t id
x : α
hx₀ : x ∈ s
hx₁ : x ≠ ⊥
hx₂ : ¬x ∈ t
hs : x ⊓ sSup s = ⊥
⊢ x ≤ sSup s
[PROOFSTEP]
exact le_sSup _ _ hx₀
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b✝ : α
s : Set α
b : α
⊢ sSup {c | CompleteLattice.IsCompactElement c ∧ c ≤ b} = b
[PROOFSTEP]
rcases IsCompactlyGenerated.exists_sSup_eq b with ⟨s, hs, rfl⟩
[GOAL]
case intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s✝ s : Set α
hs : ∀ (x : α), x ∈ s → CompleteLattice.IsCompactElement x
⊢ sSup {c | CompleteLattice.IsCompactElement c ∧ c ≤ sSup s} = sSup s
[PROOFSTEP]
exact le_antisymm (sSup_le fun c hc => hc.2) (sSup_le_sSup fun c cs => ⟨hs c cs, le_sSup cs⟩)
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
⊢ sSup {a | CompleteLattice.IsCompactElement a} = ⊤
[PROOFSTEP]
refine' Eq.trans (congr rfl (Set.ext fun x => _)) (sSup_compact_le_eq ⊤)
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
x : α
⊢ x ∈ {a | CompleteLattice.IsCompactElement a} ↔ x ∈ {c | CompleteLattice.IsCompactElement c ∧ c ≤ ⊤}
[PROOFSTEP]
exact (and_iff_left le_top).symm
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b✝ : α
s : Set α
a b : α
h : ∀ (c : α), CompleteLattice.IsCompactElement c → c ≤ a → c ≤ b
⊢ a ≤ b
[PROOFSTEP]
rw [← sSup_compact_le_eq a, ← sSup_compact_le_eq b]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b✝ : α
s : Set α
a b : α
h : ∀ (c : α), CompleteLattice.IsCompactElement c → c ≤ a → c ≤ b
⊢ sSup {c | CompleteLattice.IsCompactElement c ∧ c ≤ a} ≤ sSup {c | CompleteLattice.IsCompactElement c ∧ c ≤ b}
[PROOFSTEP]
exact sSup_le_sSup fun c hc => ⟨hc.1, h c hc.1 hc.2⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : DirectedOn (fun x x_1 => x ≤ x_1) s
⊢ a ⊓ sSup s ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
rw [le_iff_compact_le_imp]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : DirectedOn (fun x x_1 => x ≤ x_1) s
⊢ ∀ (c : α), CompleteLattice.IsCompactElement c → c ≤ a ⊓ sSup s → c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
by_cases hs : s.Nonempty
[GOAL]
case pos
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : DirectedOn (fun x x_1 => x ≤ x_1) s
hs : Set.Nonempty s
⊢ ∀ (c : α), CompleteLattice.IsCompactElement c → c ≤ a ⊓ sSup s → c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
intro c hc hcinf
[GOAL]
case pos
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : DirectedOn (fun x x_1 => x ≤ x_1) s
hs : Set.Nonempty s
c : α
hc : CompleteLattice.IsCompactElement c
hcinf : c ≤ a ⊓ sSup s
⊢ c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
rw [le_inf_iff] at hcinf
[GOAL]
case pos
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : DirectedOn (fun x x_1 => x ≤ x_1) s
hs : Set.Nonempty s
c : α
hc : CompleteLattice.IsCompactElement c
hcinf : c ≤ a ∧ c ≤ sSup s
⊢ c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
rw [CompleteLattice.isCompactElement_iff_le_of_directed_sSup_le] at hc
[GOAL]
case pos
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : DirectedOn (fun x x_1 => x ≤ x_1) s
hs : Set.Nonempty s
c : α
hc : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → c ≤ sSup s → ∃ x, x ∈ s ∧ c ≤ x
hcinf : c ≤ a ∧ c ≤ sSup s
⊢ c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
rcases hc s hs h hcinf.2 with ⟨d, ds, cd⟩
[GOAL]
case pos.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : DirectedOn (fun x x_1 => x ≤ x_1) s
hs : Set.Nonempty s
c : α
hc : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → c ≤ sSup s → ∃ x, x ∈ s ∧ c ≤ x
hcinf : c ≤ a ∧ c ≤ sSup s
d : α
ds : d ∈ s
cd : c ≤ d
⊢ c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
refine' (le_inf hcinf.1 cd).trans (le_trans _ (le_iSup₂ d ds))
[GOAL]
case pos.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : DirectedOn (fun x x_1 => x ≤ x_1) s
hs : Set.Nonempty s
c : α
hc : ∀ (s : Set α), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → c ≤ sSup s → ∃ x, x ∈ s ∧ c ≤ x
hcinf : c ≤ a ∧ c ≤ sSup s
d : α
ds : d ∈ s
cd : c ≤ d
⊢ a ⊓ d ≤ a ⊓ d
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : DirectedOn (fun x x_1 => x ≤ x_1) s
hs : ¬Set.Nonempty s
⊢ ∀ (c : α), CompleteLattice.IsCompactElement c → c ≤ a ⊓ sSup s → c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
rw [Set.not_nonempty_iff_eq_empty] at hs
[GOAL]
case neg
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : DirectedOn (fun x x_1 => x ≤ x_1) s
hs : s = ∅
⊢ ∀ (c : α), CompleteLattice.IsCompactElement c → c ≤ a ⊓ sSup s → c ≤ ⨆ (b : α) (_ : b ∈ s), a ⊓ b
[PROOFSTEP]
simp [hs]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : DirectedOn (fun x x_1 => x ≤ x_1) s
⊢ sSup s ⊓ a = ⨆ (b : α) (_ : b ∈ s), b ⊓ a
[PROOFSTEP]
simp_rw [@inf_comm _ _ _ a, h.inf_sSup_eq]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : Directed (fun x x_1 => x ≤ x_1) f
⊢ a ⊓ ⨆ (i : ι), f i = ⨆ (i : ι), a ⊓ f i
[PROOFSTEP]
rw [iSup, h.directedOn_range.inf_sSup_eq, iSup_range]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : Directed (fun x x_1 => x ≤ x_1) f
⊢ (⨆ (i : ι), f i) ⊓ a = ⨆ (i : ι), f i ⊓ a
[PROOFSTEP]
rw [iSup, h.directedOn_range.sSup_inf_eq, iSup_range]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : DirectedOn (fun x x_1 => x ≤ x_1) s
⊢ Disjoint a (sSup s) ↔ ∀ ⦃b : α⦄, b ∈ s → Disjoint a b
[PROOFSTEP]
simp_rw [disjoint_iff, h.inf_sSup_eq, iSup_eq_bot]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : DirectedOn (fun x x_1 => x ≤ x_1) s
⊢ Disjoint (sSup s) a ↔ ∀ ⦃b : α⦄, b ∈ s → Disjoint b a
[PROOFSTEP]
simp_rw [disjoint_iff, h.sSup_inf_eq, iSup_eq_bot]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : Directed (fun x x_1 => x ≤ x_1) f
⊢ Disjoint a (⨆ (i : ι), f i) ↔ ∀ (i : ι), Disjoint a (f i)
[PROOFSTEP]
simp_rw [disjoint_iff, h.inf_iSup_eq, iSup_eq_bot]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
h : Directed (fun x x_1 => x ≤ x_1) f
⊢ Disjoint (⨆ (i : ι), f i) a ↔ ∀ (i : ι), Disjoint (f i) a
[PROOFSTEP]
simp_rw [disjoint_iff, h.iSup_inf_eq, iSup_eq_bot]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
⊢ a ⊓ sSup s ≤ ⨆ (t : Finset α) (_ : ↑t ⊆ s), a ⊓ Finset.sup t id
[PROOFSTEP]
rw [le_iff_compact_le_imp]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
⊢ ∀ (c : α),
CompleteLattice.IsCompactElement c → c ≤ a ⊓ sSup s → c ≤ ⨆ (t : Finset α) (_ : ↑t ⊆ s), a ⊓ Finset.sup t id
[PROOFSTEP]
intro c hc hcinf
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
c : α
hc : CompleteLattice.IsCompactElement c
hcinf : c ≤ a ⊓ sSup s
⊢ c ≤ ⨆ (t : Finset α) (_ : ↑t ⊆ s), a ⊓ Finset.sup t id
[PROOFSTEP]
rw [le_inf_iff] at hcinf
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
c : α
hc : CompleteLattice.IsCompactElement c
hcinf : c ≤ a ∧ c ≤ sSup s
⊢ c ≤ ⨆ (t : Finset α) (_ : ↑t ⊆ s), a ⊓ Finset.sup t id
[PROOFSTEP]
rcases hc s hcinf.2 with ⟨t, ht1, ht2⟩
[GOAL]
case intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
c : α
hc : CompleteLattice.IsCompactElement c
hcinf : c ≤ a ∧ c ≤ sSup s
t : Finset α
ht1 : ↑t ⊆ s
ht2 : c ≤ Finset.sup t id
⊢ c ≤ ⨆ (t : Finset α) (_ : ↑t ⊆ s), a ⊓ Finset.sup t id
[PROOFSTEP]
refine' (le_inf hcinf.1 ht2).trans (le_trans _ (le_iSup₂ t ht1))
[GOAL]
case intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s : Set α
c : α
hc : CompleteLattice.IsCompactElement c
hcinf : c ≤ a ∧ c ≤ sSup s
t : Finset α
ht1 : ↑t ⊆ s
ht2 : c ≤ Finset.sup t id
⊢ a ⊓ Finset.sup t id ≤ a ⊓ Finset.sup t id
[PROOFSTEP]
rfl
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b : α
s✝ s : Set α
h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t
a : α
ha : a ∈ s
⊢ Disjoint a (sSup (s \ {a}))
[PROOFSTEP]
rw [disjoint_iff, inf_sSup_eq_iSup_inf_sup_finset, iSup_eq_bot]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b : α
s✝ s : Set α
h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t
a : α
ha : a ∈ s
⊢ ∀ (i : Finset α), ⨆ (_ : ↑i ⊆ s \ {a}), a ⊓ Finset.sup i id = ⊥
[PROOFSTEP]
intro t
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b : α
s✝ s : Set α
h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t
a : α
ha : a ∈ s
t : Finset α
⊢ ⨆ (_ : ↑t ⊆ s \ {a}), a ⊓ Finset.sup t id = ⊥
[PROOFSTEP]
rw [iSup_eq_bot, Finset.sup_id_eq_sSup]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b : α
s✝ s : Set α
h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t
a : α
ha : a ∈ s
t : Finset α
⊢ ↑t ⊆ s \ {a} → a ⊓ sSup ↑t = ⊥
[PROOFSTEP]
intro ht
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b : α
s✝ s : Set α
h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t
a : α
ha : a ∈ s
t : Finset α
ht : ↑t ⊆ s \ {a}
⊢ a ⊓ sSup ↑t = ⊥
[PROOFSTEP]
classical
have h' := (h (insert a t) ?_ (t.mem_insert_self a)).eq_bot
· rwa [Finset.coe_insert, Set.insert_diff_self_of_not_mem] at h'
exact fun con => ((Set.mem_diff a).1 (ht con)).2 (Set.mem_singleton a)
· rw [Finset.coe_insert, Set.insert_subset_iff]
exact ⟨ha, Set.Subset.trans ht (Set.diff_subset _ _)⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b : α
s✝ s : Set α
h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t
a : α
ha : a ∈ s
t : Finset α
ht : ↑t ⊆ s \ {a}
⊢ a ⊓ sSup ↑t = ⊥
[PROOFSTEP]
have h' := (h (insert a t) ?_ (t.mem_insert_self a)).eq_bot
[GOAL]
case refine_2
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b : α
s✝ s : Set α
h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t
a : α
ha : a ∈ s
t : Finset α
ht : ↑t ⊆ s \ {a}
h' : a ⊓ sSup (↑(insert a t) \ {a}) = ⊥
⊢ a ⊓ sSup ↑t = ⊥
[PROOFSTEP]
rwa [Finset.coe_insert, Set.insert_diff_self_of_not_mem] at h'
[GOAL]
case refine_2
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b : α
s✝ s : Set α
h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t
a : α
ha : a ∈ s
t : Finset α
ht : ↑t ⊆ s \ {a}
h' : a ⊓ sSup (insert a ↑t \ {a}) = ⊥
⊢ ¬a ∈ ↑t
[PROOFSTEP]
exact fun con => ((Set.mem_diff a).1 (ht con)).2 (Set.mem_singleton a)
[GOAL]
case refine_1
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b : α
s✝ s : Set α
h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t
a : α
ha : a ∈ s
t : Finset α
ht : ↑t ⊆ s \ {a}
⊢ ↑(insert a t) ⊆ s
[PROOFSTEP]
rw [Finset.coe_insert, Set.insert_subset_iff]
[GOAL]
case refine_1
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b : α
s✝ s : Set α
h : ∀ (t : Finset α), ↑t ⊆ s → SetIndependent ↑t
a : α
ha : a ∈ s
t : Finset α
ht : ↑t ⊆ s \ {a}
⊢ a ∈ s ∧ ↑t ⊆ s
[PROOFSTEP]
exact ⟨ha, Set.Subset.trans ht (Set.diff_subset _ _)⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s✝ : Set α
η : Type u_3
s : η → Set α
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), SetIndependent (s i)
⊢ SetIndependent (⋃ (i : η), s i)
[PROOFSTEP]
by_cases hη : Nonempty η
[GOAL]
case pos
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s✝ : Set α
η : Type u_3
s : η → Set α
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), SetIndependent (s i)
hη : Nonempty η
⊢ SetIndependent (⋃ (i : η), s i)
[PROOFSTEP]
rw [CompleteLattice.setIndependent_iff_finite]
[GOAL]
case pos
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s✝ : Set α
η : Type u_3
s : η → Set α
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), SetIndependent (s i)
hη : Nonempty η
⊢ ∀ (t : Finset α), ↑t ⊆ ⋃ (i : η), s i → SetIndependent ↑t
[PROOFSTEP]
intro t ht
[GOAL]
case pos
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s✝ : Set α
η : Type u_3
s : η → Set α
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), SetIndependent (s i)
hη : Nonempty η
t : Finset α
ht : ↑t ⊆ ⋃ (i : η), s i
⊢ SetIndependent ↑t
[PROOFSTEP]
obtain ⟨I, fi, hI⟩ := Set.finite_subset_iUnion t.finite_toSet ht
[GOAL]
case pos.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s✝ : Set α
η : Type u_3
s : η → Set α
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), SetIndependent (s i)
hη : Nonempty η
t : Finset α
ht : ↑t ⊆ ⋃ (i : η), s i
I : Set η
fi : Set.Finite I
hI : ↑t ⊆ ⋃ (i : η) (_ : i ∈ I), s i
⊢ SetIndependent ↑t
[PROOFSTEP]
obtain ⟨i, hi⟩ := hs.finset_le fi.toFinset
[GOAL]
case pos.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s✝ : Set α
η : Type u_3
s : η → Set α
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), SetIndependent (s i)
hη : Nonempty η
t : Finset α
ht : ↑t ⊆ ⋃ (i : η), s i
I : Set η
fi : Set.Finite I
hI : ↑t ⊆ ⋃ (i : η) (_ : i ∈ I), s i
i : η
hi : ∀ (i_1 : η), i_1 ∈ Set.Finite.toFinset fi → s i_1 ⊆ s i
⊢ SetIndependent ↑t
[PROOFSTEP]
exact (h i).mono (Set.Subset.trans hI <| Set.iUnion₂_subset fun j hj => hi j (fi.mem_toFinset.2 hj))
[GOAL]
case neg
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s✝ : Set α
η : Type u_3
s : η → Set α
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), SetIndependent (s i)
hη : ¬Nonempty η
⊢ SetIndependent (⋃ (i : η), s i)
[PROOFSTEP]
rintro a ⟨_, ⟨i, _⟩, _⟩
[GOAL]
case neg.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b : α
s✝ : Set α
η : Type u_3
s : η → Set α
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), SetIndependent (s i)
hη : ¬Nonempty η
a : α
w✝ : Set α
right✝ : a ∈ w✝
i : η
h✝ : (fun i => s i) i = w✝
⊢ Disjoint a (sSup ((⋃ (i : η), s i) \ {a}))
[PROOFSTEP]
exfalso
[GOAL]
case neg.intro.intro.intro.h
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a✝ b : α
s✝ : Set α
η : Type u_3
s : η → Set α
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), SetIndependent (s i)
hη : ¬Nonempty η
a : α
w✝ : Set α
right✝ : a ∈ w✝
i : η
h✝ : (fun i => s i) i = w✝
⊢ False
[PROOFSTEP]
exact hη ⟨i⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s✝ : Set α
s : Set (Set α)
hs : DirectedOn (fun x x_1 => x ⊆ x_1) s
h : ∀ (a : Set α), a ∈ s → SetIndependent a
⊢ SetIndependent (⋃₀ s)
[PROOFSTEP]
rw [Set.sUnion_eq_iUnion]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s✝ : Set α
s : Set (Set α)
hs : DirectedOn (fun x x_1 => x ⊆ x_1) s
h : ∀ (a : Set α), a ∈ s → SetIndependent a
⊢ SetIndependent (⋃ (i : ↑s), ↑i)
[PROOFSTEP]
exact CompleteLattice.setIndependent_iUnion_of_directed hs.directed_val (by simpa using h)
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : CompleteLattice α
inst✝ : IsCompactlyGenerated α
a b : α
s✝ : Set α
s : Set (Set α)
hs : DirectedOn (fun x x_1 => x ⊆ x_1) s
h : ∀ (a : Set α), a ∈ s → SetIndependent a
⊢ ∀ (i : ↑s), SetIndependent ↑i
[PROOFSTEP]
simpa using h
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : WellFounded fun x x_1 => x > x_1
⊢ IsCompactlyGenerated α
[PROOFSTEP]
rw [wellFounded_iff_isSupFiniteCompact, isSupFiniteCompact_iff_all_elements_compact] at h
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
h : ∀ (k : α), IsCompactElement k
⊢ IsCompactlyGenerated α
[PROOFSTEP]
exact ⟨fun x => ⟨{ x }, ⟨fun x _ => h x, sSup_singleton⟩⟩⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h : IsCompactElement k
⊢ IsCoatomic ↑(Set.Iic k)
[PROOFSTEP]
constructor
[GOAL]
case eq_top_or_exists_le_coatom
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h : IsCompactElement k
⊢ ∀ (b : ↑(Set.Iic k)), b = ⊤ ∨ ∃ a, IsCoatom a ∧ b ≤ a
[PROOFSTEP]
rintro ⟨b, hbk⟩
[GOAL]
case eq_top_or_exists_le_coatom.mk
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h : IsCompactElement k
b : α
hbk : b ∈ Set.Iic k
⊢ { val := b, property := hbk } = ⊤ ∨ ∃ a, IsCoatom a ∧ { val := b, property := hbk } ≤ a
[PROOFSTEP]
obtain rfl | H := eq_or_ne b k
[GOAL]
case eq_top_or_exists_le_coatom.mk.inl
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
b : α
h : IsCompactElement b
hbk : b ∈ Set.Iic b
⊢ { val := b, property := hbk } = ⊤ ∨ ∃ a, IsCoatom a ∧ { val := b, property := hbk } ≤ a
[PROOFSTEP]
left
[GOAL]
case eq_top_or_exists_le_coatom.mk.inl.h
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
b : α
h : IsCompactElement b
hbk : b ∈ Set.Iic b
⊢ { val := b, property := hbk } = ⊤
[PROOFSTEP]
ext
[GOAL]
case eq_top_or_exists_le_coatom.mk.inl.h.a
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
b : α
h : IsCompactElement b
hbk : b ∈ Set.Iic b
⊢ ↑{ val := b, property := hbk } = ↑⊤
[PROOFSTEP]
simp only [Set.Iic.coe_top, Subtype.coe_mk]
[GOAL]
case eq_top_or_exists_le_coatom.mk.inr
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h : IsCompactElement k
b : α
hbk : b ∈ Set.Iic k
H : b ≠ k
⊢ { val := b, property := hbk } = ⊤ ∨ ∃ a, IsCoatom a ∧ { val := b, property := hbk } ≤ a
[PROOFSTEP]
right
[GOAL]
case eq_top_or_exists_le_coatom.mk.inr.h
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h : IsCompactElement k
b : α
hbk : b ∈ Set.Iic k
H : b ≠ k
⊢ ∃ a, IsCoatom a ∧ { val := b, property := hbk } ≤ a
[PROOFSTEP]
have ⟨a, a₀, ba, h⟩ := zorn_nonempty_partialOrder₀ (Set.Iio k) ?_ b (lt_of_le_of_ne hbk H)
[GOAL]
case eq_top_or_exists_le_coatom.mk.inr.h.refine_2
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h✝ : IsCompactElement k
b : α
hbk : b ∈ Set.Iic k
H : b ≠ k
a : α
a₀ : a ∈ Set.Iio k
ba : b ≤ a
h : ∀ (z : α), z ∈ Set.Iio k → a ≤ z → z = a
⊢ ∃ a, IsCoatom a ∧ { val := b, property := hbk } ≤ a
[PROOFSTEP]
refine' ⟨⟨a, le_of_lt a₀⟩, ⟨ne_of_lt a₀, fun c hck => by_contradiction fun c₀ => _⟩, ba⟩
[GOAL]
case eq_top_or_exists_le_coatom.mk.inr.h.refine_2
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h✝ : IsCompactElement k
b : α
hbk : b ∈ Set.Iic k
H : b ≠ k
a : α
a₀ : a ∈ Set.Iio k
ba : b ≤ a
h : ∀ (z : α), z ∈ Set.Iio k → a ≤ z → z = a
c : ↑(Set.Iic k)
hck : { val := a, property := (_ : a ≤ k) } < c
c₀ : ¬c = ⊤
⊢ False
[PROOFSTEP]
cases h c.1 (lt_of_le_of_ne c.2 fun con => c₀ (Subtype.ext con)) hck.le
[GOAL]
case eq_top_or_exists_le_coatom.mk.inr.h.refine_2.refl
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h✝ : IsCompactElement k
b : α
hbk : b ∈ Set.Iic k
H : b ≠ k
c : ↑(Set.Iic k)
c₀ : ¬c = ⊤
a₀ : ↑c ∈ Set.Iio k
ba : b ≤ ↑c
h : ∀ (z : α), z ∈ Set.Iio k → ↑c ≤ z → z = ↑c
hck : { val := ↑c, property := (_ : ↑c ≤ k) } < c
⊢ False
[PROOFSTEP]
exact lt_irrefl _ hck
[GOAL]
case eq_top_or_exists_le_coatom.mk.inr.h.refine_1
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h : IsCompactElement k
b : α
hbk : b ∈ Set.Iic k
H : b ≠ k
⊢ ∀ (c : Set α),
c ⊆ Set.Iio k →
IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α), y ∈ c → ∃ ub, ub ∈ Set.Iio k ∧ ∀ (z : α), z ∈ c → z ≤ ub
[PROOFSTEP]
intro S SC cC I _
[GOAL]
case eq_top_or_exists_le_coatom.mk.inr.h.refine_1
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h : IsCompactElement k
b : α
hbk : b ∈ Set.Iic k
H : b ≠ k
S : Set α
SC : S ⊆ Set.Iio k
cC : IsChain (fun x x_1 => x ≤ x_1) S
I : α
a✝ : I ∈ S
⊢ ∃ ub, ub ∈ Set.Iio k ∧ ∀ (z : α), z ∈ S → z ≤ ub
[PROOFSTEP]
by_cases hS : S.Nonempty
[GOAL]
case pos
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h : IsCompactElement k
b : α
hbk : b ∈ Set.Iic k
H : b ≠ k
S : Set α
SC : S ⊆ Set.Iio k
cC : IsChain (fun x x_1 => x ≤ x_1) S
I : α
a✝ : I ∈ S
hS : Set.Nonempty S
⊢ ∃ ub, ub ∈ Set.Iio k ∧ ∀ (z : α), z ∈ S → z ≤ ub
[PROOFSTEP]
refine' ⟨sSup S, h.directed_sSup_lt_of_lt hS cC.directedOn SC, _⟩
[GOAL]
case pos
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h : IsCompactElement k
b : α
hbk : b ∈ Set.Iic k
H : b ≠ k
S : Set α
SC : S ⊆ Set.Iio k
cC : IsChain (fun x x_1 => x ≤ x_1) S
I : α
a✝ : I ∈ S
hS : Set.Nonempty S
⊢ ∀ (z : α), z ∈ S → z ≤ sSup S
[PROOFSTEP]
intro
[GOAL]
case pos
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h : IsCompactElement k
b : α
hbk : b ∈ Set.Iic k
H : b ≠ k
S : Set α
SC : S ⊆ Set.Iio k
cC : IsChain (fun x x_1 => x ≤ x_1) S
I : α
a✝ : I ∈ S
hS : Set.Nonempty S
z✝ : α
⊢ z✝ ∈ S → z✝ ≤ sSup S
[PROOFSTEP]
apply le_sSup
[GOAL]
case neg
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h : IsCompactElement k
b : α
hbk : b ∈ Set.Iic k
H : b ≠ k
S : Set α
SC : S ⊆ Set.Iio k
cC : IsChain (fun x x_1 => x ≤ x_1) S
I : α
a✝ : I ∈ S
hS : ¬Set.Nonempty S
⊢ ∃ ub, ub ∈ Set.Iio k ∧ ∀ (z : α), z ∈ S → z ≤ ub
[PROOFSTEP]
exact
⟨b, lt_of_le_of_ne hbk H, by
simp only [Set.not_nonempty_iff_eq_empty.mp hS, Set.mem_empty_iff_false, forall_const, forall_prop_of_false,
not_false_iff]⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝ : CompleteLattice α
f : ι → α
k : α
h : IsCompactElement k
b : α
hbk : b ∈ Set.Iic k
H : b ≠ k
S : Set α
SC : S ⊆ Set.Iio k
cC : IsChain (fun x x_1 => x ≤ x_1) S
I : α
a✝ : I ∈ S
hS : ¬Set.Nonempty S
⊢ ∀ (z : α), z ∈ S → z ≤ b
[PROOFSTEP]
simp only [Set.not_nonempty_iff_eq_empty.mp hS, Set.mem_empty_iff_false, forall_const, forall_prop_of_false,
not_false_iff]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
by_cases h : {c : α | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
[GOAL]
case pos
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : {c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
left
[GOAL]
case pos.h
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : {c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
⊢ b = ⊥
[PROOFSTEP]
rw [← sSup_compact_le_eq b, sSup_eq_bot]
[GOAL]
case pos.h
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : {c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
⊢ ∀ (a : α), a ∈ {c | CompleteLattice.IsCompactElement c ∧ c ≤ b} → a = ⊥
[PROOFSTEP]
exact h
[GOAL]
case neg
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
rcases Set.not_subset.1 h with ⟨c, ⟨hc, hcb⟩, hcbot⟩
[GOAL]
case neg.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
c : α
hcbot : ¬c ∈ {⊥}
hc : CompleteLattice.IsCompactElement c
hcb : c ≤ b
⊢ b = ⊥ ∨ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
right
[GOAL]
case neg.intro.intro.intro.h
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
c : α
hcbot : ¬c ∈ {⊥}
hc : CompleteLattice.IsCompactElement c
hcb : c ≤ b
⊢ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
have hc' := CompleteLattice.Iic_coatomic_of_compact_element hc
[GOAL]
case neg.intro.intro.intro.h
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
c : α
hcbot : ¬c ∈ {⊥}
hc : CompleteLattice.IsCompactElement c
hcb : c ≤ b
hc' : IsCoatomic ↑(Set.Iic c)
⊢ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
rw [← isAtomic_iff_isCoatomic] at hc'
[GOAL]
case neg.intro.intro.intro.h
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
c : α
hcbot : ¬c ∈ {⊥}
hc : CompleteLattice.IsCompactElement c
hcb : c ≤ b
hc' : IsAtomic ↑(Set.Iic c)
⊢ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
haveI := hc'
[GOAL]
case neg.intro.intro.intro.h
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
c : α
hcbot : ¬c ∈ {⊥}
hc : CompleteLattice.IsCompactElement c
hcb : c ≤ b
hc' this : IsAtomic ↑(Set.Iic c)
⊢ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
obtain con | ⟨a, ha, hac⟩ := eq_bot_or_exists_atom_le (⟨c, le_refl c⟩ : Set.Iic c)
[GOAL]
case neg.intro.intro.intro.h.inl
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
c : α
hcbot : ¬c ∈ {⊥}
hc : CompleteLattice.IsCompactElement c
hcb : c ≤ b
hc' this : IsAtomic ↑(Set.Iic c)
con : { val := c, property := (_ : c ≤ c) } = ⊥
⊢ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
exfalso
[GOAL]
case neg.intro.intro.intro.h.inl.h
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
c : α
hcbot : ¬c ∈ {⊥}
hc : CompleteLattice.IsCompactElement c
hcb : c ≤ b
hc' this : IsAtomic ↑(Set.Iic c)
con : { val := c, property := (_ : c ≤ c) } = ⊥
⊢ False
[PROOFSTEP]
apply hcbot
[GOAL]
case neg.intro.intro.intro.h.inl.h
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
c : α
hcbot : ¬c ∈ {⊥}
hc : CompleteLattice.IsCompactElement c
hcb : c ≤ b
hc' this : IsAtomic ↑(Set.Iic c)
con : { val := c, property := (_ : c ≤ c) } = ⊥
⊢ c ∈ {⊥}
[PROOFSTEP]
simp only [Subtype.ext_iff, Set.Iic.coe_bot, Subtype.coe_mk] at con
[GOAL]
case neg.intro.intro.intro.h.inl.h
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
c : α
hcbot : ¬c ∈ {⊥}
hc : CompleteLattice.IsCompactElement c
hcb : c ≤ b
hc' this : IsAtomic ↑(Set.Iic c)
con : c = ⊥
⊢ c ∈ {⊥}
[PROOFSTEP]
exact con
[GOAL]
case neg.intro.intro.intro.h.inr.intro.intro
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
c : α
hcbot : ¬c ∈ {⊥}
hc : CompleteLattice.IsCompactElement c
hcb : c ≤ b
hc' this : IsAtomic ↑(Set.Iic c)
a : { x // x ∈ Set.Iic c }
ha : IsAtom a
hac : a ≤ { val := c, property := (_ : c ≤ c) }
⊢ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
rw [← Subtype.coe_le_coe, Subtype.coe_mk] at hac
[GOAL]
case neg.intro.intro.intro.h.inr.intro.intro
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
h : ¬{c | CompleteLattice.IsCompactElement c ∧ c ≤ b} ⊆ {⊥}
c : α
hcbot : ¬c ∈ {⊥}
hc : CompleteLattice.IsCompactElement c
hcb : c ≤ b
hc' this : IsAtomic ↑(Set.Iic c)
a : { x // x ∈ Set.Iic c }
ha : IsAtom a
hac : ↑a ≤ ↑{ val := c, property := (_ : c ≤ c) }
⊢ ∃ a, IsAtom a ∧ a ≤ b
[PROOFSTEP]
exact ⟨a, ha.of_isAtom_coe_Iic, hac.trans hcb⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
⊢ b = sSup {a | IsAtom a ∧ a ≤ b}
[PROOFSTEP]
symm
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
⊢ sSup {a | IsAtom a ∧ a ≤ b} = b
[PROOFSTEP]
have hle : sSup {a : α | IsAtom a ∧ a ≤ b} ≤ b := sSup_le fun _ => And.right
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b
⊢ sSup {a | IsAtom a ∧ a ≤ b} = b
[PROOFSTEP]
apply (lt_or_eq_of_le hle).resolve_left _
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b
⊢ ¬sSup {a | IsAtom a ∧ a ≤ b} < b
[PROOFSTEP]
intro con
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b
con : sSup {a | IsAtom a ∧ a ≤ b} < b
⊢ False
[PROOFSTEP]
obtain ⟨c, hc⟩ := exists_isCompl (⟨sSup {a : α | IsAtom a ∧ a ≤ b}, hle⟩ : Set.Iic b)
[GOAL]
case intro
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b
con : sSup {a | IsAtom a ∧ a ≤ b} < b
c : { x // x ∈ Set.Iic b }
hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } c
⊢ False
[PROOFSTEP]
obtain rfl | ⟨a, ha, hac⟩ := eq_bot_or_exists_atom_le c
[GOAL]
case intro.inl
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b
con : sSup {a | IsAtom a ∧ a ≤ b} < b
hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } ⊥
⊢ False
[PROOFSTEP]
exact ne_of_lt con (Subtype.ext_iff.1 (eq_top_of_isCompl_bot hc))
[GOAL]
case intro.inr.intro.intro
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b
con : sSup {a | IsAtom a ∧ a ≤ b} < b
c : { x // x ∈ Set.Iic b }
hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } c
a : { x // x ∈ Set.Iic b }
ha : IsAtom a
hac : a ≤ c
⊢ False
[PROOFSTEP]
apply ha.1
[GOAL]
case intro.inr.intro.intro
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b
con : sSup {a | IsAtom a ∧ a ≤ b} < b
c : { x // x ∈ Set.Iic b }
hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } c
a : { x // x ∈ Set.Iic b }
ha : IsAtom a
hac : a ≤ c
⊢ a = ⊥
[PROOFSTEP]
rw [eq_bot_iff]
[GOAL]
case intro.inr.intro.intro
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b
con : sSup {a | IsAtom a ∧ a ≤ b} < b
c : { x // x ∈ Set.Iic b }
hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } c
a : { x // x ∈ Set.Iic b }
ha : IsAtom a
hac : a ≤ c
⊢ a ≤ ⊥
[PROOFSTEP]
apply le_trans (le_inf _ hac) hc.disjoint.le_bot
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b
con : sSup {a | IsAtom a ∧ a ≤ b} < b
c : { x // x ∈ Set.Iic b }
hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } c
a : { x // x ∈ Set.Iic b }
ha : IsAtom a
hac : a ≤ c
⊢ a ≤ { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle }
[PROOFSTEP]
rw [← Subtype.coe_le_coe, Subtype.coe_mk]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝³ : CompleteLattice α
f : ι → α
inst✝² : IsModularLattice α
inst✝¹ : IsCompactlyGenerated α
inst✝ : ComplementedLattice α
b : α
hle : sSup {a | IsAtom a ∧ a ≤ b} ≤ b
con : sSup {a | IsAtom a ∧ a ≤ b} < b
c : { x // x ∈ Set.Iic b }
hc : IsCompl { val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle } c
a : { x // x ∈ Set.Iic b }
ha : IsAtom a
hac : a ≤ c
⊢ ↑a ≤ ↑{ val := sSup {a | IsAtom a ∧ a ≤ b}, property := hle }
[PROOFSTEP]
exact le_sSup ⟨ha.of_isAtom_coe_Iic, a.2⟩
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
⊢ ∃ s, CompleteLattice.SetIndependent s ∧ IsCompl b (sSup s) ∧ ∀ ⦃a : α⦄, a ∈ s → IsAtom a
[PROOFSTEP]
have :=
zorn_subset {s : Set α | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ a ∈ s, IsAtom a} fun c hc1 hc2 =>
⟨⋃₀ c,
⟨CompleteLattice.independent_sUnion_of_directed hc2.directedOn fun s hs => (hc1 hs).1, ?_, fun a ⟨s, sc, as⟩ =>
(hc1 sc).2.2 a as⟩,
fun _ => Set.subset_sUnion_of_mem⟩
[GOAL]
case refine_2
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
this :
∃ m,
m ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} ∧
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → m ⊆ a → a = m
⊢ ∃ s, CompleteLattice.SetIndependent s ∧ IsCompl b (sSup s) ∧ ∀ ⦃a : α⦄, a ∈ s → IsAtom a
case refine_1
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
c : Set (Set α)
hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a}
hc2 : IsChain (fun x x_1 => x ⊆ x_1) c
⊢ Disjoint b (sSup (⋃₀ c))
[PROOFSTEP]
obtain ⟨s, ⟨s_ind, b_inf_Sup_s, s_atoms⟩, s_max⟩ := this
[GOAL]
case refine_2.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
⊢ ∃ s, CompleteLattice.SetIndependent s ∧ IsCompl b (sSup s) ∧ ∀ ⦃a : α⦄, a ∈ s → IsAtom a
case refine_1
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
c : Set (Set α)
hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a}
hc2 : IsChain (fun x x_1 => x ⊆ x_1) c
⊢ Disjoint b (sSup (⋃₀ c))
[PROOFSTEP]
swap
[GOAL]
case refine_1
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
c : Set (Set α)
hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a}
hc2 : IsChain (fun x x_1 => x ⊆ x_1) c
⊢ Disjoint b (sSup (⋃₀ c))
[PROOFSTEP]
rw [sSup_sUnion, ← sSup_image, DirectedOn.disjoint_sSup_right]
[GOAL]
case refine_1
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
c : Set (Set α)
hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a}
hc2 : IsChain (fun x x_1 => x ⊆ x_1) c
⊢ ∀ ⦃b_1 : α⦄, b_1 ∈ (fun t => sSup t) '' c → Disjoint b b_1
[PROOFSTEP]
rintro _ ⟨s, hs, rfl⟩
[GOAL]
case refine_1.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
c : Set (Set α)
hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a}
hc2 : IsChain (fun x x_1 => x ⊆ x_1) c
s : Set α
hs : s ∈ c
⊢ Disjoint b ((fun t => sSup t) s)
[PROOFSTEP]
exact (hc1 hs).2.1
[GOAL]
case refine_1
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
c : Set (Set α)
hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a}
hc2 : IsChain (fun x x_1 => x ⊆ x_1) c
⊢ DirectedOn (fun x x_1 => x ≤ x_1) ((fun t => sSup t) '' c)
[PROOFSTEP]
rw [directedOn_image]
[GOAL]
case refine_1
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
c : Set (Set α)
hc1 : c ⊆ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a}
hc2 : IsChain (fun x x_1 => x ⊆ x_1) c
⊢ DirectedOn ((fun t => sSup t) ⁻¹'o fun x x_1 => x ≤ x_1) c
[PROOFSTEP]
exact hc2.directedOn.mono @fun s t => sSup_le_sSup
[GOAL]
case refine_2.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
⊢ ∃ s, CompleteLattice.SetIndependent s ∧ IsCompl b (sSup s) ∧ ∀ ⦃a : α⦄, a ∈ s → IsAtom a
[PROOFSTEP]
refine' ⟨s, s_ind, ⟨b_inf_Sup_s, _⟩, s_atoms⟩
[GOAL]
case refine_2.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
⊢ Codisjoint b (sSup s)
[PROOFSTEP]
rw [codisjoint_iff_le_sup, ← h, sSup_le_iff]
[GOAL]
case refine_2.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
⊢ ∀ (b_1 : α), b_1 ∈ {a | IsAtom a} → b_1 ≤ b ⊔ sSup s
[PROOFSTEP]
intro a ha
[GOAL]
case refine_2.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
⊢ a ≤ b ⊔ sSup s
[PROOFSTEP]
rw [← inf_eq_left]
[GOAL]
case refine_2.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
⊢ a ⊓ (b ⊔ sSup s) = a
[PROOFSTEP]
refine' (ha.le_iff.mp inf_le_left).resolve_left fun con => ha.1 _
[GOAL]
case refine_2.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : a ⊓ (b ⊔ sSup s) = ⊥
⊢ a = ⊥
[PROOFSTEP]
rw [← con, eq_comm, inf_eq_left]
[GOAL]
case refine_2.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : a ⊓ (b ⊔ sSup s) = ⊥
⊢ a ≤ b ⊔ sSup s
[PROOFSTEP]
refine' (le_sSup _).trans le_sup_right
[GOAL]
case refine_2.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : a ⊓ (b ⊔ sSup s) = ⊥
⊢ a ∈ s
[PROOFSTEP]
rw [← disjoint_iff] at con
[GOAL]
case refine_2.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
⊢ a ∈ s
[PROOFSTEP]
have a_dis_Sup_s : Disjoint a (sSup s) := con.mono_right le_sup_right
[GOAL]
case refine_2.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
⊢ a ∈ s
[PROOFSTEP]
rw [← s_max (s ∪ { a }) ⟨fun x hx => _, _, fun x hx => _⟩ (Set.subset_union_left _ _)]
[GOAL]
case refine_2.intro.intro.intro.intro
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
⊢ a ∈ s ∪ {a}
[PROOFSTEP]
exact Set.mem_union_right _ (Set.mem_singleton _)
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
⊢ ∀ (x : α), x ∈ s ∪ {a} → Disjoint x (sSup ((s ∪ {a}) \ {x}))
[PROOFSTEP]
intro x hx
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
x : α
hx : x ∈ s ∪ {a}
⊢ Disjoint x (sSup ((s ∪ {a}) \ {x}))
[PROOFSTEP]
rw [Set.mem_union, Set.mem_singleton_iff] at hx
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
x : α
hx : x ∈ s ∨ x = a
⊢ Disjoint x (sSup ((s ∪ {a}) \ {x}))
[PROOFSTEP]
obtain rfl | xa := eq_or_ne x a
[GOAL]
case inl
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
x : α
ha : x ∈ {a | IsAtom a}
con : Disjoint x (b ⊔ sSup s)
a_dis_Sup_s : Disjoint x (sSup s)
hx : x ∈ s ∨ x = x
⊢ Disjoint x (sSup ((s ∪ {x}) \ {x}))
[PROOFSTEP]
simp only [Set.mem_singleton, Set.insert_diff_of_mem, Set.union_singleton]
[GOAL]
case inl
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
x : α
ha : x ∈ {a | IsAtom a}
con : Disjoint x (b ⊔ sSup s)
a_dis_Sup_s : Disjoint x (sSup s)
hx : x ∈ s ∨ x = x
⊢ Disjoint x (sSup (s \ {x}))
[PROOFSTEP]
exact con.mono_right ((sSup_le_sSup <| Set.diff_subset _ _).trans le_sup_right)
[GOAL]
case inr
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
x : α
hx : x ∈ s ∨ x = a
xa : x ≠ a
⊢ Disjoint x (sSup ((s ∪ {a}) \ {x}))
[PROOFSTEP]
have h : (s ∪ { a }) \ { x } = s \ { x } ∪ { a } :=
by
simp only [Set.union_singleton]
rw [Set.insert_diff_of_not_mem]
rw [Set.mem_singleton_iff]
exact Ne.symm xa
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
x : α
hx : x ∈ s ∨ x = a
xa : x ≠ a
⊢ (s ∪ {a}) \ {x} = s \ {x} ∪ {a}
[PROOFSTEP]
simp only [Set.union_singleton]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
x : α
hx : x ∈ s ∨ x = a
xa : x ≠ a
⊢ insert a s \ {x} = insert a (s \ {x})
[PROOFSTEP]
rw [Set.insert_diff_of_not_mem]
[GOAL]
case h
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
x : α
hx : x ∈ s ∨ x = a
xa : x ≠ a
⊢ ¬a ∈ {x}
[PROOFSTEP]
rw [Set.mem_singleton_iff]
[GOAL]
case h
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
x : α
hx : x ∈ s ∨ x = a
xa : x ≠ a
⊢ ¬a = x
[PROOFSTEP]
exact Ne.symm xa
[GOAL]
case inr
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h✝ : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
x : α
hx : x ∈ s ∨ x = a
xa : x ≠ a
h : (s ∪ {a}) \ {x} = s \ {x} ∪ {a}
⊢ Disjoint x (sSup ((s ∪ {a}) \ {x}))
[PROOFSTEP]
rw [h, sSup_union, sSup_singleton]
[GOAL]
case inr
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h✝ : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
x : α
hx : x ∈ s ∨ x = a
xa : x ≠ a
h : (s ∪ {a}) \ {x} = s \ {x} ∪ {a}
⊢ Disjoint x (sSup (s \ {x}) ⊔ a)
[PROOFSTEP]
apply (s_ind (hx.resolve_right xa)).disjoint_sup_right_of_disjoint_sup_left (a_dis_Sup_s.mono_right _).symm
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h✝ : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
x : α
hx : x ∈ s ∨ x = a
xa : x ≠ a
h : (s ∪ {a}) \ {x} = s \ {x} ∪ {a}
⊢ x ⊔ sSup (s \ {x}) ≤ sSup s
[PROOFSTEP]
rw [← sSup_insert, Set.insert_diff_singleton, Set.insert_eq_of_mem (hx.resolve_right xa)]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
⊢ Disjoint b (sSup (s ∪ {a}))
[PROOFSTEP]
rw [sSup_union, sSup_singleton]
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
⊢ Disjoint b (sSup s ⊔ a)
[PROOFSTEP]
exact b_inf_Sup_s.disjoint_sup_right_of_disjoint_sup_left con.symm
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
⊢ ∀ (x : α), x ∈ s ∪ {a} → IsAtom x
[PROOFSTEP]
intro x hx
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
x : α
hx : x ∈ s ∪ {a}
⊢ IsAtom x
[PROOFSTEP]
rw [Set.mem_union, Set.mem_singleton_iff] at hx
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
x : α
hx : x ∈ s ∨ x = a
⊢ IsAtom x
[PROOFSTEP]
obtain hx | rfl := hx
[GOAL]
case inl
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
a : α
ha : a ∈ {a | IsAtom a}
con : Disjoint a (b ⊔ sSup s)
a_dis_Sup_s : Disjoint a (sSup s)
x : α
hx : x ∈ s
⊢ IsAtom x
[PROOFSTEP]
exact s_atoms x hx
[GOAL]
case inr
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
h : sSup {a | IsAtom a} = ⊤
b : α
s : Set α
s_max :
∀ (a : Set α),
a ∈ {s | CompleteLattice.SetIndependent s ∧ Disjoint b (sSup s) ∧ ∀ (a : α), a ∈ s → IsAtom a} → s ⊆ a → a = s
s_ind : CompleteLattice.SetIndependent s
b_inf_Sup_s : Disjoint b (sSup s)
s_atoms : ∀ (a : α), a ∈ s → IsAtom a
x : α
ha : x ∈ {a | IsAtom a}
con : Disjoint x (b ⊔ sSup s)
a_dis_Sup_s : Disjoint x (sSup s)
⊢ IsAtom x
[PROOFSTEP]
exact ha
[GOAL]
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
⊢ ComplementedLattice α ↔ IsAtomistic α
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
⊢ ComplementedLattice α → IsAtomistic α
[PROOFSTEP]
intros
[GOAL]
case mpr
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
⊢ IsAtomistic α → ComplementedLattice α
[PROOFSTEP]
intros
[GOAL]
case mp
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
a✝ : ComplementedLattice α
⊢ IsAtomistic α
[PROOFSTEP]
exact isAtomistic_of_complementedLattice
[GOAL]
case mpr
ι : Sort u_1
α : Type u_2
inst✝² : CompleteLattice α
f : ι → α
inst✝¹ : IsModularLattice α
inst✝ : IsCompactlyGenerated α
a✝ : IsAtomistic α
⊢ ComplementedLattice α
[PROOFSTEP]
exact complementedLattice_of_isAtomistic
| {"mathlib_filename": "Mathlib.Order.CompactlyGenerated", "llama_tokens": 62172} |
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s✝ : α → α → Prop
s : Set α
⊢ DirectedOn r s ↔ Directed r Subtype.val
[PROOFSTEP]
simp [Directed, DirectedOn]
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s✝ : α → α → Prop
s : Set α
⊢ (∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → ∃ z, z ∈ s ∧ r x z ∧ r y z) ↔
∀ (a : α), a ∈ s → ∀ (a_1 : α), a_1 ∈ s → ∃ a_2, r a a_2 ∧ a_2 ∈ s ∧ r a_1 a_2
[PROOFSTEP]
refine' ball_congr fun x _ => by simp [And.comm, and_assoc]
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s✝ : α → α → Prop
s : Set α
x : α
x✝ : x ∈ s
⊢ (∀ (y : α), y ∈ s → ∃ z, z ∈ s ∧ r x z ∧ r y z) ↔ ∀ (a : α), a ∈ s → ∃ a_1, r x a_1 ∧ a_1 ∈ s ∧ r a a_1
[PROOFSTEP]
simp [And.comm, and_assoc]
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
f : ι → α
⊢ Directed r f ↔ DirectedOn r (Set.range f)
[PROOFSTEP]
simp_rw [Directed, DirectedOn, Set.forall_range_iff, Set.exists_range_iff]
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s✝ : α → α → Prop
s : Set β
f : β → α
⊢ DirectedOn r (f '' s) ↔ DirectedOn (f ⁻¹'o r) s
[PROOFSTEP]
simp only [DirectedOn, Set.mem_image, exists_exists_and_eq_and, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂,
Order.Preimage]
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
inst✝ : OrderBot α
e : ι → β
f : ι → α
hf : Directed (fun x x_1 => x ≤ x_1) f
he : Injective e
⊢ Directed (fun x x_1 => x ≤ x_1) (extend e f ⊥)
[PROOFSTEP]
intro a b
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
inst✝ : OrderBot α
e : ι → β
f : ι → α
hf : Directed (fun x x_1 => x ≤ x_1) f
he : Injective e
a b : β
⊢ ∃ z,
(fun x x_1 => x ≤ x_1) (extend e f ⊥ a) (extend e f ⊥ z) ∧ (fun x x_1 => x ≤ x_1) (extend e f ⊥ b) (extend e f ⊥ z)
[PROOFSTEP]
rcases(em (∃ i, e i = a)).symm with (ha | ⟨i, rfl⟩)
[GOAL]
case inl
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
inst✝ : OrderBot α
e : ι → β
f : ι → α
hf : Directed (fun x x_1 => x ≤ x_1) f
he : Injective e
a b : β
ha : ¬∃ i, e i = a
⊢ ∃ z,
(fun x x_1 => x ≤ x_1) (extend e f ⊥ a) (extend e f ⊥ z) ∧ (fun x x_1 => x ≤ x_1) (extend e f ⊥ b) (extend e f ⊥ z)
[PROOFSTEP]
use b
[GOAL]
case h
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
inst✝ : OrderBot α
e : ι → β
f : ι → α
hf : Directed (fun x x_1 => x ≤ x_1) f
he : Injective e
a b : β
ha : ¬∃ i, e i = a
⊢ (fun x x_1 => x ≤ x_1) (extend e f ⊥ a) (extend e f ⊥ b) ∧ (fun x x_1 => x ≤ x_1) (extend e f ⊥ b) (extend e f ⊥ b)
[PROOFSTEP]
simp [Function.extend_apply' _ _ _ ha]
[GOAL]
case inr.intro
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
inst✝ : OrderBot α
e : ι → β
f : ι → α
hf : Directed (fun x x_1 => x ≤ x_1) f
he : Injective e
b : β
i : ι
⊢ ∃ z,
(fun x x_1 => x ≤ x_1) (extend e f ⊥ (e i)) (extend e f ⊥ z) ∧
(fun x x_1 => x ≤ x_1) (extend e f ⊥ b) (extend e f ⊥ z)
[PROOFSTEP]
rcases(em (∃ i, e i = b)).symm with (hb | ⟨j, rfl⟩)
[GOAL]
case inr.intro.inl
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
inst✝ : OrderBot α
e : ι → β
f : ι → α
hf : Directed (fun x x_1 => x ≤ x_1) f
he : Injective e
b : β
i : ι
hb : ¬∃ i, e i = b
⊢ ∃ z,
(fun x x_1 => x ≤ x_1) (extend e f ⊥ (e i)) (extend e f ⊥ z) ∧
(fun x x_1 => x ≤ x_1) (extend e f ⊥ b) (extend e f ⊥ z)
[PROOFSTEP]
use e i
[GOAL]
case h
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
inst✝ : OrderBot α
e : ι → β
f : ι → α
hf : Directed (fun x x_1 => x ≤ x_1) f
he : Injective e
b : β
i : ι
hb : ¬∃ i, e i = b
⊢ (fun x x_1 => x ≤ x_1) (extend e f ⊥ (e i)) (extend e f ⊥ (e i)) ∧
(fun x x_1 => x ≤ x_1) (extend e f ⊥ b) (extend e f ⊥ (e i))
[PROOFSTEP]
simp [Function.extend_apply' _ _ _ hb]
[GOAL]
case inr.intro.inr.intro
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
inst✝ : OrderBot α
e : ι → β
f : ι → α
hf : Directed (fun x x_1 => x ≤ x_1) f
he : Injective e
i j : ι
⊢ ∃ z,
(fun x x_1 => x ≤ x_1) (extend e f ⊥ (e i)) (extend e f ⊥ z) ∧
(fun x x_1 => x ≤ x_1) (extend e f ⊥ (e j)) (extend e f ⊥ z)
[PROOFSTEP]
rcases hf i j with ⟨k, hi, hj⟩
[GOAL]
case inr.intro.inr.intro.intro.intro
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
inst✝ : OrderBot α
e : ι → β
f : ι → α
hf : Directed (fun x x_1 => x ≤ x_1) f
he : Injective e
i j k : ι
hi : f i ≤ f k
hj : f j ≤ f k
⊢ ∃ z,
(fun x x_1 => x ≤ x_1) (extend e f ⊥ (e i)) (extend e f ⊥ z) ∧
(fun x x_1 => x ≤ x_1) (extend e f ⊥ (e j)) (extend e f ⊥ z)
[PROOFSTEP]
use e k
[GOAL]
case h
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
inst✝ : OrderBot α
e : ι → β
f : ι → α
hf : Directed (fun x x_1 => x ≤ x_1) f
he : Injective e
i j k : ι
hi : f i ≤ f k
hj : f j ≤ f k
⊢ (fun x x_1 => x ≤ x_1) (extend e f ⊥ (e i)) (extend e f ⊥ (e k)) ∧
(fun x x_1 => x ≤ x_1) (extend e f ⊥ (e j)) (extend e f ⊥ (e k))
[PROOFSTEP]
simp only [he.extend_apply, *, true_and_iff]
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝ : IsDirected α r
⊢ Directed r id
[PROOFSTEP]
convert directed_of r
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝ : IsTotal α r
⊢ IsDirected α r
[PROOFSTEP]
rw [← directed_id_iff]
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝ : IsTotal α r
⊢ Directed r id
[PROOFSTEP]
exact IsTotal.directed _
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : LE α
inst✝ : IsDirected α fun x x_1 => x ≤ x_1
⊢ IsDirected αᵒᵈ fun x x_1 => x ≥ x_1
[PROOFSTEP]
assumption
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : LE α
inst✝ : IsDirected α fun x x_1 => x ≥ x_1
⊢ IsDirected αᵒᵈ fun x x_1 => x ≤ x_1
[PROOFSTEP]
assumption
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s✝ : α → α → Prop
h : Reflexive r
a : α
s : Set α
hd : DirectedOn r s
ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r a c ∧ r b c
⊢ DirectedOn r (insert a s)
[PROOFSTEP]
rintro x (rfl | hx) y (rfl | hy)
[GOAL]
case inl.inl
α : Type u
β : Type v
ι : Sort w
r r' s✝ : α → α → Prop
h : Reflexive r
s : Set α
hd : DirectedOn r s
y : α
ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r y c ∧ r b c
⊢ ∃ z, z ∈ insert y s ∧ r y z ∧ r y z
[PROOFSTEP]
exact ⟨y, Set.mem_insert _ _, h _, h _⟩
[GOAL]
case inl.inr
α : Type u
β : Type v
ι : Sort w
r r' s✝ : α → α → Prop
h : Reflexive r
s : Set α
hd : DirectedOn r s
x : α
ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r x c ∧ r b c
y : α
hy : y ∈ s
⊢ ∃ z, z ∈ insert x s ∧ r x z ∧ r y z
[PROOFSTEP]
obtain ⟨w, hws, hwr⟩ := ha y hy
[GOAL]
case inl.inr.intro.intro
α : Type u
β : Type v
ι : Sort w
r r' s✝ : α → α → Prop
h : Reflexive r
s : Set α
hd : DirectedOn r s
x : α
ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r x c ∧ r b c
y : α
hy : y ∈ s
w : α
hws : w ∈ s
hwr : r x w ∧ r y w
⊢ ∃ z, z ∈ insert x s ∧ r x z ∧ r y z
[PROOFSTEP]
exact ⟨w, Set.mem_insert_of_mem _ hws, hwr⟩
[GOAL]
case inr.inl
α : Type u
β : Type v
ι : Sort w
r r' s✝ : α → α → Prop
h : Reflexive r
s : Set α
hd : DirectedOn r s
x : α
hx : x ∈ s
y : α
ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r y c ∧ r b c
⊢ ∃ z, z ∈ insert y s ∧ r x z ∧ r y z
[PROOFSTEP]
obtain ⟨w, hws, hwr⟩ := ha x hx
[GOAL]
case inr.inl.intro.intro
α : Type u
β : Type v
ι : Sort w
r r' s✝ : α → α → Prop
h : Reflexive r
s : Set α
hd : DirectedOn r s
x : α
hx : x ∈ s
y : α
ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r y c ∧ r b c
w : α
hws : w ∈ s
hwr : r y w ∧ r x w
⊢ ∃ z, z ∈ insert y s ∧ r x z ∧ r y z
[PROOFSTEP]
exact ⟨w, Set.mem_insert_of_mem _ hws, hwr.symm⟩
[GOAL]
case inr.inr
α : Type u
β : Type v
ι : Sort w
r r' s✝ : α → α → Prop
h : Reflexive r
a : α
s : Set α
hd : DirectedOn r s
ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r a c ∧ r b c
x : α
hx : x ∈ s
y : α
hy : y ∈ s
⊢ ∃ z, z ∈ insert a s ∧ r x z ∧ r y z
[PROOFSTEP]
obtain ⟨w, hws, hwr⟩ := hd x hx y hy
[GOAL]
case inr.inr.intro.intro
α : Type u
β : Type v
ι : Sort w
r r' s✝ : α → α → Prop
h : Reflexive r
a : α
s : Set α
hd : DirectedOn r s
ha : ∀ (b : α), b ∈ s → ∃ c, c ∈ s ∧ r a c ∧ r b c
x : α
hx : x ∈ s
y : α
hy : y ∈ s
w : α
hws : w ∈ s
hwr : r x w ∧ r y w
⊢ ∃ z, z ∈ insert a s ∧ r x z ∧ r y z
[PROOFSTEP]
exact ⟨w, Set.mem_insert_of_mem _ hws, hwr⟩
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
h : Reflexive r
a b : α
hab : r a b
⊢ DirectedOn r {b, a}
[PROOFSTEP]
rw [Set.pair_comm]
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
h : Reflexive r
a b : α
hab : r a b
⊢ DirectedOn r {a, b}
[PROOFSTEP]
apply directedOn_pair h hab
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝³ : Preorder α
a : α
inst✝² : PartialOrder β
inst✝¹ : IsDirected β fun x x_1 => x ≥ x_1
inst✝ : Nontrivial β
⊢ ∃ a b, a < b
[PROOFSTEP]
rcases exists_pair_ne β with ⟨a, b, hne⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝³ : Preorder α
a✝ : α
inst✝² : PartialOrder β
inst✝¹ : IsDirected β fun x x_1 => x ≥ x_1
inst✝ : Nontrivial β
a b : β
hne : a ≠ b
⊢ ∃ a b, a < b
[PROOFSTEP]
rcases isBot_or_exists_lt a with (ha | ⟨c, hc⟩)
[GOAL]
case intro.intro.inl
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝³ : Preorder α
a✝ : α
inst✝² : PartialOrder β
inst✝¹ : IsDirected β fun x x_1 => x ≥ x_1
inst✝ : Nontrivial β
a b : β
hne : a ≠ b
ha : IsBot a
⊢ ∃ a b, a < b
case intro.intro.inr.intro
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝³ : Preorder α
a✝ : α
inst✝² : PartialOrder β
inst✝¹ : IsDirected β fun x x_1 => x ≥ x_1
inst✝ : Nontrivial β
a b : β
hne : a ≠ b
c : β
hc : c < a
⊢ ∃ a b, a < b
[PROOFSTEP]
exacts [⟨a, b, (ha b).lt_of_ne hne⟩, ⟨_, _, hc⟩]
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
a : α
inst✝ : Preorder β
f : α → β
h : ScottContinuous f
⊢ Monotone f
[PROOFSTEP]
intro a b hab
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
a✝ : α
inst✝ : Preorder β
f : α → β
h : ScottContinuous f
a b : α
hab : a ≤ b
⊢ f a ≤ f b
[PROOFSTEP]
have e1 : IsLUB (f '' { a, b }) (f b) := by
apply h
· exact Set.insert_nonempty _ _
· exact directedOn_pair le_refl hab
· rw [IsLUB, upperBounds_insert, upperBounds_singleton,
Set.inter_eq_self_of_subset_right (Set.Ici_subset_Ici.mpr hab)]
exact isLeast_Ici
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
a✝ : α
inst✝ : Preorder β
f : α → β
h : ScottContinuous f
a b : α
hab : a ≤ b
⊢ IsLUB (f '' {a, b}) (f b)
[PROOFSTEP]
apply h
[GOAL]
case a
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
a✝ : α
inst✝ : Preorder β
f : α → β
h : ScottContinuous f
a b : α
hab : a ≤ b
⊢ Set.Nonempty {a, b}
[PROOFSTEP]
exact Set.insert_nonempty _ _
[GOAL]
case a
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
a✝ : α
inst✝ : Preorder β
f : α → β
h : ScottContinuous f
a b : α
hab : a ≤ b
⊢ DirectedOn (fun x x_1 => x ≤ x_1) {a, b}
[PROOFSTEP]
exact directedOn_pair le_refl hab
[GOAL]
case a
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
a✝ : α
inst✝ : Preorder β
f : α → β
h : ScottContinuous f
a b : α
hab : a ≤ b
⊢ IsLUB {a, b} b
[PROOFSTEP]
rw [IsLUB, upperBounds_insert, upperBounds_singleton, Set.inter_eq_self_of_subset_right (Set.Ici_subset_Ici.mpr hab)]
[GOAL]
case a
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
a✝ : α
inst✝ : Preorder β
f : α → β
h : ScottContinuous f
a b : α
hab : a ≤ b
⊢ IsLeast (Set.Ici b) b
[PROOFSTEP]
exact isLeast_Ici
[GOAL]
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
a✝ : α
inst✝ : Preorder β
f : α → β
h : ScottContinuous f
a b : α
hab : a ≤ b
e1 : IsLUB (f '' {a, b}) (f b)
⊢ f a ≤ f b
[PROOFSTEP]
apply e1.1
[GOAL]
case a
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
a✝ : α
inst✝ : Preorder β
f : α → β
h : ScottContinuous f
a b : α
hab : a ≤ b
e1 : IsLUB (f '' {a, b}) (f b)
⊢ f a ∈ f '' {a, b}
[PROOFSTEP]
rw [Set.image_pair]
[GOAL]
case a
α : Type u
β : Type v
ι : Sort w
r r' s : α → α → Prop
inst✝¹ : Preorder α
a✝ : α
inst✝ : Preorder β
f : α → β
h : ScottContinuous f
a b : α
hab : a ≤ b
e1 : IsLUB (f '' {a, b}) (f b)
⊢ f a ∈ {f a, f b}
[PROOFSTEP]
exact Set.mem_insert _ _
| {"mathlib_filename": "Mathlib.Order.Directed", "llama_tokens": 6423} |